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Abstract
Accurate aerodynamic and aeroacoustic simulations of helicopters and wind turbines require the inclu-
sion of the blade elasticity into the computational setup. In the case of a rotorcraft, this is required to
correctly capture the interactions between the complex rotor aerodynamics and the flexible blade struc-
ture occurring during maneuvers and forward flight. In the case of wind turbines, the main motivation
is that the lightweight large blades often operate under turbulent inflow conditions due to the effect of
other wind turbines, surrounding environment and blade tower, which can trigger aeroelastic phenomena
potentially leading to a catastrophic system failure.

In the case of coupled fluid-structure simulations, it is frequent to employ low-order aerodynamic
models for the computation of the aerodynamic forces to provide to the Multi-Body Dynamic (MBD) or
Finite-Element (FE) solvers for the structural domain. If this approach can be efficient for optimization
purposes, parametric studies and the simulation of maneuvers or critical operating conditions, it is
often insufficient in predicting the involved flow phenomena responsible for structural vibrations and
noise, namely the development of wake and tip vertices, dynamic stall and transonic flows. For this
purpose, high-fidelity Computational Fluid Dynamics (CFD) solvers can be exploited for more accurate
simulations in the context of detailed design, although this comes at a significantly increased simulation
cost, which obstacles the application of these tools to industrial problems. Part of this cost can be
recovered by coupling such CFD solvers with MBD tools - capable of modelling flexible bodies - by means
of reduced-order one-dimensional FE models in place of expensive three-dimensional FE simulations.

Within this framework, this thesis focuses on the development and verification of a coupling method-
ology between the Lattice-Boltzmann CFD solver PowerFLOWR© and the MBD tool SimpackR© - both
products belonging to the SimuliaR© simulation portfolio of Dassault Systèmes - for pitching and plung-
ing airfoils featuring lumped structural parameters under flow conditions compatible with the reference
analytical models (incompressible, high Reynolds number and attached flows). This is achieved by firstly
verifying the multibody and fluid simulation-setups separately for prescribed aerodynamic forces in the
first case, while input harmonic pitching and plunging motions are used in the second. The verification of
the MBD setup, returns a perfect match with the reference kinematic states for the same analytical aero-
dynamic models employed. On the other hand, the CFD setup provides a very good comparison with the
theoretical lift and aerodynamic moment prediction only for a truly pitching airfoil, while the equivalent
approaches for virtual plunging (flow blowing/suction) and pitching (body forces applied to fluid volumes
near the airfoil) return less favourable matches, depending on the motion conditions employed. Next,
a coupling methodology is firstly developed for a reduced-order aerodynamic routine and SimpackR©,
which is positively compared with analytical aeroelastic solutions, confirming its correct working and
providing high accuracy after tuning the coupling timestep of the underlying explicit fluid-structure in-
teraction algorithm. Once the methodology is extended to PowerFLOWR©, the final CFD-MBD coupling
is tested for several amplitudes and reduced frequencies of motion always against theoretical aeroelastic
predictions, returning a good match for small-amplitudes and slow motion conditions. In addition, the
different approaches to model the airfoil pitching motion (rotating mesh and body forces) in the fluid
solver are assessed and compared favourably against each other. As a conclusive effort, the coupling is
applied to a bi-dimensional airfoil flutter case, returning a prediction of the flutter velocity within 1%
difference with respect to analytical methods.
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6.2 Time-histories of the plunge velocity ḣ (right) scaled by U∞ = 34.7223m/s and lift coeffi-
cient cl (left) (ρ = 1.1766kg/m3, c = 0.46m same U∞) for the second test case #2 of the
1 DoF PowerFLOWR©-SimpackR© coupling with LRF (red line) and analytical reference
(black squares). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
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1
Introduction

This chapter serves as introduction to the project thesis and it starts, in sec.1.1, with an overview of
the main simulation methods for rotorcraft and wind turbines aeroelasticity by referring to the related
available literature. In addition, also the motivations for pursuing the main thesis goal, which is a fluid-
multibody coupling to target such applications, are provided in the first section of this chapter. Next,
the research objective and questions are outlined in sec.1.2, while the main research method/approach
employed is discussed in sec.1.3. Eventually, sec.1.4 defines the structure of this report.

1.1. Project framework and motivations
Rotary-wing aircraft have always been characterized by aeroelastic phenomena since the early develop-
ments during the second world war, and most of these phenomena are due to the complex interactions
between rotor aerodynamics - where transonic, highly unsteady, 3D, stalled and reversed flows can simul-
taneously appear - and the lightweight flexible structure of the blades [9], [7]. Regarding horizontal-axis
wind turbines (HAWT), the necessity to increase their power-harvesting purpose has led in the last
decades to larger and larger rotor diameters, resulting in an ever increasing importance of the elastic
behaviour of the slender flexible blades and their interaction with the random, 3D and unsteady wind
inflow conditions [10], [11], [12]. Therefore, in the context of designs based on computational simulations,
accurate aeroelastic simulations of rotorcraft and large HAWT require to account for the flexibility of the
structure when computing the aerodynamic forces exerted over the rotor blades. This can be obtained
by solving a fully coupled aeroelastic problem where aerodynamic, elastic and inertial rotational forces
(centrifugal and Coriolis) are simultaneously acting on the rotor blades.

Figure 1.1: Overview of the possible simulation methods for aeroelastic applications in the context of HAWT [1], but also
applicable to rotorcraft in general.

Coupled fluid-structure simulations for rotorcraft and HAWT can be performed by means of a plethora
of methods, as visible in fig.1.1. As the figure clearly shows, dedicated aerodynamic and structural models
are employed with multiple levels of fidelity available. Concerning the aerodynamic part of the problem,
this can be simulated by using, in order of fidelity, Blade Element Momentum Theory (BEMT), vortex
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and actuator type models, as well as CFD. If BEMT is appreciated for its reduced cost and simplicity
in the implementation, it requires many semi-empirical corrections based on wind turbine or rotorcraft
applications [1] (for instance tip and root losses, turbulent wake states, dynamic stall) which require
the tuning of their parameters to provide acceptable results. On the other hand, CFD is much more
computationally expensive, although it can return more accurate predictions of blade loading and rotor
wake convection due to the higher fidelity in the physical modelling [12].

Focusing on the structural side of the problem, two main approaches are customary, either based
on Multi-Body Dynamic (MBD) or Finite Element (FE) simulations. The first ones focus more on the
overall system, employing a higher level of abstraction and a limited number of Degrees of Freedom
(DoF). In contrast, the latter family takes more care of the body material and geometric details, with
a much large number of unknowns defined on top of surface meshes. FE methods can be much more
accurate than MBD ones, especially in the case of 3D-shell formulations, but rather expensive and often
too sophisticated, making them not the most natural modelling choice for propeller/blade elasticity [1].
A very good compromise is offered by modern MBD tools enhanced with flexible-body capabilities by
means of reduced-order linear or non-linear 1D-beam FE formulations, and among the others, Simulia
SimpackR© is a quite popular MBD solver used in the wind energy and rotorcraft community [13].

After describing methods for the separate fluid and structure domains, the two main approaches of
coupled fluid-structure simulation methods can be presented. When it comes to conventional design
practices, rotorcraft development still relies on low-fidelity engineering comprehensive codes. These
are specialized multi-physics tools featuring reduced order models for the aerodynamics and structure,
and are employed to simulate complex transient maneuvers, to perform rotor trimming, as well as for
optimization purposes and parametric studies thanks to their low computational cost, although they
often provide poor accuracy when predicting complex phenomena (high frequency impulsive noise and
air-loads) [14], [15]. Regarding wind turbine design, similar low-fidelity and cost-competitive tools are
available and employed in full-scale aeroelastic design, as described in [1].

If engineering comprehensive codes can be sufficiently reliable for the structural dynamics part of the
problem, their aerodynamic modules are frequently inadequate to capture the complex flow dynamics
characterizing both rotorcraft and HAWT. Therefore, advanced simulation-based design practices require
the coupling of high fidelity CFD tools with Computational Structural Dynamic (CSD) methods to
improve predictions of aerodynamic phenomena. However, this comes at the price of a much larger
simulation cost, which limits their applicability to complex maneuvers, rotor trimming, optimization
and parametric studies. An extensive review of these CFD-CSD couplings for rotor-crafts can be found
in [16], while in the case of HAWT, valuable examples are [17] and [18].

Even when high-fidelity CFD simulations are at stake, further distinctions can be made. Most of
industrial CFD practises are based on steady or unsteady Reynolds-Averaged formulations of the Navier-
Stokes equations (RANS), which model the effect of turbulent structures on the space-time solution of
the mean flow. This approach is moderately expensive, but limited by the calibration issues of the
turbulence models and it can not adequately predict the complex dynamics of stalled flows at high angle
of attach (AoA) occurring in HAWT [1]. More accurate methods are Large Eddy Simulations (LES),
where the space-time behaviour of the large scales of turbulence are solved, and only the effect of sub-grid
turbulence - which tends to have a universal behaviour - is modelled [12]. The major drawback of LES
is the tremendous cost for wall-bounded flows (unless wall models are employed) and their applicability
with industrial turnaround times is limited to simple geometries. A compromise between the two above
mentioned approaches are Detached Eddy Simulations1, but further research efforts are required to
completely setting up this methodology for industrial applications. Given the deficits of traditional
CFD methods, alternative fluid simulation methods, for example the Lattice Boltzmann Method (LBM)
can be considered. The LBM, and in particular the commercial solver Simulia PowerFLOWR©, provide
inherently unsteady and compressible flow solutions comparable to LES, in terms of accuracy, with the
advantage of low numerical dissipation, automatically generated Cartesian volume meshes and highly
efficient parallelization, all aspects that make this method a valuable alternative to LES for industrial
problems featuring complex geometries, as well as aeroacoustic and thermal simulations [19].

Based on the previously outlined framework and literature overview, the main motivation for de-
veloping a fluid-multibody coupling involving a LBM-based CFD solver and a MBD simulation tool
with flexible body enhancements consists in contributing to the development of high-fidelity aeroelastic
1A hybrid approach between RANS near the wall to model sub-grid structures and LES to resolve the engineering-relevant
flow dynamics far from the wall [1].
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simulations that can be competitive and exploitable also by the industry. Such high-fidelity simulations
- based on fully-coupled Fluid-Structure-Interaction (FSI) algorithms - aspire to become a reliable and
useful tool for designers of rotorcraft and wind-turbines to investigate complex aeroelastic and acoustic
phenomena, where the prediction of the aerodynamics is further improved by including the flexibility of
the structure. However, due to the time constraints of a master graduation project, this thesis limits
only to the development and verification of a coupling methodology for 2D airfoil problems. Therefore,
the actual goal of this thesis is to assess whether the coupling can return aeroelastic quantities as close as
possible to analytical reference solutions, in their range of applicability, and to investigate the possibilities
and limitations of both PowerFLOWR© and SimpackR© in modelling such problems.

1.2. Research objectives and questions
Within the previously outlined framework and literature, as well as motivations, the objective of this
master thesis research project can then be formulated as it follows:

To develop an aeroelastic computational methodology consisting in a coupling between a CFD tool (Simulia
PowerFLOWR©) and a MBD solver (Simulia SimpackR©) by independently verifying the simulation setup
of each tool on its own domain of interest, assessing the correct working and tuning the coupling FSI
algorithm, as well as by testing the accuracy of the final coupling for a range of conditions.

Given the above research objective, the following main research question can be formulated:

How to develop a methodology to couple PowerFLOWR© and SimpackR© by accounting for the possibilities
and limitations offered by the two solvers and how accurately can such a coupling predict the aeroelastic
solutions provided by analytical models?

The previous main research question can be further elaborated into the following four subquestions:

• Which are the available FSI algorithms to couple fluid and structural dynamics tools, what are the
issues/aspects to take care of and what is the most appropriate one, given the physical phenomena
of interest and the target applications?

• What are the methods that can be exploited to model pitching and plunging airfoil motions in the
PowerFLOWR© CFD setup and to what extent are these approaches suitable for FSI?

• What are the possible approaches to model aerodynamic forces in the MBD SimpackR© setup, in the
context of a coupling with an external tool?

• Independently of the FSI algorithm, what are the possible coupling strategies and media to couple
PowerFLOWR© and SimpackR© based on the capabilities and limitations of both solvers, software
aspects and feasibility constraints?

Part of these questions have been answered during the literature study activity performed at the be-
ginning of this research project, and the outcome of this activity constitutes the background knowledge
blocks shown on the left side of fig.1.2. On the other hand, another part of these questions have been
answered by the work carried out during this thesis by following a precise methodology, as discussed in
the next section.

1.3. Research approach/method
The combination of the previous research objective and questions prescribes a precise working method-
ology. This consists in a step-by-step approach where each activity needs to be carefully verified be-
fore moving to the following step and to reach the final coupling methodology between SimpackR© and
PowerFLOWR©. Such a sequential approach is described in the research approach diagram in fig.1.2. In
the diagram, the required know-how blocks on the left side are essential to achieve all the result blocks
on the right side. The latter follow one after the other, namely to achieve the final CFD-MBD coupling,
it is necessary to first verify the simulation setups of the MBD and CFD solvers independently. This
means that both the kinematic states computed by SimpackR© under prescribed airload components and
the PowerFLOWR© aerodynamic forces for prescribed motions need to be verified before the coupling
can be designed. Besides, the coupling design requires an intermediate step, where the complexity of
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Figure 1.2: Research approach/method of this thesis project.

the CFD-LBM solver is replaced by a surrogate code based on analytical models (coupling demonstrator
block in fig.1.2) for the sake of the assessment, as well as tuning of the FSI algorithm and coupling
methodology. Only at the end, the actual PowerFLOWR©-SimpackR© coupling can be investigated under
various motion and inflow conditions to understand its limitations, as well as to draw conclusions and
give recommendations for further work.

1.4. Report structure
The structure of this report follows the logical scheme shown in fig.1.2. Therefore, after this introductory
chapter, a description of the background knowledge required to achieve the research project goals is
presented in ch.2. In ch.3, the steps carried out to verify the MBD setup for prescribed aerodynamic
forces from analytical models are provided. Next, in ch.4, the CFD setup is described and verified for
prescribed harmonic pitch and plunge motions against the analytical prediction. The following ch.5 deals
with an extensive explanation of the design process and features of the CFD-MBD coupling. Finally,
in ch.6, the aeroelastic results of the coupling between PowerFLOWR© and SimpackR© are presented and
discussed.
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2
Background

The goal of this chapter is to serve as background for the whole thesis project by covering the most
important aspects and topics characterizing the research. To begin with, FSI is discussed in sec.2.1,
then the LBM fluid model and the PowerFLOWR© flow solver are presented in sec.2.2. Next, the MBD
theory for rigid bodies and the main features of the SimpackR© tool are discussed in sec.2.3. Finally, a
general introduction to unsteady aerodynamic phenomena characterizing wind turbines and helicopters
and a more detailed description of a few analytical unsteady aerodynamic models can be both found in
sec.2.4.

2.1. Fluid-Structure Interaction methods
FSI studies phenomena where the overall behaviour of a body is influenced by the mutual interactions
between fluid forces and the elasticity of the material itself [20]. Based on this definition, FSI can be seen
as a generalization of aeroelasticity, as it does not limit to typical aeroelastic applications (turbomachin-
ery, fixed wing and civil engineering) but FSI methods can be applied to parachutes, hemodynamics and
sound generation in blow musical instruments [21]. This wide range of FSI applications, corresponds to
an equally wide range of phenomena investigated, from the small fully-linearized oscillations of vibro-
acoustics to the large non-linear motions of aerospace systems affected by complex flow phenomena, like
transonic shock-boundary layer interaction [2]. Given the significant recent improvements in computing
power and numerical methods, FSI is primarily a computational subject. Therefore, FSI experts and
researchers are currently focusing on the development of either comprehensive numerical methods to
solve simultaneously fluid and structure equations, or accurate, robust and efficient couplings between
CFD and structural solvers. Both methods are relevant for industrial applications when it comes to
simulation-based design approaches where system performance is assessed at a global multi-physics level
to develop an engineering product. According to [22] and [23], FSI is, in general, characterized by four
cornerstones, such as the fluid domain/solver, structural domain/solver, time stepping approach (mono-
lithic or staggered) and interface treatment (matching the different structure and fluid mashes and fluid
mesh deformation). The first two aspects are discussed in detail in sec.2.2 and sec.2.3 of this chapter,
while the last two are the focus of this section, which starts by defining the FSI problem in terms of its
fundamental governing equations for the flow, structure and fluid-solid interface.

2.1.1. The FSI problem
A FSI problem can be seen as a "three-field problem" for the fluid, structure and interface domains
combined together [3]. Regarding the fluid flow domain, its behaviour is often described by employing
the ALE formulation1 of the Navier Stokes equations. This is shown below in their semi-discrete finite-
volume approximation:

d

dt

[
A ·W

]
+ Φc

(
W ,x, ẋ

)
= R

(
W ,x

)
(2.1)

In eq.2.1, W is the vector of the conservative flow quantities (unknowns) and A is the matrix resulting
from the finite-volume discretization of the domain. Besides, Φc is the vector of the convective fluxes in
the ALE representation, thus it takes into account also the convection due to the volume mesh motion.
Finally, R is the vector of diffusive fluxes, while ẋ and x are respectively the velocity and the position
1The Arbitrary Eulerian Lagrangian formulation is a method of writing equations for a moving material when the observer
moves in space with a velocity which differs from the one of the material. The ALE formulation is used both in solid and
fluid mechanics, and in the latter case it is also called dynamic mesh formulation.
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vectors of the moving frame with respect to the fixed one. More details on these terms are reported in
[2] and [3]. When it comes to the structure domain, a discretized finite-element representation of the
flexible body is employed, as shown in eq.2.2, consisting in a finite set of generalized coordinates qi by
means of the diagonal massM and stiffnessK matrices, the damping D matrix, the external fluid-force
element F fld coming from the eq.2.1, and a force vector of external loads F ext:

M q̈ +D q̇ +K q = F fld + F ext (2.2)

Besides, equations for the fluid-structure interface are required, as the interface acts as a pseudo-structure
enforcing the deformation of the fluid volume mesh so that it can follow the structural deformation. The
interface equation can be the same as eq.2.2, but usually simplified formulations with just fictitious
stiffness matrices are employed to avoid additional unsteady motions in the mesh [8]. More details on
the interface equations can be found in [3]. Finally, initial and boundary conditions need to be provided
and the most natural choice is to employ the Dirichlet-Neumann conditions prescribing the continuity
of stresses (equilibrium condition) and the continuity of displacements (compatibility condition) [2] and
[3].

2.1.2. Time stepping approaches
In the previous section, the FSI problem was mostly discussed in spatial terms, here its solution in time
is discussed by means of two main approaches, either the monolithic or the staggered/partitioned one.
The previous distinction deals with the solution of the algebraic system resulting from the space-time
discretization of the governing equations. In the monolithic approach, the structure and fluid domains
are discretized together and solved simultaneously as a unique block, while in the staggered one, different
tools/solvers are used to solve the structure and fluid equations separately.

Monolithic FSI
Due to the simultaneous treatment of the fluid and structure equations, this method leads very easily
to large and cumbersome systems of equations. This occurs even for simple problems, as in general
monolithic FSI methods are hard to implement and to solve, due to the conditioning of the overall
system matrix [24]. Furthermore, monolithic FSI is also intrinsically inefficient and it does not allow
to use dedicated methods and setups for the flow and the structure domains. A relevant example is
that monolithic FSI forces to employ the smallest timestep between the two, and in typical engineering
applications the difference can be of orders of magnitude. Therefore, the employment of staggered FSI
and separate solvers allows not only to use different and optimized timesteps, but also different time
marching schemes, namely implicit ones with large timesteps for the structure, and explicit schemes
with small timesteps for the fluid domain [4]. Regarding practical aspects, there are also other reasons
to prefer staggered FSI to the monolithic one. One of them is the impossibility of using dedicated
solvers/methods, leading to loss of modularity and preventing from recycling existing, validated and
specialized tools for the separate domains. For these reasons, monolithic approaches are not so popular
and few examples can be found in literature and commercial codes, primarily on simple geometries, and
where fluid and structure scales are limited and compatible [3]. Although there are many motivations
for preferring staggered FSI methods to the monolithic approach, the latter has the advantage of being
very little influenced by those stability issues affecting staggered schemes. More in detail, the interface
equation might not be relevant for monolithic FSI, due to the simultaneous treatment of fluid and
structure equations with similar meshes, whereas, in the case of staggered FSI, the interface is the
location where the two domains are coupled by means of boundary conditions and the interface stiffness
equations. Therefore, such a interface treatment aspect affecting staggered FSI might lead to instabilities
due to the merge of data obtained with different space-time resolutions and methods, as well as to the
strategy of coupling in time the two solvers. A discussion on the errors caused by such instabilities
affecting staggered FSI can be found in [8].

Tightly-coupled staggered schemes
In staggered FSI schemes, the compatibility of stresses and displacements at the interface has to be
satisfied instantaneously in time and continuously in space. Therefore, following the approach in [25],
fluid forces P n+1 are functions of the structural displacements un+1 at the same time step tn+1, and
such structural displacements are functions of fluid forces evaluated at the same time step likewise:

P n+1 = f(un+1) and un+1 = g(P n+1) at tn+1 (2.3)
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Eq.2.3 naturally leads to a time-implicit formulation of the coupling, where equations are usually solved
by means of iterative methods during each timestep. This is shown in fig.2.1 where the initial guess
for the forces computed with the displacements from the previous time step is improved by repeating
the coupling cycle (subiteration) until the difference between two subsequent force values is below a
certain threshold. The previously described approach - called block Gauss Seidel iteration scheme [26] -

Figure 2.1: Iterative version of the CPS scheme according to [2].

is one of the most simple tight/strong coupling schemes to implement, although it can suffer from poor
convergence [21]. In general, the disadvantage of this method is that the simulation cost is very likely
to be higher, but a larger coupling timestep can be used, which, combined with an efficient iterative
method (such as semi-implicit, fully implicit, predictor-corrector as discussed in [27]), can return much
more accurate results for a moderate increase of the simulation cost. However, given the PowerFLOWR©

explicit formulation in time and the impossibility to repeat the computation of the solution for an
arbitrary time step upon request, implicit FSI schemes are not further investigated and employed in
this thesis project. Finally, more information regarding fundamental aspects like under/over-relaxation,
convergence criteria and appropriate tolerances can be found in [28].

Loosely-coupled staggered schemes
Contrarily to tightly-coupled schemes, loose couplings approximate eq.2.3 by considering the value of
displacements or forces at the previous time step n, therefore leading to explicit or weak formulations:

P n+1 ≈ f(un) or un+1 ≈ g(P n) at tn+1 (2.4)

As already mentioned, staggered schemes tend to be unstable in general, especially if large coupling
timesteps are employed. Some authors argue that this instability is intrinsic in this kind of approximate
methods, while others believe it is consequence of inadequate time integrators [21]. In any case, such
an instability is related to the approximation in the transfer of forces and displacements, as these are
not computed at the correct time instant and a lag of one timestep is introduced [2]. The effect of the
approximation in eq.2.3 can be seen as an artificial mass effect, because the acceleration of the fluid due
to body motion introduces additional inertia into the system. As described in [21], the magnitude of
this phenomenon depends on the ratio between fluid and structure density, which for typical aeroelastic
applications is very small. Consequently, this leads to a negligible effect on the solution, making loose
couplings still of interest, provided that small coupling timesteps are employed in order to minimize
the error caused by the approximation in eq.2.4. In all the cases where the added mass effect is not
negligible - such as hydroelasticity - tight couplings are required [21]. There are two distinct families
of loose couplings, either serial or parallel schemes. In the first, the fluid and structural solvers run
one after the other in a sequential fashion, while in the second case they run simultaneously. The
simplest type of serial loose coupling is the Conventional Sequential Staggered (CSS) procedure [29] visible
in fig.2.2-(a), while its counterpart for parallel loose couplings is the Conventional Parallel Staggered
(CPS) scheme shown in fig.2.2-(b). Both methods are straightforward to implement and conceptually
very simple, but can suffer from instabilities and poor accuracy, especially the CSS method, where
the lack of synchronisation between fluid and structure leads to an error decreasing only linearly for
decreasing timestep even with dedicated second-order accurate in time solvers. Furthermore, if the
coupling timestep is not sufficiently small, this method might be unstable leading to totally incorrect
predictions, as discussed in [3]. Regarding the CPS method, it allows to naturally reduce the total
simulation time, provided that the timestep is kept relatively small to assure numerical stability and
sufficient accuracy [3]. To improve the deficits of these two schemes, more sophisticated methods have
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(a) CSS scheme with sub-cycling of the fluid phase. (b) CPS scheme.

Figure 2.2: Two of the most common and simple FSI schemes for loosely coupled fluid and structure solvers in time [3].

been developed. For instance, an improvement over the CSS method is the Improved Serial Staggered
(ISS) method [3], which can be considered as a mid-point staggered procedure. Besides, the ISS scheme
enforces the conservation of both velocity and displacements at the interface, achieving timesteps even
five times larger then those required by CSS [21]. Regarding parallel schemes, an enhancement of the
CPS is the Improved Parallel Staggered (IPS) [3]. The latter latter was developed to fix the CPS’s lack of
feedback between fluid and structure within each iteration by exchanging data at the middle of the time
step instead of at the end. According to [3], although the IPS returns an improvement of performance
over the CPS, it is still not as fast as the ISS.

Sub-cycling variant of staggered schemes
As staggered schemes allow to use different timesteps for the fluid and structure domains, this leads to
the sub-cycling variant of staggered schemes, as shown in fig.2.2-(a), for the fluid phase. Typically, the
coupling timestep ∆t equals to the structural timestep ∆ts, and the fluid time step ∆tf can be either
derived by choosing an appropriate number of subcycling iterations nsc or the number of subcycling
iterations can be derived from ∆tf , if the latter is prescribed. This approach saves computational time
and resources, since the structure is solved at a lower frequency of update and the number of data
exchange between the two solvers is reduced [30]. Two important problems are related to subcycling
schemes: the first one is the reconstruction and even distribution of the structural displacement (which
is provided every ∆ts) within the subcycles of the fluid solver ∆tf , the second one is the determination
of which interface pressure to transfer to the structural solver [31]. The first aspect is relatively easy to
solve, as either the force value at the last subcycle or, even better, an average over ∆ts can be returned
[4]. On the other hand, the second aspect is more difficult to solve, as the entire structure motion should
not be applied during the first fluid subcycle, but evenly distributed by means of suitable methods to
reconstruct the interface motion [4]. The simplest of these methods is a linear interpolation of the
displacements, but this leads to a lack of continuity for the velocity of the reconstructed interface motion
at every coupling instant, since the solution will only be continuous. Such velocity and also acceleration
discontinuities can negatively impact on the prediction of the unsteady surface fluid pressure [31] and
this might lead to the potential propagation of spurious acoustic waves with an over-estimation of noise,
especially if the flow solver is compressible. Always according to [31], better interface motion in the
fluid solver can be achieved if higher order interpolation methods are employed, for instance spline
interpolation. Nevertheless, this could also generate additional oscillations in the reconstructed motion
due to the necessity of matching the first and second derivative at every ∆ts. Regarding the thesis, a
loose coupling approach with subcycling is required, since the computational timestep of PowerFLOWR©

for typical high Re number applications can be orders of magnitude smaller than the structure one, while
the interface motion reconstruction is handled by means of linear interpolations, as discussed in sec.5.4.1.
Finally, as reference for these aspects, [32] and [33] deal with the application of the subcycling approach
to LBM-based CFD solvers on Cartesian grids can be considered.

2.1.3. Interface treatment
The interface treatment is a crucial aspect of staggered FSI methods and it typically consists of two
aspects: matching the fluid mesh and the structural mesh at the interface, and fluid mesh movement or
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deformation according to the ALE formulation, see fig.2.3 from [2] and [4]. As these issues are primarily
related to 3D flexible structures, which has not been considered in this thesis, here only a short overview is
present. The first issue deals with both lack of conformity between the two meshes and different grid-size,

Figure 2.3: Dealing with the equilibrium and consistency BCs at the interface of different fluid and structural meshes,
reference [2] and [4].

see fig.2.4-(a), as well as the treatment of gaps and overlaps shown in fig.2.4-(b). This is related to the
properties of energy conservation and interpolation consistency for the match of data on the two sides
of the interface respecting the fundamental compatibility and equilibrium interface relations. Among
the different methods, the most common ones are the Weighted Residual Method and Radial Basis
Function Interpolation [2], [34]. For more advanced methods, [21] and [22] can be considered. Regarding

(a) Different fluid and structure meshes at the interface [2] and [4] (b) Interface irregularities [2].

Figure 2.4: Geometric and topological issues concerning the matching of different fluid and structural meshes.

the second aspect, there are many ways of deforming the fluid mesh based on the elastic deformation
of the body surface and interface. The most simple one is to recompute a new fluid mesh after each
coupling iteration. Although this solution is very robust - as the new mesh is completely uncorrelated
to the old one - it is rather undesirable due to the computational cost, update frequency, continuous
user interaction, as well as the lack of conservation of physical quantities, unless these are retained
by interpolation. Alternatively, automatic and efficient methods are more popular, and most of these
fall into two big families, mesh movement approaches for structured meshes (for instance Trans-Finite
Interpolation) and those for unstructured meshes. To mention a few: spring analogy, functional-based,
Laplace and Biharmonic equation-based methods [2].

2.2. Fluid model and solver
2.2.1. The Lattice Boltzmann Method
PowerFLOWR© is an unconventional CFD tool, as it is based on the LBM, contrarily to most of the CFD
tools relaying on the Navier Stokes equations. Within this section, the theoretical foundations as well
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as the most important physical and numerical aspects of such method are explored, in particular the
Boltzmann Transport Equation and the way the LBM is derived from it, the lattice models, the main
equations and boundary conditions. More details about these topics and on the whole LBM can be found
in literature, for instance [35] and [36].

The continuous Boltzmann Transport Equation
If the Navier-Stokes Equations relay on the assumption that the fluid-flow can be modelled as a con-
tinuum, the Boltzmann Transport Equation generates from the Kinetic Theory of Gases. According to
this model, fluids are considered as collections of a very large amount of discrete particles moving with
random motions and exchanging momentum and energy through streaming and billiard-like collisions
[37]. Due to the particles number and their highly chaotic behaviour, fluid properties are described sta-
tistically, with thermodynamic quantities resulting from an average of particle kinematic states. Within
this framework, the Boltzmann Transport Equation in eq.2.5 is a Partial Differential Equation (PDE)
describing the transport of the particle distribution function f=f(x, e, t):

∂f

∂t
+ e · ∂f

∂x
+ F · ∂f

∂e
= Ω (2.5)

This statistical quantity estimates the probability of an existing particle at point [x,x+ ∆x] and at the
continuous microscopic velocity [e, e+ ∆e]. In the equation, the space and time evolution of the particle
distribution function is influenced by a collision operator Ω accounting for particle interactions and by
an external force vector F modelling external influences. The Boltzmann Transport Equation (1872)
represents the analytical reference from where the LBM was developed starting from the 70s with the
method of Lattice Gas Automata [38]. In its current formulation, the LBM can be seen as a special finite
difference discretization of the Boltzmann Transport Equation.

Differences with the Boltzmann Transport Equation
At first, the LBM can be considered as simplification of the Boltzmann model for the dynamic behaviour
of gases by reducing the particles number [37] and by introducing an intermediate - called mesoscopic
- level between the microscopic world of particle kinematics and the continuum level of macroscopic
thermodynamic quantities. Besides, the position and motion of particles in space are limited to a finite
set of grid positions, called lattice nodes, which implies a prescribed number of possible directions and
values for the microscopic velocity ei. More in detail, the LBM replaces the continuous distribution
function f=f(x, e, t) of the Boltzmann Transport Equation with a discretized fi existing only along the
finite directions ei and depending only on the lattice nodes xi. Therefore, fi(xi, t) can be re-interpreted
as the probability, for each particle, of streaming along one of the available directions in the lattice.

Lattice Models
The lattice is one of the key components of this method, as it does not only define the allowed positions
and directions for particles at their mesoscopic level, but it also embodies the volume mesh where
computations are performed to get a flow solution. For a 2D model, particles are restricted to stream

(a) D2Q9 model [37] (b) D3Q19 model [39] (c) D3Q39 model [40]

Figure 2.5: Lattice node models with the available directions and stencil points for the LBM.
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in 9 possible directions per time step, including the resting conditions. While for a 3D model, a total
of 19 directions can be defined. The first is called D2Q9 model, fig.2.5-(a), whereas the second is
called D3Q19 model and is shown in fig.2.5-(b). Both models are suitable for low speed application
(free-stream Ma< 0.4) when flow-compressibility effects are limited. For transonic and low supersonic
(free-stream Ma<2) flow regimes of non-isothermal flows, more complex lattice models are required to
properly capture the flow physics, like the D3Q39 model with 39 possible particle streaming directions
[41], visible in fig.2.5-(c).

Main equations
Given the discrete distribution function fi(xi, t), the Boltzmann Transport Equation is frequently dis-
cretized by omitting external forces F and by employing a finite difference approximation of the total
derivative of fi. This leads to the main equation of the LBM, shown in eq.2.6, which is a time-explicit
advection equation for the the distribution function under the effect of a discrete collision operator Ωi,
which needs to approximated by a specific particle-collision model:

fi(x+ ei∆t, t+ ∆t)− fi(x, t) = Ωi ≈ −
[fi(x, t)− feqi (x, t)]

τ
(2.6)

One of the most used models for the collision operator is the Bhatnagar-Gross-Krook (BGK) model [42]
shown on the right-hand-side term of the above equation, where an equilibrium distribution function feqi
and a relaxation time τ towards local thermodynamic equilibrium are employed. The relaxation time
is related to the kinematic fluid viscosity ν and temperature T through the relation τ = ν/T + ∆t/2,
where ∆t is the local time-step within the lattice, and it plays an important role in the modelling of
the turbulence. Regarding the equilibrium distribution function, Hermite expansions up to a certain
order featuring local hydrodynamic properties such as density ρ, velocity u and temperature are usually
employed for this quantity [19]. In the case of compressible flows, eq.2.6 is not sufficient and an additional
PDE for the entropy is required to satisfy the conservation of energy according to a non-isothermal model
[41]. In the LBM, macroscopic fluid variables can be recovered in terms of the microscopic ones by means
of discrete integration [19]. For instance, the macroscopic density ρ(x, t) velocity u(x, t) and internal
energy e(x, t) field quantities are in general expressed by assuming that the distribution function does
not depend on the microscopic velocity, as:

ρ(x, t) =
N∑
i=0

fi(x, t); u(x, t) = 1
ρ(x, t)

N∑
i=0

fiei; e(x, t) = D

2
T

ρ(x, t) =
N∑
i=0

fi(x, t)
∣∣ei − u∣∣2 (2.7)

where ∆x is the lattice length and N the number of stencil points for the lattice model considered.
The three relations in eq.2.7 are fundamental, as they link the mesoscopic level of the LBM with the
macroscopic level of thermodynamics and fluid flow by means of the standard relations for an ideal gas.

Boundary Conditions
As for every numerical method, boundary conditions play a crucial role for the stability and the accuracy
of the computed solution [37]. Furthermore, for the LBM, boundary conditions have to respect the true
macroscopic behaviour of the fluid. One of the most used conditions is the bounce-back one, which is
typically employed to apply no-slip conditions on the boundary. As described in [37], it can be simply
explained by saying that "when a fluid particle reaches a boundary node, the particle will scatter back to
the fluid along with its incoming direction". Another commonly used condition is the specular reflection
one, where only the normal component of the velocity vector is inverted creating a 90◦ angle between
the particle velocities before and after the collision with the wall. A sketch of both boundary conditions
is visible in fig.2.6 from [5].

General properties, positive aspects and limitations
Regarding numerical aspects, the LBM offers important advantages when compared to traditional CFD
methods based on the Navier-Stokes Equations. First of all, this method returns an intrinsically unsteady
and compressible flow solution for low Mach number applications which is richer in flow-details than
RANS and with a reduced cost compared to wall-bounded LES simulations. Next, the method is also
appreciated for its inherent simplicity, both in the equations, as there are not complex non-linear PDEs
to discretize, and in the implementation of the algorithm. Eventually, the LBM is naturally suitable for
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Figure 2.6: Sketch of the most commonly used BCs for LBM [5].

parallelization, due to the full scalability of the lattice-based approach [43]. Dealing with engineering
applications, the LBM is a versatile approach for multiphase/multicomponent flow simulations, flows
undergoing heat transfer, chemical reactions, resolved or modelled turbulence in the case of particles
or bubbles dynamics, due to the more realistic description of the small-scale physical phenomena than
traditional CFD methods [44]. Moreover, due to its low numerical dissipation and dispersion [45], this
method can be very effectively applied for Computational Aeroacoutics applications, where the near-
field noise can be sampled at a high frequency and employed to compute the far-field noise properties
of the source by means of aeroacoustic analogies. When it comes to the downsides of the LBM, the
most significant one is related to the simulation of supersonic and hypersonic flow conditions, which are
not very well resolved by this method, requiring still fundamental research in the underlying physical
and numerical models [46]. Another limitation is the higher computational cost of simulating steady
flow-phenomena compared to RANS, due to the very small timestep employed to compute the LBM
intrinsic unsteady solution, although the cost of LBM is not necessarily higher than URANS when it
comes to true unsteady flows, as long as the large turbulent flow structures are not resolved.

Connection to the Navier-Stokes equations
An important aspect to discuss at the end of this brief introduction and overview of the Lattice Boltzmann
Method, is related to its connection to the Navier-Stokes Equations. Therefore, it can be proved that
the latter can be retrieved from the Boltzmann Transport Equation by employing the Chapman-Enskog
procedure, a multi-scaling expansion technique consisting in a perturbation-series of the Knudsen number
with respect to the local equilibrium [47]. This match between such two different models for predicting
the behaviour of fluid flows is a fundamental results and it was proven to hold true, and as long asMa<2
for non-isothermal flows by employing a D3Q39 lattice model due to its high symmetry properties. This
result has a fundamental importance, as it shows that there is a link between the microscopic particle
description of fluids done by the Boltzmann Transport Equation, the approximate mesoscopic treatment
of the Lattice Boltzmann Method and the continuum macroscopic one of the Navier-Stokes Equations.

2.2.2. PowerFLOWR©

PowerFLOWR© is a software suite for aerodynamic, thermal and aeroacoustic simulations consisting
of several programs covering the entirely a typical simulation workflow, namely geometry preparation
(PowerDELTAR©), case-setup (PowerCASER©), simulation (solver and discretizer) and postprocessing
(PowerVIZR©, PowerINSIGHTR© and PowerACOUSTICSR©). For reasons related to the nature of this
thesis project, PowerCASER© is the most employed program of the suite. Therefore, in this section
relevant general aspects of PowerCASER© and of the PowerFLOWR© solver are described, for instance
turbulence and wall modelling, volume and mesh discretization and the handling of body motion, as well
as specific functionalities (body force, measurement files and table lookup) that can play a role in the
coupling with an external tool.

Turbulence modelling
PowerFLOWR© is based on a peculiar implementation of the LBM called Digital PhysicsR© [48] which
consists in the eq.2.6 equiped with the BGK approximation of the collision operator. The only difference
is in a dedicated extension to turbulent flows. For low Reynolds and Mach numbers, PowerFLOWR©

performs the equivalent of a Direct Numerical Simulation of the Navier-Stokes Equations compatibly
with the lattice model employed (number of discrete particle velocity vectors) and the lattice resolution
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necessary to resolve the smallest flow structures [49]. As the Reynolds number increases, turbulence
modelling is required given the increased number of degrees of freedom and time-space scales. When it
comes to turbulence modelling, PowerFLOWR© employs an adaptation of the two equation RNG k−ε
model from the RANS framework [50] to model the effect of the unresolved turbulent structures on
the resolved large eddies [44]. To discriminate between resolved and unresolved scales, the swirl model
described in [51] is employed. The overall method is called Very-Large Eddy Simulation (V-LES) where
the two partial differential equations of the k−ε RNG model provide the space and time evolution of
the turbulent kinetic energy k and dissipation rate ε used to compute the turbulent relaxation time τturb
shown on the right relation of eq.2.8, where Cµ = 0.09 and |S| is a measure of the local strain [49].
The turbulent relaxation time accounts for collisions due to the interaction of turbulent structures and
is added to the relaxation time, which models instead collisions due to molecular diffusion τ0, leading to
an effective relaxation time τeff in the BGK collision operator Ωi, as the right relation in eq.2.8 shows:

τturb ≈ Cµ
k2/ε

T
(
1 + (k|S|/ε)2

) 1
2

; τeff = τturb + τ0; Ωi ≈ −
1

τeff
(fi − feqi ); (2.8)

Wall model
Due to the tremendous cost of computing flow structures down to the viscous sub-layer and due to the
type of volume mesh employed, PowerFLOWR© exploits wall models to simulate high Reynolds number
turbulent flows around solid surfaces with sufficient accuracy but at a reasonable cost. This is achieved
by employing the universal logarithmic law-of-the-wall velocity profile extended to include adverse or
favourable pressure gradients by means of a the empirically determined constant A in eq.2.9:

u+ = us
uτ

= 1
k
ln

(
y+

A

)
+B; where y+ = ysuτ

ν
; and uτ =

√
τw
ρ

; (2.9)

In the above equation, u+ and y+ are the dimensionless velocity and wall-distance, us is the dimensional
flow velocity computed at the location ys, namely the dimensional wall-coordinate of the cell-layer closest
to the wall; besides, k = 0.41 is the von-Karman constant and B = 5.0, as well as uτ is the friction
velocity. The left equation above is iteratively solved starting from the cell-layer closest to the wall
to estimate the wall shear stress τw required by the boundary conditions prescribed by the LBM [19].
Regarding the constant A, it models the expansion and deceleration of the velocity profile under the effect
of an adverse streamwise pressure gradient (dP/ds > 0) following the relation A = 1+δ|dP/ds|/τw, where
δ is an estimate of the size of the unresolved near wall region, or in case of a favourable one (dP/ds ≤ 0)
A = 1.

Volume and surface mesh
PowerFLOWR© employs an automatically generated Cartesian volume mesh, the lattice, composed of
cubic elements called voxels. The process of domain and body surface discretization is carried out only
once at the beginning of the simulation and its outcome can not be modified during the simulation. This
limits the employment of traditional FSI approaches based on the ALE formulation and, at the same
time, also Immersed Boundary Methods are not available in the solver. The size of voxels can change
based on Variable Resolution (VR) regions specified by the user, which act as refinement regions in areas
of the computational domain where small fluid structures or large gradients are expected [19]. The spatial
refinement is carried out in such a way that two neighbouring VR regions have voxel sizes ∆x differing by
a factor of two. Furthermore, given an explicit time-marching scheme with a Courant–Friedrichs–Lewy
number CFL = |max(ei)∆t|/∆x = 1, two neighbouring VR regions are characterized by a local timestep
which differs by a factor of two. Consequently, in finer areas of the domain the solution is updated at a
higher frequency than in coarser regions. Finally, the value of the local timestep is automatically defined
in the solver based on the size of voxels, and the discrete particle velocity ei. On the tessellated surface of
the body, planar surface elements, called surfels, are automatically generated by the intersection between
volume mesh voxels and the body facets. This process allows to capture the geometry details of complex
shapes in an accurate and robust manner, up to an order of magnitude difference between the smallest
voxel size and the average facets size.
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Body motion
As the solver can only handle rigid bodies and not time dependent deformations, due to the mesh
generation algorithm, the allowed motions are limited to rotation by means of a truly rotating mesh,
namely the "Local Rotating Frame" (LRF) method, and translation by means of a transpiration velocity
modelling blowing or suction of fluid-flow, in numerical terms a normal wall boundary conditions. The
LRF is employed to simulate truly rotating rigid geometries - both 3D such as fan and wheels and 2D
like pitching airfoils - by extending the LBM equations with centrifugal and Coriolis force terms in the
lattice nodes inside the rotating region [52]. Besides, this approach allows to accurately capture the flow
dynamics also in the case of real systems where installation effects can break flow symmetry, because
the body is correctly moving as in real life. On the other hand, the transpiration velocity is a method
which can be exploited in PowerFLOWR© to simulate the effect of small holes acting as flow or boundary
layer control mechanisms or to approximate a true rigid displacement normal to the wall, as long as
the amplitude of motion is small compared to the airfoil chord [52]. In the latter case, this method can
provide a similar flow behaviour compared to the one of the true motion case, therefore this method
is frequently employed to simulate vibrations [52]. When large displacements occur, such equivalence
might not be justified as the flow behaviour loses its linearity and complex non-linear phenomena like flow
separation can occur. Finally, both the LRF rotating geometry and the transpiration velocity boundary
condition are here only introduced, while a more in depth discussion and application to this thesis project
is carried out in sec.4.1.4.

