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3 Lund University, Lund, Sweden

4 Delft University of Technology, Delft, Netherlands
https://github.com/atonderski/neuro-ncap

Abstract. We present a versatile NeRF-based simulator for testing
autonomous driving (AD) software systems, designed with a focus on
sensor-realistic closed-loop evaluation and the creation of safety-critical
scenarios. The simulator learns from sequences of real-world driving sen-
sor data and enables reconfigurations and renderings of new, unseen
scenarios. In this work, we use our simulator to test the responses of
AD models to safety-critical scenarios inspired by the European New
Car Assessment Programme (Euro NCAP). Our evaluation reveals that,
while state-of-the-art end-to-end planners excel in nominal driving sce-
narios in an open-loop setting, they exhibit critical flaws when navigat-
ing our safety-critical scenarios in a closed-loop setting. This highlights
the need for advancements in the safety and real-world usability of end-
to-end planners. By publicly releasing our simulator and scenarios as
an easy-to-run evaluation suite, we invite the research community to
explore, refine, and validate their AD models in controlled, yet highly
configurable and challenging sensor-realistic environments.

Keywords: Autonomous driving · Closed-loop simulation · Trajectory
planning · Neural rendering

1 Introduction

Recent work on autonomous driving (AD) [22,23] suggests designing and training
a holistic neural network for mapping sensor inputs directly to a planned tra-
jectory. Compared to prior work that used modular software stacks, engineered
interfaces between modules, or handcrafted rules, this end-to-end approach has
several advantages. First, as the driving behavior is learned, the predicted tra-
jectories are expected to resemble how a typical human driver would act. Second,
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Fig. 1. The core idea in NeuroNCAP is to leverage NeRFs to realistically simulate many
safety-critical scenarios from a sequence of real-world data. Here we show the original
scenario, followed by examples of our three types of collision scenarios: stationary,
frontal, and side. The inserted safety-critical actor has been highlighted for illustration
purposes. We can generate hundreds of unique scenarios from each log by selecting
different actors, jittering their trajectories, and choosing different starting conditions
for the ego vehicle. Note that scenarios are not pre-generated, but rather obtained by
iteratively generating new images, computing a plan, and acting upon said plan.

the approach is scalable in the sense that more data leads to more robust as well
as generalizable driving performance [4,23] and in the sense that there is no need
to manually design intermediate interfaces or cost functions. The neural network
may be divided into modules, but the interfaces between them are learned in
order to mitigate information loss (Fig. 1).

Hu et al. [22] demonstrated that their end-to-end planner, UniAD, performed
well on the popular nuScenes [5] planning benchmark. This is an open-loop
benchmark, where the tested planner never influences the driving. Instead, the
plans are compared to the trajectory taken by the vehicle during data collec-
tion and a score is computed based on the similarity between the two. Codevilla
et al. [8], as well as Dauner et al. [11], shed some doubt about the correla-
tion between such an open-loop score and the actual driving performance. This
begs the question, how would state-of-the-art end-to-end planners fare if their
predicted policy would be acted upon? Unlike regular planners that can be eval-
uated in a closed-loop manner using straightforward object-level simulations,
end-to-end planners require complex sensor simulations to accurately predict
their behavior in real-world scenarios. This introduces significant challenges due
to the complexity and computational demands of high-fidelity sensor simulation.
Moreover, the nuScenes benchmark contains normal driving scenarios, in which
no collisions occur. It is unclear how state-of-the-art end-to-end planners would
perform in safety-critical scenarios, where a crash is likely unless swift corrective
action is undertaken.

In this work, we subject state-of-the-art end-to-end planners to closed-loop
evaluation in safety-critical scenarios. Given sensor data, planners predict a plan.
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The plan is then executed under the constraints of a vehicle model in order to
propagate the state of the ego-vehicle forward in time. Given the new state,
we use recent advances in neural rendering—NeRFs—to resolve the problem of
generating realistic sensor data. These three steps are then repeated until either
a crash occurs or we deem the scenario to be over. By executing the predicted
plan, we aim to reduce the gap between model evaluation and deployment. It is
possible that the neural renderer exacerbates the gap, if the rendered images are
not sufficiently realistic. We quantify to what extent the renderer affects the gap
by analyzing the intermediary perception outputs that are available in state-of-
the-art (SotA) end-to-end planners, such as UniAD [22] and VAD [23]. Moreover,
we ensure that replacing the real sensor data with rendered sensor data during
open-loop evaluation does not negatively affect the open-loop performance.

