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Abstract

Effective test assertions are important for software quality, but their
creation is time-consuming. While Large Language Models (LLMs)
show promise in automated assertion generation, their size, cost, re-
source demands, and need for online connection often render them
impractical for widespread developer use. Knowledge Distillation
(KD) offers a solution to bridge that gap by transferring capabilities
from a large "teacher” LLM to smaller "student” models (SLMs).
However, the majority of the ground work on KD has been focused
on classification tasks and not on generative problems. This paper
investigates the feasibility of a test assertion generation task using
response-based Knowledge Distillation (KD) from a CodeT5-base
teacher. We specifically explore the impact of three parameters on
assertion quality and model efficiency - those being student model
size (number of layers), pretraining initialization, and loss weight-
ing. Our results demonstrate that distilled small student models
(231 MB), particularly those initialized from pretrained checkpoints
and fine-tuned with specific loss weight (a = 0.5) for the ground
truth and distillation losses, can retain a significant portion of the
teacher’s assertion generation performance when considering the
defined metrics - achieving around 83.9% of the CodeBERTScore
of the teacher with just 25.9% of the size. This work provides em-
pirical insights into creating specialized SLMs for test assertion
generation, highlighting practical configurations for deployment
in development environments.

1 Introduction

Software testing is crucial for developing reliable and quality soft-
ware [15]. An important, yet very time consuming part of testing
involves writing effective test assertions [31]. While techniques
like Search-Based Software Testing (SBST) have demonstrated ef-
fectiveness in generating assertions [13], they typically generate
them based on observed runtime values, assuming the initial cor-
rectness of the software. As a result, developers need to manually
review the generated assertions for correctness in order for them to
lead to effective tests. The recent advancements in Large Language
Models (LLMs) allow for new approaches to assertion generation.
Studies have shown their potential in generating more readable and
semantically richer assertions [11, 20], and specifically in enhanc-
ing test assertion generation by leveraging their understanding of
natural language and code [30], potentially reducing some aspects
of manual review compared to traditional techniques like SBST.
However, state-of-the-art LLMs (e.g. GPT-4) often cannot run on
a single machine or require online connection, making them im-
practical for developers. The usage of cloud-based LLMs also leads
to privacy concerns [3]. Locally deployable models address those
concerns directly. They also have many use cases, among which

is in-IDE offline code generation [26], and more specifically asser-
tion generation. While locally deployable models (e.g., DeepSeek
Coder 6.7B) could perform well when generating assertions for tests,
bigger local models still require significant local resources which
reduces their practicality (with DeepSeek Coder 6.7B in particular
requiring around 16GB of VRAM).

Knowledge Distillation (KD) [27] offers a promising approach to
bridge this gap. KD involves training a smaller "student" model to
mimic the behavior of a larger, more capable "teacher" model. This
approach aims to enable efficient, high-quality test assertion gener-
ation without the computational cost of large LLMs. Furthermore,
state-of-the-art KD techniques have shown to be able to outperform
small models trained from scratch [2]. However, most of the ground
work on KD so far has focused on classification tasks [12, 22], and
not on generative ones.

This paper investigates the feasibility of distillation of a CodeT5-
base teacher to create efficient student models for test assertion
generation. We specifically explore trade-offs in assertion quality
and model efficiency arising from three different factors of the
student model configuration: model size (number of layers and
parameters), pretraining initialization, and loss function weighting
(balancing ground truth learning against mimicking the teacher).
Our primary goal is to identify practical configurations for deploy-
ing small, local models that retain a lot of the performance of the
teacher model.

Our approach is an empirical evaluation after employing a response-
based KD [21]. We use CodeT5 (codet5-base version) as the teacher
model. We train multiple student models - smaller than 1GB and
with different sizes, initializations, and loss functions, that are more
thoroughly explained together with the experiment setup. The
evaluation is done by comparing assertion quality (using metrics
like CodeBLEU [18] and CodeBERTScore [32]) and computational
efficiency (based on model size and inference speed) against the
teacher model and other baselines.

Our contributions can be summarized as follows:

e Anempirical investigation into the feasibility of using knowl-
edge distillation from CodeT5-base to create efficient, local
student models for test assertion generation.

e A systematic evaluation of student model configurations,
analyzing the impact of initialization, loss function weight-
ing, and model size on the quality-efficiency trade-off.

e A publicly available replication package including model
configurations and evaluation scripts [5, 6].