Body forces
PowerCASER© allows to include body forces into the LBM formulation shown in eq.2.6 by means of the
external force vector F . This functionality can be exploited to model the effect of a true rigid or flexible
body motion on the flow field by applying such forces to arbitrary regions of the fluid domain near the
surface of the body. In PowerCASER©, equations can be defined to compute such forces in space and
time, while geometry primitives can be set to prescribe regions of the simulation volume where these
forces are applied. In [6], this approach was developed and implemented in the CFD setup for both
a rigidly pitching airfoil and an elastic blade affected by a flexible torsional deformation. For the 2D
airfoil case, body forces were defined on a x-y coordinate system centered around the quarter chord
and applied to two cylindrical volumes surrounding the leading edge (LE) and trailing edge (TE) of the
airfoil. Expressions for the dimensional and mass-scaled bLE and bTE body forces at the LE and TE
were obtained from approximate expressions of the acceleration vectors of the LE and TE of the airfoil
respectively, and are reported below as shown in [6], while more details on the derivation are discussed
in the appendix sec.A:

bLE = − ˙̃φ2 c

4 x̂−
¨̃φc4 ŷ bTE = ˙̃φ2 3c

4 x̂+ ¨̃φ3c
4 ŷ (2.10)

In the above equation, c is the airfoil chord, while ˙̃φ and ¨̃φ are the amplitude modulated and phase
shifted pitch velocity and acceleration of the airfoil with prescribed pitch motion:

φ(t̂) = φA sin
(
kt̂
)

with k = ωc/2U∞ and t̂ = 2U∞t/c (2.11)

where k is a reduced frequency (defined from the freestream flow speed U∞ and reduced frequency of
pitch motion ω), while t̂ is a reduced - the dimensional time t scaled by the convection time c/2U∞ -
and φA is finally the dimensionless pitch amplitude. The expressions for the previous dimensional pitch
velocity and acceleration are shown in eq.2.12, where b is the airfoil semi-chord. The previous quantities
require, with respect to the actual pitch velocity and acceleration, amplitude modulation, so that the
body force field can modify (up to a certain level) the fluid flow streamlines surrounding the airfoil as
those of a real pitching airfoil, and phase shift, as the body force field leads to some initial time delay to
replicate the streamline pattern of the rotating geometry.

˙̃φ(t̂) = φA
kU∞
b

√
ξ1 cos

(
kt̂− 2πξ2

) ¨̃φ(t̂) = −φA
k2U2

∞
b2

ξ1 sin
(
kt̂− 2πξ2

)
(2.12)

Values for the dimensionless amplitude-modulation coefficient ξ1 and the dimensionless phase-shifting
coefficient ξ2 need to be calculated for each condition of reduced frequency and pitch amplitude by
solving an optimization problem to match the lift generated by the truly pitching airfoil via the rotating
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(a) k̂ = 0.02 (b) k̂ = 0.16

(c) k̂ = 0.3

Figure 2.7: Time histories of the lift coefficient over the period of oscillation for the truly pitching airfoil with LRF (solid
line) and for the virtually pitching airfoil with body forces (crosses) for three conditions of reduced frequency k̂ and three
conditions of amplitude φA [6].

geometry LRF approach [6]. Always in [6], a sensitivity study was carried out to assess the potentialities
and limitation of this method for varying φA and k̂. As shown in fig.2.7, a very good match is apparent
over the whole range of investigated reduced frequencies (those covered along the blade-span by the
HART-II experiment) and up to pitch amplitudes of 2.5◦. For φA = 2.5◦, small deviation start to appear
due to the no more limited amplitude of motion. Further validation of this approach is part of the
current thesis research project, as it is crucial for the effective application of the coupling methodology
to 3D geometries with flexible motion.

Measurement files
To extract useful data from the simulation, measurement files need to be specified via dedicated windows
in PowerCASER©. Many possible aerodynamic quantities can be recorded, for instance fluid, surface and
porous media data computed in space and time or integrated over volumes/surfaces (Composite measure-
ments) as well as point-wise (Probes). A very important aspect of measurements files in PowerFLOWR©

is related to the measurement frames, which are integer multiples of the computational timestep and are
used to define the time resolution of these files. For reasons related to the underlying LBM and numerical
stability, the solver employs a very small timestep, which, if used directly to sample results, will generate
excessively large files. Therefore, according to the purpose and the fluid quantity of interest, the user can
choose a sampling period and a corresponding averaging interval to get unsteady results and multiple
combinations of these two parameters are available, as described in [52]. The same approach applies
also in space, as the spatial resolution of surface or volume results is lower than the one of the finest
VR. Also in this case, the user can select an appropriate "linear width of measurement cell", which is
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usually twice as big as the local lattice length, obtaining one measurement cell from eight voxels in 3D
(or four in 2D simulations). If averaged results are required, in PowerCASER©, time averaged results can
be prescribed to obtain simulation results comparable to those of a RANS simulation. The same can also
obtained form transient data at the end of the simulation by employing the PowerFLOWR© Command
Line Interface (CLI) tools, as described in [53].

Calculation page and input tables
The calculation page and input tables are functionalities of PowerCASER© allowing customization of the
simulation setup. In the calculation page the user can define variables and equations, while external
data can be included in the simulation setup by means of input tables. In the calculation page, by
defining variables and equations it is possible to provide time and space varying boundary and initial
conditions, as well as to parametrize the simulation setup [52]. The latter can be effectively exploited for
geometry (VR regions), simulation parameters and measurement files, improving efficiency and reducing
mistakes. The calculation page consists of four tabs: a text editor, the commands to evaluate quantities
and calculate the equations in space and time, a value feedback pane and position-time specification area.
According to [52], table look-up can be primarily used in PowerCASER© to import data from experiments
in the simulation setup and reference them in the equations. However, this feature can be exploited
also to provide data from another solver, and this can also be done repeatedly during the simulation to
achieve a coupling. An import aspect of this tool is that input tables must provide a grid of points where
multiple quantities can be defined. Such grid can be uniform or nonuniform, and PowerFLOWR© employs
tri-linear interpolation to accurately compute values at the locations where data are missing, as long as
this occurs only for a few points. In addition to grid points and variables in the datasection, physical
units, grid parameters and further instructions for reading the table are pointed out in the header of
the table. Rules to write such header and to structure these tables are explained in detail in [52]. If
the table is repeatedly loaded, two options are available: table import based on intervals of the solver
timestep, or based on the measurements frames of a specific measurement window. In both cases, the
first timestep/frame, the interval and the last timestep/frame of import need to be specified. Besides,
for frame reading, the user can specify a bash command to be executed by the simulator before the table
look up. This can be used to trigger a coupling interface.

2.3. Multi-Body Dynamic theory and solver
2.3.1. Theoretical foundations of the Multi-Body approach
This section offers an overview of the most common models to mathematically describe the dynamic
behaviour of a rigid body in terms of dynamic-equilibrium-based and energetic approaches to derive
Equations of Motion (EoMs). For more detailed information, the reader can consider [54] and [55] as
valuable sources of knowledge.

Newtonian dynamics of point masses
The three fundamental laws of Newtonian dynamics for point masses dm [56] represent the starting
point of the theoretical framework of rigid body dynamics. The first and the third law are merely
qualitative, with the first defining when a body is at rest. The third law affirms that forces exchanged
by bodies always appear in couple, opposite in direction and simultaneously, regardless of the action-
reaction principle. On the other hand, the second law, eq.2.13, is much more important for quantitative
purposes, as it defines an instantaneous direct proportionality between the force F (t) exerted on a mass
and its acceleration a(t):

F (t) = dma(t) (2.13)

From eq.2.13, many other important equations can be derived. For example, the work-kinetic energy
principle in eq.2.14 which affirms that the change in the kinetic energy T of a point mass between times
t1 and t2 equals the work W done between the two time instants:

∆T2−1 = T2 − T1 = W2−1 =
∫ t2

t1

F (t) · dr (2.14)

Next, the impulse or (linear) momentum principle defines the equivalence between the impulse (left
of eq.2.15 with R(t) the force resultant) and the linear momentum (right), where v is the point mass

16



velocity. This law is useful when forces determine large accelerations over short periods of time, as shown
below: ∫ t2

t1

R(t) dt = dm(v2 − v1) (2.15)

Finally, the principle of conservation of angular momentum - shown in eq.2.16 where dD is the angular
momentum for the point mass itself - can be considered as a rotational version of eq.2.13. For a point
mass at location P embedded in a mass-less rigid flat body, the below relation considers: a moment MO

about a reference location O of a force acting on the point mass, r = rP−O as the position vector of
point P with respect to O, and ω as the angular velocity of the body.

d

dt

(
r × dmv

)
= MO → d

dt

(
r × dm(ω × r )

)
= r × F → d

dt
dD = r × F (2.16)

Linear and angular momentum conservation laws for rigid bodies
The extension of Newtonian dynamics for point particles to rigid bodies starts by considering the latter
as a clouds of point particles interacting under the effect of external forces F i and internal forces f ij .
Therefore, the 2nd law for a single point mass is extended by considering the sum of all internal forces∑N
j=1 f ij in eq.2.13 with j 6= i acting within the cloud. Finally, as shown in eq.2.17, this leads to the

linear momentum conservation principle for a rigid body where, due to the 3rd Newtonian law, the sum
of the only external forces is proportional to the acceleration of the cloud Center of Gravity (CoG) acg
through the total cloud mass m:

N∑
i=1

F i +
N∑
i=1

N∑
j=1

f ij =
N∑
i=1

dmi ai with j 6= i →
N∑
i=1

F i = macg (2.17)

In a similar fashion, the angular momentum conservation principle for a rigid body can be derived, as
eq.2.18 shows. The final result can be straightforward, if the CoG is taken as reference point for the
evaluation of the external forces moment M and the body angular momentum D:

N∑
i=1

ri/O ×

F i +
N∑
j=1

f ij

 =
N∑
i=1

d

dt

(
ri/O × dm

(
ω × ri/O

))
with j 6= i → M cg = dDcg

dt
(2.18)

Deriving a mathematical expression for the angular momentum of a 3D rigid body is not trivial. The
derivation starts from the volume (V) integration of the elementary angular momentum for a point mass
dD shown in eq.2.16. It can be proved that the final expression of D equals the matrix product between
the inertia tensor J and the full angular velocity vector ωT = [p, q, r]. The inertia tensor features as
diagonal components the moments of inertia and as off-diagonal terms the products of inertia. The latter
cancel out if the inertia tensor is referred to both the body CoG and a system of principal inertial axis.
Both eq.2.17 and eq.2.18 can be used to derive EoMs for rigid bodies in space, which are characterized
by six DoF each, in absence of constraints. These six independent parameters can be divided into three
translations components u, v, w computed by eq.2.17, and three parameters that define its orientation,
for instance the three Euler/Cardan angles α, β, γ, calculated with eq.2.18.

D’Alembert approach and dynamic equilibria
An alternative approach to the conservation of linear and angular momentum principles for a rigid body
to get EoMs consists in rewriting eq.2.17 and eq.2.18 in terms of dynamic equilibria [57]. This approach
was developed by D’Almbert and allows a parallelism between statics and dynamics, as long as the time
derivative of the linear momentum and the angular momentum are considered as apparent forces acting
on the system. Therefore, from the linear momentum equation, the inertia force F in is defined as minus
the right-hand-side (rhs) of eq.2.17 (see the left relation below), while from the angular momentum
relation the inertia moment M cg,in is defined as the rhs of eq.2.18:

F in = −mdvcg
dt

= −macg and M cg,in = −Jcg ×
dω

dt

Once forces and moments of inertia are defined, the resultant of all forces acting on the body can be split
into the resultant of reacting forces Λ, namely constraints limiting the number of body DoF, and the
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resultant of the active forces R. The same can be done for the total resultant moment M cg in terms of
M cg,Λ, and M cg,R. Finally, the D’Alembert principle affirms that a body is in a condition of dynamic
equilibrium for translation if the sum of all the forces (including inertia forces) is zero, and for rotation
if the sum of all moments (including inertia moments) is equally zero, as eq.2.19 shows.

N∑
i=1

F i + F in = R+ Λ + F in = 0;
N∑
i=1

M i +M cg,in = M cg,R +M cg,Λ +M cg,in = 0 (2.19)

Theorem of the Kinetic Energy
In addition to Newtonial dynamics and dynamic equilibria, EoMs for a rigid body can be obtained also
by means of energetic approaches. If the first allows more physical insight in the understanding of the
dynamic behaviour of the system, the latter can be much more convenient in the case of multiple bodies
or many DoF [57]. There are two main energetic approaches, the theorem of kinetic energy and the
Lagrange equations. Regarding the theorem of kinetic energy, which is shown in eq.2.20, it affirms that
the time derivative of the kinetic energy of the system equals the power of the external active forces (Π)
(excluding the inertial ones), or alternatively, the variation of kinetic energy equals the work (W ) done
by external forces.

dT

dt
= Π integration in time → ∆T = W (2.20)

To derive an expression for the kinetic energy of a rigid body, a handy way of expressing the velocity of
an arbitrary point of the body itself is needed. This can be done by means of the Charles-Mozzi theorem
[58] shown in eq.2.21. This important kinematic law defines the motion of a rigid body as the sum of a
translation of its CoG and a rotation around an instantaneous rotation center:

vP = vcg + ω × (P −G) (2.21)

From the above relation, an expression for the kinetic energy of a rigid body, left of eq.2.22, can be
derived as a superposition of a translation and a rotation component. The power of the active forces
Π (left of eq.2.22) is simply equal to the product between forces and velocities, as well as moments and
angular velocities, namely:

T = 1
2mvcg · vcg + 1

2Jcg · ω Π = F × vP +M × ω (2.22)

Finally, the reason why forces and moments of inertia are not included among the active forces is because
the time derivative of the kinetic energy actually returns an inertial force and moment. Therefore,
eq.2.20 can be also seen as Π + Πin = 0, consistently with the D’Almebert’s approach. The theorem
of kinetic energy is not only handy, it also tells a lot about the behaviour of the system, since the sign
of Π says if the kinetic energy of the system is increasing or decreasing. This suggests to interpret
the inertia of the system as a reservoir of energy that is accumulated during acceleration and released
during deceleration. Therefore, eq.2.20 is often employed for systems with 1 DoF as balance of powers.
However, its applicability is limited to the actual motion of the system and not to the virtual, preventing
its employment for systems with time-dependent constraints [57].

Lagrange formalism
According to this formalism, there are two types of Lagrange equations, those of the second type, the
most commonly used for hand derivations, and those of the first type, which are perfect for automatic
derivation and solution by means of a computer [57]. The second type Lagrange equations are written in
terms of generalized coordinates qn, namely those coordinates that allow to minimize the number of DoF
for the system by implicitly accounting for its constraints [8]. Therefore, by introducing the potential U
of conservative forces, many equations as eq.2.23 can be written for every generalized coordinate of the
system:

∂

∂t

(
∂T

∂q̇n

)
− ∂T

∂qn
+ ∂U

∂qn
= QNCn (2.23)

In the rhs of the above equation, QNCn is the generalized component of the non conservative forces
related to the coordinate qn. It is obtained by deriving the virtual work of the non conservative forces
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with respect to the virtual displacement δqn. A virtual displacement is infinitesimal, compatible with
constraints and evaluated at fixed time. To be precise, qNCn should also include dissipative forces, unless
they are defined as an independent term in eq.2.23, called dissipation function [8]. When it comes to
the first type Lagrange equations, these are written by employing Cartesian coordinates to express the
position and orientation of the body. Therefore, all possible DoF for a rigid body are initially considered
leading to as many Ordinary Differential Equations (ODEs). Next, algebraic constraint equations φk
are employed to model those physical constraint reducing the number of DOF to the actual number
of independent parameters in the system. As described in [57], this approach employs a Lagrangian
function L = T − U augmented by a term L′, which depends on the constraint relations by means of
Lagrangian multipliers λk. The value of these coefficients does not affect L, as long as the φk relations
are satisfied. At this point, the Lagrangian formalism in eq.2.23 is applied to L + L′ by considering
also λk as independent variables. The result is a final system of Differential Algebraic Equations (DAE)
with as many equations as the sum of Cartesian coordinates and Lagrangian multipliers, and although
this method produces much bigger systems than the previous one, it is much easier to implement in a
multi-body solver. More details on DAE systems of equation can be found in [59] and [60].

2.3.2. SimpackR©

SimpackR© is an extensive library of modelling elements with the capability of including flexible bodies
in the MBD framework. This allows to analyze the global behaviour of complex multiphysics systems
(mechatronic, hydraulic, aerodynamic etc.) with a high level of abstraction and in a very fast and efficient
manner.

Relative-coordinate formalism
In SimpackR©, the mathematical description of the system dynamics is carried out by employing the
relative coordinates approach, which is a convenient and intuitive choice to deal with the kinematics
of body chains. This approach significantly reduces the number of kinematic independent parameters
by selecting only the minimal DoF that are actually present in the real system. In this way, only one
body is referred to the inertial reference frame, while the motion of each one of the other bodies is
calculated with respect to the motion of the previous one in the chain. Apart from the minimization of
DoF, there are other advantages with this approach. For instance, position vectors remain small and
simulation time is significantly reduced when performing time integration [61]. More information on the
absolute-coordinate approach applied to MBD simulations can be found in [62].

time/frequency representation of rigid multi-body systems
After discussing kinematic aspects, the modelling of a MBD system continues with the derivation of a set
of non-linear DAEs in the general case of constrained systems, similarly to what described in the previous
section. Therefore, the full system of equations solved features first order ODEs for the kinematic position
and velocity states. Besides, the equation for the velocity states is the Lagrange equation augmented
with the Jacobian of constraints by means of the Lagrangian multipliers. The DAE system includes also
algebraic equations and additional first order ODEs for the force states. In the case of unconstrained
systems, the previous DAE system simplifies to a set of ODEs related to the only kinematic states. In
addition to a time representation of the multi-body system, SimpackR© can also perform calculations
in the frequency domain to compute eigenvalues and, spectral system response. This firstly requires to
linearize the system in the neighbourhood of an equilibrium condition. Next, a state-space representation
by means of the linear time-invariant approach is used. On top of this formalism the frequency-domain
analysis is carried out by means of dedicated solvers.

Time integration of the system
As the main purpose of every MBS tool is to compute the system response in time given initial conditions
and under the effect of external forces or excitations, the most important solver is the one performing
time-integration, which calculates the solution of the non-linear DAE system by means of either fixed
or adaptive timestep numerical integrators. For stiff constrained systems, the SODASRT2 solver is a
SimpackR© proprietary adaptation of the DASSL scheme2 and it works very well almost for every situation,
2A time integrator to solve non-linear DAE systems by means of Backward Differentiation Formulae (BDF) schemes -
implicit linear multi-step methods [63] - and the Newton-Raphson algorithm [64]. More details on this solver can be found
in [65].
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while for unconstrained systems, the adaptive LSODE3 and a fixed timestep version of the Dormand-
Prince couple of explicit Runge-Kutta methods (DOPRI5 method) can provide good performance and
better accuracy than less sophisticated schemes for larger timesteps. Alternatively, traditional basic
schemes like classic Runge-Kutta or Euler methods can also be employed for simple problems. In all the
cases of adaptive timestep integrators, the user can set appropriate tolerances that the solver tries to
respect by changing timestep size and integration order during the simulation.

Most important modelling steps and elements
SimpackR©, likewise traditional MBD tools, employs abstract modelling elements, primarily Bodies,
Joints, Constraints, Force Elements and Excitations to model a real system. The main features of
these modelling elements are introduced now with reference to the typical simulation setup workflow.

Step 1: Bodies, Primitives and Markers Whenever a new model is set up, the first step is to define
Bodies, which can be either rigid or flexible. In both cases, mass and inertia properties must be either
directly provided or calculated based on the geometric and material properties of the simulation body.
The latter properties are specified by means of Primitive elements. When mass and inertia properties
are calculated from Primitive shape and the Body material data, these will depend on the facetization
of the discrete geometry and the prescribed material. Primitives are positioned in the computational
space by exploiting Markers, which can be seen as both points and coordinate systems at the same time.
In SimpackR©, there is always an inertial reference system with a related Marker, called M_Isys and
represented by the "ground" in the 2D visualization window of the tool. Besides, in the tool, every Body
features its own Body Reference Frame (BRF), which stands for a default reference location defining a
local body coordinate system. Markers are generally required to define the motion of each Body and the
locations where Force Elements or Excitations are applied.

Step 2: Joints and Constraints or Connections Joints prescribe the motion of each Body by
introducing DoF in terms of kinematic states and they should always be defined according to the rule
that each Body must have one and only one Joint. The user can select a specific Joint type among
those available in the related library, and every one of them is defined by setting a From Marker and a
To Marker, outlining the order of the kinematic chain. When the simulation consists of one Body, the
From Marker is always M_Isys. The contrary of Joints are Constraints, as they suppress the number
of DoF in the system by adding algebraic equations of motion to the ODEs for the kinematic states
of the system, therefore, they always work in parallel. However, the user can also decide to opt for
Connections, namely another modelling element which allows to prescribe body-motion by accounting
free and constrained motions at the same time. Similarly to Joints, both Constraints and Connections
require the specification of the From and To Marker.

Step 3: Force Elements and Excitations SimpackR© provides a very large library of Force Elements
to model both internal forces, such as spring-damper elements, or external forces spanning a wide range
of applications, from wind loads to bushing or gear pair elements consisting of tens of parameters.
Also forces are based on the From Marker and the To Marker according to the Newtonian 3rd law,
with the From Marker defining the "action" F and the To Marker the "reaction" −F . On the other
hand, Excitations are related to time or frequency dependent functions used to provide motion to driven
Markers or to characterize a specific Force Element. In addition, Expressions can be employed by the
user to arbitrarily define mathematical formulae based on the internal library of SimpackR© functions,
and Input Functions can be defined to generate laws f(x) or f(x, y) by interpolating data sets. Both
previous modelling elements can be used to define Excitations and Force Elements.

Step 4: Solvers Once the model is set-up with its Bodies, Joints, Constraints and Force Elements,
the user can simulate the behaviour of the system by running a specific solver. In SimpackR©, all the
available solvers can be used in both an online (real-time) or offline (in background) version. The first
mode doesn’t generate any result file and is usually employed to check the correct setup of the system,
while the second one primarily returns binary result files which can be visualized and manipulated in
the SimpackR© Post-processor Graphic User Interface (GUI). In addition to the Time Integration Solver,
the tool offers several frequency domain integrators, such as the Eigenvalue Solver, to run after the
Equilibrium Solver which finds an equilibrium condition and then linearizes the system around that
condition.
3The Livermoore Solver for ODEs is a numerical scheme able to solve both stiff and non-stiff systems by employing either
Adams (explicit linear multi-step methods) or BDF schemes respectively [66].
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Step 5: Post-processing All the previously mentioned modelling elements characterizing the typical
simulation setup workflow are carried out in the SimpackR© Pre-processor tool. This can be used as
either a GUI or as a CLI to run scripts in both Windows and Linux environments. On the other hand,
simulation result files are opened and manipulated in the SimpackR© Post-processor, which is a handy
tool for dynamic analysis and to generate clear reports. Also this tool is available in its GUI or CLI
mode on both Linux and Windows.

Dedicated coupling functionalities
SimpackR© is a tool that can be extensively exploited for establishing couplings with other tools due to its
multi-physics vocation. Some couplings with commercial tools, such as Matlab and Simulink are already
implemented in the software via dedicated interfaces and GUIs. Besides, the MBD tool is available
coupled with external libraries for specific applications, such as the aerodynamic database AeroDyn [67]
exploited to provide data for advanced force elements employed in full wind turbines MBS. Alternatively,
the user can also setup an own coupling by exploiting two specific functionalities of the MBD tool: the
co-simultion engine as coupling medium or interface and force elements based on user defined routines
to apply the data from the external tool into the MBS.

Co-simulation engine The co-simulation engine is a specific setup of the time integration solver
exploited to couple SimpackR© with an external simulation tool, where either SimpackR© or the external
solver can be the server or client of the interaction [65]. During such an interaction, both clients run
simultaneously and exchange data via Input and Output Vector elements at a fixed sampling period.
These two objects require memory-sharing between the two computer programs and this methodology
allows to efficiently exchange data at a very high frequency without introducing the computational cost
due file input/output [13]. In a co-simulation engine, each one of the two clients carries out a specific task
in the coupled system and is configured within its respective platform, while during the co-simulation,
data are exchanged via TCP/IP interface [68].

User defined routines for force elements Regardless of the coupling medium between SimpackR©

and the external tool, after coupling the two computer programs, the problem of how to apply the data
provided by the external tool in the MBD simulation still needs to be addressed. Often, especially
in the case of 3D flexible geometries, this issue is solved by implementing dedicated force elements, if
those available in the library can not be exploited. This requires the coding of user defined routines
in the Fortran 90 programming language. These routines exploit existing SimpackR© subroutines (called
"Access Functions") to access modelling element, control solvers and manipulate all possible simulation
parameters [69]. User routines are very powerful tools that allows for deep customization and extension
of the MBD tool capabilities to specific applications and can be used to create new types of all possible
modelling elements, not only forces.

Potential coupling functionalities
In addition to the previous coupling features, other SimpackR© functionalities can be potentially exploited
for couplings. Reasons for considering alternative strategies are primarily related to limitations in the
external tool, which might not be suited for memory-sharing-based couplings. Besides, a significant in-
vestment of time, resources and expertise are required to effectively and robustly implement co-simulation
engines and user-routine-based force elements. This is also a crucial aspect, given the relatively short
duration of a master thesis. For these reasons, existing SimpackR© features not specifically meant for
couplings can also be considered given their robustness, simplicity of use and immediate availability. In
this section, two features are discussed: input functions defined from table reading and scripting with
the purpose of understanding them and exploring their possibilities.

Table reading The equivalent of PowerFLOWR© table import can be achieved in SimpackR© by reading
.afs files to provide to the Input Functions, which can then be used to define other modelling elements
up to Force elements as described previously. These files are text files with a specific format, consisting
of datasection and header, and syntax accurately described in [65]. The header provides information for
the automatic reading and generation of input functions to apply to the MBD simulation setup. Several
possibilities for structuring data in these files are available, but the most used are those defining input
functions of the type f(x) or g(x, y), with x for example a time variable and y a position coordinate.
These functions can are then be interpolated by the solver during the simulation with linear quadratic or
spline interpolations. In the perspective of the coupling with a CFD tool, this feature can be exploited
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to provide to the MBD solver a force history from the aerodynamic solver, which can than be used to
define an excitation-based force element.

Scripting languages Another useful and versatile feature of SimpackR© are the scripting languages
exploited by SimpackR© Pre and Post-processors for automatic case setup, running solvers or to speed
up recurrent post-processing steps [70]. The scripting languages employed are QtScript for the Pre-
processor and QSA Script for the Post-processor, both based on ECMAScript, which is a standard for
the JavaScript language [71]. SimpackR© allows to generate these scripts by directly recording operations
carried out on the GUI, modifying them with a built-in editor and executing them both via the GUI or
in background by means of the CLI version of the tool. Always considering a coupling with a CFD tools,
scripting is necessary given the potentially large number of coupling iterations. This requires the full
automatization of the MBD process, namely .afs table import of the CFD airload, correct application
of the airload to the MBD simulation model, execution of the time integration and conversion of binary
results to an ASCII file that can then be returned back to PowerFLOWR©.

2.4. Unsteady aerodynamics
2.4.1. Overview
Unsteady aerodynamic phenomena are frequent and play a significant role in the overall behaviour of wind
turbines and rotorcraft. Therefore, it is firstly necessary to introduce the main sources of unsteadiness in
both applications, because, depending on the properties of the physical phenomenon, different approaches
are employed to model the unsteady effects that such sources generate. Finally, after introducing the key
concept of reduced frequency, the common features and the main analytical models of incompressible
unsteady aerodynamics can be discussed

Sources of unsteadiness and prediction approaches
When dealing with the wide range of unsteady phenomena affecting rotorcraft, one of the main sources
of unsteadiness are AoA excursions due to blade elastic motion and pitch control inputs; besides, also
the induced velocities caused by the trailed and shed vorticity, as well as the concentrated tip vortices,
can cause large and fast AoA variations [7]. It is important to mention also that unsteady effects are
frequent in the retreating side of the rotor near the blade root, where reverse flow conditions occur during
forward flight conditions due to the composition of the freestream and rotation velocity. In the case of a
wind turbine, AoA fluctuations are also caused by the elastic deformations of long slender modern blade
designs; in addition, the turbulent and stochastic wind inflow conditions, as well as the interference
effects due to tower shadow or surrounding turbines in a wind farm facility, play an important role [72].
Furthermore, in both scenarios, unsteady effects can be further split into small and large AoA variations,
because this has a significant impact on the models and prediction methods employed to investigate such
time-dependent phenomena. When the AoA fluctuations overcome the static stall limit, dynamic stall
can occur with a flow field dominated by time-dependent separation resulting in large abrupt amplitude
and phase variations (wide hysteresis loops) in the airload that can lead to severe aeroelastic effects [73].
Due to the importance of viscous phenomena for separated flows and the complex non-linear behaviour
of dynamic stall, its analysis is often carried out by solving the full Navier-Stokes equations by means of
CFD, while predictive models are still an open-end matter in the research community [7]. On the other
hand, when small AoA variations (small compared to the static stall angle) and attach flow conditions
occur, the resulting phenomena can be considered as limited amplitude and phase oscillations with
respect to the quasi-steady aerodynamic forces [7]. Such conditions allow to effectively employ analytical
or semi-analytical models with a significantly reduced computational cost compared to CFD. Finally,
an important difference in the modelling of unsteady aerodynamic effects between wind turbines and
rotorcraft is related to the increased importance of compressibility effects for the latter, especially during
high speed forward flights. This makes predictions more complex both for CFD simulations of high AoA
dynamic stall and semi-analytical method for attached flows. In the second case, it is very difficult to
derive exact analytical solutions for subsonic conditions and for the entire time domain, like in the case
of incompressible flows, therefore numerical approximate methods have to be exploited [7].

Reduced frequency
Steady aerodynamic forces can be described by means of only two dimensionless parameters (Reynolds
and Mach numbers) for fixed body orientation and shape according to the Buckingham Π-theorem [74].
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However, in the case of unsteady airload, an additional dimensionless parameter, called reduced frequency
(k), naturally emerges from the dimensional analysis, leading to the below formulation (from [7]):

F

ρU2
∞b

= f

(
ρU∞c

ν
,
U∞
a∞

,
ωb

U∞

)
= f(Re,Ma, k) (2.24)

where U∞, ρ, a∞ and ν are the free-stream flow velocity, density, sound velocity and kinematic viscosity.
The above equation suggests also that the reduced frequency (a ratio between the frequency of the
unsteady phenomenon ω = 2πf , the airfoil semi-chord b and the inflow velocity U∞) is a qualitative
parameter to estimate the degree of unsteadiness of the airfoil aerodynamics. Therefore, if k = 0, the
airload is steady, if 0 < k < 0.05 there are quasi-steady conditions, if k > 0.05 proper unsteady flows are
considered and highly unsteady behaviour occur when k > 0.2. According to [7], the reduced frequency
should only be used carefully, as it might lead to ambiguity given the spanwise variation of the local
flow velocity in both helicopters and wind turbines. However, this parameter is still used a lot in airfoil
applications and is also a fundamental input parameter for several analytical models, especially those in
the frequency domain.

Prediction methods for attached flows
Regarding attached unsteady flows under small variations of AoA and featuring incompressible attached
flow conditions, elegant analytical models were derived from the Glauert theory for steady thin airfoils
providing closed-form solutions in either time or frequency domain. These methods are often known as
classical unsteady aerodynamic methods and were developed for aircraft applications back in the first
half of the XX century to model the time-varying lift and pitching moment of airfoils undergoing several
types of motions. All these methods quantify the unsteady effects as phase lags between the input forcing
function and the corresponding response primarily by means of the airfoil shed vorticity and the reduced
frequency of the phenomenon. By considering the time domain, an important example is the Wagner
model [75] which computes the indicial response of an airfoil due to a step change in AoA. This model is
also used to compute the response to a generic excitation by means of the Duhamel integral superposition
approach. Besides, the Küssner model ([76] and [77]) can be used to compute an indicial response in the
case of an airfoil entering a sharp-edged vertical gust. In the frequency domain, the Theodorsen model
[78] is one of the most employed methods, as it describes the unsteady airload due to both a harmonically
pitching and plunging motion, where the trailed wake is convected downstream. An improvement over
this method for rotor application is the Loewy model ([79] and [80]) which accounts for the returning
wake from previous rotations. Finally, in the next sections, the Theodorsen model is analyzed more in
detail (in addition to the Quasi-steady and the Steady Glauert theories) as it is directly employed for
the verification activity of the MBD simulation setup of SimpackR©, as discussed in ch.3.

2.4.2. Steady Glauert
The Glauert model is not an unsteady aerodynamic model, but it serves as introduction for the true
time-dependent models, since its discussion is relevant for this thesis project. As already mentioned,
the steady Glauert model is based on the potential airflow theory developed by Glauert himself and
others around the 1920s [81], and it does not account for viscosity in the flow. However, this is not a
big limitation for simple aeroelastic problems with attached flows and small displacements. The steady
Glauert model is based on a direct proportionality between the AoA and the airload generated by the
airfoil which is summarized by the famous cl = 2πα relation for a symmetric airfoil. In the case of a
dimensional lift L and aerodynamic moment about the quarter chordMc/4, the following expressions are
provided by the model to define the airload:

L = 1
2ρU

2
∞c clαα = 1

2ρU
2
∞ c2π α and Mc/4 = MAC = 0 (2.25)

Other important results of this fundamental theory are the quarter chord location for both the Aerody-
namic Center (AC) and pressure center (application point of the resultant of normal pressure stresses)
for a symmetric airfoil, which leads to theMc/4 = 0 expression above, and the aft position of the pressure
center with respect to the AC for cambered airfoils, besides to an offset in the lift polar for α = 0.

2.4.3. Quasi-steady
The main limitation of the Glauert model has to do with its intrinsic steady nature, which is incompatible
with the inherently unsteady properties of most of the aeroelastic phenomena. Therefore, the second
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aerodynamic model can be considered as an intermediate one between pure steady and unsteady models,
namely the quasi-steady one. This model originates from the Glauert theory and it additionally models
the unsteadiness of the aerodynamic load by considering the time derivatives of the pitch and plunge
motion (h). More in detail, when the airfoil is moving, the equivalent AoA αeq that it experiences is the
sum of the geometric AoA (α) and a contribution due to the movement of the airfoil itself. As, shown in

Figure 2.8: Equivalent AoA for a purely plunging (top) and pitching (bottom) airfoil modelled as a velocity perturbation
and an induced camber respectively [7].

fig.2.8, if the motion is a pure vertical translation, the equivalent AoA would be equal to α+ ḣ/U∞ and
the same for all the points of the airfoil. However, when a rotation is considered, then the equivalent
AoA depends on α̇ and is not the same everywhere, as it changes linearly with a zero value at the
location of the semichord-scaled pitching axis location a in the figure. Even though the quasi-steady
model is a more sophisticated model than the steady Glauert one, as it includes unsteadiness in both the
translation and the rotation DoF, it does not take into account the dynamics of the near shed vorticity.
The latter is an important quantity as it plays a crucial role on the loads acting on the airfoil due to
the induction velocity that the shed vorticity determines. To account for the wake effect, even more
sophisticated models are required, like the Theodorsen one considered in detail next. By employing the
Chasles theorem [58], the velocity vP (position xP ) of the pitching axis of the airfoil (point P) can be
defined as: v̇P = ḣ + α̇xP . This leads to the following expression for the equivalent AoA for a pitching
and plunging airfoil:

αeq = α+ ḣ

U∞
+ α̇xP
U∞

(2.26)

With the above expression for the equivalent AoA, the only difference between the Glauert and the
quasi-steady model is the replacement of α with an αeq containing also the dynamic states of the airfoil
motion, leading to:

L = 1
2ρU

2
∞c clααeq = 1

2ρU
2
∞c 2π

(
α+ ḣ

U∞
+ α̇xP
U∞

)
and MAC = 0 (2.27)

2.4.4. Theodorsen
The third unsteady aerodynamic model considered is the Theodorsen one. Its description starts by
the modelling of the airfoil and its wake in terms of vortex sheets - due to the small magnitude of
pitching and plunging motion considered - with the wake extending from the trailing edge up to infinity
downstream, as shown in fig.2.9. The wake consists of counter-rotating vortices - due to either the
upstroke or downstroke phases of airfoil motion - being convected with the free-stream velocity. Besides,
the planar wake sheet is also force-free, which means that no net pressure jump is allowed over the sheet,
and the value of wake vorticity has to be minus the bound vorticity to satisfy the Kalvin’s theorem
at every time. The bound vorticity over the airfoil is instead allowed to provide a pressure difference,
leading to a lift force.

The goal of the Theodorsen model is to compute the bound vorticity by solving an integral equation,
where the former is combined with the shed vorticity providing the downwash effect acting over the airfoil
surface. This equation requires the Kutta condition γb(x = c, t) = 0 to prescribe zero bound vorticity
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Figure 2.9: Modelling of the airfoil bound circulation γb and of the wake shed vorticity γw for a harmonically oscillating
airfoil α = eiωt according to the Theodorsen model [7].

at the trailing edge - this is necessary to make sure that the flow remains attached at that location -
and the Kelvin’s theorem for the conservation of circulation. The solution of this equation was found
by Theodorsen by considering harmonic motion for the pitching and plunging DoFs, and it consists of a
transfer function between the input motion and the output aerodynamic load. The result is shown below
for the lift and the aerodynamic moment about the quarter chord in the case of generic semichord-scaled
pitching axis location ã4: [78].

L = Lnc + Lc = πρb2
(
ḧ− ãbα̈+ U∞α̇

)
+ 2πρU∞bC(k)

(
ḣ+ b

(1
2 − ã

)
α̇+ U∞α

)
(2.28)
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)
α̈+ U∞α̇

)
The non-circulatory ("nc" terms above) or apparent-mass-effect terms are quite similar for the Theodorsen

and the quasi-steady model, as both take into account the forces required to accelerate the flow near
the airfoil surface. On the other hand, the significant difference between the two models is in the wake
vorticity effect, which is neglected by the quasi-steady one. As the circulation over the airfoil changes in
time, also the shed vorticity changes. This determines a downwash velocity modifying the airfoil surface
loads according to the information generated by the airfoil itself in the past. Such memory-effect of the
shed vorticity is accounted by the circulatory component ("c" term above) of the force by means of the
lift-deficiency function C(k). The name lift-deficiency can be motivated by saying that the main effect
of the wake induction is that of delaying the build-up processes of the airload [82], and this is clearly
visible from the increasing size of hysteresis loops for increasing k occurring in the dynamic lift-polar of a
purely pitching airfoils. The term C(k) is also known as Theodorsen function and is a complex function
of the reduced frequency k = ωb/U∞ with the following expression:

C(k) = H
(2)
1 (k)

H
(2)
1 (k) + jH

(2)
0 (k)

(2.29)

where the Hankel functions of second kind and order n H(2)
n with n = 0, 1 are employed. In addition,

this specific type of Hankel functions depend on the Bessel functions of the first (Jn) and second (Yn)
kind of order n, namely H(2)

n = Jn − jYn.
According to [83], the Theodorsen model is appreciated for its derivation from fundamental principles

by means of clear assumptions and the fact that it is composed of terms which have a clear physical
correspondence, like the added-mass, the quasi-steady term multiplying the Theodorsen function and the
latter modelling the wake-effect. However, it might not be the best approach for low Re number flows
(micro aerial vehicles) and its intrinsic frequency-dependent nature limits its applicability to time-domain
control and aeroelasticity. Therefore, the appendix sec.B.1 discusses general methods to approximate
the generalized Theodorsen function C(k) in eq.2.29 and applies that to derive a complete time domain
formulation of an aeroelastic system, as discussed also in ch.3.
4The quantity ã measures the pitching axis location from from the mid-chord position, therefore, a pitching axis location
at the quarter chord leads to a value for this quantity ã = −1/2.
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3
SimpackR© MBD setup verification

The first major part of the thesis project has been devoted to the understanding and usage of the MBD
simulation tool SimpackR© on simple 2D aeroelastic problems. Such physical systems involve airfoils
undertaking plunge and pitch motions under the effect of lumped elastic forces/torques and prescribed
airloads from analytical unsteady aerodynamic models. As shown in fig.3.1, the main hypothesis of
work of this activity is to assess the degree of accuracy of the MBD tool in computing kinematic states
- x(t), ẋ(t) and ẍ(t) - compared against those returned by full aeroelastic analytical models. As the
airload - F (t) - provided to SimpackR© is the same as the one employed by the aeroelastic system, it is
possible to focus only on the solution of the structural dynamic part of the simulation. This verification
is fundamental in the process of developing of a coupling between PowerFLOWR© and SimpackR©, as the
simulation setup of both tools needs to be validated separately to understand their intrinsic limitations.
Being said this, the structure of this chapter consists in four main section, starting with the description of

Figure 3.1: Diagram showing the main approach followed in this verification activity of the SimpackR© MBD simulation
setup for the investigation of 2D aeroelastic problems involving plunging and pitching airfoils.

the derivation of the reference full aeroelastic analytical model in sec.3.1. Next, the numerical solutions
of the aeroelastic systems related to the different unsteady aerodynamic models employed is discussed
in sec.3.2. This section is followed by a detailed description of the the MBD simulation setup in sec.3.3.
Finally, in sec.3.4, the results of the SimpackR© solutions are compared with the reference aeroelastic
model and discussed in terms of their accuracy, description of their physical properties and in terms of
the main findings in view of the coupling with PowerFLOWR©.

3.1. Analytical aeroelastic model
3.1.1. Problem definition
First of all, it is necessary to point out that the aeroelastic problem considered and the derivation of
the equations for all the unsteady aerodynamic models employed is based on the work of [84]. The
problem investigated consists of a 2D semi-rigid airfoil with lumped parameters. Two degrees of freedom
are considered1: plunge translation hO - which is defined as positive downwards - and pitch rotation α,
which is considered as positive clockwise. The calculated rotation and translation motions are those of
1The horizontal degree of freedom can be neglected, at a first instance, since blades and wings are typically much stiffer
along the chordwise direction compared to the chord-normal direction. This is a frequent assumption in preliminary
modeling of aeroelastic effects for a 2D airfoil.
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point O, which is the origin of the airfoil reference system. Regarding the geometry of the body, the
airfoil is actually a flat plate, modelled as a line in the analytical model and a zero-thickness plate in
SimpackR©. The elasticity of the airfoil section is concentrated into the rotational (kα) and the translation
(kh) spring stiffness coefficients acting on the two allowed directions of motion. The CoG is point G and

Figure 3.2: Representation of the analytical model for the 2 DoFs aeroelastic airfoil problem considered in this investigation.

lies in the middle of the plate, the elastic center is point E and represents the location where both springs
are located2. Finally, the AC is defined at the quarter-chord of the airfoil (point A), where aerodynamic
forces are applied. Such airload can be further split into a vertical lift force F and a moment MA. As
the horizontal motion is locked, the horizontal component of the aerodynamic force (i.e. drag) is not
considered. For the sake of reducing the analytical complexity in the formulation of the aerodynamic
forces - especially in the case of the Theodorsen model, the pitching axis of the airfoil is considered at
the quarter chord location leading to O≡A and ã=−1/2 in eq.2.28. In the derivation of the EoMs, a
general reference location O is still employed.

3.1.2. Derivation of the equations of motion
The problem investigated deals with a straight line airfoil which can vertically translate (plunge motion
hO) and rotate (pitch motion α) under the action of elastic and aerodynamic forces. Besides, the
angle α is assumed to be small, this way the sine and cosine functions resulting from the mathematical
description of its kinematics can be linearized. In this section, the goal is to derive the equations of
motion of the aeroelastic system. The derivation begins by describing the kinematics of the system in
terms of equations. Therefore, by applying the Chasles theorem [58], the velocity of the center of gravity
vG can be computed with respect to the velocity vO of the reference point O. The derivation is the
following:

vG = vO + α̇× (G−O) = −ḣOŷ + α̇× xG
(
− sin(α)x̂− cos(α)ŷ

)
≈ − (ḣO + xGα̇)ŷ (3.1)

where G and O are the position vectors of points G and O with respect to the inertial reference system,
whose unit versors of x- and y-axis are x̂ and ŷ; besides, xG is the distance between both points when
measured from point O on the airfoil. Once the kinematics is defined, the equations of motion of the
system can be derived by employing the Lagrangian formalism, as it is the most convenient method for
hand derivations of systems with n multiple DoFs. This leads to:

∂

∂t

(
∂T

∂q̇n

)
− ∂T

∂qn
+ ∂U

∂qn
= Qn (3.2)

In the above equation, qn is the n-th generalized coordinate, Qn is the n-th component of the non-
conservative generalized forces, T is the kinetic energy of the system and U is the potential one. By
exploiting the previously computed velocity of the center of gravity, the kinetic energy is equal to:

T = 1
2m vG · vG + 1

2JG α̇ · α̇ = 1
2m
(
ḣO + α̇xG

)2 + 1
2JGα̇

2 (3.3)

where JG is the moment of inertia of the airfoil around an axis perpendicular to the x-y plane and passing
through point G. Regarding the potential energy, this equals to:

U = 1
2kαα

2 + 1
2kh

(
hO + αxE

)2 (3.4)

2In general, when the CoG and the AC are different, this returns a full mass matrix and coupled torsional-bending modes,
because of the interaction between inertial and torsional stiffness moments.
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The generalized components of the non conservative forces for both hO (Q1) and α (Q2) coordinates can
be computed, always with respect to point O, based on the Virtual Work Principle as:

Qn = F · δhO + (MA + xAF ) · δα → Q1 = F Q2 = MA + xAF (3.5)

with F the force vector along the y-direction and MA the aerodynamic moment about point A and
perpendicular to the plane. After applying the derivatives involved by the Lagrangian formalism to the
previously defined quantities, the following system of equations is obtained:{

mḧO +mxGα̈+ khhO + xEkhα = F

mxGḧO + (mx2
G + JG)α̈+ xEkhhO + (kα + khx

2
E)α = MA + xAF

Finally, the above system can be re-written in a more handy matrix notation as:[
m mxG
mxG JO

] [
ḧO
α̈

]
+
[
kh xEkh
xEkh kα + khx

2
E

] [
hO
α

]
=
[

F
MA + xAF

]
→ Mẍ+Kx = f (3.6)

where JO = mx2
G + JG according to the Huygens-Steiner’s theorem, M is the mass matrix, K is the

stiffness matrix, f is the aerodynamic force vector and x is the vector of kinematic states. Eq.3.6
represents the analytical model for the structural part of the aeroelastic problem where the airload is
considered as an external forcing term, and therefore as a rhs term.

