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Preface

Starting this nine-month research project, I did not anticipate the diverse themes that I would touch
upon in this thesis. Contrary to technical design and abstract thinking, artistic work like drawing has
never been my strong suit. It was therefore surprising to work on a technical topic completely based on
sketching. This also applies to the UI designs I had to create to communicate my ideas for improving
the user experience. And the same is true for the qualitative user study validating what I had built
actually matched with the user’s expectations. Reflecting on this journey, I realise I have learned a
lot over the course of this project, not in the least through the internship at Alliander. It also uncovers
something I firmly believe in; that the purpose of an engineer is to solve problems for people, and that
people should be at the core of any engineering effort.

As with most things, this thesis is not an individual effort and has come about with the help of many
people. I would like to extend my gratitude to them here.

First I would like to thank my thesis committee for their supervision, advice and feedback. To my thesis
advisor Neil Yorke-Smith; thank you for your advice and helping me maintain high academic quality
and always listening my ideas and concerns during our meetings. To my daily supervisor at Alliander
Jaap Schouten; thanks for the countless meetings, often initiated that same morning on my request
to ‘catch up’ (‘even bijpraten’). You helped me dig through a complex codebase of over 15.000 lines
of code and let me make my own decisions throughout the project, making this thesis something I am
truly proud of.

Then I would like to thank my colleagues of team Systeemoptimalisatie at Alliander. You are a major
reason why the internship has taught me so much; all of you are experts in your respective fields and I
got many new insights because of your diverse backgrounds. I would also like to thank the key users
of Holonet and the other participants of the user study for their participation, feedback and ideas to
further improve the algorithm.

Finally and foremost I want to thank my family and friends, who have been my biggest supporters for
as long as I can remember. Without you this journey towards my engineering degree would not have
been possible.

Sven van der Voort
Delft, May 2024
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1
Introduction

Global climate change is driving a rapid energy transition from fossil fuels to renewable energy. Distri-
bution Network Operators (DNOs) are an important stakeholder in the energy transition because their
energy grids have to undergo radical changes. These changes are driven by the exponential growth of
volatile energy sources such photovoltaic (PV) and wind energy and the increased demand for electric-
ity as a replacement for fossil fuels, for example the introduction of electric vehicles (EV). The energy
transition means a change from the traditional model of centralised power generation to decentralised
power generation and demand. Moreover the maximum peaks in demand and supply for electricity will
increase. As such the current energy infrastructure does not suffice to facilitate the rapidly accelerating
energy transition.

Alliander is the largest DNO in the Netherlands with almost 6 million connections, supplying both house-
holds and businesses with electricity and gas. As a DNO, Alliander manages the medium- and low-
voltage distribution grid (operated on 10kV-20kV and 400V respectively) which is connected to the high-
voltage transport grid (operated on 150kV-380kV) through transformers at distribution substations (see
Figure 1.1a). From a substation the medium-voltage distribution grid supplies the neighbouring area
through underground cables that connect so-called ‘middenspanningsruimtes’ (MSRs) acting as nodes
in the medium-voltage distribution grid (see Figure 1.1b). From a MSR medium-voltage power is either
transformed to low-voltage power to be distributed to households or supplied to a bulk customer.

(a) Substation that transforms high-voltage power from the
transport grid to medium-voltage power to be distributed on the

distribution grid. (Onderstation Bolsward)

(b) ‘Middenspanningsruimte’ (MSR) acting as network node by
connecting underground cables on the medium-voltage distribution

grid. (As seen in a residential area)

Figure 1.1: Examples of an Alliander substation and a ‘middenspanningsruimte’ (MSR).

1.1. Motivation
To facilitate the energy transition Alliander is simultaneously working on multiple strategies to increase
grid capacity. One important strategy is expanding the existing electrical distribution grid with new

1



1.2. Research aim and setup 2

cables and MSRs to add capacity where it is needed now and in the future. The problem of grid expan-
sion planning however is notoriously difficult [1]. Not only are building materials and skilled personnel
scarce, but the construction of new electricity infrastructure also has significant societal impact. Avail-
able public space is limited and geographical factors such as waterways or highways can affect the
feasibility of grid expansion in a certain region. Grid expansion planning of the medium-voltage dis-
tribution grid is considered the most complex design problem due to the high number of possibilities
and non-convex solution space. Therefore in this research we focus on grid expansion of the medium-
voltage grid and consider the design criteria of the Netherlands. Other countries will have different
regulations, requirements and constraints for distribution grid design.

At Alliander a group of ‘grid architects’ is responsible for designing grid expansion plans, where each
grid architect is responsible for a particular region. Because of the energy transition there is much more
work to be done, however it is hard to recruit new grid architects due to the specialised skill set required.
One solution for accelerating the grid expansion design process is using an automated decision support
tool. At Alliander such a tool has been developed in the form of a genetic algorithm that optimises the
topology of a new grid expansion. The use of such an algorithm should reduce the time needed for
particular time-intensive steps in the grid design process. Even though the algorithm is available to the
grid architects, it is not yet used for production level projects. Why that is the case and how to solve
this misalignment with users’ wishes is the main topic of this thesis.

Existing research on the grid expansion planning problem has focused on optimisation methods such
as harmony search [2], simulated annealing [3] and genetic algorithms [4, 5]. These methods typically
take grid load forecasts, material costs and topological constraints as input and attempt to optimise
investments costs and/or operational costs. This gives users little control to express their preferences
for a particular grid structure or topological configuration. On the other hand, sketch-based optimisation
has been demonstrated as a promising mechanism for user control in other domains such as floor plan
optimisation [6], fashion design [7] and quadrotor trajectory planning [8]. To our knowledge sketch-
based optimisation has not yet been applied to the domain of distribution grid expansion planning and
forms a gap in the existing academic literature to be explored with this thesis.

The main contribution of this research is twofold: First the introduction of a novel sketch similarity
measure that can be used for sketch-based optimisation of electrical grids. Second an analysis of the
potential impact of sketch-based optimisation to accelerate distribution grid expansion planning.

1.2. Research aim and setup
The main goal of this research is to investigate how to accelerate distribution grid expansion planning
through the use of an optimisation algorithm. First we wanted to identify the problems of the algorithm
that is currently used. Based on our analysis we introduced sketch-based optimisation into a genetic
algorithm for automated distribution expansion planning. Then we investigated both its behaviour and
the interaction with users through a case study and a qualitative user validation study respectively.

We formulated the main research questions as follows:

1. How can the user adoption of decision support tools for distribution grid expansion planning be
improved?

2. How has sketch-based optimisation been applied in other domains and how can those learnings
be applied to distribution grid expansion planning?

3. How to implement sketch-based optimisation for automated distribution grid expansion planning
with a genetic algorithm?

4. What would be the impact of sketch-based optimisation be on the distribution grid expansion
planning process?

Based on our research aim and research questions this thesis can be split up in roughly three parts:
problem identification and exploring potential solutions based on literature review and user interviews,
the technical implementation of a novel sketch similarity measure, and a user validation study to eval-
uate the solution. The chapters of this thesis are structured accordingly. Chapter 2 gives an overview
of the related work including the existing genetic algorithm. Chapter 4 discusses how sketch-based
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optimisation was integrated into the existing genetic algorithm using a novel shape similarity measure.
Chapter 5 establishes the experimental setup used to acquire the results. Chapter 6 then presents the
results from both the case study as well as the user validation study. Finally, in chapter 7 we discuss
our conclusions and present our recommendations for future work on sketch-based optimisation for
distribution grid expansion planning.



2
Related work

This chapter will discuss existing work related to this thesis and establish a background for our research.
We start with earlier research related to the problem of grid expansion planning and the introduction of
important considerations for designing distribution grids. Next, we look at previous research on sketch-
based optimisation in other domains. We then cover two past thesis project at Alliander that are closely
related to our problem. Finally, we give an overview of the existing Holonet genetic algorithm for grid
expansion planning that is currently in use at Alliander.

2.1. Grid Expansion Planning
Grid Expansion Planning covers a wide range of challenges faced by energy grid operators. Examples
are Generation Expansion Planning, Substation Expansion Planning or Reactive Power Planning [9].
However, since Alliander is by law not allowed to generate or trade in energy and tools for Substa-
tion Expansion Planning already exist at Alliander, the scope of this research is limited to Distribution
Network Expansion Planning.

Distribution Network Expansion Planning (DNEP) involves designing expansions to an existing energy
distribution network to facilitate increasing demand for energy distribution considering various technical,
social and economic constraints. Vahidinasab et al. [1] provides an overview of different methods and
algorithms for DNEP and introduces a framework for classifying types of DNEP models which can be
seen in Figure 2.1.

Figure 2.1: A framework for classifying Distribution Network Expansion Planning models [1].

4



2.1. Grid Expansion Planning 5

Distribution grid design constraints The book “Netten voor distributie van elektriciteit” by Phase-
ToPhase [10] gives a complete and up-to-date overview of constraints and best practices for electrical
distribution grid design in the Netherlands. We will discuss its most important guidelines and notions.
The central element of each distribution grid are one or more substations. Substations transform high
voltage power from the transportation grid (e.g. 150kV up to 380kV) to medium voltage power suitable
for the distribution grid (e.g. 10kV or 20kV). The distribution grid is then comprised of a connected
network of underground cables and nodes distributing power to all clients in that area. These nodes
are either a “MiddenSpanningsRuimte” (MSR) or a “DistributieRuimte” (DR) working on 10kV and 20kV
power respectively. The nodes typically also contain transformers that convert medium voltage power
to low voltage power suitable for end-users of power. Low-voltage distribution grids distributing power
to households and small businesses are considered less complex to design and are therefore not the
scope for this research.

For distribution grid design two considerations are important: radial operation and redundancy. First,
radial operation requires that every node is only actively connected to the substation by a single unique
path. Second, redundancy in case of single cable or node failure is a grid design requirement, also
known as ‘n minus 1 redundancy’. Therefore extra inactive cables between nodes are necessary. A
cable that is inactive by design cable is called a Normally Open Point (NOP) and can be activated
(closed) in case of a failure elsewhere in the network (after the failing cable has been disconnected
to maintain radial operation). For a grid design to feasible all its components must not exceed their
rated currents or voltages in case of any single cable failure in the network. An illustrative example of
a meshed grid that is operated radially using NOPs can be seen in Figure 2.2.

Figure 2.2: Illustrative example of a radially operated meshed grid. Normally Open Points (NOPs) are cables that are normally
not connected but guarantee redundancy in case of single cable failure (‘n minus 1 redundancy’). (Adapted from [11].)

Genetic algorithms for distribution grid design There has been previous research into using ge-
netic algorithms to optimise Distribution Network Expansion Planning. For example Mendoza et al.
[4] used the NSGA and SPEA multi-objective genetic algorithms to optimise cost and reliability of a
power distribution system design as two separate objectives. The model included cost for building new
nodes and cables and technical constraints related to power system such as capacity and voltage drop
constraints. However radial operation or redundancy were not included as hard constraints.

In experiments both the NSGA and the SPEA algorithm successfully manage to generate a Pareto
front approximation consisting of a diverse set of solutions. The diverse set of solutions allows the user
to easily make a trade-off between two opposing objectives cost and reliability. Although redundant
operation is not a hard constraint, a redundant solution can be found on the Pareto front where reliability
is maximal. However the number of nodes (42) and the number of new cable options (73) is significantly
less than the representative network used in our case study with 122 nodes and 3271 new cable options.
Our model also includes more free variables such as node locations and reinforcements for existing
cables. Finally our problem includes more objectives e.g. grid load in case of cable failure, meaning
our problem is overall more complex.

The application of genetic algorithms in distribution grid design is not new and has shown promising
results before. Our research will further expand on this by allowing users to exercise control over the
optimisation using rough sketches of the desired network shape.
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2.2. Sketch-based optimisation
Although sketch-based optimisation has not yet been applied to electrical grid design, it has been
applied in other domains to allow intuitive user control over the optimisation. Examples include domains
such as floor plan optimisation, fashion design and quadrotor trajectory planning [6–8]. In case of the
floor plan optimisation paper shows how the optimisation problem is defined by the user’s sketch and
then processed by a multi-objective genetic algorithm (NSGA-II). The other two papers first model the
problem using one or more objective functions and also hard constraints that limit the solution space.
Then the problem model is modified to take into account a user provided sketch as guideline for the
optimisation but not as hard constraint.

The Airways paper on quadrotor trajectory generation is a good example of sketch-based optimisation.
The goal is to create aesthetically pleasing quadrotor trajectories that can be used for example in aerial
videography or light painting [8]. Input to the optimisation is a hand-drawn 3D sketch by the user con-
sisting of waypoints and a set of trajectory requirements. The main objective of the optimisation is to
generate a feasible trajectory through all waypoints based on a physics model of the quadrotor con-
trol. Additional objectives and constraints can be introduced such as improving trajectory smoothness
(by minimising so-called ‘jerk’), minimising camera angle error or limiting camera motion between way-
points. The resulting sparse quadratic program can be in real-time, allowing the user to quickly iterate
on different sketches and constraint settings.

Our work applies the learnings from other domains to the problem of automated grid expansion planning
by introducing sketch-based controls for users when optimising of electrical grid investment plans. To
the best our knowledge sketch-based optimisation has not yet been applied in this domain and therefore
illustrates the novelty of our work.

2.3. Previous thesis work
At Alliander some earlier research has already been done into automated grid expansion planning
for the medium-voltage distribution grid. Two previous thesis projects are especially relevant for our
research, since they are at the root of our problem context. Both works are discussed below.

A Decision Support Tool for the Medium Voltage Networks Expansion Problem The idea of au-
tomatically generating grid expansion plans originates from the work of Jurriëns [3] in 2019. They
formulated a constrained optimisation model for the problem that Alliander is facing when designing
expansions to its distribution networks. The Alliander/Netherlands-specific constraints lead to a com-
plex problem that requires a meta-heuristic for efficient solving. Simulated annealing was used to
optimise grid expansion plans that resolve predicted distribution grid congestions at minimal cost. The
basic constrains for medium-voltage distribution grid design were introduced and two algorithm vari-
ants were tested experimentally. The first variant only includes the ability to change which cables are
used for redundancy in the network by moving so-called Normally Open Points (NOPs). No new ca-
bles, transformers or reinforcement can be placed. The second variant does allow creating new cables
between nodes. It was found that both algorithm variants produce expansion plans that reduced the
total overload in the grid significantly at minimal costs.