2 Background and Related Work

In this section, we describe the background knowledge required to
understand the paper and discuss the related work.
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2.1 Software Testing and Test Assertions

Software testing is a phase of the software development lifecycle
[8]. It is crucial for maximizing reliability, quality and correctness of
software systems [15]. A core component of that phase is testing the
software system under predefined user inputs and then verifying
the outputs against the expected outcomes. The verification part
usually happens through test assertions [31].

A test assertion is a predicate that evaluates to true or false based
on the current state of what is being checked. It is embedded within
a test case and checks if a specific condition holds true at a particular
point during the test’s execution. Effective assertions are critical
as they precisely define the expected behavior and are the final
arbiters of whether a test passes or fails. Well-crafted assertions
directly target the functionality under test. However, writing such
effective assertions manually is a notoriously time-consuming and
error-prone task for developers, often becoming a bottleneck in the
testing process [31]. This challenge motivates the exploration of
automated approaches for assertion generation.

2.2 Automated Test Assertion Generation

Techniques like Search-Based Software Testing (SBST) have shown
promise in automatically generating test inputs to achieve high code
coverage [13]. However, SBST derives assertions from observed
runtime values of the program under test, implicitly assuming the
initial correctness of the code. This means that manual review
and refinement by developers is required to ensure the assertions
actually reflect the intended behavior.

Other traditional techniques range from dynamic analysis that
infers assertions from observed program behavior [7] to static anal-
ysis that identifies properties from source code [23]. While effective
in certain contexts, these methods often face limitations in scal-
ability, handling complex program logic, or once again requiring
significant manual effort. More recently, data-driven techniques, in-
cluding those leveraging information retrieval, have been explored
to retrieve and adapt existing assertions from code repositories [29].
Such techniques rely on the existence of assertions that are similar
enough to be adapted.

Recent advancements in Large Language Models (LLMs) have
opened new opportunities for automating various software engi-
neering tasks. LLMs, mainly based on the Transformer architecture
[24], are pretrained on a significant dataset of text and source code,
enabling them to understand and generate human-like text and
syntactically valid code [30]. Their capabilities extend to code gen-
eration, code completion, bug detection, and, relevant to this work,
automated test generation. Several studies have explored the poten-
tial of LLMs in generating entire test cases and, more specifically,
test assertions. For instance, LLMs’ ability to improve the readabil-
ity of generated tests has been demonstrated [11], and an empirical
evaluation of using LLMs for automated unit test generation has
been provided [20]. Focusing on assertions, LLMs can leverage their
understanding of natural language and code to enhance assertion
generation [30]. These studies highlight the promise of LLMs but
also implicitly point to limitations when using the most powerful
models (e.g., GPT-4), such as high operational costs, inference la-
tency, and reliance on online APIs, which can raise privacy concerns
for private codebases.

2.3 Knowledge Distillation Principles

Knowledge Distillation (KD) is a model compression technique that
aims to transfer the "knowledge" from a large "teacher"” model to
a smaller "student" model [12, 27]. The primary goal is to create a
student model that retains a significant portion of the teacher’s per-
formance for a specific task, while being substantially more efficient
in terms of size and inference speed. This makes KD particularly
attractive for deploying powerful models on devices with limited
resources or in latency-sensitive applications. However, most of
the KD work so far has been done with a focus on classification
tasks [12, 22].

The knowledge transfer in KD can take several forms. Response-
based KD, which is the primary approach in this study, trains the
student to mimic the teacher’s output. This involves matching the
teacher’s soft probability distributions over the output vocabulary
(using metrics like KL divergence) or matching the teacher’s hard
predictions (argmax outputs, using cross-entropy). Other forms in-
clude feature-based KD [19], where the student learns to reproduce
the teacher’s intermediate layer activations, and relation-based
KD [16], focusing on relationships between different parts of the
teacher’s representations.

The application of KD to LLMs, particularly for code-related
tasks, is an active area of research [27]. Knowledge Distillation in
theory can help the student model retain more general "knowledge"
from the teacher, even while training for a specific task - in our
case, a student model can develop an "understanding” of natural
language and code generation even while being specifically trained
to only replicate the teacher’s output for an assertion generation
task. Therefore, studies have shown that well-executed distillation
can lead to student models that outperform models trained from
scratch on the same data, especially when the teacher provides a
richer, smoother learning signal [2]. However, effectively distilling
complex reasoning or generation capabilities for nuanced tasks like
test assertion generation into very small student models remains
a challenge and requires careful exploration of different student
configurations.

Our work utilizes CodeT5, specifically the codet5-base variant,
as the teacher model. CodeT5 is an encoder-decoder LLM [24]
pretrained on code and code-related natural language text, making
it proficient in code understanding and generation tasks [25].

