
Error-Tolerant Parsing and Compilation for
Hylo: Enabling Interactive Development

Research Project CS3000

Viktor Seršiḱ1

Supervisors: Andreea Costea1, Jaro Reinders1
1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Viktor Seršiḱ
Final project course: CSE3000 Research Project
Thesis committee: Andreea Costea, Jaro Reinders, Harm Griffioen

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

Traditional compilers assume complete and syntactically correct input, making
them ill-suited for modern interactive programming environments, where code is of-
ten incomplete or erroneous. This paper examines how error-tolerant parsing, crucial
for modern Integrated Development Environment (IDE) support, can be implemented
in the Hylo programming language, which currently lacks this capability.

We identify key techniques from state-of-the-art compilers such as Roslyn and In-
telliJ, including phrase-level recovery, token synchronization, combinator resilience, and
Abstract Syntax Tree (AST) placeholders. We evaluated their suitability for Hylo’s ar-
chitecture and implemented a prototype demonstrating AST placeholder integration.

This approach moves beyond the ’halt-on-first-error’ model, enabling the parser to
continue processing despite errors, producing a structurally sound abstract syntax tree
annotated with diagnostics.

Our work highlights the potential of error-tolerant parsing to enhance developer ex-
perience in emerging languages and lays the foundation for IDE support and interactive
tooling in the Hylo ecosystem.

1 Introduction
In traditional compiler design, a foundational assumption is that the input source code is
complete and syntactically correct [1]. This assumption holds well for batch-style com-
pilation and production pipelines, where correctness is a prerequisite. However, modern
software development workflows, particularly within Integrated Development Environments
(IDEs), frequently involve incomplete, temporarily incorrect, or refactored code [10]. To
support these dynamic workflows effectively, compilers must offer robustness in the face of
incomplete or erroneous input. [12, 8]

Robust compiler tooling for incomplete programs enables real-time feedback, intelligent
code completion, syntax-aware navigation, and early error detection, even while the devel-
oper is midway through writing code. Achieving this requires compilers to recover gracefully
from parsing errors, generate partial intermediate representations like abstract syntax trees
(ASTs), and continue collecting meaningful diagnostics across the file. This concept is re-
ferred to as error-tolerant or resilient compilation. [16, 5]

State-of-the-art IDEs such as Microsoft ’s Visual Studio (via Roslyn) and JetBrains’ Intel-
liJ platform implement sophisticated error recovery techniques that allow them to function
smoothly over incomplete or invalid programs. [12, 8] These techniques have proven critical
in enhancing developer productivity and usability.

For emerging languages like Hylo, building such robust compiler support is a timely
challenge. Currently, a single syntax or type error in Hylo can prevent any further analysis,
blocking IDE features and degrading the developer experience. [4] This research project aims
to explore how Hylo’s compiler can be extended to handle incomplete programs, including
parsing and type checking where possible. This includes investigating existing techniques
from other compilers and IDEs, evaluating Hylo’s architecture, and potentially designing
a prototype that demonstrates partial, error-tolerant compilation. Such efforts will help
enable a smoother, more supportive programming environment for Hylo developers.

To address this timely challenge and enable a smoother, more supportive programming
environment for Hylo developers, this research project aims to explore how Hylo’s compiler
can be extended to handle incomplete programs smoothly, including parsing, where possible.
Specifically, this work is guided by the following central research question:

1

Can we make the Hylo compiler robust against incomplete programs? Can we continue
parsing even if an error is found in unrelated code?

This question breaks down into several sub-questions:

• Can the parser continue processing even if errors are found in unrelated parts of the
code?

• What techniques exist for error-tolerant parsing in other compilers and IDEs?

• How can we adapt or integrate these techniques into the Hylo compiler?

• Can a prototype be developed that demonstrates partial parsing and diagnostic col-
lection for incomplete code?

2 Background
The development of error-tolerant compilers is a response to the growing demand for respon-
sive, interactive programming environments. Traditional compilers, designed for batch-style
workflows, are optimized for complete and correct programs. In contrast, modern IDEs serve
developers during active code construction, where syntax errors, incomplete declarations,
and unresolved references are common [7]. To maintain functionality such as real-time diag-
nostics, code completion, and refactoring tools, these environments require compilers that
can parse, analyse, and provide feedback on incomplete or partially incorrect code.