To generate safety-critical scenarios, we take inspiration from the European
New Car Assessment Protocol (Euro NCAP) for collision avoidance [14]. This
protocol comprises several scenario types that have been identified as safety-
critical. These scenario types are rare, but are likely to lead to a collision unless
the planner properly deals with them. We craft a subset of these scenarios by
altering recordings of scenes from the nuScenes dataset [5]. We evaluate the driv-
ing quality by whether there is a crash, and at what velocity that crash occurs.
Our benchmark should be viewed as a necessary but not sufficient condition for
high quality driving. To summarize, our contributions are as follows:

1. We release an open source framework for photorealistic closed-loop simulation
for autonomous driving.

2. We construct safety-critical scenarios, inspired by the industry standard Euro
NCAP, that cannot safely be collected in the real world.

3. Using the simulator and our scenarios, we design a novel evaluation protocol
that focuses on collisions rather than displacement metrics.

4. We show that two SotA end-to-end planners fail severely in our safety-critical
scenarios despite accurately perceiving the environment.

2 Related Work

End-to-End Driving Models: The autonomous driving task has traditionally
been divided into different modules—e.g., perception, prediction, and planning—
that are constructed individually [22,23,30]. Hu et al. [22] argue that this division
comes with a number of disadvantages: information loss across modules, error
accumulation, and feature misalignment. Jiang et al. [23] emphasize that a plan-
ning module might need access to the semantic information of the sensor data
that would not be present in a hand-crafted interface. These two works proceed
to argue in favor of end-to-end planning. The pioneering work of Pomerlau et
al. [32] proposes such a planner, where a single neural network is trained to map
sensor input to an output trajectory. Decades of neural network advancements
sparked new interest in end-to-end planning [4,7,9,10,33]. The black-box nature
of these planners, however, makes them difficult to optimize and their results
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hard to interpret [23]. Hu et al. [22] and Jiang et al. [23] propose two end-to-end
neural network planners with intermediary outputs, corresponding to those of
a modular approach. Their planners are divided into modules, but the module
interfaces are learned, consisting of deep feature vectors.

Open-Loop Evaluation of End-to-End Planners: Pomerleau et al. [32] eval-
uated their driving model by letting it drive a real-world test-vehicle. Such a
setup makes large-scale testing costly and results may be hard to reproduce.
Recent works on end-to-end planning [22,23] instead evaluate in open loop, where
models predict a plan based on recorded sensor data. The predicted plans are
never executed and instead, the actions are fixed to whatever was recorded. This
setup has also been used in works on object-level planning [12,15,27], which
assume perfect perception and feed both a map of the static environment as
well as tracks of dynamic objects into the model. Such open-loop evaluation
constitutes a gap between evaluation and real-world deployment. Moreover, per-
formance is usually measured as the distance between the predicted plan and
the trajectory driven by the vehicle in the recording [12,15,22,23,27]. While an
error of zero corresponds to human-level driving, it is not necessarily true that
a lower error is better. This can be realized by considering a scenario where two
different trajectories are equally good. These issues were studied by Codevilla
et al. [8] and they found that open-loop evaluation is not necessarily correlated
with actual driving quality. Dauner et al. [11] draw similar conclusions.

Closed-Loop Evaluation and Simulation: Given the aforementioned issues
of open-loop evaluation, closed-loop simulation becomes attractive. Several
object-level simulators have been proposed [2,6,17,25]. These simulators do not
generate sensor data, however, which makes it impossible to test end-to-end plan-
ners in closed loop. A number of hand-crafted graphical simulators have been
proposed [13,35,36]. The challenge for such simulators is twofold: it is difficult
to create realistic-looking images and it is hard to create graphical assets that
capture the variety of the real world. Work on world models [18,39] demonstrate
that the future of a scene—e.g., an Atari game—can be predicted in latent space
and that vectors in latent space can be decoded into sensor input. Hu et al. [20]
build a world-model from a large-scale real-world automotive dataset. Amini et
al. [3] propose VISTA, in which novel views can be synthesized around the local
trajectory by unprojecting the closest image via predicted depth, and repro-
jecting. Yang et al. [42] propose to use neural radiance fields (NeRF) to create
photorealistic sensor input of a scene. The method was subsequently improved
by Tonderski et al. [37] with more accurate sensor modeling and higher rendering
quality, particularly for the 360-degree setting considered here.

