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Abstract

Recent years have shown an increased interest in the use of autonomous vehicles. These
vehicles must find a path towards a desired location while avoiding obstacles. Since finding
the optimal solution is computationally expensive, approximation techniques are often used.
In the last decades several path planning techniques have been proposed.

One novel technique considers mobile robots and uses the limit cycle strategy to avoid static
obstacles (D. Kim and J. Kim, 2003). The main advantage of this method is the low com-
putational cost, which makes this method especially useful for small robots with limited
computational power. In short, the method relies on creating a circular limit cycle that a
robot should follow in the proximity of an obstacle to avoid collision.

In this thesis a new algorithm incorporating ellipsoidal limit cycles is presented for avoiding
static 3D obstacles by using 3D limit cycles. The ellipsoidal limit cycles represent a safety
zone around an obstacle. By using ellipsoidal limit cycles, the shape of the obstacles can be
better represented. Ellipsoidal limit cycles are also useful when there is a preferred direction
in which the obstacle should be avoided, e.g., to prevent passing in front of the obstacle.

Further, the limit cycle method is combined with the velocity obstacle approach in order to
avoid moving obstacles in 2D and 3D. To ensure that the robot chooses the optimal rotation
direction with multiple and/or moving obstacles, a tree search is performed yielding the
globally (resolution) optimal rotation direction around each obstacle.
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“The question of whether computers can think is like the question of whether
submarines can swim.”
— Edsger W. Dijkstra





Chapter 1

Introduction

1-1 Historical context of robot motion planning

Robots control much of our lives. Although most robots are not visible in our everyday lives,
they are abundantly present and we could not live the way we do without them. Robots
manufacture most of our goods, feed and milk our cattle, handle much of our transportation,
and are our friends or foes in computer games. All these robots can move, either in reality or
virtually in games and simulators.

The motion planning problem is to find a collision-free path that connects an initial and
final configuration of a robot. This may seem to be a simple problem, but it is not. The
computational complexity of the best known complete (see Section 1-2-2) path planning
algorithms grows exponentially with the number of degrees of freedom of the robot.

The earliest work on robot motion planning was done in the late sixties and early seventies
[51]. This research dealt with high level planning using symbolic reasoning that was popular at
that time within the Artificial Intelligence (AI) community. Geometry was not often explicitly
considered in early robot planners, in part because it was not clear how to represent geometric
constraints in a computationally plausible manner.

The introduction of the configuration space in the early eighties initiated a surge in path
planning research. Geometric path planning methods were introduced, such as the exact
and approximate cell decomposition methods (see Section 2-2). These methods were too
computationally expensive to be used in most practical cases, which led to the development
of potential field approaches.

Potential field methods became very popular and are still widely used today. To escape the
local minima problem of potential fields, probabilistic methods were introduced (see Section
2-3). Probabilistic methods are increasingly popular because of their low computational costs
and their completeness.

A more recent method uses limit cycles to avoid obstacles [29]. This method was first used
in the context of robot soccer. The major advantages of this method are the extremely low
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2 Introduction

computational costs and the smooth trajectories that are generated by using this method.
These properties make this method especially useful for autonomous vehicles that have limited
computational power, such as small unmanned aerial vehicles and other small robots. On the
other hand, the limitations of the method are that so far it only worked in two dimensions
and with static obstacles. In this thesis a new algorithm is presented that uses limit cycles to
avoid obstacles in 3D. The Limit Cycle Method is also combined with the velocity obstacle
approach in order to avoid multiple moving obstacles in 2D and 3D.

1-2 Properties of the motion planning problem

Today many different motion planning algorithms exist and they can be characterized by
their problem description and algorithm properties. To this end some basic concepts and
properties are discussed in the following sections. The terminology used in this report is based
on [20, 34, 35]. This report is focused on local collision avoidance, which is a subproblem of
the motion planning problem, and uses the same terminology. In what follows, the problem
space of the motion planning problem is described (Section 1-2-1). Then, several properties
of motion planning algorithms are discussed (Section 1-2-2). The problem statement and
contributions are given in Section 1-3 and Section 1-4, respectively.

1-2-1 The problem space

All robots, obstacles and targets are confined in the workspace W, also called world. In this
thesis robots are objects that move towards a target. They can be described using polygonal
(2-Dimensional) or polyhedral (3-Dimensional) or algebraic models [24, 34]. The configuration
q of a robot is a set of parameters that defines the position of every point of the robot. The
minimum number of configuration parameters is called the degrees of freedom (DOF). The
total set of all configurations is called the configuration space, C. For example: a robot that
moves on a plane can translate in two directions and rotate in one direction, C = R2 × S1,
also denoted as SE(2), where R2 represents the Cartesian plane, and S1 represents the unit
circle.

If vehicle dynamics and kinematics are taken into account, it does not suffice to only define the
configuration. In these cases the state x is used, which consists of the configuration together
with first or higher order time-derivatives of the configuration. The set of all possible states
is called the state space.

The workspace W is divided into two disjoint subsets: the obstacle space and the free space
[20]. The obstacle space is created by all obstacles combined, in which obstacles are under-
stood as bodies in W that cannot be crossed by the robot. When vehicle constraints are
taken into consideration, the obstacle space includes the region of inevitable collision. The
free space is the subset of W in which the robot can move freely without touching any obsta-
cles. Consequently, the task of the motion planning algorithm is to drive the robot from the
initial configuration qinit to the goal configuration qgoal while avoiding obstacles.
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1-2 Properties of the motion planning problem 3

1-2-2 Algorithm properties

In this section we discuss some of the properties of algorithms for solving the path planning
problem, which refers to the control problem of finding a collision-free path. A trajectory is
a path that includes the time parametrization along the path, where each point is assigned
to a time instant at which the robot assumes the configuration associated with that point.
Generating trajectories is called motion planning, tracking trajectories is called trajectory
tracking [8, 20]. In some literature the term motion planning is used for either path planning or
trajectory planning [24], however, in this thesis the term motion planning refers to trajectory
generating.

Two important properties of motion planning algorithms are the completeness (exact or heuris-
tic) and the scope (global or local) of the algorithm. Exact algorithms find a path from start
to goal if and only if such a path exists, and otherwise prove that there is no solution. Two
other, weaker forms of completeness are probabilistic completeness and resolution complete-
ness. An algorithm is called probabilistically complete if the probability of finding a path
approaches one (100%), while an algorithm is considered resolution complete if it finds an
existing solution in finite time by choosing smaller spatial discretization steps. Exact algo-
rithms are often computationally expensive; this means that it requires a lot of computation
power to find a solution. In contrast, heuristic algorithms try to find a solution in a short
time, but there is no guarantee for finding a solution; hence they are not complete.

An algorithm is optimal if it computes the optimal path with respect to some criterion,
e.g., minimal time or minimal distance. Probabilistic optimality and resolution optimality
are similarly defined as probabilistic completeness and resolution completeness. Optimality
implies exactness. Algorithms can only be optimal if they work on a global scope. Global
algorithms assume knowledge of the complete workspace, and compute a path or trajectory
from start to goal. On the other hand, local algorithms react to obstacles in the direct vicinity
of the robot and are in principle never optimal. Local algorithms are often incorporated in
global algorithms for emergency obstacle avoidance, when the obstacle appears unexpectedly.

Algorithm complexity
A perfect algorithm would compute an optimal trajectory that satisfies the kinematic and
dynamic constraints of the vehicle. Such an algorithm does not exist because of the complexity
of the motion planning problem. Even the basic path planning problem is PSPACE hard
[24, 45]. This means that in practice it is impossible to find a solution. In some special
cases, such as a limited number of obstacles in a planar world, the optimal solution can
be found in polynomial time [32]. However, these algorithms usually cope badly with a
changing and uncertain workspace model. Due to these complexities, most algorithms are
approximate algorithms, which comes at the cost of losing completeness and optimality. Since
the complexity increases rapidly with the dimension ofW and C, most algorithms are limited
to only a few dimensions. If the motion planning algorithm takes the constraints into account,
the complexity is typically very high [20, 24].

Constraints of the robot
The motion of a robot is restricted by dynamic and kinematic constraints. These constraints
are also called differential constraints [36], and they restrict the allowable velocities at each
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4 Introduction

point in C. Kinematic constraints arise from the geometry of the robot, and they are bounds
on the velocity. If these constraints can be integrated into position constraints, they are called
holonomic constraints. Holonomic constraints constrain the motion of a system away from
a certain region of its configuration space. If velocity constraints cannot be integrated, they
are called non-holonomic constraints [41, 44], meaning that the time derivatives of the state
variables cannot be removed by integration. Nonholonomic constraints arise mostly from
underactuated systems, which means that the number of control variables is less than the
dimension of C [36]. The allowable velocity state vector q̇ is a function of the current state
and control action u,

q̇ = f(q, u). (1-1)

A typical example of a vehicle with nonholonomic constraints is a car, which cannot move
sideways but can still reach every configuration in the workspace by maneuvering. Another
example is a falling cat, when dropped from an upside down configuration it is able to land
on its feet using a combination of maneuvers [40]. In motion planning these constraints often
imply that a robot has a minimum turning radius.

Dynamic constraints are typically constraints on the acceleration of the robot. The robot
motor has a maximum torque and the robot wheels have a maximum braking force, resulting
in a bound on maximal and minimal acceleration. The dynamic constraints can be written
as the differential equation

q̈ = h(q̇, q, u). (1-2)

Using a new state vector x, which incorporates the time-derivative of q, the kinematic and
dynamic constraints can be written in a state update equation,

ẋ = f(x, u). (1-3)

Most of the path planning algorithms ignore the kinematic and dynamic constraints of the
robot, with the exception of methods like the dynamic window approach and curvature meth-
ods [7, 48]. Ignoring the constraints of the robot can lead to intractable paths with sharp
edges, that would result in discontinuous motion. These paths are smoothed to make them
feasible, i.e., they are modified such that they satisfy the aforementioned constraints. Some
different techniques that smooth out a path are mentioned in [7]. Note that the risk of
smoothing is that the new, smooth path might not be collision-free. However, if the con-
straints are incorporated in the motion planning algorithm, there is no need for smoothing
and consequently no risk of collision due to smoothing, which is why most of the recent motion
planning algorithms incorporate constraints in the design of the trajectory.

To distinguish between algorithms, three kinds of vehicle models are considered: a point
vehicle, a rigid vehicle, and a general vehicle. A point vehicle is a robot with no constraints
and a point dimension. A rigid vehicle is a robot of a certain size and shape (often circular or
polygonal), but with no kinematic or dynamic constraints. A general vehicle is a vehicle with
dimensions and constraints. If an algorithm can handle general vehicles, then it can handle
point vehicles and rigid vehicles as well, since these are simplifications of a general vehicle.

Uncertainties and moving obstacles
Although most motion planning algorithms do not consider uncertainties directly, they are
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1-3 Problem statement 5

important when computing a collision-free path. There are two types of uncertainty: un-
certainty in sensing and uncertainty in predictability [34]. Uncertainties in sensing are due
to imperfect sensors and impose uncertainties on the configuration of the robot and on the
position of the obstacles. Uncertainties in configuration predictability originate from uncer-
tainties in the state update equation (1-3). An algorithm is called sound if a robot will reach
the goal position and stop there without hitting any obstacles despite uncertainties in sensing
and control. If the environment of the robot is dynamic (with moving obstacles), another
uncertainty comes from the unknown trajectory of the obstacles; this is called uncertainty in
environment predictability.
Moving obstacles with an unknown trajectory form a major challenge in motion planning. If
the trajectory of the obstacle is known, a collision-free trajectory can be computed by adding
a time-dimension to the configuration space and recasting the dynamic motion planning
problem into a static motion planning problem [44]. Other approaches include the velocity
space and the visibility graph approach [14]. Conversely, if the trajectories of the obstacles
are unknown, most motion planners fail to find a collision-free trajectory. Nevertheless, some
algorithms can handle these unknown obstacle trajectories, such as the dynamic window
approach [15], the genetic-fuzzy approach [43], randomized path planning algorithms [37],
and Virtual Force Field algorithms [57]. These algorithm, though, are non-optimal and often
not complete.

1-3 Problem statement

In this thesis, we study the motion planning problem with collision avoidance using the Limit
Cycle Method. Note that up to now, the Limit Cycle Method only existed for obstacle avoid-
ance with static, two dimensional obstacles. Nevertheless, the computationally inexpensive
Limit Cycle Method would be especially useful in 3D, since the complexity of most conven-
tional obstacle avoidance algorithms increases rapidly when applied in higher dimensions.
Also, the existing method was unable to handle moving obstacles, which made the Limit Cy-
cle Method not suitable in many practical applications. Therefore, the goal of this graduation
project is to extend the existing Limit Cycle Method in a twofold manner. First, an algorithm
based on the Limit Cycle Method that can be used in 3D (e.g. for aircraft, submarines) is
to be developed. Second, the concept of the Limit Cycle Method is to be enhanced to allow
multiple moving obstacles, thus extending the practical application of the method.

1-4 Contributions and outline

In this thesis an overview of several motion planning strategies is given in Chapter 2. The
most widely used methods are discussed in Section 2-1 up to and including Section 2-4. The
existing Limit Cycle Method for 2D static obstacles is reviewed in more detail in Section 2-5.
The contributions of this graduation project to the existing Limit Cycle Method are:

• The Limit Cycle Method has been extended to 3D.

• The Velocity Obstacle Method is incorporated in the Limit Cycle Method in order to
avoid moving obstacles.
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6 Introduction

• A tree search procedure has been developed that can be used to find the (resolution)
optimal rotation direction with multiple, static or moving obstacles.

Based on the Limit Cycle Method, a new algorithm is developed for avoiding static ellipsoidal
obstacles in three dimensional space. The details and implementation of this method are
discussed in Chapter 3. Special attention is given to the choice of the rotation axis in Section
3-3. The chapter is concluded with a case study.