2.4 Evaluating Generated Code

In order to empirically evaluate the different configurations of the
student model, we need suitable metrics. One metric in particular
is CodeBLEU (BLEU [9] - Bilingual Evaluation Understudy), which
has shown promise in evaluating code [18]. The BLEU metric works
by dividing the output code into tokens (in our case - using the
model’s tokenizer), and then comparing similarity to the tokens of
the ground truth using n-gram comparison (n usually going from
n=1 to n=4). It is a more refined metric compared to percentage
of matching assertions (which is too strict) or number of match-
ing symbols per assertion (which leads to high similarity between
two opposite assertions). Leveraging the model’s tokenizer allows
BLEU, despite lacking inherent understanding of the code’s pur-
pose, to gain some insight into the significance of the tokens based
on how the model itself interprets the data. Furthermore, it’s worth



noting that while BLEU focuses on surface-level similarity, it has
shown the ability to correlate with the functional correctness of the
generated code, especially when combined with appropriate train-
ing methodologies [32]. CodeBLEU consists of four parts - n-gram
matching (which is the described BLEU metric), weighted n-gram
matching (which is similar to the BLEU metric, but the weighting
involves assigning weights to n-grams based on their frequency or
importance), syntax match (a score derived by comparing the ASTs
[1] of the generated and ground truth code) and data flow (which
we will not focus on in this paper).

Another metric that was used is CodeBERTScore, which has
proven to be one of the most effective methods to evaluate code gen-
eration. It uses a CodeBERT (in our case the microsoft/graphcodebert-
base) model to find the embeddings of the generated and the refer-
ence code and then compare those embeddings. This metric greatly
benefits from CodeBERT’s specific training for code-related tasks
and natural languages [10].

3 Methodology

This section details the methodology that was followed during the
distillation process of the CodeT5 (codet5-base) teacher model for
the task of automated assertion generation. Here, we describe our
distillation pipeline, the dataset that was used for the training, the
configurations of the teacher and the student models, the training
process itself, and the evaluation metrics that were used. We will
cover key decisions that were made for the methodology and the
reasoning behind them.

3.1 Distillation Pipeline

Our approach is centered on response-based KD. The core idea is to
train a student model to mimic the output of a CodeT5 (codet5-base)
teacher model. For this, the general pipeline (as shown in Figure 1)
involves:

(1) Finding a dataset of code snippets.

(2) Preprocessing the dataset.

(3) Fine-tuning the CodeT5 teacher model for the purpose of
assertion generation.

(4) Using the CodeT5 teacher to generate test assertions for
the preprocessed snippets.

(5) Training various student model configurations on the same
input, using the output of the teacher model and the ground
truth in order to calculate the loss.

(6) Evaluating the performance and efficiency of the distilled
student models.

For the distillation process itself, we primarily focus on transfer-
ring knowledge via the teacher’s logits (output probability distri-
butions for token generation), complemented by an optional loss
component against ground truth assertions when available and
applicable. This means that for the scope of this research, we do
not consider the teacher’s hard predictions (argmax outputs).

We will cover each of the pipeline steps more thoroughly in the
other subsections of this section.

3.2 Dataset

The original dataset used comes from a Zenodo replication package -
specifically "AsserT5: Test Assertion Generation Using a Fine-Tuned
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Figure 1: Distillation pipeline.

Code Language Model (Replication Package)" [17]. This dataset
contains Java codebases that have tests which we assume to be
correct. The dataset then underwent preprocessing to suit our needs,
with the final dataset containing the following data for each entry:

o The test with masked assertions - the assertions were
masked so the student model can generate them instead.

o The original assertions - used for the loss function and
for some evaluation metrics (such as accuracy).

e The focal method - the method that is being tested, this
allows for the model to have some extra context. By giving
just the focal method instead of the focal file we reduce the
risk of going over the model’s context window.

o Teacher generated assertions - while not used for teacher
hard loss, this is still part of our dataset, allowing us to easily
run evaluation metrics on the teacher without having to
rerun the entire model to generate those assertions.

o Teacher logits - The teacher’s output logits for the same
focal method and masked test as input, compressed using
the LZ4 algorithm [28].

Furthermore, the dataset was filtered so that only tests that only
use the focal method (and not other methods of the focal file) remain.
This was again done due to the smaller context window of CodeT5,
and only influences the performance of the teacher model - meaning
that it has no impact on the knowledge distillation itself, which is
the core topic of this paper.