Error-tolerant parsing serves two primary roles:

1. Maintaining structural correctness, so the rest of the toolchain can operate

2. Capturing rich diagnostics, to inform the developer without blocking the workflow

Several well-established compilers have long evolved to support such interactive needs.
For example:

• The Roslyn compiler for C# is designed to work incrementally and supports specula-
tive parsing and typed holes to maintain semantic analysis in the presence of incom-
plete constructs. [9]

• JetBrains’ IntelliJ uses layered parsing and fallback strategies to recover from syntax
errors without compromising AST integrity. [8]

These systems emphasize incremental compilation, error recovery mechanisms, and inter-
mediate representations that tolerate missing or malformed code segments. [14]

Parsing strategies like recursive descent, often used in hand-written compilers for new
languages, can be adapted to support resilience through techniques such as phrase-level
recovery, AST placeholders, or token synchronization [1]. These methods allow the parser
to skip over or fill in problematic areas, enabling the rest of the code to remain analysable.
Moreover, partial ASTs can feed into later stages such as type checking, symbol resolution,
and code transformation-further improving the development experience. [5, 2]

In the case of Hylo, supporting incomplete programs poses unique challenges. The ex-
isting compiler halts on minor syntax errors, limiting its integration with modern tooling.
Addressing this gap involves rethinking how Hylo handles errors during parsing and analysis,
and adopting techniques proven in mature language ecosystems to support interactive and
resilient compilation.

2

3 Methodology
This research followed a design-oriented and iterative approach to extend the Hylo compiler
with error-tolerant capabilities, focusing on its parsing phase as a foundational step. The
methodology was divided into three key phases: Survey, Design, Implementation/Evalua-
tion.

The first phase was the Survey phase. This phase aimed to analyse the current Hylo
compiler. Furthermore, it looked into compilers for other languages that are robust against
incomplete programs. Based on the findings, possible techniques were evaluated for their
suitability for the Hylo compiler. The evaluation method involved a literature review of
compiler error recovery strategies and a comparative analysis based on criteria such as com-
plexity of implementation, compatibility with Hylo’s recursive descent parser, and potential
for IDE integration. The results of this phase could then be used during the next phase to
ideally integrate the found key techniques in the Hylo compiler.

The second phase was the Design phase. Based on the review of the previous phase,
suitable techniques were selected for integration into Hylo’s compiler. These techniques were
mapped directly onto Hylo’s Parser. This was a crucial step before implementation.

The Implementation/Evaluation phase developed a proof-of-concept implementation
in the Hylo compilers Swift codebase. This prototype was designed to continue parsing even
after encountering an error of incomplete code. This phase inherently evaluated the viability
of the design of the previous phase. AST placeholders were chosen for the initial implementa-
tion due to their strong alignment with Hylo’s architecture, allowing for continuous parsing
and maintaining AST integrity with relatively low implementation complexity, serving as a
foundational step before integrating more complex recovery mechanisms.

4 Design and Integration of Error-Tolerant Parsing in
Hylo

This section presents the main contribution of this research: a set of parser techniques im-
plemented in the Hylo compiler to support error-tolerant parsing of incomplete or incorrect
programs, along with their integration strategy for the Hylo compiler.

4.1 Selected Techniques
The following four techniques were chosen to be viable to be integrated into the parsing
layer of the Hylo compiler: Phrase-Level Recovery, Combinator Wrappers with Recovery
Logic, Token Synchronization, and AST Placeholders.

These techniques were selected based on their proven effectiveness in tools like ANTLR,
Roslyn, or IntelliJ, as well as their potential compatibility with Hylo’s recursive descent
parser. All four aim to allow continued parsing in the presence of syntactic errors, but
they differ in how they balance recovery accuracy, structural fidelity, and implementation
complexity.

4.1.1 Phrase-Level Recovery

Phrase-Level Recovery is one of the most basic recovery techniques used in many parsers like
ANTLR [11], or Roslyn [9]. The way it works is simple, but can vary in complexity: If an er-

3

1 fun g r e e t (name : Str) : Str = "Hel lo , " + name
2

3 pr in t (g r e e t ("Viktor ")
4

5 va l nums : L i s t<Int> = [1 , 2 , 3 , 4]
6

7 // . . .
8 // . . .