3.1.3. Unsteady aerodynamic models employed
To model the effect of the aerodynamic forces on the previously discussed structural system, the three
unsteady aerodynamic models are considered with an increasing complexity and accuracy in capturing
the real aerodynamic behaviour of the airfoil undergoing pitch and plunge motions.

Steady Glauert
When the steady airload according to the Glauert model in sec.2.4.2 is considered, the following aerody-
namic force vector is obtained:

F = −L = −1
2ρU

2
∞2bclαα and MA = 0 → f =

 − 1
2ρU

2
∞2bclαα

−xA 1
2ρU

2
∞2bclαα

 (3.7)

By including the above formulation for f into the structural system in eq.3.6, the following steady
aeroelastic problem can be defined. Due to the formulation of the airload with a lift force dependent on
the pitch position, f is included directly in the structural left-hand-side (lhs) part of the system, leading
to a homogeneous system of equations. Besides, the moment of inertia JO is referred to point E always
by employing the Huygens Steiner’s theorem. m mxG

mxG JE −mx2
E + 2mxExG

ḧO
α̈

+

 kh xEkh

xEkh kα + khx
2
E

hO
α

+

0 1
2ρU

2
∞2bclα

0 xA
1
2ρU

2
∞2bclα

hO
α

 = 0

(3.8)
At this point, it is possible to proceed to the non-dimensionalization of the equations of motion by
considering the following scaling rules:

h = hO
b

; t̂ = ωαt; a = m

ρb2clα
; Û = U∞

bωα
; Ω2 = ω2

h

ω2
α

with ω2
h = kh

m
;

ξE = xE
b

; ξG = xG
b

; ξA = xA
b

; r2
α = kα

mb2ωα
(3.9)

where h is the dimensionless pitch motion, t̂ the dimensionless time, ωα the pitch angular velocity, a is
a dimensionless mass, clα = 2π is the aerodynamic lift derivative as introduced already in sec.2.4.2, Û is
dimensionless freestream velocity, Ω is the ratio between the pitch and the plunge (ωh) angular velocities,
ξA, ξG and ξE are the dimensionless x-coordinates of the AC, CoG and elastic center and rα is finally a
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dimensionless rotational stiffness. When such scaling rules in eq.3.9 are applied to the previous steady
dimensional system in eq.3.8, they return: m mξGb

mξGb r2
αmb

2 −mξ2
Eb

2 + 2mξEξGb2

ḧbω2
α

α̈ω2
α

+

 Ω2mω2
α ξEbΩ2mω2

α

ξEbΩ2mω2
α r2

αmb
2ω2

α + Ω2mω2
αξ

2
Eb

2

hb
α

+

+

0 1
2ρÛ

2b2ω2
α2bclα

0 bξA
1
2ρÛ

2b2ω2
α2bclα

hb
α

 = 0

Next, by dividing the first equation by mbω2
α and the second one by mb2ω2

α, the final non-dimensional
system for the steady Glauert model is obtained: 1 ξG

ξG r2
α − ξ2

E + 2ξEξG

ḧ
α̈

+ Ω2

 1 ξE

ξE
r2
α

Ω2 + ξ2
E

h
α

+ Û2

0 1
a

0 ξA
a

h
α

 = 0 (3.10)

Finally, the above homogeneous system can be rewritten in a compact form in terms of the dimensionless
structural mass (M∗) and stiffness (K∗) matrices, the vector of the non-dimensional DoFs x̂ and a
dimensionless aerodynamic mass matrix K∗

a corresponding to the matrix in the third product of the
above equation:

M∗ ¨̂x + Ω2K∗x̂ + Û2K∗
ax̂ = 0 (3.11)

For reasons related to the calculation of both the analytical and the numerical solution of the problem,
it is required to convert the second-order ODEs for h and α into a system of four first-order differential
equations in time for the position and velocity states of the plunging and pitching DoFs. This type of
formulation of the system is called state-space-model and can be obtained by introducing the velocity
state vector y:

y = ˙̂x →
{
M∗ẏ + Ω2K∗x̂+ Û2K∗

ax̂ = 0
˙̂x− y = 0

→

M∗ 0

0 I

ẏ
˙̂x

+
[

0 Ω2K∗ + Û2K∗
a

−I 0

]y
x̂

 = 0

Which can be re-written again in a more compact form as:

M∗
totż +K∗

totz = 0 → ż =
(
−M∗

tot
−1K∗

tot

)
z = As z (3.12)

It is apparent that the solution in time for the position and velocity states of the aeroelastic system
consists in computing a final four-by-four matrix As equal to the matrix product between the inverse of
the total mass matrix M∗

tot and the total stiffness matrix K∗
tot.

Quasi-steady
The derivation of the second aeroelastic model, starts by recalling the quasi-steady formulation of the
airload in sec.2.4.3 leading to the following aerodynamic force vector f :

F = −L = −1
2ρU

2
∞2bclααeff and MA = 0 → f =

 − 1
2ρU

2
∞2bclα

(
α+ ḣO

U∞
+ α̇xP

U∞

)
−xA 1

2ρU
2
∞2bclα

(
α+ ḣO

U∞
+ α̇xP

U∞

)
 (3.13)

By plugging in the expression for the airload vector f into the structural system, the following dimensional
system for the quasi-steady aeroelastic problem is obtained: m mxG

mxG JE −mx2
E + 2mxExG

ḧO
α̈

+

 1
2ρU

2
∞2bclα 1

U∞
1
2ρU

2
∞2bclα xP

U∞

xA
1
2ρU

2
∞2bclα 1

U∞
xA

1
2ρU

2
∞2bclα xP

U∞

[ḣO
α̇

]
+

+

 kh xEkh

xEkh kα + khx
2
E

hO
α

+

0 1
2ρU

2
∞2bclα

0 xA
1
2ρU

2
∞2bclα

hO
α

 = 0 (3.14)
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The corresponding non-dimensional version of the above system can be obtained similarly as before by
exploiting the scaling rules in eq.3.9 and by dividing the first equation by mbω2

α and the second by
mb2ω2

α: 1 ξG

ξG r2
α − ξ2

E + 2ξEξG

ḧ
α̈

+Û

 1
a

ξP
a

ξA
a

ξAξP
a

ḣ
α̇

+Ω2

 1 ξE

ξE
r2
α

Ω2 + ξ2
E

h
α

+Û2

0 1
a

0 ξA
a

h
α

=0 (3.15)

Besides, a compact expression of the dimensionless system above can be written also in this case by
adding a non-dimensional aerodynamic damping matrix D∗

a (the matrix in the second product of the
above equation) to the system in eq.3.11:

M∗ ¨̂x + ÛD∗
a

˙̂x + Ω2K∗x̂ + Û2K∗
a x̂ = 0 with D∗

a =

 1
a

ξP
a

ξA
a

ξAξP
a

 (3.16)

Finally, the following 4-by-four system of first-order ODEs can be derived for the state-space model of
the quasi-steady problem:{
M∗ẏ + ÛD∗

a y + Ω2K∗x̂+ Û2K∗
a x̂ = 0

˙̂x− y = 0
→

M∗ 0

0 I

ẏ
˙̂x

+
[
ÛD∗

a Ω2K∗ + Û2K∗
a

−I 0

]y
x̂

 = 0

For the quasi-steady model, the final matrix Aqs results from the inversion of the same total mass
matrix of the Glauert model, but this time multiplied by a different total stiffness matrix K̃∗

tot, due to
the presence of the aerodynamic damping operator:

M∗
totż + K̃∗

totz = 0 → ż =
(
−M∗

tot
−1K̃∗

tot

)
z = Aqs z (3.17)

General time/frequency-domain Theodorsen
Under a quarter-chord pitching axis location (ã = −1/2 in eq.2.28), the general equations of the
Theodorsen unsteady aerodynamic model for lift and moment shown in eq.3.6 simplify to:

L = Lnc + Lc = πρb2
(
ḧO + 1

2bα̈+ U∞α̇

)
+ 2πρU∞bC(k)

(
ḣO + bα̇+ U∞α

)

MA = M
(nc)
A +M

(c)
A︸ ︷︷ ︸

=0

= −πρb3
(

1
2 ḧO + 3

8bα̈+ U∞α̇

)
with v(3/4)

n = ḣO + bα̇+ U∞α (3.18)

with the moment only consisting of a non-circulatory component. In the circulatory lift term, the
quantity that follows the Theodorsen function is often label with the symbol v(3/4)

n and it represents the
aerodynamic input on which the Theodorsen transfer function C(k) applies the delay resulting in the
lift-deficiency effect. To employ the Theodorsen model in the EoMs of the structural system in eq.3.6,
it is necessary to first employ an approximation for the generalized Theodorsen function C(k) - this
is shown in the appendix sec.B.1 - which allows then to obtain pure time-domain expressions for the
airload. The latter can be obtained by means of two methods from the same approximate Theodorsen
function C̃(k), with the first one leading to a convolution integral and the second one to additional ODEs
for the retained aerodynamic lag-states. The first approach is discussed in the appendix sec.B.2, while
the second in the appendix sec.B.4. In this section, only the time domain airloads resulting from the
two methods are applied to the structural system in eq.3.6 to get the full aeroelastic formulation of the
problem.

Time-domain Theodorsen: convolution integral method
From the approximate Padè-expression of the Theodorsen function C̃(k) in eq.B.2 of the appendix
sec.B.1, it is possible to obtain a pure time domain formulation of the Theodorsen airload by applying
the inverse Laplace transform to ˜C(k) and by subsequent time integration including the aerodynamic
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input. All these steps are described in detail in the appendix sec.B.2 and lead the following expressions
for the time-domain approximate lift and aerodynamic moment, when v(3/4)

n is defined as in eq.3.18:

L̃ = πρb2
(
ḧO+ 1

2bα̈+U∞α̇

)
+2πρU∞b

[(
ḣO+bα̇+U∞α

)∣∣∣∣
t=0

W (t)+
∫ t

0
W (t− τ̂)

(
ḧO+bα̈+U∞α̇

)
dτ̂

]

M̃A = −πρb3
(

1
2 ḧO + 3

8bα̈+ U∞α̇

)
→ f =

[
−L̃

M̃A − xAL̃

]
(3.19)

Based on the above expressions, the derivation of the convolution-integral version of the Theodorsen
aeroelastic problem can start. Therefore, by proceeding as in the case of the two previous aerodynamic
models, the following dimensional system of equations can be obtained: m mxG

mxG JE −mx2
E + 2mxExG

ḧO
α̈

+ πρb2

 1 b
2

b
2 + xA

3
8b

2 + xA
b
2

ḧO
α̈

+

+πρb2U∞

0 1

0 b+ xA

ḣO
α̇

+

 kh xEkh

xEkh kα + khx
2
E

hO
α

 =

= −2πρU∞b

 (ḣO + bα̇+ U∞α)
∣∣
t=0W (t) +

∫ t
0 W (t− τ̂)(ḧO + bα̈+ U∞α̇) dτ̂

xA
{

(ḣO + bα̇+ U∞α)
∣∣
t=0W (t) +

∫ t
0 W (t− τ̂)(ḧO + bα̈+ U∞α̇) dτ̂

}
 (3.20)

Next, to get the non dimensional form of this system, it is firstly required to obtain a non dimensional
version of the Padè-approximated Wagner function W̃ (t̃ ) in terms of the dimensionless time t̂ employed
in the aeroelastic systems derivation. By recalling the scaling rules of eq.3.9, it is possible to re-state the
dimensionless time τ̂3 in terms of Û and t̂, namely t = Û t̂. Therefore W̃ (t̂ ) becomes:

W̃ (t̂ ) = 1
2

(
1.9956− 0.6114e−0.0965Û t̂ − 0.3842e−0.4555Û t̂

)
(3.21)

Finally, by following the same procedure employed for the two previous models the non-dimansional
version of the aeroelastic problem with airloads according to the Padè-approximated Theodorsen model
can be obtained: 1 ξG

ξG r2
α − ξ2

E + 2ξEξG

ḧ
α̈

+

 1
2a

1
4a

1
4a + ξA

2a
3

16a + ξA
4a

ḧ
α̈

+ Û

0 1
2a

0 1
2a + ξA

2a

ḣ
α̇



+ Ω2

 1 ξE

ξE
r2
α

Ω2 + ξ2
E

h
α

 = − Û
a

 (ḣ+ α̇+ Ûα)
∣∣
t=0Ŵ (t̂ ) +

∫ t̂
0 Ŵ (t̂− τ̂)(ḧ+ α̈+ Û α̇) dτ̂

ξA
{

(ḣ+ α̇+ Ûα)
∣∣
t=0Ŵ (t̂ ) +

∫ t̂
0 Ŵ (t̂− τ̂)(ḧ+ α̈+ Û α̇) dτ̂

}
 (3.22)

The above system can be then expressed in a compact matrix notation similarly to the two previous
models by adding a dimensionless aerodynamic mass matrix M∗

a , introducing a different aerodynamic
damping matrix D̃∗

a and by replacing the K∗
a with the dimensionless force vector f∗(t̂ ). This leads to:

M∗ ¨̂x+M∗
a

¨̂x+ ÛD̃∗
a

˙̂x+ Ω2K∗x̂ = f∗(t̂ ) (3.23)

Regarding the state-formulation of this system in terms of four first-order ODEs, this can be derived
similarly as before, obtaining:{

M∗ẏ +M∗
a ẏ + ÛD̃∗

a y + Ω2K∗x̂ = f∗(t̂ )
˙̂x− y = 0

→

3This time variable is related to the reduced frequency (k) and has to do with the transformation of the Theodorsen model
from the frequency to the time domain carried out in the appendix sec.B.2.
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→

M∗ +M∗
a 0

0 I

ẏ
˙̂x

+

ÛD∗
a Ω2K∗

−I 0

y
x̂

 =

f∗(t̂ )

0


In the end, the following compact notation where matrix Atci is frozen in time, while vector btci(t̂ )
changes for each timestep, as it contains the force vector related to the convolution integral:

M̃∗
totż + K̂∗

totz = F ∗(t̂ ) → ż =
(
− M̃∗

tot

−1
K̂∗

tot

)
z + M̃∗

tot

−1
F ∗(t̂ ) = Atci z + btci(t̂ ) (3.24)

Time-domain Theodorsen: aerodynamic lag-states method
Shortly, to derive the lag-states formulation of the time-domain approximated Theodorsen airload, the
inverse of the Laplace transformation is applied to the whole lift expression. This leads to two second-
order ODEs for the two aerodynamic lag-states approximating the memory effect of the wake and with
the structural v∗(3/4)

n term on the lhs. The derivation is in discussed in detail in the appendix sec.B.4
and leads to the following dimensionless lift and moment expressions:

L∗ = 1
2a

(
ḧ+ 1

2 α̈+ Û α̇
)

+ Û

a

(
r̈ + Û(n1 + n2)ṙ + Û2n1n2r

)
; M∗A = 1

2a

(
ḧ

2 + 3
8 α̈+ Û α̇

)
When the above equations are applied to the structural system in eq.3.6, the below aeroelastic system
is obtained: M

∗ẍ+K∗x =
[

−L∗
M∗A − ξAL∗

]
r̈ + Û(d1 + d2)ṙ + Û2d1d2r = v∗(3/4)

n

with v∗(3/4)
n = ḣ+ α̇+ U∞α (3.25)

which consists in three second-order ODEs in t̂. Besides, the latter system can be written-down in terms
of the following matrices and solution vector:

1 ξG 0

ξG r2
α − ξ2

E + 2ξEξG 0

0 0 1



ḧ

α̈

r̈

+


0 0 0

0 0 0

0 0 Û(d1 + d2)



ḣ

α̇

ṙ

+


Ω2 Ω2ξE 0

Ω2ξE r2
α + Ω2ξ2

E 0

0 0 Ûd1d2



h

α

r

 =

= −


1
2a

1
4a

Û
2a

1
4a + ξA

2a
3

16a + ξA
4a

ξAÛ
2a

0 0 0



ḧ

α̈

r̈

−


0 Û
2a

Û2

2a (n1 + n2)

0 Û
2a + ÛξA

2a
Û2

2a ξA(n1 + n2)

−1 −1 0



ḣ

α̇

ṙ

−


0 0 Û3

2a n1n2

0 0 Û3

2a ξAn1n2

0 −Û 0



h

α

r


The above system can be made more compact leading to the equation shown below:

M∗
T ẅ + R∗

T ẇ + K∗
Tw = − E∗

1ẅ − E∗
2ẇ − E∗

3w

Next, the state-space model of the above system leads to six first-order ODEs for the four structure
states and the two aerodynamic lag-states corresponding to the two-pole two-zero Padè approximation
of the Theodorsen function:{

(M∗
T +E∗

1)ẏ + (R∗
T +E∗

2)y + (K∗
T +E∗

3)w = 0
ẇ − y = 0

→

→
[
M∗

T +E∗
1 0

0 I

] [
ẏ
ẇ

]
+
[
R∗

T +E∗
2 K∗

T +E∗
3

−I 0

] [
y
w

]
= 0

Finally, the final system is homogeneous with a single six-by-six matrix Atls:

M̂∗
totż + K̄∗

totz = 0 → ż =
(
−M̂∗

tot

−1
K̄∗

tot

)
z = Atls z (3.26)
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3.1.4. Analytical solution
The dimensionless aeroelastic systems with the steady and quasi-steady airload can be directly solved
analytically, while regarding the Theodorsen system, this is possible for the case of the aerodynamic lag-
states method. This can be done because, in these three situations, the final systems are homogeneous
and, therefore, it is possible to exploit the eigenvalues and eigenvectors of the final matrices As, Aqs

and Atls to compute analytical solutions based on a linear combination of exponential functions. This
is carried out by considering the set of values for the dimensionless parameters in tab.3.1. The first

ξA = 0.0 ξE = 0.1 ξG = 0.5 a = 1.5 Ω = 0.8 rα = 0.5

Table 3.1: Values for the dimensionless parameters characterizing the structural side of the problem.

step consists in the calculation of the eigenvectors z̃i and eigenvalues λi of the generic final matrix A of
each system. The number of such eigenvalues/vectors is equal to four for the Glauert and quasi-steady
cases while it is six for the Theodorsen problem due to the two additional aerodynamic lag-states. The
relation between the eigenvalues and eigenvectors of matrix A and the solution of the system z(t) is the
following:

z(t) =
4∑
i=1

ciz̃ie
λit and c = V Tz(0) (3.27)

where c is a vector taking into account the prescribed initial conditions of the problem z(0) by means of
matrix V T , which is the left-eigenvector matrix of A. Such expression for z(t), if plugged into the final
homogeneous systems, leads to:∑

λiciz̃ie
λit =

∑
ciAz̃ie

λit → (λiI −A)z̃i = 0 with i=1,2,3,4

where the linear independence of the eλit objects is exploited to simplify the left part of the above
equation. Regarding the right part, this can provide relevant solutions (all solutions different from
z̃i = 0) if it is possible to solve the problem det(λiI −A) = 0. This means that, to find the non-zero
eigenvectors z̃i = 0, it is necessary to find the roots of the characteristic polynomial of A, which are, at
the same time, also the eigenvalues (λi) of A. Finally, due to the mathematical properties of the final
matrix A, which is non-symmetric in all of the three problems, the eigenvalues λi are two couples of
complex conjugate numbers with values changing according to the non-dimensional speed parameter Û .

Eigenvalue dependence on flow velocity
The dependence of the eigenvectors z̃i and eigenvalues λi of A to Û is a very important property of
every aeroelastic system, as the sign of the real part of λi - Re(λi) - is used to described the dynamic
stability properties of the system, namely if this is in a condition below or above flutter. When the sign
of Re(λi) becomes positive, the flutter boundary is overcome and the system is no more dynamically
stable. This means that a further increase in speed will determine a more and more divergent behaviour
of the solution with large values for the position states reached. If in reality this is associated to damage
and mechanical failure of the system, in the case of the problem considered, such behaviour is still to
be avoided, as it violates the small displacement assumption employed to linearize the kinematics of the
system. For this reason, before proceeding with the calculation of the analytical solution of the system
for the three aeroelastic problems, it is necessary to find the flutter boundary of each one of them. Only
after this step, a condition for Û can be set below the flutter boundary to have small undamped or
damped oscillations according to the aerodynamic model employed.

Flutter boundary determination
The determination of the flutter boundary for the steady, quasi-steady and Theodorsen aeroelastic prob-
lems is determined by repeatedly calculating Re(λi) for increasing Û (step 0.001) until at least one of
the eigenvalues returns a positive real part. The result of this investigation is shown in tab.3.2, where in
the case of the quasi-steady model the location of the pitching axis xP corresponds to the quarter-chord
point xA, as the latter is chosen as reference point for the evaluation of the kinematics. Based on the
results from the flutter boundary analysis, flow conditions close to such threshold are considered, namely
Û = 0.9Ûf for each of the three aeroelastic problems, for the calculation of the analytical solution with
the method of the eigenvalues.
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Model Ûf
Steady Glauert 0.761
Quasi-Steady 0.686 for ξP = ξA

Theodorsen (aerodynamic lag-states) 1.194

Table 3.2: Results of the flutter boundary (dimensionless inflow velocity) investigation for the three aeroelastic problems.

3.2. Numerical modelling of the problem
The four aeroelastic problems can be synthetically described in terms of the corresponding linear systems
of first-order ODEs shown in tab.3.3. Such systems contain four equations for the steady, quasi-steady
and Theodorsen models with convolution integral method describing the time evolution of the structural
kinematic states, while in the case of the Theodorsen model with aerodynamic lag-states method there
are six equations due to the two aerodynamic lag-states introduced. The numerical solution of the above

Model System of ordinary differential equations

Steady Glauert ż =
(
−M∗

tot
−1K∗

tot

)
z = As z

Quasi-Steady ż =
(
−M∗

tot
−1K̃∗

tot

)
z = Aqs z

Theodorsen aerodynamic lag-states ż =
(
−M̂∗

tot

−1
K̄∗

tot

)
z = Atls z

Theodorsen convolution integral ż =
(
− M̃∗

tot

−1
K̂∗

tot

)
z + M̃∗

tot

−1
F ∗(t̂) = Atci z + btci(t̂)

Table 3.3: Systems of ODEs for the four aeroelastic systems.

systems can be obtained by applying a specific time marching technique able to compute the value of
the solution vector zn+1 at timestep t̂n+1 based on the knowledge of solution at the previous timesteps.

3.2.1. Time marching methods
For the steady, quasi-steady and Theodorsen with lag-states methods, due to the simplicity of the final
system - which is homogeneous and does not contain the convolution integral - the Crank-Nicolson
method is applied. In the case of the Theodorsen system with convolution integral, the simpler forward
Euler integration scheme is implemented. In the subsequent paragraphs, both methods are applied to a
uniformly-spaced time array to discretize the analytical aeroelastic problems in tab.3.3 and then a few
aspects of their numerical properties are presented.

Crank-Nicolson method
In the case of a generic homogeneous system of first-order ODEs ż = Az the Crank Nicolson method
consists in approximating the time derivative of the solution vector ż by means of a forward finite
difference in time, given a time difference ∆t̂ = t̂n+1− t̂n between consecutive timesteps, and by replacing
the solution vector ż with an average between its value at timestep t̂n and t̂n+1. This leads to:

ż = Az ≈ zn+1 − zn
∆t̂

= A
zn+1 + zn

2 → zn+1 =
(
I

∆t̂
− A2

)−1(
I

∆t̂
+ A

2

)
zn (3.28)

Therefore, the above equation can be applied to the generic final A matrix for the steady, quasi-steady
and Theodorsen with lag-states. This integration scheme is implicit, as the right-hand-side of the system
is approximated with values at the timestep t̂n+1 and single step, since values no older than n are
employed backwards. This single-step property and the evaluation method employed to discretize the
rhs term, is a property that the Crank-Nicolson method shares with the family of Runge-Kutta time-
integration methods, where even more sophisticated evaluation methods are available to improve the
accuracy of the solution. Regarding the accuracy of the Crank-Nicolson method, it is a consistent second
order method, as the global discretization error decreases quadratically when ∆t̂ is reduced. Eventually,
this method is unconditionally stable on a potentially unbounded time interval, which means that even
if ∆t̂ is large, the method will still be stable.
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Forward Euler method
The forward Euler method is the most simple time marching scheme that can be used to solve ODEs.
When applied to the final system of the Theodorsen problem with convolution integral, the lhs time
derivative of the solution vector is discretized with a forward finite difference similarly to the Crank-
Nicolson method, while the rhs is evaluated at the previous n timestep. This leads to:

ż = Atci z + btci(t̂ ) ≈ zn+1 − zn
∆t̂

= Atci zn + btci(t̂n)

and to the following discretized system:

zn+1 = (I +Atci∆t̂)zn + btci(t̂n )∆t̂ with btci(t̂n) = M̃∗
tot

−1
F ∗(t̂n) (3.29)

where the discretization of the F ∗(t̂n) term containing the convolution integral is carried out in detail
in the appendix sec.B.3. The forward Euler method, although simple and straightfoward in the imple-
mentation, can lead to numerical instability, if the timestep value ∆t̂ is too large. Besides, even when
∆t̂ is sufficiently small to return a stable behaviour of the numerical solution, the accuracy is lower
than the Crank Nicolson method, as the discretization error decreases only linearly with the timestep.
Regardless of the forward Euler method, the numerical solution of the Theodorsen system with convolu-
tion integral is expected to require a higher computational cost with respect to the Theodorsen method
with lag-states, due to the presence of the convolution integral. As shown in the appendix sec.B.3, the
computation of the convolution integral requires an internal loop per each time-integration timestep, this
is because of the computation of wake memory-effect requires all the previous values of the solution up
to the initial conditions.

3.2.2. Consistency analysis
In this section, the numerical solutions (consisting in the position and velocity kinematic states) for
the four aeroelastic problems is computed for various timesteps and compared with the corresponding
analytical ones calculated previously. Given the availability of the analytical solution show in eq.3.27,
the behaviour of the four systems is known, therefore, the main purpose of this step is to verify the
consistency of the numerical method employed and to find an optimal value of the timestep in terms of
both accuracy and cost of the simulation. Both the numerical and the analytical solutions are computed
for the values of the dimensionless problem parameters shown in tab.3.1, with initial conditions consisting
in only a perturbation of plunge velocity equal to the 1% of the inflow velocity, which is set to the 90%
of the flutter value prediction shown in tab.3.2 for each one of three aerodynamic models.

(a) Steady Glauert (b) Quasi-steady

Figure 3.3: Discretization error versus computational timestep related to the steady (left) and quasi-steady (right) aeroe-
lastic systems when both are compared with the analytical solution obtained with the method of eigenvalues.

The discretization error - defined as the L2 norm of the difference between the numerical and analytical
solution for each position and velocity state divided by the same for only the analytical solution - for the
steady problem is shown in fig.3.3-(a), while the same for the quasi-steady system in fig.3.3-(b). Both
plots confirm the second-order accuracy of the Crank-Nicolson method as error decreases by eight orders
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of magnitude when the timestep is decreased by four orders of magnitude. Regarding the cost of the
simulations, the steady ones require around one-half of the calculation time than the quasi-steady ones,
most likely due to the simpler mathematical systems. In both methods, the cost increases by one order
of magnitude when the timestep is reduced by a factor of ten going from ≈ 10−3s for ∆t̂ = 0.1 to ≈ 10
when ∆t̂ = 10−5 on a common laptop.

(a) Aerodyanmic lag-states (b) Convolution integral

Figure 3.4: Discretization error versus computational timestep related to the lag-states (left) and convolution integral
(right) approximation methods of the Theodorsen model when both are compared with the analytical solution obtained
with the method of eigenvalues.

In figure 3.4 the discretization error previously defined is shown for the two methods employed to
solve the Theodorsen aeroelastic system. Fig.3.4-(a) is related to the kinematic states calculated by the
aerodyanmic lag-states method and in this case the solution is obtained by employing the Crank-Nicolson
integration scheme. Such a plot shows a behaviour very similar to the two previous cases in terms of
a quadratic convergence trend with a decreasing timestep. Besides, also the calculation times are of
the same order of the steady and quasi-steady problems, with an increase of around 50% per timestep
calculation point. In the case of the convolution integral method, due to the increased cost related to
the convolution integral itself, only timesteps 0.1, 0.01 and 0.001 are considered. Indeed, the simulation
time is around four orders of magnitude greater than the one required by the other methods, and, in
the case of the smallest timestep, it took more than one hour to compute the solution vector. Besides,
due to the simpler integration scheme employed, also the global error shows a worse convergence trend,
which is close to the expected linear trend. Consequently, due to such reasons of significantly higher
simulation cost and lower accuracy, the convolution integral method is not considered as airload model
for the SimpackR© simulation of the Theodorsen aeroelastic problem. In addition, both time-domain
approximation methods of the Theodorsen model tend to converge to the same solution for a decreasing
timestep.

Given the previously described results for the steady, quasi-steady and Theodorsen with aerodynamic
lag-states problems, the numerical solutions obtained with a dimensionless timestep of ∆t̂ = 10−4 is
selected for the subsequent verification activity of the MBD simulation setup.

3.3. SimpackR© simulation setup
In this section, the setup of the SimpackR© simulations related to the three aeroelastic systems previously
derived (steady, quasi-steady and Theodorsen with lag-states method) is described by following the
general workflow outlined in sec.2.3.2. In doing so, aspects related to global simulation parameters, body,
motion, elastic forces and time integration are common for the three simulations, while the modelling of
the aerodynamic forces significantly differs.

Global parameters and Subvars
Before discussing the proper modelling steps and options employed, it is necessary to modify some
default setups among the Global Parameters, such as the switching-off of the gravity force by setting
all its components to zero. Besides, to speed-up and parameterize the simulation setup, subvars are
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defined for all the required simulation parameters. These quantities can be obtained by rewriting the
scaling rules in eq.3.9 to get expressions for the dimensional simulation parameters (airfoil geometry,
aerodynamic and structural quantities) in terms of the dimensionless ones used for the derivation of
the aeroelastic systems in sec.3.1.3. Next, values for the dimensional parameters can be obtained from
the values of the dimensionless ones shown tab.3.1. Both aspects are covered in the appendix sec.C,
where also additional parameters (fluid-flow density, airfoil chord and depth, as well as pitching angular
velocity) are prescribed to determine the values for the dimensional SimpackR© simulation parameters
finally shown in tab.3.4.

Name Symbol Formula Value Unit Subvar
airfoil semi-chord b - 1.0 [m] $_b

airfoil depth d - 1.0 [m] $_depth
angular pitch frequency ωα - 1.0 [rad/s] $_oma
point E x-coordinate xE ξEb 0.1 [m] $_xe
point G x-coordinate xG ξGb 0.5 [m] $_xg

flow density ρ - 1.225 [kg/m3] $_rho_air
lift aerodynamic derivative clα - 2π [-] $_cla

flow velocity [S; QS] U 0.9Ûfbωα 0.6849; 0.6174 [m/s] $_uinf
airfoil mass m 1.5ρb2clαd 11.5453 [kg] $_m

translation stiffness kh 0.82mω2
α 7.389 [N/m] $_kh

rotation stiffness kα 0.52mb2ω2
α 2.8863 [Nm/rad] $_ka

moment of inertia JE 0.52mb2 2.8863 [kgm2] $_JE

Table 3.4: Dimensional parameters employed for the SimpackR© simulations by means of subvars. The letters S and QS
are used to define the two different inflow velocity values employed to model the Steady and Quasi-Steady airload.

Body definition: geometric primitive
The definition of the single simulation body related to the flat-plate airfoil starts by prescribing a shape,
which corresponds to the Primitive shown in fig.3.5. Therefore, in the model tree of the SimpackR©

Pre-Processor GUI, a Cuboid Primitive type is selected. The default BRF Marker settings are kept
without prescribing any position or orientation angle obtaining a cuboid centered at the BRF location.
Regarding the cuboid physical dimensions, these are defined based on two times the subvar "$_b" along
the chordwise direction and "$_depth" for the spanwise one (with both subvars indicated in tab.3.4) in
addition to a zero thickness along the z-direction, as the mass properties of the airfoil are known from
the analytical model4. Furthermore, to maintain the correspondence between the 2D analytical model
and the SimpackR© intrinsic 3D simulation, the value for the body depth/span chosen is 1m.

Body definition: Markers
For the subsequent definition of the Joint and Force elements, Markers (namely local coordinate systems)
of the Cardan Angles type are defined on top of the body surface. As the reference point for the evaluation
of the body motion is the AC or point A, such point is defined for first at a distance equal to half the
airfoil semi-chord from the BRF towards the flat-plate LE. In this fashion, the location of Marker A
perfectly matches the quarter chord at the middle of the airfoil span. Once the A Marker is defined,
the Markers E and G are obtained by employing the subvars "$_xe" and "$_xg" shown in tab.3.4 along
the chordwise direction of the MBD computational domain. According to what mentioned before for the
Primitive setup with respect to the BRF, the position of point G is exactly the same as the BRF one.

Body definition: Body Properties
After prescribing a shape and local frames, also mass and inertial properties need to be provided to
completely define the simulation body. Therefore, in the Body Properties window, the user has to
specify the Body type between rigid and the multiple options available for flexible structures. In the
problem of interest, the option rigid is selected and the data input option is set to Manual, as mass
4Alternatively, the solver can automatically compute the mass properties of the body based on the shape of its primitives,
but this option requires that all the primitive dimensions have non-zero values.
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("$_m") and inertial properties ("$_JE") of the body are known. In the same window, the position of
the CoG (Marker G) and the body mass, as shown in tab.3.4, are first set. Next, the inertia tensor is
prescribed relative to Marker E and filled with the JE simulation parameter only for the Jxx diagonal
moment, while the other moments are left to the default unitary value (no rotation is set about the y-
and z-axes) and the off-diagonal products are left equal to zero due to the plain rotation considered.

Figure 3.5: Body Primitive, reference frames and Markers for the SimpackR© MBD simulation.

Joint definition
To model the body motion, the combination Joints/Constraints is employed instead of only Connections,
but the two options are conceptually identical and expected to return very similar results. To have the
same airfoil roto-translation of the analytical model, a User Defined Joint type is chosen with point A
as the To Marker of the kinematic chain, without introducing any Constraint. In the States section of
the Joint window, the initial conditions are defined consistently with the numerical/analytical reference
solutions (initial plunge velocity perturbation) and the other options are left unchanged with their
default setups. In the Parameters section, the DoFs that need to be activated to get the desired motion -
namely rotation about the x-axis and translation along the z-axis - are prescribed and then the Trans-rot
sequence5 is set to rotation first, as it provided the best phase match with the reference solution. Finally,
it is relevant to point out that the position of M_Isys is automatically shifted to the To Marker location
(point A) of the Joint. In this way, point A becomes also the origin of the inertial reference system, and
the kinematic states, as well as the expressions for the aerodynamic force, are computed with respect to
this point, consistently with the analytical model.

Springs Force Element
Similarly to Joints, also the modelling of the translation and rotational springs is done by considering
the very general Bushing Cmp Force Element type to have the freedom to define arbitrary spring-damper
forces/moments in all the possible six spatial directions. Next, to exactly replicate the system drawing
in fig.3.2, where the spring force khhO has an opposite direction with respect to the plunge DoF and the
spring torque kαα is counter-rotating with respect to the pitch motion, the To Marker is set to Marker E.
Another important parameter to set is the Mode of angle calculation, which needs to be set to the option
All angles < 10 [deg]6 to be consistent with the linear formulation of the reference solution. Finally, by
providing the subvar for the translational "$_kh" and rotational "$_ka" stiffnesses respectively along the
z-direction and for the α rotation, all the required steps to define the lumped elasticity of the body are
completed.

5This Joint parameter deals with the order between single rotations and translations employed by the solver to assemble
the transformation matrix, which transforms a vector from one coordinate system to the other [65].

6This option deals with the full non linear expressions of the angles between the From Marker and the To Marker of the
modelling element due to trigonometric functions. With the option All angles < 10 [deg], the expressions are linearized
for all the angles at stake. This increases the computation speed and provides still accurate results, as long as angles are
significantly below 10◦ [65].
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Time Integration Solver
To be entirely consistent, the setup of Time Integration Solver in SimpackR© has to be as close as possible
to the time integration methods employed to get the numerical solutions. Besides, a physical timestep
of ∆t = 0.0001s and a simulation duration of 50s are employed, which correspond to a simulation
duration of 50 units of dimensionless time and a dimensionless timestep ∆t̂ = 0.0001 as well, do to the
dimensionalization approach outlined in the appendix sec.C. Regarding the specific integration scheme,
as the steady, quasi-steady and Theodorsen with lag-states numerical reference solutions are obtained
with the Crank-Nicolson method, fixed timestep integrators need to be employed in the MBD simulation.
Among those available, the Linear Implicit "one-leg" method with a default value for the Node c parameter
equal to 0.5 is selected. This choice is motivated by the fact that this SimpackR© integrator returns the
best match and because its formulation is the closest one to the Crank-Nicolson method, given the
common properties of being single-step, implicit and linear methods (for linear problems, like the one at
stake). Finally, no further advanced options are changed from the default ones.

Airload Force Element for the steady and quasi-steady problems
Due to the different level of complexity in the analytical expressions for the aerodynamic forces, different
methods between the steady and quasi-stead problems on the one hand and the Theodorsen one on the
other hand are employed to model the airload in the SimpackR© simulation setup. In the case of the steady
and quasi-steady problems, Expressions-based Force Elements are defined to model only the lift, as there
is no aerodynamic moment for both models. For the steady Glauert model, an expression for the lift is
defined according to eq.3.7 by employing the required subvars from tab.3.4 and a SimpackR© internally
defined function to access the required kinematic state (pitch position) during the time integration. The
same procedure is exploited also for the quasi-steady model from the lift formulation of eq.3.13. At
this point, by selecting the Force-Torque Expression Cmp option as Force Element type, the previously
defined expressions for the lift force can be recalled for the setup of the two simulated problems. Finally,
important parameters to set are the To Marker as the airfoilMarker A (this is because the expressions are
positive defined) and the Reference Marker for calculation as Marker M_Isys, because of what explained
in the Joint paragraph.

Airload Force Element for the Theodorsen problem
Regarding the Theodorsen model, it is not possible to directly include the analytical formulations for
the lift and aerodynamic moment according the lag-states method in the MBD simulation by means of
Expressions, due to the presence of the additional ODEs for the lag-states. Alternatively, it could be
possible to set a User-defined Force Element implementing the equations of the model, but this is not
considered due to the considerable investment of time that this requires. Therefore, a solution is found
by first externally computing the complete time-history of the aerodynamic force components from the
full aeroelastic model by exploiting the equations in the appendix sec.B.5.2. Then, such time-histories
are provided to the MBD simulation to compute the corresponding kinematic states for the same time
range. This can be considered as a one-way coupling occurring only once and at the a level of the
simulation setup, differently from the two-way coupling on a timestep-per-timestep basis discussed in
ch.5. To implement this strategy, Input Functions are employed, because they allow to define functions
from input data-tables .afs files7 which can be subsequently employed for several purposes. In order
to import .afs files, first of all it is necessary to define a search path among the Global Parameters
where SimpackR© looks for the required file and automatically loads it when the simulation file is opened.
Once the input functions for the aerodynamic loads are defined, Excitations from Input Functions can
be defined by employing a unitary scaling factor. Next, directly from the Excitation Element window,
u-Vector Elements can be prescribed from the zero-derivative of the Excitation. Such u-Vector quantities
are eventually supplied as input parameter to the Force Element type "Force/Torque by u(t) Cmp" to
prescribe the z-force and the x-torque to apply to the From Marker A of the airfoil. The From Marker
is set to A because the force values are generated externally with the negative sign, as shown in the
appendix sec.B.5.2.

7A more in depth explanation of this tool can be found in the appendix sec.D.4.3 with reference to its setup and structure
in the context of the coupling.
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3.4. Presentation and analysis of results
This chapter concludes with the presentation and discussion of the results of the MBD simulations
(red lines in fig.3.6, fig.3.7 and fig.3.8) compared with the numerical reference solutions (black dots in
the same figures) of the same aeroelastic problems, where the aerodynamic models employed are the
steady Glauert, quasi-steady and the time-approximated Theodorsen with the lag-states method. This
comparison is expected to return very little differences between the SimpackR© and the reference solution
computed by a python routine, because their mathematical and numerical formulations are similar and
potential error sources due to the MBD setup are minimized. More in detail, both solutions are obtained
by modelling the physics of the problem in terms of lumped-parameters for the structural domain and
analytical expressions based on the body motion for the fluid dynamics, leading to the compatible
mathematical description consisting in systems of ODEs. Regarding discretization, as already pointed
out in sec.3.3, compatibility between the two solutions can also be considered for this aspect, since a
fixed-timestep numerical integration based on a linear implicit discretization is carried out. However, it
is not possible to affirm that the numerical schemes are the same at the level of the implementation,
because the SimpackR© source code is not available and no further details are given in [65] regarding the
properties and algorithm of the Time Integration Solver chosen, although this aspect is very likely to
provide negligible effects. Finally, also some parameters of the SimpackR© simulation setup, which play
a role comparable to tuning parameters (for instance the trans/rot sequence in the User Defined Joint
type or the Mode of angle calculation in the Bushing Cmp Force Element type), are set to those options
returning the best match between the two solutions, and thus their impact can also be considered as
negligible.

Figure 3.6: Comparison between the numerical and SimpackR© dimensionless pitch and plunge positions time-histories for
the steady aeroelastic problem computed by employing a dimensionless freestream velocity Û = 0.6849.

After motivating why a basically perfect comparison is expected, as already mentioned, both the
numerical and the SimpackR© solutions for the three problems are computed by considering the same
integration timestep (0.0001s or units of dimensionless time due to the dimensionalization approach
described in the appendix sec.C) and over the same time range (50s or units of dimensionless time).
As shown in the global discretization error plots in sec.3.2.2, such a timestep is sufficiently small to
affirm that the numerical solution is very close to the analytical one, leading to an equivalent comparison
between the SimpackR© solution and the analytical one. Moreover, both solutions employ the same initial
condition (plunge velocity perturbation) in all the three problems and the inflow speed is set to 90% of
the flutter velocity prediction returned by each aerodyanmic model shown in tab.3.2, leading to three
different values of dimensionless inflow speed, namely Û = 0.6849 for the steady, Û = 0.6174 for the
quasi-steady and Û = 1.0746 for the Theodorsen problem. Being said this, the expected perfect match
between the SimpackR© and the numerical reference solutions is actually observed in fig.3.6, fig.3.7 and
fig.3.8 for the three aeroelastic problems considered and in the pitch and plunge position states over
the entire simulation duration. The same can be observed also for the velocity and acceleration states
shown in the appendix fig.F.1, fig.F.2 and fig.F.3. Furthermore. such a perfect match is kept also
during intervals of the solution time-history characterized by rapid changes, or small time-scales. This
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Figure 3.7: Comparison between the numerical and SimpackR© dimensionless pitch and plunge positions time-histories for
the quasi-steady aeroelastic problem computed by employing a dimensionless freestream velocity Û=0.6174.

is the case of the pitch kinematic states of the steady problem and in the initial transient for the plunge
states of the quasi-steady problem. Therefore, these results show that SimpackR© is able to provide
accurate computations of the kinematic states of a rigid body under the effect of aerodynamic forces
from analytical models.