In order to be able to avoid moving obstacles, the Limit Cycle Method is combined with
the Velocity Obstacle Method. This is described in Chapter 4 for the two dimensional case
(Section 4-1-2) and for the three dimensional case (Section 4-1-3). To ensure that the robot
chooses the globally optimal rotation direction around each moving obstacle, a tree search is
performed in order to find the optimal rotation direction. The theory behind this tree search,
its implementation, and a case study are discussed in the second part of Chapter 4. Finally
some conclusions and recommendations are given in Chapter 5.

A. Aalbers Master of Science Thesis



Chapter 2

Solutions to the Collision-free Motion
Planning Problem

The field of robot motion planning has been well studied, and researchers have come up
with a wide variety of motion planning methods. This chapter provides an overview of the
main methods found in literature. An extensive textbook that covers the Motion Planning
problem is Planning Algorithms [35]. This chapter groups the different methods into their
general strategies which are:

• Potential field based methods, covered in Section 2-1
• Sampling based methods, covered in Section 2-2
• Heuristic methods, covered in Section 2-3
• Other methods, covered in Section 2-4
• The Limit Cycle Method, covered in Section 2-5

These methods are not necessarily mutually exclusive, and many combinations of different
methods exist. A comparison between the different methods is given in Section 2-6.

2-1 Potential field based methods

This section covers the motion planning methods that are based on Artificial Potential Fields
(APF) introduced by Khatib [28] in 1985 and Virtual Force Field (VFF) introduced by Boren-
stein and Koren in 1989 [4]. APF uses the gradient of potential fields to compute virtual
forces on the robot, VFF defines these forces directly using some function. These methods
have been widely used in manipulator control and robot motion planning because of their low
computational costs, mathematical elegance, and the smooth trajectories that these methods
create. They combine trajectory generation and trajectory tracking into one method. The
APF and VVF methods are similar in the sense that the gradient descent forces in APF can
be considered as the virtual forces in VFF.
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8 Solutions to the Collision-free Motion Planning Problem

The Artificial Potential Fields method
The APF method uses a repulsive potential field around an obstacle to push the robot away
from the obstacle, and an attractive potential field at the goal to pull the robot towards the
goal [28]. These potential fields are added, which leads to the artificial potential field

Uart(x) = Uxd(x) + UO(x), (2-1)

where Uxd is the attractive potential to goal position xd, and UO is the repulsive potential
from the obstacle. In the case of multiple obstacles, their repulsive potentials are added.
Uart(x) is then differentiated with respect to the position x, which gives the artificial force

F = Fxd + FO, (2-2)

where the forces are the gradients of the respective potentials:

Fxd = −∇Uxd(x), (2-3)
FO = −∇UO(x). (2-4)

The attractive potential is usually chosen as

Uxd(x) = 1
2k(x− xd)2, (2-5)

where k is a scaling factor. The repulsive potential UO(x) is chosen such that the potential is
high close to the obstacle, and small further away from the obstacle, as illustrated in Figure
2-1. The function UO(x) can be anything as long as Uart(x) is a positive continuous and

Figure 2-1: Repulsive potential around a circular obstacle.

differentiable function, that attains its minimum at the goal location.
The major disadvantage of the APF method is the possibility to get trapped in a local
minimum. This happens especially in environments that are cluttered with obstacles. There
are four common conditions in which local minima occur [57]:

1. When an obstacle is located between the robot and the goal, and the centers of the
robot, obstacle, and goal are on a line.

2. When the goal is within the active region of an obstacle such that the repulsive force of
the obstacle will push the robot away from the goal.
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2-2 Sampling based methods 9

3. When the robot encounters a non-convex (e.g. U-shaped) obstacle.

4. When the robot passes through a narrow passage between two obstacles, this can lead
to oscillations.

Some methods based on APFs can overcome the problem of local minima using a range of
techniques. For example, a recent method based on VFF called Enhanced Virtual Force Field
(EVFF) [57] uses improved functions and detour forces to overcome the local minima problem.
The main drawback of these techniques is, however, that while avoiding local minima, they
have many heuristic parameters that need to be adjusted for each problem.

2-2 Sampling based methods

Before APF methods existed, sampling based methods were widely used in motion planning.
Sampling based methods decompose the workspace into cells (cell decomposition) or a network
of lines (roadmap). Each cell or line-segment can be represented by a node in a graph. This
reduces the motion planning problem to a graph search problem. Graph search problems
can be solved by algorithms such as Dijkstra’s algorithm and the A∗ algorithm [24]. Other
graph search methods are developed specifically for robot motion planning, such as the D++
algorithm [10], which combines Dijkstra’s algorithm with local workspace knowledge. The
simplical Dijkstra’s algorithm and A∗ algorithms described by Yershov [54] can compute
control values at every point in space using interpolation and run at a low computational
cost. Sampling based methods can be grouped into one of three categories:

• Exact cell decomposition. The workspace is discretized such that the union of
the cells covers the free space exactly. The obstacles are represented as convex or
non-convex polytopes. Among these methods, we could classify methods relying on
the decomposition into convex regions (Meadow Map), decomposition into generalized
cones, and vertically or horizontally slicing of the workspace. The major advantage
of exact cell decomposition is the low computational costs. On the other hand, the
disadvantage of this method is the inability to consider constraints, and its complexity
when applied in higher (more than two) dimensions.
• Approximate cell decomposition. Approximate cell decomposition uses cells with
uniform geometry that fill the workspace. Cells that are in the free space are labeled
empty, cells that are completely covered by an obstacle are labeled full, all other cells
are labeled mixed. A graph is constructed to search for the shortest path, where the
nodes in the graph represent the empty cells, and two nodes are connected if their
corresponding cells are adjacent. Common approximate cell decomposition methods
are the Regular Occupancy Grid and the Quadtree mapping (illustrated in Figure 2-2).
The main advantage of these methods is that they are resolution optimal, and can handle
complicated robot shapes and obstacles. Also, they can be applied for any number of
dimensions, but at an increasing computational cost. The main disadvantage of these
methods is, however, their inability to handle dynamic and kinematic constraints.
• Roadmaps. In the roadmap approach, the free configuration space is retracted, re-
duced to, or mapped onto a network of one-dimensional lines [53]. This approach is also
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10 Solutions to the Collision-free Motion Planning Problem

called retraction, skeleton, or highway approach. The difference with the cell decom-
position method is that the cell decomposition approaches decompose the free space
into discrete areas, whereas the roadmap approaches decompose the free space into a
set of partial possible paths–a roadmap. The motion planning algorithm combines the
paths to create a path from robot to goal position. The two most well-known roadmap
methods are the Visibility Graph and the Voronoi Diagram. A Visibility Graph cre-
ates an optimal path for polygonal obstacles in 2D. It uses the fact that the shortest
path grazes polygonal obstacles at their vertices, and builds a roadmap of lines con-
necting each vertex with all vertices visible from its position [20]. A Visibility Graph
can create non-feasible optimal paths (due to constraints), it works only in 2D, requires
perfect workspace knowledge, and it can only handle polygonal obstacles. The Voronoi
roadmap is the opposite of the Visibility graph in the sense that it keeps the maximum
distance to the obstacles. The Voronoi approach builds a roadmap using lines that
are equidistant to obstacle edges. The algorithms based on the Voronoi approach are
complete, computationally efficient, and can be extended to multiple dimensions, but
they are not optimal [1]. Another method, the Velocity Obstacle Method [14], plans a
trajectory in the velocity space, and is therefore able to handle moving obstacles with
known and constant velocities. Other roadmap methods are the Silhouette method, the
Freeway method, and Canny’s Roadmap [35, 53].

Figure 2-2: Quadtree decomposition with a triangular obstacle. Close to the obstacle the cells
are chosen smaller to make it possible for the robot to pass the obstacle at a small distance. This
is easily done by splitting up the partially filled cells into four new cells.

Sampling based methods are resolution optimal, but computationally expensive and they
do not incorporate dynamic constraints. The computational costs of sampling based meth-
ods increase rapidly with the dimensions of the workspace, and therefore some probabilistic
methods have been developed. These are covered under heuristic methods in Section 2-3.
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2-3 Heuristic methods

To overcome the computational costs and local minima of traditional methods, algorithms
have been developed that are probabilistic in nature. In the last decade the vast majority
of research done in motion planning has been in heuristic algorithms [53]. Two categories in
heuristic methods are: Heuristic algorithms and Metaheuristic algorithms.
Heuristic algorithms use random sampling to create a graph that can be searched. These
methods include Rapidly exploring Random Tree (RRT) and Probabilistic Roadmap (PRM).
The RRT algorithm was first introduced by Kuffner and Lavalle [31] in 2000, and has been
quite popular due to its excellent experimental performance [17]. Instead of sampling the
whole free space, only a small random part is sampled, which brings down the computational
costs. A naive random tree can be constructed by randomly selecting a vertex from the tree,
and a random control input that will add an edge of a certain length to the tree. This will
result in a tree that has a strong bias toward places already explored, as shown in Figure
2-3. In contrast, the RRT chooses a random point in the workspace, and tries to connect
that point to the closest point in the tree. As a result the tree explores the workspace fast,
hence the name of the algorithm. An extension to this algorithm, described in [37], is able
to incorporate dynamic and kinematic constraints. The main advantages of most heuristic
methods are their low computational costs (for few dimensions), ability to handle constraints,
and their probabilistic completeness. However, heuristic algorithms are non-optimal, the
choice of the metric (measure of performance, e.g., travel time) is difficult for nonholonomic
systems, and they have difficulties in handling changing environments.

Figure 2-3: Naive random tree (left) versus rapidly exploring random tree (right); each tree has
2000 vertices [37].

Metaheuristic algorithms use random changes to improve the path planning algorithm
itself, according to some objective function. These methods include Genetic Algorithms (GA),
Neural Networks (NN), Simulated Annealing, Ant Colony Optimization, Stigmergy, Wavelet
Theory, Tabu Search, and Fuzzy Logic [52, 53, 58]. Heuristic and metaheuristic algorithms
are used not only in motion planning, but in a wide variety of problems that include a
Traveling-Salesman-like problem.
Metaheuristic algorithms can be used to tune a motion planner off-line. Any motion planner
that has a tuneable variable can be tuned using metaheuristic algorithms. Among these
methods are fuzzy-logic controllers [43], neural systems [23], and Virtual Force Fields [30].
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12 Solutions to the Collision-free Motion Planning Problem

Fuzzy logic controllers are increasingly popular in robot motion planning [53], in combination
with soft computing techniques such as neural networks, genetic algorithms, and their hybrids.
The main advantage of metaheuristic algorithms is that they are tuned off-line and have very
low computational costs online. Unlike most motion planning algorithms, most metaheuristic
algorithms can handle moving obstacles, since the relative velocity can be used as an input.
Most metaheuristic algorithms are used for local obstacle avoidance in combination with a
global path planner.

2-4 Other methods

Although most of the motion planning methods can be classified as a variant of one of the
methods discussed in the previous sections, there are still motion planning methods that are
somewhat different. Some methods draw inspiration from nature such as the bug algorithm,
others are derived from language like symbolic planning. Other methods compute trajectories
for multiple robots simultaneously, for robots moving in formations, or for multiple robots
with different tasks in the same workspace. In this section, some of the main categories that
are not (yet) widely used for motion planning are discussed. These methods are:

• Mathematical methodsMathematical programming treats the motion planning prob-
lem as a constrained optimization problem. Obstacle avoidance is accomplished by rep-
resenting the obstacles with a set of inequalities on the configuration parameters. The
motion planning problem is then formulated as a mathematical optimization problem
that finds a path or trajectory from initial to goal configuration. The equations of mo-
tion (1-3) can be used as constraints to create feasible trajectories. Mixed Integer Linear
Programming (MILP) [46, 55], Discrete Mechanics and Optimal Control (DMOC) [39]
and nonlinear programming are some of the popular methods in this field. The main
advantage of the MILP method and other constrained optimization methods is the ex-
istence of highly-optimized commercially available software that can be used to solve
these problems. However, in practice there is an unmodeled sensor uncertainty and
prediction uncertainty, which necessitates the use of an additional controller to reduce
the impact of the unmodeled effects. Also, the cost functions typically have a number
of local minima, thus, whether the global optimum will be found depends highly on
the initial guess [20]. Furthermore, the constrained optimization methods are compu-
tationally expensive, especially in higher dimensions with many obstacles. The global
solution will not necessarily be found in polynomial time, therefore an approximation
is often used to solve the optimization problem.

• Reactive methods Reactive planners generally only use local knowledge to compute
a (partial) trajectory. The sensory information is directly translated to a control action
via some transfer function, thus, the robot reacts directly to the environment, hence the
name of this method. Reactive planners are seldom used as a sole trajectory generating
method, due to their inability to take the global planning problem into consideration.
Examples of reactive methods are the Velocity Obstacle Method [14], the Beam Curva-
ture Method [48], The Dynamic Window Approach [15], the Follow The Gap Method
[47], and the Limit Cycle Method [29].
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• Bug algorithms The bug algorithms are one of the earliest and simplest reactive
planners [42]. Like the name suggests the algorithm behaves like a bug, with zero range
vision (the robot only knows about an obstacle when it actually hits it). Many bug
algorithms exist, of which the Bug1 algorithm and Bug2 algorithm are the most well
known. The Bug1 algorithm is executed as follows: a robot moves towards the goal. If an
obstacle is encountered, the robot turns left around the obstacle; once the obstacle has
been encircled completely, the robot returns to the point at which it is closest to the goal
and moves towards the goal from there. This repeats until the goal has been reached, at
which point the robot stops. Bug algorithms are straightforward to implement, and are
complete under the assumptions that the obstacles are either polygons, smooth curves,
or some combination of curved and linear parts [35]. However, the bug algorithms
are not often used in practice because of the long paths, the inability to incorporate
kinematic and dynamic constraints and sensitivity to uncertainties.