Listing 1: Example of code with non-closed parenthesis

1 // . . .
2 va l numbers = [1 , 2 , 3 , 4]
3 va l a lphabet = [’ a ’ , ’b ’ , ’ c ’ , ’d ’]
4 va l numbers2 = [5 6 7 8]
5 // . . .

Listing 2: An example of an array without comma separators

ror occurs, a local fix is inserted. Afterwards, the parser continues to parse. Most commonly,
phrase-level recovery inserts semicolons at the ends of lines or closes open parentheses. [13]

In the code example in Listing 1, without Phrase-Level Recovery, the parser would stop
at line 3 for unclosed parentheses. With Phrase-Level Recovery, however, line 3 would get
changed to print(greet("Viktor")), adding a parenthesis.

4.1.2 Combinator Wrappers with Recovery Logic

Combinator Wrappers with Recovery Logic are very similar in principle to Phrase-Level
Recovery. This technique is an extension to parser combinators, for example, for arrays. If
faulty code is encountered within a combinator wrapper, it is corrected, similarly to Phrase-
Level Recovery from Subsubsection 4.1.1. [3, 13]

In the code example in Listing 2, we can see that numbers2 is declared wrong, i.e., without
commas between its elements. The recovery logic would add commas to val numbers2 =
[5, 6, 7, 8], and the parser could continue.

4.1.3 Token Synchronization

Token Synchronization is possibly one of the simplest techniques for making a parser more
robust against incomplete programs, but it mostly leads to unexpected behaviour due to its
nature. If an error occurs, the parser merely jumps to the next synchronization token and
ignores anything in the context of where the error occurred up to the synchronization token.
[11, 6]

In the code in Listing 3, for example, there is a mistake in line 3. Therefore, the parser
jumps to the next synchronization token }, in line 5. Due to the jump, the function example
is never declared.

4

1 fun example () −> Int {
2 l e t x = 1
3 l e t y = ∗ 2
4 re turn x + y
5 }
6

7 fun example2 () −> Int {
8 l e t x = 1
9 l e t y = 2

10 re turn x + y
11 }

Listing 3: Example of incomplete code

1 // . . .
2 x = 1862 + ;
3 // . . .

Listing 4: Example of incomplete code

4.1.4 AST Placeholders

AST Placeholders is the most effective technique when it comes to making the parser con-
tinue parsing after an error, while keeping the result predictable. This technique requires
the construction of an Abstract Syntax Tree (AST) during parsing: When an error occurs
during parsing, a placeholder node is inserted into the AST, and the parsing continues [5, 2].
Furthermore, the placeholder nodes may hold additional info of what type of error occurs -
e.g. MissingExpr, ErrorNode, CursorTyping, etc. - and are used in a parser like Tree-Sitter
[15].

For example, the code in Listing 4 creates the AST seen in Figure 1:

4.2 Integration with the Hylo Compiler
To enable error-tolerant parsing within the Hylo compiler, a layered architecture was adopted
to structure the parsing process. This pipeline consists of five core components: Tokenizer,
ParserState, Recursive Descent Functions, Phrase-Level Recovery (Including Recovery for
Combinator Wrappers), and AST with Placeholders. The flow of the parsing can be seen in
Figure 2. While the Tokenizer, ParserState, and the Recursive Descent Functions are pre-

Program

...

Assignment
Addition

MissingExpr

Literal:1862
Identifier:x

...

Figure 1: Example AST with Placeholder Node

5

Tokenizer

ParserState

Recursive Descent Functions

Phrase-Level Recovery

AST with Placeholders

Figure 2: High-level parsing pipeline

1 fun main () {
2 s t r i n g 1 = " He l lo " ;
3 s t r i n g 2 = s t r i n g 1 + " ! " ;
4 }

Listing 5: Example of complete Hylo code

existing parsing stages, the other steps are enhancements to the current state of the parser
for Hylo. Token Synchronization was omitted from the final pipeline because its behaviour
of skipping to the next synchronization token would often discard valuable contextual infor-
mation, leading to less precise diagnostics compared to the structural preservation offered
by AST placeholders, making it less suitable for Hylo’s goal of enabling rich IDE features.