If the results of such three aeroelastic problems are investigated from a physical point of view, a
different dynamic response of the airfoil can be noticed. This is the direct consequence of the aerodynamic
models employed and the aeroelastic effects that they trigger on the same structure shared between the
three problems. On the one hand, the steady Glauert aerodynamic model in fig.3.6 returns an undamped
response in both motion states with a single-component harmonic oscillation for the plunge motion, while
the pitch motion is the result of a summation of several components. On the other hand, both the quasi-
steady in fig.3.7 and Theodorsen in fig.3.8 with lag-states models provide a damped response in all the
kinematic states considered. Concerning the Glauert model, this does not introduce any damping of
aerodynamic nature in the system, which continues to oscillate at the limit of stability. In other words,
the amount of work done by the aerodynamic forces onto the airfoil during an oscillation cycle equals
the one returned by the body to the flow. In this way, the energy content of the airfoil does not change
and oscillations do not reduce in amplitude. However, it is important to point out that such a limit-of-
stability behaviour is not related to a flutter condition and it is just a consequence of the inadequacy
of the Glauert model, which does not include both the inertial and the wake-memory effects. In reality,
the limit-of-stability does not occur for the flow velocity considered with respect to the flutter boundary,
and the oscillations are damped-out for the initial condition employed with pitch and plunge motions
asymptotically tending to zero. Concerning both the quasi-steady and the Theodorsen models, they
both include aerodynamic damping in the equations, leading to a dynamic response that, for a large
time, correctly tends to zero. However, the response of both systems is still different, especially in terms
of frequency of oscillation (almost double for the quasi-steady solution), damping of the response (the
Theodorsen response appears to be more damped) and in the different initial transient behaviour of the
plunge state. These differences are due to the fact that the Theodorsen model is more able to capture
the complexity of the flow physics, by including the lift-deficiency effect caused by the wake memory
effect - even though here only two aerodynamic states are considered. Besides, the Theodorsen model
employs higher order derivatives to model the inertial effects on the flow due to the airfoil motion.

The assessment of the MBD simulation setup is relevant for the overall thesis project for multiple
reasons, not just to prove that it can accurately compute kinematic states for prescribed aerodynamic
forces. First of all, by understanding the working principle of the tool on simple problems, fundamental
experience is developed and expertise is gained as well. In particular, all the tests and attempts carried
out to improve the match between the two solutions allowed to better understand the working principle of
the tool and to explore more in detail its functionalities, in particular in terms of Time Integration Solver,
Force Element modelling and Joint types properties. Such knowledge is essential for the prosecution of
the project, not only limited to this thesis, but also to the development of the coupling for 3D flexible
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Figure 3.8: Comparison between the numerical and SimpackR© dimensionless pitch and plunge positions time-histories for
the aeroelastic problem featuring the time-domain approximated Theodorsen model with lag-states method. Both solutions
are computed by employing a dimensionless freestream velocity Û=1.0746.

helicopter or wind turbine blades, which is the end goal of the research. Then, from a practical/technical
viewpoint, this activity shows that a coupling methodology between SimpackR© and an external tool,
which does not involve user-defined force routines or co-simulation engines, can be still developed by
exploiting existing and more straightforward features of the tool. The most important of these are .afs
input tables to import external time-histories of aerodynamic forces and Excitation-based Force Elements
to apply such airload time-histories to the simulation. As discussed in ch.5, this process is extended and
automated to load data in a coupling loop iteration between SimpackR© and an external routine which
acts as a low-order surrogate of a CFD code.
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4
PowerFLOWR© CFD setup verification

The second step of this thesis project deals with an extensive verification activity of the PowerFLOWR©

CFD setup by assessing the accuracy of the tool in computing the aerodynamic forces resulting from
prescribed pitching and plunging motions. As shown in the diagram of fig.4.1, the CFD simulation
receives as inputs harmonic pitch - α̇(t) - and plunge - ḣ(t) - motion states and computes aerodynamic
forces - F (t) - which are then compared against the Theodorsen analytical unsteady aerodynamic model.
Such comparison allows to evaluate the overall simulation setup and in particular the methods employed
to model the airfoil pitching and plunging motions, namely a truly rotating mesh (LRF-approach) flow
blowing/suction (transpiration wall velocity BC approach) and the body forces approach. As the flow
conditions employed in this activity are based on low Mach and high Reynolds numbers attached flows,
similarly to the experiments of [85] and the numerical simulations of [86], they are compatible with the
assumptions of the potential flow theory. This justifies the employment of the Theodorsen model as
reference solution for the lift and moment coefficient generated by the CFD simulations. Finally, this
activity can be useful also to explain the results of the coupling between PowerFLOWR© and SimpackR©

shown in ch.6.

Figure 4.1: Diagram showing the main approach followed in this verification activity of the PowerFLOWR© CFD simulation
setup for the investigation of the aerodynamic forces generated by pitching and plunging airfoils.

This chapter start in sec.4.1 with a detailed description of the PowerCASER© simulation setup. Next
sec.4.2 contains the test matrices employed for the pitch-LRF, wall-velocity-plunge and body-forces-pitch
simulations. In sec.4.3, a short resolution study of the CFD setup with pitch-LRF is presented. Finally,
the remaining three sections deal with the comments and possible explanations for the aerodynamic
results of the three investigations for all the conditions outlined in the previous test matrices, namely
pitch-LRF in sec.4.4, plunge-wall-velocity in sec.4.5 and pitch-body-forces in sec.4.6.

4.1. Description of the aerodynamic Simulation setup
The setup of the CFD simulation is developed from the one employed in [6] for the tuning of the body-
force approach on 2D pitching airfoils, with modifications primarily in terms of body, refinement regions
and boundary conditions to model the vertical plunge motion. The following subsections cover all the
aspects related to the setup of the simulations carried out in this aerodynamic verification activity and
to a good extent also in the coupling case. Regarding the latter case, the reader is referenced to ch.6.
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4.1.1. Simulation options
The first aspect to take care when setting-up CFD simulations in PowerCASER© is to prescribe Simulation
Options, which are very high-level parameters directly related to the PowerFLOWR© solver. As this
thesis is focused on 2D simulations of aeroelastic airfoils, the 2D option is selected as Dimensionality. As
discussed in the geometry subsection, PowerCASER© always needs a three dimensional geometry when
setting up a simulation case, both with respect to the simulation body and primitives. When the 2D
option is activated, the PowerFLOWR© discretizer generates a lattice consisting in only one voxel along the
spanwise third dimension, and computations are performed on a x-y plane at the location of z=zmin[52].
Besides, when dealing with 2D simulations of airfoils, it is always a good practice to employ a length
size for the squared simulation volume considered much bigger than the airfoil chord length (a ratio of
500 is here employed). Moreover, given the cartesian mesh, it is possible to cover a large volume with
a are relatively low number of additional voxels and without increasing significantly the simulation cost
(if the near field VR regions are unchanged). This is done to minimize the effects of disturbance waves
due to the simulation startup and boundary conditions on the airfoil surface loads. Other options are
related to the flow conditions, such as External Flow Type, Turbulence Model as Simulation Method and
Low (Ma < 0.5) Mach Regime, since the topic of this thesis deals with low speed incompressible flow
conditions at high Reynolds number. Regarding the Boundary Layer Transition Model, this is enabled
with the default option set to Fully Turbulent. Finally, the Simulation Fluid is based on air as an Ideal
Gas without Heat Transfer and the Solver is set to work in (default) Single Precision.

4.1.2. Case variables
In PowerCASER© the most important variables defining the simulation case can be defined on a separate
table were they can be stored in terms of name, unit, value and further attributes. This functionality of
the tool is exploited to define quantities like the the free-stream pressure, Mach number and temperature,
as well as airfoil chord, as shown in tab.4.1. Furthermore, also the pitch/plunge reduced frequency and

Name Symbol Value Unit
Reynolds number Re 1.0181·106 [-]
Mach number Ma 0.1 [-]
airfoil chord c 0.46 [m]

free-stream velocity U∞ 34.7223 [m/s]
free-stream pressure P∞ 101325 [Pa]

free-stream temperature T∞ 300 [K]
air kinematic viscosity ν 1.57·10−5 [m2/s]

default turbulence intensity I0turb 0.1% local velocity [m/s]
default turbulence length-Scale l0turb 1 [mm]

Table 4.1: Main global simulation parameters employed for the CFD setup aerodynamic validation activity. Some of
them (chord, temperature, viscosity and turbulence quantities) and also used for the aeroelastic SimpackR©-PowerFLOWR©

coupled simulations.

amplitude of motion are defined as Case Variables, the parameters ξ1 and ξ2 used to tune the body forces
and t1 in the case of the wall velocity boundary conditions, as well as the default turbulence intensity
and length-scale are required to compute in the calculation the free-stream turbulent conditions (kinetic
energy, dissipation rate and eddy viscosity) employed by the solver for the turbulence model.

4.1.3. Geometry
Airfoil simulation body
All the PowerFLOWR© simulations carried out feature as body geometry a NACA 0003 symmetric airfoil
shown in fig.4.2. This airfoil is chosen due to its geometric and flow dynamic similarity with the flat-plate
on which the Theodorsen theory is based. Other airfoils are also tested, such as a NACA 0012 and a
NACA 0006, but the NACA 0003 returned the best agreement in terms of lift coefficient in the case of
periodic pitch oscillations modelled by the truly rotating mesh approach due to the larger thickness and
the more rounded LE shape of the other two geometries. Therefore, this geometry is employed also for
the simulations with periodic plunge motion and pitch motion modelled by body forces. Also thinner
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airfoils could be considered, but the range of AoA and reduced frequencies able to return attached flow
conditions without LE separation would be too narrow to observe tangible amplitude or frequency effects.
As already mentioned, the simulation body geometry has to be 3D, therefore a wing-airfoil with a given

Figure 4.2: Airfoil NACA 0003 employed as CFD simulation body geometry with the defined coordinate systems.

span needs to be imported in PowerCASER© as a ".stl" mesh file, which can be generated by a common
CAD tool from the contour-points coordinates of the airfoil widely available in open literature, such as
[81]. Besides, a thin TE is considered in order to avoid possible vortex shedding from the wake.

Coordinate systems
For the simulation setup it is important to define coordinate systems for the positioning of the airfoil,
geometry primitives, free-stream flow conditions and boundary conditions inside the computational do-
main. The coordinate systems employed are shown in fig.4.2 and are all are labeled with "_csys" at the
end of their name. A rotation of the "freestream_csy", with respect to the z-axis normal to the simulation
plane, defines an AoA in between the airfoil reference system and the wind-axis frame. The location of
"freestream_csy" is the same as the "import_csys" (x position of the airfoil LE), which is instead used
to position the airfoil when it is imported in PowerCASER©. The "quarter_chord_csys" (at the 25%
of the airfoil chord) defines the location of the automatically generated VR regions (namely VR01, 2,
3 and 4), while the "pitching_axis_csys" defines the location of the LRF that models the airfoil pitch
motion and its position in all the simulations, differently from what shown in fig.4.2, is the same as the
"quarter_chord_csys". Finally, the "wing_csys" (at the airfoil center) is used to define the boundaries
of the simulation volume (SimVol) and is located at the center of the wing, while the "TE_csys" helps
in the positioning of the wake VR regions.

Primitives
Primitives such as boxes, cylinders, offsets, polylines, points, axis and symmetry planes can be defined
in PowerCASER© for multiple reasons. In this setup, primarily boxes, cylinders, offsets and points are
employed to define VRs, the LRF and the volumes for the body forces. Body forces to simulate the
effect of a pitch motion are prescribed on fluid volumes enclosed by cylinders at the location of the LE
and TE, similarly, the LRF requires an axis-symmetric primitive enclosing the whole geometry that is
expected to rotate - in this case the entire airfoil simulation body - without intersecting more than two
VR regions in order to avoid discretization errors [52]. Regarding the user-defined VR regions, boxes
and cylinders (7, 6 and 5 are offsets of the LRF) are used to define refinement regions in the far field,
as shown in fig.4.3, while offsets of the airfoil geometry (8, 9, 10 and 11) are used in the near field, see
fig.4.4. On the other hand, boxes are employed in the case of the wake VRs extending downstream from
the TE. Boxes are used also to set the boundaries of the computational domain, namely bottom, top,
inlet and outlet shown in fig.4.3, and the simulation volume itself. Finally, points are defined to highlight
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Figure 4.3: SimVol with boundary conditions and far-field VR regions for the fine simulation, image not to scale.

the location of the key airfoil points, such as the quarter-chord, the pitching axis and the LE and TE,
but they do not have any other significant propose.

4.1.4. PowerCASER© parameters tab
This subsection contains all the most important aspects of the setup of a PowerFLOWR© simulation and,
in general, these are specified in the Parameters tab of the PowerCASER© GUI.

Reference frames: sliding mesh (LRF)
As already introduced in sec.2.2.2, to simulate the real pitching behaviour of an airfoil, a sliding mesh
object can be defined in PowerCASER© with a truly rotating mesh and forces consistent with rotation
(Coriolis and Centrifugal) applied to the fluid enclosed by the LRF volume [52]. To define a rotating
mesh volume, a cylinder primitive is defined with a radius of 2 meters at the location of the pitching
axis coordinate system. This radius is sufficient to enclose the airfoil, all the near-field airfoil-offset VRs
and some of the wake VRs near the TE. After defining the geometric properties of the sliding mesh,
an angular pitch velocity Ȧ(t) is prescribed for the LRF volume in the PowerCASER© calculation page.
Contrarily to what carried out in [6], a combination of a cosinusoidal pitch motion of amplitude Aα
and a rotation of the "freestream_csys" coordinate system with respect to the "default_csys" frame in
fig.4.3 are employed. The first aspect is to minimize the spurious effects in the surface airload due to
the LRF start-up (the initial LRF angular velocity is zero in this way), while the second one is to set
a non-zero initial condition for the AoA1. Therefore, by setting an angle for "freestream_csys" equal to
−Aα acting as CFD initial condition, the lift signal gets a zero mean value and AoA oscillations are
in the range −Aα ≤ A(t) ≤ Aα (similarly to [6]) with an initial value α0 = −Aα. This leads to the
following analytical expression for the pitch angular velocity of the rotating mesh in the PowerFLOWR©

"default_csys":
Ȧ(t) = −Aαωα sin (ωαt) (4.1)

where ωα is the angular frequency depending on the prescribed reduced frequency of pitch. Therefore,
the corresponding time-variations of the pitch angle A(t) and the AoA α(t) are:

A(t) = Aα cos (ωαt)−Aα; and α(t) = Aα cos (ωαt); (4.2)

1This is required because the default initial value of the rotating mesh position, or pitch angle A(t), is always zero, and
leads to a pitch oscillation in the range −2Aα ≤ A(t) ≤ 0 for a pitch motion of amplitude Aα.
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Figure 4.4: Near-field airfoil-offset and wake VR regions for the fine simulation geometry.

where the difference is due to the effect of the −Aα orientation of "freestream_csys", which is required
to set a non-zero initial value for the AoA oscillation, namely α0 = −Aα. The above expression for A(t)
is evaluated timestep-per-timestep by the PowerFLOWR© solver together with all the other equations in
the calculation page necessary for the CFD simulation setup, while for the CFD simulations with body
forces the LRF angular velocity is simply set to zero.

Body forces applied to fluid regions
As already discussed in sec.2.2.2, a pitching airfoil can be simulated also by applying body forces within
fluid volumes surrounding the surface of the body. This approach can replicate, up to certain conditions,
the effect of a true airfoil pitching motion on the near-field fluid-flow by means of body forces applied to
fluid volumes at the airfoil LE and TE (as shown by the bLE and bTE labels in fig.4.4). For this reason, as
shown by [6], this method is expected to have limitations and to be effective only for limited values of the
amplitude and frequency of motion and only after tuning the model to match the lift signal generated by
the truly pitching airfoil. Without repeating the details in sec.2.2.2, here the focus is on the expressions
of the pitch velocity and acceleration employed in this activity, which differ from the ones employed in
[6] only in the harmonic function, given the previously defined pitch motion carried out by the sliding
mesh LRF in eq.4.1. Consequently, a sinusoidal ˙̃φ(t) and a co-sinusoidal ¨̃φ(t) amplitude modulated and
phase shifted pitch velocity and acceleration are employed based on the following expressions directly
implemented in the PowerCASER© calculation page and applied to the expression for the LE and TE
body forces shown in eq.2.10:

˙̃φ(t) = −ξ1Aαωα sin
[
ωα
(
t− ξ2Tα

)]
and ¨̃φ(t) = −ξ1Aαω2

α cos
[
ωα
(
t− ξ2Tα

)]
(4.3)

where Tα is the period of pitch motion Tα = 2π/ωα obtained from the prescribed reduced frequency. In
the case of the body-force approach for pitch motion, there is no need to set an initial condition for the
AoA (α0 6= 0) by rotating the "freestream_csys", as the this model returns a cosine oscillation around an
average zero AoA for the above prescribed ˙̃φ(t) and ¨̃φ(t) already providing the desired initial condition
for the angle of attack (α0 = −Aα). Besides, spurious oscillations due to the motion start up are much
smaller than those due to the sliding mesh. The only inconvenience is due to the increased cost of this
method, as the above equations need to be calculated for each voxel within the cylinders surrounding
the LE and TE and for each internal timestep of the CFD solver. Therefore, a rather small radius for
such cylinders - one 16-th of the chord - is employed. In the case of LRF-simulations, body forces are
switched-off by setting both ˙̃φ and ¨̃φ to zero.
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VR strategy
The VR regions shown in fig.4.3 and fig.4.4 are obtained by employing a set of parameters defined via
equations in the calculation page. This is the case of the boxes for the wake VRs, whose size and position
are determined based on multiples of the airfoil chord and the corresponding VR offset. Each VR region
features a minimum offset distance - in other words VR thickness - of at least 20 times the local voxel
size. As the smallest voxel size is the one of VR11, its offset is the smallest, while the largest offset is
the one of VR5. This explains why the space between two consecutive VR regions that are offset of the
airfoil or of the LRF increases from VR11 to VR5.

Fluid/solid and initial conditions
In this subtab of the PowerCASER© Parameters tab, the user specifies which geometric features are solid
or fluid in order to instruct the PowerFLOWR© discretizer where fluid voxels are required, where not and
where to generate surfels for collecting data to generate surface measurement files. The airfoil and the
boundary block (inlet, outlet, top and bottom) are the solid bodies in the simulation and within these
volumes the discretizer will not generate fluid voxels. More in detail, the discetizer firstly fills the whole
computational domain with voxels from the coarsest VR (VR0), then it generates the smaller voxels by
splitting the coarser ones based on VR regions and finally, all the voxels inside solid regions are removed
and surfels are created over solid surfaces. Regarding fluid regions, these are related to the SimVol and
the body-force cylinders. In the first, no body forces are applied, while in the second the body forces
simulating the effect of the pitch motion are activated by prescribing accelerations along the x and y
directions. In both fluid regions, initial conditions for the pressure and velocity in the x-direction are
given (P∞ and U∞ in tab.4.1) as well as initial conditions for Turbulence are provided based on the
Intensity and Length Scale defined in the previous subsection.

Boundary conditions
Regarding boundary conditions, the simulation setup employs the Pressure and Velocity Inlet type which
prescribes U∞ along the only x-direction of the "freestream_csys" and P∞ for the whole simulation
duration. Besides, the same initial conditions for Turbulence Intensity and Length Scale discussed for
the fluid regions are applied as boundary conditions. When it comes to the body surface, in the case of
pure pitch simulations, the Wall type is set to Standard Wall, while in the case of pure plunge motion
simulations, a Velocity Wall is considered where the velocity applied as BC is the one of the wall/body
itself. The latter option allows, as already mentioned in sec.2.2.2, to simulate the effect of a rigid plunge
displacement and it is the scope of this activity to exploit the possibilities and limitations of such method
for this second purpose. When the Velocity Wall option is activated, a reference frame needs to be defined
to prescribe the initial velocity to apply to the wall, and the LRF one is chosen so that the pitch and
plunge motions can be simulated at the same time. Next, the "quarter_chord_csys" coordinate system
is selected, for convenience, to specify the wall’s velocity and, given the small amplitude of the pitching
motions considered, only a y-component is prescribed based on a cosine velocity law:

ḣ = t1Ahωh cos(ωht) (4.4)

where Ah is the plunge amplitude, ωh is the plunge angular frequency and t1 is a coefficient required to
tune the model to match a reference force signal. Considering only a y-wall velocity is an approximation
acceptable for small AoA, as the coordinate system "quarter_chord_csys" does not take into account
the rotation of the airfoil due to the pitching motion, but it would be more correct to include also a
(very small) x-velocity, or at least scale the y-velocity by a cos(α) factor. All the simulations, regardless
of the wall type, feature the Automatic option for the Boundary Layer Type so that the transition from
a laminar to a turbulent boundary layer is automatically computed by the aerodynamic solver based on
its wall model and no surface roughness is applied to the airfoil boundary conditions.

Measurement files
Two measurement files are defined to sample fluid data. The first one is related is a Composite Mea-
surement by Face for the airfoil surface airload. This file computes a surface airload over the surfels
discretizing the simulation body by integrating the distribution of normal pressure stresses and tangen-
tial viscous stresses acting over the body. This is done for the whole simulation duration with a sampling
interval corresponding to the local timestep of VR5 (64 computational timesteps corresponding to a
range between roughly two and four thousand frames per period of motion depending on the motion
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frequency) and with a time averaging interval of the same duration. This leads to a high resolution in
time, with an expected sampling frequency of several kHz depending on the resolution level. Finally. the
aerodynamic moment is defined with respect to the pitching axis location. The other file is a Standard
Measurement by Region collecting fluid variables within the LRF volume and surface quantities over the
airfoil. Given the much larger amount of data to sample per each frame, the sampling period and the
averaging interval are both set to a much larger time value than the previous measurement file, with a
ratio between the motion-period and the frame time of 36 (or 36 samples per period).

Simulation duration
As the PowerFLOWR© simulations are affected by an initial transient, like all CFD solvers, all the
simulations carried out in for this verification activity of the aerodynamic setup have a duration of three
periods of either pitching or plunging motion, depending on the type of phenomenon investigated. This
is in order to reach a sufficiently converged periodic solution where the spurious oscillations due to the
initial transient and boundary conditions do not significantly affect the aerodynamic forces.

4.2. Verification approach and test matrix
Once the main details of the CFD simulation setup are described (in particular rotating mesh, wall
velocity BC and body forces), in this section, the approach employed in the verification of such setup
is discussed, with focus on the test matrices. As already mentioned, the choice of considering low-

k = 0.11 k = 0.17 k = 0.22
Aα = 1◦ #1: cl & cmAC #2: cl & cmAC #3: cl & cmAC
Aα = 2◦ #4: cl & cmAC #5: cl & cmAC #6: cl & cmAC

Table 4.2: Test matrix for the pitch-LRF aerodynamic simulations with the corresponding variables considered.

speed, high-Reynolds number and attached flow conditions allows to employ the Theodorsen model as
a reference solution for the airload computed by the CFD simulations. More in detail, the Theodorsen
solution is therefore employed as reference for the simulations with pitch motion modeled by LRF and
the plunge motion modelled by wall-velocity BC. Next, the pitch-LRF solution is employed as reference
for the for the simulations with pitch motion modelled by body-forces.

After an initial resolution study carried out for the pitch-LRF simulation at a certain amplitude and
reduced frequency condition, several simulations are performed for a range of different amplitude and
reduced frequency conditions, as shown in tab.4.2, tab.4.3 and tab.4.4. The ranges considered cover the
whole spectrum of reduced frequencies and amplitudes reached by both the 1 and 2 DoFs simulations
of the PowerFLOWR©-SimpackR© coupling shown in ch.6. In the case of the pitch-LRF investigation,

k = 0.11 k = 0.17 k = 0.22
Ah = 0.5%h/c #1: cl & cmAC #2: cl & cmAC #3: cl & cmAC
Ah = 5%h/c #4: cl & cmAC #5: cl & cmAC #6: cl & cmAC

Table 4.3: Test matrix for the plunge-wall-velocity aerodynamic simulations with the corresponding variables considered.
The parameter "c" stands for the airfoil chord c = 0.46 m.

three values of the reduced frequency (k = 0.11, k = 0.17 and k = 0.22) and two values of amplitude
(Aα = 1◦ and Aα = 2◦) are considered, leading to the 3-by-2 test matrix in tab.4.2. These reduced
frequency and amplitude values are related to the typical elastic torsional deformations of helicopter
rotors, as shown in [6]. For the plunge-wall-velocity verification, the same previous reduced frequencies
corresponding to moderately and highly unsteady flow phenomena, are coupled with the two amplitude
values Ah = 0.5%h/c and Ah = 5%h/c, which can be considered as respectively very small and small
compared to the airfoil chord leading to the other 3-by-2 test matrix in tab.4.3. Concerning the pitch-
body-force, only a 2-by-2 test matrix (tab.4.4) is considered without the k = 0.17 cases of the LRF
simulations. When it comes to the aerodynamic quantities considered, for the pitch-LRF and plunge-
wall-velocity simulations, both the lift and the moment coefficient are considered, as both quantities are
required to investigate the results of the 1 DoF (airfoil with free plunging and prescribed pitching motion
as described in sec.5.3.1) and 2 DoFs (the same free pitch and plunge airfoil problem in ch.3) versions of

49



k = 0.11 k = 0.22
Aα = 1◦ #1: cl #2: cl
Aα = 2◦ #3: cl #4: cl

Table 4.4: Test matrix for the pitch-body-forces aerodynamic simulation with the corresponding variables considered.

the PowerFLOWR©-SimpackR© coupling. Conversely, in the case of the pitch-body-force simulations, only
the lift signal is considered, since this approach is only employed in the 1 DoF coupling, where only the
lift aerodynamic force plays a role in the aeroelastic formulation of the problem.

4.3. Resolution study
Before running all the simulation cases required to evaluate the capabilities and limitations of the LRF,
wall velocity BC and body forces approaches in modelling pitching and plunging airfoils, a short resolution
study of the CFD setup for pitch-LRF motion is carried-out to assess the effect of the mesh resolution on
the accuracy of the airload computation. Three meshes are considered, with their data shown in tab.4.5

Mesh resolution fe voxels fe surfels total voxels CPU hours
Coarse 128 26.88k 0.79k 1,073k 8.3
Medium 256 36.03k 0.96k 1,128k 16.9
Fine 512 63.54k 1.59k 1,263k 45.3

Table 4.5: Essential data describing the features of the three meshes employed for this resolution study, with resolution
defined as the number of voxels per chord (c=0.46m) in the finest VR region.

in terms of resolution, number of fine equivalent (fe2) voxels and surfels, as well as the total number
of voxels and CPU hours. The motion conditions considered are those of the test case #5 in the LRF-
simulations test matrix shown in tab.4.2, namely amplitude Aα = 2◦ and reduced frequency k = 0.11
applied to the expression for the LRF angular velocity in eq.4.1, which returns the pitching motion and
the AoA variation in time shown in eq.4.2. The results of this analysis can be visualized in fig.4.5 for the
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Figure 4.5: Mesh resolution effect on the lift and moment coefficients returned by the CFD simulations of a pitching airfoil
modelled by sliding mesh (LRF).

lift and moment coefficients plotted against the AoA. To obtain both cl and cm, these simulations, and
all the following ones, employ as scaling factors some of the reference conditions indicated in tab.4.1,
namely the airfoil chord c = 0.46m, the free-stream velocity U∞ = 34.7223 m/s and the free-stream
density ρ = 1.1766kg/m3.

Regarding the results for the cl, it is quite clear that already a coarse resolution (green curve) is able
to capture very well the shape of the hysteresis loop computed by the Theodorsen model, both in phase
2This is a weighted average of total number of voxels in the lattice which takes into account the resolution level of the VR
regions employed in the simulation case. Information on the calculation of this quantity can be found in [87].
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and in amplitude, at the locations of the maximum and minimum values. In the case of the cmAC , this
coefficient requires the fine resolution (red curve) to be captured sufficiently well, although a certain
mismatch is still visible and the possible reasons for such a discrepancy are given in sec.4.4. On the other
hand, the medium and even more the coarse simulations show significant mismatches both in the phase
and shape of the hysteresis loop. Always in the moment-coefficient plot, the convergence of the airload
is monotonic with a bigger change from the coarse to the medium (blue curve) than from the medium to
the fine resolutions. Given these results, all the CFD simulations shown in this chapter and the coupled
aeroelastic simulations shown in ch.6 are carried out with the fine resolution. This can be motivated by
the much better prediction of the cm and the still reasonable cost (around 45 CPU hours for k = 0.11)
of the 2D simulation with such a fine mesh. Regarding the simulations with wall velocity BC and body
forces, the same fine resolution with 512 voxels per chord is employed before the two approaches are
tuned.

4.4. Pitch motion modelled by sliding mesh (LRF)
After assessing the better adequacy of the fine resolution in capturing the aerodynamic forces (in particu-
lar the moment coefficient) generated by a truly pitching airfoil for a single pair of reduced-frequency and
amplitude conditions, this mesh is here employed to carry out a sensitivity study of the same pitch-LRF
approach for the range of reduced frequencies and amplitudes reported in tab.4.2. The aerodynamic lift
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Figure 4.6: Lift and moment coefficients against the AoA for the first #1 pitch-LRF PowerFLOWR© simulation.

and moment obtained by this investigation are shown in the plots of fig.4.6 up to fig.4.10 for all the test
cases shown in tab.4.2, apart from test #4, which is instead already shown in fig.4.5 by the red line.

Before discussing the aerodynamic results of this and the following investigations (transpiration ve-
locity and body forces), it is necessary to point out that the physical and mathematical modelling of the
flow dynamic behaviour employed by the reference Theodorsen model and the PowerFLOWR© compu-
tation substantially differ. The comparisons in the investigations of this chapter are different from the
comparisons in sec.3.4, where the SimpackR© and reference solutions are based on similar physical models
and mathematical formulations in the context of rigid body dynamics. In these investigations, on the
one hand, the Theodorsen model is based on a simplified physical and mathematical description of the
fluid-flow (the linear potential flow theory) which can account for the lift deficiency effect of the wake,
but does not include any boundary layer modelling with transition from the laminar to the turbulent
regime, which still occurs in the real pitching airfoil. On the other hand, the PowerFLOWR© solution
employs a high-fidelity physical description of the flow dynamics (the mesoscopic LBM) with more com-
plex PDEs, especially in the case of turbulence and wall modeling. This allows to model the boundary
layer and to provide a better wake description (as viscous phenomena are included) which can lead to a
better estimation of the lift deficiency effect than the Theodorsen model. Nevertheless, it is important to
mention that, for the flow conditions employed, the CFD solution is in the range of applicability of the
Theodorsen theory and the two solutions should be therefore similar, but still some differences can occur
and a perfect match cannot be expected. Furthermore, important differences are also in the simulation
body geometry, with an elementary flat-plate shape employed by the Theodorsen model, in contrast to
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Figure 4.7: Lift and moment coefficients against the AoA for the #2 pitch-LRF PowerFLOWR© simulation.
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Figure 4.8: Lift and moment coefficients against the AoA for the #3 pitch-LRF PowerFLOWR© simulation.

a realistic tessellated airfoil geometry based on CAD files employed by the CFD solver.
Being said this, when considering the lift coefficient results of all the six test cases, the most apparent

observation is that all the PowerFLOWR© simulations are able to capture very well the hysteresis loops,
both in terms of maximum/minimum values of the cl and width of the loop around the α = 0◦, where
the difference between the upstroke and the downstroke airload is the largest. This very good match is
achieved for all the reduced frequency-amplitude k-Aα pairs considered. Moreover, the CFD solutions
correctly capture the decrease in the absolute value of clmax and clmin as k increases, while the effect of
raising the amplitude from 1◦ to 2◦ is that of doubling the values of the lift coefficient without changing
the shape of the hysteresis loop. A more careful observation of the plots reveals that, as k increases,
the CFD solution slightly underpredicts the lift coefficient both in the proximity of its maximum during
the upstroke motion and near the minimum in the case of the downstroke motion. This is also related
to a slight underprediction of the Theodorsen clmax and clmin with an error below 2%. Although these
deviations are almost imperceptible, they might lead to small discrepancies in the aeroelastic coupled
simulation for both the 1 and the 2 DoFs problems. A final interesting aspect to point out is that the
size of the lift hysteresis loop - which is related to the phase lag with respect to the input motion [86]
- is larger for k = 0.11 than k = 0.17. This has to do with the phase inversion point for the lift force
predicted by the Theodorsen model for k = 0.144 [86], where both the lift phase and the amplitude of
the loop are zero.

In the case of the quarter-chord moment coefficient, the match between the PowerFLOWR© and
the Theodorsen airload is still good but not as satisfactory as the one returned by the lift coefficient.
The amplitude mismatch can be quantified as around 10% the amplitude of the Theodorsen moment
coefficient for the three reduced frequencies and the two pitch amplitude values considered. When it
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Figure 4.9: Lift and moment coefficients against the AoA for the #5 pitch-LRF PowerFLOWR© simulation.

comes to the phase mismatch, this is not constant over the range of reduced frequencies investigated,
with a maximum phase error for k = 0.11 of ≈ 11◦, a minimum of ≈ 5◦ for k = 0.22 and an intermediate
≈ 6◦ when k = 0.17. Furthermore, it is observed also that the quarter-chord Theodorsen moment is
characterized by an almost constant phase-lag with respect to the input AoA oscillation. This leads
to the conclusion that the CFD quarter-chord moment changes with the reduced frequency, differently
from the Theodorsen one. A similar behaviour was observed also by Halfman [85] and, as suggested by
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Figure 4.10: Lift and moment coefficients against the AoA for the #6 and last pitch-LRF PowerFLOWR© simulation.

Leishman [7], a possible explanation could be that the CFD prediction of the effective airfoil AC position
is slightly shifted from the 1/4-chord prediction of the Glauert Theory on which the Theodorsen model is
based. For this reason, it could be argued that the CFD prediction of the aerodynamic forces generated
by a truly pitching airfoil might be more accurate than those provided by the Theodorsen model, as
the more realistic description of the airfoil geometry can lead to a better prediction of the aerodynamic
properties of the simulation body. In any case, the observed moment coefficient mismatch is expected to
generate noticeable discrepancies also in the 2 DoFs aeroelastic coupled simulations, in particular in the
pitch kinematic states for the first part of the simulation but also in the plunge states due to the energy
transfer between the two coupled motions, especially for conditions in the neighbourhood of the flutter
velocity. Finally, the effect of doubling Aα on both the Theodorsen and the CFD cm-plots is just that of
increasing their maximum and minimum values by a corresponding factor of two, without changing the
shape of the hysteresis loop.
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4.5. Plunge motion modelled by flow blowing/suction (nor-
mal Wall velocity boundary condition)

The second investigation carried out considers the lift and moment coefficients generated by a periodic
plunge motion modelled by a normal wall velocity BC - which corresponds to adding flow blowing/suction
to a free-stream flow kept parallel to the airfoil chord in this investigation - and compared against
the reference results always returned by the Theodorsen model. Such a method, if directly applied

trimming coefficient k = 0.11 k = 0.17 k = 0.22
Ah = 0.5%h/c t1 = 0.71 t1 = 0.72 t1 = 0.74
Ah = 5%h/c t1 = 0.71 t1 = 0.72 t1 = 0.74

Table 4.6: Values for the amplitude correction coefficient t1 obtained by tuning the plunge-wall-velocity BC to match the
lift signal returned by the Theodorsen model for the range of reduced frequencies and amplitudes considered.

to the simulation setup, returns excessive values of the lift coefficient (more than 30% error) and a
significant under-prediction of the moment coefficient of more than 50%. For these reasons, as already
explained in sec.4.1.1, the prescribed wall-velocity ḣ(t) requires to be tuned by introducing an amplitude
correction factor t1, leading to the final expression shown in eq.4.4. In this analysis, values for the tuning
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Figure 4.11: Lift and moment coefficients against the AoA for the #1 and first plunge-wall-velocity PowerFLOWR© simu-
lation.

coefficient are obtained by a manual tuning procedure, carried out to match at least the Theodorsen
hysteresis loops of the lift coefficient, returning the values in tab.4.6 for the range of reduced frequencies
- same as in the case of the pitch-LRF investigation - and amplitudes reported in tab.4.3. By looking
at values for the amplitude correction coefficient in tab.4.6, this quantity changes very little (second
decimal position) within the range of reduced frequencies considered and not at all for the amplitudes
investigated, returning an average value of 0.723 for a fine mesh. Finally, it was also observed that t1
changes by a factor 0.1 when employing a medium mesh moving from roughly 0.7 to 0.8 for the same
range of k and Ah.

Regarding the comparison with the reference solution, in addition to the different physical, math-
ematical and numerical models employed by the reference Theodorsen theory and the PowerFLOWR©

solution already mentioned in the previous section, in this investigation additional sources of mismatch
need to be considered between the two solutions. The most important one is that the transpiration veloc-
ity can not be considered the same as a true vertical translation of the airfoil, although an appropriate
blowing or suction of fluid should modify the streamlines of the flow in a similar fashion as the true
motion close to the airfoil under certain conditions. The second one is related to the amplitude-tuning
of the wall-velocity approach, which might be still imperfect in spite of the three decimal digits consider
for t1. Therefore, larger discrepancies are expected in this comparison compared to the previous one, in
particular for large amplitudes of motion, as [52] suggests.

All the results obtained with this investigation are shown from fig.4.11 up to for fig.4.16 for both
the lift coefficient and the quarter-chord moment coefficient. Globally, it could be argued that the wall-
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Figure 4.12: Lift and moment coefficients against the AoA for the #2 plunge-wall-velocity PowerFLOWR© simulation.
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Figure 4.13: Lift and moment coefficients against the AoA for the #3 plunge-wall-velocity PowerFLOWR© simulation.

velocity BC method, when tuned on the cl, works quite well for the lift coefficient prediction, but not
for the moment coefficient. The reason why the method is tuned on the cl and not also on the cm is
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Figure 4.14: Lift and moment coefficients against the AoA for the #4 plunge-wall-velocity PowerFLOWR© simulation.

because, during the several attempts carried out, only a slightly improvement of the cm is obtained at
the cost of a significantly large cl worsening. Moreover, for the largest amplitude and for increasing k,
a significant worsening in the loop-shape of the aerodynamic moment is observed, leading to a complete

55



loss of its elliptic character, as fig.4.15 and fig.4.16 partially show. For these reasons, it is decided to tune
the model by considering only the lift coefficient at the cost of accepting up to a 50% under-prediction
of cm.

When the cl curves are analyzed more in depth, in all the Ah-k pairs considered, the wall-velocity
overestimates the values of the lift coefficient both in the upstroke and in the downstroke phases for a
significant portion of the ḣ/U∞ range covered. This is primarily a phase-mismatch and it grows as both k
and Ah increase, because not just the amplitude is relevant, but also the speed that it takes to span such
motion, in particular the ratio between the plunge velocity and the freestream one. Moreover, the clmax
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Figure 4.15: Lift and moment coefficients against the AoA for the #5 plunge-wall-velocity PowerFLOWR© simulation.

and clmin values are slightly under-predicted and this has to deal primarily with the imperfect manual
tuning of the model to match the Theodorsen lift or the probably insufficient number of digits employed
for the t1 parameter. Both phase and amplitude mismatches are expected to impact the results of the
aeroelastic coupling, both in its 1 and 2 DoFs versions. The phase mismatch in these results could be
minimized by introducing a phase-shifting coefficient in the wall velocity formulation of eq.4.4, but this
has not been implemented because in no version of the coupling the plunge motion is prescribed, and
thus it can not be phase-shifted.

If also the moment coefficient plots are considered, it can be noticed that, contrarily to the pitch
motion, increasing k leads to an increase of both clmax and cmmax for the same value of Ah. Whereas
the width of the hysteresis loops doesn’t change much for the for different k values and the same Ah.
Another interesting observation is that when Ah is increased from 0.5% to 5% (1 order of magnitude),
both clmax , cmmax and the ratio ḣ/U∞|max scale-up by a factor of 5. Next, because in the moment plots
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Figure 4.16: Lift and moment coefficients against the AoA for the #6 and last plunge-wall-velocity PowerFLOWR© simu-
lation.

of fig.4.11 and fig.4.12 the motion amplitude and the ratio between the plunge speed and the freestream
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one are very small, random fluctuations (associated to the unsteady nature of PowerFLOWR© solution)
are obtained, returning a rather spiky behaviour which makes it complex to evaluate the percentage
of mismatch with the Theodorsen result. Another peculiar behaviour in the cm can be observed in
fig.4.16 and fig.4.15, where the elliptic shape of the reference is largely compromised by the appearance
of two lobes near ±ḣ/U∞|max. A possible explanation could be related to the fact that the Theodorsen
model deals with flat plates, while the CFD simulations employ a symmetric airfoil with a rounded LE
(although its very small radius) and this might lead to a different flow behaviour in terms of pressure
and skin-friction distributions. In conclusion, all the observed mismatches can be summarized by saying
that the larger k and Ah get, the more critical it is the modelling of the airfoil translation in the CFD
solver by applying a transpiration velocity to model such motion.

4.6. Pitch motion modelled by body forces
The last step of this verification activity is related to the comparison between the pitch motion modelled
by the body force approach and the same obtained by the sliding mesh LRF technique used as refer-
ence solution. This comparison is aimed at assessing the limitations of the first approach in capturing
the airload generated by the truly rotating geometry. This is important for the long-term goal of the
project, as a spanwise-changing torsional deformation of a flexible blade cannot be directly simulated in
PowerFLOWR© with a sliding mesh, but it requires equivalent approaches, for instance the body-force
one, as done in [6]. Therefore, the expected differences appearing in this investigation are only related
to the airfoil motion modelling and imprecisions in the tuning of the body-force method.

trimming coefficient k = 0.11 k = 0.22
Aα = 1◦ ξ1 = 39.3 & ξ2 = −0.53 ξ1 = 10.1 & ξ2 = −0.56
Aα = 2◦ ξ1 = 40.2 & ξ2 = −0.53 ξ1 = 10.3 & ξ2 = −0.56

Table 4.7: Values for the amplitude ξ1 and phase ξ2 correction coefficients required to tune body forces to match the lift
signal returned by the pitch-LRF simulations for the range of reduced frequencies and amplitudes considered.

Regarding the tuning of the method, as extensively explained already in sec.2.2.2 and in sec.4.1,
the body force method requires to be tuned both in amplitude and frequency to match at least the lift
signal given by the sliding mesh simulations. Such trimming activity is manually carried-out on the
range of reduced frequencies and amplitudes shown in tab.4.4 and it returns the ξ1 and ξ2 correction
coefficients shown in tab.4.7 applied to the pitching velocity and acceleration expressions in eq.4.3. The
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Figure 4.17: Lift and moment coefficients against the AoA for the #1 and #2 pitch-body-force PowerFLOWR© simulations.

computed values for the correction coefficients shown in tab.4.7 reveal that the factor ξ1 increases very
little when increasing the amplitude of motion from to 1 to 2 degrees, while it scales up by a factor of
four when doubling the reduced frequency. Regarding the factor ξ2, this one doesn’t significantly change
for changing k, and, at a first instance, it is approximated by the same values for changing Aα and fixed
k. This means that between the pitch motion modelled by LRF and the same modelled by body forces
there is a phase delay which is slightly more than half a period.
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If the lift coefficient results show in fig.4.17 and fig.4.18 are considered, it is possible to notice a good
amplitude match between the LRF (blue line) and the body force (red line) simulations over the range of
reduced frequencies and amplitudes considered, with very small mismatches for the largest Aα = 2◦ value.
Regarding the phase-match, this is small only in fig.4.17, where Aα = 1◦, while it increases for Aα = 2◦
in fig.4.18. Next, for the smallest value of reduced frequency (k = 0.11) the body-force lift overestimates
the phase shift with respect to the input motion, while in the case of the largest value k = 0.22 the
opposite occurs. Moreover, for Aα = 2◦ and k = 0.11 and even more for Aα = 2◦ and k = 0.22 in
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Figure 4.18: Lift and moment coefficients against the AoA for the #3 and #4 pitch-body-force PowerFLOWR© simulations.

fig.4.18, the phase mismatch is not constant over the period of motion, due to the clearly irregular shape
of the body-force curves. This is can be considered as an intrinsic property of the lift signal returned
by the body-force method, which for high k and Aα features higher-order components of the harmonic
input signal modifying the "smooth" shape of the LRF lift signal, as already observed by [6] and shown
on the plots of fig.2.7. Such phenomenon can be considered as a limitation of the model in its current
implementation and it is very unlikely that even an automatic optimization routine (for a more accurate
phase-shifting of the body force signal) will help in fixing the shape of the hysteresis loop. Therefore
further investigation are required to understand its origin and to find possible solutions. Finally, the
plots related to the moment coefficient generated by this body-force method are not shown, as the cm
is not employed in both the 1 and the 2 DOF versions of the aeroelastic coupling. Furthermore, the
mismatch is in this case much bigger than the one observed for the wall-velocity aerodynamic moment,
with an amplitude overestimation of more than 5 times cmmax and a phase error of more than a quarter
of period.

58



5
Coupling methodology

In the two previous chapters, attention is dedicated to the structure and fluid-flow domains as two
separate entities, with the main goal of verifying the accuracy of the SimpackR© and PowerFLOWR©

setups. More in detail, in ch.3 it is proved that the MBD setup can compute very accurate kinematic
states under the effect of aerodynamic forces from analytical models. On the other hand, in ch.4 it is
shown that the CFD setup can return correct lift forces but less accurate moments for harmonic pitching
and plunging motions, although this depends on the technique employed to model the body motion in
the simulation. In this chapter, the two domains are fully (two-way) coupled to achieve a proper FSI

Figure 5.1: Diagram showing the (very) high-level functioning of the coupling loop between the LBM-based flow solver
PowerFLOWR© and the MBD simulation tool SimpackR©.

aeroelastic simulation. This means that at every timestep, the calculation of the kinematic states by
the MBD solver is dependent on the airload computation by the aerodynamic solver and vice-versa.
This leads to a loop between the two domains, as shown in fig.5.1, which requires the development of a
coupling methodology that needs to be executed quickly and efficiently for a large number of iterations.