Based on the findings of Jurriëns the Holonet tool was created at Alliander for visualising network con-
gestions and evaluating distribution grid expansion plans. Predictions of future grid load (produced by
another team) are used to compute future grid congestions and evaluate investment proposals created
by Holonet’s main users; distribution grid architects. Figure 2.3 shows the primary user interface of
Holonet. In addition to visualisation and evaluation functionality Holonet also contains an algorithm
for automated generation of grid expansion plans like proposed in the original research by Jurriëns.
However the simulated annealing optimisation algorithm was exchanged for a genetic optimisation al-
gorithm that can output multiple different expansion plans giving the users freedom to choose between
solutions. More details about the Holonet genetic algorithm can be found in section 2.4.

The constraints and objectives of the optimisation model proposed by Jurriëns form the foundation of
our grid expansion planning model. Rather than simulated annealing we use a genetic algorithm to
optimise the model. Moreover, investments generated by our algorithm are typically larger since load
scenarios further into the future are used. Our research primarily focuses on adding more user control
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to the optimisation where this was lacking in the original algorithm.

Evolutionary Multi-Objective Optimisation Algorithm for grid expansion More recently in 2023
Böhmer [11] investigated a multi-objective extension of the Holonet genetic algorithm. Each sub-
objective in the optimisation used different grid load scenarios (based on load predictions) closer or
further into the future. The motivation for such a multi-objective optimisation is to give grid design-
ers insight into possible trade-offs regarding how future-proof the generated grid expansion plans are.
The research uses the NSGA-III algorithm for evolutionary multi-objective optimisation. For each grid
load scenario sub-objective the original objective function from the Holonet algorithm was used which
combines the investment costs, the reduced grid overload and penalties for grid structure in a single
value.

Experiments were executed with both generated toy networks and a single real case study based
on an existing electrical grid managed by Alliander. These experiments show that the multi-objective
algorithm generates feasible grid expansion plans with lower objective values in some cases than
solutions generated by the single-objective algorithm. Themulti-objective algorithmwas alsomeasured
to be up to 40% faster than running the single-objective algorithm multiple times. Another experiment
tested running the multi-objective algorithm for much more iterations (1000 instead of 200). The final
population of this experiment contained more unique non-dominated solutions with lower objective
values on the approximated Pareto front. However it is not clear if this leads to more diversity in the
expansion plans themselves, as the study only compares the values of sub-objectives and not the
generated expansion plans themselves.

One could argue that the sub-objectives are different moments in time of the same prediction to not
have conflicting interests. An optimal solution far into the future will also solve all congestions earlier
in time, albeit not at the optimal cost for the early scenario. Our method of multi-objective optimisation
does not consider different load scenario as sub-objectives, but rather properties of the solution such as
investment costs, grid overload reduction, grid redundancy and sketch similarity. These sub-objectives
are much more of conflicting interest and a much better candidate for multi-objective optimisation.

(a) Congestion view; Load scenarios of different years can be selected, red/yellow
circles and lines indicate overloaded assets (not shown here due to confidentiality).

(b) Solution view; Solutions from the final population of the genetic algorithm
optimisation can be displayed. Blue cables and dots represent proposed cable and

MSR investments respectively.

Figure 2.3: Holonet user interface. Colored lines are cables, circles are MSRs and the central square is the substation
sourcing the network.

2.4. Holonet Genetic Algorithm
The Alliander application Holonet for analysing predicted medium-voltage grid congestion (see Fig-
ure 2.3) already contains a genetic algorithm for automatically generating grid expansion plans. To use
the algorithm users select which substation and MSRs should be included in the optimisation and which
load scenario is to be used (close or far into the future). The input to the algorithm consists of the current
geographical and electrical topology of the grid and the predicted load for each node in the selected
load scenario. Since no variance data is available (yet) for the load predictions, the predicted values
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are treated as deterministic although in practice the predictions have considerable variability. The ge-
netic optimisation algorithm then optimises an objective function by applying mutation, cross-over and
selection operators iteratively on a population of solutions (see example population in Figure 2.5). The
genetic operators are carefully designed to only generate feasible electrical grids that are connected,
contain no cycles and have single voltage for connected components. On top of this Holonet imple-
ments a dynamic island model to increase diversity between solutions in the final population. Details
about the objective function, the genetic operators and the dynamic island model are given below.

Figure 2.4: Overview of the Holonet genetic algorithm. The mutation step is an integrated Simulated Annealing (SA) procedure
that tries to find a mutation that improves the objective. With chance p it also accepts mutations that degrade the objective.

Figure 2.4 shows a flow chart of the execution of the Holonet genetic algorithm. The initial population
contains copies of the existing grid with no investments applied. Then all solutions in the population
are mutated using a special Simulated Annealing (SA) procedure. The SA procedure attempts to find
a mutation that improves the objective value for that solution; only with chance p or after k iterations a
worse mutation is chosen. After mutating all solutions, new solutions are created in the cross-over step
by combining investments of two parent solutions. These new solutions are then once again mutated
using the SA procedure and then added to the population. Finally the selection step selects a subset of
solutions from the population to remain in the population. Selection is done according to best objective
values and diversity between solutions in the population. This process is repeated until the algorithm
has converged or the maximum number of iterations has been reached.

2.4.1. Mutations
The genetic mutation operator changes a single aspect of the solution by for example creating a new
cable, removing a previously added cable or changing the voltage of a route. The type of mutation is
chosen uniformally at random during the SA mutation procedure. All mutations are designed such that
mutated grids always meet the following strict constraints for electrical grid design listed below.

• Connectedness; All cables are connected to exactly two nodes and all nodes are connected to
one or more substations by active cables.

• Radial operation; The network does not contain any active cycles, combined with the first con-
straint this implies that all active cables form a tree with the substation node as root. Cables
can also be non-active when marked as a Normally Open Point (NOP). The complete network
of both active and non-active cables is allowed to contain cycles (this is actually required for grid
redundancy as we will see later).

• Single voltage on connected components; All components that are connected should operate on
the same voltage, except for transformers that convert voltages between their two connections.

The Holonet genetic algorithm contains the following mutations operators to create grid expansion
plans [5]. These mutations were chosen because they represent the atomic parts that a grid expansion
design consists of, like new cables, reinforced cables and NOPs. The exceptions are the backbone
mutations which were included because backbone structure are often used in grid designs and they
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Figure 2.5: Example population from an optimisation, containing 10 solutions. Grey lines are the existing grid, blue lines are
new cables and blue dots are new MSRs, orange lines are the user’s sketch. The objective values of a solution are printed

above each solution respectively.

are too scarcely distributed in the solution space to find during an optimisation.

1. Move NOP Change one cable from non-active to active and another cable from active to non-
active. Two cables are randomly selected such that connectedness and no active cycles is main-
tained.

2. Add cable Add a new cable between the substation and a MSR or between a MSR and a MSR.
The thickness of the cable is randomly chosen to be either 240Al or 630Al.
For OS-MSR cables the maximum length is [confidential, higher] meters and for MSR-MSR this
is [confidential, lower] meters. The cable length is approximated by multiplying the distance by√
2 to account for variations in the actual cable trace. Initially new cables are placed randomly,

later during algorithm execution new cables that worked well are more likely to be placed again.
3. Reinforce cable Replace existing cables by higher capacity cables that have a higher capacity.

A cable is selected randomly from the currently overloaded cables in the network.
4. Create backbone A new backbone will create a new ring-like structure from the substation to an

area with insufficient grid capacity. Using new MSRs on this ring the backbone is connected to
the existing grid to feed its remaining capacity.
To create a new backbone two locations for newMSRs are randomly selected from a pre-computed
list of MSR locations. Then the MSRs are connected to the substation in a circular fashion, using
a NOP to prevent an active ring. Figure 2.6 illustrates this concept.

5. Modify new backboneOnce a backbone is created other mtuations can modify its structure. For
example add or remove a new MSR from the backbone or create a connection from a backbone
MSR to the existing grid.

2.4.2. Objective function
The genetic algorithm uses an objective function to evaluate the population of grid expansion plans;
its goal is minimize the solution objective values while maintaining a diverse set of solutions. The
objective value of a solution is a combination of four sub-objectives: reduce grid overload in the given
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Figure 2.6: Example of backbone creation: The central substation is surrounded by potential new MSR locations in purple.
First potential locations are filtered out if they are too far away from existing grid infrastructure. Then a new backbone and its

connections to the existing grid are randomly created. (Figures adapted from Alliander [5].)

load scenario, reduce grid overload in case of failure, minimize investment costs and soft constraints
related to grid structure.

Equations 2.1, 2.2, 2.3 contain the mathematical definition of the objective function. This definition was
extracted from the source code of the algorithm to check it for correctness and analyse its properties.
f(E, I) is the main objective function where E is the topology of the existing distribution grid and I is
a set of investments from the evaluated expansion plan. The objective function is normalized by the
objective function of the original grid with no investments f(E, ∅).

For every evaluated grid a load flow simulation is done using a standardised grid simulation library 1.
Based on the load flow simulation the overload in the new network O(E, I) is determined by summing
the voltage overload in Volts and current overload in Ampères. C(I) are the financial costs of the
investments. Pnmin1

(E, I) is the n minus 1 redundancy score of the solution, which measures the worst
case grid overload for a single failure in the network. Other P∗(E, I) are penalties given to encourage
desired structures (such as support cables) and discourage breaking particular soft constraints (such
as the maximum amount of fields available at a substation). Finally |modified_support_cables| is the
amount of support cables (‘steunkabels’) from the existing grid that is no longer a support cable in the
new solution.

f(E, I) =
e|modified_support_cables|

f(E, ∅)

(
O(E, I) + C(I)

Pfields_balanced(E, I)
+ Cfields(I) + Pmax_fields(E, I)

+ Pn_min_1(E, I)− PPSC(E, I)

)
(2.1)

C(I) = Creinforcements(I) + Cedges(I) + Cnodes(I) + Cswitches(I) (Costs of investments) (2.2)

PPSC(E, I) = O(E, I) +Ofields(E, I)− O(E,I)+Ofields(E,I)
1+Pscore_support_cables(E,I) (Stimulate support cables penalty)

(2.3)

When we analyse the objective function as it is implemented in the Holonet algorithm several things
stand out. For example the costs and overload on substation field are added later than other costs
and overload and thus are weighted differently. Furthermore Volts and Ampères are simply added
together in the overload objective value, while they operate a different scale. Also the use of the

1LF Energy Power Grid Model

https://lfenergy.org/projects/power-grid-model/
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natural exponential function ex in the objective is not documented and seems arbitrary. Finally it is not
clear how overload, costs and penalties are scaled relative to each other. All this makes it harder to
interpret what components the objective function is comprised of and leads to unfair scaling between
equivalent components of the objective function.

Together with the implementation of sketch-based optimisation we also propose a restructuring of the
objective function to decouple the different embedded sub-objectives. This enables multi-objective
optimisation through scalarisation. A detailed description of the proposed changes can be found in
section 4.2.

2.4.3. Dynamic island model
To stimulate diversity between solutions in the final population a dynamic islandmodel is used during the
genetic optimisation. The population is split over different ‘islands’ such that solutions can only cross-
over with other solutions that ‘live’ on the same island. The islands can be configured to only allow
particular mutations (e.g. backbone creation) or have different selection criteria per island. Solutions
can migrate between islands according to a migration map that can be configured beforehand. Similar
methods have shown to increase population diversity and avoiding local minima in earlier studies [12].



3
Problem description

The problem central to our research is the increased demand for distribution grid expansion at grid oper-
ators like Alliander. The energy transition means the electrical grid is moving away from central power
generation and decentral power consumption to both decentral generation and decentral consumption
with much higher and frequent peaks [13, 14]. The current electricity grid is unable to transport and
distribute the future peaks in power generation and consumption leading to grid congestion. Alliander
uses multiple strategies to prevent congestion on the electricity grid now and in the future. One impor-
tant strategy is expanding the medium-voltage distribution grid by adding more cables, transformers
and junctions to the distribution grid. This requires careful planning to take into account economical,
societal and environmental factors.

The problem of Distribution Network Expansion Planning (DNEP) is notably hard, therefore Vahidinasab
et al. [1] has devised a classification framework for DNEP models (see Figure 2.1). The model used
at Alliander was introduced by Jurriëns [3] and can be classified as scalarised multi-objective (invest-
ment costs, reliability, operational) with deterministic parameters, network and reliability constraints
and binary variables. The genetic optimisation algorithm is an evolutionary metaheuristic.

Distribution grid expansion planning is traditionally done by a group of ‘grid architects’ at Alliander.
Their expert knowledge of both electrical grids and the environmental and political restrictions of the
concerned area is crucial to create feasible and financially responsible grid expansion plans. However,
because of the energy transition, the demand for new plans is increasing while hiring new grid architects
is very difficult due to the special skill-set required. By automating part of the grid expansion design
process we attempt to accelerate the process and by extension the energy transition.

The Holonet tool already supports grid architects in their design process by providing readily available
insights about future grid congestions when designing new grid expansions. To accelerate the process
even further, an optimisation algorithm for automated generation of expansion plans was developed.
The optimisation algorithm is aimed at supporting grid architects with their decision making process as
was proposed in earlier work by Jurriëns [3].

3.1. Problem identification
Although the algorithm has been available to users for some time, it is not actively used by grid architects
for designing new grid expansion plans. Therefore the central goal of this thesis is to find out what is
holding back user adoption of the existing optimisation algorithm and implement a solution, since the
use of the algorithm poses opportunities for accelerating the design process as we just established. To
improve the user adaption of the algorithm we need to improve alignment with user requirements so it
can effectively be used by grid architects to accelerate their design process.

Through interviews with two grid architects we have attempted to establish why the algorithm is not yet
used and what could be improved to make the algorithm a useful part of the grid architect’s workflow.
The two grid architects who were interviewed are Holonet ‘key users’ who are representative for the

12
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larger user group and frequently consulted for feedback on the application and the algorithm. They
are therefore already familiar with the tool and the challenges posed by automating distribution grid
expansion design.

Figure 3.1: Summarised findings from the interviews with Holonet key users for the problem identification.