New Car Assessment Programs: The New Car Assessment Program
(NCAP) was introduced in 1979 by the U.S. Department of Transportation’s
National Highway Safety Administration in order to provide consumers with
information on the relative safety potential of automobiles [19]. NCAP crash-
tested vehicles and scored vehicles based on the probability of serious injury.
A similar European protocol was proposed in 1996, the European New Car
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Fig. 2. Our closed-loop simulation engine comprises four parts. First, given a driving
log, a neural renderer (NeRF) provides photo-realistic images given the ego-vehicle
state. Second, an AD model (e.g., the end-to-end planner UniAD [22]) uses these to
predict a future ego-trajectory. Third, a controller estimates acceleration and steering
signals. Finally, a vehicle model propagates the ego-vehicle state one step into the
future. This process is then iterated to achieve closed-loop simulation. Blue indicates
simulator, green indicates AD system. (Color figure online)

Assessment Programme (Euro NCAP). In 2009, Euro NCAP was overhauled in
order to also include tests of emerging crash avoidance systems [38]. Initially,
this included electronic stability control and speed assistance systems, but this
was later extended to include additional systems, such as autonomous emer-
gency braking [38] and autonomous emergency steering [14]. In this work, we
take inspiration from the Euro NCAP automatic collision avoidance assessment
protocol [14]. This protocol provides scenarios in which a crash will occur unless
action is taken. To obtain a full score, the vehicle needs to brake or steer to
avoid the accident. Partial scores are awarded if the impact velocity is suffi-
ciently reduced.

3 Method

Our end-to-end planning evaluation protocol comprises a closed-loop-simulator
(see Sect. 3.1) and a collision-focused evaluation protocol (see Sect. 3.2).

3.1 Closed-Loop Simulator

Our closed-loop simulator repeatedly performs four steps. First, high-quality
camera input is rendered given the state and camera calibration of the ego
vehicle. The renderer is constructed from a log of a driving vehicle. Second, the
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end-to-end planner predicts a future ego-vehicle trajectory given the rendered
camera input and the ego-vehicle state. Third, a controller converts the planned
trajectory to a set of control inputs. Fourth, a vehicle model propagates the
ego-state forward in time given the control inputs. This procedure is illustrated
in Fig. 2. Next, we elaborate on each of the four steps.
Neural Renderer: In order to simulate novel sensor data, we adopt a neural
renderer [29]. NeRFs learn an implicit representation of the 3D environment
from a log of collected real-world data. Once trained, NeRFs can render sensor-
realistic novel views from said scene. Recent advances add the ability to also edit
the dynamic objects in the scene by changing their corresponding 3D bounding
boxes [31]. Specifically, actors can be removed, added, or set to follow novel
trajectories, which in our case enables the creation of safety-critical scenarios.
For example, to simulate a rare but critical safety scenario, a vehicle that is
originally moving in an adjacent lane can be positioned to be stationary and in
the same lane as the ego-vehicle. This novel situation necessitates the ego-vehicle
to either brake or execute a precise overtaking maneuver.

Two things should be noted. First, the recently proposed NeuRAD [37] also
supports the rendering of LiDAR data. However, as state-of-the-art end-to-end
planners consume only camera data, we focus only on camera data in this work.
Second, as we show in our experiments, the domain gap introduced by modern
NeRFs compared to real data is sufficiently small for the perception parts of
end-to-end planners to still function with high performance. However, we expect
this gap to be reduced further with future developments in neural rendering.
AD Model: Recent works on end-to-end planning [21–23] describe a system that
consumes (i) raw sensor data; (ii) the ego-vehicle state; and (iii) a high-level plan
to predict a planned trajectory. The planned trajectory comprises waypoints at
some frequency and with some time horizon. It should be noted that while we
primarily aim to analyze state-of-the-art end-to-end planners, this module can
be replaced with any type of planner, e.g., a modular detector-tracker-planner
pipeline.
Controller: In order to apply the vehicle model, the waypoints need to be
converted to a sequence of control signals, corresponding to a sequence of steering
angle (δ) and acceleration (a) commands. Following Caesar et al. [24], we achieve
this with a linear quadratic regulator (LQR). Note that while we only analyze
planners that output waypoints, the planner could instead directly output a
sequence of control signals.
Vehicle Model: Given a set of control signals, generated from the planned
trajectory, the vehicle state is propagated through time. To this end, we follow
prior closed-loop simulators [6,24] and adopt a discrete version of the kinematic
bicycle model [34]. It can formally be described as