This chapter is essentially dedicated to the description of this methodology starting from its definition
in sec.5.1. Then, the properties of an initial coupling demonstrator between a reduced order aerodynamic
routine and SimpackR© are discussed in sec.5.2. The following sec.5.3 contains the results of the verification
activity of such methodology on two test problems. Finally, the specific aspects related to the coupling
between PowerFLOWR© and Simpack are described in sec.5.4, in addition to what already mentioned for
the coupling demonstrator. The results of the MBD-CFD coupling are instead discussed in ch.6.

5.1. Definition of the methodology
5.1.1. Solvers limitations/capabilities and project context
In the design process of a coupling strategy between PowerFLOWR© and SimpackR©, several constraints
in terms of resources, time and expertise, as well as limitations in the tools have to be taken into account.
The following paragraphs address each one of them.

Proprietary software
As both Simulia PowerFLOWR© and SimpackR© are commercial computer programs, their source code is
not openly available. Besides, even if the thesis project is carried out at Dassault System which holds
the rights for both tools, the author still has no access to the source code. Therefore, a coupling has to
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be developed based on existing features of the tools or by exploiting customization functionalities that
allow to extend their capabilities. However, with respect to this aspect, both programs do not allow
the same customization potential, with PowerFLOWR© offering much less room for customization than
SimpackR©.

SimpackR© customization
On the other hand, SimpackR© can be widely customized, allowing a considerable extension of its capa-
bilities by means of user-defined subroutines to create highly targeted modelling elements. Nevertheless,
this approach requires a significant investment of time in understanding in depth the tool, programming
and debugging. Besides, user-routines requires specific coding (Fortran) and computer skills that the
author currently does not posses, and the time required to acquire them is beyond the one offered by
a master thesis. Therefore, the coupling has to be reached considering what is already available in the
computer programs, as it is the most reliable and robust solution, even though it might not be the most
performing or efficient.

Co-simulation engine
The most common and recommended way to achieve a coupling between SimpackR© and an external tool
is by means of co-simulation engines, as this allows to minimize data transfer time and can be used to
develop highly robust and general couplings [65]. However, the main obstacle preventing this approach
is PowerFLOWR©, as it does not allow - in the current version - to be coupled with external tools based
on memory sharing and TCP/IP interface. This could be potentially solved by having access to the
source code. But this is not allowed by the project context, and even if possible, the investment of time,
resources and expertise is far beyond the scope of this thesis and the author’s possibilities. This leads
to the definition of a first important feature of the coupling, namely the coupling medium, which is file
input/output. This method, although not the most efficient and performing, is simple and can help
during the debugging process, as the user can easily check the correctness of the data being transferred
at any time [88].

Look-up tables
As the coupling medium is determined, the aerodynamic forces and the kinematic states exchanged
between the two solvers can be imported by means of look-up tables, and both PowerFLOWR© and
SimpackR© do that in a reliable and robust way. As explained in sec.2.2.2, input tables can be used to
provide data to the CFD solver in multiple formats, and the PowerFLOWR© documentation [52] is quite
rich of helpful examples. Besides, this method was already employed by the author’s team members
in previous projects, for instance [89], [6] and [19]. On the SimpackR© side, table look-up by means of
.afs input functions is employed already in this research project to carry out the SimpackR© verification
activity. As described in ch.3, this method works well to generate aerodynamic force elements in the
MBD simulation based on time-excitations defined via input-tables. Therefore, the verification and the
experience developed by the author with this technique make it reasonable to exploit it also for the
coupling. Besides, also the SimpackR© documentation [65] is a valuable reference in describing all the
possible ways of using this functionality.

SimpackR© scripting languages
SimpackR© can be easily scripted to automate recurrent tasks related to simulation setup, solvers execution
and post processing. The scripting language is based on a variant of JavaScript (EcmaScript) [71] and
users can readily develop scripts, also with the help of the macro recording tool available on the GUI of
the tool. These scripts can then be provided to the SimpackR© solver or Post-Processor and can be run in
background mode without the need for any user interaction. Besides, the process of running these scripts
can be automated and included as a step of a coupling interface managing the data transfer between the
two tools.

Explicit FSI schemes
It was already mentioned in sec.2.1.2 that the added mass effect due to fluid displacement becomes
relevant in hydroelastic applications due to the comparable structure and fluid densities, prescribing
implicit (tight) FSI schemes. On the other hand, in aeroelasticity this is not the case, as the fluid
density is much smaller than the one of the structure. Therefore, explicit (weak) FSI schemes can still
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provide accurate results with a sufficiently small coupling timestep. Therefore, aeroelastic problems such
as wing flutter, limit cycle oscillations, the "simple" blade deflection deformation of a helicopter and
dynamic stall can be potential applications of this methodology. Furthermore, the explicit nature of the
PowerFLOWR© time-marching algorithm - due to the much smaller computational timestep than URANS
or LES - suggests even more the employment of explicit coupling schemes with subcycling of the fluid
phase (PowerFLOWR© internal timesteps during a single coupling iteration).

SimpackR© adaptive timestep integrator
SimpackR© offers a wide range of time-integration methods to solve MBD systems by means of fixed or
adaptive timestep schemes. Although fixed methods are used in ch.3 for consistency reasons with the
numerical reference, for the sake of the coupling, adaptive schemes can be considered. The latter are
more general, robust and reliable, especially for stiff systems [65]. This leads to subcycling also of the
structure side of the problem, which might be unnecessary given the larger time scales of the structures
compared to fluid-flows. However, as this choice will not lead to any increase of computational cost or
complexity in the simulation setup, it seems to be a reasonable choice.

5.1.2. Essential features of the coupling
Based on the aspects pointed out in the previous subsection - namely limitations and possibilities in the
solver, the constraints defining the research project, the time available to complete the master thesis and
the knowledge/experience of the author with the tools/topic - the coupling between PowerFLOWR© and
SimpackR© can be achieved by considering the following crucial aspects:

1. Coupling medium: ASCII file input/output or look-up-table method. The generation of such
coupling files is the main task of the coupling interface, which also takes care of the communication
with the two solvers and the exchange of the required data.

2. PowerFLOWR© is both the starting point of the complete aeroelastic simulation and of the coupling
loop. This means that the coupling consists in a single PowerFLOWR© simulation spanning the
whole aeroelastic calculation and one SimpackR© simulation of one structural timesteps duration
carried out per each coupling iteration.

3. An explicit, sequential, first-order accurate in time FSI coupling scheme is considered with subcy-
cling for both PowerFLOWR© (due to the explicit formulation in time of the underlying LBM) and
SimpackR© (motivated by the higher robustness and better performance of the adaptive-timestep
numerical integrators).

4. Automated update of the SimpackR© simulation setup, time integration execution and post-processing
by means of dedicated Javascript routines.

5. The PowerFLOWR© look-up-table method is automatically carried out by the simulator once the
correct input files are provided. The aerodynamic force output needs to be processed by the
coupling interface starting from the binary measurement files generated by the CFD simulation.

6. The SimpackR© table reading method employs input .afs functions and always requires at least
two force values - one for tn and the other for tn+1 - to define an excitation-based force element
spanning the whole duration of the MBD simulation.

The above aspects have a direct impact on the way the coupling interface has been developed, besides they
also significantly affect the setup of both the PowerFLOWR© and Simpack simulations. The explanation
of such an impact is done in detail explained in two following sections for both the coupling between
SimpackR© and the Theodorsen routine and the coupling between PowerFLOWR© and SimpackR©.

5.1.3. FSI scheme
The FSI scheme employed to couple PowerFLOWR© and SimpackR© is the volume continuous version of
the Conventional Sequential Staggered (CSS) scheme with subcycling of both the fluid and the multi-
body phases. This scheme is introduced in sec.2.1.2 in the context of a wider process of literature review
on FSI coupling schemes and here its working mechanism is described more in detail. The CSS volume
continuous scheme is shown in fig.5.2 and, for a generic coupling iteration n, it starts from the fluid solver
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Figure 5.2: Volume continous CSS FSI scheme adopted to couple PowerFLOWR© with SimpackR©. Image taken from [8]
and modified according to the needs.

(labeled as "PF" in the figure) which firstly provides the airload Fn at time tn (step 1). Then SimpackR©

(labeled as "Spck" in the figure) runs a MBD simulation to compute the kinematic-states vector Xn+1 at
time tn+1 (step 2) by means of internal iterations and returns this to the fluid solver at time tn (step 3).
At this point, the aerodynamic tool advances up to tn+1 by performing a certain number of subcyces to
return a new airload Fn+1 (step 4). This approach assures the synchronization of the physical interface
between the fluid and structural domains for the same coupling timestep, however the synchronization
is not granted for the airload.

5.2. SimpackR©-Theodorsen coupling demonstrator
In the process of developing the coupling between PowerFLOWR© and SimpackR©, an initial coupling
between SimpackR© and the convolution-integral formulation of the Theodorsen model is firstly imple-
mented. This avoids some tricky aspects of the PowerFLOWR© simulation and setup, such as those
described in sec.5.4.1, which require special attention, might over-complicate the development of the
methodology (in its early phases) by introducing further error sources and that can make the debug-
ging process even harder. In this way, a self-implemented Theodorsen routine, which acts as surrogate
of PowerFLOWR©, helps in just focusing on the coupling Interface and its aspects/issues to achieve a
working, robust and accurate method. Subsequently, the methodology is extended to PowerFLOWR© by
implementing additional features to the Interface to address the complexity of the aerodynamic solver
on top of a verified framework. Therefore, this section covers the main aspects of the methodology for
the SimpackR©-Theodorsen coupling demonstrator.

5.2.1. Mechanism
As shown in fig.5.3, the coupling iteration process between SimpackR© and the Theodorsen routine consists
in the exchange of data by means of file input/output and the execution of commands between three
main blocks. These blocks are the Theodorsen aerodynamic routine, the SimpackR© MBD simulation and
the Coupling Interface which links the two. The Theodorsen routine is a set of python routines acting as
a surrogate of a CFD solver, at least from the external viewpoint, because it returns aerodynamic forces
based on input kinematic states, as described in sec.5.2.4. Then, the SimpackR© block features the MBD
simulation and Post-processor, as discussed in sec.5.2.5. Finally, the Coupling Interface (see sec.5.2.3) is
a collection of python function and classes specifically developed to process fluid and structure data and
to generate the required input and output files for both simulation tools. The Interface is the tool that
substantiates the coupling between the fluid and the structure domains of the aeroelastic simulation, and
in this case, it is also the starting point of each coupling iteration. Finally, since the aerodynamic routine
and structure solver communicate with each other by means of files, sec.5.2.2 is entirely dedicated to a
detailed description of them.

The working principle of the coupling iteration mechanism can be described by employing the num-
bered solid or dashed arrows linking respectively files and software-component blocks in the diagram of
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Figure 5.3: Diagram showing the working principle of the coupling between SimpackR© and the Theodorsen routine in
terms of software components and main files exchanged during each iteration.

fig.5.3. To begin with, the coupled aeroelastic simulation is started by a python script which controls the
full process by looping though the prescribed number of coupling iterations and by calling the Coupling
Interface for each iteration. Besides, this script specifies the number of coupling iterations and it takes
care of tasks preliminary to the iterations, such as resetting those coupling files storing the time-histories
of quantities of interest. Next, every coupling iteration features as step 1 the execution of the Theodorsen
routine to compute the current airload from the kinematic states generated in the previous iteration.
The aerodynamic output of the Theodorsen routine is "TheOUT.csv ASCII file (step 2) which is read
by the Interface (step 3). Next the Interface generates the two required SimpackR© input ASCII files,
namely the "Spck.subvar" and the "Spck.afs" files (step 4). At this point, always the Interface launches
a dedicated SimpackR© script which sets-up and performs the MBD simulation (step 5.A) by reading
the input "Spck.afs" and "Spck.subvar" files (step 5.B). The outcome of the SimpackR© simulation is a
"Spck.sbr" binary result file (step 6) which needs to be converted into an ASCII format to be processed.
This is done by the SimpackR© Post-Processor which is triggered by the Interface (step 7.A) and generates
the ASCII "SpckOUT.csv" file (step 8). Finally, such "SpckOUT.csv" file is read and processed by the
Interface (step 9) to generate the "kin_states.csv" input file (step 10) for the subsequent Theodorsen
routine (step 11).

5.2.2. Files
As the chosen coupling medium is file input/output, a certain number of coupling files is employed to
carry the data exchanged between SimpackR© and the Theodorsen routine - these files are called "main
coupling files" in tab.5.1 and can be visualized also in fig.5.3. On the other hand, other files are necessary
to collect relevant simulation data required for the correct working of the overall process and to store
the time-histories of the quantities of interest. These files are called "secondary coupling files" and are
also shown in tab.5.1. In this subsection, focus is primarily on the function and type of data carried.

Theodorsen-SimpackR© Coupling Files
Main Files Secondary Files
TheOUT.csv Theodorsen_force_hist.csv

Spck.afs iterator_list.txt
Spck.subvar

Spck.sbr & SpckOUT.csv
kin_states.csv

Table 5.1: Main and secondary files employed for the coupling between the Theodorsen code and SimpackR©.
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Besides, also the main functions of the secondary files are shortly discussed. Regarding the structure
and generation process of those coupling files shared also with the PowerFLOWR©-SimpackR© coupling
(see tab.5.3), the reader can found an extensive description in the appendix sec.D.

Main coupling file: TheOUT.csv
This file contains the output of the Theodorsen aerodynamic routine and is generated during each
coupling iteration. The main purpose of this file is to emulate the PowerFLOWR© output measurement file
by skipping the additional steps of the binary-to-ASCII file-conversion carried out by the PowerFLOWR©

CLI and the data processing operations required in the case of the CFD solver.

Main coupling file: Spck.afs
Regarding the SimpackR© input files, two files are employed, with the "Spck.afs" one carrying the time
history of the aerodynamic forces returned by the Theodorsen routine. Such file is very similar to the one
used in the SimpackR© verification activity and mentioned in sec.3.3. The difference is that now only two
values for each aerodynamic force component are given: one at the beginning and one at the end of the
SimpackR© simulation spanning the single coupling timestep. The reason why SimpackR© needs at least
two force values when employing input functions to define excitation-based forces in the time domain is
because the tool can only perform simulations of a given duration, say from an initial tn to a final tn+1
time. Besides, another motivation is that two force values are needed by the Time Integration solver to
perform interpolations during its internal iterations. Such two force values Fn at time tn = n∆T (with
∆T the coupling timestep) and Fn+1 at time tn+1 = tn + ∆T = (n + 1)∆T related to each coupling
iteration n can be obtained in the most simple case by assuming Fn+1 = Fn, consistently with the
explicit FSI scheme shown in fig.5.2 and discussed in sec.2.1.2.

Main coupling file: Spck.subvar
The second SimpackR© input file is the "Spck.subvar" one and its purpose is to supply the MBD simulation
with updated values for some simulation parameters. As every SimpackR© simulation covers only one
coupling iteration, the structural domain is not aware of the global status of the complete aeroelastic
simulation. Therefore, such a fundamental piece of information needs to be provided, and the employment
of subvars defined via the "Spck.subvar" file is the option here considered. As already explained in sec.3.3,
subvars are objects generally used in SimpackR© to parameterize the simulation setup. In this application,
their main goal is to input the values of the kinematic states from the previous iteration and the global
simulation time of the aeroelastic simulation. The kinematic states from the previous-iteration are
employed as initial conditions and the global simulation time is used to model a prescribed motion
spanning the whole aeroelastic simulation, when necessary. In this way, every SimpackR© simulation is
linked to the previous one emulating the behaviour of a co-simulation. Other quantities define subvars in
this file, for instance the coupling timestep, the amplitude and frequency of the prescribed motion, when
applicable. For these variables, their value does not change during the coupling and, alternatively, they
could be internally defined in the "Spck.spck" simulation file, but they are included in the "Spck.subvar"
file for code development and debugging reasons.

Main coupling files: Spck.sbr and SpckOUT.csv
The "Spck.sbr" binary result file is the main output file returned by SimpackR© when a time integration
is performed [65]. The settings of this file are prescribed in the Solver Settings tab of the SimpackR© Pre
GUI, where the precision (single) and the simulation data to write to the file (joint states) are chosen
to minimize the file size/conversion time and to be consistent with the PowerFLOWR© settings in ch.4,
respectively. Given the fact that no information is available in the SimpackR© User Guide [65] regarding
the internal structure of such a "Spck.sbr" file, the employment of the Simpck Post-processor GUI for its
conversion to an ASCII format is the most natural choice. This is done for every coupling iteration by
loading both the post-processing file and script (see sec.5.2.5 for a definition of these aspects) into the
SimpackR© Post tool. In this way, the current kinematic states just returned by the SimpackR© simulation
can be selected from the plotted curves and finally exported to the "SpckOUT.csv" file by means of the
ASCII export function1. A final aspect to mention, is that regardless of the adaptive-timestep LSODE
solver employed, the binary result file exports the joint states every ∆T , leading to a pair of values (one
1This functionality of SimpackR© Post allows to select which data to export, how to structure them, their format and if a
header is required, for more information the reader is referenced to [65].

64



for tn = 0 and one for tn+1 = ∆T in the time-frame of the SimpackR© simulation) in the "SpckOUT.csv"
file for the position, velocity and acceleration states of each DoF.

Main coupling files: kin_states.csv
This file serves as a data-container of the time-history of the kinematic states computed by the MBD
simulation for the complete duration of the coupled simulation. This is firstly required to input the
necessary kinematic states to the Theodorsen routine for the airload computation, according to the
convolution integral formulation of the Theodorsen model. Next, the " kin_states.csv" file serves also as
data container for the sake of collecting results for the subsequent post-processing.

Secondary coupling files
In tab.5.1, two secondary coupling files are shown, and their purpose is to either store the time-histories of
quantities of interest - this is the case of the "Theodorsen_force_hist.csv" file - or to serve for the correct
working mechanism of the coupling in the way it is conceived, and this is the case of the "iterator_list.txt"
file. The "Theodorsen_force_hist.csv" file, contains the time-history of each component of the computed
aerodynamic force by the Theodorsen routine for all the coupling iterations. The main reason for such
file is to store data for the sake of verification with the reference solution, as discussed in sec.5.3. The
other file, the "iterator_list.txt" one, is used to store the number of all the completed iterations by the
aeroelastic coupled simulation. This file is read as one of the very first operations carried out by the
Coupling Interface, which is the topic of the next section.

5.2.3. Interface
As already mentioned, the Coupling Interface consists of several python scripts, functions and classes
organized in such a way that, at the top, there is a main function calling all the other developed sub-
functions, each one related to a specific step or task of the coupling iteration mechanism. The main
function of Interface developed for this demonstrator SimpackR©-Theodorsen coupling requires a few
input quantities to carry out its internal operations. These are the coupling parameters provided by
the script controlling the full coupling simulation, the paths to the coupling files and the number of
the current iteration from "iterator_list.txt". Once these preliminary operations are carried out, the
Coupling Interface can perform all the tasks previously described in sec.5.2.1 and represented in the
diagram of fig.5.3. In addition to these tasks, to carry out step 5.A and step 7.A, the two JavaScripts
related to the SimpackR© simulation-setup and time-integration, as well as post-processing, are executed.
Besides, before the last step 11 in fig.5.3 and a new coupling iteration, the "iterator_list.txt" and the
"Theodorsen_force_hist.csv" data-containers file are updated based on the current airload value and the
number of the subsequent iteration. Finally, if the reader is interested in all the details of the Coupling In-
terface, the appendix ch.D contains an extensive description with respect to the PowerFLOWR©-SimpackR©

coupling which is developed by extending the Interface related to this demonstrator.

5.2.4. Theodorsen routine as CFD surrogate
The Theodorsen routine, as already explained, can be considered as an emulator of a more complex
CFD code, like PowerFLOWR©, allowing to focus on the fundamental aspects of the coupling, namely
the correct transfer of fluid and structure data, as well as the synchronised execution of the tools. At
the same time, the Theodorsen model is sophisticated enough to provide aerodynamic forces in good
agreement with those computed by a CFD solver under attached flow conditions, where incompressible
and viscous flow phenomena can be neglected, as shown in ch.4. The Theodorsen code employed in
this demonstrator coupling consists in the time-domain convolution-integral formulation of the model,
as described in sec.3.1.3 and sec.B.2 for a 2 DoFs aeroelastic system. In addition, also a 1 DoF (free
plunge) version of the previous problem is derived for a system with prescribed pitch motion, as shown in
sec.5.3.1. Both the 2 DoFs and 1 DoF problems are implemented in the Theodorsen routine, and they are
exploited as two separate test cases for the verification of the coupling demonstrator aeroelastic solutions
against the same returned by the full analytical solutions of the same problems without coupling. In this
section, the general working of the code is discussed, while the derivations of respective mathematical
models for the two problems can be found in the previously mentioned sections of this report.

First of all, when considering the complete coupling mechanism shown in fig.5.3, this Theodorsen
code can be considered as a "black-box" which returns an instantaneous aerodynamic force value F (tn)
for a given time-history of kinematic states x, ẋ and ẍ up to the coupling time step tn. Regarding the
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internal working of this code, two sets of tasks are carried out by a few python routines depending on
the coupling iteration number. In the case of the first coupling iteration, given the fact that only the
position and velocity states are known for t0 = 0 (initial conditions), it is necessary to compute also
the acceleration states by solving the full aeroelastic systems of equations. In the case of the 1 DoF
coupling, this requires also the loading of the pitch prescribed motion derivatives at t0. After this, the
Theodorsen code computes the lift airload F0 for the 1 DoF problem and both the lift and aerodynamic
moment for the 2 DoFs problem according to the respective formulations. When it comes to a generic
coupling iteration n, the complete time-history of the SimpackR© kinematic states x(tn), ẋ(tn) and ẍ(tn)
- where a generic x refers to only the plunge state (h) for the 1 DoF problem and to both the plunge
and pitch (α) states for the 2 DoFs problem - is firstly imported from the "kin_states.csv" file due to
the convolution integral formulation. Besides, for the 1 DoF problem, also the full time-histories of the
pitch motion derivatives are required always because of the convolution integral. Next, the airload Fn
at tn is computed and returned to the Coupling Interface.

5.2.5. SimpackR© simulation and post-processing
Although the SimpackR© simulation setups for both the 1 and the 2 DoFs problems are rather simple and
can be entirely automatized in all their aspects, in order to reduce the time required by each coupling
iteration - this might lead to a significant reduction in the total time for the coupled aeroelastic simulation
given the large number of iterations - only a few aspects are handled by the SimpackR© simulation script.
This means that most of the SimpackR© simulation setup (those aspects that do not change during the
simulation) is manually carried out only once for each problem investigated according to its formulation,
as described in sec.5.3. The results of this manual setup is saved to the "Spck.spck" simulation file which
is executed by the Coupling Interface at each iteration. Therefore, the script takes care only of those
parameters changing during the iterations (initial conditions) and runs the time integration, as discussed
in the appendix sec.D.4.3 under the "SpckSimManager.sjs" paragraph. Regarding the SimpackR© post-
processing, its purpose is to load the kinematic results contained in the "Spck.sbr" binary file, extract
them and write such data to the ASCII "SpckOUT.csv" file. Also in this case, the same approach
employed before in the setup of the MBD simulation is here applied. Therefore, a preliminary setup of
the post-processing file ("Spck.spf") is manually carried out only once and for each problem simulated,
where the layout of the time-plots with the kinematic states to export is prepared. After this, the
generation process of the "SpckOUT.csv" file is carried out by the SimpackR© post-processing script, as
described in sec.5.2.2.

5.3. Verification of the coupling demonstrator
5.3.1. First test case: 1 DoF problem
The first test case consists in an airfoil undergoing a dimensional free plunge motion hO - but from now
on represented by the h symbol for simplicity - under the action of elastic, inertial and aerodynamic lift
forces, as well as a prescribed harmonic pitch motion α(t). Similarly to the problem considered in ch.3,
the elastic vertical force is modelled by lumped parameters (a linear translation spring) without including
structural damping. The vertical lift force is provided by the Theodorsen routine every coupling time
step and is applied to the quarter chord aerodynamic center, which is also the pitching axis location.
The drawing of the aeroelastic airfoil system is shown in fig.5.4.

Figure 5.4: Drawing of the 1 DoF aeroelastic airfoil problem with prescribed pitch and free plunge motion employed for
the SimpackR©-Theodorsen coupling demonstrator.
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Mathematical model
To derive the mathematical formulation for this problem, the same approach used to derive the EoMs in
sec.3.1.2 for the 2 DoFs problem of the SimpackR© verification activity is followed. Given the fact that the
pitch motion is prescribed, the problem can be modelled by a single ODE for the plunge DoF, leading
to the following EoM, where the lift airload can be split into a non-circulatory Lnc and a circulatory
component Lc according to the Theodorsen model.

mḧ+ khh = −mxGα̈(t)− khxEα(t)− L with L = Lnc + Lc (5.1)

For Lnc, the following expression is employed, which is exactly the same as the one employed in sec.3.1.3,
with the only difference that now only ḧ is an unknown quantity for this problem.

Lnc = πρb2
(
ḧ+ b

2 α̈(t) + U∞α̇(t)
)

(5.2)

In the case of Lc, this can be further split according to the convolution-integral formulation derived
in sec.3.2.1 and in the appendix sec.B.2 into two components Lc0 and CI. The first one Lc0 contains
the Wagner function evaluated at a generic time instant W (t), which multiplies the structural input
evaluated instead at t= 0. Regarding the second component CI, this is the true convolution integral
between the delayed Wagner function W (t−τ) and the time derivative of the structural input function.

Lc = 2πρU∞b
(
Lc0 + CI

)
with Lc0 =

[
ḣ|t=0 + bα̇(t=0) + U∞α(t=0)

]
W (t)

and with CI =
∫ t

0
W (t−τ)

[
ḧ+ bα̈(τ) + U∞α̇(τ)

]
dτ (5.3)

Given all the above equations, the following state-space-model of the aeroelastic system can be obtained
based on the y = ḣ assumption. In the derivation, all the h-terms in the non-circulatory lift are moved
to the lhs, while all α(t)-terms are known, and therefore kept on the rhs.m− πρb2 0

0 1

ẏ
ḣ

+

 0 kh

−1 0

y
h

 = f → Mż + Kz = f(t) (5.4)

The above state-space-model of the problem leads to a combined mass-aerodynamic inertial matrix M
and a pure structural matrix K. Regarding the lhs term f(t), its complete expression in terms of the
quantities used in the previous equations is reported below.

f(t) =
[
−Lncα−p−Lc; 0

]T
with L(α)

nc = πρb2
(
b

2 α̈(t)+U∞α̇(t)
)

and with p = mxGα̈(t)+khxEα(t)

By applying the same approach employed in sec.3.1.3, the analytical solution ż is obtained by inverting
matrix M.

Mż + Kz = f(t) → ż = −M−1Kz + M−1f(t) = A + b(t) (5.5)

The numerical solution of this state-space problem, can be obtained by applying the forward Euler
method to eq.5.5, similarly to what done in sec.3.2.1. This leads to the right expression below for the
computation of the acceleration states. This expression is employed in the Theodorsen code at the very
first iteration, as discussed in sec.5.2.4. On the other hand, the left expression below is used to get a
benchmark solution for the reference kinematic states shown in the results part of this section.

zn+1 =
(

A∆t+ I
)
zn + bn∆t and żn = A + bn (5.6)

Finally, regarding the numerical discretization of the quantity bn, the same approach employed for the
SimpackR© verification activity on the 2 DoFs airfoil is employed. Therefore, the reader is referenced to
sec.3.2.1 and sec.B.3.
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SimpackR© setup
The setup of the SimpackR© simulation is similar to the one described in sec.3.3, with major differences
only in the Joint and Time Integration Solver. Regarding the Joint, to model the combined free and
prescribed motions of the airfoil considered in this problem, the 6 DOF al-be-ga Joint type is employed.
This is a very general Joint type that allows to select which of the six DoF is characterized by a free
motion and which instead by a prescribed/driven one. Along the driven directions, the user can specify
an Excitation, besides it also possible not to provide any excitation and, in this case, SimpackR© treats
that motion as locked. In the reference frame of this problem2, the only driven direction with a non-zero
Excitation modelling the harmonic pitch motion is the rotation about the z-axis (ga rotation), while the
y-direction is set as not-driven, because it is related to the only true DoF of the system. For the initial
conditions in the plunge position and velocity, the corresponding subvars are applied to load the values
for h and ḣ from the previous coupling iteration. The Excitation modelling the harmonic pitch rotation
is defined based on three Expressions for the α(t), α̇(t), α̈(t) states defined below:

α(t) = A sin(ω(t+ T )); α̇(t) = Aω cos(ω(t+ T )) α̈(t) = −Aω2 sin(ω(t+ T )) (5.7)

where the term T is the time of the global aeroelastic simulation. The latter parameter is imported as
a subvar provided by the "Spck.subvar" input file, while t is the time of the MBD simulation spanning
the coupling iteration interval [0 : ∆T ]. Finally, regarding the Time Integration Solver, as already
introduced in sec.5.1.2, the adaptive time-step LSODE solver is selected with its main properties more
in detail described in sec.2.3.2. As mentioned, in sec.5.1.2, the employment of an adaptive timestep
integrator in SimpackR© determines subcyling also for the structural phase of the aeroelastic simulation,
with a structure subcycling factor in the order of 10 and 1 for the values of the coupling timestep
considered.

Test conditions
The 1 DoF problem defined before is tested for the simulation parameters shown in tab.5.2. The coupled
aeroelastic simulation considered has a duration of 1s, a time frame sufficient to reach an expected
convergence of the aeroelastic solution (kinematic states and lift force) to a periodic solution, due to the
prescribed harmonic plunge forcing. Both the reference and the coupling solution for this test problem
are computed for 3 different values of the coupling timestep, namely ∆T = 0.01s, ∆T = 0.001s and
∆T = 0.0001s corresponding to 20, 200 and 2000 points per period of pitch motion respectively. Flow

Name Symbol Value Unit Subvar
airfoil semi-chord b 0.5 [m] $_b

airfoil depth d 1.0 [m] $_depth
point E x-coordinate with respect to AC xE -0.05 [m] $_xe
point G x-coordinate with respect to AC xG 0.25 [m] $_xg

angular velocity of prescribed pitch ωα 2π5 [rad/s] $_om_a
amplitude of prescribed pitch A 1.5 [deg] $_amp_a

flow density ρ 1.225 [kg/m3] -
lift aerodynamic derivative clα 2π [-] -

flow velocity U∞ 100.0 [m/s] -
airfoil mass m 20.0 [kg] $_m

translation stiffness kh 1900.0 [N/m] $_kh

Table 5.2: Geometric, aerodynamic and structure parameters employed for the SimpackR©-Theodorsen coupling demon-
strator problem involving a 1 DoF aeroelastic airfoil with free plunge and prescribed harmonic pitch motions.

conditions compatible with the assumptions on which the Theodorsen model is based are employed,
leading to a Reynolds number of 6.8 million and a Mach number of 0.294 (air temperature considered
15◦ C). Regarding the pitching motion, a small amplitude value of 1.5◦ is considered to ensure that
the attached flow assumption used in Theodorsen model can be still considered as valid, and a pitch
frequency of 5 Hz is employed to have enough oscillations (5 are expected) within the simulation duration.
2In SimpackR©, the airfoil is still laying on the x-y plane, but the the positive y-direction is directed upwards and the z-axis
is point outward the x-y plane, differently from the reference solution in fig.5.4.
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Regarding the structural parameters, the values of the airfoil mass and of the translation spring stiffness
return a frequency value for the plunge motion - assuming this to be fully decoupled from the pitch
motion - of 1.55 Hz. In addition to the periodic pitch forcing, the system is perturbed by an initial
plunge velocity perturbation of ḣ = 0.01 m/s.

Results
In this paragraph, the results of the coupling demonstrator for the first test problem are compared against
the reference numerical solution of the analytical model without coupling. Both solutions are obtained
from the same physical and mathematical formulation of the problem at stake. Besides, ch.3 showed
that the tuning effect of the SimpackR© MBD simulation parameters can be considered as negligible
once an optimal setup is found. This means that the only sources of error - here the word error is
more appropriate than mismatch due to the previous reasons - in this comparison could be related to
the numerical discretization (fixed timestep forward Euler vs the LSODE adaptive timestep method),
which are although expected to be very small, and the coupling timestep. The latter is very likely to be
the main source of error, even though for decreasing values of the coupling timestep, it is should have
a smaller effect from this parameter, leading to an expected perfect match between the two solutions
in the limit of ∆T → 0. Therefore, the main goal of this investigation is to assess the effect of this
fundamental parameter of explicit FSI coupling algorithms on the aeroelastic variables for the three
previously mentioned values of the coupling timestep. Being said this, the results of this test problem

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0  1  2  3  4  5

h
/c

  
[-

]

t/T
α
  [-]

∆Tcpl/Tα
 = 1/20

reference
coupling

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0  1  2  3  4  5

h
/c

  
[-

]

t/T
α
  [-]

∆Tcpl/Tα
 = 1/200

reference
coupling

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0  1  2  3  4  5

h
/c

  
[-

]

t/T
α
  [-]

∆Tcpl/Tα
 = 1/2000

reference
coupling

Figure 5.5: Time-histories of the chord-scaled (c=1m) plunge positions h for the 1 DoF version of the SimpackR©-Theodorsen
coupling (red lines) compared with the reference aeroelastic numerical solution (black squares) under three values of the
coupling time-step (top left ∆T =0.01s, top right ∆T =0.001s, bottom ∆T =0.0001s) with Tα=0.2s.

are shown in fig.5.5 for the plunge position and in fig.5.6 for the lift coefficient, while the plunge velocity
and acceleration are respectively shown in fig.F.4 and fig.F.5 of the appendix. From these plots, it is
apparent that the methodology is able to replicate the numerical reference solution of this aeroelastic
problem with a very high level of accuracy, both in the kinematic states and in the lift signal. This
is also achieved for the largest coupling timestep considered of 20 samples per period of pitch motion
(∆T =0.01s), apart from small amplitude discrepancies in the initial transient of the response (especially
in the case of the position state). However, these errors are substantially removed by reducing the
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coupling timestep already from 20 to 200 fractions of the pitch period, due to the underlying explicit
FSI method employed. Moreover, it is interesting to observe that both the reference and the coupling
solutions for the largest timestep are different from the ones calculated for the other timesteps, when
considering the same variable of interest. Such phenomenon is rather apparent in the case of the plunge
position state in fig.5.5. This is due to the fact that the underlying forward Euler method has not yet
converged to a solution due to its low first-order global discetization error decrease rate. However, the
goal of this investigation is to make sure that the developed coupling methodology is able to provide
an accurate aeroelastic solution based on a given reference solution, and this is here achieved regardless
of the convergence of the numerical solution. Regarding the appearance of the computed solution, it is
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Figure 5.6: Time-histories of the lift coefficient cl (scaling factors chord c = 1m, freestream velocity U∞ = 100m/s and
density ρ = 1.225kg/m3) for the 1 DoF version of the SimpackR©-Theodorsen coupling (red lines) compared with the
reference aeroelastic numerical solution (black squares) under three values of the coupling time-step (top left ∆T = 0.01s,
top right ∆T = 0.001s, bottom ∆T = 0.0001s) with Tα = 0.2s.

possible to see that after the first two or three periods of pitch motion, all the kinematic states converge
to a periodic solution fed by the harmonic pitch motion. The lift signal is the fastest to reach a periodic
solution, most likely because the lift force in fig.5.6 is more influenced by the pitch motion than by the
plunge one. On the other hand, the plunge position is the slowest to reach a periodic behaviour, due to
an initial transient dominated by the elastic forces, where oscillations have also a larger time-scale than
those of the periodic part of the solution.

Conclusion
With this investigation, it is possible to state that the coupling methodology developed works in a very
accurate fashion for this problem. Furthermore, a coupling timestep between 20 and 200 samples per
period of pitch motion - leading to 100 to 1000 coupling iterations for 1s aeroelastic simulations - can
be a reasonable choice to have an accurate prediction of aeroelastic variables with a moderate number
of iterations, and this is an essential indication for the 1 DoF coupling between PowerFLOWR© and
SimpackR©. To mention a few aspects concerning performance, a significant portion of the time it takes
for each coupling iteration is spent in the binary-to-ASCII conversion of the SimpackR© results file. This
bottleneck is solved for the coupling between PowerFLOWR© and SimpackR© by proposing a different
approach, which improves both the performance and efficiency of the methodology.
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5.3.2. Second test case: 2 DoFs problem
The coupling demonstrator is tested also on a second test problem consisting in a 2 DoFs airfoil with free
pitch and plunge motions and where the aerdynamic forces are computed from the convolution integral
formulation of the Theodorsen model. This is exactly the same problem employed in ch.3 in the case of
the Theodorsen model in its convolution integral formulation for the verification activity of the SimpackR©

MBD setup. The difference is that, in this case, the kinematic states are obtained from a timestep-per-
timestep two-way coupling loop with an aerodynamic routine, while in ch.3 the entire force time-history
(computed externally beforehand) is supplied to SimpackR© at the beginning of the simulation (just for
the sake of assessing the structural part of the modeling). Therefore, the definition of the problem can
be found in sec.3.1.1, while its analytical formulation is in sec.3.1.2, sec.3.1.3 and sec.B.2. Then, the
discretization of the EoMs can be found in sec.3.2, while the expressions for the aerodynamic forces
computed by the Theodorsen code for this problem are shown in the appendix sec.B.5.1 and when it
comes to the SimpackR© setup, this is the same as the one described in sec.3.3. Finally, concerning the
testing conditions, also for this 2 DoFs problem the same airfoil-related quantities (chord, depth, Markers
locations) and structural parameters (mass, translation spring stiffness) of the 1 DoF problem in tab.5.2
are used. What differs is the free-stream velocity, which is lowered to U∞ = 52m/s, although the same
density and aerodynamic derivative clα are kept. Besides, this 2 DoFs problem employs a rotation spring
with stiffness (kα = 2600Nm/rad) and an inertia moment about the CoG (JG = 1.3kg·m2), while the
same initial condition (plunge velocity perturbation) is employed to trigger the response of this system.
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Figure 5.7: Time-histories of the pitch positions α for the 2 DoFs version of the SimpackR©-Theodorsen coupling (red line)
against the reference analytical model (black squares) under three values of the coupling time-step (top left ∆T = 0.002s,
top right ∆T = 0.001s, bottom ∆T = 0.0005s) with Tα = 0.1405s.

Also in this case, an almost perfect match between the two solutions should be obtained, once
the influence of the coupling timestep can be considered as negligible. Therefore, when the coupling
timestep is still large compared to a characteristic period, this quantity can be considered as the main
source of error, given the same physical and mathematical modelling shared by the two solutions, while
the influence of discretization and tuning of the SimpackR© setup can be considered as minor or even
negligible sources of error, as the results of sec.3.4 and sec.5.3.1 confirm. Being said this, the results of
this verification are shown in fig.5.7 for the pitch position, in fig.5.8 for the plunge position, in fig.5.9 for
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the lift coefficient and in fig.5.10 for the moment one, while the pitch/plunge velocities and positions can
be visualized in fig.F.6, fig.F.7, fig.F.8 and fig.F.9 of the appendix. All these figures show the previously
mentioned quantities for three values of the coupling timestep, namely 70, 140 and 280 fractions of pitch
period Tα =

√
kα/JG = 0.1405s. The main observation that can be made from such results is that the

main effect of reducing the coupling timestep is a reduction of the phase error affecting the last portion
of the response between the reference analytical solution and the coupling one. This is quite different
with respect to the previous 1 DoF problem, where the effect is related to the amplitude error. For this
2 DoFs problem, already a timestep 70 times smaller than the pitch period is able to accurately capture
in amplitude the values reached by the oscillations of the response. On the other hand, to also have
an equally accurate match in phase, a four-times smaller timestep is necessary for this type of problem.
This is quite close to what observed in the 1 DoF test problem, where a timestep of 20-200 fractions of
Tα is enough. However, the additional complexity introduced by the interaction between the free plunge
and pitch motions suggests a more conservative choice around 200-300 fractions to employ in the 2DoF
coupling between PowerFLOWR© and SimpackR©.
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Figure 5.8: Time-histories of the chord-scaled (c = 1m) plunge positions h for the 2 DoFs version of the SimpackR©-
Theodorsen coupling (red line) against the reference analytical model (black squares) under three values of the coupling
time-step (top left ∆T = 0.002s, top right ∆T = 0.001s, bottom ∆T = 0.0005s) with Tα = 0.1405s.

When the physics of the aeroelastic response simulated is considered, this system features a simi-
lar behaviour to the one in sec.3.4 for the Theodorsen airload, as both the kinematic states and the
aerodynamic loads oscillations are significantly damped within the 10 Tα oscillations periods considered,
after an initial transient of a couple of periods. This type of response is rather different from the one
obtained by the 1 DoF problem, where the system reaches a periodic solution due to the harmonic pitch
forcing term. In this 2 DoFs system, the response observed can be considered as the response to a plunge
impulse, which triggers the internal dynamics of the plunge motion more than the pitch one, at least
at the beginning of the response. This is related also to the about 5 or 6 oscillations of the aeroelastic
variables observed for the simulation duration considered, with a characteristic time per oscillation that
is larger in the initial transient and closer to the characteristic plunge period Th =

√
kh/m = 0.64s.
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Figure 5.9: Time-histories of the lift coefficients cl (scaling parameters c = 1m, U∞ = 52m/s and ρ = 1.225kg/m3) for
the 2 DoFs version of the SimpackR©-Theodorsen coupling (red line) against the reference analytical model (black squares)
under three values of the coupling time-step (top left ∆T = 0.002s, top right ∆T = 0.001s, bottom ∆T = 0.0005s) with
Tα = 0.1405s.
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Figure 5.10: Time-histories of the quarter-chord aerodynamic moment coefficients cmAC (scaling parameters c = 1m,
U∞ = 52m/s and ρ = 1.225kg/m3) for the 2 DoFs version of the SimpackR©-Theodorsen coupling (red line) against the
reference analytical model (black squares) under three values of the coupling time-step (top left ∆T = 0.002s, top right
∆T = 0.001s, bottom ∆T = 0.0005s) with Tα = 0.1405s.
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5.4. PowerFLOWR©-SimpackR© coupling
This final section of the methodology chapter, focuses only on the main aspects of the coupling between
PowerFLOWR© and SimpackR©, while the results of this method are shown in ch.6 for the same 1 DoF
and the 2 DoFs aeroelastic problems employed in the verification activity of the SimpackR©-Theodorsen
coupling demonstrator.

5.4.1. Relevant coupling aspects and differences due to PowerFLOWR©

There are several aspects differentiating the CFD tool with respect to the Theodorsen routine for the
sake of the coupling and the most relevant ones are outlined in the following paragraphs.

Initial transient of the CFD simulation
Contrarily to the Theodorsen code, the PowerFLOWR© simulation (as all CFD simulations) is affected
by an unavoidable initial transient due to the adaptation of the fluid-flow to the boundary conditions -
even when steady-state solutions are expected - where large spurious airload oscillations can occur. For
this reason, the force value of the very first coupling iteration F0 can not be immediately extracted and
provided to SimpackR©, as it might significantly affect the computation of the kinematic states, or even the
stability of the coupled aeroelastic solution. Therefore, the standalone PowerFLOWR© simulation needs
to continue until the initial transient has ceased. Such an initial transient of the CFD simulation leads
to the splitting of the Coupling Interface into a first mode related to the handling of the initial transient
and one entirely devoted to the coupling with SimpackR©. Besides, a method to establish the conclusion
of the initial transient is introduced, which is based on the convergence of the root-mean-square (rms)
of a scaled running-average of the force signal(s) to a user-defined tolerance, where the computation of
the running average requires a window size, whose value is the flow-pass time c/U∞. After extracting
each force signal from the PowerFLOWR© output file, a dedicated library - called "InitTransChecker" and
described in the appendix sec.D.4.2 - computes the scaled rms of the running-averaged force signal as:

F ∗rms = 1
F̄

√∑N
i=1(Fi − F̄ )2

N − 1 with N = ceil
(
c/U∞
∆T

)
(5.8)

where the window size (N) is the ceiling (integer rounding towards plus infinity) of the ratio be-
tween the flow-pass time and the coupling timestep ∆T , corresponding to a given number of coupling
timesteps/iterations; then Fi is the i-th value of the force signal considered within the window-size and
F̄ is the average of the force signal within the moving window. The scaling parameter employed is
the running-averaged force signal F̄ itself, which makes this method applicable if a converged value of
the force signal different from zero is expected3. Regarding the convergence criteria, the conclusion of
the PowerFLOWR© initial transient occurs when at least one of the force signals satisfies the condition
F ∗rms < εF , which can also be extended to a set of signals or even all of them. The value of the force
tolerance εf and the choice of considering one or more force signals for the convergence creterion is a
trade-off between computation time and accuracy, as well as depending also on the initial conditions set.
This aspect is discussed in ch.6 based on the actual initial conditions employed, as well as their impact
on the accuracy of F0 and of the overall aeroelastic solution. Finally, the splitting of the coupling into an
initial transient phase and a coupling phase, suggests the employment of two counters to distinguish the
proper coupling iterations "cpl_it" from the total ones "tot_it" (initial transient plus proper coupling).
The relation between the two is that the "tot_it" corresponding to the end of the PowerFLOWR© initial
transient corresponds to cpl_it=0 as very first coupling iteration. In this way, the same settings em-
ployed for the coupling demonstrator can be easily translated to the PowerFLOWR©-SimpackR© coupling,
while the first value of the "tot_it" counter is tot_it=1 for reasons related to the numbering of the
PowerFLOWR© input file, as discussed in the next paragraphs.