The Tokenizer is responsible for producing a stream of tokens, using key synchronization
tokens such as ; for the end of lines, } for the end of statements or some declarations,)
for the end of functions, , as a separator in combinators like lists, arrays, or tuples,] as
the end of arrays. These tokens are fundamental for identifying structural boundaries in
the code. The ParserState tracks the parser’s current position, maintains diagnostics, and
contains the AST.

The Recursive Descent Functions implement the grammar of the Hylo language and
can be extended to support phrase-level recovery, including recovery logic for combinator
wrappers. This recovery mechanism attempts to gracefully handle missing or misplaced
tokens by heuristically inserting expected closing delimiters (e.g., parentheses, brackets,
commas).

Lastly, whenever an error cannot be recovered, a corresponding placeholder node is
inserted into the Abstract Syntax Tree (AST) where the error occurs. These placeholder
nodes are structured to represent the kind of construct that failed to parse. Refer to Section 5
for more details.

Looking at the code in Listing 5, the AST in Figure 3 is created. The AST looks about
as expected from any AST. Knowing that, the integration of placeholder nodes is rather
easy. If the parser stumbles upon faulty code, merely a placeholder node has to be placed in
the position where the error occurs, while the rest stays the same. For example, modifying
line 3 to string2 = string1 + ; would produce the AST shown in Figure 4

It is key for the nodes to preserve critical metadata such as the source location and

6

main BraceStmt

AssignStmt

SequenceExpr

StringLiteralExpr
(value: "!")

NameExpr
(value: "+")

NameExpr
(value: "string1")

NameExpr
(value: "string2")

AssignStmt
StringLiteralExpr
(value: "Hello")

NameExpr
(value: "string1")

Figure 3: Regular AST

main BraceStmt

AssignStmt

SequenceExpr

DummyExpr

NameExpr
(value: "+")

NameExpr
(value: "string1")

NameExpr
(value: "string2")

AssignStmt
StringLiteralExpr
(value: "Hello")

NameExpr
(value: "string1")

Figure 4: AST with Placeholder Node

7

diagnostic information. This information can be used for providing rich error messages and
enabling downstream compiler phases or IDE features to precisely pinpoint and highlight
issues to the user.

A key design goal of this integration is to preserve the well-formedness of the AST.
Even when code is incomplete or syntactically invalid, the AST produced must remain
syntactically correct in structure so that it can be consumed by downstream phases such
as type checking or IDE tooling. Placeholder nodes ensure that the tree remains navigable
and analyzable, making the parser both robust and developer-friendly.

4.3 Summary of Contributions
This research makes the following key contributions:

• Identification and evaluation of error-tolerant parsing techniques: We sys-
tematically surveyed state-of-the-art compiler error recovery strategies (phrase-level
recovery, token synchronization, combinator resilience, and AST placeholders) and
assessed their applicability to Hylo’s recursive descent compiler architecture. This di-
rectly addresses the research sub-questions: What techniques exist for error-tolerant
parsing in other compilers and IDEs? and Can the parser continue processing even if
errors are found in unrelated parts of the code?

• Design of a resilient parsing pipeline for Hylo: We proposed a layered architec-
ture integrating selected techniques into Hylo’s existing compiler structure, outlining
how these components interact to achieve error tolerance. This directly addresses the
research sub-question: How can we adapt or integrate these techniques into the Hylo
compiler?

This leaves open the last sub-question: Can a prototype be developed that demonstrates
partial parsing and diagnostic collection for incomplete code? This sub-question is answered
during the Prototype Implementation and Viability Evaluation in Section 5

5 Prototype Implementation and Viability Evaluation
To evaluate the viability of error-tolerant parsing in the Hylo compiler, a proof-of-concept
implementation was developed focusing on a single technique: AST placeholders as described
in Subsubsection 4.1.4. This approach was chosen due to its simple implementation with
Hylo’s existing recursive descent parser and its ability to preserve structural integrity in the
presence of syntax errors.

The implementation was carried out in the existing Swift codebase of the Hylo compiler.
In the prototype, modifications were made to the parser such that when a parsing error oc-
curs - whether due to an unexpected token, missing construct, or invalid syntax - a dummy
node is immediately inserted into the Abstract Syntax Tree (AST). These dummy nodes
contain metadata, including the source location where the error occurred and a correspond-
ing diagnostic message. This ensures that the resulting AST remains structurally valid and
that information about all encountered issues is retained.