The assertions generated by the teacher and the teacher logits
were derived from the output of a fine-tuned CodeT5-base model.
The teacher model itself was fine-tuned on the rest of the fields of
the dataset - using the masked test and focal method as inputs, and
using the original assertions for the loss function. Due to the com-
putational power needed, the teacher fine-tuning and collection of
the output logits was done on a server provided by TU Delft, while
the student model training was done on another device. Therefore,
the data needed to be transferred, which is why LZ4 compression
was used.

Finally, the dataset was split into a training and a validation
subset, with sizes of 18000 and 2000 entries respectively, in order to
allow for everything described in this paper to be fully reproducible.

3.3 Teacher model: CodeT5 (codet5-base)

The teacher model, as already mentioned, is CodeT5, and more
specifically the codet5-base variant. We utilize the pretrained check-
point Salesforce/codet5-base available through the Hugging Face
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Transformers library. CodeT5-base, with 220 million parameters,
serves as a strong baseline for code understanding and generation
tasks, while being small enough to efficiently fine-tune and gather
data for the training of the student model. Another reason for the
choice of this model is that its outputs have smaller size than other
popular models (like DeepSeek Coder 6.7B). The outputs are smaller
due to the context window of the model and its embedding size.
This is important for our process due to the data transfer between
devices that was already described.

3.4 Student models

All student models were derived from CodeT5-small (60M parame-
ters), which is the smaller version of CodeT5-base (220M parame-
ters), allowing us to evaluate distillation on a much smaller model.
When changing the size of the student model, we changed the
number of encoder and decoder layers only. This allowed for a
direct comparison of scaling effects and the benefits of pretraining,
while staying within the same architectural family, using the same
tokenizer.

Student models can be initialized randomly or from pretrained
checkpoints. Starting from a pretrained model (e.g., a smaller vari-
ant of the teacher’s architecture) often provides a better starting
point, potentially leading to faster convergence and superior final
performance, as the model already possesses some foundational lan-
guage or code understanding. We compared the Salesforce/codet5-
small checkpoint to an equivalent architecture that was not pre-
trained, in order to learn the effects of pretraining the model before
KD.

Another crucial factor is the student model size. There is an
inherent trade-off: smaller models are more efficient but generally
have lower capacity, potentially limiting their ability to learn com-
plex patterns from the teacher or achieve high performance. We
experimented with three different sizes, with 3, 6, and 12 layers
(both the number of encoding and decoding layers). This meant
experimenting with 38M, 60M, and 105M parameters.

A key aspect of KD is the design of the loss function. The total
loss for training the student often combines a distillation loss (mea-
suring how well the student mimics the teacher) and a student loss
(measuring how well the student performs on the ground truth task,
typically using standard cross-entropy). These are often combined
via a weighted sum: Liya) = @ * Lgtudent + (1 — @) - Lgistin, Where o
is a hyperparameter balancing the two objectives. We compared
models with weight for the distillation loss 1.0, 0.75, 0.5, 0.25 and
0.0 respectively. This allowed us to indirectly compare knowledge
distillation (@ = 0.0) to normal training based on ground truth
(a = 1.0).

This led us to researching the following student models - five
models for investigating the a weight parameter, two for doing the
same on randomly initialized models, and two more for investigat-
ing the impact of different sizes of the models:

Student Model 1 - pretrained, @ = 0.0, 6 layers

Student Model 2 - pretrained, o = 0.25, 6 layers
Student Model 3 - pretrained, @ = 0.5, 6 layers

Student Model 4 - pretrained, @ = 0.75, 6 layers
Student Model 5 - pretrained, o = 1.0, 6 layers

Student Model 6 - randomly initialized, @ = 0.0, 6 layers

e Student Model 7 - randomly initialized, @ = 1.0, 6 layers
o Student Model 8 - randomly initialized, & = 0.0, 3 layers
e Student Model 9 - randomly initialized, ¢ = 0.0, 12 layers

3.5 Training Process

Student models were trained in the following way:

3.5.1 Loss Function. The total loss Ly, for training the student
models is a weighted combination of a distillation loss Lgji; and,
for certain experiments, a ground truth loss Lgydent: Liotal = @ -

Ltudent + (1 — @) * Lgitin

o Distillation Loss (Lgjstin): This component encourages the
student to mimic the teacher. It is calculated as the Kullback-
Leibler (KL) divergence between the softened probability
distribution of the teacher’s logits (using a temperature
Tyistil = 1.0) and the student’s logits.

o Ground Truth Loss (Lgiydent): When human-written ground
truth assertions are used, this loss is the standard cross-
entropy between the student’s predicted token probabilities
and the one-hot encoded ground truth assertion tokens.

e Weighting («): We experimented with different values of
a, specifically 0.0, 0.25, 0.5, 0.75. 1.0, to understand the im-
pact of balancing direct learning from ground truth versus
mimicking the teacher. When « = 0, only distillation loss
is used.