PowerFLOWR© frame measurement time and coupling timestep
In the test cases related to the coupling demonstrator, the coupling timestep ∆T is prescribed as a fraction
of the period of the pitch motion Tα. However, the PowerFLOWR© internal timestep ∆tf - which depends
on the mesh resolution and flow conditions, as discussed in sec.2.2.2 - is very likely not to be a perfect
3This is the case of the coupling, as the initial transient is aimed at computing the force signal due to an initial AoA or
plunge velocity. When both initial conditions are set to zero and a zero F0 is expected (this is the case of the 1 DoF
coupling with pitch motion modelled by body forces sec.6.2) the convergence check is disabled.
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fraction of ∆T . Consequently, the actual timestep employed in the coupled aeroelastic simulation - and
so the duration of each SimpackR© simulation - is the frame time used by PowerFLOWR© to sample the
body surface airload to generated the binary CSNC measurement file shown in fig.5.12. This approach
benefits the coupling in two ways. The first one is that no time-mismatch between the two solvers is
introduced, as SimpackR© and PowerFLOWR© are well synchronized, in this way, spurious phase errors
are not introduced into the FSI process. The second one is related to the setup of the measurement file
in PowerCASER©, where the frame time is determined as the integer multiple of ∆tf returning the closest
estimate of the desired ∆T as a fraction of Tα. Another important aspect related to the PowerFLOWR©

measurement file is that, by prescribing an interval for the time-averaging of the computed solution equal
to the sampling frame time, the force value sent to SimpackR© is a better estimate than the force value
computed at the last fluid subcyle within the coupling timestep, as discussed in sec.2.1.2. Furthermore,
as suggested by [4], this choice helps in preserving the stability of the first order explicit CSS FSI scheme
discussed in sec.5.1.3 when fluid subcycling is employed.

Conversion of the CFD binary measurement file by means of the PF-CLI
In a PowerFLOWR© CFD simulation, the user needs to define measurement windows to save to disk the
fluid-flow quantities of interest. To extract the airfoil surface airload, the same binary ".csnc" Composite
measurement file employed in the PowerFLOWR© validation activity of ch.4 is employed. Such binary
file is generated by the PowerFLOWR© simulator at the beginning of the simulation and updated every
frame (coupling timestep). Due to the lack of information regarding the internal data-structure of this
file in both [52], [53] and [87], its conversion into an ASCII format has to rely on functionalities provided
by the PowerFLOWR© software. The most suitable for this purpose is the function "exaritool forces.ri"
from the PowerFLOWR© CLI with additional attributes to get the required data in the desired format,
as described in the "Model" paragraph of the appendix sec.D.2. To whole process is handled within
the Coupling Interface by a specific class called by the "TriggerManager" (the appendix sec.D.3). The
functions of the PowerFLOWR© CLI are also required to start the coupled aeroelastic FSI process by
launching the PowerFLOWR© simulation4

PowerFLOWR© input-table reading
As already described in sec.2.2.2, PowerFLOWR© can read input tables during the simulation in two
different ways. The one employed in this coupling is based on the option Read After Measurement
Frame Written, as it allows to launch a bash command to trigger the Coupling Interface before reading
the subsequent table. Besides, the import of the subsequent table is carried out only after the update
of the measurement file, which is necessary to feed the Interface with a new force value. Therefore, this
option is perfect to handle both input and output data, as required by a two-way coupling loop. To
correctly perform such repeated table reading, the name of the PowerFLOWR© input file must include
the current reading iteration-number carried out by the simulator. Besides, such number coincides with

Figure 5.11: The process of "PFin_<tot_it>.txt" table reading done by the PowerFLOWR© simulation.

the "tot_it" quantity previously defined and, since the very first value for tot_it must always be 1 [52],
the corresponding table "PFin_1.txt" is directly loaded during the simulation setup. In this way, when
the simulation starts, its data are immediately applied to the simulation. Once the simulation is started,
PowerFLOWR© spans the interval [0:∆T ], and at t = ∆T the Interface is triggered to generate a new table
PFin_2.txt. After loading the new table, PowerFLOWR© computes the airload during the second iteration
[∆T :2∆T ] and at t = 2∆T the Coupling Interface is triggered again repeating the process, as fig.5.11
shows. The bash command that is executed by the PowerFLOWR© simulator on the Linux terminal
4 This is done by the "exaqsub" function when directly passed to the Linux terminal, followed by the attribute "-nprocs"
to prescribe the number of processors on which the simulator can parallelize the calculations.
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launches the Coupling Interface by initializing a clean bash environment with only basic commands and
the $HOME environmental variable to execute the SimpackR© solver in background mode. In this way,
all the possible PowerFLOWR© environmental variables that might create conflicts with SimpackR© and
cause a failure of the coupling loop are ignored.

Reconstruction of the body motion in the CFD solver
As already extensively described, the modelling of the airfoil pitch motion is carried out by both a
truly rotating geometry (LRF-approach) or by the employment of body forces, while the plunge motion
can only be modelled by a transpiration velocity. The LRF-approach requires an input pitch angular
velocity, the wall velocity a plunge velocity, while the body forces need both pitch angular velocity and
acceleration. If in ch.4 the previous quantities are prescribed by analytical expressions evaluated every
internal fluid timestep ∆tf by the PowerFLOWR© solver, in the case of the coupling, they are provided
by SimpackR© only every ∆T , leading to the problem of the reconstruction of the airfoil motion during
the internal subcycles of the aerodynamic solver. This issue is not present in the case of the coupling
demonstrator, but it is present in the case of PowerFLOWR© due to its time-explicit formulation and
should be taken into account. As the pitch angular velocity and acceleration, as well as the plunge
velocity (depending on the motion approach), keep a constant value during the PowerFLOWR© subcyles
spanning ∆T , the pitch and plunge positions are reconstructed in PowerFLOWR© by means of a linear
interpolation. If this choice is in agreement with [4] in terms of even distribution of the body motion
during the subcycles of the fluid solvers, the lack of continuity of the velocity and acceleration states at
every coupling instants could be a limitation for aeroacoustic simulations, due to the presence of artificial
perturbations in the surface pressure distributions, as discussed in sec.2.1.2.

5.4.2. Coupling mechanism
As shown in fig.5.12, the iteration process for the coupling between PowerFLOWR© and SimpackR© is
very similar to the one discussed in sec.5.2.1 for the coupling demonstrator between SimpackR© and the
Theodorsen routine. Therefore, attention is given in this section only to the differences related to the
high-level working of the coupling mechanism.

Figure 5.12: Diagram showing the working mechanism of the coupling between PowerFLOWR© and SimpackR© in terms of
software components and main files exchanged.

The first obvious difference is in the aerodynamic block, as it contains the CFD simulation and its
CLI component. In between the two software blocks, the binary result "PFout.csnc" file is generated
(step 1.A) by the CFD solver. Next, the simulator triggers the Coupling Interface (step 1.B) which
then executes the PowerFLOWR© CLI to convert the binary "PFout.csnc" file into the ASCII "PFout.txt"
file by means of the "exaritool" function (steps 2.B and 3). Next, such file is read by the Interface
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(step 4), and the other steps until the 7th are exactly the same as those carried out by the SimpackR©-
Theodorsen coupling described before. At step 7, the difference is in the type of output file generated by
the SimpackR© Time Integration Solver, which is the "Spck.mat" Matlab file. This file is then processed
by the Interface exploiting the "h5py" python library (step 8.A) to extract the required kinematic states
data (step 9). These aspects are described more in detail in sec.5.4.3 in addition to the motivations
why this part of the coupling mechanism has been modified with respect to the corresponding one in
the coupling demonstrator. The last two steps are related to the generation of the PowerFLOWR© input
table - namely the "PFin_"tot_it.txt" ASCII file - (step 10) and the reading of such a file by the CFD
simulation (step 11), which can then continue to the following coupling iteration. A final aspect to
highlight is that differently from the coupling demonstrator, where the overall handling of the aeroelastic
simulation and triggering of each coupling iteration is implemented in a dedicated python script, in
the case of the PowerFLOWR©-SimpackR© coupling, both tasks are carried out by the PowerFLOWR©

simulation. In other words, the CFD solver is the main actor of the coupling by both starting the
coupled aeroelastic simulation and triggering the Coupling Interface every ∆T .

Regarding a more in depth description of the main components previously mentioned, the general
aspects of the PowerFLOWR© simulation setup can be found in sec.4.1, while the details related to the 1
DoF and the 2 DoFs versions of the coupling are in sec.6.1, sec.6.2 and sec.6.3. Regarding the SimpackR©

MBD setup, its general aspects are covered in sec.3.3, while the more detailed ones concerning the test
problems are in sec.5.3.1 and sec.5.3.2. Next, when it comes to the Coupling Interface, its main aspects
are discussed in ch.5.4.4, while an extensive documentation of the tool can be found in the appendix
sec.D. Finally, the coupling files shown in fig.5.12 are introduced in the following section.

5.4.3. Coupling Files
Due to the additional complexity introduced by the CFD solver, more secondary/auxiliary coupling files
are employed for the correct working of the coupling between PowerFLOWR© and SimpackR©. Regarding
the main coupling files primarily dedicated to the exchange of data between the MBD and the CFD solver,
"PFin_<tot_it>.txt" replaces "kin_states.csv" in the way the latter was employed in the demonstrator
coupling, and "PFout.txt" is in place of "TheOUT.csv", for the sake of input and output files of the
CFD solver respectively. As pointed out in the previous section, the "Spck.sbr" output binary file is
replaced by the "Spck.mat" file but it contains the same type of data. All in all, the coupling files

PowerFLOWR©-SimpackR© Coupling Files
Main Files Secondary Files

PFout.csnc & PFout.txt cpl_setup.txt
Spck.afs tot_iter_list.txt

Spck.subvar init_trans_data.txt
Spck.mat cpl_force.csv

PFin_<tot_it>.txt kin_states.csv

Table 5.3: Main and secondary files employed for the coupling between PowerFLOWR© and SimpackR©.

used for the coupling between PowerFLOWR© and SimpackR© are shown in tab.5.3 and, in the following
paragraphs, attention is focused on the purpose and data carried by those files specifically related to this
coupling. This is the case of "PFout.csnc", "PFout.txt", "PFin_<tot_it>.txt" and "Spck.mat" for the
main coupling files. For the secondary files, "cpl_setup.txt", "init_trans_data.txt" and "cpl_force.csv"
are shortly described. In the case of all the other files, some are exactly the same as the ones employed
in the demonstrator coupling ("kin_states.csv" and "Spck.subvar"), others are just generated differently
or contain slightly different data. For instance, the "Spck.afs" file is filled with the airload returned
by PowerFLOWR©, while the "tot _iter_list.txt" file contains the number of total iterations ("tot_it")
carried out. Also in this case, the details of the structure and generation process of such coupling files
can be found in the appendix ch.D.

Main coupling files: PFout.csnc and Pfout.txt
As already mentioned, the binary "PFout.csnc" file is generated at every coupling timestep and the airload
values it carries are obtained from a time-averaging spanning the measurement frame time. Its ASCII-
conversion is performed by the "exaritool force.ri" function of the PowerFLOWR© CLI with additional
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attributes to decompose the airload into the two in-plain force components (lift and drag) and an out-
of-plain aerodynamic moment, including also the corresponding simulation time to which the airload is
related. Besides, each force/moment component is reported in the desired units (N/m and N) due to the
2D Dimensionality option of the CFD simulation.

Main coupling file: PFin_<tot_it>.txt
The "PFin_<tot_it>.txt" file contains the values of the kinematic states at the current iteration returned
by the Spck.mat file and necessary to reconstruct the airfoil pitch and plunge motions in the CFD
simulation. To prescribe a new value for the wall-velocity BC modelling the plunge motion in the case of
both the 1 DoF and the 2 DoFs versions of coupling, the current value of the plunge velocity is needed,
while, in the case of the 2 DoFs version, also the current value of the pitch angular velocity is required to
let the airfoil rotate according to the LRF approach. Therefore, the "PFin_<tot_it>.txt" PowerFLOWR©

input table always carries the SimpackR© plunge velocity at tn and in the 2 DOF version also the pitch
angular velocity always at tn. In addition, such an input file to the CFD simulation contains also
additional parameters, such as the time at which the PowerFLOWR© initial transient is over, and a flag
indicating whether the coupled aeroelastic simulation is in its initial transient or coupling phase. These
quantities are related to the fact that, when the aerodynamic simulation is in its initial transient phase,
only the prescribed initial conditions for the pitch and plunge motions are active and kept constant, as
long as the initial airload value has reached convergence. Moreover, in the case of the 1 DoF coupling,
once the convergence of the initial airload is reached, the harmonic functions contained in the analytical
expressions for the prescribed pitch motion need to be time-shifted, as the actual pitch motion starts
after the end of the initial transient and not when the CFD simulation is stared, as shown in sec.6.1 and
sec.6.2.

Main coupling file Spck.mat
In the coupling demonstrator, the "Spck.sbr" binary result file is employed to export the kinematic
states computed by the SimpackR© Time Integration Solver. The data in this binary file can be easily
extracted and written to an ASCII file by the SimpackR© Post-processor and the whole process can be
also readily automated. The only issue of this approach is that it is quite time consuming - generation
of the "Spck.sbr" file, its compression, loading the "Spck.spf" post-processing file and generation of the
"SpckOUT.csv" file - and requires the Linux "-X server" application for graphics display to be activated.
This last aspect is what caused the coupled simulation to crash several times, due to the large number
of executions of the "-X server", especially when this is employed with the "ssh" command to execute the
coupling simulation on an a remote server. For this reason, a solution is found in the replacement of the
"Spck.sbr" file with the "Spck.mat" file, which is a special type of binary file developed by Mathworks for
the popular Matlab program. The great advantage offered by a .mat file is that it can be easily processed
by open source Application Programming Interfaces (APIs). As the whole Coupling Interface is written
in python language, the python library "h5py" [90] is employed to extract data from .mat files in the
v7.3 format, like those generated by SimpackR© 2019. Once the kinematic states are extracted, they can
be directly handled by the Coupling Interface to update both the "kin_states.csv" file or to generate a
new "PFin_<tot_it>.txt" file without going through the "SpckOUT.csv" file. This saves time, and does
not require the Linux "-X server" to be activated, improving the stability and robustness of the coupling
methodology in addition to its overall performance.

Secondary coupling files
Similarly to the coupling demonstrator case, files like "cpl_force.csv" and "kin_states.csv" serve as data-
containers for the time-histories of the main aeroelastic quantities of interest (aerodynamic forces and
kinematic states after the PowerFLOWR© initial transient). With this regard, the "cpl_force.csv" file
is the analog of the "Theodorsen_force_hist.csv" file in the demonstrator coupling. Therefore, these
files are essential for both post-processing reasons but also for a quick comparison with the reference
solution while the simulation is running. On the other hand, "tot_iter_list.txt", "init_trans_data.csv"
and "coupling_setup.txt" are required for the working mechanism of this coupling in the way it is
conceived. Briefly, the "init_trans_data.csv" file stores important data related to the end of the CFD
initial transient, namely the tot_it and time of convergence as well as the value of the converged force
components and their error. The "cpl_setup.txt" is loaded only once at the beginning of the CFD
simulation and provides both PowerCASER© and SimpackR© (via the "Spck.subvar" file) with parameters
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like the kinematic states initial conditions, amplitude and frequency of the prescribed pitch motion for
the 1 DoF coupling and the coupling timestep.

5.4.4. Coupling Interface
The Coupling Interface developed for the coupling between PowerFLOWR© and SimpackR© consists of a
main python script called "InterfaceManager" calling several other python libraries and the Javascript
"SpckSimManager.sjs" code for the automatic setup and execution of the SimpackR© simulation. The
python libraries are responsible for the steps of the coupling mechanism defined in sec.5.4.2 and, among
them, two main ones manage all the tasks required by the initial transient and the coupling phases of
the aeroelastic simulation. These are the "TransientIterationManager" and "CouplingIterationManager",
with the first specifically related to this CFD-MBD coupling, while the second one is rather similar to the
Coupling Interface discussed for the Theodorsen-SimpackR© demonstrator coupling. The three previously
mentioned main libraries of the Interface are here described, while all the other lower-level libraries and
the SimpackR© simulation script can be found in the appendix ch.D.

Interface Manager script
The main component of the Interface is the "InterfaceManager" python script which calls all the other
lower-level libraries and handles the overall coupling iteration mechanism within a single iteration. The
main structure of this script is shown in fig.5.13 and for every coupling iteration, the "InterfaceManager"
script is launched directly by the PowerFLOWR© simulator via the "trigger_interface.sh" bash script. Ini-

Figure 5.13: Diagram representing the internal working of the "InterfaceManager" script and the way it is linked to the
two modes of the Coupling Interface and the PowerFLOWR© simulation.

tially, the script receives the absolute paths of all the required coupling files, the user defined parameters
required for the coupling (force tolerance for the initial transient check and the flow-pass value in terms of
iterations number) and the "tot_it" parameter from the "tot_iter_list.txt" file. After these preliminary
steps, the script proceeds by resetting the "cpl_force.csv" and "kin_states.csv" files, if tot_it=1, to have
empty data-containers at the begging of the coupling. On the other hand, for tot_it 6=1, the InterfaceMan-
ager always converts the binary "PFout.csnc" file into the ASCII "PFout.txt" file. As third step, the script
contains an "if-statement" which allows to activate either the initial-transient or the coupling mode of the
Interface. The switching condition is based on the outcome of the search for the "init_trans_data.csv"
file, which is generated by the Interface only when the PowerFLOWR© initial transient is over. If this
file is not found, then the CFD simulation is still in its initial transient and the Interface launches the
"TransientIterationManager" library. On the other hand, if the "init_trans_data.csv" file is found, then
the initial transient is over and the "CouplingIterationManager" can be executed to couple PowerFLOWR©

with SimpackR©. Eventually, once the previous libraries have finished their internal operations, then also
the InterfaceManager has completed its operations and the process can go back to the PowerFLOWR©
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simulation, which now advances in time.

Initial Transient Iteration Manager library
The initial transient mode of the PowerFLOWR©-SimpackR© Coupling Interface is activated when the
CFD simulation is in its initial transient phase. Its purpose is primarily to check whether such initial
flow transient is over or not and to perform different operations based on the outcome of this check,
as shown in fig.5.14. If the initial transient is not over - which can be due to both a value of "tot_it"

Figure 5.14: Diagram showing the logic and the main tasks carried out by the "TransientIterationManger" library during
the initial transient phase of the CFD-MBD coupled simulation.

below the window size or a missed convergence for the force signals considered in the convergence check
- then a new "PFin_<tot_it>.txt" file for the following iteration is generated as a copy of the cur-
rent one and the "tot_iter_list.csv" file is updated. On the other hand, if the convergence condition
(see sec.5.4.1) is satisfied for at least one force signal, then different tasks are carried out. Firstly, the
"init_trans_data.txt" file is generated with the data mentioned in sec.5.4.3, because these are required
by the "CouplingIterationManager" for its internal operations. Secondly, the "cpl_force.csv" file is up-
dated with the very first values of the converged force signals (averages within the last moving window)
corresponding cpl_it=0. An thirdly, the "CouplingIterationManager" library for cpl_it=0 is triggered to
directly launch the coupling with SimpackR© at the iteration where the CFD initial transient is considered
to be over.

Coupling Iteration Manager library
The second mode of the Interface is the one implementing all the necessary operations to couple SimpackR©

with PowerFLOWR©, once the initial transient of the CFD simulation is over. This library can be either
launched directly from the "InterfaceManager" script, if the "init_trans_data.txt" file does exist in the
Simulation folder, or it is triggered by the "TransientIterationManager" at the "tot_it" when convergence
is reached. In the latter case, the "cpl_force.csv" file is not updated, as this operation is already carried
out by the TransientIterationManger library. On the other hand, when cpl_it6=0, the "cpl_force.csv" is
updated with the last value of the force signals from "PFout.txt" file as the first task carried out by the
"CouplingIterationManager" library. The subsequent operations up to the generation of the "Spck.mat"
file are the same as those described in sec.5.2.3 for the demonstrator coupling. After the "Spck.mat" file is
obtained, the library proceeds by extracting the results of the MBD simulation from the "Spck.mat" file
itself to both update the "kin_states.csv" data-container and to generate a new "PFin_<tot_it>.txt"file.
Finally, the "tot_iter_list.txt" file is updated.
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6
Results CFD-MBD

PowerFLOWR©-Simpack coupling
After the verification activities related to the setups of the Simpack MBD simulation in ch.3 and the
PowerFLOWR© CFD simulation in ch.4, as well as an extensive description and verification of the coupling
methodology in ch.5, in this chapter, the results of the coupling between PowerFLOWR© and Simpack are
shown and verified. The solution of the 1 DoF version in the case of pitch motion modelled by the LRF-
sliding mesh method is compared with a reference numerical solution based on the original Theodorsen
model in sec.6.1. Next, the 1 DoF version with pitch motion modelled by body forces is compared with
the previous coupling with pitch-LRF in sec.6.2. Finally, the results of the 2 DoFs version of the coupling
with pitch motion modelled by the LRF approach can be found in sec.6.3, where the validation is again
carried out by means of the numerical solution of the corresponding analytical model for the aeroelastic
problem investigated.

6.1. 1DoF coupling with pitch motion modelled by sliding
mesh (LRF)

6.1.1. Testing conditions
The first investigation considers an airfoil undergoing free plunge and forced harmonic pitch motion,
which is the same problem described in sec.5.3.1 for the coupling demonstrator. The coupling between
PowerFLOWR© and SimpackR© for this specific problem is tested on the four different conditions specified
in tab.6.1 in terms of the motion parameters for the forced pitching motion and the translation stiffness
coefficient. Regarding the coupling timestep value employed, based on the results of the sensitivity

#test Aα [deg] α0 [deg] ka [-] fα [Hz] Tα [s] kh [N/m] kp [-] t1 [-]
#1 1◦ −1◦ 0.1082 2.6 0.384 5900 0.1138 0.71
#2 1◦ −1◦ 0.2164 5.2 0.192 23000 0.2246 0.74
#3 2◦ −2◦ 0.1082 2.6 0.384 5900 0.1138 0.71
#4 2◦ −2◦ 0.2164 5.2 0.192 23000 0.2246 0.74

Table 6.1: Testing conditions for the four cases considered in this verification activity of the PowerFLOWR©-SimpackR©

coupling with 1DoF and pitch-LRF. The parameters Aα, α0, ka and fα are respectively the pitch amplitude, initial condition
for the AoA (obtained by a rotation of the "freestream_csys" in the CFD setup), reduced frequency and frequency of the
pitching motion. Next, kh is the value of the translation spring stiffness coefficient, kp is the plunge reduced frequency and
t1 is the coefficient employed to tune the wall velocity based on the results of sec.4.5.

study carried out for the same aeroelastic problem by means of the coupling demonstrator in sec.5.3.1,
a target coupling step of around 200 (precisely 192) fractions of period of the prescribed pitch motion
is the criterion here employed to minimize the effect of the underlying explicit FSI algorithm on the
computation of the aeroelastic solution. Therefore, given the two values of pitch reduced frequency
employed, two values of the target coupling timestep are applied: ∆T = 0.002s when ka = 0.1082
(Tα = 0.384) in test cases #1 and #3, as well as ∆T = 0.001s when ka = 0.2164 (Tα = 0.192) in test
cases #2 and #4. The word "target" for the chosen coupling timestep, is related to the fact that the actual
coupling timestep employed in the computations is the PowerFLOWR© frame time of the measurement
file "PFout.txt", which is an integer multiple of the internal CFD solver’s timestep. As mentioned in
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sec.5.4.1, this is done to have perfectly synchronised PowerFLOWR© and SimpackR© simulations, although
the two quantities differ by 0.02% when ∆T = 0.002s and 0.09% when ∆T = 0.001s. In any case, it
important to use the effective time at which PowerFLOWR© returns the airload to avoid phase mismatches
that can potentially have an impact on the solution for large times. Finally, the only (non-zero) initial
condition employed is a negative AoA (α0 parameter shown in tab.6.1) necessary to obtain a lift force
oscillating around a zero mean value, given the expression for the angular velocity of the rotating mesh
(LRF approach) discussed in the next subsection.

6.1.2. Main aspects of the CFD and MBD setups
Regarding the general setup of the CFD simulation, in addition to the quantities in tab.6.1, the flow
conditions and airfoil geometric properties employed for this investigation are the same as those in
tab.4.1 employed to the assess the CFD setup. These flow conditions lead to a flow pass time of 0.0132s
covered in about 14 or 7 coupling iterations. Besides, the size of the SimVol, the chord length and the
fine resolution employed (512 voxels per chord) lead to a value for the internal PowerFLOWR© timestep
∆tf = 1.5 · 10−6s. This means that, given the two coupling timesteps considered (∆T = 0.002s and
∆T = 0.001s), the subcyling factors of the fluid phase are equal to nsc,f = ∆T /∆tf = 1340 and 670
respectively.

Focusing on the expressions for the angular velocity employed to move the sliding mesh LRF dur-
ing the CFD simulation, the same expression shown in eq.4.1 is employed to get a co-sinusoidal pitch
oscillation. This returns the desired initial value of the AoA α0 shown in tab.6.1 for each test case and
minimizes spurious oscillations in the lift signal due to the start-up of the rotating mesh, as explained in
sec.4.1.4. The only difference is that the α̇(t) expression needs to be time-shifted because the LRF starts
to move not at t = 0, but at tcvg, namely the time at which the initial CFD transient is over, which is
related to the convergence of the aerodynamic force to the prescribed tolerance, as already mentioned
in sec.5.4.3. This leads to the following expression for the LRF angular velocity, with tcvg as a variable
imported from the "PFin_<tot_it>.txt" input table.

α̇(t) = −Aα sin
(
ωα(t− tcvg)

)
(6.1)

Concerning the wall-velocity BC in the CFD solver, always as mentioned in sec.5.4.3, when the initial
transient is still active, its value is set to t1ḣ0, with ḣ0 = 0 as the initial condition for the plunge
velocity specified in the "cpl_setup.txt" input table. Besides, as already discussed in sec.4.5, t1 is the
tuning coefficient of the method computed for the same conditions as those in this 1 DoF version of
the coupling. On the other hand, when the aeroelastic coupling is active, the wall-velocity is set to
the constant value t1ḣn applied to the CFD simulation for the whole duration of the coupling iteration
from tn to tn+1. The value ḣn is extracted from the SimpackR© simulation at the previous iteration and
provided always by the "PFin_<tot_it>.txt" input table.

To check the convergence of the only lift signal considered for this version of the coupling, which is
necessary to determine the completion of the PowerFLOWR© initial transient, it is necessary to prescribe
the values of a few parameters required to by the functions in the "InitTransChecker" library (see the
appendix sec.D.4.2) implementing such a check. These parameters are a lift tolerance of 1% the average
lift signal in the current sliding window and a sliding window equal to 15 iterations, as explained in
sec.5.4.1. This means that for the first 15 total iterations of the process, the convergence check is not
performed and it takes around 50 additional iterations (0.05s of simulated time) for test cases #1 and
#3 and 70 (0.14s of simulated time) for test cases #2 and #4 to reach the convergence and start the
true coupling with SimpackR©. The choice of a tolerance equal to 1% the average lift value is motivated
by the fact that it is reasonable to expect a weakly varying force signal returned by the intrinsically
unsteady PowerFLOWR© simulation for the initial α0 conditions considered, due to the attached and
incompressible flow conditions.

Finally, the setup of the MBD simulation for this problem is very similar to the one employed in
sec.5.3.1 for the coupling demonstrator. The only differences are in the value of the flat-plate chord
(c = 0.46m) and in the formulas modelling the pitch motion. The latter need to be set according to
the resulting AoA motion in the CFD simulation, given the fact that this quantity has an effect on
the aeroelastic behaviour of the system considered. Therefore, the pitching motion Expressions for the
position, velocity and acceleration components of the Excitation to apply to the User Defined Joint type
are:

α(t) = Aα cos
(
ωα(ts + tn)

)
; α̇(t) = −Aαωα sin

(
ωα(ts + tn)

)
; α̈(t) = −Aαω2

α cos
(
ωα(ts + tn)

)
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where ts is the time of the n-th SimpackR© simulation spanning the interval [0:∆T ] and tn = n∆T is the
global simulation time at the iteration n imported into the MBD simulation by means of the "Spck.subvar"
input file.

6.1.3. Aeroelastic analytical reference solution
The reference aeroelastic solution employed in the validation of the four test cases of this investigation
is obtained by using a formulation similar to the one described in sec.5.3.1. The main difference is in the
expression of the circulatory lift term, which in this case corresponds to the one provided by the original
hybrid time-frequency domain Theodorsen model. This leads to the following EoM:(

m+ πρb2
)
ḧ+ 2πρU∞bC(kp)ḣ+ khh =

= −
[
mxGα̈(t) + khxEα(t)

]
︸ ︷︷ ︸

p−term

−
[
πρb2

b

2 α̈(t) + πρb2U∞α̇(t)
]

︸ ︷︷ ︸
L

(α)
nc −term

−
[
2πρU∞bC(ka)bα̇+ 2πρU∞bC(ka)U∞α

]
︸ ︷︷ ︸

L
(α)
c −term

where the lhs term contains all the unknown structural and aerodynamic terms dependent on the plunge
kinematic states, whereas the rhs is filled with all known quantities, due to the prescribed pitch motion
α(t). On the rhs term, terms are grouped into three major terms in order to relate this formulation
to the one in sec.5.3.1, namely the structural p − term, the pitch-dependent non-circulatory lift L(α)

nc −
term and the pitch-dependent circulatory lift L(α)

c − term. Furthermore, by applying the superposition
principle allowed by the linearity of the Theodorsen theory, all the C(k)-dependent terms are evaluated
by employing the plunge reduced frequency kp when these are related to a plunge state, while, in the
case of pitch-related terms, the pitch reduced frequency ka is used. The values for kp and ka reported
in tab.6.1 are chosen as very close1 to the target values of reduced frequency (k = 0.11 and k = 0.22)
employed in the CFD setup verification activity to tune the wall-velocity approach.

6.1.4. Results
Before comparing the results of the coupling with those of the numerical reference solution discretizing
the analytical model previously described, it is once again important to define the main possible sources
of mismatch and, based on them, what kind of comparison should be expected. As the aeroelastic
variables returned by this investigation result from a FSI coupling between a CFD solver and a MBD
tool, the identification of all the possible sources of mismatch is related to the combination of those due
to the prediction of the aerodynamic forces, those due to the computation of the kinematic states and
those related to the FSI algorithm employed to couple the fluid and structural domains.

• As discussed in ch.4, the different assumptions in the modelling of the flow physics made by
the theories behind the LBM and the Theodorsen model lead to rather distinct mathematical
formulations of the flow dynamic behaviour, which are also discretized with dedicated methods.
These differences are substantial, but they are not expected to play a major role, given the lowMa
and high Re number flow conditions, as well as the small amplitude of motions considered (inviscid
flow assumption is acceptable), which allow to use the simplified Theodorsen model as a reliable
reference for validating the CFD results. On the other hand, the fact that the airfoil plunging
motion is reproduced in the CFD solver by flow blowing/suction and not by a truly translating
geometry is a significant source of mismatch, especially for large and fast motions combined with
the uncertainties introduced by a manual tuning of the method. Therefore, a relevant contribution
to the global mismatch in the aeroelastic variables comes from the CFD solver, and in particular
from the method employed to handle the airfoil plunging motion.

• In the case of the MBD solver, as pointed out in sec.3.4, the physical and mathematical formulations
of the problem are similar between the reference solution and SimpackR©, with potential mismatches
only in the details and tuning of the MBD simulation setup and in the implementation of the time
integration algorithm of the solver. It can be stated, however, that the previous aspects have a

1However sufficiently separated to avoid the structure resonance of the airfoil, with the latter caused by a frequency of
the forcing pitch motion too close to the characteristic one of the system. This explains also the oscillatory nature of the
results obtained.
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Figure 6.1: Time-histories of the plunge velocity ḣ (right) scaled by U∞ = 34.7223m/s and lift coefficient cl (left) (ρ =
1.1766kg/m3, c = 0.46m same U∞) for the first test case #1 of the 1 DoF PowerFLOWR©-SimpackR© coupling with LRF
(red line) and analytical reference (black squares).

negligible effect, given the perfect match obtained. Therefore, the MBD solver has a very little, if
not negligible, influence on the mismatch of the variables here considered.

• Regarding the FSI algorithm, the coupling timestep sensitivity analysis carried out in sec.5.3.1
on the same aeroelastic problem here considered, shows that, as long as the coupling timestep is
sufficiently small (around 200 fraction of the characteristic pitching motion period), the influence
on the results of the first-order accurate explicit scheme can be considered as very small.

Consequently, it could be argued that a mismatch between the coupling solution and the reference
numerical one is expected for this investigation, moreover this can be attributed primarily to mismatches
in the prediction of the aerodynamic forces made by the CFD solver.
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Figure 6.2: Time-histories of the plunge velocity ḣ (right) scaled by U∞ = 34.7223m/s and lift coefficient cl (left) (ρ =
1.1766kg/m3, c = 0.46m same U∞) for the second test case #2 of the 1 DoF PowerFLOWR©-SimpackR© coupling with LRF
(red line) and analytical reference (black squares).

The results of this version of the PowerFLOWR©-SimpackR© coupling (red lines) compared against the
reference numerical solution based on the original Theodorsen model (black dots) can be visualized in
fig.6.1 for test case #1, fig.6.2 for test case #2, fig.6.3 for test case #3 and fig.6.4 for test case #4,
where the aeroelastic variables considered are the plunge velocity (as this is the quantity required by
the CFD solver for the transpiration velocity) and the lift signal; the other kinematic plunge states can
be found in the appendix fig.F.10, fig.F.11, fig.F.12 and fig.F.13. Globally, the previously mentioned
quantities, for the four test cases considered, are predicted with a good level of accuracy when it comes
to the phase error, especially the plunge velocity, during the whole time-range considered. However, an

84



increasing phase mismatch can mainly be noticed in the lift coefficient, which becomes more clear in
fig.6.3 and fig.6.4 close to the end on the response. This is consistent with what observed in sec.4.5 for
the lift coefficient, where the wall-velocity BC method always returns a phase mismatch compared with
the Theodorsen solution under the same input harmonic plunge oscillation and for the same values of
reduced frequency considered in the coupling. Moreover, also in this case the phase mismatch is larger
for the largest value of reduced frequency and can be considered as a limitation of the approach.
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Figure 6.3: Time-histories of the plunge velocity ḣ (right) scaled by U∞ = 34.7223m/s and lift coefficient cl (left) (ρ =
1.1766kg/m3, c = 0.46m same U∞) for the third test case #3 of the 1 DoF PowerFLOWR©-SimpackR© coupling with LRF
(red line) and analytical reference (black squares).

When it comes to the amplitude mismatch in the coupling results, this is quite apparent on both
the lift and plunge kinematic states and for all the values of pitch amplitude and reduced frequencies
employed. It can be noticed that for t < 2Tα all the aeroelastic variables are well predicted, but after
this time, an amplitude underprediction starts to become more and more visible. Furthermore, a closer
look reveals that when the amplitude of the response is growing, also the amplitude mismatch increases,
whereas, when the response reaches a statistically converged condition, then the mismatch stays constant,
with the exception of the lift signal in fig.6.1 and fig.6.3, where the amplitude mismatch still grows for
a response decreasing in amplitude. In general, it could be argued that the low frequency cases match
better the reference than the high frequency ones, that the effect of amplitude increase does not seem to
noticeably affect the results, and that the plunge states have a larger mismatch (up to 40% the maximum
values reached by the reference solution in the test cases #2 and #4) than the lift coefficient, where the
maximum discrepancy of the latter does not exceed 15% in all the test cases.
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Figure 6.4: Time-histories of the plunge velocity ḣ (right) scaled by U∞ = 34.7223m/s and lift coefficient cl (left) (ρ =
1.1766kg/m3, c = 0.46m same U∞) for the fourth #4 and last test case of the 1 DoF PowerFLOWR©-SimpackR© coupling
with LRF (red line) and analytical reference (black squares).
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The amplitude underprediction of the lift signal, might be explained by considering the results of
the aerodynamic setup verification activity for the transpiration velocity method in sec.4.5 and the LRF
sliding mesh approach in sec.4.4 over the whole range of Aα and reduced frequency values considered in
the test cases of this coupling. In both investigations, an underprediction of the maximum and minimum
lift values is observed in the lift coefficient returned by the CFD solution with respect to the Theodorsen
model, with a much smaller underprediction for the LRF sliding mesh approach (due to a non optimal
CFD setup) than the one due to the transpiration velocity (due to the method itself and its tuning).
Nevertheless, the amplitude mismatch observed in the coupling lift is significantly larger than the one in
the lift signals due to prescribed pitching and plunging motions, and this might be caused by the free
plunge motion resulting from the fluid-structure interaction, which is significantly underpredicted in the
coupling.

Regarding the relevant amplitude mismatch in the plunge kinematic states, it could be argued that
its origin might be due to the aeroelastic reference. The choice to employ the original Theodorsen model
has been done as both the time-domain approximations by means of the convolution integral and lag-
states methods have led to a much larger mismatch. Even though the employment of the the hybrid
time-frequency Theodorsen formulation to compute the time evolution of aeroelastic quantities might be
questionable and formally inappropriate2, in this investigation it has been the only one getting sufficiently
close to the coupling results, and for this reason selected as reference solution. The much larger mismatch
obtained with the time-domain approximate versions of the Theodorsen model is not shown here for the
sake of brevity, but it might be due to errors in the implementation or in the analytical derivation of
the 1 DoF airfoil problem with prescribed pitch motion, and it has not been possible to spot even after
a long time spent in debugging the code and checking the mathematical derivation. For this reason, it
is difficult to judge the degree of accuracy of this 1 DOF coupling with respect to a reference numerical
solution based on analytical models, as the reference solution itself might not be completely trusted. At
this point, the results of the 1 DoF version modelled by body forces could help in formulating a final
assessment.

6.2. 1DoF coupling with pitch motion modelled by body forces
The second version of the coupling consists in the 1 DOF problem with pitch motion modelled by body
forces according to the setup and methodology described in sec.2.2.2 and sec.4.1.4. To verify the results
of this coupling variant, the results from the previous investigation (1 DoF coupling with pitch motion
modelled by sliding-mesh) are here employed as reference solution. This means that the same parameters
employed in the four previous test cases are also here exploited, in addition to the coefficients related to
the amplitude modulation and phase shift of the body force approach.

6.2.1. Differences with respect to the LRF coupling version
The main and only difference is in the CFD setup is related to the employment of body forces to model
the airfoil pitching motion. With this approach, the initial condition for the AoA, differently from the
α0 values shown in tab.6.1, is set to zero for all the four test cases, because the body force approach
does not introduce any physical movement of the airfoil3. Besides, the virtual AoA oscillation, that
the body force method returns, already provides the same zero-mean lift signal returned by the LRF
approach. This can be obtained by employing the same pitch angular velocity expression used for the
LRF approach (eq.6.1), in addition to the tuning coefficients ξ1 and ξ2 computed in sec.4.6 to match the
LRF lift from a prescribed pitching rotation and reported in tab.4.7. Therefore, the expressions for the
amplitude modulated and phase shifted pitch velocity and acceleration are analogous to those in eq.4.3,
with a minor difference to take into account the time-shift due to the initial transient:

˙̃φ(t) = −ξ1Aαωα sin
[
ωα
(
t̃− ξ2Tα

)]
; ¨̃φ(t) = −ξ1Aαω2

α cos
[
ωα
(
t̃− ξ2Tα

)]
(6.2)

2As shown in sec.6.1.3, Theodorsen function C(kp) in the 2πρU∞bC(kp)ḣ term might have been evaluated for a value of
the plunge reduced frequency which is not exactly the one occurring in the plunge response, due to the interaction with
the pitching motion which has a slightly different value (ka). Moreover, the employment of the hybrid time-frequency
formulation in a time-domain EoM might lead to an incorrect evaluation of the wake-memory effect, as the one of an
airfoil periodically moving for an infinite time and not starting from an initial condition.

3In the body force approach, if a non-zero rotation of the "freestream_csys" is applied, then the virtual airfoil pitching will
be around a non-zero AoA.
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where t̃ = t − tcvg is the shifted time employed to start the pitch motion at the time instant when the
initial transient is over. However, since no initial condition is set for the AoA set during the CFD initial
transient (no rotation of the "freestream_csys"), the convergence check is disabled and the coupling is
started after a number of iterations (15) corresponding to the same window size used for the LRF version
of the 1 DoF coupling.

6.2.2. Results
In this investigation, the results of the previous 1 DoF coupling with pitch-LRF approach (reference
solution here) are compared with those of the same 1 DoF coupling with pitch-body-force approach,
therefore, the only source of mismatch between the two solutions is related to the body force approach,
with the already observed limitations in terms of amplitude and reduced frequency of motion (see sec.4.6),
as well as uncertainties due to the manual tuning procedure. Being said this, the results of such a
PowerFLOWR©-SimpackR© coupling in its 1 DoF version with pitch motion modelled by the body-force
method are shown for the plunge velocity and lift coefficient time-histories in fig.6.5 for test case #1,
fig.6.6 for test case #2, in fig.6.7 for test case #3 and finally in fig.6.8 for test case #4. The same
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Figure 6.5: Time-histories of the plunge velocity ḣ (right) scaled by U∞ = 34.7223m/s and lift coefficient cl (left) (ρ =
1.1766kg/m3, c = 0.46m same U∞) for the first #1 test case of the 1 DoF PowerFLOWR©-SimpackR© coupling with pitch
body-forces (red line) and the coupling with pitch-LRF (blue line).

comparison for the plunge position and acceleration is shown in the appendix fig.fig.F.14, fig.F.15, fig.F.16
and fig.F.17 for the same test cases. In all these figures, the blue lines are the reference coupling solutions
with LRF and the red lines are related to the body-force couplings.

What is quite apparent from all the results obtained for this investigation, is that there is a much
smaller discrepancy between the two coupling versions than between the LRF-coupling and the reference
numerical solution based on the hybrid time-frequency domain Theodorsen model. Besides, a closer look
reveals that the lift response of the body-force coupling is reproduced with a good level of accuracy with
respect to the LRF coupling approach in all the four test cases. Such a lift prediction of the body force
method becomes very accurate for the test cases with the lowest pitch amplitude, while a small over-
prediction of the oscillation peaks for the test cases with Aα = 2◦ is observed, in addition to a different
shape of the oscillation wave with a less rounded crest in the case of test case #4. These observations
can be related to what noticed in sec.4.6 in the case of prescribed motion, where a small overestimation
of clmax due to tuning inaccuracies and changes in the shape of the hysteresis loops are observed for the
Aα = 2◦-k= 0.11 and Aα = 2◦-k= 0.22 testing conditions. Furthermore, in the very first time instants
of the response, the mismatch between the LRF-coupling and the body-force coupling lift signals is
related to the different way the two methods model the initial value of the AoA. On the one hand, the
LRF-coupling provides a cl0 6= 0 value corresponding to a non-zero initial condition (α0 = −Aα) for the
AoA modelled by a rotation of the "freestream_csys" during the CFD initial transient. On the other
hand, the body-force-coupling returns a cl0 ≈ 0 value, as there is no initial AoA condition (α0 = 0).
However, given the same expressions for the pitch velocity and acceleration, when the the body forces
are switch-on, the two lift curves get very quickly (in much less than a Tα time) almost one on top of
the other and behave almost identically.
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Figure 6.6: Time-histories of the plunge velocity ḣ (right) scaled by U∞ = 34.7223m/s and lift coefficient cl (left) (ρ =
1.1766kg/m3, c = 0.46m same U∞) for the second #2 test case of the 1 DoF PowerFLOWR©-SimpackR© coupling with pitch
body-forces (red line) and the coupling with pitch-LRF (blue line).
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Figure 6.7: Time-histories of the plunge velocity ḣ (right) scaled by U∞ = 34.7223m/s and lift coefficient cl (left) (ρ =
1.1766kg/m3, c = 0.46m same U∞) for the third #3 test case of the 1 DoF PowerFLOWR©-SimpackR© coupling with pitch
body-forces (red line) and the coupling with pitch-LRF (blue line).