• Symbolic planning One of the goals of symbolic programming is to create an environ-
ment in which the naive user can specify a task for his domestic robot using a high-level
language that results in provable correct robot control laws. Symbolic motion planning
uses language to specify objectives. Such specifications, consisting of logical and tempo-
ral statements, are translated to formulas of temporal logic. A language satisfying such
a formula is in general accepted by an automaton, which can be seen as a generalization
of a graph. A string of words in this language is translated to a finite set of discrete
control actions or strategies. Several specification languages have been proposed, such
as linear temporal logic (LTL) and computation tree logic (CTL) [2]. Symbolic control
can be achieved using control quanta, which are discrete control actions that can be
combined from a library to move a robot. Another way of symbolic programming is
to employ motion primitives, which are elementary trajectories that can be combined
to create a trajectory towards the goal position. Using such a concept, it was possible
to demonstrate completely automated acrobatic flight of miniature helicopters [19]. In
real-world applications, the open-loop strategy of motion primitives should be made
more robust to uncertainties and disturbances by using feedback control. Discretiza-
tion based on motion primitives provides a flexible and fast method to create feasible
trajectories. However, the main drawbacks are the difficulty in establishing resolution
completeness and the challenge to make symbolic planning generally applicable.

2-5 The Limit Cycle Method

The Limit Cycle Method was already mentioned in Section 2-4 as a reactive method. It
uses position information to compute a control action via a limit cycle function. Using limit
cycles in motion planning was proposed by Kim and Kim in 2001 [29]. They used it in the
context of robot soccer to retrieve the ball while avoiding other robots. This method can be
used for obstacle avoidance, which is a subproblem of the motion planning problem. In this
section we study the limit cycle approach to obstacle avoidance in more detail. We first give
a mathematical analysis of limit cycles in Section 2-5-1. Then we describe how limit cycles
are currently used in obstacle avoidance in Section 2-5-2.
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14 Solutions to the Collision-free Motion Planning Problem

2-5-1 Theory behind limit cycles

Limit cycles can arise in 2nd-order nonlinear systems and are closed orbits that are stable or
unstable. Physically, stable limit cycles represent self sustained oscillations. One of the best
known limit cycles stems from the Van der Pol oscillator, which is discussed in Appendix A-1.
There are three kinds of limit cycles:

• Stable limit cycles: all trajectories in the vicinity of the limit cycle converge to it as
t→∞

• Unstable limit cycles: all trajectories in the vicinity of the limit cycle diverge from
it as t→∞

• Semi-stable limit cycles: some of the trajectories in the vicinity converge to the limit
cycle, while other diverge from it as t→∞,

where t is the time. From now on only stable limit cycles will be considered, because these
stable limit cycles are used in obstacle avoidance. The limit cycles used for motion planning
are described by the equations:

ẋ1 = γx2 + x1(1− x2
1 − x2

2)
ẋ2 = −γx1 + x2(1− x2

1 − x2
2).

(2-6)

The direction of rotation is given by γ, where

γ =
{

1 if the trajectories converge towards the limit cycle in a clockwise rotation,
−1 if the trajectories converge towards the limit cycle in a counterclockwise rotation.

(2-7)
The resulting trajectories for γ = 1 and γ = −1 can be seen in Figure 2-4. The stability of
the limit cycles (2-6) can be shown using the direct method of Lyapunov stability analysis.
This is presented in Appendix A-2.

Other limit cycles are found in different research areas, such as the flow equations in a Hopfield
model for neural networks [11], and the Wien-bridge oscillator in electrical circuits [13]. A
limit cycle can be constructed for any closed planar curve whose polar equation is known [12].
Since many of these curves exist, limit cycles of many different shapes can be constructed and
used for obstacle avoidance. In this thesis however, only ellipsoidal limit cycles are considered.

2-5-2 Obstacle avoidance using limit cycles

Limit cycles are used to avoid obstacles in the Limit Cycle Method. The Limit Cycle Method
for motion planning as proposed by Kim and Kim [29] considers the following problem.
Suppose we have a robot with center position (Rx,Ry) that needs to avoid an obstacle with
center position (Qx,Qy) to get to a goal position (Gx,Gy), see Figure 2-5. Then, limit cycle
algorithm for obstacle avoidance uses the following steps:
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(a) Clockwise limit cycle, γ = 1.
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(b) Counter clockwise limit cycle, γ = −1.

Figure 2-4: Clockwise and counterclockwise limit cycle with trajectories starting from (0.1;0.15)
in blue and from (2;2) in red.

Figure 2-5: Decision of rotational direction based on distance d.

1. Draw a line from the robot to the target in a global coordinate frame
∑
OXY ; the line

l is represented by
l : ax+ by + c = 0. (2-8)

2. Treat any obstacle as a disturbing obstacles Od if the line l crosses them, else, threat it
as a non-disturbing obstacle On.

3. Move towards the target if there is no disturbing obstacle Od.

4. Otherwise, follow the limit cycle trajectory that is generated around the closest disturb-
ing obstacle. Repeat steps (1)-(4) until the destination is reached.

To generate the limit cycle trajectory, the direction of rotation around the obstacle must be
known. This direction of rotation is based on the distance d. Referring to Figure 2-5, we
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16 Solutions to the Collision-free Motion Planning Problem

calculate the distance d from the center of the nearest disturbing obstacle to the line l using

d = aQx + bQy + c√
a2 + b2

. (2-9)

We then calculate the desired direction of the robot at each position using a generalized
version of Equation (2-6),

˙̄x = d

|d|
ȳ + x̄(rv − x̄2 − ȳ2)

˙̄y = − d

|d|
x̄+ ȳ(rv − x̄2 − ȳ2),

(2-10)

where x̄ and ȳ are the relative position values to the center of the obstacle. The robot avoids
the obstacle clockwise if d is positive and counterclockwise if d is negative. The obstacles and
robot are assumed to be circular, with radii ro and rr, respectively. Using a safety margin δ,
the radius rv is

rv = rr + ro + δ. (2-11)

This makes the robot in effect a point vehicle. An example of using this algorithm is given
in Appendix A-3.

The algorithm described thus far fails when obstacles are overlapping. When two obstacles
overlap, as shown in Figure 2-6, a local minimum occurs and the robot will get stuck at the
local minimum. In this case, the two obstacles can be treated as one bigger obstacle and
a new central position of the obstacles is calculated. With n overlapping obstacles the new
central position with coordinates (Qx,Qy) of the overlapping obstacles is calculated by

Qx = 1
n

n∑
k=0

Qxk, Qy = 1
n

n∑
k=0

Qyk, (2-12)

where (Qxk,Qxk) are the coordinates of the kth obstacle. Using the coordinates (Qx,Qy) a
new value of d is calculated; this determines the rotational direction around all n overlapping
obstacles. If the robot does not have global knowledge of the workspace, the robot can get
stuck in a loop when avoiding overlapping obstacles [21]. This can be avoided by choosing a
fixed direction of rotation until the robot has passed the overlapping obstacles.

Limit cycles are also used in robot soccer to position the robot behind the ball such that
the robot faces the opponent goal [29]. The orientation of the robot at the goal position
is called posture and in most motion planning algorithms it is not possible to control the
desired posture directly. The Limit Cycle Method accomplishes posture control by placing
two virtual obstacles on a line between the opponent goal and the target position as shown
in Figure 2-7.

The dynamic and kinematic constraints can be met for most vehicle models by using the
minimum turning radius of the vehicle for the limit cycles. This radius can be velocity
dependent [29]. Instead of a fixed goal position, the Limit Cycle Method can be extended to
handle moving targets [13, 13]. When all obstacles are cleared using the Limit Cycle Method,
some ODEs can be used to track the target [21, 50].
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Figure 2-6: Local minimum with two overlapping obstacles.

Figure 2-7: Virtual obstacles are placed on either side of the ball to control posture. The
two virtual obstacles are placed adjacent to the line from the ball to the opponent’s goal. The
lower virtual obstacle is associated with a counterclockwise rotating limit cycle, the upper virtual
obstacle with clockwise rotating limit cycle. The robot will then reach the ball, facing the
opponent’s goal [29].

Limit cycles are also used in a multi-agent setting in [18, 22, 56]. When multiple robots
converge to a limit cycle with the same relative phase angle, this can be used for surveillance
[56]. Local obstacle avoidance using limit cycles in combination with vector fields is described
by Jie et al [25].

Ellipsoidal limit cycles
Ellipsoidal limit cycles can be used to better represent oblong obstacles and moving obstacles.
The differential equations corresponding to ellipsoidal limit cycles are given by [9, 50]

˙̄x = d

|d|
ȳ

b2 + αx̄(rv −
x̄2

a2 −
ȳ2

b2 ),

˙̄y = − d

|d|
x̄

a2 + αȳ(rv −
x̄2

a2 −
ȳ2

b2 ),
(2-13)

where x̄ and ȳ are the relative positions to the origin of the limit cycle. The speed of
convergence is determined by α; a larger α results in a faster convergence to the limit cycle.
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The resulting limit cycle is characterized by the general equation of an ellipse, with semi-major
axis a and semi-minor axis b:[

x̄ cosφ+ ȳ sinφ
a

]2
+
[−x̄ sinφ+ ȳ cosφ

b

]2
= 1, (2-14)

where φ is the angle between the ellipse’s semi-major axis and the global horizontal axis. This
angle can be time dependent to represent rotating objects. An example of an ellipsoidal limit
cycle is shown in Figure 2-8.
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Figure 2-8: An ellipsoidal limit cycle, with semi-axes a = 3 and b = 1.

Figure 2-9: Avoiding a moving obstacle [3].

Moving obstacles
The basic limit cycle algorithm can be used to avoid obstacles that move slowly with respect
to the maximum velocity of a robot. Because the algorithm updates its trajectory very often,
the velocity of slow obstacles can be neglected. The order of avoiding the disturbing obstacles
can then be chosen based on the closest-point of approach [38]. This means that the closest
obstacle is not chosen based on the current distance to each obstacle, but on the time at
which a collision would occur. Ellipsoidal limit cycles can be used with the long axis aligned
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with the obstacle’s direction [9]. Fast obstacles, however, still pose a problem for the Limit
Cycle Method. For instance, if the robot were to pass in front of a fast moving obstacle, it
could result in a collision.

A way to solve this problem is to let the robot pass behind the obstacle, such that the robot
does not cut off the obstacle’s trajectory [3]. The obstacle’s velocity vO can be decomposed
into a velocity vector VOx pointing towards the target and a perpendicular velocity vector
VOy , see Figure 2-9. If VOy is positive the obstacle will intersect the direct path between the
robot and the target, and the robot will avoid the target counterclockwise, thus behind the
obstacle. If VOy is negative, the obstacle will be avoided clockwise.

2-6 Conclusions and comparison

Since an exact solution to the motion planning problem is not computable online in most
cases, an exact algorithm for all situations does not exist. The best choice of an algorithm
depends on the environment in which the algorithm is used. Each algorithm is designed with
a specific goal in mind, and has different priorities on different performance criteria. If the
workspace is known with little uncertainty, and the robot has sufficient computational power,
a search algorithm like RRT can be used. If the robot has little computational power, a fuzzy
controller can be used.

Table 2-1 gives an overview of the advantages and disadvantages of several methods. It is
important to note that this table is not conclusive, for many algorithms variants exist that
benefit one aspect of the algorithm, often at the cost of something else. For example: the
harmonic potential functions are complete, in contrast to standard Artificial Potential Fields
methods, but are computationally expensive. A more extensive list of several sub-algorithms
that are not discussed in this report can be found in [20].
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Solutions

to
the

Collision-free
M
otion

Planning
Problem

Method Main Advantages Main Disadvantages Vehicle Model Obstacle Model
Potential fields methods inexpensive, smooth trajectories not complete general any
Sampling based methods

Exact cell decomposition complete expensive rigid all polytopes
Approximate cell decomposition resolution complete, sound expensive point any
Road maps complete expensive point any/all polygons

Heuristic methods
RRT inexpensive, probabilistically complete not optimal general any
PRM probabilistically complete not-optimal, slow convergence point any
GA and NN inexpensive (off-line training) not complete general any

Other methods
Mathematical methods resolution optimal expensive general (convex) polytopes
Reactive methods inexpensive not complete general any
Bug algorithms complete not-optimal, not sound point any
Symbolic inexpensive, feasible not complete general any

Limit cycle method very inexpensive, smooth trajectories not complete, only 2D general ellipse

Table 2-1: Comparison among motion planning methods
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Chapter 3

Avoiding Static Obstacles in Three
Dimensional Space

The Limit Cycle Method discussed in Section 2-5 is designed for obstacles in two dimensional
space. This method works well for a robot that moves on a plane, e.g., a wheeled robot
such as a soccer robot. For robots that do not move on a plane, such as UAVs (Unmanned
Aerial Vehicles) or submarines, the method is unsuitable. To make the Limit Cycle Method
applicable to robots that move in three dimensions, we develop a new algorithm that uses
3D ellipsoidal limit cycles. In Section 3-1 the 3D limit cycles are discussed and their stability
is proven using the direct Lyapunov method. The algorithm for avoiding obstacles in three
dimensional space is explained in Section 3-2. In order to use this algorithm, a rotation axis
needs to be computed first. Section 3-3 discusses several methods of finding a rotation axis.
The algorithm is then illustrated with a case study in Section 3-4.