S =

⎛
⎜⎜⎝

x
y
θ
v

⎞
⎟⎟⎠ ,

dS

dt
=

⎛
⎜⎜⎝

v cos θ
v sin θ
v tan δ

L
a

⎞
⎟⎟⎠ . (1)
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The state S is composed of x, y, θ, and v, where x and y is the longitudinal and
lateral position; θ the rotation; and v the speed of the vehicle. Furthermore, L
is the wheelbase of the vehicle, and δ and a are the control signals. We adopt
control signal limits and the wheelbase based on the vehicle that was used when
collecting the data. Note that x, y, and θ live in a global coordinate system,
whereas v, L, δ, and a are values. Further, we limit acceleration to ±6 m/s2,
matching maximum braking in EuroNCAP CCRb [14] and in line with [26].

3.2 Evaluation

In contrast to common evaluation practices—i.e., averaging performance across
large-scale datasets—we instead focus our evaluation on a small set of carefully
designed safety-critical scenarios. These scenarios have been crafted such that
any model that cannot successfully handle all of them, should be considered
unsafe. We have taken inspiration from the industry standard Euro NCAP test-
ing [14] (see Sect. 2) and define three types of scenarios, each characterized by
the behavior of the actor that we are about to collide with: stationary, frontal,
and side. Following the Euro NCAP nomenclature, we refer to this actor as the
target actor. The aim is to control the ego-vehicle to avoid a collision with the
target actor or at least decrease the collision velocity. A collision event is defined
as having nonzero overlap between the bounding boxes of the ego vehicle and
the target actor.

For each scenario type, we create multiple scenarios. Each scenario is based
on data collected from around 20 s of real-world driving. The ego-vehicle and
target actor states are initialized such that if current speeds and steering angles
are maintained, a collision will occur at approximately 4 s into the future. All
non-stationary actors are removed from the scene and we randomly select one of
these to be the target actor, taking into consideration whether the actor has been
observed sufficiently closely, and under the necessary angles, to produce realistic
renderings. As our renderer is limited to rigid actors, we exclude pedestrians from
this selection. Finally, we randomly jitter the position, rotation, and velocity
of the target actor within scenario-specific intervals. During evaluation, we run
each scenario for a large number of runs (with a fixed random seed) and compute
average results. Next, we describe the characteristics of each type of scenario.
Stationary: This is a relatively simple type of scenario where a stationary target
actor has been placed in the ego-lane. The target vehicle can be placed with
an arbitrary rotation, but will remain stationary throughout the scenario. This
means that the ego-vehicle can either commit to a harsh break or a steering
maneuver to avoid a crash. See Fig. 3a for an illustration.
Frontal: The frontal scenarios comprise a target actor that is driving in the
opposite direction and has drifted over into the ego-lane on a collision path with
the ego-vehicle. Thus, the ego-vehicle cannot avoid crashing by breaking, only
reducing the impact speed. To completely avoid a collision, the ego-vehicle must
instead perform a steering maneuver. See Fig. 3b for an illustration.
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Fig. 3. Illustration of the different scenario types used in the NeuroNCAP evaluation
protocol. There are multiple actions that can lead to a successfully completed scenario
e.g., harsh breaking or a steering maneuver. To increase the robustness of the test and
allow for multiple runs, we introduce small random perturbations to the target actor.

Side: The side-collision scenarios feature a target actor crossing our lane from a
perpendicular direction. If the current velocity of the ego-vehicle is maintained,
there will be a side-collision. The ego-vehicle can avoid collision either by braking
for the oncoming target actor, or by conducting a slight steering maneuver while
speeding past the target actor. See Fig. 3c for an illustration.
NeuroNCAP Score: For each scenario, a score is computed. A full score is
achieved only by completely avoiding collision. Partial scores are awarded by
successfully reducing the impact velocity. In spirit of the 5-star Euro NCAP
rating system [14] we compute the NeuroNCAP score (NNS) as

NNS =

{
5.0 if no collision
4.0 · max(0, 1 − vi/vr) otherwise

, (2)

where vi is the impact speed as the magnitude of relative velocity between ego-
vehicle and colliding actor, and vr is the reference impact speed that would occur
if no action is performed. In other words, the score corresponds to a 5-star rating
if collision is entirely avoided, and otherwise the rating is linearly decreased from
four to zero stars at (or exceeding) the reference impact speed.