3.5.2 Optimizer and Hyperparameters. All models were trained
using the AdamW optimizer [14] with a batch size of 4 per GPU,
weight decay of 0.01, and a learning rate of 5e-5. Training was
conducted for a maximum of 5 epochs, as overfitting was noticed
afterwards. Early stopping was based on validation loss with a
patience of 3 epochs.

4 Study Design

This section outlines our research questions and the experimental
design that was used to answer them. Our experiments follow the
distillation pipeline and model configurations detailed in Section 3
(Methodology).

4.1 Research Questions

For all of the following research questions, assertion quality will be
measured by similarity, accuracy, parsability, CodeBLEU, and Code-
BERTScore, while computational efficiency will be measured by
student model size and inference speed. Those metrics are described
in the Dependent Variables subsection (4.2.2).

(1) How does the assertion quality and computational effi-
ciency of a distilled student model compare to its CodeT5-
base teacher?

(2) To what extent does KD improve the assertion generation
quality of a small pretrained model (codet5-small) compared
to its baseline performance before task-specific training?

(3) What is the impact of varying the loss function weight
(balancing ground truth vs. teacher signals) on the assertion
quality of distilled pretrained student models?



(4) For randomly initialized student models, how does pure
knowledge distillation (& = 0.0) compare to pure ground-
truth fine-tuning (a = 1.0) in terms of assertion quality and
learning?

(5) How does varying the size of randomly initialized distilled
student models impact the trade-off between assertion qual-
ity and model efficiency?

4.2 Variables

4.2.1 Independent Variables. The independent variables that dif-
ferentiated the models were model size, loss function weight (a),
and model initialization as described in the student models section
(Section 3.4).

4.2.2 Dependent Variables.

e Similarity - Similarity of the original assertions and the
predicted assertions, measured by longest matching se-
quence of characters as a percentage of the total length.

e Accuracy - Percentage of generated assertions that com-
pletely match the original assertions as a string.

e CodeBLEU - Calculated using the Python codebleu library.
Described more thoroughly in the Background and Related
Work section.

e CodeBERTScore - Calculated using the Python bert-score
library. Uses the GraphCodeBERT (microsoft/graphcodebert-
base) model for embedding generation. Described more
thoroughly in the Background and Related Work section.

o Parsability - Percentage of the generated assertions that
can be parsed into valid Java code using the Python javalang
library.

e Model Size - The model size represented in MB.

o Inference Speed - Average time (ms) to generate a single
assertion on DelftBlue [4] on a single Nvidia A100 GPU.

4.3 Common Experimental Procedures

For all of the research questions, the evaluation was done on the
validation dataset. All defined quality metrics were compared, with
a focus on CodeBERTScore and CodeBLEU. Results were presented
in a comparative table, containing only the final results of the
completely trained models.

4.4 Specific Experimental Procedures per
Research Question

4.4.1 RQI. Performance of Distilled Student Model vs. Teacher Model.
This RQ aims to study how effective KD can be in creating a well-
performing student model. The two models that were compared
were the teacher model and Student Model 3. All defined efficiency
metrics were also added to the comparative table.

4.4.2  RQ2. Performance of Pretrained Student Model vs. Distilled
Pretrained Student Model. This RQ aims to quantify the improve-
ment gained specifically from the distillation process when starting
with a pretrained student model. The two models that were com-
pared were Student Model 3, and the CodeT5-small pretrained
model before the distillation was done.
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4.4.3 RQ3. Influence of Loss Function Weight (a) on Pretrained
Student Models. This RQ aims to determine the optimal balance be-
tween learning from ground truth and learning from teacher logits
for a pretrained student model. The models that were compared
were Student Models from 1 to 5. A graphic comparing the Code-
BERTScore over the 5 epochs for all of the models was included.

4.4.4 RQ4. Distillation vs. Ground Truth Fine-Tuning for Randomly
Initialized Models. This RQ aims to compare the effectiveness of
distillation versus standard ground-truth fine-tuning when starting
from a randomly initialized student model of a fixed size. The
models that were Student Models 6 and 7. A graphic comparing
the parsability rate metric over the 5 epochs for both models was
included.