The interviews resulted in five findings related to the usability of the current Holonet algorithm (sum-
marised in Figure 3.1):

1. Netvisie/Charcoal sketches Before any design for a specific local distribution grid starts, a
broader grid expansion plan is established for the bigger region called a ‘netvisie’. Besides infor-
mation on areas of interest for distribution grid expansion, the netvisie also contains expansion
plans for to the high-voltage transport grid such as new substations. Starting from the overar-
ching plan presented in a netvisie, the first step of distribution grid design is referred to a ‘hout-
skoolschetsen’ (charcoal sketches). During this phase grid architects create rough sketches of
the geographical and electrical layout of the new grid and use this as a starting point for more
detailed designs.

Holonet key user: “[The design process of distribution grid expansion] starts with char-
coal sketches. This process is mainly based on knowledge, expertise and experience
of the grid architects.”

2. Detailed design phase After establishing the initial overall strategy and charcoal sketch the de-
tailed design for a specific area has to be made. During the detailed design phase users spend
a lot of time on designing and reiterating on details of the grid expansion design, such as on
what locations to connect the new grid to the existing grid. Through earlier research by User
Experience expert Joep Houterman-Timmers it became clear that this detailed design phase is a
time-intensive task that can frustrating to work on [15]. Furthermore, this process typically needs
to be done a number of times for each investment proposal, since alternative solutions should
also have been considered and electrically analysed before a proposal can be submitted.

3. Closed box The workings of the algorithm are described by its users as a ‘closed box’ (also
known as a ‘black box’) because it is not clear to them why or how the algorithm decides on in-
vestments. This reduces trust in the automated system, particularly when the proposed solutions
are unconventional. It was frequently mentioned that if algorithm decision could be explained or
understood more easily, the acceptance rate of the algorithm might be higher.

Holonet key user: “For example this new cable going all the way to the other side of
the grid; why did [the algorithm] do that?”

4. Not future proof The solutions generated by the algorithm are commonly described as ‘not future
proof’. What is meant by this is that while the solution covers the target load scenario, the load
scenario a little more in the future already contains serious network congestions. More so it
means that any changes in the uncertain load predictions could still lead to congestions after grid
expansion.

5. Conflicting wishes of users During the interviews we uncovered an internal conflict that users
are experiencing when using the algorithm to generate grid designs. On one hand they want to
consult the algorithm’s output for ‘out-of-the-box’ optimal solutions they have not thought of them-
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selves. On the other hand they do not typically use unconventional designs when the algorithm
generates such designs.

3.2. Proposed solutions
Based on the listed findings from the interviews we proposed four different solutions to improve the
existing algorithm for grid expansion planning. Below we briefly summarize the proposed solutions.
More details can be found in Appendix A.

1. Interactive genetic algorithm To address the perception that the algorithm is a closed box and
that solutions are not future proof, users could be given more control during the optimisation
process. Interactive genetic algorithms replace one or more steps of the optimisation procedure
with user interactions. By integrating interactivity into the genetic algorithm users can exercise
control during the optimisation potentially leading to more satisfying solutions. Several steps of
the genetic algorithm can be made interactive: population initialization, mutation operations and
evaluation/selection [16].

2. Improve explainability algorithm One important finding was that users feel that the system is
a closed box which does not provide reasoning or explanation for its recommendations. To miti-
gate these problems methods from Explainable Artificial Intelligence (XAI) could be adopted [17].
Using XAI techniques we can shed light on the decision-making process behind the system’s rec-
ommendations. For example by visualising the genetic lineage/heritage of solutions or showing
which mutations were important for survival of the solutions.

3. Large language model analysis Data about existing designs for grid expansion mostly exists
in the form of textual documents accompanied by simple images of geographical maps and grid
topology. Structuring or indexing this data could provide valuable insights into unknown patterns
and constraints governing grid design. Recent advancements in large language models enable
analysis and understanding of large amounts of text and image data. These models could be
used to process historical investment proposals and transform them into a structured data format
suitable for further pattern analysis.

4. Sketching rough structures From the interview we concluded that the grid design process has
several distinct phases, where the level of detail progressively increases. Creating the final de-
tailed design typically takesmuch time, while the rough idea and structure of a solution has already
been determined. Accommodating this workflow in the algorithm is important for user acceptance.
The pre-existing coarse plans could serve as additional prior information for the algorithm, for ex-
ample in the form of a sketch hard-drawn by the user.

We decided to further develop one of the proposed solutions: sketching rough structures. Sketch-
based optimisation for electrical grid design has not been investigated in the scholarly literature and
is a promising solution to the business problem Alliander is facing. It addresses the interview finding
that the design process has phases with different levels of detail. It also addresses the issue that the
existing algorithm often generates solutions that do not align with user’s wishes, for example not being
future proof.

Holonet key user: “[Sketching structures] could serve as an intermediate solution to transi-
tion our workflow from only human understanding to new and smart software based intelli-
gence.”

In summary this chapter has identified problems and opportunities related to the increased demand for
distribution grid expansion planning. The existing optimisation algorithm for automated generation of
expansion plan has the potential to accelerate the grid design process, however it is not yet actively
used by grid architects. Through interviews with two grid architects we have formulated issues with the
current algorithm implementations and solution proposals to address these issues. We have chosen
sketching of rough structures as a solution direction to further develop as it addresses several of the
identified issues and has not yet been explored in the context of grid expansion planning.



4
Methods: Sketch-based optimisation

This chapter provides details on how sketch-based optimisation has been integrated into the pre-
existing Holonet grid expansion planning algorithm. The existing algorithm and its workings have been
described earlier in section 2.4. A new sub-objective was introduced which measures shape similarity
between the solution and user drawn sketch. This should incentivise solutions similar in shape to the
sketch. Furthermore, some parts of the algorithm were modified or disabled. For example the objective
function has been restructured and penalties to stimulate desirable grid structures were disabled. Doing
these modifications allows more control over sub-objective prioritisation and to investigate the effects
of sketch-based optimisation in isolation without interference from other mechanisms to stimulate grid
structures. All implementation details can be found in the subsections below.

4.1. Measure for sketch similarity
Rather than defining constraints for sketch to solution similarity, a similarity measure was defined to be
used as an sub-objective function for the algorithm to minimise. Using a continuous objective function
incentives the algorithm to gradually converge to a solution that is close to the user’s sketch, while still
allowing for (small) deviations if required to optimise other sub-objectives.

The sketch similarity sub-objective function should measure the similarity between the sketch shape
and the shape of an investment plan. The similarity measure must satisfy identity (d(A,A) = 0) and
must allow for partial matching (d(A,B) = x =⇒ d(A,B ∪ C) ≤ x) for arbitrary sketch or investment
shapesA,B,C, such that the algorithm can expand the investment plan beyond the shape of the user’s
sketch. The measure should also differentiate between similar shapes with a different orientation, e.g.
a sketch should not be similar to a rotated version of itself.

Veltkamp [18] provides a good overview of different similarity measures for shape matching. We consid-
ered several of these measures, such as the Fréchet distance which measures the distance between
points on two curves while walking along the curves. Alternatively the Turning function computes a
descriptive value about the shape of the curve. However both measures do not allow partial matching
and the latter also is rotationally invariant, making them not suitable for our application. The directed
Hausdorff distance measures the maximum distance to the closest neighbour of points in the sketch
and thus allows for partial matching. However the directed Hausdorff distance operates on graph nodes
rather than on graph lines, making it also not suitable for our needs (e.g. when a sketch line is broken
up into two line segments by an additional node, the similarity should not decrease). Finally the Earth
Mover’s Distance (EMD) seems to be an applicable measure which we will discuss further.

An intuitive way of understanding EMD is “by thinking of piles of earth spread around in a Euclidean
space and holes spread in that same space. Then, EMD measures the least amount of work needed
to fill the holes with earth” [19]. We apply this to our problem by converting the investment plan shape
to a distribution in two-dimensional space resembling the earth and the sketch shape to resemble the
holes. We then find the optimal assignment of piles of earth to holes and use the required amount of
work to fill the holes as our shape distance measure. Since not all piles of earth have to be used to fill

15



4.1. Measure for sketch similarity 16

the holes the measure will allow for partial matching.

Figure 4.1a illustrates the concept of EMD shape matching. It also illustrates how electrical grid shapes
can be discretised using rasterisation to allow for efficient computation on vector shapes. The problem
of computing EMD can actually be reduced to a linear unbalanced assignment problem in our case,
since all sketch shape ‘pixels’ have the same weight and can be assigned to exactly one investment
shape ‘pixel’. 1 The cost of each assignment is the distance between the sketch and investment pixels.
To penalize incomplete investment plans, every sketch pixel that cannot be assigned an investment
pixel will incur an extra constant cost. This can is shown in Figure 4.1b.

(a) The sketch and the investment plan shapes are first discretised.
Then the cost of the optimal assignment can be computed. Sketch
pixels without assignment incur a constant cost X. In this example

the similarity measure is 6+2X.

(b) EMD converted to a linear unbalanced assignment problem.
Costs on the edges are Euclidean distances between pixels (not

shown). The optimal assignment is highlighted.

Figure 4.1: Illustrating the Earth Mover’s Distance (EMD) shape similarity measure considering the shape of an electrical grid.

The final algorithm pseudo code for computing the similarity measure is given in Algorithm 1 for the set
of sketch line segments Ls and set of investment line segments Li. Here we can also see the how the
penalty for not assigning a sketch pixel is set to half the maximum distance within the sketch shape S.
An example of the similarity measure with real data can be seen in Figure 4.2, where the orange pixels
are discretised sketch vectors and blue pixels are discretised investment vectors. Pixels colored pink
contain both a sketch and investment pixels and thus are perfectly aligned, incurring no cost for the
similarity measure.

When drawing sketches in the Holonet interface, users can distinguish between two types of structures:
backbones and independent cables. Case study experiments showed that computing the shape similar-
ity measure on the combination of the two sketch types to undesirable solutions (see subsection 6.1.2).
To remediate this we separately compute the shape similarity measure for new backbone cables with
the backbone structure sketch and for all other cables with the cable structure sketch. This leads to
much more desirable solutions, as can be seen in subsection 6.1.3.

1See this StackOverflow answer: https://stackoverflow.com/a/57563383

https://stackoverflow.com/a/57563383
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Algorithm 1 EMD Shape Similarity Measure
1: Dss ← euclidean_distances(S, S)
2: P ← max(Dss)/2 ▷ First compute non-assignment penalty P
3:
4: function EMD_similarity(Ls, Li)
5: S, I ← [], [] ▷ Initialise lists of sketch and investment pixels
6: for l ∈ Ls do
7: S ← S + rasterise(l) ▷ Rasterise all sketch lines
8: end for
9: for l ∈ Li do

10: I ← I + rasterise(l) ▷ Rasterise all investment lines
11: end for
12: Dsi ← euclidean_distances(S, I)
13: A← solve_linear_unbalanced(Dsi) ▷ Compute optimal assignment
14: similarity← assignment_cost(A)
15: for s /∈ A do
16: similarity← similarity+ P
17: end for
18: return similarity
19: end function

Figure 4.2: Example of discretised sketch and investment vectors used to compute Earth Mover’s Distance. Pink pixels are
aligned perfectly and incur zero cost when computing EMD.
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4.2. Restructured objective function
The objective function used in the existing algorithm is hard to interpret and potentially leads to unfair
scaling between the three identified sub-objectives, as we concluded in 2.4. The addition of sketch
similarity as a new sub-objective further complicated this and prompted a restructuring of the objective
function. By normalising all sub-objectives to a [0, 1] range we prevent hidden scaling differences and
therefore hidden prioritisation between sub-objectives. Additionally, with normalised sub-objectives
a multi-objective optimisation method ‘scalarisation’ can be applied which reduces a multi-objective
optimisation problem to a single objective problem by minimising a weighted linear sum of the sub-
objectives [20, p. 666]. By modifying the weights corresponding to each sub-objectives we can now
explicitly control preference between sub-objectives as a hyperparameter of the optimisation.

First we define how to compute the absolute values for the the four sub-objectives: cost (C(I), overload
O(E, I), n minus 1 redundancy R(E, I) and sketch similarity S(I, S) (Equations 4.1 - 4.4). Here E is
the currently existing grid, I is the proposed investment and S is the sketch drawn by the user. Note
how penalties for desirable grid structures found in subsection 2.4.2 are no longer part of the objective
functions. As stated earlier this removes interference from other mechanisms that stimulate particular
grid structures.

C(I) = Creinforcements(I) + Cedges(I) + Cnodes(I) + Cswitches(I) (Costs of investments) (4.1)

O(E, I) = Ocables(E, I) +OMSRs_voltage(E, I) +OMSRs_delta(E, I) +Ofields_voltage(E, I) (Overload in network)
(4.2)

R(E, I) =
∑

e∈edges(E∪I)

Rnminus1(e) (N minus 1 redundancy) (4.3)

S(I, S) =
∑

si∈S

A(si, I) (User’s sketch soft constraint) (4.4)

To normalise the sub-objective we use the approach suggested by Arora [20, p. 667] as the most robust
method for sub-objective normalisation, shown in Equation 4.5. Here fi(x) is the ith sub-objective
function, f◦

i is the utopia point (minimum attainable value of fi(x)) and fmax
i is the absolute maximum

value of fi(x).

fnorm
i =

fi(x)− f◦
i

fmax
i − f◦

i

(4.5)

To determine values for f◦
i and fmax

i we used a combination of common sense and engineering intuition.
This was also validated with the key users introduction in chapter 3. Table 4.1 lists these values per
sub-objective including a rationale for selecting these values.

Finally we apply multi-objective scalarisation to combine all sub-objectives into a single objective func-
tion f(x, y, s) that can minimised by the genetic algorithm. All sub-objective functions are weighted and
then summed using weight vector w where wi ∈ [0, 1]∀wi ∈ w, as seen in 4.6. The weight vector w is
now a hyperparameter of the optimisation which can be tuned according to our needs.

f(x, y, s) =

4∑
i=1

wif
norm
i (x, y, s) (4.6)
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Utopia point f◦
i Absolute maximum fmax

i

Cost C(x) 0 (no costs) User estimate of total costs
(based on early netvisie documents)

Overload O(x, y) 0 (no overload in grid) Predicted overload in target year

Redundancy R(x, y) 0 (no overload in case of any single failure)
∑

i∈cables checked

Pn minus 1

(all cables maximum penalty)
Sketch S(y, s) 0 (perfect similarity sketch and investment)

∑
i∈sketch pixels

Psketch

(no investment; all sketch pixels maximum penalty)

Table 4.1: Values used for normalisation of sub-objective functions according to Equation 4.5.