3-1 Limit cycles in 3D and their stability

The three dimensional shape that is used to describe the obstacles is an ellipsoid. This
ellipsoid does not represent the exact shape of the obstacle, but rather a safety zone around
the obstacle, where the shape of the ellipsoid can be chosen such as to assign a greater safety
distance from certain points on the obstacle, e.g., a greater safety distance at front of the
obstacle can be achieved by choosing an oblong ellipsoid. The ellipsoid in the canonical form
is characterized by: (

x

a

)2
+
(
y

b

)2
+
(
z

c

)2
= 1, (3-1)

where a, b, and c represent the lengths of the independent semi-axes of the ellipsoid. In the
canonical form, the axes of the ellipsoid are aligned with the coordinate axes and the ellipsoid
is centered at the origin. If the lengths of two axes are the same (a = b), the ellipsoid is called
a spheroid. If the third axis is larger than the other two axes (a = b < c), this spheroid is
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22 Avoiding Static Obstacles in Three Dimensional Space

called a prolate spheroid. If the third axis is smaller than the other two axes (a = b > c), the
spheroid is called an oblate spheroid. If all three axes are the same, it is a sphere.
A limit cycle for a triaxial ellipsoid in the canonical form can be constructed as follows. In
3D, the stable set towards which the trajectories converge is called an attractor instead of a
limit cycle. In fact, the term attractor is used for stable sets in any number of dimensions,
whereas the limit cycles as described in (2-6) and (2-13) are a special class of attractors,
namely attractors in 2D. The proposed attractor is defined with the differential equations:

ẋ = −S3
y

b2 + S2
z

c2 + γx

(
1−

(
x

a

)2
−
(
y

b

)2
−
(
z

c

)2
)
,

ẏ = S3
x

a2 − S1
z

c2 + γy

(
1−

(
x

a

)2
−
(
y

b

)2
−
(
z

c

)2
)
,

ż = − S2
x

a2 + S1
y

b2︸ ︷︷ ︸
Part I

+ γz

(
1−

(
x

a

)2
−
(
y

b

)2
−
(
z

c

)2
)

︸ ︷︷ ︸
Part II

,

(3-2)

where S1, S2, and S3 are scalars that determine the rotation direction. To gain more insight
into these equations, they are split into two parts: Part I represents an elliptic curve part
and Part II represents the convergence term. In particular, Part I of (3-2) defines an elliptic
curve that lies on a plane. This plane is defined by its normal vector, or rotation axis,
Ar = [S1, S2, S3]T and the center of the ellipsoid. The elliptic curve is a scaled version of
the curve that results from the intersection between the plane and the ellipsoid. This curve
rotates around Ar. In contrast, Part II of (3-2) makes the trajectories converge towards the
attractor. The factor γ > 0 determines the convergence rate. An illustration of the two parts
in these equations can be seen in Figure 3-1. In Figure 3-1a the convergence factor γ = 0,
which leads to an elliptic curve with no convergence to the ellipsoid, in Figure 3-1b, however,
γ is chosen very high (γ = 106), which makes the trajectory converge to the surface without
encircling the ellipsoid.
All trajectories converge towards the surface of the ellipsoid, which implies that this surface
is a stable limit set. The stability of the attractor can be shown using the direct method
of Lyapunov stability analysis [16]. The direct Lyapunov method begins with the intuitive
notion that one measure of the state of a physical system is the total energy stored in the
system. For a stable system, the energy decreases over time and obtains a minimum at a
stable equilibrium point xe (e.g., a damped oscillator). Here x is a vector containing x, y,
and z. A scalar function V (x) of the states, called a Lyapunov function candidate, is defined
having the following properties [16]:

• V (xe) = 0,
• V (x) > 0, ∀x 6= xe,

• V is continuous and has continuous derivatives with respect to all components of x.

The Lyapunov function candidate is considered a Lyapunov function if the time derivative
along the trajectories of the system is less than or equal to zero for all states,

V̇ (x) = ∂V

∂x ẋ ≤ 0. (3-3)
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(a) Part I of (3-2) results in a elliptic curve
around the ellipsoid, starting at x0. In this plot
Ar = [1, 0, 0]T .
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(b) Part II of (3-2) converges the tra-
jectory to the surface of the ellipsoid.

Figure 3-1: The two parts of the ellipsoidal limit cycle equations.

If a Lyapunov function can be found for a system, then the equilibrium is stable. If V (x) < 0
for all x 6= xe and V (x) is radially unbounded (||x|| → ∞ ⇒ V (x)→∞), then the equilibrium
is globally asymptotically stable [16], meaning that all trajectories will converge towards the
equilibrium point as t→∞.

For the system (3-2) consider the Lyapunov function candidate

V (x) =
(
x

a

)2
+
(
y

b

)2
+
(
z

c

)2
. (3-4)

The time derivative of V (x) is

V̇ (x) = 2 x
a2 ẋ+ 2 y

b2 ẏ + 2 z
c2 ż

= 2 x
a2

(
−S3

y

b2 + S2
z

c2 + γx (1− V (x))
)

+ 2 y
b2

(
S3

x

a2 − S1
z

c2 + γy (1− V (x))
)

+ 2 z
c2

(
−S2

x

a2 + S1
y

b2 + γz (1− V (x))
)

=
(

2γ
(
x

a

)2
+ 2γ

(
y

b

)2
+ 2γ

(
z

c

)2
)

(1− V (x))

= 2γV (x) (1− V (x)) .

(3-5)

The time derivative of V (x) is positive for V (x) < 1 and negative for V (x) > 1. Hence, on
the level surface V (x) = c1, with 0 < c1 < 1, all trajectories will be moving outward, while
on the level surface V (x) = c2, with c2 > 1, all trajectories will be moving inward. Similar to
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24 Avoiding Static Obstacles in Three Dimensional Space

the 2D case in Appendix A-2, this shows that all trajectories converge towards the ellipsoid
(3-1). From (3-3) and (3-5) it follows that γ must be a positive number.

3-2 Algorithm for avoiding obstacles

The stable ellipsoidal attractor introduced in the previous section can be used to avoid ob-
stacles in three dimensions with the following algorithm:

1. Draw a line from the robot to the target in a global coordinate frame
∑
OXY Z; the

line l is represented by
l : ax+ by + cz + d = 0. (3-6)

2. Treat any obstacle as a disturbing obstacles Od if the line l crosses them, else, threat it
as a non-disturbing obstacle On.

3. Move towards the target if there is no disturbing obstacle Od.
4. Otherwise, compute a rotation axis, and follow the attractor trajectory that is generated

around the closest disturbing obstacle. Repeat steps (1)-(4) until the destination is
reached.

There are some differences between this algorithm and the algorithm used in Section 2-5-2.
The major difference is that in step 4 the choice for direction of rotation has infinitely many
possibilities, whereas the 2D algorithm has the binary choice of clockwise or counterclockwise
rotation. Another difference occurs when calculating whether obstacles are disturbing obsta-
cles. In 2D, only the shortest distance d from the line l to the center of the obstacle needs to
be computed and compared to the radius of the obstacle to know whether an obstacle is a dis-
turbing obstacle. In 3D, this method works well with spheres, but not with general ellipsoids.
To check for disturbing obstacles, the intersection points between the robot’s trajectory and
the obstacle’s surface are computed. In practice, the ellipsoids are often translated and/or
rotated with respect to a global coordinate system. Instead of using the canonical form (3-1),
it is therefore more convenient to use the equation for an arbitrarily oriented ellipsoid,

(x− p)TRΣ2RT (x− p) = 1, (3-7)

where x = [x, y, z]T represents the position vector, and R is a 3 × 3 matrix whose columns
are orthogonal unit vectors in the directions of the ellipsoid’s semi-axes. The matrix Σ is a
diagonal matrix, with the entries 1/a, 1/b, and 1/c. The ellipsoid is centered at p. Given the
current robot position Rpos and the target position Tpos, the desired velocity of the robot VR
can be calculated as VR = (normc(Rpos − Tpos))Rspeed, where normc stands for the column
normalization operation (which is used to make a vector a unit vector), and Rspeed > 0 is
the desired speed of the robot. The speed of the robot is assumed to be constant. Then, the
intersection points (if any) can be calculated by using

xint = Rpos + VR · t, (3-8)

where t is the time of intersection between the robot moving on the line l and the ellipsoid.
Substituting xint from (3-8) into (3-7) results in

(Rpos + VR · t− p)TRΣ2RT (Rpos + VR · t− p) = 1. (3-9)
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This equation can be solved for t to yield the time(s) of collision between the robot and
the obstacle. Note that (3-9) can have two complex solutions, one real solution, or two real
solutions. When there are no real solutions for t, the obstacle is a non-disturbing obstacle.
When only one real solution for t exists, the line l is a tangent line to the ellipsoid and the
robot will only touch, but not intersect, the ellipsoid. Since the ellipsoid represents a safety
zone around an obstacle, the robot will not actually touch the obstacle, but it only touches
the safety zone. Therefore, in the case of one real solution for t, the obstacle is also regarded
as a non-disturbing obstacle. With two real solutions for t, namely t1 and t2, where t1 < t2,
there are 3 scenarios:

• t1 < 0, t2 ≤ 0: the robot is already beyond the obstacle, so the obstacle is regarded
as non-disturbing obstacle,

• t1 < 0, t2 > 0: the robot is inside the obstacle, and the obstacle is regarded as a
disturbing obstacle. This will not happen in practice, however, because the algorithm
will steer the robot around the obstacle,

• t1 ≥ 0, t2 > 0: the obstacle is in between the robot and the target, hence the obstacle
is regarded as a disturbing obstacle. Two intersection points A and B are calculated
using (3-8).

Importantly, if t1 is larger than some threshold T , the obstacle is regarded as a non-disturbing
obstacle to prevent the robot from avoiding an obstacle that is very far away. This saves
computing power and mimics the effect of a sensor with a limited range.

Once the robot encounters a disturbing obstacle, the positions of the obstacle, the robot,
and the target are transformed to a local Cartesian coordinate system X̂Ŷ Ẑ using rotation
matrix RT and position p. In the resulting local coordinate system, the ellipsoid is located
at the origin, with the semi-axes aligned with the x̂, ŷ, ẑ axes. Consequently, the velocity
components of the robot can be calculated using (3-2), and translated back to the global
coordinate system using R. The components are then scaled to match Rspeed. However, in
order to use equations (3-2), the axis of rotation Ar must be calculated first. We elaborate
on the choice of the rotation axis Ar in the following section.

3-3 Choice of rotation axis

Unlike the 2D algorithm, the 3D algorithm permits infinitely many directions in which to
rotate around an obstacle. This gives a great freedom when implementing the algorithm,
but it also makes the computation of the rotation direction more involved. One way of
choosing the rotation plane is to use the plane that contains the origin of the ellipsoid and the
intersection points. This is analogous to the procedure of finding the rotation direction in the
2D algorithm. Although this method is simple and works well for spheres, for ellipsoids this
method leads to unnecessary long paths. Another option is to use a fixed rotation direction as
will be described in Section 3-3-1, which can lead to unnecessary long paths as well, whereas
it is clear that ideally the robot would pass the obstacle using an optimal path. For ellipsoids
of revolution (oblate or prolate spheroids), a resolution-optimal path on its surface can be
found using tools from geodesy, as described in Section 3-3-2. Since a literature survey did
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26 Avoiding Static Obstacles in Three Dimensional Space

not bring up any method of finding the shortest path around a general triaxial ellipsoid, only
obstacles with a spheroidal shape (a = b) are considered in this section.

3-3-1 Using a fixed direction of rotation

The choice of rotation axis depends on the situation in which the obstacle avoidance algorithm
is used. In a traffic-like scenario, it might be required to always pass the obstacle in the same
direction. For example, it might be desirable to always pass behind the obstacle. The axis
of rotation can then be calculated as Ar = −R1 × VR where × denotes the cross product
and vector R1 is the first column of rotation matrix R, which is aligned with the orientation
of the obstacle. This example is illustrated in Figure 3-2. In the special case that R1 is
perpendicular to VR, their cross product is zero and Ar can be chosen as one of the other two
columns of R to pass the obstacle around the top or around the side. 

xy 

z

Trajectory
Obstacle
Start Position
Target Position

Figure 3-2: The rotation axis Ar is chosen such that the robot passes behind the obstacle, which
might not yield the shortest path.

3-3-2 Using the inverse geodetic problem

Another option is to find the resolution optimal path around the surface of an obstacle. The
shape of the obstacle is represented by a spheroid. The problem of finding the shortest path
around a spheroid is well known in aviation, where it is beneficial to find the shortest path
between airports. Since the earth is not a perfect sphere, but an oblate spheroid due to its
rotation, finding the shortest path is not trivial. This problem is known as the second geodetic
problem or inverse geodetic problem [26]. An approximate solution to this problem can be
found numerically, but the accuracy decreases over distance and for increasing eccentricity ε,
defined as

ε =

√
1− c2

a2 . (3-10)
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On the surface of the spheroid, the resolution optimal path can be computed using the two
intersection points described in Section 3-2. When the robot has not yet reached the surface
of the obstacle, the path is not optimal due to the convergence term in (3-2). To find the
shortest path between the intersection points, the direction of the path at the first intersection
point must be calculated.
In geodesy the shortest path between two points on the earth, which is an oblate spheroid, is
called a geodesic. The angle at the start position between the north direction and the direction
of the geodesic is called the azimuth α, see Figure 3-3. The inverse geodetic problem is to

B

H

N

α

A

F

Figure 3-3: Azimuth α is the angle in triangle NAB, A and B are the coordinates of the
intersection points, and N is the north pole. NAF and NBH are meridians.

find the azimuth. Given the geographic coordinates (the latitude and the longitude) of the
start and end points, the azimuth can be approximated using several different algorithms.
In this project the algorithm devised by Karney [26] is used. This algorithm runs at low
computational costs and can handle oblate (a = b > c) and prolate (a = b < c) spheroids.
Another advantage of this method is the higher accuracy at increasing eccentricity, compared
to standard methods such as Bessel’s method [49] (which is used in the standard azimuth
function in MATLAB). The two intersection points calculated in (3-9) are translated first
to the local coordinate frame of the obstacle and subsequently to geographic coordinates.
Karney’s algorithm is then used to find the azimuth.
Once the azimuth has been computed, a direction vector VAB can be obtained. This vector
points from the point A in the direction of the geodesic. To determine VAB, first the vector
fromA to the north poleN is projected onto the tangential plane of the ellipsoid atA, resulting
in the vector VAN. This vector is rotated in the tangential plane by an angle equal to the
azimuth, which gives the direction vector VAB, as shown in Figure 3-4. The cross product of
the direction vector VAB with the direction vector of the robot VR gives the rotation axis Ar,
see Figure 3-5.
Two observations can be made on the resulting path:

• The computation of the shortest path is based on the two intersection points. The robot
generally does not move via these intersection points because the robot starts encircling
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28 Avoiding Static Obstacles in Three Dimensional Space

Figure 3-4: In the tangential plane at A, VAN is the unit vector projection of a vector pointing
towards N . This vector is rotated α around the normal to the tangential plane, which gives the
direction vector VAB.