4.4.5 RQ5. Impact of Student Model Size. This RQ aims to analyze
the trade-off between model size, assertion quality, and training
efficiency for student models trained from scratch (random initial-
ization due to the lack of existing CodeT5 architecture pretrained
models of different sizes) via distillation. The models that are com-
pared were Student Models 6, 8 and 9. Instead of comparing the
final results in a table, here we will have two graphics - one for the
change of validation loss (based only on ground truth loss) over
epochs, and one for change of CodeBERTScore over epochs.

4.5 Technical Specifications

The training of all the student models was done on a high-performance
computing cluster node, using an NVIDIA A100 GPU with 4 CPUs
and 5GB of RAM per CPU. The final evaluation of the models was
done on a personal device (with an NVIDIA GeForce GTX 1050
Mobile GPU and 16GB of RAM), due to the codebleu Python library
(and more specifically the 0.7.1 version) not being available on the
DelftBlue HPC.

5 Results

This section presents the empirical results obtained from our ex-
periments, structured according to the research questions.

5.1 RQ1. Performance of Distilled Student
Model vs. Teacher Model

We evaluated both models on the same 500 data points from a
validation dataset. We present the result in Table 1, including all of
the assertion quality and efficiency metrics.

The fine-tuned CodeT5-base teacher establishes a strong upper
bound for assertion generation quality. The distilled student model
achieves a significant portion of this performance, particularly in
semantic metrics like CodeBERTScore (where it retains 83.9% of
the teacher’s knowledge), while offering substantial improvements
in model size (being only 25.9% of the size of the teacher in MB,
and just 231 MB in total). The student model performs significantly
worse when it comes to accuracy (exact matches in assertions),
achieving only 13.4% accuracy compared to the teacher’s 44.4%, but
its assertions are still mostly parsable code (with a rate of 96.2%) and
as already stated the generated assertions seem to be semantically
similar to the ground truth.
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Table 1: Distilled Student Model vs. Teacher Model

Model Accuracy (%) Similarity (%) CodeBERTScore CodeBLEU Parsability rate (%) Size (MB) Inference speed (ms)
CodeT5-base 44.4 83.9 0.875 0.664 99.2 892 355
Student 13.4 66.9 0.734 0.395 96.2 231 118

5.2 RQ2. Performance of Pretrained Student
Model vs. Distilled Pretrained Student Model

The results of the evaluations of both models are presented in Table
2.

As evident from the table, the CodeT5-small model before dis-
tillation and fine-tuning performed significantly worse than the
distilled student model that we compared it to (and that started
from the same checkpoint). Distillation significantly improves all
assertion quality metrics.

5.3 RQ3. Influence of Loss Function Weight («)
on Pretrained Student Models

We trained the pretrained Salesforce/codet5-small checkpoint using
five different values for the loss function weight parameter - 0.0
(pure distillation), 0.25, 0.5, 0.75, 1.0 (pure ground truth learning).

5.3.1 Final performance. The results in Table 3 indicate that con-
figurations with a mix of distillation and ground truth loss (& = 0.5
and a = 0.75) slightly outperform pure distillation (¢ = 0.0) and
pure ground truth fine-tuning (& = 1.0) in terms of CodeBERTScore
and CodeBLEU (which, as discussed, are our most sophisticated met-
rics), though the differences are marginal. Pure distillation (o = 0.0)
achieves the highest accuracy among these configurations.

5.3.2  Performance trend over epochs. Figure 2 illustrates the Code-
BERTScore of all five models across the five epochs of training. We
can see that the @ = 0.5 model performs very well even after the
first epoch, showing that 0.5 loss function weight yields accept-
able results very fast. All of the models seem to begin converging
around epoch 4 and they reach a similar result towards the end,
even though the a = 0.75 model begins outperforming the o = 0.5
in the later epochs.

CodeBERTScore Across Epochs for All Models
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Figure 2: Comparison of CodeBERTScore over epoch for all
five models.

5.4 RQ4. Distillation vs. Ground Truth
Fine-Tuning for Randomly Initialized
Models

We trained two codet5-small models with randomly initialized
weights: one using only distillation loss (¢ = 0.0) and one using
only ground truth loss (a = 1.0).

5.4.1 Final performance. Table 4 compares their final performance
after 5 epochs for the two models. When starting from random ini-
tialization, both pure distillation and pure ground truth fine-tuning
achieve very low absolute performance compared to pretrained
models. Pure ground truth fine-tuning (« = 1.0) results in slightly
higher accuracy and significantly better parsability, while pure dis-
tillation (a = 0.0) achieves a marginally better CodeBERTScore and
similarity.

5.4.2  Performance trend over epochs. Figure 3 shows the parsability
rate over epochs. The distilled model has a good parsability score
of over 90% a lot earlier than the ground truth learning model, but
it eventually catches up and surpasses the distilled model.