4.3. Algorithm parallelisation feature
The existing genetic algorithm includes an optional ‘parallelisation’ feature that can be enabled for
optimisation, for example using 10 processes running in parallel to complete the optimisation. The op-
timisation computation is not distributed over the different processes but in fact all processes perform
their own genetic optimisation with their own set of solutions per generation, much like an ensemble
optimisation approach. By exchanging solutions between the different parallel optimisations more di-
versity is created and the optimisation converges faster. However, in later phase of this research it was
discovered that there is no time synchronisation between the processes and solutions from younger or
older generations can easily leak into the current population. This behaviour can occur randomly and
is not defined.

Earlier research has investigated similar methods of reusing solutions from earlier populations and
shows that those methods can improve performance of the genetic algorithm [21, 22]. In general
enabling the parallelisation feature leads to better solutions where disabling it can lead to getting stuck
in a local minimum and to sub-optimal solutions. In the results chapter it will be clearly indicated if the
parallelisation feature has been enabled for each result.

4.4. Other changes to algorithm
Section 2.4 described earlier how the existing genetic algorithm has an island model to stimulate di-
versity between solutions in the final population. We decided not to use this functionality however,
because the focus of this research is to investigate the effect of sketch-based optimisation rather than
to create diverse populations. As a result most or all solutions in the final population are very similar to
each other, as we will see later.

Other hyperparameters of the algorithm were kept at the default values from the existing algorithm,
since they give reasonably good results using the current algorithm. This includes population size (10),
number of children per iteration (5) and maximum iterations k of the simulated annealing subprocedure
(5).



5
Experimental setup

This chapter discusses the experimental setup used to acquire our results in chapter 6. Two sections
discuss the setup of a case study and a user validation study respectively. Both studies are designed
to answer the main research questions of this thesis introduced earlier in chapter 1.

5.1. Case study
To see how our technical implementation behaves, we performed several experiments in the controlled
setting of a case study. Using a single problem instance we tested the effect of different hyperparameter
configurations, for example tuning the prioritisation between the different sub-objectives. From our
findings we selected a good hyperparameter configuration to use during the product validation study
with actual users.

It is important to establish what solutions generated by the algorithm qualify as good solutions. The list
below summarises desired properties of good solutions, based on our findings in chapter 3:

1. No overload Assuming the target year load forecast, ideally no assets in the network should be
overloaded, considering both voltage and current overload.

2. Sketch sub-objective converges The sketch shape similarity measure indicates how similar
the investment structure of the solution is the the user sketch. Convergence of the sketch sub-
objective values shows that the algorithm’s optimisation can improve sketch similarity.

3. Investment visually matches sketch The investment should visually match the input sketch and
capture the user’s intent expressed with the sketch. If this is true, our novel sketch shape similarity
measure works as expected and can indeed measure the visual correspondence between grid
investment and sketch.

4. Investment assets correctly connected Two structures sketched by the user which are intended
to be connected, should be connected in the solution as well. (e.g. a support cable connecting
the center of a backbone to the substation)

The topic of our case study is the Dutch village of Beesd and its surrounding areas. The main reason
for choosing this area is the recently approved investment proposal detailing a suitable grid expansion
plan for the area. The parameters of the case study are based on this investment proposal. Using
assumptions and parameters from an existing and recently approval investment proposal we ensure
our case study is representative of real world use cases of our algorithm.

The shape of the sketch used for this case study can be seen in Figure 5.1b in the dotted white lines,
on top of the existing electric distribution grid topology of Beesd. The sketch is directly based on
the existing investment proposal, which details a 10kV backbone surrounding the area in need of extra
distribution capacity [23]. Additionally, the backbone contains a support cable for redundancy unlocking
extra capacity to be used from the backbone. Connections from the backbone to the existing grid are
not drawn since that is one of the free variables left to the algorithm to optimise. The total budget
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(a) Satellite view of Beesd, the Netherlands. ©Google (b) Electric distribution grid near Beesd, including sketch of proposed
new grid structure (white dotted lines) based on existing and approved

investment proposal.

Figure 5.1: Geography and electric distribution grid topology of case study Beesd and surrounding area, including new grid
structure from real investment proposal.

listed in the investment proposal € [confidential],- is used as our best estimate of the total costs for
normalising the costs sub-objective. The load scenario forecasts for the year [confidential] is selected,
based on the most recent forecast data.

During the case study we attempt to answer the following research questions specific to the case study.
We will do this by running several optimisations under controlled conditions, then comparing the results
and the optimisation meta-data/metrics.

1. What do solutions generated without a sketch look like? (e.g. optimised just based on overload
and cost data)

2. What do solutions generated without overload data look like? (e.g. optimised just for sketch
similarity and cost) That is, how well can the novel sketch similarity measure approximate the
sketch shape?

3. How to generate solutions consisting of a single, connected structure using the novel sketch
similarity measure? (e.g. rather than just separate cables that are not connected in a meaningful
way)

4. What is the effect of enabling/disabling the n minus 1 redundancy sub-objective for the optimisa-
tion?

5. How similar are solutions resulting from different optimisations with the same initial (hyper)parameters?
(e.g. how stable is the algorithm output?)

5.2. User validation study
A key part of this thesis is to evaluate the proposed solution with the actual users. This is also reflected
in the final research question on the influence of sketch-based optimisation on the workflow of grid
architects. To answer this research question we have conducted a qualitative user validation study
consisting of interview questions and a think-aloud usability test of the algorithms.

For the user study 6 participants were recruited from the group of roughly 20 distribution grid architects
working at Alliander at the time of writing (participants include key users referenced earlier in chapter 3).
Given the rather small size of this group a qualitative research was chosen over for example a quanti-
tative survey. The nature of our results is also primarily attitudinal rather than behavioural (evaluating
what users say rather than how they behave), since we our study relies on interview questions and a
think-aloud usability test [24].
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To address the main research question answered with the user study, we introduce more specific re-
search questions to be answered during the user study below. We used these specific research ques-
tions to systematically analyse the interview answers and extract relevant findings from the user study.

1. Which aspects of grid design are the most time-consuming time or the most frustrating and could
be sped up by sketch-based optimisation?

2. When introduced to the idea and user interface for sketch-based optimisation of grid investment
plans, how do users perceive the potential impact on their work designing grid expansions? And
would they consider using it in their workflow?

3. To what degree does the new algorithm generate feasible grid investment plans and how close
are they to the user’s sketch and the user’s design intention?

4. After drawing a sketch and being presented with its generated solutions, how do users perceive
the potential impact of sketch-based optimisation of grid investment plans on their work? How is
this different from their earlier answer?

5. What and how do users think the sketch-based algorithm for grid investment planning could be
improved?

6. How do the different sub-objectives behave during optimisation of user drawn sketches?

Figure 5.2: Drawing user interface in Holonet used during the user study. Participants were asked to draw a sketch of their
desired grid structure.

To answer these research questions a user study was designed consisting of two sessions on the same
day for interview questions and the usability test. Both sessions were a one-on-one conversation be-
tween the participant and the researcher, either during a meeting at the Alliander offices or an online
video call. The study was split into two sessions for each participant because the usability test includes
an optimisation run of the algorithm which takes considerable time (one to two hours). The first session
consists of introductory questions to get familiar with each other and questions related to their use of
Holonet and familiarity with the current optimisation algorithm. Then the idea of sketch-based optimisa-
tion for grid expansion planning is introduced to the participant and the participant is asked about what
an ideal version of this functionality would look like and how it would impact their work. Thereafter the
case study of Beesd is introduced to be used during the usability test. The goal of the usability test is
for participants to think of an appropriate grid expansion design that would resolve all congestions in
the area as project in the load forecasts for the year 2035 (details on load forecast are confidential).
It can assumed that only 10kV supply would be available in the substation in the foreseeable future.
The participant is asked to draw their design using a prototype drawing UI directly in Holonet (see Fig-
ure 5.2) before answering some questions about their expectations regarding the optimisation results.
If time allows, the participant is asked to think of an alternative solution and draw that as well. The time
between the two sessions is used to run an optimisation based on the user’s sketch. During the second
session the resulting investment proposals from the optimisation were shown to the participant. The
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participants was then asked about their thoughts on the results and how they compared to their expec-
tations. Finally the participant is asked if their opinion about sketch-based optimisation has changed
and about any other feedback.

The complete test script with all interview questions and usability test instructions can be found in
Appendix B. In the test script all interview questions have been marked with a number corresponding
to the user study research questions listed above to indicate a connection between research questions
and the user study methodology. The user study methodology was approved by the TU Delft Research
Ethics committee.

5.2.1. Interpretation of user study data
To analyse and derive insights from the data gathered with the user study, we use a inductive coding
strategy where we identify recurring themes and sentiment. Since the setup of the user study is open-
ended and intended to investigate new ideas and concepts we use an inductive coding strategy rather
than a deductive coding strategy [25]. With inductive coding the codes and data clustering is developed
during data analyse to allow for previously unknown insights.

The data (e.g. feedback, proposed ideas or statements made by participants) clustered by research
questions and two extra categories: feedback not on the algorithm but on Holonet and the participant’s
context. Per clustering category positive and negative sentiment is identified as well as themes that
occur in feedback, ideas or suggestions from participants. From the coded data we attempt to extract
answers to our research questions and new insights that could be interesting to future work.

5.2.2. Limitations of user study
The user study has some limitations, such as the small participant group size. This limitation has been
mitigated to our best ability by recruiting particpants with different backgrounds, for example different
types of operational area (urban vs rural) and different levels of experience. Due to the small participant
group size we could also not correct for any biases introduced by changing modality (e.g. face-to-face
or online video call), however we do not expect the modality of the sessions to affect the results since
our study is attitudinal rather than behavioural.

There is also a risk of a social desirability bias where participants feel social pressure to give desirable
answers. In particular because from the context of the interview it is clear that the researcher worked
on the algorithm that is being evaluated. We attempted to mitigate this risk by taking great care in
asking open questions instead of closed or biased questions. The participants were also encouraged
to give their honest opinions in light of potential improvement that could be made.



6
Results

This chapter will present the results of our research acquired using the experimental setup described
earlier in chapter 5. First we will present the results from the case study where we examined the
characteristics of the novel sketch-based optimisation algorithm. Then we present the results of the
user validation study where we investigated how users interact with sketch-based optimisation and how
it could potentially impact their workflow.

6.1. Case study
The case study is comprised of a series of optimisation runs and their results in order to answer main
research question 3. To achieve this section 5.1 introduces new research questions specific to the
case study which are listed again below. The optimisation results show the best solution from the final
population together with a number of optimisation metrics and the sub-objective weights used. In some
cases more configurations were tested than those that presented here. If that is the case, the results
of the most relevant or interesting configuration is shown here in accordance with the criteria defined
in section 5.1.

1. What do solutions generated without a sketch look like? (e.g. optimised just based on overload
and cost data)

2. What do solutions generated without overload data look like? (e.g. optimised just for sketch
similarity and cost) That is, how well can the novel sketch similarity measure approximate the
sketch shape?

3. How to generate solutions consisting of a single, connected structure using the novel sketch
similarity measure? (e.g. rather than just separate cables that are not connected in a meaningful
way)

4. What is the effect of enabling/disabling the n minus 1 redundancy sub-objective for the optimisa-
tion?

5. How similar are solutions resulting from different optimisations with the same initial (hyper)- pa-
rameters? (e.g. how stable is the algorithm output?)

6.1.1. Baseline: Optimisation without sketch
To establish a baseline used for comparison to the existing situation we ran an optimisation with no
sketch as input like done in the existing optimisation algorithm. In this baseline configuration the sub-
objectives cost, overload and redundancy are enabled. The sub-objectives are summed into the objec-
tive function using the weights specified in Figure 6.1d.

The results from the baseline optimisation can be seen in Figure 6.1 where the best solution from the
final population is shown together metrics collected during the optimisation. The algorithm has con-
verged to a solution after 44 solutions (rather than the 100 maximum iterations) where all congestions
under the predicted 2035 grid load are resolved at reasonable costs (only 53% of the estimated costs).

24
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However, upon visual inspection of the solution this is a typical case to be dismissed by users as having
‘no structure’. More specifically; the cables starting from the substation intersect with the densely pop-
ulated centre of Beesd and with a waterway. Furthermore, using individual cables to feed congested
areas rather than using a backbone structure/ring shape does not provide enough flexibility towards
the future, according to the key user interviews in chapter 3.

(a) Existing grid (grey), input sketch and new cables
(lines) and new MSRs (dots).

(b) Convergence of objective and scaled sub-objectives.

(c) Solution rendered in Holonet.

Sub-objective Weight wi

Sketch 0.0
Cost 0.1

Overload 0.5
Redundancy 0.5

Parallelisation Disabled

(d) Sub-objective weights.

Figure 6.1: Optimisation results without sketch, like in the existing algorithm. Only based on cost, overload and redundancy
sub-objectives.

6.1.2. Optimisation with sketch (single structure type), no overload
To investigate the behaviour and efficacy of the novel sketch similarity measure, the similarity measure
was first tested in isolation from the other sub-objectives. Both grid overload and n minus 1 redundancy
were disabled, however the cost sub-objective remained enabled with a small weight for regularisation;
to avoid diverging solutions with unlimited amounts of new cables.

(a) Existing grid (grey), input sketch and new cables
(lines) and new MSRs (dots).

(b) Convergence of objective and scaled sub-objectives.

(c) Solution rendered in Holonet.

Sub-objective Weight wi

Sketch 1.0
Cost 0.01

Overload 0.0
Redundancy 0.0

Parallelisation Enabled

(d) Sub-objective weights.

Figure 6.2: Optimisation results with only shape similarity sub-objective (single structure type) With cost sub-objective as
regularisation to avoid diverging solutions.

The results of an optimisation based only on sketch similarity can be seen in Figure 6.2. It can be seen
that the algorithm approximates the sketch very well with both new backbone structures (blue lines
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connecting blue dots) as well as separate cables between existing nodes (blue lines connecting grey
lines). However, upon close inspection most new cables are not connected to each other or even to the
substation, but rather intersecting each other. This is not desirable when we want to recreate familiar
grid expansion structures such as backbones.

6.1.3. Optimisation with sketch (two structure types), no overload
To remediate the problem of an unconnected grid expansion structure explained above, the sketch
similarity measure was changed to measure similarity for backbone and cable sketches separately.
When users are drawing a sketch they can select either a backbone structure (which always starts
and ends at a substation) or a separate cable (starting and ending anywhere). After drawing sketch
lines are saved per structure type and during optimisation a shape similarity measure is computed for
each type separately, based on whether new cables are part of a backbone or not. The results of the
modified shape similarity measure can be seen in Figure 6.3.