Parsing continues uninterrupted after each error, and the parser accumulates all diag-
nostics as the AST is being constructed. Once parsing completes, the diagnostics collected
via these placeholder nodes are reported collectively, rather than halting after the first error.

8

1 fun main () {
2 l e t x = 1 + ;
3 l e t y = 5 ;
4 i f (x > y)
5 }

Listing 6: Example of incomplete Hylo code

This design enables better IDE feedback and allows developers to address multiple issues in
one pass.

To maintain the parser’s structure of the AST, four distinct types of placeholders - or
dummy nodes - were introduced:

• DummyDecl - a placeholder for malformed or absent declarations (i.e., var-declarations,
function-declarations, etc.)

• DummyExpr - a placeholder for invalid, incomplete, or absent expressions (i.e., numeric-
literal-expression, cast-expression, boolean-literal-expression, etc.)

• DummyPattern - inserted when pattern constructs fail to parse (i.e., binding-pattern,
tuple-pattern, name-pattern, etc.)

• DummyStmt - a placeholder for malformed statements (i.e., conditional-statement, for-
statement, while-statement, etc.)

For example, consider the incomplete Hylo code snippet in Listing 6. In this exam-
ple, the parser encounters errors at line 2 and line 4. Without error tolerance, the AST
would be incomplete for the stages following parsing. With the prototype implementation,
a DummyExpr and DummyStmt node are inserted at the corresponding locations, resulting in
an AST as seen in Figure 5

The placeholder nodes not only preserve the AST’s integrity, allowing the compiler to
continue to the next stage of the toolchain, but also carry a diagnostic message indicating
the type of error: "expected expression" and "expected proper statement"

6 Responsible Research
In the development of error-tolerant compiler infrastructure for the Hylo language, careful
attention has been paid to responsible research practices. This includes evaluating the
broader ethical implications of the work and ensuring the reproducibility and transparency
of the methods used.

6.1 Ethical Considerations
The core goal of this research is to improve the developer experience and enable more robust
tooling for incomplete or evolving code. As such, the project does not involve human sub-
jects, sensitive data, or applications with direct ethical risks (e.g., medical, surveillance, or
AI-based decision-making systems). Nonetheless, it is important to recognize that compiler
infrastructure plays a critical role in software correctness and developer trust.

9

main BraceStmt

ConditionalStmt DummyStmt
(message: "expected proper
statement", at: 4.15)

SequenceExpr

NameExpr
(value: "y")

NameExpr
(value: ">")

NameExpr
(value: "x")

AssignStmt
NumericLiteralExpr
(value: "5")

NameExpr
(value: "y")

AssignStmt

SequenceExpr

DummyExpr
(message: "expected
expression", at: 2.16)

NameExpr
(value: "+")

NumericalLiteralExpr
(value: "1")

NameExpr
(value: "x")

Figure 5: Resulting AST from Listing 6

By designing a compiler that accepts and tolerates incomplete code, there is a risk
that developers might overlook certain errors during early development stages. To mitigate
this, the techniques implemented (such as AST placeholders and diagnostics) are explicitly
designed to preserve and report all encountered issues rather than silently masking them.
The goal is not to "ignore" errors but to postpone fatal failure and enable progressive
correction with full transparency. All placeholder nodes are annotated in the AST and
linked to clear diagnostics, ensuring that developers are always aware of potential issues.

6.2 Reproducibility
This project emphasizes transparency and reproducibility. All prototype implementations
are built directly into the publicly accessible Hylo compiler codebase. The changes made are
uploaded to a fork1 of the official GitHub repository2 for Hylo to allow future contributors
to reproduce and extend the results.

7 Discussion
The implementation of AST Placeholders in the Hylo compiler represents a significant step
towards achieving error tolerance. This approach directly addresses the limitations of tra-
ditional compilers in interactive development environments, where immediate feedback and
continuous analysis are paramount. By inserting dummy nodes into the AST, the parser
can effectively "skip over" syntax errors without halting, thereby maintaining the structural
integrity of the abstract syntax tree. This is crucial because a well-formed (even if partially

1https://github.com/viktorSrk/hylo-ast-placeholders
2https://github.com/hylo-lang/hylo

10

incorrect) AST is a prerequisite for subsequent compiler phases, such as type checking, and
for various IDE features like syntax highlighting, code completion, and refactoring.