Parsability Rate Across Epochs for All Models
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Figure 3: Comparison of parsability rate over epoch for both
models.

5.5 RQ5. Impact of Student Model Size

The validation losses over each epoch for all three models can be
observed on Figure 4, while Figure 5 shows the change in their
CodeBERTScore. Furthermore, their sizes in MB were respectively
146MB, 231MB and 398MB, making all of them deployable on a
single device with a dedicated GPU.

We can notice that the biggest model begins with a lower Code-
BERTScore after the first epoch, but catches up and surpasses the
others within the five epochs. Furthermore, it seems to have a much
lower validation loss, indicating that it is the best model out of the
three.
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Table 2: Pretrained Student Model vs. Distilled Student Model

Model Accuracy (%) Similarity (%) CodeBERTScore CodeBLEU Parsability rate (%)
CodeT5-small 0.0 15.8 0.356 0.113 15.0
Student 13.4 66.9 0.734 0.395 96.2
Table 3: Student Models with Different o Values

Model  Accuracy (%) Similarity (%) CodeBERTScore CodeBLEU Parsability rate (%)

a=0.0 13.5 66.8 0.734 0.390 96.4

a=0.25 11.6 66.2 0.730 0.393 97.4

a=0.5 13.4 66.9 0.734 0.395 96.2

a=0.75 12.7 66.8 0.735 0.394 97.0

a=10 11.7 67.1 0.733 0.390 97.4

Table 4: Randomly Initialized Student Models (Distillation vs. Ground Truth Learning)

Model Accuracy (%) Similarity (%) CodeBERTScore CodeBLEU Parsability rate (%)
a=0.0 0.3 49.2 0.590 0.190 90.8
a=10 0.4 48.6 0.579 0.191 99.4

Validation Loss for All Model Sizes

Model

— 1

Figure 4: Comparison of validation loss over epochs for all
model sizes.

6 Discussion

This section interprets the findings presented in Section 5 and
discusses their implications, both in the context of the research
questions and in the context of the broader question of using KD
to create a student model that generates test assertions.

Our experiments demonstrate that KD can effectively transfer
assertion generation capabilities from a CodeT5-base teacher to sig-
nificantly smaller student models. The distilled students, while not
matching the teacher’s peak performance, offer a compelling trade-
off between assertion quality and computational efficiency, making
them viable for resource-constrained development environments.

6.1 Interpreting Key Findings

Here we interpret the key finding for each research question.

CodeBERTScore for All Model Sizes

.
0.60 /

JE——

0.59

CodeBERTScore
°
&
®

057

Model

— 12

Epoch

Figure 5: Comparison of CodeBERTScore over epochs for all
model sizes.

6.1.1 RQI. Student Model 3’s ability to retain 83.9% of the Code-
BERTScore of the teacher, despite the lower accuracy (13.4% vs.
44.4% for the teacher model), suggests that while students may not
replicate assertions identically, they capture much of the intended
meaning. The significant reduction in model size (25.9% of teacher’s
MB size) and faster inference (237ms or 3 times faster) makes this a
practical compromise for many applications that focus on semantic
correctness and efficiency.

6.1.2 RQ2. The contrast between the codet5-small model’s per-
formance before and after distillation shows the necessity of task-
specific training, even for models pretrained on code. KD proved
highly effective in transferring task-specific knowledge for asser-
tion generation, more than doubling the performance of the codet5-
small model in all metrics.
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6.1.3 RQ3. The similar results for all « values suggest that for a
pretrained model, the primary bottleneck for further quality im-
provement might be its inherent capacity (or model size). However,
configurations with a mix of distillation and ground truth loss
showed slightly better results in some metrics during early epochs
(as seen in Figure 2). Furthermore, it is important to consider that
pure distillation achieved the highest accuracy, even though this
model exclusively learns from a teacher that only has 44.4% ac-
curacy. On top of that, the teacher logits were compressed and
later decompressed, meaning that some of that accuracy may be
lost during that process. This shows the potential of KD, especially
if used on a better teacher model, or distilled to a slightly larger
student model architecture.

6.1.4 RQ4. When training randomly initialized codet5-small mod-
els, the overall performance was considerably lower than their
pretrained counterparts, highlighting the significant advantage
of pretraining. Interestingly, pure distillation led to a model that
achieved a reasonable parsability rate (over 90%) faster than pure
ground truth fine-tuning, as illustrated in Figure 3. This suggests
that KD helps the student model learn other useful knowledge, such
as code understanding. Eventually, the other model surpasses that
parsability, which is to be expected, considering it is learning to
directly do the original assertions. The CodeBERTScore is higher on
the distillation derived model, demonstrating that KD successfully
captures some code and natural language understanding from the
teacher even on non-pretrained student models.