Figure 6.3 shows how the solution improved over the earlier attempt in subsection 6.1.2 when only
optimising for sketch similarity. Most of the new cables are now connected into a single structure
and cables close to the substation are actually connected to the substation. No feasible or sensible
grid topology can be seen yet, since grid connectivity or load distribution was not an objective of this
optimisation.

(a) Existing grid (grey), input sketch and new cables
(lines) and new MSRs (dots).

(b) Convergence of objective and scaled sub-objectives.

(c) Solution rendered in Holonet.

Sub-objective Weight wi

Sketch 1.0
Cost 0.01

Overload 0.0
Redundancy 0.0

Parallelisation Enabled

(d) Sub-objective weights.

Figure 6.3: Optimisation results with only shape similarity sub-objective (two structure types) With cost sub-objective as
regularisation to avoid diverging solutions.

6.1.4. Optimisation with sketch and overload
Figure 6.4 shows results when optimising for sketch similarity, future grid overload and costs. The
solution contains no congestions anymore for the 2035 predicted load scenario. In addition, a backbone
structure has been created surrounding the area, just like the sketch. The separate cables running from
north to south across the backbone structure intersect with the backbone cables, however they are not
directly connected to the backbone but rather through existing cables. Compared to the sketch-only
optimisation from subsection 6.1.3 a lot less new cables are used but the new cables are not as close
to the sketch. Both are likely a result from the changed sub-objective weighting (cost from 0.01 to 0.1,
overload at 0.1 and sketch similarity remains at 1.0).
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(a) Existing grid (grey), input sketch and new cables
(lines) and new MSRs (dots).

(b) Convergence of objective and scaled sub-objectives.

(c) Solution rendered in Holonet.

Sub-objective Weight wi

Sketch 1.0
Cost 0.1

Overload 1.0
Redundancy 0.0

Parallelisation Disabled

(d) Sub-objective weights.

Figure 6.4: Optimisation results when optimising for sketch similarity, cost and overload, but not redundancy.

6.1.5. Optimisation with sketch, overload and redundancy measure
Figure 6.5 shows the results of an optimisation with all sub-objectives enabled including the n minus
1 redundancy measure. The resulting expanded grid has no congestions and nearly no redundancy
issues for the 2035 predicted load scenario. The resulting expanded grid has a backbone structure,
however with a ‘missing’ bit of cable where instead the existing grid is used to connect the backbone
ring. This occurs more frequently for solutions generated during the case study which are not all shown
in here. Compared to the solution generated without redundancy sub-objective in subsection 6.1.4
this solution is more expensive (from 88% to 108% of estimated costs). This can be explained by
the extra grid components needed to reach grid redundancy rather than just no grid overload. The
hyperparameters of this optimisation run were later used for the optimisations of the usability test of
the user study.

(a) Existing grid (grey), input sketch and new cables
(lines) and new MSRs (dots).

(b) Convergence of objective and scaled sub-objectives.

(c) Solution rendered in Holonet.

Sub-objective Weight wi

Sketch 1.0
Cost 0.1

Overload 0.5
Redundancy 0.5

Parallelisation Disabled

(d) Sub-objective weights.

Figure 6.5: Optimisation results when optimising for all sub-objectives sketch similarity, costs, grid overload and grid
redundancy.
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6.1.6. Stability of solutions
Finally the stability of the algorithm in terms of resulting solutions was investigated. To assess this
stability five optimisation runs were done all with the same (hyper)parameters (the parameters from
subsection 6.1.5) with parallelisation disabled and enabled (see section 4.3). The results can be seen
in Figure 6.7 and Figure 6.8 respectively. From the results some optimisations converged earlier and
therefore terminated earlier than the maximum of 100 iterations. In both cases with parallelisation
disabled or enabled the optimisation runs converge in a similar fashion as can be seen in the sub-
objectives graph. Nevertheless in both cases the resulting solutions vary a lot in structure, shape, etc.
This can simply be traced back to the random nature of genetic algorithms, however it also shows that
the algorithm can get stuck in (semi-optimal) local optima rather than always finding the global optimum.
Figure 6.6 shows the spread objective and sketch sub-objectives values compared between paralleli-
sation disabled or enabled. This shows that solutions generated with parallelisation enabled generally
have lower and less variance in objectives values (is better), meaning enabling the parallelisation could
contribute to more stable solutions between optimisations.

Figure 6.6: Spread of objective and sketch sub-objective values of five optimisations with the same (hyper)parameters with
parallelisation disabled and enabled respectively. Objective values of optimisations with parallelisation enabled are generally

lower and have less spread.
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(a) Solution run 1. (b) Sub-objectives run 1.

(c) Solution run 2. (d) Sub-objectives run 2.

(e) Solution run 3. (f) Sub-objectives run 3.

(g) Solution run 4. (h) Sub-objectives run 4.

(i) Solution run 5. (j) Sub-objectives run 5.

Figure 6.7: Results of five optimisation runs started with the same (hyper)parameters with parallelisation disabled to analyse
the stability of generated solutions. There are major differences between the shape of structures in the solutions.
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(a) Solution run 1. (b) Sub-objectives run 1.

(c) Solution run 2. (d) Sub-objectives run 2.

(e) Solution run 3. (f) Sub-objectives run 3.

(g) Solution run 4. (h) Sub-objectives run 4.

(i) Solution run 5. (j) Sub-objectives run 5.

Figure 6.8: Results of five optimisation runs started with the same (hyper)parameters with parallelisation enabled to analyse
the stability of generated solutions. There are major differences between the shape of structures in the solutions.
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6.2. User validation study
The user study was conducted with 6 distribution grid architects who are currently working with Allian-
der and are potential users of the sketch-based optimisation algorithm. A thematic analysis was done
on the qualitative interview data using inductive coding to identify sentiment and recurring themes per
category. The categories used for clustering the interview data are the user study research questions
from section 5.2 and two additional categories: participant context and feedback on the Holonet ap-
plication rather than on the sketch-based optimisation algorithm. The last category is not included in
the results because feedback not related to the algorithm is not relevant for this research. Figure 6.9
and Figure 6.10 show an aggregated overview of participant contexts and of sentiment per research
question respectively. In the subsections that follow recurring themes per category and other points of
interest are presented.

Figure 6.9: Aggregated overview of participants contexts; the type of area they operate in and the number of years experience
as distribution grid architect.

Figure 6.10: Aggregated overview of sentiment per research question/category (where applicable). Analysis and themes
extracted from the qualitative data are discussed in the subsections below.

6.2.1. Which aspects of grid design are the most time-consuming?
Most participants indicated that three tasks take up roughly equal time when designing a new grid ex-
pansion: gathering and validating information, designing the new grid structure and writing the proposal
and getting it approved. It was mentioned that the existing Holonet tool for visualising grid congestion
greatly reduced the time needed for gathering and validating information. When zooming in on the grid
design task all participants agreed that the rough design, also called ‘netvisie’ (see chapter 3), takes
much less time than the detailed design that is created later (sometimes much later). Determining
how to connect the new structure to the existing grid was frequently mentioned as a time-consuming
challenge. Since there are usually more ways to approach the problem with no clear best solution, the
detailed design task can take considerable time. However, this task was also referred to as a challenge
or puzzle and fun to do.

Participating grid architect: “I think that 80% of the work can be automated and that the
other 20% should remain with [humans with] expert knowledge.”
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Participating grid architect: “Moving the design process to a single tool (Holonet) could save
me a lot of time.”

Apart from designing grid expansions, participants indicated that they also spend much time on already
approved grid expansion proposals, for example writing detailed work instructions and answering ques-
tions and communicating about the realisation of the plans.

6.2.2. How is impact of sketch-based optimisation perceived?
Participants were first introduced to the idea of sketch-based optimisation before being shown the actual
implementation to gather their thoughts on the impact it could have on their work. The potential impact
of using such a tool is overall perceived as positive and 3 out of 6 participants mention time savings
as major benefit when asked in an open question format. The (time saving) value of sketch-based
optimisation would be to use it as an initial design, which then can be modified and improved by the
user. The latter requirement of changing a generated solution was mentioned as a condition to work
with the tool effectively.

6.2.3. How close are the solutions to the user's design intention?
Figure 6.11 shows an overview of the sketches drawn by participants during the usability test and the
corresponding solutions computed using the same hyperparameters as subsection 6.1.5. Only the
best solution from the final population is shown. For some participants time allowed to discuss and
sketch an alternative grid design; for others time only allowed for one design. In all cases the algorithm
managed to resolve all congestions from the 2035 load forecasts. To illustrate the link between the
generated solution and a participant’s judgement of the solution, Figure 6.11 also lists the sentiment
of each participant regarding how close the solutions are to their sketch and design intention. For
participants with two sketches the combined sentiment from the two solutions is recorded.

From the qualitative data we extracted several recurring themes. Participants were happy to see that
no future congestions remain given the solution. The automatically generated connections from the
new structure to the existing grid were generally perceived as most positive aspect of the solution.
Also the fact that familiar structures such as a backbone are used in the solutions was perceived as
an improvement over the current Holonet algorithm. However, another commonly occurring theme
was that the type of cables not matching the users’ expectations. For example in practice a backbone
typically only contains 630Al cables, however the algorithm often used 240Al cables for backbones. A
backbone structure created in the western part of the area often was not completely closed, but rather
existing cables were used to connect two ‘arms’ of the backbone. Overall it seemed that generating
a solution close to the sketch of a backbone was more often successful (e.g. see Figure 6.11f and
Figure 6.11h) than recreating the sketch of separate cables and connecting those separate cables to
the intended component in the grid (e.g. see Figure 6.11b).

Participating grid architect: “Creative solution to use the existing grid as part of the back-
bone.”

In some cases the participant indicated that they could not recognise their input sketch in the generated
solution. For example participant 3 who created a very detailed sketch (see Figure 6.11d), rather than
a rough sketch, later adding that they had expected that the generated cable route would exactly match
the sketch. This led to a negative sentiment in this regard coming from amismatch between expectation
and results.

Participating grid architect: “There is no orderly structure in this solution, even though I
sketched my design before.”

In general the generated solutions vary a lot between optimisation runs, even though sketches are
similarly shaped in most cases. This was also addressed in subsection 6.1.6 where we established that
the algorithm is likely to get stuck local minima leading to high diversity between solutions generated in
different optimisation runs. This is especially the case when parallelisation is disabled like during these
usability tests.
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(a) Participant 1 (sketch 1). Sentiment:
Somewhat positive.

(b) Participant 2 (sketch 1). Sentiment:
Somewhat positive.

(c) Participant 2 (sketch 2). Sentiment:
Somewhat positive.

(d) Participant 3 (sketch 1). Sentiment:
Negative.

(e) Participant 4 (sketch 1). Sentiment:
Somewhat negative.

(f) Participant 5 (sketch 1). Sentiment:
Positive.

(g) Participant 5 (sketch 2). Sentiment:
Positive.

(h) Participant 6 (sketch 1). Sentiment:
Somewhat positive.

(i) Participant 6 (sketch 2). Sentiment:
Somewhat positive.

Figure 6.11: The users’ sketches and corresponding solutions (best from final population) from the usability study. For some
participants there was not enough time to sketch a second solution. For every participant the sentiment is listed regarding how

close the solutions are to their sketch and design intention.

6.2.4. After seeing solutions, how is impact perceived?
After discussing the solutions generated by the algorithm in the usability test, the participants were
once again asked for their thoughts on the impact that sketch-based optimisation could have on their
work. Most participants did not change their positive attitude towards the concept of sketch-based op-
timisation. Having an initial design to start from was again mentioned as a benefit, as well as quickly
testing out different rough designs and having alternative out-of-the-box solutions available. Partici-
pants stated that these benefits would result in time-savings or in better design.

Participating grid architect: “This workflow could be very useful for eliminating ideas [during
the rough design phase] and for determining connections to existing grid.”
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2 out of 6 participants changed from an initial positive attitude to a somewhat negative or a negative
sentiment towards the idea of sketch-based optimisation. Reasons for the change in attitude are disap-
pointment that the solutions were not close enough to the user’s sketch (such as participant 3, discussed
above) and that no explanation is provided for the choices made by the algorithm. A recurring theme
is that the algorithm (still) behaves like a closed box while the user sometimes wants argumentation for
a particular design choice, also given the (societal) responsibility that grid architects have doing their
job correctly.

6.2.5. How can the sketch-based algorithm be improved?
Participants were asked for any feedback on the sketch-based optimisation algorithm towards the end
of the interviews, but also during initial interview and the usability test plenty of feedback was given.
We summarise recurring feedback points as follows:

• Geography is very important in electrical grid design and preferences for behaviour can currently
only be expressed through sketching. Adding constraints based on geographical data about for
example waterways and highways could improve the usability of the algorithm’s solutions.

• Add the functionality to specify the cable type (cable thickness) while drawing. This feedback
originated from different two contexts. While drawing the sketch some participants already had
an idea of the required cable type. For other participants the cable types in the solutions did not
match their expectation and had retrospectively wished to indicate the cable types in their sketch.

• Optimise for equal load distribution over all routes from the substation rather than avoiding over-
loading any route. To create a distribution grid designed for redundancy and robust to changes
in the load predictions, it is smart to distribute the load evenly over routes and not just avoid
overloading components.

• Sketch the location of MSRs rather than the location of cables. One participant mentioned that
in their urban working area often the location of MSRs is already determined but the location of
cables requires complex planning and hence cables could be a good candidate for optimisation
rather than to sketch the cables. However, when we validated this idea with participants mainly
working in a rural areas they indicated that they often have freedom where to place MSRs but
rather have limited options when planning cable routes due to natural obstacles such as highways
or waterways. Therefore we conclude that there is no clear consensus between users on this
topic.

6.2.6. Optimisation metrics
For all optimisation runs done for the usability test with participants’ sketches we recorded the sub-
objective and objective values while the optimisation progressed. Plots of these values can be seen in
Figure 6.12. Unfortunately the data for some optimisation runs is missing due to a technical error in the
runtime environment of the algorithm. Rerunning the same optimisation would yield different solutions
than those shown to the participants during the interviews (due to the randomised nature of genetic
algorithms) and therefore we decided to leave out (sub-)objectives data for these optimisation runs.