Regarding the kinematic plunge states, the different lift initial value leads to a different behaviour of
the plunge kinematic states in the first part of the solution (t < 4Tα) and in all the four test cases. In the
test cases related to the smallest reduced frequency, the larger cl0 of the LRF-coupling, leads to larger
values for the plunge velocity for this version of the 1 DoF coupling, while in test cases #2 and #4, the
body-force version returns larger plunge velocity values and a smaller amplitude mismatch with the LRF
solution. Besides, in test case #1, after such an amplitude mismatch in the first 5 periods of oscillation,
the coupling solutions are on top of each other, when a statistically-converged condition in the plunge
velocity is reached. This does not occur for the other three test cases, with the amplitude mismatch of
tests #3 and #4 most likely due to the lift amplitude overestimation, while the plunge velocity amplitude
mismatch of test #2 is difficult to justify given the very good amplitude-match between the corresponding
lift signals.

All in all, it is possible to conclude that the coupling with the body force method for the pitching
motion is able to give similar predictions of the aerodynamic and kinematic plunge states returned by the
coupling with the LRF sliding mesh approach. This is observed on a 1 DoF aeroelastic airfoil problem
where only the lift signal triggers the aeroelastic response in the plunge motion. If the results of this
body force version of the coupling are related to those of the LRF version, as the two results are very
close, it might be argued that the PowerFLOWR©-SimpackR© coupling on a 1 DoF aeroelastic airfoil
problem can lead to more accurate and realistic results than those returned by the reference analytical
model employed for its validation. This is because it is not completely possible to trust the results
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Figure 6.8: Time-histories of the plunge velocity ḣ (right) scaled by U∞ = 34.7223m/s and lift coefficient cl (left) (ρ =
1.1766kg/m3, c = 0.46m same U∞) for the fourth #4 and last test case of the 1 DoF PowerFLOWR©-SimpackR© coupling
with pitch body-forces (red line) and the coupling with pitch-LRF (blue line).

of the analytical model, given the theoretically inappropriate use of the hybrid time-frequency domain
formulation of the Theodorsen model in a time-domain EoM, or the potential presence of errors in the
implementation or derivation of the reference solution which it has not been possible to spot.

6.3. 2 DoFs coupling
6.3.1. General aspects, testing conditions and setup
Problem definition
As already mentioned, the third and final version of the PowerFLOWR©-SimpackR© coupling consists in a
2 DoFs aeroelastic problem with lumped structural parameters involving a pitching and plunging airfoil.
The free response of this body is triggered by an initial impulsive perturbation of the plunge velocity.
Once again, this is the same problem considered in ch.3 to verify the SimpackR© setup and in sec.5.3.2 to
test the coupling demonstrator.

Goal of the investigation
The main goal of this investigation is to assess the accuracy of the coupling methodology in predicting
the time-histories of the kinematic states and aerodynamic forces returned by the aeroelastic system
for conditions above, below and in the neighbourhood of its flutter boundary. This leads to four tests
conditions corresponding to free-stream velocity values equal to fractions of the flutter velocity Uflt.
For the below and above-flutter test cases #1 and #2, the inflow velocities 0.9Uflt and 1.1Uflt are
respectively considered. Regarding the neighbourhood of the flutter boundary, test condition #3 is set
to U∞ = 0.99Uflt, while test case #4 is related to U∞ = 1.01Uflt. The goal of the last two simulations is,
therefore, to verify weather or not the flutter velocity of the system can be predicted with a 1% accuracy
level.

Reference solution
The reference value of the flutter velocity of the system is obtained by employing the V-g method, whose
derivation for the 2 DoFs airfoil problem considered is shown in the appendix ch.E. The V-g method
is employed in this investigation as it allows to compute the flutter boundary of an analytical system
by directly employing the Theodorsen model in its original hybrid time-frequency domain formulation.
Alternatively, a procedure similar to the one employed in sec.3.1.4 - which is based on the calculation
of the eigenvalues for the aerodynamic lag-states approximation method of the Theodorsen model -
can also be employed. The two methods are expected to give similar results, however the V-g one is
more accurate, as it considers all the infinite number of aerodynamic lag-states related to the wake
induction effect. Concerning the reference solution for the time-histories of the aeroelastic variables -
shown in fig.6.9, fig.6.11, fig.6.13 and fig.6.14 by means of black dots for the sake of comparison with
coupling solution (red line) - is based on the Theodorsen model under its time-domain approximation by
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means of the lag-states method derived in the appendix sec.B.4. Such approximated analytical unsteady
aerodynamic model is coupled with the EoMs for the structural side of the system, as shown in sec.3.1.3.
Finally, this analytical model is solved numerically by means of the Crank-Nicolson method for a timestep
value (0.0001s) leading to a converged discrete solution, as discussed in sec.3.2.2.

Testing conditions
Regarding the geometric and structural conditions for the system considered in the four test cases men-
tioned before, their values can be found in tab.6.2. These dimensional values are obtained by employing
the dimensionless quantities in tab.6.3 and by exploiting the dimensionalization relations shown in the
appendix ch.C, where the latter are obtained directly from the definitions of the dimensionless quantities
in tab.6.3 reported in eq.3.9. However, differently from the MBD setup verification activity in ch.3, in
this investigation different values for the the airfoil chord (c = 0.46m), pitch angular reduced frequency
(ωα = 35rad/s) and free-stream fluid-flow density (ρ = 1.1766kg/m3) are employed. These values are
also consistent with the CFD setup verification activity in ch.4 and the flow conditions employed in
the 1 DoF versions of the coupling. Besides, the employment of a large value of ωα allows to keep
the global duration of the aeroelastic response in the order of 1s, significantly reducing the simulation
time. After defining the testing conditions for this investigation, a dimensionless value of ḣ = 0.01

Parameter Symbol Value Unit
Airfoil semi-chord b 0.23 [m]
Aerodynamic center xA 0.0 [m]

Mass center xG 0.115 [m]
Elastic center xE 0.023 [m]

Mass m 27.38 [kg]
Moment of inertia JE 0.36 [kg·m]
Translation stiffness kh 21462.41 [N/m2]
Rotation stiffness kω 443.50 [N/m/rad]

Table 6.2: Values of the dimensional geometric and structural parameters
employed for the 2 DoFs PowerFLOWR©-SimpackR© coupling.

Symbol Value
rα 0.5
a 70.0
Ω 0.8
ξA 0.0
ξG 0.5
ξE 0.1

Table 6.3: Values of the dimensionless geo-
metric and structural quantities employed
to derive the dimensional problem param-
eters in tab.6.2.

for the initial plunge-velocity perturbation is applied to the reference solution. Its corresponding di-
mensional value ḣO = 0.01bωα = −0.0805m/s4 is applied to both the SimpackR© and PowerFLOWR©

setups. Regarding the flutter velocity, under the parameters above defined for the problem investigated,
the V-g method returns a dimensionless value Û = 5.1695, which in dimensional terms translates to
U∞ = 5.1695bωα = 41.6145m/s.

Coupling timestep
When it comes to the coupling methodology, the first aspect to take into account is the coupling timestep
∆T of the underlying explicit FSI algorithm employed. Concerning this 2 DoFs version, a timestep
analysis is carried out for the first test case at U∞ = 0.9Uflt by considering three values for ∆T , namely
∆T = 0.002s, ∆T = 0.001s and ∆T = 0.0005s, corresponding to 90, 180 and 360 fractions of pitch period
Tα = 2π/ωα = 0.1795s. Initially, also an even smaller value ∆T = 0.0001s has been considered for a
short simulation duration (40% the one of the other three previous simulations), but the simulation has
not been completed due to the negligible improvement of results (the mismatches visible and discussed in
sec.6.3.2 and sec.6.3.3 have not improved with this even smaller coupling timestep) and the much larger
computational cost. The outcome of this investigation - the time-history plots of the aeroelastic variables
for changing coupling timestep are not shown for the sake of brevity - is that the smallest timestep value
is able to return the best prediction of the time responses of the aeroelastic variables, in particular by
reducing the amplitude mismatch at the oscillation peaks. Therefore, in all the test cases, the coupling
solutions are obtained with ∆T = 0.0005s (Tα/∆T = 380).

CFD initial transient handling
Another aspect is the handing of the initial transient of the PowerFLOWR© simulation. For the 2 DoFs
coupling, the force-signal convergence check is applied also to the aerodynamic moment. The convergence
4The minus sign is due to the different orientation of the y-axis between the reference frames of the CFD/MBD (positive
upwards) computational domain and of the analytical solution (positive downwards).
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criterion employs the same window size of 15 coupling iterations and scaled tolerance of 1% the average
value of each force signal in its last window, similarly as for the 1 DoF pitch-LRF coupling version.
Besides, the convergence of at least one force signal between the lift and the aerodynamic moment is
considered and not the convergence of both signals, with a significantly larger error for the moment (from
0.4 to 1.5 times its average value). This has been done as it is much easier to get a better convergence
quality of the lift signal with a reasonable amount of iterations (around 120 for test cases #1, #3 and
#4 while "only" 83 for test #2). Furthermore, in all the test cases, the converged moment signal is
much smaller (two orders of magnitude) than the converged lift one, thus the intrinsic oscillations of
the PowerFLOWR© solution are much more amplified, and it might not even be possible to satisfy such
a small tolerance over the whole simulation duration. Alternatively, a less strict tolerance - say 10% or
even 50% - can be considered, but this requires more iterations and might also lead to a less accurate
lift signal than the one here obtained. Finally, to require an error for the converged moment below 1%
might not even be necessary, since reasonably accurate predictions of the plunge states and cm can still
be reached even with poorly converged initial moment values, as fig.6.9, fig.6.11, fig.6.13 and fig.6.14
show.

PowerFLOWR© setup
In the case of the fluid block of the coupling, the PowerFLOWR© simulation features the same resolution
(fine 512 voxels per chord) and internal timestep (∆tf = 1.494 · 10−6s) as in the 1 DoF variants. One
difference is in the value of the fluid subcycling factor (nsc,f = 335) for the target coupling timestep. As
already discussed in sec.5.4.3, the modelling of the pitch motion by means of the LRF approach requires
one (constant) value α̇n from the MBD simulation for the angular velocity of the sliding mesh to be
applied for the whole duration of a generic coupling iteration n, leading to a linear variation of the airfoil
pitch angle (or AoA for this problem). Similarly, the modelling of the plunge motion relies on the wall-
velocity BC by means of the ḣn plunge velocity value from SimpackR© corrected by the tuning coefficient
t1, obtaining also here a linear change for the plunge position. The value of the tuning coefficient is set
to t1 = 0.72 for all the four test cases given the range of plunge reduced frequency kp shown in tab.6.4
and according to the results of sec.4.5. Besides, as discussed in sec.5.4.3, both α̇n and ḣn are extracted
from the SimpackR© simulation via the "PFin_<tot_it>.txt" input table and, to account for the initial
transient mode of the simulation, the initial conditions α̇n = 0rad/s and ḣn = ḣO are prescribed until
the lift signal reaches convergence, as described in the previous paragraph. Coming back to the testing

#1 #2 #3 #4
Ma 0.1079 0.1318 0.1187 0.1210
Re 1.0981·106 1.3422·106 1.2080·106 1.2324·106

U∞ [m/s] 37.4529 45.7757 41.1981 42.0304
Flow-pass time [s] 0.0123 0.0100 0.0112 0.0109

ka 0.2149 0.1759 0.1954 0.1915
kp 0.1719 0.1407 0.1563 0.1532

Table 6.4: Values of the dimensional aerodynamic parameters employed in the four test cases considered in the 2 DoFs
version of the PowerFLOWR©-SimpackR© coupling, with ka = ωαb/U∞ and kp = ωhb/U∞ (ωh = Ωωα).

conditions, each one of them differs just in terms of flow-related quantities, as the structural and geometric
parameters (see tab.6.2) define a unique system with a specific flutter boundary behaviour. Therefore, to
capture the different system response for conditions above, below or in the neighbourhood of the flutter
velocity, the only parameter that is changed in the PowerFLOWR© setup is the Mach number, leading
to the variations of Re number and flow velocity shown in tab.6.4. These aerodynamic conditions are
still close to the Re = 106 and Ma = 0.1 values employed in ch.4 for the verification of the CFD setup
and within the range of applicability of the Theodorsen theory, as long as the flow stays attached for the
NACA 0003 airfoil.

SimpackR© Setup
The last aspects to discuss is the setup of the SimpackR© MBD simulation, which is essentially the same
as the one discussed in sec.3.3 for the SimpackR© verification activity in the case of the Theodorsen
aerodynamic model and in sec.5.3.2 for the 2 DoFs test case of the coupling demonstrator. Regarding
the values of the geometric and structural parameters, these are the same as those shown in tab.6.2, the
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only difference is in the units which take into account the 3D geometry of the simulation by employing a
1m span-wise length for the flat plate Primitive representing the airfoil. The employment of the LSODE
adaptive time-step integrator leads to a structural subcycling factor nsc,s = ∆T /∆ts in the order of 1
with an internal structural time-step ∆ts >> ∆tf . The internal ∆ts is automatically determined by the
solver given coupling time-step duration, problem parameters and numerical aspects, and can change
during the simulation depending on the properties of the solution.

6.3.2. Above and below-flutter conditions
Before discussing the results of this 2 DoFs coupling, the same considerations made in sec.6.1.4 regarding
the main possible sources of mismatch between the reference and the coupling solutions (fluid and MBD
models/setups, as well as FSI algorithm) can also be applied in this investigation. In addition, for this
type of problem, the reference solution is based on the lag-states method of the Theodorsen model and,
for this reason, it is expected to provide a better representation of wake-memory effect than the one given
by the hybrid time-frequency original Theodorsen formulation applied to a time-domain EoM, as done
in the 1 DoF coupling. This means that this reference solution can be considered as more trustworthy
and, therefore, the expected mismatches with the coupling solution can be essentially attributed to the
methods employed in the CDF solver to compute the aerodynamic forces due to the airfoil pitching and
plunging motion, in particular limitations of these methods and tuning inaccuracies.
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Figure 6.9: Dimensionless time-histories of the kinematic and aerodynamic quantities obtained by the 2 DoFs
PowerFLOWR©-SimpackR© coupling with LRF (red line) against the reference analytical solution (black squares) for an
inflow condition U∞ = 0.9Uflt and coupling timestep 0.0005s.

The results (time-histories of the pitch/plunge velocity as well as lift and aerodynamic moment) of
test #1 related to a condition below the flutter velocity of the system (namely U∞ = 90%Uflt) are shown
in fig.6.9, while the same for a condition above flutter (U∞ = 110%Uflt) can be found in fig.6.11. The
time-histories of the other kinematic states (plunge/pitch position and acceleration) can be found in the
appendix fig.F.18 and fig.F.19 for the two respective testing conditions. In both test cases, the duration
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of the two aeroelastic fully-coupled simulations is set to 7 periods of pitch motion, which corresponds to
7Tα = 1.2566s. The results for test #1 are obtained considering values of pitch ka and plunge kp reduced
frequencies (shown in tab.6.4) well matching also with the aerodynamic results of the PowerFLOWR©

setup verification activity shown in ch.4 for the LRF and the wall-velocity investigations. On the other
hand, the results of test #2 cover smaller values of ka and kp, which are not simulated in ch.4. However,
the very small variation of t1 with the pitch kp and the similar behaviour of the pitch-LRF airload for
changing Aα and kα show that this is not a relevant issue, as it does not affect the kinematic results
significantly when displacements are small.

Figure 6.10: Time-histories of the aerodynamic moment (left pictures) and total energy of the structure (right pictures),
as well as flow-field snapshots for four time instants of the U∞ = 0.9Uflt test case.

By considering the aeroelastic results for test #1 in fig.6.9, it is possible to state that the coupling
solution shows an overall good agreement with the reference numerical solution, with only minor devia-
tions in areas (especially in the plunge states and cm), where the characteristic time-scale of the response
gets significantly smaller than the pitch period Tα = 0.1795s. This could be explained by the fact that
it is difficult to reproduce plunge oscillations faster than a flow-pass time with the wall-velocity method,
since the wall velocity applied over the whole body surface is characterized by an intrinsic memory ef-
fect that lasts on the airfoil for at least a flow-pass time. This might be an intrinsic limitation of the
PowerFLOWR© setup in the description of the airfoil plunging motion, which might restrict the applica-
bility of the coupling methodology to rapidly changing oscillations. Furthermore, the occurrence of this
phenomenon also in the pitch states (although less frequent) might be due to both the structural cou-
pling between inertia and elastic forces, due to the presence of distinct mass and elastic centers, and the
energy transfer between the pitch and plunge motions due the fluid-structure interaction in the vicinity
of the flutter boundary for this 2 DoFs problem. Finally, the fact that a condition below and close to the
flutter velocity is simulated explains why the plunge states, after an initial transient, reach a periodic
damped motion well captured by the coupling methodology both in amplitude and phase. Therefore, it
is possible to argue that the coupling methodology can predict with a good level of accuracy the time
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response of a 2 DoFs aeroelastic airfoil system close and below a flutter condition.
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Figure 6.11: Dimensionless time-histories of the kinematic and aerodynamic quantities obtained by the 2 DoFs
PowerFLOWR©-SimpackR© coupling with LRF (red line) against the reference analytical solution (black squares) for an
inflow condition U∞ = 1.1Uflt and coupling timestep 0.0005s.

Always in the case of test #1, a few snapshots of the flow field (obtained with the Simulia PowerVIZR©

post-processing tool) close to the airfoil are shown in fig.6.10 in addition to the aerodynamic moment
coefficient and the total energy of the structure, with the latter defined as the sum of the potential and
kinetic energy of the 2 DoFs system shown in eq.3.4 and eq.3.3 respectively, returned by the FSI coupled
simulation. The time instants at which the flow field visualizations are referred are marked on the
total-energy and cm plots by a blue cursor and are related to a condition during the transient part of the
response (top figures), a condition at the beginning of the smooth converging oscillations (middle figures)
and one at the end of the response (bottom figures). All the three flow field visualizations snapshots look
very similar, with a clear attached flow, a very thin boundary layer and a smooth wake, because of the
small amplitude conditions related to such a below flutter condition. Therefore, the system is expected
to return to its initial state after an initial transient and damped oscillations, as the total energy plots
clearly show.

Regarding the results of test #2 in fig.6.11, a good match between the reference and the coupling
solution can be found as long as the magnitude of displacements is small, say α̇ < 0.05rad and ḣ/U∞ <
0.002. When the pitch motion reaches AoA above 0.05rad (3◦) and the chord-scaled plunge-motion
amplitudes is beyond 0.005 at t ≈ 3Tα, discrepancies start to appear and these get larger and larger as
the amplitude of motions increases. This does not necessarily mean that the coupling methodology gets
inaccurate for large displacements, as the assumptions of both the Theodorsen model (attached flows and
negligible viscous effects) and the structural system (linearization of the EoMs for small displacements)
are no longer compatible under these conditions, leading to a loss of validity for the reference solution.
Therefore, the coupling solution can be considered as more accurate in predicting the behaviour of the
system for large displacements, given the more likely better prediction of the flow dynamics returned
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Figure 6.12: Time-histories of the aerodynamic moment (left pictures) and total energy of the structure (right pictures),
as well as flow-field snapshots for four time instants of the U∞ = 1.1Uflt test case.

by PowerFLOWR© compared to the Theodorsen model when the flow behaviour starts to get affected by
viscous phenomena.

Given the previous consideration, the flow-field visualizations of the CFD simulation in fig.6.12 can
be considered to explain the physical phenomena that the Theodorsen model can not account for, and
that play a crucial role in the aeroelastic behaviour of the system for large amplitudes of motion. For
example, the top figures show a flow dynamic behaviour similar to the one already observed in fig.6.10
for the below flutter condition with a smooth, attached flow field. However, when the total energy of the
structure increases given the above flutter condition considered, in the second series of pictures from the
top, LE-stall can be noticed in the blue area in the lower surface of the airfoil near its LE. This can be
expected given the very thin LE of the NACA 0003 profile employed, which leads to stalled conditions
starting from the airfoil LE at a relatively small value of the AOA (around 5.5◦) and quickly propagating
to the whole airfoil contour in about half of the pitch period Tα. The occurrence of LE-stall at around
t = 5.5Tα can be also noticed in the plunge velocity and cm plots of fig.6.11, with a loss of the smooth
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character of the oscillation, and less in the pitch velocity and lift ones. This is due to the fact that
the onset of LE-stall is a localized phenomenon generating only a local change of the pressure and skin
friction distributions. This plays a significant role in the moment coefficient, due to the role played by
the distance from the pitching axis in the computation of this quantity, as well as in the plunge velocity,
given the interaction of the separated region with the flow blowing/suction employed to account for the
airfoil plunging motion. For t > 5.5Tα, the values of the airfoil pitching and plunging displacements gets
large enough to overcome the static stall value for this airfoil (α ≈ 5◦), and dynamic-stall conditions
are very likely to be reached, as the last set of plots in fig.6.12 might suggests. Furthermore, very large
and abrupt oscillations in the moment coefficient are obtained and the flow-field around the airfoil upper
surface is massively stalled for a value of the AoA α ≈ 10◦.

All in all, it can be stated that the coupling methodology is capable of predicting the unstable
behaviour of a 2 DoFs aeroelastic airfoil beyond its flutter boundary. For a more in depth analysis of
the behaviour of the methodology under stalled conditions and large displacements, different benchmark
solutions should be employed, necessarily experimental results or other CFD-MBD aeroelastic couplings
considering airfoil dynamic stall.

6.3.3. Flutter velocity prediction
The second part of the investigation for the 2 DoFs PowerFLOWR©-SimpackR© coupling is related to
the prediction of the flutter boundary with an accuracy of 1% by comparing the results of the two
aeroelastic fully-coupled simulations (test #3 at U∞ = 99%Uflt and test #4 at U∞ = 101%Uflt) against
those returned by the corresponding reference numerical solutions. Such a comparison is shown in
fig.6.13 for test case #3 and in fig.6.14 for test case #4. Besides, both simulations are run for a longer
duration of 12Tα for the purpose of a better evaluation of the converging/diverging character of the
solution given the closeness to the flutter boundary. In both test cases, it possible to affirm that the
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Figure 6.13: Dimensionless time-histories of the kinematic and aerodynamic quantities obtained by the 2 DoFs
PowerFLOWR©-SimpackR© coupling with LRF (red line) against the reference analytical solution (black squares) for an
inflow condition 99% the flutter velocity and coupling timestep 0.0005s.
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coupling methodology is able to capture the converging character of the response for a conditions slightly
below the flutter boundary, as well as the diverging character for a condition slightly above. Also for
this investigation, the results reported in this section are related to the plunge/pitch velocity as well
as aerodynamic moment and lift, while the pitch/plunge position and acceleration can be found in the
appendix fig.F.20 and fig.F.21.

If the diverging character of the solution above flutter is clearly visible in the time-histories of all the
aeroelastic variables considered, the same cannot be stated for the converging behaviour of the below
flutter test case, where oscillations are rather weakly damped in their statistically-converged phase of the
response after the initial transient. This might be due to the too short simulation duration considered,
although a larger simulation duration would have been more expensive and could still potentially not
highlight a clear convergent trend. For this reason, the time-histories of the total energy of the structure
for these two cases, shown in fig.6.15, can help due to the combination of first and zero-th derivatives of
both kinematic states. This is actually the case for the below flutter condition, where a clear reduction
of the structural total energy can be visualized over the 12 periods of pitch oscillation considered. A
closer look to these plots reveals that this quantity is well predicted after the initial transient (where
plunge oscillations with a characteristic time below the flow-pass time might not be well captured by the
wall-velocity method) in the case of the below flutter condition. While in the above flutter condition,
it seems that the coupling is not able to reach the energy prediction of the reference solution. This is
a similar behaviour as the one observed also in sec.6.1.4 where the oscillations of the kinematic states
returned by the coupling are smaller than those of the reference solution.
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Figure 6.14: Dimensionless time-histories of the kinematic and aerodynamic quantities obtained by the 2 DoFs
PowerFLOWR©-SimpackR© coupling with LRF (red line) against the reference analytical solution (black squares) for an
inflow condition 101% the flutter velocity and coupling timestep 0.0005s.

Coming back to fig.6.13 and fig.6.14, both test cases show the same mismatches between the coupling
solution and the reference one in areas of the response characterized by characteristic time-scales less
than the flow-pass time, as observed also for test #1. This is primarily the case of the plunge kinematic
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states in their initial transient, and it is related to the poor match visible also in the initial transient
of the total structural energy, as well as in the pitching moment during the first two Tα periods of the
response. Another observation is that the aerodynamic moment coefficient is affected by a much larger
amplitude deficit in the statistically-converged part of the motion after the initial transient than all the
other quantities, besides also a small phase delay can be noticed in the last periods of the response.
Similar observations can be made also in the cm plot of test #1 of fig.6.9 and they might be explained
by considering the cm plots both in sec.4.4 for the LRF-pitch motion and in sec.4.5 for the plunge-wall-
velocity. In the cm plots of the aerodynamic validation chapter, a similar phase and amplitude mismatch
between the Theodorsen solution and the PowerFLOWR© airload is apparent during both the upstroke
and down-stroke phases of the prescribed pitch/plunge motions, and this occurs for a range of values of
α, h/c and ḣ/U∞ compatible with the last test cases of the 2 DoFs CFD-MBD coupling.
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Figure 6.15: Time-histories of the total structural energy of the system for conditions slightly below (-1% on the left)
and above (+1% on the right) the flutter velocity prediction returned by the V-g method in the case of the 2 DoFs
PowerFLOWR©-SimpackR© coupling with LRF (red line) against the reference analytical solution (black squares) with a
coupling timestep of 0.0005s.

Concluding, it could be argued that the coupling methodology developed is able to predict the flutter
boundary (Uflt) of a 2 DoFs semirigid airfoil system with lumped parameters under a tolerance of 1%Uflt.
This is cannot be clearly noticed for the below-flutter condition due to the very low convergent behaviour
of its kinematic states and airload components, but it is apparent from the total structural energy. In
any case, this investigation shows that the coupling between PowerFLOWR© and SimpackR© with pitching
motion modelled by a truly rotating geometry has been successfully applied for the prediction of a
fundamental property of aeroelastic systems
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7
Conclusions and Recommendations

In this thesis, a FSI methodology to couple the LBM-based CFD solver PowerFLOWR© and the MBD sim-
ulation tool SimpackR© is discussed. The goal of such a CFD-MBD coupling is to predict the aeroelastic
behaviour of airfoil systems featuring lumped structural parameters and undergoing free plunge and pre-
scribed pitch displacements (1 DoF coupling), as well as free plunge and pitch motions (2 DoFs coupling).
Furthermore, for the latter problem, predictions of its flutter-onset behaviour are also attempted. These
objectives are pursued by employing a sequential approach, where the simulation-setup of each separate
domain, the coupling algorithm and the final CFD-MBD coupling are carefully verified by comparisons
with analytical models based on time-domain EoMs for the structural domain, unsteady aerodynamic
theories for the fluid domain and a combination of both in the case of the reference aeroelastic solution
to assess the coupling results.

7.1. Conclusions
From the four milestones of this sequential approach introduced in sec.1.2 and corresponding to the four
core chapters of this thesis report, the main conclusions of this MSc research project can be summarized
as it follows:

1. The outcome of ch.3, namely the verification of the SimpackR© setup, is that the MBD simulation
setup developed is able to compute with a high level of accuracy kinematic states from analytical
aeroelastic models for a 2 DoFs airfoil problem. Besides, this activity returns a method to ap-
ply externally calculated time-histories of aerodynamic forces to the MBD simulation, as well as
knowledge and experience with the tool. This verification is carried out by prescribing aerodynamic
forces from analytical models (steady Glauert, quasi-steady theory and time-domain approximated
Theodorsen model) in the SimpackR© simulation for the computation of kinematic states to com-
pare with those given by complete analytical aeroelastic systems featuring the same aerodynamic
models.

2. Regarding ch.4, which deals with the verification of the PowerFLOWR© CFD setup, the following
outcomes are worth reporting:

(a) The pitch-LRF approach returns very accurate computations of the Theodorsen lift signal
for moderately up to highly unsteady flows and pitch amplitudes below 2◦, while regarding
the aerodynamic moment, small phase and amplitude mismatches are observed for the same
motion conditions.

(b) For the transpiration-velocity plunge motion, after an amplitude tuning of the method, a
reasonably good match in the cl is obtained, although a phase mismatch increasing with the
reduced frequency, but a less accurate cm is obtained with an error up to 50% for the same
range of reduced frequencies and plunge amplitudes below 5% of the chord.

(c) In the pitch body-force method, by firstly amplitude tuning and phase shifting the model,
a decent match of the cl is obtained, although this degrades rapidly for increasing reduced
frequency and amplitude with a non-constant phase difference compared with the LRF-signal.

Globally, it could be argued that the PowerFLOWR© lift matches well the Theodorsen model for a
truly pitching airfoil, while for the pitch-body-force and plunge-wall-velocity motions this occurs
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only for the smallest amplitudes and reduced frequencies and after tuning the models. The mo-
ment comparison is instead less favourable for both true and virtual motion cases. In these CFD
simulations, the airload is computed for attached, incompressible and moderate Reynolds-number
flow conditions on a NACA 0003 airfoil.

3. In ch.5, an initial coupling methodology between SimpackR© and a low-order aerodynamic routine
(convolution-integral formulation of the Theodorsen model) acting as surrogate of PowerFLOWR©

returns a very good prediction of the analytical aeroelastic variables of both the 1 and 2 DoFs
aeroelastic problems. This is obtained if a sufficiently small coupling timestep (around 200-400
fractions of a characteristic period of motion) is employed due to the underlying explicit FSI
algorithm with subcycling. In the coupling, the exchange of fluid and structural variables is carried
out by means of file input/output and look/up tables, in addition to the choice of running one
SimpackR© simulation per each coupling iteration. Such a successfully verified coupling methodology
is then extended to achieve the coupling between PowerFLOWR© and SimpackR© by implementing
additional features to deal with the complexity of the CFD solver, such as initial transient handling,
binary result file generation and conversion, input table reading and body motion reconstruction.

4. The final verification of the PowerFLOWR©-SimpackR© coupling, in ch.6, on the 1 DoF problem for
different amplitude and reduced frequency of motion conditions and on the 2 DoFs one for test
cases at ±10% and ±1% the flutter velocity prediction of the V-g method leads to the following
outcomes:

(a) For the 1 DoF problem with pitch-LRF, a quite good prediction of the lift force is obtained
with limited amplitude mismatches, while the reference kinematic states are not as accurately
predicted in amplitude, especially for increasing amplitude and reduced frequency. This could
be due to both inaccuracies in the CFD prediction of the lift force (especially in the contribu-
tion due to the wall velocity BC) or in the implementation/derivation of the reference solution
based on the hybrid time-frequency domain Theodorsen model.

(b) The 1 DoF problem with pitch simulated by body forces, provides aeroelastic results much
more similar to the LRF coupling than the reference solution, with small amplitude devia-
tions in the statistically converged part of the responses for the largest reduced frequency, as
observed also in the aerodynamic setup verification activity, and in the initial transient due
to the different way the LRF and body forces approaches simulate the same pitch velocity.

(c) Regarding the 2 DoFs coupling implementation, in the case of the 90%, 99% and 101% flutter
velocity conditions, a good match for the lift and pitch states is obtained, and, more im-
portantly, the converging and diverging behaviour in time of the total structural energy is
correctly captured for conditions 1% above and below the flutter boundary. However, in the
plunge states and aerodynamic moment, some deviations in areas of the response character-
ized by oscillations with time-scales below the flow-pass time are observed, most likely due to
limitations in the transpiration velocity approach. In the test case at 110% the flutter bound-
ary, the coupling solution is in good agreement with the reference one, based on the lag-states
approximation of the Theodorsen model, for small displacements. When displacements get
larger, flow visualization snapshots reveal a flow-behaviour affected by LE and dynamic stall,
thus the analytical solution cannot be used anymore as a reference.

On the whole, the coupling between PowerFLOWR© and SimpackR© can return accurate predictions
of aeroelastic quantities for attached, incompressible and moderate Reynolds number applications
when moderate values of amplitude and reduced frequency of motion, as well as oscillations with
a characteristic time larger than the flow-pass time, are considered. Besides, this requires also the
tuning of the models (wall velcity BC and body forces) employed in the CFD setup to emulate the
effects true plunging and pitching motions.

7.2. Recommendations for further work
Based on the previously discussed results and conclusions that be drawn for each milestone of the thesis
research, the following recommendations and suggestions for the continuation of the work can be outlined:
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• Regarding the tuning of the body forces and wall velocity models, it is observed that a tuning
procedure taking into account both the lift and aerodynamic moment can hardly replicate both
the signals returned by the Theodorsen model with a similar level of accuracy, primarily due to
a phase lag. Therefore, an equally good prediction of both signals is likely to be achieved only
by employing more sophisticated models than those employed in this thesis. This deals with the
analytical formulation of both the wall velocity and body forces and a different shape of the volume
where body forces are applied.

• The less accurate prediction of the cm, compared to the cl in the case of the pitch-LRF simulations,
might be due to deficiencies in the aerodynamic setup. The latter could be still improved, for
example, a better boundary layer modelling (by using a laminar or a fully turbulent wall model on
different portions of the airfoil contour) can improve the skin friction contribution to the moment
coefficient.

• Concerning the aerodynamic verification activity of the PowerFLOWR© setup, it would be interest-
ing to consider also other motion conditions, for example smaller values of reduced frequency or
larger values of amplitude to further understand the behaviour of the wall velocity BC and body
force methods, as typical rotorcraft (HART-II benchmark [16] and [15]) and wind-turbine blade
applications ([10]) cover larger ranges of both quantities than those considered.

• Once a wider range of motion conditions is explored for the body-force and wall-velocity BC meth-
ods, it could be useful for a 3D application of the coupling methodology to extract reduced order
models for the tuning parameters. This will make the coupling methodology easier to automatize
and to be employed by external users. In addition, also different airfoil models can be tested (for
example cambered airfoils), now that the coupling has been validated for elementary flow conditions
and geometries.

• Regarding the coupling methodology, its robustness and efficiency could be still improved by avoid-
ing the use of the file input/output medium, at least from the SimpackR© side. As the MBD tool
is relatively easy to couple via memory sharing and TCP/IP interfaces, a co-simulation engine
between SimpackR© and the Coupling Interface could also be implemented with the main goal of
generating an input table for the PowerFLOWR© simulator at each coupling timestep.

• As the long-term goal of the project is the development of a coupling methodology for 3D applica-
tions to rotating flexible blades, it is probably more valuable to invest efforts in the development
of a 3D version of the coupling methodology than in improving the efficiency of the current one
limited to 2D airfoils. However, developing a 3D coupling between PowerFLOWR© and SimpackR©

requires a new SimpackR© elastic blade setup (for example by employing the non linear version of
the SIMBEAM tool [65]) and the extension of the Coupling Interface to handle the exchange of
fluid and structure data on a 3D geometry. For the CFD setup, the work done in [6] is a valuable
starting point. The extension of the Coupling Interface is expected to be more challenging to
implement than the SimpackR© elastic blade setup, as proper models for the matching of the two
fluid and structure surface meshes are required, as briefly introduced in sec.2.1.3. This aspect has
to be addressed even if the SimpackR© blade would be split in a much smaller number of surface
elements than in the case of typical FE discretizations. Eventually, a 3D aeroelastic coupling will
be much more computationally expensive due to the CFD block. Therefore, this will push also for
an improvement of the efficiency of the coupling mechanism, by focusing on what mentioned in
the previous point. This could be carried out in parallel or at a later stage, but it is essential for
a successful industrial application of the methodology.
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A
Derivation of the body-forces

expressions
The expressions for the body forces shown in eq.2.10 were obtained in [6] by considering approximate
formulations of the rigid-body acceleration vectors of the airfoil at the LE and TE locations. In this
section, the derivation of such acceleration terms is carried out. The starting point is the Charles-Mozzi
theorem which provides an expression for the velocity vector of a point in a rigid body undergoing pure
pitch motion. The time derivative of such expression leads to following formulation:

vP = ω × r → aP = ω̇ × r + ω × ṙ (A.1)

where r is the position vector of a generic point P with respect to the pitching axis and ω is the angular
velocity of the body. By recalling the fact that ṙ = vP and by applying the "bac-cab" vector identity,
the above expression can be further worked-out as shown below.

aP = ω̇ × r + ω(ω · r)− r(ω · ω) (A.2)

In the above equation, the second term cancels out, as the angular velocity vector ω is perpendicular to
the in-plain position vector r, while the first term and second term can be computed by decomposing the
vectors along a coordinate system of x- and y-axes. The coordinate system employed features a horizontal
unitary direction-vector x̂ positive towards the TE, a vertical unitary direction-vector ŷ positive upwards
and an angular-velocity vector oriented such that the value of the angular velocity is positive when the
airfoil is pitching-up. This leads to the following full expression for the acceleration vector of a generic
point of a rigid body undergoing a pure pitch motion, where the terms x and y refer to the horizontal
and vertical coordinates of the position vector r of point P.

aP = (+ω̇y − ω2x)x̂+ (−ω̇x− ω2y)ŷ (A.3)

At this point, the model is simplified by considering that for slender bodies - for instance the NACA
0003 airfoil geometry employed in ch.4 and ch.6 - the x-coordinate of point P is much larger than the
y-one. This returns to following approximate expression for the acceleration vector.

aP ≈ −ω2xx̂− ω̇xŷ (A.4)

Finally, by considering a pitching axis at the location of the quarter-chord and, if the above approximate
expression is evaluated at the location of the LE and TE, the above expressions for the acceleration
vectors employed to define the body forces bLE and bT E in eq.2.10 are obtained.

aLE = −ω2 c

4 x̂− ω̇
c

4 ŷ and aTE = ω2 3
4cx̂+ ω̇

3
4cŷ (A.5)
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B
Time-domain approximation

methods of the Theodorsen model
for aeroelastic systems

The frequency-domain character of the Theodorsen model allows to compute elegant closed-form solutions
for unsteady flows which are highly appreciated for flutter investigation [83]. However, this model can
also be inconvenient for the design of control mechanisms and the calculation time-domain solutions for
aeroelastic problems where the reduced frequency of the phenomenon might be unknown beforehand, for
instance due to couplings between eigenmodes or the absence of a periodic forcing [91]. This is the case
of the problem investigated in ch.3 consisting in the calculation of the time response of the system due
to an initial perturbation velocity.

In this appendix chapter, approximation methods of the Theodorsen function based on partial frac-
tions are first described in sec.B.1, then the analytical formulation of the convolution integral approxima-
tion of the Theodorsen circulatory lift for a generic dynamic input is derived in sec.B.2, while in sec.B.3
the convolution integral is discretized for the specific input given in sec.3.1.3. Next, the aerodynamic
analytical lag-states formulation of the Theodorsen circulatory lift is also derived in sec.B.4. Finally, in
sec.B.5, the full time-domain equations for the aerodynamic force vector according to the two previous
formulations are given.

B.1. Approximations of the Theodorsen function
A frequently employed solution to overcome the frequency-character of the Theodorsen model consists
in approximating the generalized Theodorsen function C(k), shown in eq.2.29, in terms of a summation
of rational functions, up to a certain order n, in the domain of the complex Laplace variable s̄ [92]:

C(k) ≈ a0 +
n∑
i=1

ai
s̄+ bi

(B.1)

The partial fractions ai/(s̄+ bi) above are called lag terms, as they act as transfer function introducing
a delay between the input and the output [92], which is what unsteady aerodynamic effects generally
introduce. Besides, each of these partial fraction is associated to an aerodynamic state and the higher is
the number of these states, the more accurate is the approximation of C(k), which contains an infinite
number of these states. The determination of the coefficients in the partial fractions is the result of a
complex optimization procedure, such as the one described by [91], where it is shown that approximations
of order (number of lag-states) larger than 4 overlap almost perfectly the true Theodorsen function.

In literature, several rational approximations of the Theodorsen function can be found, as those
described in [83]. For the sake of the investigation in ch.3, the low-order two-zero and two-pole Padè
approximation is considered:

C̃(k) = 1
2

(jk + 0.135)(jk + 0.651)
(jk + 0.0965)(jk + 0.4555) → C̃(s̄) = 1

2

(
1 + 0.059

s̄+ 0.0965 + 0.175
s̄+ 0.4555

)
(B.2)

As shown in fig.B.1, the Padè approximation mimics very well the behaviour of the Theodorsen function,
especially in the highly unsteady range for k > 0.2, in spite of its simplicity and the only two (out of
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Figure B.1: Comparison between the real "Re()" and imaginary "Imag()" parts of the generalized Theodorsen function
"Gen Theo" defined in eq.2.29 and the its Padè approximation "approx Theo" defined in eq.B.2.

the potential infinite number) aerodynamic lag-states considered. In the above equation, the theorem
of analytical continuation can be exploited to extend the approximate Theodorsen function from the
imaginary axis to the whole complex plain. This allows to express C̃(k) as C̃(s̄) with the reduced
frequency k replaced by the complex variable s̄ = ᾱ+ jk.

With the above approximation for the Theodorsen function in eq.B.2, it is possible to obtain a
pure time-domain formulation for the lift and aerodynamic moment for the Theodorsen model shown in
eq.2.28 to compute the time-domain solution of aeroelastic systems. This can be done by employing two
different strategies. The first method leads to a convolution integral, while the second one leads to a
new second-order ODE describing the time evolution of the only two aerodynamic lag-states retained by
the Padè approximation. At the analytical level, there is no difference between the two implementations
of the Padè-approximated Theodorsen model, as they are two different ways of transforming the same
frequency-dependent expression in the time domain. The only differences appear numerically, but they
can be reduced as the integration timestep gets smaller, up to convergence to the same solution for an
integration timestep tending to zero.

B.2. Derivation of the convolution integral formulation
To get a convolution integral from the Theodorsen model featuring the Padè-approximated Theodorsen
function in eq.B.2, the first step consists in applying the inverse of the Laplace transformation to only
C̃(s̄):

T (τ) = L−1[C̃(s̄)] = 1
2

(
δ(τ) + 0.059e−0.0965τ + 0.175e−0.4555τ

)
(B.3)

The above equation shows that, by applying the inverse of the Laplace transformation, it is possible to
convert the Theodorsen function C(k) from the frequency to the time1 domain obtaining the response
to an impulse. However, since the Delta-Dirac function mathematically modelling the impulse is not
the most convenient analytical object to deal with, by performing time integration the function δ(τ) can
be removed from the model obtaining the time-response to a step, which is what the Wagner function
W (τ) shown below does. Therefore, the time integration of T (τ) returns the Padè approximation of the
Wagner function:∫ τ

0
T (τ)dτ = W (τ) = 1

2

(
1.9956− 0.6114e−0.0965τ − 0.3842e−0.4555τ

)
(B.4)

1The time τ is a dimensionless time related to the reduced frequency variable k and its relation to the physical dimensional
time t is tω = kτ , for a generic angular frequency ω.
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The Padè approximation of the Wagner function is only one of the many options available in literature,
another one very popular is the Jones function [7].

Due to the parallelism between the Wagner function and the Theodorsen function (shown by both
Garrick [93] and Jones [94]) in modelling the circulatory lift over an airfoil, it is possible to extend eq.B.4
from the Wagner model to get the circulatory lift response to a generic input related to a structural
dynamic motion, and not just a step function. This is related to the fact that T (τ) is only related to
C̃(k). Therefore, if the whole circulatory lift expression of the Theodorsen model in eq.3.18 is considered,
and time integration is performed, an approximate time-expression for L̃c can be obtained as the time
response to the quasi-steady aerodynamic input v(3/4)

n (t) evaluated at the neutral point (three-quarter
chord) location2. This leads to the convolution integral shown below, which is the mathematical element
modeling the memory effect of the shed vorticity:

Lc ≈ L̃c = 2πρUb
∫ t

0
T (τ̂)v(3/4)

n (τ̂) dτ̂ = 2πρUb
[
W (t)v(3/4)

n (t=0) +
∫ t

0
W (t− τ̂)v̇(3/4)

n (τ̂) dτ̂
]

(B.5)

B.3. Discretization of the convolution integral
As mentioned in sec.3.2.1, where the forward/explicit Euler method is employed to discretize in time
the Theodorsen problem formulated in terms of the convolution integral approach, the following discrete
system is obtained:

zn+1 = (I − M̃∗
tot

−1
K̂∗

tot∆t̂ )zn + M̃∗
tot

−1
F ∗(t̂n)∆t̂

where the 4x1 vector F ∗(t̂n) contains the 2x1 force vector f∗(t̂n) containing convolution integral:

f∗(t̂n) = − Û
a

 (
ḣ+ α̇+ Ûα

)∣∣
t̂0
Ŵ (t̂n) +

∫ t̂n
0 Ŵ (t̂n − τ̂)

(
ḧ+ α̈+ Û α̇

)
dτ̂

ξA

{(
ḣ+ α̇+ Ûα

)∣∣
t̂0
Ŵ (t̂n) +

∫ t̂n
0 Ŵ (t̂n − τ̂)

(
ḧ+ α̈+ Û α̇

)
dτ̂
}

Given the explicit Euler method, the discretization of the convolution integral can be easily carried out
by applying the left-rectangle quadrature rule, also called left Riemann sum. According to this method,
within every single discrete integration interval (rectangle), the function is sampled and approximated
by its value at the left basis of the rectangle, while the horizontal height can be either uniform or change
from an interval to the other depending on the uniform or not discretization of the time axis.