6.1.5 RQ5. The biggest model had a higher potential than the
other two models based on the huge difference in validation losses,
as illustrated in Figure 4. On top of that, it took more time to learn,
possibly due to the higher number of parameters (starting off with
the lowest CodeBERTScore as evident in Figure 5), but given enough
time it began to outperform the smaller models and did not seem to
plateau after 5 epochs like them. This indicates that slightly bigger
models can offer a big performance improvement given enough
training time. Finally, the varying validation loss difference between
the three models also signals a non-linear relationship between
model size and performance.

6.2 Broader Implications

Our findings reinforce the potential of KD as a viable technique
for creating specialized, efficient LLMs for software engineering
tasks. Specifically for automated test assertion generation, this
study suggests that developers can leverage distillation to create
small, locally deployable models that, while not perfectly replicating
a large teacher’s output, can generate semantically relevant and
largely parsable assertions, while being deployable on a wide range
of devices.

7 Threats to Validity

This section covers several factors that may limit the generalizabil-
ity and scope of our findings.

The performance of our distilled student models is inherently
capped by the quality of the fine-tuned CodeT5-base teacher, which
is itself a model that is not too large. If the teacher produces sub-
optimal assertions, the students will learn these imperfections. To

mitigate that, we also evaluated the teacher model’s outputs and
compared our models to it as a baseline. However, factors like com-
pression of the teacher’s logits may also hinder the performance of
the teacher after the dataset transfer.

Our experiments utilized a dataset derived from AsserT5, which
focuses on Java. The findings might not directly generalize to other
programming languages, project types, or different styles of asser-
tions. Furthermore, the data underwent filtering for data entries
that focus on a single focal method, which may also impact the
results. When it comes to the dataset, we made sure that the valida-
tion and training datasets do not overlap in order to assure actual
performance evaluation.

8 Responsible Research

This research was conducted with a consideration for responsi-
ble practices. We have clearly documented the methodology and
dataset sources, and we have added files with model configurations
for full reproducibility of results (the configurations also include
the seeds for the randomness used in the training process). We
used publicly available models (like the different CodeT5 versions
from Hugging Face). The dataset that we used (AssertT5) is also
publicly available and under the Apache License 2.0. Training LLMs
can be computationally and resource-intensive. We utilized shared
university HPC resources (DelftBlue) for more intensive tasks like
training. The smaller student models that we discuss require less re-
sources, potentially having a positive environmental impact. We do
not foresee direct negative societal impacts or high risks of misuse
from generating test assertions.

9 Conclusion and Future Work

Automated test assertion generation has significant importance in
enhancing software quality and reducing developer effort. How-
ever, the practical application of powerful Large Language Mod-
els (LLMs) for this task is often hindered by their computational
demands and need for access through an online API. This paper
explored the feasibility of using response-based knowledge dis-
tillation (KD) to transfer assertion generation capabilities from a
CodeT5-base teacher model to smaller student models. Our empiri-
cal evaluation systematically explored the impact of student model
size, pretraining initialization, and loss function weighting () on
assertion quality and computational efficiency. Key findings show
that distilled student models, especially those initialized from the
Salesforce/codet5-small pretrained checkpoint, can retain a sub-
stantial amount of the teacher model’s capabilities of assertion
generation. One of the student models in particular (Student Model
3 with & = 0.5) retained 83.9% of the teacher’s CodeBERTScore,
while being just 25.9% of the teacher’s size in MB and having around
3 times faster inference speed.

In summary, this work provides empirical evidence that knowl-
edge distillation is a viable strategy for creating specialized, com-
putationally efficient student models capable of generating seman-
tically relevant and largely parsable test assertions.

Based on this research, we can also see a few good directions for
future research. While we employed several established metrics,
future work could incorporate the mutation score to evaluate the
fault-detection capabilities of the generated assertions. This would



involve generating mutants of the focal methods and assessing
whether the assertions compile and pass on the original code and
fail on the mutants, providing a more direct measure of assertion
strength. Comparing pretrained models with different sizes is also
something that could be explored, but such models with the Code-
T5 architecture are not publicly available at the time of writing this
paper. Finally, doing a qualitative analysis and human evaluation
would help gain more insights into the quality of the generated as-
sertions and find any patterns associated with it. By pursuing these
directions, the development of even more effective and practical
small language models for automated software testing tasks can be
advanced.
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