Figure 3-5: The rotation axis Ar is computed as the cross product of VR and the vector VAB.

the obstacle when it has not yet reached the surface of the obstacle, and the robot leaves
the obstacle before it reaches the second intersection point.
• The convergence factor γ influences the length of the resulting path. A large γ steers
the robot quickly towards the obstacle and only when the robot is close to the surface it
will start encircling the obstacle, which leads to a very small turning radius close to the
ellipsoid. On the other hand, a small γ will make the robot encircle the obstacle, without
converging towards the obstacle. If the robot is not yet fully converged to the surface
of the obstacle when it leaves the obstacle, the resulting path will be not smooth, as
can be seen in Figure 3-8b. In both cases, the resulting path will be longer than when a
more appropriate γ is used. An appropriate γ will give a smooth, converging trajectory
around the obstacles and must chosen depending on the application of the algorithm
and the size of the obstacles. The larger the obstacles are, the smaller the convergence
rate needs to be. As a rule of thumb, the convergence rate γ in (3-2) can be chosen as
γ = 1/a2, where a is the length of the semi-minor axis of the ellipsoid.

The robot will then rotate around the computed rotation axis Ar on the elliptic curve defined
by Part I in (3-2). In contrast, the convergence term in (3-2) is independent of the rotation
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axis and is zero at the surface of the obstacle. When the robot is not yet on the surface of
the ellipsoid, its path is not optimal due to the convergence term. Close to the surface of
the ellipsoid this term reduces to zero and the rest of the path on the ellipsoid is resolution
optimal. The optimality can be increased by decreasing the time steps and by decreasing the
error tolerance when approximating α.

Removing detour induced by convergence
The convergence term in (3-2) introduces a detour in the path of the robot when it has not
yet reached the surface of the obstacle, as visible in Figure 3-6 and in 2D in Figure 3-8a. In

 

x

y

 

z

Trajectory
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Start Position
Target Position

Figure 3-6: The convergence term in (3-2) introduces a detour towards the center of the obstacle.
The same start and target positions are used as in Figure 3-2.

fact, the convergence term steers the robot towards a point on the obstacle that has the same
geographic coordinates as the geographic coordinates of the current robot position on a scaled
version of the ellipsoid. This problem also occurs when using the existing 2D Limit Cycle
Method. Since (3-2) does not contain information on the direction of the robot, the robot
has no means of converging towards the ellipsoid in the direction of the target position. The
detour problem is solved using a different set of differential equations describing the attractor.
Specifically, instead of (3-2), we propose to use the differential equations

ẋ = −S3
y

b2 + S2
z

c2 + γ(x−A1)
(

1−
(
x

a

)2
−
(
y

b

)2
−
(
z

c

)2
)
,

ẏ = S3
x

a2 − S1
z

c2 + γ(y −A2)
(

1−
(
x

a

)2
−
(
y

b

)2
−
(
z

c

)2
)
,

ż = −S2
x

a2 + S1
y

b2 + γ(z −A3)
(

1−
(
x

a

)2
−
(
y

b

)2
−
(
z

c

)2
)
,

(3-11)

where A1, A2, and A3 are respectively the x, y, and z coordinates of point A, i.e., the first
intersection point, which lies on the surface of the ellipsoid. The purpose of using (3-11) is to
ensure that the convergence is in the direction of the target in order to create a shorter path.
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Figure 3-7: The new convergence term in (3-11) creates a shorter path by converging in the
direction of the target. In the case illustrated, the travel time is 10.51 seconds versus 11.49
seconds using the naive approach in Figure 3-6.

The intersection point A is used instead of the target position in (3-11) because A is in the
same direction as the target and is on the surface of the attractor. The constraint that A is on
the surface of the attractor makes (3-11) stable. In order to use (3-11) for obstacle avoidance,
these equations must be semi-stable (see Section 2-5-1), i.e., all trajectories starting outside
the attractor must converge towards the surface of the attractor; however, trajectories starting
inside the attractor do not need to converge towards the surface of the attractor. Since the
robot will never end up inside the attractor, the stability for trajectories starting inside the
attractor is not taken into consideration. The semi-stability of (3-11) can be shown using the
same Lyapunov function candidate as (3-4). The time derivative of V (x) is

V̇ (x) = 2 x
a2 ẋ+ 2 y

b2 ẏ + 2 z
c2 ż

= 2 x
a2

(
−S3

y

b2 + S2
z

c2 + γ(x−A1) (1− V (x))
)

+ 2 y
b2

(
S3

x

a2 − S1
z

c2 + γ(y −A2) (1− V (x))
)

+ 2 z
c2

(
−S2

x

a2 + S1
y

b2 + γ(z −A3) (1− V (x))
)
,

= 2γ
(
x

a2 (x−A1) + y

b2 (y −A2) + z

c2 (z −A3)
)

(1− V (x)).

(3-12)

The last part ((1−V (x)) of (3-12) is smaller than zero for all points outside the attractor, zero
at the surface of the attractor, and larger than zero for points starting inside the attractor.
All trajectories starting outside the attractor will be converging to the ellipsoid, provided that
the first part of (3-12) is larger than zero, i.e.,

f(x) = x

a2 (x−A1) + y

b2 (y −A2) + z

c2 (z −A3) (3-13)
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must be larger than zero for all x 6= xe. The optimum of this function for trajectories starting
outside the ellipsoid can be found by solving the constrained optimization problem

min
x
f(x)

s.t. g(x) = 1−
(
x2

a2 + y2

b2 + z2

c2

)
≤ 0.

(3-14)

The minimum can be computed explicitly using Karush-Kuhn-Tucker conditions [6]. This
minimum occurs for x = A, where f(x) = 0; a derivation of this minimum is given in
Appendix B-1. Hence, on the level surface V (x) = c2, with c2 > 1, all trajectories will be
moving inward. Similarly to the argument in Appendix A-2, this proves that the differential
equations (3-11) create a semi-stable attractor shaped as an ellipsoid. Figure 3-7 shows the
same situation as Figure 3-6 but now with using (3-11) instead of (3-2).

Some remarks on (3-11) are in order.

• By setting z and ż to zero, (3-11) can also be used in 2D. An illustration of using (3-11)
in 2D is shown in Figure 3-8b.
• The convergence terms of (3-2) and (3-11) are similar when the robot is far away from
the obstacle, since the coordinates of point A are then small compared to the coordinates
of the robot in the local coordinate frame (Rpos − A ≈ Rpos). Close to the surface of
the obstacle, the convergence term in (3-11) (Part II) is smaller than in (3-2), because
Rpos − A will approach zero. Part I of (3-2) and (3-11), however, is the same. This
means that close to the ellipsoid, the rate of convergence relative to the elliptic curve
part (Part I), is higher in (3-2) than in (3-11) when the same γ is used. Therefore, the
convergence factor γ needs to be chosen higher in (3-11) than (3-2) to yield a similar
convergence rate. When using (3-11) instead of (3-2), even when a higher γ is chosen,
the robot is more likely to leave the limit cycle trajectory before being fully converged
to the ellipsoid. This can lead to not smooth paths as discussed earlier in this section
and shown in Figure 3-8b.
• A small time gain (< 1%) can be obtained by basing the azimuth calculation on the
current robot position on a scaled version of the ellipsoid. The other point on this
scaled ellipsoid (which is necessary for the azimuth calculation) needs to be computed by
solving (3-9) with a scaled Σ. Since these computations impose an extra computational
load, and the gain is very small, this approach is not used in this thesis.

3-4 Case study

In this section, the algorithm described in Section 3-2 is used in a numerical example to
illustrate avoiding two ellipsoidal obstacles, O1 and O2. The positions of the obstacles O1
and O2 are respectively

Q1 =

−1
−2
−1

 and Q2 =

2
2
2

 .
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(a) The convergence term in (2-6) introduces a
detour in the trajectory of the robot.
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(b) Using the 2D version of (3-11) results in a
shorter path, but this path is more likely to be
not smooth.

Figure 3-8: The detour caused by convergence occurs in the existing 2D method as well as in
3D, and can be removed using the differential equations described in (3-11).

The lengths of the semi-axes of the obstacles are the inverses of the entries in diagonals of
the matrices Σ1 and Σ2, where

Σ1 =

1 0 0
0 1 0
0 0 1

2

 and Σ2 =

1
2 0 0
0 1

2 0
0 0 1

3

 .
The semi-major axis of O2 is aligned with the z-axis, the orientation of O1 is arbitrarily
picked. The orientations of obstacles O1 and O2 are, respectively,

R1 =

 0.35 −0.57 0.74
0.93 0.11 −0.35
−0.12 −0.81 −0.57

 and R2 =

0 1 0
1 0 0
0 0 1

 .
The robot’s start and target position are respectively

Rpos =

−2
−4
−3

 and Tpos =

3
4
5

 .
The obstacles, the start position and the target position are illustrated in Figure 3-9. At the
first time step, (3-9) and (3-8) are solved, which give the collision time and collision points
respectively. The speed of the robot is 1, which gives a collision time of 1.91 seconds from
Rpos to O1 and 6.89 seconds to O2. The first obstacle, O1, is the closest disturbing obstacle
with the first intersection point A as

A =

−1.23
−2.76
−1.76

 .
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Figure 3-9: Obstacle avoidance scenario.

The rotation axis is then determined using the procedure described in Section 3-3-2 as

Ar =

−0.79
0.61
−0.11

 ,
in the global coordinate frame. This rotation axis Ar together with the intersection point
A are then plugged into (3-11) to compute the velocity components for the robot. These
velocity components are then scaled to match the speed of the robot.

At each time step the process of computing the closest obstacle, the rotation axis and the
velocity components is repeated. After 3.8 seconds, O1 is no longer a disturbing obstacle and
the robot leaves the attractor representing O1. The line between the current robot position
and the target position now intersects O2, and the robot follows the trajectories generated
from an attractor representing O2 directly after leaving O1. The switching point from O1 to
O2 is shown in Figure 3-10a. When O2 is no longer a disturbing obstacle, the robot moves
in a straight line towards the target. The target is reached when the distance from the robot
to the target is less than the threshold Tth = Rspeed∆T , where ∆T is the time step. With a
time step ∆T = 0.05 seconds and a convergence rate γ = 2 the target is reached after 13.55
seconds. The complete trajectory of the robot from the start position to the target position
is shown in Figure 3-10.

The method described above is now compared to the naive approach, i.e. using (3-2) and
a rotation axis perpendicular to the plane with the origin and both intersection points (see
Section 3-3). As mentioned before, the convergence rate γ in (3-2) and (3-11) should be
chosen for each application depending on the size of the obstacles. In order to give a fair
comparison between the two approaches, the convergence factor that leads to the shortest
path in each of the cases is chosen. For the naive approach the convergence factor γ = 0.4
and the total traveling time is 13.8 seconds. The resulting trajectory is shown in Figure 3-11.
The time savings of the smart approach versus the naive approach are relatively small in
this scenario, namely 13.55 seconds versus 13.8 seconds (2%). One reason for this is that the
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(a) View of the trajectory around O1, with the
switching point.
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(b) View of the trajectory around O2 and to-
wards the target.

Figure 3-10: Trajectory around the two obstacles.

robot moves along a large portion of the ellipsoid. When the robot only touches the borders
of the ellipsoid (as in the situation shown in Figure 3-7), the time savings will be larger due
to the lack of a convergence based detour when using (3-11). In the example of Figure 3-7),
the time savings is 10.51 seconds versus 11.49 seconds (9%).

3-5 Conclusions

The 2D method for obstacle avoidance using limit cycles has been extended to three dimen-
sions. A simple set of differential equations steers the robot around any ellipsoidal obstacle.
These equations contain a rotation axis that must be computed first. Several methods for
computing a rotation axis are proposed in this chapter. One naive approach that requires
very little computational effort uses as rotation axis the normal to the plane that lies on the
origin of the obstacle and the intersection points between the line robot-target and the obsta-
cle. Another approach is to compute the rotation axis using tools from geodesy that compute
the optimal direction. On the surface of the ellipsoid, this method results in the resolution
optimal path. The convergence term, however, introduces a detour in the trajectories of the
robot, both in the existing 2D method as well as in the new 3D method. Consequently, a
different set of differential equations is proposed that create a semi-stable attractor such that
the convergence part of these differential equations is in the direction of the target position.
This solves the detour problem in both the 2D and 3D case.
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Figure 3-11: Obstacle avoidance in 3D using the naive approach.
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Chapter 4

Avoiding Multiple Static and Multiple
Moving Obstacles

In the previous chapters of this thesis, all obstacles were assumed to be static, i.e., not moving.
In many real word applications, however, obstacles are not static. Moving obstacles can either
be other robots, humans, animals, or vehicles. The Limit Cycle Method discussed in Section
2-5 and Chapter 3 is not able to include the velocity of the moving obstacles, which can
lead to collision. In order to be able to avoid moving obstacles, we combine the Limit Cycle
Method with the Velocity Obstacle Method. In this way, moving obstacles with (different)
known velocities can be avoided. A description of what the Velocity Obstacle Method is, how
it is used for 2D and 3D obstacle avoidance, and what its limitation are is given in Section
4-1. By introducing the Velocity Obstacle Method, the optimal rotation direction can no
longer be computed the way it was done for 2D in Section 2-5-2 and for 3D in Section 3-3.
Note that the method can also be used for static obstacles, making it more universal.

Another problem occurs when the robot needs to avoid multiple obstacles: since the robot
only considers the closest obstacle at each point, the choice of rotation direction might not be
optimal when avoiding multiple obstacles. To overcome both these problems, we propose to
perform a tree search to find the optimal rotation direction in 2D and the resolution optimal
rotation direction in 3D, as described in Section 4-2. The extended algorithm, with the
Velocity Obstacle Method and the tree search included, is illustrated in Section 4-3 with a
case study.