All graphs in Figure 6.12 show a steady convergence of both the objective and the sketch similarity
sub-objective. Also the overload and n minus 1 redundancy sub-objectives both converge to a value of
zero. This indicates that the algorithm can optimise for our goals well, even when sketches drawn by
real users (e.g. the participating grid architects) are used for input. The cost sub-objective takes longer
to converge in all cases which is expected, since cost is the least prioritised sub-objective amongst all
sub-objectives.
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(a) Participant 1 (sketch 1). (b) Participant 2 (sketch 1). (c) Participant 2 (sketch 2).

(d) Participant 3 (sketch 1). (e) Participant 4 (sketch 1). (f) Participant 5 (sketch 1).

(g) Participant 5 (sketch 2). (h) Participant 6 (sketch 1). (i) Participant 6 (sketch 2).

Figure 6.12: Evolution of sub-objective and objective values for each optimisation run of the usability test. A steady
convergence of both the objective and the sketch similarity sub-objective can been seen as well as a slower convergence of

the least prioritised cost sub-objective. Due to a technical error data for some optimisation runs are missing.

6.3. Discussion
The results of the case study and the user study can be summarised as follows. The case study shows
that the shape similarity measure can enable sketch-based optimisation of grid expansion designs using
a genetic algorithm. The proposed implementation of sketch-based optimisation generally outperforms
the existing optimisation algorithm on the geographical feasibility of its solutions, while also resolving
all predicted congestions. Geographical feasibility is improved because known structures such as
backbones are used in solutions guided by users’ sketches. However new structures in solutions are
not always connected with each other as intended by the user. Furthermore the stability between
generated solutions is low, meaning that the algorithm is not guaranteed to give a good solution on
every use. This is most likely because the genetic algorithm gets stuck in local minima during the
optimisation. Enabling the existing parallelisation (see section 4.3) could help overcome this problem,
but by itself does not suffice.

The user study provided insights into the potential impact of sketch-based optimisation for accelerating
distribution grid expansion planning. In general the impact of sketch-based optimisation is perceived
as positive by participants, both before and after using the current implementation. The most frequently
mentioned advantages are time savings and the ability to test different designs. Other participants are
more critical however, referring to their solutions as infeasible. In these two cases the misalignment
between user expectation and results could be a result of a much too detailed sketch (participant 3) or
the algorithm getting stuck in a local minimum (participant 4). Further research is needed into these
problems or a training for users as part of deployment of this algorithm. Moreover, according to the
user study participants the implementation could be improved by having more inputs/controls available
while sketching (e.g. selecting the cable type or sketching MSR locations) and by taking into account
the underlying geography during sketching.
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Conclusion

The main goal of this thesis was to investigate how to accelerate distribution grid expansion planning
through the use of an optimisation algorithm. The research was done in the context of Alliander, the
largest DNO of the Netherlands faced with a big challenge to expand their grids to facilitate the rapidly
accelerating energy transition. Earlier research at Alliander has led to the development of a genetic
optimisation algorithm for automatically generating optimal grid expansion designs in terms of added
capacity and costs. However, in practice this algorithm is not used by its intended users; grid archi-
tects. This research first identified reasons why the algorithm is not yet used and proposed several
ideas to improve alignment with user requirements. Then a technical implementation of sketch-based
optimisation using a novel shape similarity measure was presented and its behaviour is analysed using
a realistic case study. Furthermore, a qualitative user study was done to evaluate the potential impact
of sketch-based optimisation on user adoption of automated grid expansion planning.

7.1. Answering research questions
How can the user adoption of decision support tools for distribution grid expansion planning be im-
proved?
Based on early interviews with grid architects we attempted to establish why the algorithm is currently
not used. This resulted in several new findings regarding the grid expansion design process and re-
garding how users experience the current algorithm. The process of grid expansion design roughly
consists of two phases. First the creation of a ‘netvisie’: a general plan for a larger region, specifying
what type of grid structures are needed but not the exact design. Later during the detailed design phase
details like grid structure shape and connections to the existing grid are determined. The user study
has confirmed that the detailed design part takes up considerably more time than the earlier netvisie
phase.
The current algorithm for automatically generating grid expansion plans is often experienced as a closed
box by users because to them arbitrary decisions are proposed without an explanation. They also in-
dicate that generated solutions are often not future proof enough because they do not align with the
netvisie due to a lack of control over the (shape of) structures that are used. Finally, users seem to
have an internal conflict of what they wish the algorithm would generate: from out-of-the-box designs
to designs that confirm with current design practices.
We conclude that control and explainability are crucial to user adoption of decision support tools for
grid expansion planning. Both would reduce the feeling of a closed box system and increase trust in
solutions generated by the algorithm. We proposed a novel way to introduce more user control to the
optimisation: sketch-based optimisation for distribution grid expansion planning.

How has sketch-based optimisation been applied in other domains and how can those learnings be
applied to distribution grid expansion planning?
We are not aware of any earlier work that applies sketch-based optimisation to electrical grid design.
In other domains sketch-based optimisation has been applied successfully however, such as floor plan
optimisation, fashion design and quadrotor trajectory planning [6–8]. Learnings from these previous

36



7.2. Future work 37

studies are the distinction between the use of hard sketch-based constraints or soft constraints in the
form of an objective function that can be optimised. The optimisation of quadrotor trajectories by Geb-
hardt et al. [8] uses additional objectives and constraints such as trajectory smoothness or camera
motion limitations to create aesthetically pleasing results. This can be applied to our problem model
since it consists of multiple constraints and objectives that have to optimised at the same time.

How to implement sketch-based optimisation for automated distribution grid expansion planning with a
genetic algorithm?
To enable sketch-based optimisation with the existing genetic algorithm a novel shape similarity mea-
sure was developed. The Earth Mover’s Distance measure was adapted to form a new sketch similarity
sub-objective for the optimisation algorithm, while the formulation of the other sub-objectives was im-
proved. In general the shape similarity measure works well to create feasible and cost-effective grid
designs similar to the original sketch. However, it does not always manage to sufficiently capture the
user’s intent. In particular the creation of backbones works well, while separate cables do not connect
to other grid structures as intended by the user. We suspect that these inter-structure connections are
not generated correctly because the sketch similarity measure compares the overall investment shape
and does not check intra-structure connectivity different investment structures. On the contrary, back-
bone sketches imply a connection between the different cables that are part of the backbone and the
algorithm enforces this. We suspect that this is why creation of backbones generally works better.

What would be the impact of sketch-based optimisation be on the distribution grid expansion planning
process?
During the qualitative user we found that a majority of the participants expect sketch-based optimisation
to have a positive impact on their work designing distribution grid expansions. Time-savings are men-
tioned most frequently as a potential advantage, next to the ability to explore several different designs
to potentially improve on current design methodology. The algorithm does however need to be further
improved to align with all user requirements and expectations. Users wish to have more control over
the optimisation, for example by defining specific cables types in the sketch or sketching where MSRs
should be placed. Furthermore the visualisation of the generated solutions could display the load of
each cable instead of only overloaded cables and there could be an indication of cable type in the map
view.

We conclude that sketch-based optimisation indeed has potential to accelerate distribution grid expan-
sion planning at DNOs. The presented novel shape similarity measure enables sketch-based optimisa-
tion of electrical grid designs using a meta-heuristic like genetic algorithms. Alliander will integrate our
implementation of sketch-based optimisation into the Holonet application over the coming year along
with other recommendations from this thesis. Accordingly sketch-based optimisation will become avail-
able to distribution grid architects to be used for distribution grid expansion planning.

7.2. Future work
This thesis has shown the opportunities for sketch-based optimisation for planning of electrical grids to
accelerate the energy transition, a major global challenge. The research also gives rise to more ques-
tions about the technical and process implementation of sketch-based optimisation. Further research
is needed in several areas as we discuss below.

First, the technical implementation of sketch-based optimisation could be improved by investigating
methods to stimulate correct connections between different structures, which works already works
within backbone structures. The case study also showed that solutions generated by the algorithm
are unstable between optimisation runs, most likely due to the algorithm getting stuck in local minima.
Therefore further research should also focus on avoiding local minima using genetic algorithms or other
meta-heuristics for grid expansion planning optimisation. Then regarding load forecasts, currently only
deterministic grid load forecasts are available without information on the variance of the predictions
while in reality these forecasts can vary a lot. When quantitative data about prediction variance be-
comes available it would be interesting to see how this can be applied to automated grid expansion
planning.

Second, in the broader context of grid expansion design, the solutions generated by the algorithm
should be explainable to the users. This would create a better understanding between the algorithm
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and its user and make it more likely that (insights from) solutions are actually implemented by users.
Research into explainable AI for power systems (e.g. Machlev et al. [17]) could focus on optimisa-
tion of grid expansion planning. In addition to explainability users also desire more control over the
optimisation, both when sketching and with other constraints for the grid design.

Third, in this research multi-objective optimisation is implemented through scalarisation, which is a sim-
ple weighted prioritisation of sub-objectives. Future work could expand on our implementation by using
a multi-objective optimisation algorithm that can approximate the Pareto frontier of the sub-objectives
that we have identified. This could lead to more diverse solutions giving users broader insights into
possible designs and potentially prevent getting stuck in local minima. It could also improve explain-
ability by presenting users with information on where each solution lies on the Pareto front, indicating
to users its strong and weak properties in terms of the defined sub-objectives.

Finally our recommendations to Alliander are to integrate sketch-based optimisation into the existing
Holonet algorithm and to investigate other methods of user control and explainability for the algorithm.
This can further improve user adoption of the decision support tool. Another interesting line of research
could be splitting up the current general optimisation problem into several smaller optimisation problems
to further constrain the solution space and increase explainability of individual decisions of the algorithm.
For example by first determining the location of MSRs and then using this information determine which
cables should be placed.
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A
Proposed solutions

This appendix contains ideas for extensions of the Holonet algorithm to improve alignment with user re-
quirements. These ideas are based on the available documentation and conversations with key users
of Holonet (grid architects), the product owner of Holonet and the other members of team Systeemop-
timalisatie who work on Holonet.

The following solutions are discussed one by one: interactive genetic algorithm, drawing rough struc-
tures, explainability of the algorithm and automated analysis of investment proposals. The first three
directions have been worked out using user stories that describe different variants of each solution
direction. The descriptions are deliberately not formal or specific because the implementation details
will be determined later in the process.

By Sven van der Voort on October 18th, 2023 (automatically translated using Microsoft Word, then
manually edited)
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InteracƟve geneƟc algorithm 
To give users more control over soluƟons generated by the geneƟc algorithm, it is possible to make 
parts of the algorithm interacƟve. ExisƟng research describes how each component of the geneƟc 
algorithm (iniƟalizaƟon, mutaƟons and crossovers, and evaluaƟon) can be replaced or supplemented 
by the user. Below is outlined how that would work in the case of the Holonet algorithm. 

User stories (variants) 

 [IniƟal populaƟon modificaƟon] At the start of the algorithm, all soluƟons do not yet have 
mutaƟons. As a user, I apply one or more mutaƟons to the soluƟons in the populaƟon by 
means of a graphical user interface (laying a cable, weighƟng cable or laying backbones). 
Then I acƟvate the calculaƟon and come back later for the result. (The goal is for soluƟons to 
converge faster and/or beƩer meet the expectaƟons of grid architects.) 

 [User-driven mutaƟons] As a user, aŌer x iteraƟons, I apply one or more mutaƟons to the 
soluƟons in the populaƟon by means of a graphical user interface (laying a cable, reinforce a 
cable or creaƟng backbones). This can be done for all soluƟons from the populaƟon or only 
for soluƟons on a parƟcular island. The process repeats unƟl the algorithm displays the final 
soluƟons. (The goal is for soluƟons to converge faster and/or beƩer meet the expectaƟons of 
grid architects.) 

 [SubjecƟve evaluaƟon] As a user, aŌer starƟng the calculaƟon, I wait unƟl the first x iteraƟons 
of the geneƟc algorithm are complete. The soluƟons in the current populaƟon are presented 
with a schemaƟc/geographical overview of the changes and/or with a valuaƟon of the 
soluƟon on various aspects (e.g. tax, costs, future-proofing).  Then I indicate my preference of 
all soluƟons in the populaƟon by means of a raƟng or an ordering of the soluƟons. This 
assessment is added to the objecƟve funcƟon with which the algorithm calculates further. 
This process is repeated a number of Ɵmes unƟl the algorithm displays the final soluƟons. 
(The goal is for soluƟons to beƩer meet the expectaƟons of grid architects.) 

 

 

 

 

Sketches interface 

Example comparing different 
soluƟons based on the 
properƟes of the soluƟons. 
(Created by Joep Houterman-
Timmers) 
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A 'star diagram' in which 
different properƟes and 
qualiƟes of soluƟons could be 
visualized. 

 

 
Sketch of a graphical interface 
where the user can enter 
mutaƟons themselves, for 
example placing a new cable 
or MSR. 
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Drawing rough structures 
Discussions with key users showed that their investment proposals almost always contain a new 
(backbone) structure. This is done to make the distribuƟon network more future-proof while solving 
the congesƟon. In addiƟon, this limits the disturbance for the local environment because instead of 
upgrading exisƟng infrastructure, mainly new infrastructure is being built. 

These ideas for the Holonet algorithm implement this by giving grid architects a degree of control 
over the (rough) shape of the new structure. They draw the shape of a backbone on the map, which 
is then given to the opƟmizaƟon as (soŌ) constraint. This should ensure that the generated soluƟons 
are more in line with the wishes of the network architect and are therefore more usable. 

User stories (variants) 

 [Drawing new structures] As a user I use a graphical interface to draw the rough outline of a 
new mesh structure, for example a new backbone. If I want to calculate mulƟple scenarios or 
ideas I repeat this process. Then I start the calculaƟon by the algorithm and come back later 
to see the results. The algorithm gets the rough contour as (fuzzy) constraint and will 
opƟmize the details of the new structure (e.g. where to connect to the old grid). (The goal is 
that grid architects can quickly simulate mulƟple strategies without having to 
calculate/design details such as the feeding locaƟons, because they are opƟmized faster by 
the algorithm.) 

 [Drawing routes] As a user, I select in the graphical interface which MSRs should be linked to 
a new route. I can also draw new routes and/or backbones. Then I start the algorithm and 
come back later to see the results. The algorithm will use as mutaƟons or as constraints 
during opƟmizaƟon. (The goal is for grid architects to quickly validate a strategy, especially if 
they have an idea in advance what the design should look like.) 