The choice of AST Placeholders as the primary technique for the proof-of-concept was
strategic. Its relative simplicity of integration into Hylo’s recursive descent parser, combined
with its impact on the compiler’s resilience, made it an ideal starting point. Unlike simpler
Token Synchronization, which might discard valuable contextual information, AST Place-
holders explicitly mark the location and type of error, preserving a more complete semantic
understanding of the codebase. This allows for more precise diagnostics and enables the
compiler to report multiple errors in a single pass, enhancing developer efficiency.

However, the current implementation, while effective for demonstrating the core concept,
has limitations. The diagnostics currently collected through placeholder nodes are basic,
indicating only the presence and general type of error. To truly rival the developer experience
offered by mature compilers like Roslyn, these diagnostics need to be significantly enriched.
This includes providing more context-aware error messages, suggesting potential fixes, and
categorizing errors based on severity.

The decision to focus solely on AST Placeholders in the prototype was driven by time
constraints, but it underscores the need for future work to integrate other identified tech-
niques. Phrase-level Recovery, for example, could proactively "fix" minor errors, reducing
the number of placeholder nodes generated and resulting in a cleaner AST for further anal-
ysis. This would be particularly beneficial for common typos or missing delimiters, allowing
the parser to produce an even more accurate representation of the developer’s intent.

Overall, this research confirms that it is indeed possible to make the Hylo compiler
robust against incomplete programs by continuing parsing even when errors are found. The
prototype successfully demonstrates the feasibility of this approach and highlights AST
Placeholders as a foundational technique. The insights gained lay a solid groundwork for
future enhancements (see Section 9), pushing Hylo closer to providing the sophisticated
interactive development experience expected of modern programming languages.

8 Conclusions
This research addressed the critical challenge of making the Hylo compiler robust against
incomplete and erroneous programs, a necessity for modern interactive development envi-
ronments. Our central research question was: Can we make the Hylo compiler robust against
incomplete programs? Can we continue parsing even if an error is found in unrelated code?

We conclusively demonstrate that it is indeed possible. Through a systematic survey
of state-of-the-art error-tolerant compilation techniques, including Phrase-level Recovery,
Token Synchronization, and AST Placeholders, we identified the most suitable candidates
for Hylo’s recursive descent architecture. Our prototype implementation, focusing on AST
Placeholders, proves that the parser can continue processing code and build a structurally
sound Abstract Syntax Tree (AST) even in the presence of syntax errors. This is achieved
by inserting specialized dummy nodes (DummyDecl, DummyExpr, DummyPattern, DummyStmt)
at error locations, which also carry diagnostic information.

This approach offers several key contributions. Firstly, it moves Hylo beyond the tradi-
tional "halt-on-first-error" compilation model, enabling a more fluid and responsive devel-
oper experience. Secondly, by maintaining a complete, although error-annotated, AST, it

11

lays the essential foundation for rich IDE features such as real-time diagnostics, intelligent
code completion, and syntax-aware navigation, even when code is in an incomplete state.
This capability is paramount for emerging languages like Hylo seeking broader adoption and
a supportive tooling ecosystem.

In conclusion, this research provides a vital blueprint for building resilient compiler
infrastructure for Hylo. By embracing error tolerance from the parsing stage, we significantly
enhance the developer experience and pave the way for a vibrant and interactive Hylo
ecosystem.

9 Future Work
The current implementation as part of the evaluation is merely a proof-of-concept imple-
mentation. This means that it opens several avenues for future research and development:

• Integration of Additional Recovery Techniques: While AST Placeholders en-
sure structural integrity, integrating phrase-level recovery and combinator wrappers
could proactively correct minor errors, leading to fewer placeholder nodes and a more
"correct" partial AST. This would further reduce noise in diagnostics and improve the
accuracy of subsequent analyses.

• Enriching Diagnostics: The current dummy nodes collect basic error information.
Future work should focus on enhancing these diagnostics to provide more context-
rich, user-friendly error messages, potentially suggesting common fixes or pointing to
relevant documentation

• Partial Semantic Analysis: A significant next step is to extend error tolerance
beyond parsing into semantic analysis (e.g., type checking, symbol resolution). This
would involve designing mechanisms to perform speculative or partial semantic analysis
on ASTs containing placeholder nodes, allowing the compiler to provide feedback on
semantic correctness even in incomplete programs.