4-1 The Velocity Obstacle Method

The Velocity Obstacle Method was introduced by Fiorini in 1993 [14], and is used to avoid
moving obstacles, the positions and velocities of which are known. Since the introduction
of the Velocity Obstacle Method, several algorithms have been developed that are based on
this method, sometimes in combination with other motion planners, e.g., the Non-Linear
V-Obstacle method [33].
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The Velocity Obstacle Method is described in Section 4-1-1. Its application in 2D and 3D is
explained in Section 4-1-2 and Section 4-1-3, respectively.

4-1-1 Theory behind the Velocity Obstacle Method

The Velocity Obstacle Method uses the velocity obstacle (VO) concept, which maps the
dynamic environment into the robot velocity space. The velocity obstacle is a first order
approximation of the range of robot’s velocities that would cause a collision with an obstacle
somewhere in the future [14]. The Velocity Obstacle Method then chooses a velocity for
the robot that lies outside the velocity obstacle in order to avoid collision. In the original
method, a tree of avoidance maneuvers is searched to find the best maneuver according to
some objectives. Here, we use the Limit Cycle Method incorporated in the Velocity Obstacle
Method to compute a collision-free trajectory of a robot. This is illustrated with an example
in the following section.

4-1-2 Application of the Velocity Obstacle Method in 2D obstacle avoidance

Consider a moving obstacle and a robot moving towards a target, as shown in Figure 4-1.
The position of the obstacle is Opos and its velocity is VO. The velocity VO of the obstacle,
and the speed of the robot are assumed to be constant and known. Also, the speed of the
obstacle is lower than the speed of the robot. The relative velocity VR,O of the robot with
respect to the obstacle is computed by subtracting the velocity VO of the obstacle from the
velocity VR of the robot, as shown in Figure 4-1. Based on the relative velocity VR,O, it can be

Rpos

Opos

VR

VO

−VO
VR,O

x

y

Figure 4-1: The relative velocity VR,O is computed by subtracting the velocity VO of the obstacle
from the velocity VR of the robot, which gives the relative velocity VR,O of the robot with respect
to the obstacle.

determined whether the obstacle is a disturbing obstacle, i.e., whether the robot will collide
with the obstacle somewhere in the future. This is done using the velocity coordinate frame of
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the obstacle, which is a coordinate frame that moves along with the obstacle, with the center
of the obstacle at the origin and the axes aligned with the semi-axes of the obstacle. The
transformation between the local coordinate frame X̂Ŷ Ẑ and the global coordinate frame
XY Z is given by

x = Rx̂ +Opos. (4-1)

Similarly to (3-9), the time(s) t of a potential collision can be determined by substituting
(4-1) in (3-9), resulting in

(R̂pos + V̂R,O · t)TRTR Σ2 RRT (R̂pos + V̂R,O · t) = 1, (4-2)

which can be solved for t. Since this equation is applied in the local coordinate frame X̂Ŷ Ẑ,
the local rotation matrix R̂ = RTR is the identity matrix and R̂pos is the position of the robot
translated to the local frame. V̂R,O is the relative velocity of the robot with respect to the
obstacle in the local frame, as shown in Figure 4-2a. Note that, similarly to (3-9) in Section
3-2, the collision times can also be computed in the global coordinate frame by extending
(3-9), with p = Opos + VO · t, to

(Rpos + VR · t−Opos − VO · t)TRΣ2RT (Rpos + VR · t−Opos − VO · t) = 1. (4-3)

Just like in Section 3-2, (3-8) and (4-3) can have two complex solutions for t, one real solution,
or two real solution. With two real solutions for t, namely t1 and t2, where t1 < t2, the
obstacle is only considered a disturbing obstacle when t1 ≥ 0. The collision points can then
be computed using the collision times t1 and t2. When using (4-3) to compute the intersection
times, the intersection points (in the global frame) can be computed using (3-8); on the other
hand, when (4-2) is used, the intersection points are computed as

xint = R · x̂int +Opos + VO · t, (4-4)

where x̂int are the intersection points in the local coordinate frame.
If from (4-2) or (4-3) it follows that the obstacle is a disturbing obstacle, then a limit cycle
trajectory is calculated. This is done by placing a limit cycle on the obstacle, in the local
coordinate frame, see Figure 4-2a. Based on R̂pos, the desired direction vector V̂lim in the
local frame is computed using the limit cycle equations (2-13) or the 2D version of (3-11).
This direction vector then needs to be translated to the global coordinate frame. Since the
speed of the robot is assumed to be constant, V̂lim is scaled such that after translating it
to the global frame, its magnitude equals the speed of the robot. Note that the differential
equations describing the limit cycle can be scaled by any positive number without affecting
the stability of the limit cycle. A positive scaling factorm is determined such that the velocity
of the robot in the global frame Vlim = RV̂lim ·m − VO has magnitude Rspeed, where m can
be computed by solving

‖RV̂lim ·m− VO‖ = Rspeed. (4-5)

Two solutions for m can be obtained by solving (4-5): a positive solution and a negative
solution. For the stability of the limit cycle, m must be positive, so the positive solution is
chosen. The final desired velocity Vlim of the robot is then computed by adding the velocity
of the obstacle VO to the rotated, scaled limit cycle direction RV̂lim ·m, see Figure 4-2b. An
example of using the Limit Cycle Method with moving obstacles is shown in Figure 4-3.
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R̂pos

Ôpos

V̂R,O

V̂lim

x̂

ŷ

(a) The desired velocity V̂lim in the local coor-
dinate frame is computed using the coordinates
of the robot R̂pos and the limit cycle equations
(2-13).

Rpos

Opos

VR

VO

RV̂lim

RV̂lim ·m
+VO

Vlim

x

y

(b) The final velocity vector Vlim is obtained by
first scaling and rotating vector V̂lim, yielding the
desired velocity RV̂lim ·m of the robot with re-
spect to the obstacle. This vector is then trans-
lated to the desired velocity Vlim of the robot in
the global frame by adding the velocity VO of
the obstacle. The red dashed circle represents
the range of velocities of the robot (assuming
Rspeed is constant).

Figure 4-2: Computing the desired velocity of the robot with a moving obstacle.

4-1-3 Application of the Velocity Obstacle Method in 3D obstacle avoidance

The Velocity Obstacle Method in 3D is very similar to its application in 2D as discussed in
the previous section. Equations (4-2), (4-3), (4-4), and (4-5) are augmented with an extra
dimension, and the rest of the procedure of finding the robots velocity Vlim is analogous to the
method described in Section 4-1-2. The optimal rotation axis Ar in the local coordinate frame
can still be computed using the method described in Chapter 3 and in particular in Section
3-3-2. However, this is not necessarily the optimal rotation direction in the global coordinate
frame. This renders the method of computing the resolution optimal rotation direction as
described in Section 3-3-2 to be senseless when obstacles are moving with a non-negligible
speed. For obstacles that move very slowly compared to the robot, the computed resolution
optimal rotation direction (see Section 3-3-2) can still be used since the difference between
the optimal direction in the local frame and the global frame is negligible (referring to Figure
4-2b, the difference between RV̂lim ·m and Vlim is small when VO is small). Since there are
infinitely more rotation direction possibilities in 3D than in 2D, the chance that a rotation
axis is optimal in both the local frame as well as in the global frame is very small. In order
to find a rotation axis that is closer to the optimal rotation direction, more axes need to be
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Figure 4-3: Example of using the limit cycle method with a moving obstacle; the obstacle is
avoided by a clockwise rotation.

searched, as will be described in Section 4-2.

4-1-4 Limitations of using the Velocity Obstacle Method for obstacle avoidance

The inability of computing the optimal rotation direction in the global coordinate frame, as
described in the previous section, is one of the major limitations of using the Velocity Obstacle
Method with the Limit Cycle Method. There are several other limitations, such as

The assumption on the velocities of the obstacle. The position of the obstacle is as-
sumed to be known, and its velocity is assumed to be known and constant. Also, the
speed of the obstacle must be smaller than the speed of the robot, otherwise (4-5) might
not have a solution, i.e., there exists no scaled RV̂lim such that after adding the velocity
of the obstacle VO the resulting velocity in the global frame Vlim has magnitude Rspeed.
When obstacles are moving faster than the robot, the avoidance method described in
Section 2-5-2 can be used, which makes the robot always pass behind the obstacle.
By choosing a smaller convergence rate γ, the robot will start encircling the obstacle
earlier, which can also help to avoid fast moving obstacles more safely. The downside
of choosing a smaller convergence rate γ is, however, that the robot might leave the
limit cycle trajectory before being fully converged to the limit cycle, which leads to
non-smooth, discontinuous paths, as discussed in Section 3-3-2 and shown in Figure
4-4b. Also, when the obstacle is moving faster than the robot and it suddenly changes
course, the resulting path of the robot might not be collision-free.

The loss of a minimum turning radius in the global frame. As discussed in Section
2-5-2, the dynamic and kinematic constraints for most robots can be met by using a
minimum radius of a circular limit cycle, which will result in a minimum turning radius
of the robot. The minimum turning radius of a vehicle corresponds to the smallest circle
that this vehicle can drive. In the local velocity frame of the obstacle, the minimum
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turning radius of the robot is still the same as the radius of the limit cycle, however,
when translating the velocity components of the robot to the global coordinate frame,
this property is lost. This can be seen in Figure 4-3: the obstacle has a radius of 2, but,
the turning radius of the robot at t9 is less than 2.

The inability to compute the optimal rotation direction in the global frame. The
optimal rotation direction in the local frame can be computed. This is similar to how
the rotation direction is chosen in Section 2-5-2 and Section 3-3. However, since we now
use a local frame that has a velocity VO, the rotation axis that was computed in the
local frame might not lead to the shortest path in the global frame, hence, it is not the
optimal rotation direction in the global frame. This problem occurs in 2D as well as in
3D (as discussed for 3D in the previous section).

The risk of switching behavior between obstacles. When the robot needs to avoid mul-
tiple obstacles in opposite rotation directions, the robot can start to switch between two
obstacles. This is illustrated in Figure 4-4a. When the robot leaves the limit cycle tra-
jectory around Obstacle 1 and starts to follow the limit cycle trajectory around Obstacle
2, Obstacle 1 can become a disturbing obstacle again. The robot will then again follow
the limit cycle trajectory around Obstacle 1, and so on. Although the robot will still
be able to avoid the obstacles in a collision-free way, this behavior is unwanted because
it results in a jagged path which can place high acceleration forces on the robot, and it
also complicates the tree search (as will be described in Section 4-2) by adding many
more nodes to the tree. The switching behavior can occur in 2D and 3D, for both
static and moving obstacles. Although this problem is especially prevalent in situations
with multiple moving obstacles, it can also occur with multiple static obstacles (as in
the case of Figure 4-4a). This problem can sometimes be solved by choosing a higher
convergence factor γ (as in Figure 4-5, where γ is larger than in Figure 4-4a). However,
we propose as a solution to the switching problem to adapt the algorithm in Section
2-5-2 and Section 3-2 such that the robot follows the line l towards the target until the
closest obstacle is a disturbing obstacle. The difference with the existing algorithms
in the previous chapters is, that once the robot leaves the limit cycle trajectory of one
obstacle, it does not immediately start to follow the limit cycle trajectory of the next
disturbing obstacle, but instead follows l until the next disturbing obstacles is closer
by than the previous obstacle. This solution to the switching problem is illustrated in
Figure 4-4b.

4-2 Tree search for finding the shortest path

Some of the problems with the Velocity Obstacle Method can be solved by trying several
rotation directions, and choosing the one that leads to the shortest path. This will not only
solve the problem of computing the globally (resolution) optimal rotation direction for a single
moving obstacle, but it will also yield the globally (resolution) optimal rotation directions in
the case of multiple obstacles. In the case of 3D obstacles, the globally resolution optimal
rotation direction is the rotation direction, that is used in the tree search, which leads to the
shortest path. The resolution can be increased by using more rotation axes in the tree search.
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(a) When multiple obstacles are avoided with
different rotation directions, the robot can start
to switch between the two obstacles. When Ob-
stacle 1 is no longer a disturbing obstacle, Ob-
stacle 2 is the closest disturbing obstacle and
the robot starts to move downwards to avoid
Obstacle 2. However, now Obstacle 1 becomes
a disturbing obstacle again, and so on.

 

 

Obstacle 1
Obstacle 2
Start Position
Target Position
Trajectory

(b) The switching problem can be solved by let-
ting the robot follow the line towards the target
as long as the closest disturbing obstacle is not
the closest obstacle in general.

Figure 4-4: Multiple static or moving robots can cause a switching behavior in the robot when
avoiding the obstacles, especially when the convergence rate γ is small. In this example the
convergence rate γ is chosen very low, to better illustrate the problem.

In 2D, since all rotation directions (clockwise and counterclockwise) around each obstacle can
be searched, we obtain a globally optimal rotation direction by using the tree search.

Without a tree search, the choice of rotation axis with multiple obstacles might not be optimal,
since the algorithm only considers the closest obstacle, as shown in Figure 4-5. In Figure 4-5
the robot decides to go clockwise around Obstacle 1 because the line l towards the target
lies above the center of the ellipse. However, by clockwise rotation, Obstacle 2 becomes a
disturbing obstacle at a later stage, which would not happen if counterclockwise rotation was
chosen. Therefore, the total path turns out longer than when Obstacle 1 would be avoided
counterclockwise.

We propose to use a tree search in order to find the (resolution) optimal rotation direction.
By using a tree structure, the algorithm does not have to compute the same partial path twice
when computing all possible paths with multiple obstacles. Each node in the tree represents
the length of the partial path from the moment an obstacle becomes the closest disturbing
obstacle to the moment the robot leaves the obstacle. Each node is associated with a certain
rotation direction, the number of children of each node depends on the number of rotation
directions that is searched. The root node represents the start position, and has an associated
length of zero. The end node represents the partial path from the last obstacle to the target
position. We first discuss the tree search for the 2D case in Section 4-2-1. Then, we explain
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Trajectory

Figure 4-5: Since the line lt0 from the start position to the target position at t0 lies above the
center of Obstacle 1, Obstacle 1 is avoided clockwise, which is not the best choice since Obstacle
2 then becomes a disturbing obstacle and the total path is longer than when Obstacle 1 would
be avoided counterclockwise. The path counterclockwise around Obstacle 1 is shown in Figure
4-6a as the path from the start position, via node 2 and node 5, to the target position.

the principles of the tree search in 3D in Section 4-2-2.