4 Experiments

First, we start by outlining the details of our experiments in Sect. 4.1. Next, we
show the quantitative results from our NeuroNCAP evaluation in Sect. 4.2 and
some qualitative examples in Sect. 4.3. Last, we show results from our real-to-sim
study in Sect. 4.4, building more confidence in the results from the NeuroNCAP
evaluation.
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4.1 Experimental Setting

Dataset: While there are many datasets targeting autonomous driving [1,16,
28,40,41], nuScenes [5] has received the most widespread adaptation for end-
to-end planning. It features urban environments with highly interactive scenar-
ios, making it suitable for our safety-critical scenario generation. Thanks to its
widespread adaptation it also allows us to use official implementations and net-
work weights of the models we evaluate. NuScenes is divided into 1000 sequences,
out of which 150 are reserved for validation. From these 150, we choose 14 diverse
sequences—deemed to be suitable based on the behavior of agents present in the
scene—to serve as the basis for our safety-critical scenarios.
Scenarios: Each scenario is designed by hand, considering which actors are
suitable for the given sequence, the most reasonable collision trajectories, as
well as defining allowed ranges for the different kinds of randomization. During
evaluation we run each scenario 100 times (with fixed random seed) and average
the results. Not all sequences can be used for all types of scenarios, as for instance
we cannot simulate a realistic side collision on a single straight road. We therefore
select suitable sequences for each scenario type. For more details, and qualitative
examples of each scenario, we refer to the supplementary material.
Neural Renderer: As our renderer, we opt to use NeuRAD [37], a SotA neural
renderer developed specifically for autonomous driving and verified to work well
with nuScenes. As we wish to maximize the reconstruction quality, we use the
larger configuration (NeuRAD-L), and train for 100k steps with default hyper-
parameters. As pose information in nuScenes is limited to the bird’s eye view
plane, we employ pose optimization to recover the missing information. Finally,
we adopt actor flipping along the symmetry axis [42] to enable realistic rendering
of actors from all viewpoints.
AD Models: We evaluate two current SotA end-to-end driving models, namely
UniAD [22] and VAD [23], according to our proposed evaluation protocol. In
both cases, we make use of the pre-trained weights made available by the authors,
trained on the same dataset, without any alterations to the configuration of said
models. Both of these models consume 360◦ camera input, along with can-bus
signals and a high-level command: right, left, or straight, and output a sequence
of future waypoints up to 3 s into the future. While this is shorter than the
initial time-to-collision (TTC) in our scenarios, it is not an issue as the evasive
maneuver can, and should, begin before the final waypoint intersects the current
actor position. Additionally, our scenarios are designed to be quite lenient, so
that a plan at TTC < 3 s can still successfully avoid collision.

One major difference between these two models is that UniAD applies a
collision-avoidance optimization post-processing step to their predicted trajec-
tory. The optimization is performed using a classical solver with a cost-function
based on predicted occupancy and the non-optimized output trajectory. This
optimization was shown to drastically decrease the collision-rate when evaluated
in open loop, and we can now study it in the more interesting closed-loop setting.
To enable more directly comparable analysis, we implement the same collision
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Table 1. NeuroNCAP evaluation results. End-to-end planners fail in novel, critical
scenarios. Trajectory post-processing, as proposed in UniAD, helps significantly. The
näıve baseline uses the perception of either UniAD (U) or VAD (V) to determine
braking. †Corresponds to the model’s original setting.

Model Post-proc. NeuroNCAP Score ↑ Collision rate (%) ↓
Avg. Stat. Frontal Side Avg. Stat. Frontal Side

Base-U – 2.65 4.72 1.80 1.43 69.90 9.60 100.00 100.00

Base-V – 2.67 4.82 1.85 1.32 68.70 6.00 100.00 100.00

UniAD x 0.73 0.84 0.10 1.26 88.60 87.80 98.40 79.60

VAD† x 0.66 0.47 0.04 1.45 92.50 96.20 99.60 81.60

UniAD† � 1.84 3.54 0.66 1.33 68.70 34.80 92.40 78.80

VAD � 2.75 3.77 1.44 3.05 50.70 28.70 73.60 49.80

avoidance optimization for VAD. However, as VAD does not directly predict
future occupancy, we rasterize their predicted future objects and use this as the
future occupancy. Note that this approach possibly overestimates occupancy, as
all future modes are treated as equally likely.