Sketches interface 

Sketch of a graphical 
interface where the 
user can draw a 
backbone structure. 
When the user 
clicks, a new DR is 
'placed'. This serves 
as a guide for the 
algorithm and does 
not have to be 
strictly followed. 
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Sketch of a graphical 
interface where the 
user can draw much 
coarser lines to 
guide the algorithm 
to where a new 
backbone structure 
should be build. 
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Explainability of the algorithm 
A common remark from users of the Holonet algorithm is that it is unclear to them how the algorithm 
came up with a parƟcular soluƟon. To give users more insights into this process we can make the 
algorithm more 'explainable', using the principles of Explainble AI (XAI). Details about the generated 
soluƟon and the process leading up to the soluƟon are displayed to the user, so that they gain more 
insight into the operaƟon of the algorithm and can possibly make adjustments. 

User stories (variants) 

 [Dear mutaƟons] As a user I start the opƟmizaƟon of the acƟve area in the Holonet interface. 
AŌer the calculaƟon is done I come back to the Holonet interface and can view the different 
soluƟons. By clicking on a soluƟon I get to see which mutaƟons gave the biggest 
improvement for that soluƟon. (The goal is to give the user more insight into how the 
algorithm works.) 

 [Grid lineage] As a user I start the opƟmizaƟon of the acƟve area in the Holonet interface. 
AŌer the calculaƟon is done I come back to the Holonet interface and can view the lineage 
graph of each. This lineage diagram shows how the soluƟon mutated and which crossovers 
were important to arrive at the final soluƟon. To do this the complete lineage graph (very 
large) must be compressed into a clear visualizaƟon. (The goal is to give the user more insight 
into the operaƟon and decisions of the algorithm.) 

 [Decision Tree] As a user I start opƟmizing the acƟve area in the Holonet interface. AŌer the 
calculaƟon is done I come back to the Holonet interface and can view the different soluƟons. 
For each soluƟon I can see a decision tree of the mutaƟons that led to this soluƟon. 
MutaƟons that have not been further calculated form 'leaves'/ends of the decision tree and 
can sƟll be calculated by clicking on them. (The aim is to give the user more insight into the 
operaƟon of the algorithm and to make adjustments when they disagree with a decision of 
the algorithm.) 

Sketches interface 

Sketch of a graphical 
interface where the 
user can see from the 
color of the cables 
which cable gives the 
greatest gain within 
the selected soluƟon. 
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Sketch of a graphical 
interface where the 
user can view a 
compressed version 
of the lineage 
diagram of each 
soluƟon. The details 
of each mutaƟon and 
crossover can be 
seen by moving the 
mouse over the icon. 
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Large Language Models for insight and net design 
Investment proposals 
At the moment, investment proposals are wriƩen manually by net architects and delivered in the 
form of Word documents. They have a semi-structured form in which the current situaƟon, proposed 
soluƟon, associated costs, alternaƟves and risks are described. AddiƟonally figures are added with a 
geographical and schemaƟc design of the proposed grid expansion. 

These investment proposals potenƟally contain a lot of informaƟon of which, if properly structured 
and/or learned by an (AI) model, can be of value for the Holonet algorithm and for general insights 
about the work process of the net architects. With the recent developments of Large Language 
Models it should be possible to analyze the text and even pictures of investment models. 

An important limitaƟon is the small amount of training data, especially for learning the complex 
relaƟonships required for the described funcƟonality. Therefore the success of this direcƟon depends 
on the generalizaƟon ability of the Large Language Model, of which the implementaƟon details oŌen 
are not available. 

Grid-to-text and text-to-grid 
A futurisƟc applicaƟon of Large Language Models for electricity grid design could be to be able to 
write automated investment proposals based on a digital grid design (grid-to-text). In addiƟon, you 
can think of an applicaƟon in which a new digital grid design is generated based on text from, for 
example a network vision document and descripƟon of the requirements (text-to-grid). 
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B
User validation study script

The test script shown below was used to conduct the user study interviews and usability tests. Where
applicable interview questions are marked with a number in (orange) to link them to user study research
questions from section 5.2. The user study sessions were conducted in Dutch but have been translated
to English for this thesis report.

Preparation session 1

• Send participant introduction information and informed consent form:
“Dear [participant], this message contains more information about the user study on [session date].
I have developed new functionality for the existing Holonet algorithm for automated investment
proposals. You can now sketch the desired new grid structure (e.g. a backbone, or support
cables). For the user study I will ask you to sketch a number of solutions for the area surrounding
substation Beesd (RS Beesd). To prepare you could take a look at the area in Holonet, but this
can also be done during our meeting. Besides this study has an ‘informed consent’ form where
you give permission to collect and publish anonymised data. If you want to participate in the
study, you can sign the form before the session: [form URL] Finally I want to emphasise that
participation in the study is completely voluntary. Thanks in advance!”

• Check whether participant submitted informed consent form
• Prepare Holonet by opening RS Beesd

Session 1

• [Introduction researcher and participant]
• Please tell me something about yourself.
• Could you tell me something about the last time you used Holonet? What do you usually use it
for?

• What do you usually spend a lot of time on when creating a new investment proposal? (1)
• What do you know about the Holonet algorithm for automatically generating investment proposal?
/ When did you use for the last time?

• [Introduction of sketch-based optimisation: With sketch-based optimisation you give input to the
algorithm about your preferred shape/structure for the solution. The sketch will be used by the
algorithm just like grid load and investment cost are used as input. This diagram (Figure B.1)
illustrates that as well. Using those inputs the algorithm will try to create a fitting investment
proposal/grid design.]

• Let us imagine that this functionality exists and it would work exactly as you want. How would it
work and how would you use it? What would be the impact on your work? (2)
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Figure B.1: Diagram shown to participants during the first session to illustrate the concept of sketch-based optimisation.

• [Introduction usability test: A prototype of sketch-based optimisation was built in Holonet. You
will test this functionality with the example case of the RS Beesd substation. The goal is prevent
any congestions in the 2035 load scenario. You can assume only 10kV will be available at the
substation.]

• Think aloud while you take some time to think about solutions to the resolve the congestion. Feel
free to use Holonet to get more insights into the problem. (3)

• Now activate the sketching functionality with this button and sketch the solution that have thought
of. It can be a really rough sketch; draw how you would connect it electrically rather than the
exact cable routing. Take me along in what you are doing. (3)

• How do you experience the sketching?
• What do you think the algorithm will do now? (3)
• [If time allows] Now think of an alternative solution that you would add to your investment proposal.
Think aloud while you are using the sketching functionality again to sketch your solution. (3)

• [If time allows] What do you think the algorithm will do now? (3)
• [“I will now use your sketch as input to the algorithm and start a computation. In the afternoon
during our second session I will show you the results.”]

Preparation session 2

• Start optimisation computation with the following (hyper)parameters:
Area of RS Beesd, predicted load scenario of 2035
Estimated costs: [confidential]
Population size: 10
Max iterations: 100
Weights: Costs 0.1, Overload 0.5, Sketch 1.0, Redundancy: 0.5
Parallelisation: disabled

• Check and open generated solutions in Holonet

Session 2

• Take a look at the resulting solutions, is there something that you notice or something that stands
out? (3)

• How do the resulting solutions compare to your earlier expectations? And how do you feel about
that? (3)

• To what degree did the algorithm generate a realistic solution? (Follow-up: What would you have
done differently and why?) (3)

• How would you use the suggested solutions during your grid expansion design process? How do
you feel about that? (4)

• [Repeat first four questions above for the alternative, if time allows]
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• What is your current view on the potential impact of sketch-based optimisation on your work? (4)
• What could be improved about the things we just discussed? (5)
• Do you have any remaining questions about what we just discussed or about the research?



C
Academic paper draft

To share our research on sketch-based optimisation for distribution grid expansion planning with a
broader audience we intend to submit our findings as an academic paper to the Innovative Applications
of Artificial Intelligence (IAAI) ’25 conference. This appendix includes a draft version of the paper which
we intend to refine and improve upon before final submission to the conference. Therefore please
note that the content in this appendix is subject to change as we make improvements and incorporate
feedback.
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Sketch-Based Optimisation for Distribution Grid Expansion Planning
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Abstract

Distribution Network Operators (DNOs) have a significant
challenge to expand the capacity of the electricity distribution
grid to facilitate the energy transition. Designing grid expan-
sions for the distribution grid poses a complex problem with
many constraints. Earlier work on optimisation of distribution
grid design does not consider user preference and expertise,
whereas we argue that this is imperative for user adoption.
We present a technical implementation of sketch-based op-
timisation for distribution grid expansion planning using a
novel shape similarity measure to enable user input. We in-
vestigate its behaviour through a realistic case study. Further-
more, a qualitative user study is done to evaluate the poten-
tial impact of sketch-based optimisation on distribution grid
expansion planning. We conclude that the novel shape simi-
larity measure enables sketch-based optimisation of distribu-
tion grid expansion planning and that it has potential to accel-
erate electricity grid design processes. Alliander, the largest
DNO of the Netherlands, will implement sketch-based opti-
misation in their distribution grid design application later this
year, making it available to 20+ grid architects to accelerate
their design process.

Introduction
Global climate change is driving a rapid energy transition
from fossil fuels to renewable energy. The energy distri-
bution grid, operated by Distribution Network Operators
(DNOs), will have to undergo radical changes to facilitate
the exponential growth of volatile energy sources such pho-
tovoltaic (PV) and wind energy and the increased demand
for electricity as a replacement for fossil fuels, for exam-
ple the introduction of electric vehicles (EV) (Afman 2017).
In addition, grid expansion planning is a notoriously dif-
ficult problem (Vahidinasab et al. 2020). At Alliander, the
largest DNO of the Netherlands, a group of ‘grid architects’
is responsible designing grid expansion plans. As a result
of the energy transition the need for grid expansion designs
is growing while grid architects with the required expertise
are scarce. Therefore Alliander has developed a state-of-the-
art genetic algorithm for optimising grid expansion designs
on their medium-voltage grids. However, in practice the al-
gorithm does not fully suit the need of its intended users

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

grid architects because they feel the system operates like a
closed box and they have little control over the outcomes
of the optimisation. Solutions often deviate too much from
their current design practices which hinders user adoption.
For example because they lack a coherent structure such as
a new circular backbone structure or new cables intersect
with geographical obstacles such as waterways and high-
ways (van der Voort 2024).

Existing methods for automated grid expansion planning
typically only consider grid load forecasts, material costs
and grid topology as input. This gives users little control
over the generated solutions. This work attempts to bridge
this gap. We introduce a sketch-based optimisation algo-
rithm for distribution grid planning. The algorithm optimises
multiple sub-objectives: predicted grid overload, investment
costs, a grid redundancy measure as well as a novel sketch
similarity measure. Solutions generated by the algorithm
represent feasible grid expansion plans that provide users
with insights they can use when designing grid expansions.
We also evaluated the new algorithm in a qualitative user
study to assess the potential impact of sketch-based optimi-
sation on the acceleration of grid expansion planning.

Applying sketch-based optimisation to the domain of
electricity grid design is the main challenge we address,
along with a demonstration of the potential of sketch-based
optimisation in this domain.

In summary, our contributions are as follows:

• The introduction of a novel shape similarity measure that
enables sketch-based optimisation of electrical grid ex-
pansions.

• A functioning prototype of sketch-based optimisation for
distribution grid expansion planning.

• Qualitative user study with the prototype to demonstrate
the potential of sketch-based optimisation for accelerat-
ing distribution grid expansion planning.

Results from this work will be deployed later this year to
make it available to distribution grid architects at Alliander.

Background and problem statement
The Dutch electricity grid can be divided into three network
layers: the high-voltage (HV) transmission grid (110kV-
380kV), the medium-voltage (MV) distribution grid (10kV-
20kV) and the low-voltage distribution grid (400V) (Phase-
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ToPhase 2024). Each MV distribution grid is sourced from
the HV grid by a central substation. Then underground ca-
bles distribute power from the sourcing substation to net-
work nodes, forming a graph network. Expansion planning
for MV distribution grids in particular is complex for three
reasons.
1. Existing infrastructure such as waterways or highway

present geographical limitations for constructing new ca-
bles.

2. The construction of underground cables is also expensive
and has a high societal impact.

3. The grid has to be redundant to any single component
failure (also known as ‘n minus 1’ redundancy). This is
achieved by reconfiguring the network in case of a fail-
ure.

More design constraints for MV distribution grids, includ-
ing Alliander-specific constraints, can be found in (Jurriëns
2019).

Existing research on the grid expansion planning prob-
lem has focused on optimisation methods such as har-
mony search (Agajie et al. 2020), simulated annealing (Ju-
rriëns 2019) and genetic algorithms (Mendoza, Bernal-
Agustin, and Domı́nguez-Navarro 2006; Alliander 2022).
These methods typically take grid load forecasts, material
costs and topological constraints as input and attempt to op-
timise investments costs and/or operational costs. However
this gives users little control to express their preferences for
a particular grid structure or topological configuration.

The work by Jurriëns on simulated annealing for grid ex-
pansion optimisation introduced a model for Dutch distri-
bution grid constraints and design criteria. The model was
found to be too complex to solve with linear optimisation
and require a meta-heuristic such as simulated annealing to
find feasible solutions. The initial algorithm using simulated
annealing is a predecessor of the genetic algorithm that cur-
rently is deployed at Alliander. (Alliander 2022)

Sketch-based optimisation has been demonstrated as a
promising mechanism for user control in other domains such
as floor plan optimisation, fashion design and quadrotor tra-
jectory planning. (Keshavarzi et al. 2021; Zhu et al. 2016;
Gebhardt et al. 2016) The latter two studies create a model
using (multiple) objective functions and constraints from the
original model and then add a new (sub-)objective function
that measures sketch to solution similarity. This acts as a
soft constraint for the algorithm to approximate the sketched
shape. This paper applies a similar approach to the design of
electricity network design, which has not yet been explored
in literature.

Genetic algorithm
The state-of-the-art genetic algorithm that is currently de-
ployed at Alliander optimises multiple sub-objectives: com-
ponents overload based on load predictions, n minus 1 re-
dundancy based on load predictions and cost of investments.
The algorithm starts with a population of empty solutions
containing just the current grid and no investments. The
objective function consists of a combination of the sub-
objectives and is optimised by iteratively applying genetic

Figure 1: Overview of the genetic algorithm for grid expan-
sion optimisation. The mutation step actually consists of an
embedded simulated annealing procedure to improve opti-
misation convergence.