4-2-1 Tree search in 2D

In 2D, there are two possible rotation directions around each obstacle, clockwise and coun-
terclockwise. The maximum number of paths around the obstacles is denoted as Nmax, and
depends only on the number of obstacles. With only two possible rotation directions around
each obstacle, it is straightforward to show that

Nmax = 2nO , (4-6)

where nO is the number of obstacles. In most cases, the number of paths around the obstacles
is fewer than Nmax, since not every obstacle is a disturbing obstacle in all paths, e.g., Obstacle
2 in Figure 4-6a is not a disturbing obstacle in the path that goes counterclockwise around
Obstacle 1.
As shown in Figure 4-6, each partial path around an obstacle is represented by a node in
the tree. This tree is created level by level, i.e., in Figure 4-6, first node 1 and node 2 are
computed, then node 3 to node 5 are computed, and finally node 6 and node 7 are computed.
At each level, the total costs of each node are determined by combining the individual costs
of all parent nodes. The tree search is complete when all nodes are end nodes, or when the
associated cost of one end node in a certain level is lower than the costs of all other nodes. In
the example of Figure 4-6, there four levels: node 0 is in level 0, node 1 and node 2 are in level
1, and so on. At level 2, the cost of end node 5 is still higher than the costs of node 3 and node
4, and therefore, the next level is explored as well. Then, the cost of end node 5 is less than
the cost of end node 6 and end node 7, which is why the associated path, counterclockwise
around Obstacle 1, is chosen in this example.
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(a) All rotation directions are tried in order to
find the one that leads to the shortest path.

D0 = 0

D1 = 2.30 D2 = 2.30

D3 = 5.90 D4 = 5.50 D5 = 8.44

D6 = 9.21 D7 = 8.64
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(b) Building a tree with all possible rotation di-
rections, using as nodes the partial paths. The
total accumulated distance at each node i is de-
noted by Di.

Figure 4-6: Graph search for rotation direction. Two obstacles must be avoided by the robot to
reach the target. The paths around each obstacle, using the two rotation directions, is computed
and represented in a graph.

In the example of Figure 4-6, the obstacles are static. In the case of multiple static obstacles,
the advantage of the tree search is that the globally optimal rotation direction can be deter-
mined by searching all clockwise and counterclockwise paths around every obstacle. When
there is one or multiple moving obstacles, the benefit of using the tree search is even greater,
since it takes care of the problem of finding the optimal rotation direction with multiple ob-
stacles as well as the problem of finding the optimal rotation direction in the global frame
instead of each of the local frames of the obstacles, as discussed in Section 4-1-4.

When all obstacles are either static or moving with a constant, known velocity, the tree search
has to be done only once, at the start position of the robot. However, when the positions
and velocities of the obstacles are not exactly known, or even changing, the tree search has
to be done more often, namely every time one of the obstacles changes course. This requires
extra computational power, and the necessary computational power increases exponentially
with the number of obstacles, as stated in (4-6). If a tree search is done at each time step,
the complexity of the total algorithm can increase by an order of magnitude with only a few
obstacles. We show an example of the increase in computational complexity in Section 4-3.
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Figure 4-7: An example of a poor choice of a rotation axis leading to a spiraled curve on the
surface of the obstacle. Here the rotation axis Ar = [−1,−1,−0.5]T .

4-2-2 Tree search in 3D

A tree search in 3D is different from the tree search in 2D. The main difference comes from
building the tree: since there are infinitely many rotation directions, only a subset of all
rotation directions can be searched. Therefore, the optimal rotation direction can generally
not be computed; instead, the resolution optimal rotation axis can be found, where the
resolution can be increased by exploring more rotation axes. Not all rotation directions will
steer the robot around the obstacle: some rotation directions will result in a spiraled or closed
elliptic curve on the surface of the obstacle, as shown in Figure 4-7. When the rotation axis
Ar is chosen perpendicular to the surface and in the direction of the target, the robot will
only converge to the surface of the ellipsoid and stay there, similarly to the trajectory shown
in Figure 3-1b.
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Figure 4-8: Axes perpendicular to the direction of the target are chosen for the tree search, the
yellow plane represents a plane perpendicular to the direction of the robot Vr. In this case five
axes, represented by the arrows on the yellow plane, are chosen for the tree search.
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Consequently, when building a tree with different rotation axes, these problematic rotation
axes should not be included. Instead, a subset of rotation axes is determined using a procedure
similar to the computation of the rotation axis in Section 3-3-2. Recall that in Section 3-
3-2 the rotation axis Ar is computed as the cross product of the direction to the target Vr
and a rotated vector VAB in the tangential plane at the intersection point. One method
of building a tree with different rotation axes would be to rotate VAB using several different
angles (azimuths) and computing their corresponding rotation axes Ar. The resulting rotation
axes all lie on a plane perpendicular to the desired direction of the robot Vr. Thus, instead
of using several different vectors VAB, the rotation axes can be directly computed as vectors
lying in a plane perpendicular to the direction vector Vr. This is illustrated with five different,
equally spread rotation axes in Figure 4-8.

These five rotation axes are then used to compute their corresponding trajectories using
the method described in Section 3-3-2. Similarly to the 2D case, the partial trajectories
correspond to nodes in the tree, as shown in Figure 4-9. Note how quickly the three expands
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(a) Five rotation directions are tried in order to
find the one that leads to the shortest path.

D0=0

D1 = 3.40 D2 = 3.80 D3 = 3.50 D4 = 3.50 D5 = 4.10

D6 = 6.25 D7 = 6.64 D8 = 6.25 D9 = 6.59 D10 = 7.63

(b) Building a tree with five rotation axes, using
as nodes the partial paths. The total accumu-
lated distance at each node i is denoted by Di.

Figure 4-9: Graph search for rotation axis. One obstacle must be avoided by the robot to
reach the target. The paths around the obstacle, using the five rotation axes, are computed and
represented in a tree.

compared to the tree in the 2D case: the maximum number of paths Nmax in 3D is

Nmax = NnO
rot , (4-7)

where Nrot is the number of rotation axes that is searched.

The obstacle in the example in Figure 4-9 is static; when there are multiple moving obstacles,
the procedure of the tree search is exactly the same. In Figure 4-8, the rotation axes are
equally spread, i.e., the angle between any two neighboring vectors is 360◦/5 = 72◦. The tree
search will yield the resolution optimal rotation axis, where the resolution can be increased
by searching more rotation axes. For fast moving obstacles, the rotation axes can be chosen
such that more axes are searched that lead to trajectories passing behind the obstacle, and
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fewer axes that lead to trajectories passing in front of the obstacle. This method is not used
in this thesis due to time constraints, but can be considered as a recommendation.

4-3 Case study

The methods described in the previous sections are used in a case study, where a robot must
avoid two moving obstacles. The same obstacles as in the example in Section 3-4 are used,
but now with different positions and with constant velocities. The start situation is shown in
Figure 4-10.
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Figure 4-10: Obstacle avoidance scenario, the arrows represent the velocities of the obstacles.

The start positions of the obstacles O1 and O2 are, respectively,

Q1 =

−1
−1
−1

 and Q2 =

2
2
6

 .
The lengths of the semi-axes of the obstacles are the inverses of the entries in diagonals of
the matrices Σ1 and Σ2, where

Σ1 =

1 0 0
0 1 0
0 0 1

2

 and Σ2 =

1
2 0 0
0 1

2 0
0 0 1

3

 .
The semi-major axis of O2 is aligned with the z-axis, the orientation of O1 is arbitrarily
picked. The orientations of obstacles O1 and O2 are respectively

R1 =

 0.35 −0.57 0.74
0.93 0.11 −0.35
−0.12 −0.81 −0.57

 and R2 =

0 1 0
1 0 0
0 0 1

 .
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The robot’s start and target position are respectively

Rpos =

−2
−4
−3

 and Tpos =

3
4
5

 .
The velocities of obstacles O1 and O2 are in the directions of their semi-major axes. Since
the inverses of the last entries in Σ1 and Σ2 have the greatest value, they correspond to the
semi-major axes of the obstacles which are represented by the last columns in R1 and R2
respectively. Each obstacle has a speed of 0.5, corresponding to the velocities

VO1 =

−0.06
−0.41
−0.29

 and VO1 =

 0
0

−0.50

 .
The velocities of the obstacles do not necessarily have to be in the direction of the semi-major
axis of the obstacle, they can be in any direction. In this case, however, the velocities of the
obstacles are chosen in the directions of their semi-major axes since most vehicles with oblong
shapes move in the direction of their semi-major axis, e.g., submarines and airplanes.

With all the positions and velocities known, at the start position, (4-3) and (3-8) are used
to compute the collision time and intersection points with respect to each obstacle. Then,
since O1 is the closest disturbing obstacle, a tree is built to search for the best rotation axis
in the tree. First, three different rotation axes are computed, and used to compute their
corresponding trajectories around O1, using (3-11) with γ = 2. Subsequently, O2 becomes a
disturbing obstacle, and the trajectories around O2, again using three different rotation axes,
are computed. The three trajectories around O2 are computed from all the end points of the
three trajectories around O1, leading to a total of 32 = 9 trajectories, as shown in Figure
4-11. Note that the robot does not immediately start encircling O2 once it leaves O1; this is
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Figure 4-11: All trajectories that are searched are shown as the dotted lines. Three rotation
axes are searched for each obstacle; these rotation axes equally spread.

a result of the policy described in Section 4-1-4 to eliminate the switching effect. This policy
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can be seen in Figure 4-11 and Figure 4-13, where, once the robot leaves O1, it first moves in
a straight line towards the target before starting to avoid O2.

The resulting tree with the associated total distances is shown in Figure 4-12. With the speed
of the robot Rspeed = 1, the total distance has the same numeric value as the amount of time
it took to cover that distance. The path with the smallest total distance is chosen, which in

D0 = 0

D1 = 5.60 D2 = 5.20 D3 = 4.90

D4 = 9.90 D5 = 13.40 D6 = 10.00 D7 = 10.40 D8 = 11.60 D9 = 9.80 D10 = 10.10 D11 = 12.00 D12 = 9.60

D13 = 14.05 D14 = 19.60 D15 = 13.85 D16 = 14.77 D17 = 16.90 D18 = 13.61 D19 = 14.40 D20 = 17.50 D21 = 13.32

Figure 4-12: The tree of possible paths is built using three rotation axes for each obstacle. The
total accumulated distance at each node i is denoted by Di.

this case is the path via node 0–node 3–node 12–node 21. The corresponding rotation axes
for O1 and O2 are, respectively,

Ar1 =

 0.91
−0.18
−0.38

 and Ar2 =

 0.91
−0.15
−0.39

 . (4-8)

Now that the rotation axes are known for both obstacles, (3-11) are used to compute the
trajectory of the robot. The resulting trajectories are shown in Figure 4-13.

Note that the tree search can be performed either at each time step, or, since the obstacles
have constant velocities, only at the start position. If the velocities of the obstacles do not
change, both approaches result in exactly the same trajectory. When doing a tree search,
the robot computes the proximity and desired velocity for each position on the partial paths
in the tree, which imposes quite a high computational load. For the tree search at the start
position, the total number of points that is computed is 1084, with a time step of ∆T = 0.1s.
Therefore, if a tree search is performed at each time step, it will approximately increase
the computational load by three orders of magnitude; however, the computational load will
decrease closer the the target, since fewer nodes have to be computed. For the implemented
algorithm in MATLAB the tree search takes approximately 1 second. However, the algorithm
is not optimized for speed, and the computational load can most likely be significantly reduced.
In this case study the tree search is only done once, that is, at the start position.
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(a) Avoiding the first obstacle using the rotation
axis Ar1 in (4-8), t = 1.7s.
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(b) After avoiding O1, the robot moves in a
straight line to the target position, until O2 be-
comes the closest obstacle, t = 3.7s.
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(c) Avoiding O2 using the rotation axis Ar2 in
(4-8), t = 8.7s.
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(d) The robot reached the target position, and
the trajectory is complete, t = 13.3s.

Figure 4-13: Several stages in the trajectories of the robot and the obstacles.

Master of Science Thesis A. Aalbers



52 Avoiding Multiple Static and Multiple Moving Obstacles

4-4 Conclusions

We combined the Limit Cycle Method with the Velocity Obstacle Method for avoiding moving
obstacles in 2D and 3D. The problem is transformed to a problem where the obstacle is
static by introducing a local coordinate frame whose origin moves along with the center of
the obstacle, and whose axes are aligned with the semi-axes of the obstacle. In the local
coordinate frame, the desired direction can be computed using the methods described in the
previous chapters. This direction is then translated to the global coordinate frame to yield
the velocity components of the robot. The optimal rotation direction around the obstacles
is chosen in the local obstacle frame, which generally is not the optimal rotation direction in
the global frame since the resulting path in the global frame might be longer than when a
different rotation direction was used. Also, since the robot bases the rotation direction only
on the closest obstacle, the rotation direction might not be optimal with multiple (static or
moving) obstacles. Both these problems are addressed by performing a tree search, where
the paths resulting from several different rotation direction are computed. Using this tree
search, the globally optimal rotation directions can be found with multiple moving obstacles
in 2D, and the resolution optimal rotation axes with multiple moving obstacles can be found
in 3D. This three search, however, imposes an extra computational load. By combining the
Velocity Obstacle Method with the Limit Cycle Method, and with the use of a tree search
for finding the optimal rotation direction, multiple ellipsoidal obstacles with constant and
bounded velocities can be avoided in 2D and 3D.
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Chapter 5

Conclusions and Recommendations

With the increase of the number of mobile robot applications in the past decades, robot
motion planning has become more and more important. However, in most cases, the problem
of finding a collision-free path towards a target position is too computationally complex, and
the optimal solution cannot be found. Many algorithms have been developed that find an
approximate solution. Some of these algorithms, such as the approximate cell decomposition
methods, can find a so-called resolution optimal path (see Section 2-2), i.e., a path closer to the
optimal path can be found by decreasing the size of the cells, but these algorithms are often
computationally complex. Other algorithms, e.g., most of the the potential field methods,
are computationally inexpensive, but in general may not find the optimal solution, and can
get stuck in a local minimum before reaching the target. Of all the existing algorithms, there
is no perfect algorithm that is suitable in all situations; yet, an appropriate motion planning
method must be chosen in each motion planning problem.