For comparison we implement a näıve baseline method based on the percep-
tion outputs of UniAD/VAD. The planning logic is simply a constant velocity
model unless we observe an object in a corridor in front of the ego-vehicle, in
which case we perform a braking maneuver. The corridor is defined as ±2 meters
in the lateral direction and ranging from 0 to 2vego meters in the longitudinal
direction, i.e. we brake if we have TTC < 2 s with an object in front of us.

4.2 NeuroNCAP Results

We evaluate VAD [23], UniAD [22], and the näıve baseline on our safety-critical
scenarios. We also evaluate both methods with and without perception-based
trajectory post-processing. We report the NeuroNCAP score (2) and collision
rate per scenario type in Table 1. Note that the collision rate is not averaged over
time, but is defined as the ratio of scenarios that passed without any collisions.

Surprisingly, we find that the plan predicted directly by the network, i.e.
without post-processing, is extremely unsafe and crashes most of the time, even
in the simple stationary scenarios. For reference, the näıve baseline achieves an
almost perfect score in the stationary setting, showing both that the perception
of these models is not at fault, and that very simple logic can avoid collision.
Trajectory post-processing further confirms this, reducing the collision rate dra-
matically in the stationary setting. Side and frontal scenarios are more difficult
to handle with this rule-based logic, and the baseline crashes 100% of the time,
albeit with a lower impact speed (thus scoring higher). Surprisingly, the end-
to-end methods again show almost no reaction to the impending collision, with
98–99% collision rate in frontal scenarios. Trajectory post-processing improves
safety somewhat, but is not nearly as effective as in the stationary setting.

We believe that these results highlight a drastic flaw in the design or training
of current end-to-end autonomous driving systems. Reducing the contradictions
between the predicted plan and the auxiliary outputs is a promising area of
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Fig. 4. Qualitative examples of three NeuroNCAP scenarios, with projected planning
output (green, before controller) and the actual designed future trajectory of the target
actor (blue). In some cases the planner reacts successfully (a), does not react at all
(b), or attempts to avoid collision but fails (c). Our simulator can accurately render
complex actors (a), but sometimes exhibits unrealistic artifacts for close objects (b)
and (c). (Color figure online)

improvement for future end-to-end planners. Notably, VAD actually attempts
to address this by using multiple loss terms that directly encourage the model
to output a plan that is consistent with its perception and prediction outputs.
However, as our experiments show, this alignment step does not generalize well,
at least not to this type of safety-critical scenario.

4.3 Qualitative Results

We augment the quantitative analysis with rendered front-camera images from
each scenario type in Fig. 4, with overlaid projections of the planned trajectories.
Figure 4a depicts a successful avoidance maneuver, while also highlighting our
ability to render complex entities such as a motorcyclist. However, without post-
processing, the planners are prone to seemingly ignoring the safety-critical event,
as seen in Fig. 4b.

To further examine this issue, Fig. 5 presents the perception and planning
outputs across various scenarios, demonstrating that UniAD, without post-
processing, frequently plans hazardous trajectories despite robust perception
capabilities (left). This indicates that the high collision rate is not due to a
real-to-sim gap induced by our renderer, but rather due to the planner not han-
dling the covariate shift between the training data and our safety-critical scenar-
ios. When post-processing is enabled (right), trajectories are adjusted to avoid
collisions according to the model’s internal perception and prediction outputs.
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Fig. 5. UniAD perception and planning output for three different scenarios, with (right)
and without (left) trajectory post-processing. Highlighting unsafe planning despite
strong perception, as well as strengths and weaknesses of post-processing. The plot
features ground truth objects (grey) and predicted objects (class dependent color),
and their predicted future trajectories. Moreover, we show the ego-vehicle (black), its
planned trajectory (black) and the reference trajectory it is steering towards (red).
(Color figure online)

This can result in a few different outcomes. In some cases, such as in Fig. 5a, this
is able to completely prevent a collision by slowing down and/or steering around
the target. However, the optimization does not adequately consider the extent of
the ego-vehicle, sometimes causing the adjustments to be too small, resulting in
glancing collisions as can be seen in Fig. 5b. Finally, due to not considering the
trajectory holistically, and only optimizing each waypoint individually, the result
is sometimes catastrophic, as seen in Fig. 5c and Fig. 4c. Here, the waypoints are
repelled from the object in the opposite direction, actually causing the vehicle
to steer into the target actor and accelerate right before impact.