Figure 2: Input and sub-objectives of the modified genetic
algorithm for sketch-based optimisation of grid expansion
designs.

operators: mutation, cross-over and selection. The muta-
tion step actually consists of an embedded simulated an-
nealing procedure to improve optimisation convergence. An
overview of the genetic algorithm can be seen in figure 1.
The generic operators mutation and cross-over are designed
to be invariant to specific strict grid design constraints: con-
nectedness, radial operation and single voltage on connected
components. More details about the objective function, con-
straints and different mutation operators can be found in
(van der Voort 2024).

Methodology and implementation
To enable sketch-based optimisation a fourth sub-objective
was added to the genetic algorithm for grid expansion op-
timisation. The new sub-objective measures the shape simi-
larity between the user sketch and generated solution. Min-
imising this sub-objective should create solutions that ap-
proximate the shape of the user sketch. Scalarisation is used
as multi-objective optimisation strategy: all sub-objectives
are first normalised and then combined into a single ob-
jective function using a weighted sum. The sub-objective
weights are hyperparameters used to prioritise specific sub-
objectives over others. An overview of the genetic algorithm
for sketch-based optimisation can be seen in figure 2.
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Figure 3: The purple sketch and the blue investment shapes
are first discretised. Then the cost of the optimal assignment
can be computed. Sketch parts without assignment incur a
constant cost X. In this example the similarity measure is
6+2X.

Shape similarity measure

The novel shape similarity measure uses a two-dimensional
and binary version of the Earth Mover’s Distance (EMD) as
proposed by (Rubner, Tomasi, and Guibas 2000). The Earth
Mover’s Distance (also known as the Wasserstein metric)
is a (dis)similarity measure between two distributions. An
intuitive way of understanding EMD is “by thinking of piles
of earth spread around in a Euclidean space and holes spread
in that same space. Then, EMD measures the least amount
of work needed to fill the holes with earth” (Rubner, Tomasi,
and Guibas 2000). This can be applied to our problem by
converting the investment plan shape and the sketch shape
into two two-dimensional distributions resembling the piles
of earth and the holes respectively. Then the amount of work
done to fill the holes with dirt using the optimal assignment
measures the similarity between the two shapes. We allow
for partial matching of the investment with the sketch by
allowing piles of earth to remain unused.

Computing the EMD optimal assignment of investment
cable parts (piles of earth) to user sketch parts (empty holes)
can in our case be reduced to the optimal linear assignment
problem. In this problem vertices from one part of a bipartite
graph have to be assigned to vertices in the other part accord-
ing to the minimum sum of costs on the edges. This is true
because quantities at a location are binary and can therefore
not be split or combined to a destination location. Cost rep-
resents the Euclidean distance between a investment cable
part and a sketch cable part, or a constant penalty if a sketch
cable part could not be assigned (a hole could not filled with
dirt). See figure 4 for an example.

To apply EMD to our problem in practice we have to dis-
cretise the vectors of the solution’s investments and the user
sketch. An example of this can be seen in figure 3. Algo-
rithm 1 presents the pseudo code for computing the shape
similarity measure.

Figure 4: EMD converted to a linear unbalanced assignment
problem. Costs on the edges are Euclidean distances be-
tween sketch and investment parts (not shown). The optimal
assignment is highlighted in red.

Figure 5: Web interface displaying an optimised solution in
blue. The lines are cables, circles are nodes and the central
square is the substation sourcing the network.

Deployment
The sketch-based optimisation algorithm was deployed on
existing infrastructure at Alliander. The system consists of
a high-performance analytics database storing load predic-
tion and grid topology data, a Kubernetes environment run-
ning short-lived containers with optimisation processes and
a web interface for starting optimisation runs and displaying
optimisation results. Figure 5 shows a screenshot of the user
interface displaying an optimised solution. The chosen ar-
chitecture allows for completely automated operation of the
system and is always available to grid architects after train-
ing on the system.

Experimental setup
Our research has two experimental aspects: a demonstration
of the sketch-based optimisation implementation using a re-
alistic case study and a qualitative user validation study to
assess the potential impact of sketch-based optimisation on
grid expansion planning processes.

Both the case study and user study use Beesd as an ex-
ample case, a medium-sized village in the Netherlands. The
distribution grid there has 122 nodes and there are 3271 pos-

55



Algorithm 1: EMD Shape Similarity Measure

1: Dss ← euclidean distances(S, S)
2: P ← max(Dss)/2 {First compute non-assignment

penalty P}
3:
3: function EMD SIMILARITY(Ls, Li)
4: S, I ← [], [] {Initialise lists of sketch and investment

pixels}
5: for l ∈ Ls do
6: S ← S + rasterise(l) {Rasterise all sketch lines}
7: end for
8: for l ∈ Li do
9: I ← I + rasterise(l) {Rasterise all investment lines}

10: end for
11: Dsi ← euclidean distances(S, I)
12: A ← solve linear unbalanced(Dsi) {Compute optimal

assignment}
13: similarity← assignment cost(A)
14: for s /∈ A do
15: similarity← similarity + P
16: end for
17: return similarity
17: end function=0

sible new cable options. The case of Beesd is interesting be-
cause a recently approved grid expansion plan is available
which indicates the need for grid expansion as well as pro-
vides a feasible design that could be used as sketch input
during the case study. Figure 6 shows the current grid topol-
ogy of Beesd and the sketch of the approved grid expansion
design, which includes a circular backbone structure and a
support cable going across the backbone.

For the user validation study 6 participants were recruited
from the group of roughly 20 distribution grid architects
currently working at Alliander. Given the small number of
participants we adopted a qualitative approach focused on
attitudinal interview questions and a usability test (Moran
2019). For each participant the user study consisted of two
individual sessions held on the same day. The first session
consisted of introductions, interview questions about the
participant’s work as grid architect and an introduction to
the idea of sketch-based optimisation. Then the usability test
where the participant was asked to sketch their ideas for a
good grid expansion plan. The second session the partici-
pant was asked to comment on the results of the usability
test. Time between the sessions was used to run the optimi-
sation which typically takes between 1 and 1.5 hours to run.
Data analysis was done using an inductive coding strategy to
identify recurring sentiment and recurring themes (Thomas
2003).

Results
Here we present and discuss the results of the case study
and the user validation study. Used hyperparameters for all
experiments can be found in the thesis report this research is
based on (van der Voort 2024).

Figure 6: Current grid topology of Beesd (colored lines) and
sketch of existing grid expansion plan (white dotted lines).

Overload Redun. Cost Sketch
Baseline 0.5 0.5 0.1 0.0

Only sketch 0.0 0.0 0.01 1.0
Sketch&Overload 1.0 0.0 0.1 1.0

All 0.5 0.5 0.1 1.0

Table 1: Sub-objective weights for case study optimisation
runs shown in figure 7.

Case study
The case study demonstrates the sketch-based optimisation
implementation through examples of optimisation runs with
an increasing number of sub-objectives enabled. Figure 7
shows the best solutions from the final population of opti-
misation runs. Table 1 shows the sub-objective weights for
each optimisation run.

Starting with figure 7a showing a baseline optimisation
run without any sketch input where the overload, redun-
dancy and cost sub-objective were enabled. All congestions
were resolved at reasonable costs (53% of the estimated
costs), however this is not a feasible solution according to
the grid architect’s requirements: new cables intersect with
a major highway and a waterway and no future proof back-
bone structure is used.

Then figure 7b shows the result of isolating the sketch
similarity sub-objective by disabling overload and redun-
dancy sub-objectives. A small weight (0.01) is assigned to
the cost sub-objective to act as regulariser to avoid diverging
solutions with unlimited new components. The result shows
that the algorithm approximates the shape of the sketch well
given the finite, discrete set of options it has available.

The overload sub-objective is added together with signif-
icantly weighted cost sub-objective for the optimisation in
figure 7c. Here the algorithm managed to resolve all pre-
dicted congestions and generated a clear circular backbone
structure in line with the input sketch. The new support ca-
ble going across in a north-south direction is however not
directly connected to the new backbone while this was the
user’s intention based on the input sketch. The algorithm has
also generated connections from the new backbone to the
existing through new nodes, which is generally seen as a
complex and time-consuming task (van der Voort 2024).

Finally figure 7d shows the result of an optimisation of all
sub-objectives, now including n minus 1 redundancy. The re-
sulting expansion design resolves all predicted congestions
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(a) Baseline, no sketch. (b) Only sketch.

(c) Sketch and overload. (d) All sub-objectives.

Figure 7: Case study results illustrating the existing grid
(grey), the input sketch (orange) and the solution’s new ca-
bles (blue lines) and new nodes (blue dots).

and 99.7% of predicted redundancy issues. Compared to the
solution optimised without redundancy in figure 7c, this so-
lution is more expensive (from 88% to 108% of estimated
costs) and chooses a slightly different grid structure while
still staying close to the input sketch. Also noteworthy is
how the generated backbone is not a complete circle but
rather uses the existing grid to create a n minus 1 redundant
circle.

Stability of solutions The stability of solutions between
optimisation runs was also investigated using five differ-
ent optimisation runs with the same input parameters. Al-

Figure 8: Two solutions generated with the same input pa-
rameters. Although both solutions converged, the solution
shape differ a lot.

Figure 9: Aggregated participant sentiment from user study.

though the (sub-)objectives converge in a similar fashion for
all runs, the resulting solutions vary much in shape, as can
be seen from the examples in figure 8. This indicates that
the genetic algorithm potentially gets stuck in local minima
rather than efficiently explored the solution space. Further-
more, it could hinder user adoption because no apparent rea-
son is given for two varying results.

User study
With the user study we attempt to assess the potential im-
pact of sketch-based optimisation on grid expansion plan-
ning processes. An overview of the sentiment per question
can also be seen in figure 9. Below we summarise recurring
themes from the interviews with participants per interview
question category.

How is impact of sketch-based optimisation perceived?
All participants indicate that the use of sketch-based optimi-
sation could have a positive impact on the grid expansion de-
sign process. 3 out of 6 participants identify time savings as
the primary advantage. The results of the optimisation could
be used as an initial design which is electrically and geo-
graphically feasible. They then could iterate on and validate
using their current design processes.

How close are the solutions to the user’s design intention
4 out of 6 participants feel that the generated expansion de-
sign somewhat or completely resembles their design, while
2 out of 6 participant do not.
An example of a solution with positive participant sentiment
can be seen in figure 10a. The design follows the user sketch
closely while resolving all congestions and 99.6% of all re-
dundancy issues, at 84.7% of the estimated costs. It is in-
teresting to note that the backbone again is not a completely
closed circle, instead the algorithm opted to complete the cir-
cle using existing cables. In this case the support cable struc-
ture running east-west across the backbone is connected to
the backbone structure.
An example of a ‘bad’ result can be seen in figure 10b.
The design does roughly implement the sketch shape and all
congestions and redundancy issues are resolved. However,
the solution is not a feasible grid design; no clear backbone
structure is present in the western sub-grid while the central
town centre is cluttered with new cables that intersect with
expensive geographical boundaries such a waterway. We hy-
pothesise that in this case the user’s sketch was too detailed,
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(a) Example ‘good’ solution. (b) Example ‘bad’ solution.

Figure 10: Examples of user study solutions showing the ex-
isting grid (grey), the input sketch (orange) and the solu-
tion’s new cables (blue lines) and new nodes (blue dots).

while the algorithm is designed for roughly sketching the
electrical layout of the expansion design.

After seeing solutions, how is impact sketch-based op-
timisation perceived? After discussing the results from
the usability test, participants were once again asked about
the potential impact of sketch-based optimisation on their
grid expansion process. Besides the benefit of having an ini-
tial feasible design to iterate on, participants also imagined
sketching multiple designs and to quickly compare different
design approaches. The participants who did not feel like
their solution matched their sketch also changed their opin-
ion about sketch-based optimisation. They still felt like the
algorithm did not consider their sketch and that it still be-
haved like a closed box.

How can the sketch-based optimisation algorithm be
improved? Several suggestions were made by the par-
ticipants for improving the current sketch-based optimisa-
tion implementation. Many participants suggested to include
user control over the cable type while sketching (cable types
have different transport capacities) and to include the possi-
bility to sketch location of MSRs. Another suggestion was
to optimise for equal load distribution over the cables routes,
instead of merely avoiding overloaded assets. Finally, geog-
raphy is seen as a very important aspect of grid expansion
design. This is partly addressed by sketch-based optimisa-
tion, however participants suggested to also incorporate ge-
ographical data for the optimisation.

Discussion and future work
This paper presents the innovative application of sketch-
based optimisation to electricity distribution grid expansion
planning using genetic algorithms. The sketch-based optimi-
sation prototype is driven by a novel shape similarity mea-
sure used as an extra sub-objective for the optimisation. The
case study shows that the sketch-based optimisation can ap-
proximate the sketch shape well while still resolving all con-
gestions and maintaining n minus 1 redundancy.

The qualitative user study has shown the potential of
sketch-based optimisation for accelerating grid expansion

planning processes. It introduces more user control to a pro-
cess that is experienced as a ‘closed box’ which prevented
user adoption. Decision support tools can accelerate grid
expansion planning and by extension accelerate electricity
grid expansion to facilitate the energy transition and combat
climate change. Alliander, the largest Distribution Network
Operator (DNO) of the Netherlands, intends to deploy the
sketch-based optimisation prototype later this year making
it available to 20+ distribution grid architects.

We have also identified areas of improvement, mainly fur-
ther improving control and explainability of decision sup-
port systems for grid expansion planning. The stability of
solutions generated by the algorithm can also be improved
which would further contribute to explainability and trust-
worthiness of the system. To address both opportunities we
suggest expanding the current implementation with multi-
objective optimisation methods that can approximate the
Pareto front of sub-objectives, such as NSGA-III (Deb and
Jain 2013).

For deployment of a decision support tool like the one dis-
cussed in this paper having an intuitive user interface is vital.
We therefore recommend thorough user experience research
preceding deployment of a user interface. Training accom-
panying the deployment of a decision support tool is also
important, as seen from the over-detailed sketch leading to
poor results during the user study.

The potential applications of sketch-based optimisation
extend beyond distribution grid expansion planning. We be-
lieve that our findings for medium-voltage distribution grid
expansion can extended to high-voltage and low-voltage
grid expansion, since similar planning can arise there. Plan-
ning of other civil infrastructure like heat networks, high-
ways or zoning planning are other apparent use cases.
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