The obstacle avoidance problem, which is a subproblem of the motion planning problem, can
be solved using one of the techniques discussed in Chapter 2. The recent Limit Cycle Method
is one of these obstacle avoidance algorithms that has been used for avoiding obstacles in
the context of robot soccer. This method places a limit cycle around the obstacle, and uses
the corresponding trajectories of the limit cycle to avoid the obstacle. Once it has passed
the obstacle, the robot leaves the limit cycle and moves on to the next obstacle, or, if there
are no more obstacles in its path, it moves in a straight line to the target position. The
main advantage of the Limit Cycle Method is its simplicity and that it requires very little
computational power. However, the existing Limit Cycle Method concerns only the 2D case
with static obstacles, limiting the practical applicability of the method.

In this thesis, a new algorithm has been developed that uses the Limit Cycle Method to
avoid static obstacles in three dimensional space. Moreover, attractors (which are limit cycles
in 3D) with ellipsoidal shapes are used instead of spherical ones. The attractor does not
necessarily represent the exact shape of the obstacle; instead, it is used to represent a safety
bound around an obstacle. Using ellipsoidal shapes allows for different obstacle shapes to be
represented better, and it can also be used to assign larger safety bounds to certain parts
of the obstacle, e.g., a larger safety bound can be used in front of the obstacle. A set of
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differential equations is proposed that generates a stable ellipsoidal attractor; this attractor
is then placed on the obstacle, and the robot follows its trajectory until it has passed the
obstacle. The ellipsoid can be avoided by either choosing a fixed rotation direction, or by
computing the resolution optimal path around the surface of the ellipsoid. The resolution
optimal path around the surface of the ellipsoid is computed using an algorithm that finds
an approximate solution to the so-called second geodetic problem, in which the task is to
compute the shortest path between two points on the globe. This same method is used to
compute the rotation direction on the surface of the ellipsoid.

The existing 2D Limit Cycle Method, as well as the new 3D version, contain a convergence
term in the differential equations that are used to compute the robot trajectories. This
convergence term, however, introduces a detour in the path of the robot by making the
robot’s trajectory converge in the direction of the center of the obstacle. Indeed, convergence
in the direction of the center of the ellipsoid is unwanted when the robot does not move across
the center of the ellipsoid, but instead only passes the ellipsoid on one of its flanks. Thus,
a new set of differential equations is proposed that creates a semi-stable attractor, yielding
convergence in the direction of the target position. This semi-stable attractor is stable for
all trajectories starting outside the ellipsoid, and, since the robot will never end up inside
the ellipsoid, this is sufficient to use the attractor for obstacle avoidance. By using this new
attractor, the robot no longer converges towards the center of the ellipsoid, which removes
the detour in the path of the robot whenever the robot is passing the obstacle on one of its
flanks. This approach solves the detour problem in both the 2D and the new 3D Limit Cycle
Method.

By incorporating the Limit Cycle Method with the Velocity Obstacle Method, moving ob-
stacles with a constant velocity can be avoided. The Velocity Obstacle Method transforms
the problem of avoiding a moving obstacle to a problem where the obstacle is static, by using
a local coordinate frame that moves along with the obstacle. However, the globally opti-
mal rotation direction can no longer be calculated directly when using the Velocity Obstacle
Method for moving obstacles. This is a result of the fact that the optimal rotation direction
is computed in the local coordinate frame, but, when transforming it to the global coordinate
frame, its optimality is lost. Also, in the case of multiple static obstacles (both in 2D and
3D), the computed rotation direction is generally not the globally optimal rotation direction.
Since the computation of the optimal rotation direction is based solely on the closest obsta-
cle, the computed rotation direction might not lead to the shortest total path when multiple
obstacles are present.

For multiple static or moving obstacles, the optimal rotation direction in 2D can be found by
searching the two possible rotation directions (clockwise and counterclockwise) around each
obstacle in a tree search. A tree is then built where the nodes of the tree represent the partial
trajectories around an obstacle, with their corresponding rotation direction. The globally
optimal rotation direction is consequently chosen as the one that leads to the shortest path.
In 3D, there are infinitely many possible rotation directions, and only a resolution optimal
rotation direction can be found by using the tree search. The disadvantage of the tree search
is that it increases the computational load of the Limit Cycle Method. On the other hand,
the lengths of the resulting robot trajectories are reduced by employing the tree search.

These contributions to the Limit Cycle Method result in an algorithm that is able to avoid
static and moving obstacles in 2D and 3D.
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Recommendations and future work
The Limit Cycle Method introduced in this thesis can be used to avoid moving obstacles.
However, the speed of the robot and the velocities of the obstacles are assumed to be constant,
and the robot is assumed to be without constraints, i.e., the robot can move in all directions
at any given time instant. In future studies, the effects of a variable robot speed can be
considered. A variable robot speed can result in not only decreasing the travel time, but it
can also be used in such a way as to meet the vehicle constraints, e.g., moving slower when
turning.

Another improvement can be made in the tree search for 3D obstacle avoidance. In this
thesis, a simple tree search is used to find the rotation axis by searching different, equally
spread rotation axes. This tree search can be improved by not limiting the tree search to
an equally spread set of rotation axes, but, e.g., searching more rotation axes that lead to
trajectories where the robot passes behind the obstacle, and searching fewer rotation axes
that lead to trajectories where the robot passes in front of the obstacle. Also, a different
search strategy can be investigated instead of the breadth-first strategy that is used in this
thesis, for instance, the A∗ algorithm [54]. These strategies could potentially decrease the
computational costs of the tree search by searching the tree more efficiently.

The original Limit Cycle Method has been tested on real robots, i.e., soccer robots. For
moving obstacles in 2D and 3D, the method has not yet been tested in experiments. The
Limit Cycle Method with moving obstacles in 2D could be tested using wheeled robots, such
as the soccer robots. For testing the Limit Cycle Method in 3D, other robots are needed, such
as small submarines or aerial vehicles. These robots do not necessarily need to be ellipsoidal;
as described in Section 2-5-1, many different shapes can be used as a limit cycle. These
other shapes can then be used for obstacle avoidance, but also for manipulator control or
for surveillance vehicles. Another area where the Limit Cycle Method might be useful is in
computer games; with its low computational costs (in the case of few obstacles) and smooth
trajectories, the Limit Cycle Method can be used to quickly compute trajectories of virtual
vehicles and thus reduce the computational load of the game. By testing the Limit Cycle
Method in one of these applications, its performance in real-life situations with uncertain
measurements can be tested, and compared to other motion planning methods.
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Appendix A

On 2D limit cycles

A-1 Van der Pol limit cycles

One of the best known limit cycles stems from the Van der Pol oscillator. Van der Pol found
stable oscillation in electrical circuits. The 2nd-order system can be described by

ẍ− µ(1− x2)ẋ+ x = 0, (A-1)

where x is the position and t is the time and ẋ = dx
dt . This equation can be seen as a mass-

spring-damper model where the damping force depends on the position. This equation can
be rewritten with x1 = x as

ẋ1 = αx2

ẋ2 = −αx1 + µ(1− x2
1)x2,

(A-2)

where µ is a nonnegative constant. All trajectories starting from any initial state (x1, x2)

Figure A-1: Phase portrait of a Van der Pol oscillator with µ = 1
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converge towards a closed curve, as illustrated in Figure A-1. The trajectories starting form
initial conditions

(x1i1 , x2i1) = (0.1; 0.15) and (x1i2 , x2i2) = (2; 2) (A-3)

are shown as the blue and red curve respectively. It is possible to proof mathematically that
the Van der Pol equation has a unique limit cycle using the Poincare-Bendixson theorem [5],
but this is beyond the scope of this thesis.

A-2 Lyapunov stability analysis on limit cycles used for obstacle
avoidance

The stability of the limit cycles described in Equations (2-6) can be shown using the direct
Lyapunov stability analysis method. The direct Lyapunov method begins with the intuitive
notion that one measure of the state of a physical system is the total energy stored in the
system [16]. For a stable system, the energy decreases over time and obtains a minimum at
a stable equilibrium point xe (e.g. a damped oscillator). Here x is a vector containing x1 and
x2. A scalar function V (x) of the states, called a Lyapunov function candidate, is defined
having the following properties:

• V (xe) = 0
• V (x) > 0, ∀x 6= xe

• V is continuous and has continuous derivatives with respect to all components of x

The Lyapunov function candidate is considered a Lyapunov function if the time derivative
along the trajectories of the system is less than or equal to zero for all states,

• V̇ (x) = ∂V
∂x ẋ ≤ 0

If a Lyapunov function can be found for a system, then the equilibrium is stable. If V (x) < 0
and V (x) is radially unbounded (||x|| → ∞ ⇒ V (x) → ∞) then the equilibrium is globally
asymptotically stable [16], meaning that all trajectories will converge towards the equilibrium
point as t→∞

Consider for the system (2-6) the Lyapunov function candidate

V (x) = x2
1 + x2

2 (A-4)

The time derivative of the Lyapunov function candidate along the trajectories of the system
(defined in (2-6)), is given by

V̇ (x) = 2x1ẋ1 + 2x2ẋ2

= 2x1x2 + 2x2
1(1− x2

1 − x2
2)− 2x1x2 + 2x2

2(1− x2
1 − x2

2)
= 2V (x)(1− V (x)).

(A-5)

The derivative of V (x) is positive for V (x) < 1 and negative for V (x) > 1. Hence, on the
level surface V (x) = c1 with 0 < c1 < 1 all trajectories will be moving outward, while on the
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level surface V (x) = c2 with c2 > 1 all trajectories will be moving inward. This shows that
the annular region

M = {x ∈ R2|c1 ≤ V (x) ≤ c2} (A-6)

is positively invariant; that is, every solution of (A-6) that starts in M remains in M for all
t ≥ 0. It is also closed, bounded and free of equilibrium points since the origin x = 0 is the
only equilibrium point. From the Poincare-Bendixson theorem it can be concluded that there
is a periodic orbit in M. Since the above argument is valid for any c1 < 1 and any c2 > 1, we
can let c1 and c2 approach 1 so that the set M shrinks toward the unit circle. This, in effect,
shows that the unit circle is a periodic orbit [27].

A-3 Example of the limit cycle method for obstacle avoidance

An example of the limit cycle method described in Section 2-5-2 is shown in Figure A-2. The
following steps are used:

1. Draw a line from the robot to the target in a global coordinate frame
∑
OXY ; the line

l is represented by
l : ax+ by + c = 0. (A-7)

2. Treat any obstacle as a disturbing obstacles Od if the line l crosses them, else, threat it
as a non-disturbing obstacle On.

3. Move towards the target if there is no disturbing obstacle Od.
4. Otherwise, follow the limit cycle trajectory that is generated around the closest disturb-

ing obstacle. Repeat steps (1)-(4) until the destination is reached.

At the start position a line lstart is drawn from start to goal position. Obstacle A is a
disturbing obstacle at this point, obstacle B is a non-disturbing obstacle. Step 4 is followed
until point 1, at this point B becomes a disturbing obstacle and A a non-disturbing obstacle.
The robot follows step 4 for obstacle B until point 2, at this point there are no more disturbing
obstacles, and the robot moves toward the goal position (step 3).
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Figure A-2: Navigation example
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Appendix B

On 3D limit cycles

B-1 Finding minimum of function

As discussed in Section 3-3-2, the attractor described by the differential equations (3-11) is
stable for trajectories starting outside the attractor, provided that

f(x) = x

a2 (x−A1) + y

b2 (y −A2) + z

c2 (z −A3) (B-1)

is larger than zero for all x 6= xe. The minimum of this function (which should be larger than
zero) can be found by solving the constrained optimization problem

min
x
f(x)

s.t. g(x) = 1−
(
x2

a2 + y2

b2 + z2

c2

)
≤ 0.

(B-2)

The minimum x∗ is obtained using Karush-Kuhn-Tucker multipliers [6]. The KKT conditions
state that there exists a µ such that

∇f(x∗) + µ∇g(x∗) = 0
µ · g(x∗) = 0

µ ≥ 0
g(x∗) ≤ 0.

(B-3)

First, the Lagrangian is computed as

L(x, λ) = x

a2 (x−A1) + y

b2 (y −A2) + z

c2 (z −A3) + µ

(
1− x2

a2 −
y2

b2 −
z2

c2

)
, (B-4)
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then, the optimality conditions are given by

2 x
a2 −

A1
a2 − µ

2x
a2 = 0

2 y
b2 −

A2
b2 − µ

2y
b2 = 0

2 z
c2 −

A3
c2 − µ

2z
c2 = 0

µ

(
1− x2

a2 −
y2

b2 −
z2

c2

)
= 0

µ ≥ 0

1− x2

a2 −
y2

b2 −
z2

c2 ≤ 0.

(B-5)

From the complementary slackness condition, it follows that either

µ = 0 or
(

1− x2

a2 −
y2

b2 −
z2

c2

)
= 0.

When µ = 0, then, from the first three conditions it follows that x = A
2 . However, since A is

a point on the surface of the attractor it follows that(
A1
a

)2
+
(
A2
b

)2
+
(
A3
c

)2
= 1,

and, consequently, that(
x

a

)2
+
(
y

b

)2
+
(
z

c

)2
= 1

4

((
A1
a

)2
+
(
A2
b

)2
+
(
A3
c

)2
)

= 1
4 .

This does not satisfy the inequality constraint, so µmust be greater than zero, and
(
1− x2

a2 − y2

b2 − z2

c2

)
=

0. All points on the surface of the attractor satisfy the KKT conditions. The smallest µ for
which the inequality constraint is met, is µ = 1

2 , which results in x∗ = A.
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