Based on this framework, a general convolution integral can be discretized - for generic function k(x)
and f(y) with T = yk+1 − yk - as:∫ x

0
k(x−y)f(y) dy =

∫ xn

0
k(xn−y)f(y) dy ≈ (yk+1−yk)

n−1∑
k=0

k(xn−yk)f(yk) = T

n−1∑
k=0

kn−kfk (B.6)

When the above result is applied to the convolution integral of interest, the following discrete force vector
f∗(t̂n) is obtained:

f∗(t̂n) = − Û
a


[
ḣ(t̂0) + α̇(t̂0) + Ûα(t̂0)

]
Ŵ (t̂n) + ∆t̂

n−1∑
k=0

Ŵ (t̂n − t̂k)
[
ḧ(t̂k) + α̈(t̂k) + Û α̇(t̂k)

]
ξA

{[
ḣ(t̂0) + α̇(t̂0) + Ûα(t̂0)

]
Ŵ (t̂n) + ∆t̂

n−1∑
k=0

Ŵ (t̂n − t̂k)
[
ḧ(t̂k) + α̈(t̂k) + Û α̇(t̂k)

]}


The employment of the left Riemann sum is firstly convenient, as it does only require the value of the
solution on the left side of the discrete integration interval. Other methods, like the midpoint rule,
requires interpolation between the left and the right value, although this effort pays-off with a higher-
order accuracy. Finally, the order of accuracy of the left-rectangle rule is O(∆t̂ ), consistently with the
explicit Euler method.

Alternatively, it is also possible to employ the right Riemann sum. However, this variant is more
difficult to implement than the left sum method. For example, to get the first value of the convolution
2This quantity can also be seen as the effective angle of attack for a pitching and plunging airfoil evaluated at the neutral
point, as discussed in sec.2.4.3.
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integral ∆t̂ W (0)v∗(3/4)
n (∆t̂ ), the computation of the ż1 at t1 state-vector by applying 3.24 is required.

Nevertheless, this can only be done after the calculation of z1 at t1, which requires the knowledge of the
first value of the convolution integral leading to an implicit formulation. Instead, the left method just
requires v∗(3/4)

n (0), which is easy to get as z0 at t0 is prescribed by the initial conditions. With a little
more complication in the discrete equation, the right method can be improved by the trapezoidal rule,
which considers both the left and right values within each interval providing third-order accuracy.

B.4. Derivation of the aerodynamic lag-states formulation
The starting point to derive the approximate time-domain Theodorsen airload, according to the lag-
states formulation, is a dimensionless expression C̃∗(ŝ) in terms of a ratio between a numerator and a
denominator:

C̃∗(ŝ) = 1
2

(ŝ+ n1)(ŝ+ n2)
(ŝ+ d1)(ŝ+ d2) = 1

2
N(ŝ)
D(ŝ) (B.7)

This is done because the goal is to get a dimensionless aeroelastic system, and it is possible to derive
a dimensionless airload by starting from a dimensionless formulation of the approximate Theodorsen
function in the frequency-domain of the variable ŝ = α̂ + jω̂ related to the dimensionless time t̂. In
this way, both the denominator and the numerator contain only products of the type (ŝ+ ai) involving
coefficients and the dimensionless Laplace variable ŝ.

Based on the scaling rules defined in eq.3.9, an approximate expression for the dimensionless lift in
the case of a pitching axis ã=−1/2, can be reconstructed in terms of C̃∗(ŝ), where the term v̇

(1/2)
n is the

time derivative of the normal component of the relative velocity wind-airfoil evaluated at the middle of
the airfoil:

L∗ = 1
2a

(
ḧ+ 1

2 α̈+ Û α̇

)
+ Û

a
C̃∗(ŝ)

(
ḣ+ α̇+ Ûα

)
= 1

2a v̇
∗(1/2)
n (t̂ ) + Û

a
C̃∗(ŝ)v∗(3/4)

n (t̂ ) (B.8)

The transformation of the above equation from the time to the frequency domain of the complex variable
ŝ allows to split the previous equation into two separate equations in the Laplace variable.

L̃∗ = 1
2a

˙̃v∗(1/2)
n (ŝ) + Û

a
N(ŝ)r̃(ŝ) and D(ŝ)r̃(ŝ) = ṽ∗(3/4)

n (ŝ)

The complex quantity r̃ plays the role of a lag transfer function, as described in sec.B.1 between
the ṽ∗(3/4)

n input and the resulting lift. This leads to the introduction of two additional lag-states of
aerodynamic nature into the aeroelastic systems, whose dynamics needs to be determined in the same
way as the structural states. Therefore, by applying the inverse of the Laplace transformation to the
two above equations, a second-order ODE is obtained describing the time evolution of the airload and
involving structural (h, α) and aerodynamic lag-states (r,ṙ).

L∗ = 1
2a

(
ḧ+ 1

2 α̈+ Û α̇
)

+ Û

a

(
r̈ + Û(n1 + n2)ṙ + Û2n1n2r

)
r̈ + Û(d1 + d2)ṙ + Û2d1d2r =

(
ḣ+ α̇+ Ûα

)
(B.9)

B.5. Computation of the time-dependent aerodynamic force
vectors

For both the convolution-integral and the aerodynamic lag-states formulations of the time-domain ap-
proximated Theodorsen aeroelastic system, it is required to define the relations that allow to compute
the two components of the dimensional aerodynamic force vector F =

[
− L̂, M̂A−xAL̃

]T
from the

knowledge of the structural and - where required - computed aerodynamic lag-states. This is required
for both the SimpackR© verification activity discussed in ch.3 and for the coupling demonstrator discussed
in ch.5.
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B.5.1. Convolution-integral method
Given the expressions for the approximate lift and aerodynamic moment for a quarter chord pitching
axis location (ã=−1/2):

L̂ = πρb2
(
ḧO+ 1

2bα̈+U∞α̇

)
+2πρU∞b

[(
ḣO+bα̇+U∞α

)∣∣∣∣
t=0

W (t)+
∫ t

0
W (t−τ)

(
ḧO+bα̈+U∞α̇

)
dτ

]

M̂A = −πρb3
(

1
2 ḧO + 3

8bα̈+ U∞α̇

)
the following dimensional aerodynamic force vector is obtained, where the expression for the dimensional
Padè approximation of the Wagner function W (τ) is shown in eq.B.4.

F = −πρb2
 1 b

2
b
2 + xA

3
8b

2 + xA
b
2

ḧO
α̈

− πρb2U
0 1

0 b+ xA

ḣO
α̇

+

−2πρU∞b

 (
ḣO + bα̇+ U∞α

)∣∣
t=0W (t) +

∫ t
0 W (t− τ̂)

(
ḧ+ bα̈+ U∞α̇

)
dτ̂

xA

{(
ḣO + bα̇+ U∞α

)∣∣
t=0W (t) +

∫ t
0 W (t− τ̂)

(
ḧ+ bα̈+ U∞α̇

)
dτ̂
}

B.5.2. Aerodynamic lag-states method
In the case of the second method, the expression for the aerodynamic moment is the same as the one
shown in the previous subsection, while the dimensional lift is different due to the presence of the
lag-states r which do not have a physical dimension. The initial conditions for the two aerodynamic
lag-states both are set to zero, as the airfoil starts moving from t0 = 0 and no wake is present at that
time. Therefore, the expression for the approximate lift is:

L̂ = πρb2
(
ḧO + 1

2bα̈+ U∞α̇

)
+ 2πρbU∞

(
bωα

2 r̈ + U∞
2 (n1 + n2)ṙ + 1

2
U2
∞

bωα
n1n2r

)
This allows to derive the following dimensional force vector:

F = −πρb

 b b2

2 U∞bωα

b2

2 + xAb
3
8b

3 + b2

2 xA U∞bωαxA



ḧO

α̈

r̈

−πρbU∞
0 b U∞(n1 + n2)

0 b2 + xAb U∞(n1 + n2)xA



ḣO

α̇

ṙ



−πρbU∞

0 0 U2
∞

bωα
n1n2

0 0 U2
∞

bωα
n1n2xA



hO

α

r


In the above equation, the values for the zeros coefficients are n1 = 0.135 and n2 = 0.651, while those
for the poles coefficients are d1 = 0.0965 and d2 = 0.4555.
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C
Dimensionalization of the SimpackR©

simulation parameters
The scaling rules in eq.3.9 are applied in ch.3 to nondimensionalize the EoM of the aeroelastic systems.
In addition, they can also be employed to find the corresponding dimensional aerodynamic and structural
simulation parameters given the quantities in tab.3.1. This leads to:

hO = h
b ; t = t̂

ωα
;

m = aρb2clα = 1.5b22π; U = Ûbωα

kh = Ω2mω2
α = 0.82mω2

α; kα = r2
αmb

2ω2
α = 0.52

αmb
2ω2

α;
JE = r2

αmb
2 = 0.52

αmb
2; xE = ξEb;

xA = ξAb; xG = ξGb

As it is apparent from the above relations, to find values for the dimensional parameters on the lhs, some
of the quantities on the rhs need to be prescribed. To begin with, by employing a value for the airfoil
semichord b = 1[m] and for the pitch angular frequency ω2

α = 1[rad/s], a perfect equivalence between the
dimensionless analytical problem and the dimensional SimpackR© simulation (or a dimensional version
of the aeroelastic analytical model) can be obtained in the values for time, kinematic states (α,h) and
airfoil point coordinates. The only parameter that is still left is the value of the fluid flow density,
which is required to determine the body mass, and so the structural properties. Flow density is set
to the reference value of ρ = 1.225 [kg/m3] in ch.3. These assumptions lead to the following values for
the dimensional simulation parameters to apply in the SimpackR© setup and employed to get the results
shown in sec.3.4:

xA = 0.0 [m]; xE = 0.1 [m]; xG = 0.5 [m]; U = Û [m/s];
m = 11.545353 [kg/m]; kh = 7.389026 [N/m2]; kα = 2.886338 [N/rad]; JE = 2.886338 [kg·m];

where Û = 0.9Ûf . Finally, due to the 3D nature of the SimpackR© simulation, by employing a depth
d = 1[m], dimensions can be adjusted to a 3D geometry by retaining the equivalence with the analytical
and numerical 2D models.
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D
SimpackR©-PowerFLOWR© Coupling

Interface documentation
This appendix chapter serves as an extensive description of the Coupling Interface code developed to
couple PowerFLOWR© and SimpackR© by means of a two-way explicit FSI scheme.

D.1. Development approach and essential aspects
In the development of a coupling strategy to couple SimpackR© and PowerFLOWR©, in addition to FSI
aspects, properties of the solvers and physical/numerical modelling, also software issues need to be
addressed. Regarding the latter, the most significant aspect is the need for a structured, easy to extend
and to maintain computer program. Besides, this has to be combined with the two main functions
required by the Coupling Interface, namely the handling of the ASCII input/output coupling files and
the execution of the tools.

0-th level: InterfaceManager
1-st level: TransientIterationManager CouplingIterationManager
2-nd level: [Coupling-files libraries] [PowerFLOWR© libraries] [SimpackR© libraries]

tot_iter_listManager init_trans_dataManager AFSManager
cpl_setupManager PFinManager SubvarManager
cpl_forceManager PFoutManager SpckOManager
kin_statesManager InitTransChecker SpckPostProcManager

3-rd level: TriggerManager ASCIIManager
4-th level: Viewer Model FileHandler

Table D.1: Table showing the structure of the several libraries implemented for the PowerFLOWR©-SimpackR© coupling.

Among the plethora of possible software architecture models, the Model-Viewer-Controller method is
employed, due to its simplicity, flexibility and adequacy for the two previously mentioned main functions
of the Interface. As described in [95], the MVC is a software-design pattern commonly used to develop
interfaces with a clear distinction between the data structure logic (Model), display logic (Viewer) and
processing logic (Controller). In the context of the coupling, the Viewer logic is secondary, as it only
relates to notify the user about the internal working of the Interface and it is addressed by the "Viewer"
library in sec.D.2. On the other hand, the Model logic and Controller one are essential. Concerning the
data structuring function, the Model logic is implemented by means of two python objects commonly
used as data containers, namely lists and ordered dictionaries1, while the Controller logic is the core of

1Lists are very general objects, as they can contain several different data-types (floats, doubles, strings etc.) but they
do not allow to keep track of the nature of the information stored. For this purpose, dictionaries are more suitable, as
they can contain an arbitrary number of lists each one labeled by means of a key. In this way, the user can quickly
identify/define the nature of the data handled. An evolved version of standard dictionaries are ordered dictionaries, as
they allow to prescribe an order in which keys are gathered.
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the Interface, because the processing of fluid and structural data, as well as the triggering of the tools,
are tasks carried out by this logic unit.

The data-processing function of the Controller logic is based on the tasks of reading, generating
and writing the ASCII coupling files. If the reading and writing tasks can be made quite general, once
common features between the files are identified, the generation process is rather file-specific. This
suggests the adoption of a pyramidal structure consisting of a few hierarchical levels for the Controller
logic of the Coupling Interface, as shown in tab.D.1. In this framework, the lowest (4-th) level is occupied
by the "FileHandler" (see sec.D.2) library dedicated to the reading and writing of the ASCII files, as
these tasks are rather general and depend only on the type of separator used (only comma, space and
new-line separators are considered). Next, as ASCII files can generally be decomposed into headers, data
and tail sections, the lower-intermediate 3-rd level is occupied by the "ASCIIManager" library (discussed
in sec.D.3) which takes care of the splitting of these files into such three sections. Finally, the upper-
intermediate 2-nd level of ASCII-file handling is occupied by the file-specific libraries described in sec.D.4.
The latter contain functions specialized in extracting the necessary information from the datasections
and in generating each coupling file. In these routines, the Model logic is exploited to generate the
containers storing the data necessary to write the coupling files. Such data-containers consist of a main
list with as many lists as lines in the file itself and each line-list stores as many items as columns in the
file. Regarding the data-extraction function, ordered dictionaries collect the data from the each line of
the datasection lists allowing to keep track of the nature of the information for processing and debugging
reasons.

To implement the other main function of the Interface (execution of the tools) the Model logic and
the Controller one work in unison with the first one providing the commands that are employed by
the Controller logic to execute the tools. This is carried out by the "TriggerManager" library and the
"SpckSimManager.sjs" script for the automatic handling of the MBD simulation. Besides, the Controller
logic includes also the "InitTransChecker" library to process the PowerFLOWR© force signals to assess
the conclusion of the CFD initial transient. Finally, the higher 1-st and 0-th level libraries are described
in sec.5.4.4, as they are related to the handling of the two phases of the aeroelastic simulation (initial
transient and proper coupling) and to the control of the overall coupling mechanism.

D.2. Fourth (lowest) level libraries
At the lowest level of the Coupling Interface, there are three libraries implementing the lowest-level of the
controller operations for file handling, as well as the Model and Viewer logic of the MVC architecture.

Viewer
This library consists in a set of several functions generating all the output messages that are displayed
to the user and that are collected in the "simulator.o" file, which is a file automatically generated by
the PowerFLOWR© simulator during the simulation. The "simulator.o" file contains information on the
case size (number of voxels, surfels and timesteps), simulation parameters (number of processors, solver
precision, fluid solver etc), as well as the timestep of table import and the outputs from the command
executed before importing the table. Therefore, this file can be exploited as an emulator of a GUI for the
user to monitor the internal working of the Coupling Interface and of the SimpackR© simulation in all their
steps. The functions in this library return all the string messages that are printed in the "simulator.o"
file by the libraries responsible for each task in the coupling or initial-transient mode of the Interface
discussed in sec.5.4.4.

Model
The "Model" library is responsible for giving structure to the coupling data that are exchanged between
the PowerFLOWR©, Interface and SimpackR© blocks before they are written to the coupling files by
generating empty lists and ordered dictionaries based on the input keys and lists. Such data containers
are returned by two functions that are directly called by all the second-level libraries whenever files are
read or written by the "FileHandler" library. In addition, this library directly stores essential data for
the working of the coupling mechanism, such as the full commands for the execution of PowerFLOWR©

CLI for the binary-to-ASCII conversion of the CFD output file ("<exaritool path> forces.ri PF_out.csnc
-sec -units mks -moment") and for the execution of the SimpackR© solver to run the MBD simulation
("<Simpack-slv path> –silent -s <Spck.spck path>"), as well as paths and headers of the coupling files.
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FileHandler
This library takes care of reading and writing ASCII files based on the delimiter employed to separate
the data items in the file itself. In python, these tasks can be carried out by importing the "csv" package
and by using its "reader" and "writer" functions. In the "reader" function, the delimiter is an input, in
addition to the path to the file of interest, while the output is an iterable object which is passed to the
functions in the "ASCIIManager" library. On the other hand, the "writer" function requires as input also
a list (initialized by the data-structuring functions of the "Model" library and filled with data by the
2-nd level libraries) containing the full content for the generation of the file. If the delimiter is a new-
line symbol "\n", each line is treated as a single-string list, while, if the delimiter is a comma or space,
then each line is a list containing as many strings as columns in the file. Regarding the output of the
"reader" function, this is passed to the higher-level functions in the "ASCIIManager" library for further
file handling operations, namely the splitting of the iterable output object into a header, a datasection
and a tail list.

D.3. Third level (lower-intermediate) libraries
This lower-intermediate level the Coupling Interface features two libraries focused on either executing
the tools or handling ASCII files in general

Trigger Manager
This library is characterized by two classes, one for the PowerFLOWR© CLI and the other one for the
SimpackR© simulation. In both classes, the full commands defined in the "Model" library are loaded
and passed to the python subprocess.call function to actually execute the CLI commands on the Linux
terminal. In the case of the SimpackR© solver, as the goal is to just execute commands without caring
about the output of the same, the "subprocess.call" function is invoked with only the required command
as input. On the other hand, for the PowerFLOWR© CLI class, the "subprocess.call" function is executed
within a "with ... as" python statement in order to write the output of the "exaritool forces.ri" function
from the PowerFLOWR© CLI to the "PFout.txt" file.

ASCIIManager
Within the framework of Controller operations for the reading of coupling files, the intermediate level is
embodied by the "ASCIIManager" library. This library is primarily dedicated to the splitting of a coupling
file into a header, a datasection and, where required, a tail list, starting from the iterable object returned
by the "reader" function in the "FileHandler" library. This is carried out by employing a main function
called "file_splitter" which performs the splitting by looping through the items of the iterable input. Next,
based on the input number of lines in the header and tail, when the value of the line counter is below the
number of header lines, then the "header_extractor" function is called to store such a line into the header
list, in the other case, all the other lines are appended to the datasection list. If the number of tail lines
is greater than zero, then the "tail_extractor" function is invoked to fill also the tail list. An important
aspect to point our is that all the coupling files, except for "PFout.txt", "PFin.txt", "tot_iter_list.txt"
and "cpl_setup.txt", are treated as either space or comma-separated values ASCII files already obtaining
both the line-wise and column-wise splitting of their datasection at the level of "ASCIIManager" library.
On the other hand, the previous four ".txt" files feature a more complex structure in their datasection
not allowing columns-wise data extraction at the level of the "ASCIIManager" library. For this reason,
such files are read by using a new-line delimiter to just split them line-wise. Next, each string in the
datasection or header list is passed to the dedicated 2-nd level library depending on the coupling file at
stake, where specific functions for the extraction of the individual column items per line are employed.

D.4. Second level (upper-intermediate) libraries
The main purpose of the libraries in the second upper-intermediate level of the Interface is to either take
care of the generation of all the coupling files, to perform the PowerFLOWR© initial transient check and
to execute a SimpackR© simulation for every coupling iteration.

D.4.1. Coupling files libraries
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tot_iter_listManager
This library is essentially devoted to the handling of the "tot_iter_list.txt" file, which is the file storing
the number of total iterations carried out by the Coupling Interface in both its initial transient and
coupling mode. This library contains two main functions: one to update the file at the end of each
iteration, and one to restart it only in the case of tot_it=1 by deleting its old datasection content.
Furthermore, the "updater" function calls other secondary functions to carry out specific subtasks. The
first one reads the "tot_iter_list.txt" file itself and splits it into a header and datasection by calling the
"file_splitter" function in the ASCIIManager library. Then, the extracted datasection is provided to a
second function which updates it by appending a new line, namely the subsequent "tot_it" value. Next,
another function assembles the updated datasection and header to generate a full list storing the whole
content of the file. This object is then supplied to the "writer" function in the "FileHandler" library to
update the "tot_iter_list.txt" file. On the other hand, the "restart" function performs similar operations
but the datasection is now represented by a single item - namely the integer 1 - as this is required to
start the Coupling Interface for the very first total coupling iteration. The header of this file is instead
obtained from the class storing the headers of the coupling files in the "Model" library.

cpl_setupManager
This library is dedicated only to the reading of the data in the "cpl_setup.txt" file, which have to be
manually defined by the user before running the aeroelastic simulation. Therefore, the main function in
this library is aimed at extracting the content of the "cpl_setup.txt" file and its first task is the splitting
of the file into a header and a datasection list. Next, there are there minor functions specialized in the
extraction of the names, values and units from the datasection and header lists depending on the version
of the coupling. This library is called by the library responsible for the generation of the "Spck.subvar"
file for the very first coupling iteration.

cpl_forceManager
This library is responsible for the update and reset of the "cpl_force.csv" file, which is the data-
container for the time-history of the PowerFLOWR© forces employed during the coupling phase of the
global aeroelastic simulation in its 1 or 2 DoFs versions. The working of this library is similar to
"tot_iter_listManager", as there is a main "generator" function dedicated to the update of the file,
and one focused on the reset of the file. In addition, also a function for the extraction of the com-
plete time-history of each force component in the datasection of the file is present. The latter function
is directly invoked by the "AFSManager" library to generate the "Spck.afs" input file. Regarding the
"cpl_force.csv" file, in addition the time-history of the PowerFLOWR© forces after the initial transient,
this file stores also the coupling timestep duration, the coupling iteration number and global time at
which each PowerFLOWR© force is computed. These quantities are read by the Coupling Interface and
employed in the generation of the "Spck.afs" file.

kin_statesManager
This library takes care of the update, reset and data-extraction for the "kin_states.csv" file, which is
the data-container of the time-history of the kinematic states returned by the aeroelastic simulation.
These three main tasks are carried out by two specific main functions, namely the "generator" and the
"restarter". The "generator" function follows the same steps carried out by the analogue routine in
"cpl_setupManager" and "tot_iter_listManager", with the only difference that a new line with 3N·DoF
columns is added. The "restarter" function is also very similar to the one used by both libraries for the
same purpose, just a different header is loaded from the "Model" library depending on the number of
DoF.

D.4.2. PowerFLOWR© libraries
init_trans_dataManager
This library is invoked at the end of the CFD initial transient to generated the "init_trans_data.csv"
file collecting important data related to the converged very first airload to employ in the SimpackR©

simulation for cpl_it=0. The main function in this library is the "generator" one, which calls the other
three secondary functions in this library. The first is dedicated to the extraction of the header from the
"Model" library, depending on the number of DoF. The second takes care of the datasection generation
and the third assembles the list where the full content of the file is stored. In the library, there is
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also another primary function, which is called "data_reader" and it is called at the beginning of the
"CouplingIterationManager" 1-st level library to derive the value of the current "cpl_it" from "tot_it"
and the data related to the end of the initial transient.

PFinManager
This function generates the PowerFLOWR© input table by reading the same "PFin_<tot_it>.txt" file
related to the previous iteration to extract its header (the header of this file doesn’t change during
the coupling). On the other hand, the datasection generation depends on the phase of the aeroelastic
simulation. If this is still in its initial transient phase, then the new datasection is a copy of the old one, as
PowerFLOWR© needs to compute a more accurate airload for the same conditions of the previous "tot_it"
iteration. Instead, if the aeroelastic simulation is in its true coupling phase, then the "kin_states.csv"
and "init_trans_data.csv" files are read to extract the global time at which the initial transient is over
and those kinematic states required by each version of the coupling and pitch motion modelling method
in PowerFLOWR©. In addition, also a flag prescribing if the initial transient is over or not is included
in the datasection of the new "PFin_<tot_it>.txt" file. The other secondary functions in the library
are always those responsible for the file splitting and assembly, in addition to a function generating the
name for the new "PFin_<tot_it>.txt", namely "PFin_<tot_it+1>.txt". Regarding the structure of
the latter file, it consist in a single-line datasection where all quantities are positioned one next to the
other after three numbers related to the coordinates (0,0,0) of a single point "fake" grid required by the
table-layout type employed among those available in [52]. The header of this file contains information
related to the 3D grid where all data are virtually assigned, the number of data and their units, as
discussed in sec.2.2.2.

PFoutManager
The "PFoutManager" library contains a set of functions processing data from the "PFout.txt" file. Given
the only 1 and 2 DoFs versions of the coupling implemented, only the lift force and the out-of-plain
aerodynamic moment are considered and the last value of each signal is returned to the "CouplingIter-
ationManager". Such quantities are extracted by employing the standard procedure already described.
The first step is the splitting of the "PFout.txt" file into its header and its datasection lists (where, in
addition to a time column, there are 3 columns for 2D simulations) by the "splitter" function. Then,
the datasection list is processed to extract the two lists related to the aerodynamic forces time-histories
considered by the function "datasection_handler". Then, the third and last step is the extraction of the
last item (current force) from each list by means of the function "curforce_extractor".

InitTransCheck
This library contains the functions necessary to carry out the signal processing of an arbitrary force
component from the PowerFLOWR© simulation. This task is crucial to check weather the initial CFD
transient is over or not at the beginning of the full aeroelastic simulation, so that the proper coupling
with SimpackR© can start. The main function is called "transient_checker" and it calls the other sub-
functions responsible for all the required sub-tasks. The first sub-function extracts the lift (for the 1
and 2 DoFs coupling) and moment (only for 2 DoFs) force-histories up to the current total iteration by
calling a dedicated function from the "PFoutManager" library. Next, each force-component time-history
is passed to the function performing the calculation of the running-average and root-mean-square of
the signal based on the input size of the sliding window and by employing the equations and variables
outlined in sec.5.4.1. Eventually, the last sub-function, evaluates weather the initial transient is over or
not by checking if there is at least one signal with a value for its scaled root-mean-square smaller than the
input tolerance. In this function, the user can chose to adopt a more stringent criterion by considering
the convergence of all the force signals processed. In any case, the convergence check always returns a
non-convergence result if the current "tot_it" value is less then or equal to the window size, and such an
outcome is passed to the "TransientIterationManager" library which then reacts as discussed in sec.5.4.4.

D.4.3. SimpackR© libraries
AFSManager
This library is responsible for all the operations related to data-extraction and generation of the SimpackR©

input file "Spck.afs" employed in the coupling to supply the aerodynamic forces from PowerFLOWR© to
the MBD simulation. For both tasks, there are two main functions: the "extract_datasection" and the
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"generator" one. The first extracts the quantities of interest from the datasection of the file, namely
the coupling timestep used as duration for the SimpackR© simulation and the two input force-values for
each force-component. The two force-values are the same according to what explained in sec.5.2.2. The
second main function generates the new "Spck.afs" file in the same exact way as the other coupling files.
The "old Spck.afs" file from the previous iteration is loaded and split into a header and a datasection.
The header is kept to generate the header of the new file, while the datasection is updated with the last
force value in the "PFout.txt" file for each component. Then the updated datasection and the old header
are assembled to get a new list which is then provided to the "writer" function of the "FileHandler"
library to generate the new file. To mention a few properties of the "Spck.afs" file, in its header the
format of the datasection, the name and units of each column as well as the type of interpolation (Akima
spline) to be applied by the solver are specified. The datasection format employed is array of univariate
functions, which means that the datasection features one time column and as many other columns as
input-functions considered. Due to the way the coupling methodology is developed (see sec.5.1), there
are always two lines in the datasection, the first is for the airload components to apply for tn = 0 and
the second contains the same for tn+1 = ∆T , as every coupling iteration is characterized by a single
dedicated SimpackR© simulation.

SubvarManager
The "SubvarManager" library is the one taking care of the generation of a new "Spck.subvar" input file for
the MBD simulation. As the data to employ in the setup of the MBD simulation are different if "cpl_it" is
either zero or not and depending on the DoF value, a specific function - called "datasection_generator" is
implemented to handle all these different situations. After splitting the "Spck.subvar" file, if cpl_it=0 and
DoF=1, then this function extracts the initial conditions for the plunge DoF, as well as the amplitude and
frequency of the prescribed pitch motion from the "cpl_setup.txt" file by invoking the functions from the
"cpl_setupManager" library. If cpl_it=0 and DoF=2, then the initial conditions for the plunge and pitch
DoF are all extracted from the "cpl_setup.txt" file. In any case, only when cpl_it=0, the initial conditions
of the SimpackR© simulation coincide with the initial conditions of the global aeroelastic simulation. On
the other hand, when cpl_it6=0, there are always two further conditions related to the number of DoF. If
DoF=1, then the amplitude and frequency of the prescribed pitch motion are always extracted from the
"cpl_setup.txt" file, while the values for the plunge motion initial conditions of the SimpackR© simulation
are obtained from the "Spck.mat" file by means of the functions in the "SpckOManager" library. When
DoF=2, then both the position and velocity states for the pitch and plunge motions are obtained from
the "Spck.mat" file. In both cases, the subvars related to the global simulation time and the SimpackR©

simulation duration (coupling timestep) are obtained from the "PFout.txt" file via the functions in the
"PFoutManager" library. More in detail, the actual extraction is carried out by the functions in the class
"DatasectionGenerator" and once updated datasection is generated, then the other tasks are the same
as for every other coupling file (assemble the header and the updated datasection lists, and write to file
the merged list). Finally, the datasection of the "Spck.subvar" file contains for every subvar name, value
and unit, while the header of this section has to respect the rules outlined in [65] for its correct reading
by the SimpackR© solver.

SpckOManager
This library is only dedicated to the reading of the data in the binary "Spck.mat" output file generated
by Time Integration Solver of the MBD simulation tool. To access the data in this file, the h5py python
package [90] is exploited in a dedicated "Extractor" class which extracts all the required kinematic states
in the file. The lolgical order followed when this library is employed is the following. The "Extractor"
class is first called and its outputs are the two lists emulating the header and datasection of the old
"SpckOUT.csv" file employed in the coupling demonstrator to keep its framework. Then, the initial and
final values for the position, velocity and acceleration states of each DoF are extracted and stored in
three corresponding lists. Each one of these lists contains as many ordered dictionaries as input DoF
considered.

SpckSimManager.sjs
As already discussed in sec.5.2.5, most of the SimpackR© MBD simulation needs to be manually set-up de-
pending on the problem (1 or 2 DoFs) considered, while the "SpckSimManager.sjs" script just carries-out
those operations necessary to fill-in the new data required by each iteration. This allows to significantly
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reduce the time required by each coupling iteration, leading to a significant reduction in the total time
for the coupled aeroelastic simulation. Therefore, such script essentially takes care of three tasks. Firstly,
the update of the initial conditions with the position and velocity states for each DoF coming from the
previous iteration is carried-out. This is possible because the "Spck.subvar" file containing the subvars
for the initial conditions is automatically loaded when the script opens the "Spck.spck" simulation file,
as well as the updated "Spck.afs" file corresponding to the current iteration. Secondly, the reset to zero
of the SimpackR© simulation time and thirdly the execution of the Time Integration Solver from t = 0 up
to t = ∆T in order to obtain a new binary ".mat" result file. The execution of the "SpckSimManager.sjs"
script is triggered by the Coupling Interface by calling the SimpackR© solver with the full command
defined in the "Model" library.

D.5. Folders structure
The coupled aeroelastic simulation between PowerFLOWR© and SimpackR© is entirely contained in a single
folder, which is labelled as "<>" in tab.D.2 where both the PowerFLOWR© and the SimpackR© simulation
files, as well as all the libraries related to the Coupling Interface are stored in separate subfolders. First

<> <>/Interface
PF_sim.cdi

[
all libraries

tot_iter_list.txt shown in
trigger_interface.sh tab.D.1

]
start_sim.sh FileCleaner.py

<>/PFin <>/PFout <>/SpckIN <>/SpckOUT <>/SpckSIM
coupling_setup.txt PFout.txt Spck.afs Spck.mat Spck.spck

PFin_∗.txt cpl_forces.txt Spck.subvar kin_states.csv
init_trans_data.csv

Table D.2: Table showing the folders structure employed for the PowerFLOWR©-SimpackR© coupling.

of all, the coupling simulation folder "<>" is the location where the PowerFLOWR© "<>.cdi"2 file is
generated. Based on this file, the "exaqsub" command is launched by the bash "start_sim.sh" script
which executes then the PowerFLOWR© simulation. In "<>", also other files are located, namely the
"tot_iter_list.txt" coupling file and the bash script "trigger_interface.sh", which is called by the command
executed before each "PFin_<tot_it>.txt" input table reading by the PowerFLOWR© simulator to trigger
the Coupling Interface libraries. The latter are all stored in the "<>/Interface" subfolder, in addition to
the "FileCleaner.py" python script. The "FileCleaner.py" is invoked by the "start_sim.sh" bash script in
order to clean or reset the coupling files generated by a previous run of the coupling simulation before
the "exaqsub" command.

In the lower part of tab.D.2, it is possible to visualize the two subfolders related to PowerFLOWR©

("<>/PFin" and "<>/PFout") and the three ones related to SimpackR© ("<>/SpckIN", "<>/Spck-
OUT" and "<>/SpckSIM"). The PowerFLOWR©-related subfolders contain the aerodynamic coupling
files ("coupling_setup.txt", "init_trans_data.csv" and "cpl_forces.csv") as well as the input and out-
put files required by the CFD simulation ("PFin_<tot_it>.txt" and "PFout.txt" respectively). The
three subfolders required for the SimpackR© simulation store the dedicated input files ("Spck.afs" and
"Spck.subvar"), output ("Spck.mat"), coupling-related files ("kin_states.csv") and also the SimpackR©

simulation "Spck.spck" file, which is located in the "<>/SpckSIM" subfolder.

2The PowerFLOWR© ".cdi" file is a mixed binary and ASCII file and it is essential to start the CFD simulation. It is
generated by PowerCASE based on the simulation setup and is read by both the PowerFLOWR© discretizer, decomposer
and simulator to compute the CFD solution.
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E
The V-g method

The V-g method is a technique employed to determine the flutter velocity and reduced frequency of an
aeroelastic system regardless of its dynamic response. This is done by considering the system in the
domain of the Fourier reduced-frequency variable, determining its properties in the neighbourhood of
the flutter boundary. In this chapter of the appendix, the formulation of this method is derived for
the 2 DoFs semi-rigid airfoil problem introduced in sec.3.1.1 and employed in sec.6.3 for the 2 DoFs
PowerFLOWR©-SimpackR© coupling.

The derivation for the problem considered is inspired to the work reported in [84]. It starts by
considering the dimensionless EoMs for the structural part of the pitching and plunging airfoil obtained
in sec.3.1.2 coupled with the dimensionless aerodynamic lift L∗ and moment M∗A terms provided by the
original Theodorsen model for a pitching axis location at the quarter-chord: 1 ξG
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For an explanation of the quantities employed in the above equations and the dimensionalization proce-
dure, the reader is reference to sec.3.1.3. If the expressions for the dimensionless lift and aerodynamic
moment are plugged into the structural system, the following hybrid time-reduced frequency aeroelastic
system of equations is obtained: 1 ξG
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The first step of the derivation consists in rewriting the complete aeroelastic system above in the
domain of the Fourier reduced frequency variable by applying the following substitutions h = h̃, ḣ = jω̂h̃
and ḧ = −ω̂2h̃ for the plunge DoF, as well as α = α̃, α̇ = jω̂α̃ and α̈ = −ω̂2α̃ for the pitch DoF.
The variable ω̂ is the dimensionless reduced frequency, defined as ω̂ = ω/ωα and related to the reduced
frequency k by means of the relation ω̂ = kÛ . This leads to the following system, completely defined in
the complex domain:

−ω̂2

 1 ξG

ξG r2
α − ξ2

E + 2ξEξG

h̃
α̃

+ Ω2

 1 ξE

ξE
r2
α

Ω2 + ξ2
E

h̃
α̃

 =

ω̂2

 1
2a

1
4a

1
4a + ξA

2a
3

16a + ξA
4a

h̃
α̃

− jω̂
 ÛC(k)

a
Û
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0 Û2C(k)

a

0 ξAÛ
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At this point, the above system is manipulated by keeping all the structural ω̂-dependent terms on the lhs
and by collecting all the aerodynamic k-dependent terms on the rhs into a unique E∗(k) dimensionless
aerodynamic-matrix. The matrix E∗(k) features both terms resulting from combinations of polynomials
in the k variable and complex elements due to the C(k) Theodorsen function, which introduces an infinite
number of aerodynamic lag-states related to the wake memory-effect. The later aspect is not an issue
for the V-g method, as the goal is to investigate the flutter boundary of the system, and not its dynamic
response or root-locus.

As carried out in sec.3.1.3, the two structural matrices on the lhs are labelled as M∗ (dimensionless
mass-matrix) and K∗ (dimensionless stiffness-matrix), in addition to a dimensionless vector of the pitch
and plunge DoFs x̃:

(
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Next, several further manipulations steps are required to convert the above compact formulation of the
system into the final formulation of the V-g method. The first step consists in multiplying the above
matrix equation by the factor1 1/ω̂2M∗−1 and in bringing all the resulting terms to the left. This leads
to the equation below: (

− I + 1
ω̂2M

∗−1K∗ − Û2

2aω̂2M
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)
x̃ = 0 (E.5)

In the second step, the above expression is multiplied by the inverse of the Ω2 matrix2, defined as
Ω2 = M∗−1K∗, obtaining the below result:(
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By rearranging the terms in the above equation, the final expression of the V-g method is obtained:[
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x̃ = 0 (E.7)

The final system is a typical eigenvalue problem for the A∗(k) matrix. However, the elements in the
matrix are not constant and they need to be real positive numbers. Therefore, finding the solution to
the problem det[I/ω̂2−A∗(k)] = 0 is equivalent to find the couple (kflt, ω̂flt) which leads to eigenvalues
for the matrix A∗(k) equal to 1/ω̂2, for a non-zero eigenvector ẑ.

In order to find the couple (kflt, ω̂flt), an iterative process is required where the eigenvalues of A∗(k)
are computed for a decreasing value of k. This means that the first value of k should be sufficiently large
to make sure that the search for a flutter velocity starts from very low inflow velocity values. The flutter
condition is met when there is at least one real positive eigenvalue among those returned by A∗(k) for
the given k. Once the k = kflr reduced frequency is found, then the flutter velocity is found as well,
namely Û = Ûf = ω̂flt/kflt with ω̂flt =

√
1/λ and λ the real-positive eigenvalue found.

The search algorithm implemented consists in a "for-loop" where the value of k is changed from the
initial guess k0 = 5.0 (which corresponds to a dimensionless velocity Û = 0.1308) by a step factor 0.001
for 4900 iterations. This leads to a maximum detectable value for the dimensionless velocity Û = 7.9582.
The flutter velocity has been found within this range3 at the 4838-th iteration corresponding to a value
for the reduced frequency kflt = 0.162 which eventually leads to ω̂flt = 0.8374 and Ûflt = 5.1695.
1The matrix M∗ can be inverted due to its symmetric and positive-defined character. This is related to the fact that the
mass matrix is linked to the kinetic energy.

2The matrix Ω2 is a matrix of squared frequencies. In fact, if the elastic and the mass center coincide, then the diagonal
terms of Ω2 get precisely ω2

α = kα/J and ω2
h = kh/m. Besides, this matrix can be inverted, since also K∗ is symmetric

and positive defined due to the close relation to the elastic energy.
3This range is employed as it works for the given values of the dimensionless problem parameters. For different conditions,
the range will most likely need to be modified.
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F
Remaining results

F.1. SimpackR© MBD setup verification

Figure F.1: Comparison between the time-histories of the dimensionless plunge velocity (top left), pitch velocity (top right),
plunge acceleration (bottom left) and pitch acceleration (bottom right) returned by the numerical reference solution and
the SimpackR© MBD simulation for the steady aeroelastic problem. Both solutions are computed by employing a timestep
dt̂ = 0.0001s under a dimensionless freestream velocity Û = 0.6849.
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Figure F.2: Numerical and SimpackR© kinematic states for the quasi-steady aeroelastic problem under a dimensionless
freestream velocity Û=0.6174.

Figure F.3: Numerical and SimpackR© kinematic states for the Theodorsen model with lag-states method under a dimen-
sionless freestream velocity Û=1.0746.
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F.2. Coupling demonstrator, 1 DoF problem
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Figure F.4: Plunge velocity ḣ for the demonstrator coupling (red lines) and reference numerical solution (black squares)
for three values of the coupling time-step. Freestream flow velocity U∞ = 100m/s and Tα = 0.2s.

-0.004

-0.002

 0

 0.002

 0.004

 0.006

 0  1  2  3  4  5

c
h..

/U
2

∞
  

[-
]

t/T
α
  [-]

∆Tcpl/Tα
 = 1/20

reference
coupling

-0.004

-0.002

 0

 0.002

 0.004

 0.006

 0  1  2  3  4  5

c
h..

/U
2

∞
  

[-
]

t/T
α
  [-]

∆Tcpl/Tα
 = 1/200

reference
coupling

-0.004

-0.002

 0

 0.002

 0.004

 0.006

 0  1  2  3  4  5

c
h..

/U
2

∞
  

[-
]

t/T
α
  [-]

∆Tcpl/Tα
 = 1/2000

reference
coupling

Figure F.5: Plunge acceleration ḧ for the coupling demonstrator (red lines) and reference numerical solution (black squares)
for three values of the coupling time-step Chord c = 1m, velocity U∞ = 100m/s and Tα = 0.2s.
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F.3. Coupling demonstrator, 2 DoFs problem
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Figure F.6: Pitch velocity α̇ for the coupling demonstrator (red line) against the reference numerical solution (black squares)
for three values of the coupling time-step, Tα = 0.1405s and pitch angular frequency ωα = 44.72rad/s.
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Figure F.7: Plunge velocity ḣ for the coupling demonstrator (red line) against the reference numerical solution (black
squares) for three values of the coupling time-step with Tα = 0.1405s and free-stream velocity U∞ = 52m/s.
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Figure F.8: Pitch acceleration α̈ for the coupling demonstrator (red line) against the reference numerical solution (black
squares) for three values of the coupling time-step with Tα = 0.1405s and pitch angular frequency ωα = 44.72rad/s.
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Figure F.9: Plunge acceleration ḧO for the coupling demonstrator (red line) against the reference numerical solution (black
squares) for three values of the coupling time-step with Tα = 0.1405s, c = 1m and U∞ = 52m/s.
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F.4. PowerFLOWR©-SimpackR© coupling, 1 DoF pitch-LRF
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Figure F.10: Time-histories of the plunge position h (c = 0.46), and acceleration ḧ (U∞ = 34.7223m/s) for test case #1:
amplitude of pitch motion A = 1◦, reduced frequency k = 0.11 and Tα = 0.385s.
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Figure F.11: Test case #2: A = 1◦, k = 0.22 and Tα = 0.192s.
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Figure F.12: Test case #3: A = 2◦, k = 0.11 and Tα = 0.385s.

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  1  2  3  4  5  6  7  8  9  10

h
/c

  
[-

]

t/T
α
  [-]

reference
coupling

-0.018

-0.014

-0.01

-0.006

-0.002

 0.002

 0.006

 0.01

 0.014

 0.018

 0  1  2  3  4  5  6  7  8  9  10

c
h..
/U

2
∞

  
[-

]

t/T
α
  [-]

reference
coupling

Figure F.13: Test case #4: A = 2◦, k = 0.22 and Tα = 0.192s.
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F.5. PowerFLOWR©-SimpackR© coupling, 1 DoF pitch body-forces
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Figure F.14: Time-histories of plunge position h (c = 0.46), and acceleration ḧ (U∞ = 34.7223m/s) for test case #1:
amplitude of pitch motion A = 1◦, reduced frequency k = 0.11 and Tα = 0.385s.
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Figure F.15: Test case #2: A = 1◦, k = 0.22 and Tα = 0.192s.
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Figure F.16: Test case #3: A = 2◦, k = 0.11 and Tα = 0.385s.
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Figure F.17: Test case #4: A = 2◦, k = 0.22 and Tα = 0.192s.
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F.6. PowerFLOWR©-SimpackR© coupling, 2 DoFs, #1 and #2
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Figure F.18: Case U∞ = 0.9Uflt with Tα = 0.1795s, c = 0.46m, ωα = 35rad/s, U∞ = 37.45m/s.
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Figure F.19: Case U∞ = 1.1Uflt with Tα = 0.1795s, c = 0.46m, ωα = 35rad/s, U∞ = 45.77m/s.
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F.7. PowerFLOWR©-SimpackR© coupling, 2 DoFs, #3 and #4
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Figure F.20: Case 99% the of V-g flutter velocity with Tα = 0.1795s, c = 0.46m, ωα = 35rad/s, U∞ = 41.20m/s.
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Figure F.21: Case 101% he of V-g flutter velocity with Tα = 0.1795s, c = 0.46m, ωα = 35rad/s, U∞ = 42.03m/s.
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