4.4 Simulation Gap Study

One important—if not the most important—concern of doing testing in sim-
ulation is to what degree the results transfer to the real world. Therefore, we
measure the real-to-sim gap across three crucial facets of the driving system—
perception, prediction, and planning—in both open and closed-loop settings.
Replay Real-to-Sim (Open-Loop): The authors of NeuRAD [37] show that
the perception gap between rendered and real images is very small, at least
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Table 2. Real-to-sim evaluation in open loop on our 14 nuScenes sequences, using typ-
ical planning and detection metrics. ∗Computed over VAD’s range for fair comparison
between models.

Model Modality ADE @ T (m) ↓ CR @ T (%) ↓ Detection ↑
1.00 s 2.0 s 3.0 s 1.00 s 2.0 s 3.0 s NDS∗

UniAD original 0.44 0.75 1.16 0.00 0.12 0.21 0.490

UniAD simulated 0.47 0.80 1.24 0.00 0.12 0.24 0.489

VAD original 0.43 0.71 1.01 0.00 0.08 0.11 0.449

VAD simulated 0.44 0.76 1.16 0.00 0.00 0.08 0.413

Table 3. Target actor recall in different ranges and at different times in the future. Note
that the model consistently has a good understanding of the target actors’ dynamics
as shown by the high recall during future prediction.

Scenario Model Recall @ 0 s ↑ Recall @ 1 s↑ Recall @ 2 s↑ Recall @ 3 s ↑
5–15 m 15–25 m 25–35m 5–15m 15–25 m 25–35 m 5–15m 15–25m 25–35 m 5–15 m 15–25m 25–35m

Stationary UniAD 0.97 0.98 0.89 0.94 0.95 0.84 0.94 0.93 0.76 0.94 0.90 0.69

VAD 1.00 0.96 0.70 0.97 0.87 0.64 0.93 0.82 0.60 0.91 0.80 0.57

Frontal UniAD 0.83 0.97 0.90 0.82 0.96 0.90 0.80 0.93 0.83 0.77 0.91 0.73

VAD 0.96 0.97 0.70 0.91 0.93 0.69 0.83 0.86 0.63 0.65 0.69 0.54

Side UniAD 0.92 0.96 0.65 0.92 0.96 0.65 0.90 0.95 0.62 0.72 0.63 0.56

VAD 0.90 0.64 0.44 0.87 0.64 0.40 0.82 0.62 0.38 0.56 0.51 0.36

in terms of 3D object detection and relative depth estimation. However, this
study was only partially performed on nuScenes, and crucially, did not consider
planning metrics, which is what is most relevant in this work. Therefore, we
analyze the open-loop real-to-sim gap of VAD and UniAD on the full sequences
that our scenarios are based on. In Table 2, we report the standard planning
metrics Average Displacement Error (ADE) and Collision Rate (CR) metrics,
computed over 1, 2, and 3 s into the future. We also present the perception real-
to-sim gap in terms of NDS, utilizing the auxiliary detection outputs from each
model. Our analysis is limited to VAD’s maximum range of ±30m and excludes
pedestrians as they are not utilized in any of our scenarios (and explicitly not
modeled by our renderer).

The displacement error is very similar between original and rendered images,
indicating a minimal real-to-sim gap in the open-loop setting. In terms of collision
rate, both VAD and UniAD show similar or lower collision rates on rendered
images. In terms of detection performance, UniAD shows practically identical
performance on real and simulated data, whereas VAD has a gap of roughly
3 points in terms of NDS. However, we argue that this is within acceptable
margins, especially as most evaluated objects are farther away and thus less
visible than our inserted target actors.
Scenario Real-to-Sim (Closed-Loop): The previous study was performed
on the original sequences, where ground truth is readily available for perception,
prediction, and planning. However, we also study the behavior of the models in
our closed-loop scenarios, where we have edited the actors and can observe the
scene from novel views. Particularly, we aim to verify that the model is able to
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accurately perceive and predict the motion of the inserted actor that is causing
the criticality of the scenario. Thus, we evaluate metrics related to the estimation
of these actors, considering recall at present (0 s) for perception and recall at
future times for prediction. In calculating recall, we define a true positive as a
detection or future prediction with either a non-zero overlap or a center distance
smaller than 2 m with the target actor. This approach is deliberately lenient
to distinguish inherent perception uncertainty in 3D estimation from failures
induced by rendering artifacts. We compute and average these metrics for all
our scenarios and present them on a per-range-to-actor basis in Table 3.