• Incremental Compilation: For truly responsive IDEs, the compiler needs to process
small, incremental changes efficiently. Investigating how to combine error-tolerant
parsing with incremental compilation techniques (e.g., re-parsing only changed regions)
would be crucial for large Hylo projects.

• Tooling and IDE Integration: The ultimate goal of this work is to enable a robust
IDE experience. Future efforts should involve integrating the error-tolerant compiler
into a Language Server Protocol (LSP) implementation for Hylo, allowing it to seam-
lessly power features in various IDEs.

References
[1] V Aho Alfred, S Lam Monica, and D Ullman Jeffrey. Compilers principles, techniques

& tools. pearson Education, 2007.

[2] Luís Eduardo de Souza Amorim, Sebastian Erdweg, Guido Wachsmuth, and Eelco
Visser. Principled syntactic code completion using placeholders. In Proceedings of the
2016 ACM SIGPLAN International Conference on Software Language Engineering,
pages 163–175, 2016.

12

[3] Martin Bravenboer and Eelco Visser. Parse table composition. separate compilation and
binary extensibility of grammars. In D. Gasevic and E. van Wyk, editors, Proceedings
of the First International Conference on Software Language Engineering (SLE 2008),
Lecture Notes in Computer Science, Heidelberg, October 2008. Springer.

[4] Crystal Community Forum. Why isn’t there an lsp for crystal? Crystal Lang Forum,
2025.

[5] Maartje de Jonge, Lennart CL Kats, Eelco Visser, and Emma Söderberg. Natural and
flexible error recovery for generated modular language environments. ACM Transac-
tions on Programming Languages and Systems (TOPLAS), 34(4):1–50, 2012.

[6] Lukas Diekmann and Laurence Tratt. Don’t panic! better, fewer, syntax errors for lr
parsers. arXiv preprint arXiv:1804.07133, 2018.

[7] Sebastian Erdweg, Lennart CL Kats, Tillmann Rendel, Christian Kästner, Klaus Os-
termann, and Eelco Visser. Growing a language environment with editor libraries. In
Proceedings of the 10th ACM international conference on Generative programming and
component engineering, pages 167–176, 2011.

[8] JetBrains IntelliJ Platform Team. Grammar and Parser (IntelliJ Platform Plugin
SDK), 2025.

[9] Microsoft. Microsoft.CodeAnalysis.CSharp.SyntaxFactory.MissingToken Method, 2025.
Microsoft .NET Documentation (syntax recovery), accessed 2025.

[10] Microsoft Visual Studio Code Documentation. Language Server Extension Guide, 2025.

[11] Terence Parr. The Definitive ANTLR Reference: Building Domain-Specific Languages.
Pragmatic Bookshelf, 2007.

[12] Roslyn Team. Handling program that is not syntactically correct is confusing (github
issue #22755). GitHub, dotnet/roslyn repository, 2017. Comment by Cyrus on Roslyn’s
error-tolerant design.

[13] S Doaitse Swierstra and Luc Duponcheel. Deterministic, error-correcting combinator
parsers. In International School on Advanced Functional Programming, pages 184–207.
Springer, 1996.

[14] Microsoft Team. Tolerant php parser, 2016.

[15] Tree-sitter Developers. Tree-sitter: Basic Syntax (ERROR and MISSING nodes), 2025.
Tree-sitter documentation, accessed 2025.

[16] Tim A Wagner and Susan L Graham. Efficient and flexible incremental parsing. ACM
Transactions on Programming Languages and Systems (TOPLAS), 20(5):980–1013,
1998.

13

	Introduction
	Background
	Methodology
	Design and Integration of Error-Tolerant Parsing in Hylo
	Selected Techniques
	Phrase-Level Recovery
	Combinator Wrappers with Recovery Logic
	Token Synchronization
	AST Placeholders

	Integration with the Hylo Compiler
	Summary of Contributions

	Prototype Implementation and Viability Evaluation
	Responsible Research
	Ethical Considerations
	Reproducibility

	Discussion
	Conclusions
	Future Work