The results in Table 3 indicate that the model in most cases has a good
understanding of the current and future states of the target actor. With high
recall scores (>80%) in the most safety-critical ranges (5–25 m to the target-
actor), the planner should be able to plan a safe collision avoidance maneuver.
Note that VAD has a range of ±30 meters in the longitudinal direction and ±15
meters in the lateral direction. This can be seen in the overall decreased recall
rate in the 25–35 m range, and in the 15–25 m range in the side scenarios.

5 Limitations

We see the following limitations. First, the neural renderer is limited in the scenes
and scenarios, e.g., no rain, it is able to accurately render. Moreover, large devia-
tions in ego-vehicle trajectory and very close objects lead to visual artifacts (see
Fig. 4). Second, we adopt a simplified vehicle model, which does not model, e.g.,
delays, friction, or suspension. Further, we do not consider road surface aspects
such as bumps, potholes, gravel, etc. Third, we have adopted a single controller
for all models, even though they are tightly coupled. Our evaluation protocol
allows for submitting AD models that directly output control signals. Fourth,
the neural renderer is unable to deal with deformable objects, such as pedestri-
ans. We hope that further advances in neural rendering will lift this restriction
and enable a new set of safety-critical scenarios focusing on vulnerable road users.
Fifth, the target actor follows a predetermined trajectory, without dynamically
reacting to the ego-vehicle. While this follows the Euro NCAP setting, we believe
that future scenarios with multiple actors would require reactive behavior.

6 Conclusion

In conclusion, our simulation environment offers a novel approach for evaluat-
ing the safety of autonomous driving models, drawing on real-world sensor data
and Euro NCAP-inspired safety protocols. Through the NeuroNCAP frame-
work, which includes stationary, frontal, and side collision scenarios, we have
exposed significant vulnerabilities in current SotA planners. These findings not
only underline the urgent need for advancements in the safety of end-to-end
planners but also suggest promising paths for future research. By making our
evaluation suite openly available to the wider research community, we aim to cat-
alyze progress towards safer autonomous driving. Looking ahead, we anticipate
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evolving the suite to tackle a wider range of scenarios, integrating more refined
vehicle models, and employing advanced neural rendering techniques, thereby
setting new benchmarks for safety evaluation.
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10. Codevilla, F., Santana, E., López, A.M., Gaidon, A.: Exploring the limitations
of behavior cloning for autonomous driving. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 9329–9338 (2019)

11. Dauner, D., Hallgarten, M., Geiger, A., Chitta, K.: Parting with misconceptions
about learning-based vehicle motion planning. In: 7th Annual Conference on Robot
Learning (2023). https://openreview.net/forum?id=o82EXEK5hu6

12. Deo, N., Wolff, E., Beijbom, O.: Multimodal trajectory prediction conditioned
on lane-graph traversals. In: Conference on Robot Learning, pp. 203–212. PMLR
(2022)

https://www.nsc.liu.se/
http://arxiv.org/abs/1604.07316
https://doi.org/10.1007/978-3-030-01267-0_15
https://openreview.net/forum?id=o82EXEK5hu6


176 W. Ljungbergh et al.

13. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: Carla: an open urban
driving simulator. In: Conference on Robot Learning, pp. 1–16. PMLR (2017)

14. EuroNCAP: Assessment Protocol - Safety Assist - Collision Avoidance
(2023). https://www.euroncap.com/media/79866/euro-ncap-assessment-protocol-
sa-collision-avoidance-v104.pdf

15. Gao, J., et al.: Vectornet: encoding HD maps and agent dynamics from vectorized
representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 11525–11533 (2020)

16. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the Kitti
vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3354–3361. IEEE (2012)

17. Gulino, C., et al.: Waymax: an accelerated, data-driven simulator for large-scale
autonomous driving research. Adv. Neural Inf. Process. Syst. 36 (2024)

18. Hafner, D., Lillicrap, T., Ba, J., Norouzi, M.: Dream to control: learning behaviors
by latent imagination. In: International Conference on Learning Representations
(2019)

19. Hershman, L.L.: The us new car assessment program (NCAP): past, present and
future (2001)

20. Hu, A., et al.: Gaia-1: a generative world model for autonomous driving. arXiv
preprint arXiv:2309.17080 (2023)

21. Hu, S., Chen, L., Wu, P., Li, H., Yan, J., Tao, D.: ST-P3: end-to-end vision-based
autonomous driving via spatial-temporal feature learning. In: Avidan, S., Brostow,
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