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SUMMARY

This thesis provides a comprehensive research of both the mechanics and thermody-
namics of suspended two-dimensional (2D) membranes, such as tunable mechanical
resonance, membrane deformation, heat transport, phonon scattering, and energy dis-
sipation. These characteristics make nanomechanical resonators, made of a suspended
2D membrane, promising candidates for both fundamental studies and engineering ap-
plications. This thesis is composed of eight chapters in total.

In Chapter 1, we give an overview of the fields of 2D materials and nanomechan-
ical resonators. We emphasize the significant benefits of using 2D materials for more
sensitive and accurate nano- devices and systems, thus to interpret our motivation for
investigating the mechanics and thermodynamics of suspended 2D membranes in this
thesis.

In Chapter 2, we first introduce the method for suspending 2D membranes over cav-
ities in a substrate to fabricate nanomechanical resonators. Afterwards, we present the
typical techniques to characterize the basic properties of the fabricated devices, such
as Atomic Force Microscope and Raman Microscope. Optomechanical measurement,
achieved by a laser interferometry setup, is highlighted, which allows us to measure the
resonance frequency, quality factor, thermal time constant and thermal expansion am-
plitude of 2D nanomechanical resonators.

The following Chapter 3 to Chapter 7 are the primary research contents of this thesis.
Chapter 3 and Chapter 4 mainly focus on the mechanics of suspended 2D membranes.
We propose a novel fabricating route for 2D heterostructure resonators based on Atomic
Layer Deposition (ALD) technique in Chapter 3. The fabricated ALD MoS2/Graphene
devices hold comparable mechanical performance to their exfoliated counterparts,
while showing a lower interface dissipation. Chapter 4 deals with the effect of thermally-
induced buckling on the mechanical behaviours of 2D resonators, including the turning
of resonance frequency and the enhancement of photothermal response at buckling
bifurcation point.

Chapter 5 and Chapter 6 move onto the thermodynamics of suspended 2D mem-
branes. Chapter 5 provides an optomechanical approach for characterizing the heat
thermal properties of the membrane, including thermal expansion coefficient, spe-
cific heat and in-plane thermal conductivity. However, this given methodology cannot
explain the experimentally observed two orders-of-magnitude larger than expected
thermal time constant in graphene resonators. To solve this, we introduce a phononic
scattering model is built in Chapter 6, where we attribute the larger thermal time con-
stant to the strong scattering of flexural acoustic phonons at the boundary of graphene
membrane between its suspended and supported regions. We induce surface tension in
graphene resonator by electrostatic deflection to validate the model experimentally and
realize a substantial tuning on the thermal transport.
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Chapter 7 gives an outlook to our on-going work which could potentially have a sig-
nificant impact in the domains of 2D mechanics and thermodynamics. We characterize
the thermal interface conductance in a FePS3/WSe2 heterostructure resonator by com-
bining optomechanical measurements with COMSOL simulations. Finally, we conclude
with Chapter 8 which summarizes all findings in this thesis.



SAMENVATTING

Deze scriptie biedt een uitgebreid onderzoek naar zowel de mechanica als de thermo-
dynamica van gesuspendeerde tweedimensionale (2D) membranen, zoals regelbare
mechanische resonantie, membraandeformatie, warmtetransport, fononverstrooiing
en energiedissipatie. Deze kenmerken maken nanomechanische resonatoren, gemaakt
van een hangend 2D-membraan, veelbelovende kandidaten voor zowel fundamentele
studies als technische toepassingen. Deze scriptie bestaat in totaal uit acht hoofdstuk-
ken.

In Hoofdstuk 1 geven we een overzicht van het vakgebied van 2D-materialen en na-
nomechanische resonatoren. We benadrukken de aanzienlijke voordelen van het ge-
bruik van 2D-materialen bij de productie van nanodevices en -systemen, en zo inter-
preteren we onze motivatie om de mechanica en thermodynamica van zwevende 2D-
membranen in deze scriptie te onderzoeken.

In Hoofdstuk 2 introduceren we eerst de methode om 2D-membranen over holtes in
een substraat te spannen om Nano mechanische resonatoren te fabriceren. Vervolgens
presenteren we de gebruikelijke technieken om de basiskenmerken van de gefabriceerde
apparaten te karakteriseren, zoals de Atomaire kracht microscoop en de Raman micro-
scoop. Er word vooral gefocust op optomechanische metingen, uitgevoerd met een laser
interferentie opstelling, waarmee we de resonantiefrequentie, kwaliteitsfactor, thermi-
sche tijdsconstante en thermische uitzettingsamplitude van 2D-nanomechanische re-
sonatoren kunnen meten.

De daaropvolgende hoofdstukken 3 tot en met 7 vormen Het hoofd onderzoekson-
derwerp van deze scriptie. Hoofdstuk 3 en hoofdstuk 4 richten zich voornamelijk op de
mechanica van gesuspendeerde 2D-membranen. In hoofdstuk 3 stellen we een nieuwe
fabricage methode voor 2D-heterostructuurresonatoren voor op basis van de Atomic
Layer Deposition (ALD) techniek. De gefabriceerde ALD MoS2/Graphene-preparaten la-
ten vergelijkbare mechanische eigenschappen zien als hun geëxfolieerde tegenhangers,
met een lagere interface-dissipatie . Hoofdstuk 4 behandelt het effect van thermisch ge-
ïnduceerde opbolling op het mechanisch gedrag van 2D-resonatoren, inclusief de ver-
andering in resonantiefrequentie en de verbetering van de fotothermische respons op
het bifurcatiepunt van de opbolling.

Hoofdstuk 5 en Hoofdstuk 6 gaan over de thermodynamica van gesuspendeerde 2D-
membranen. Hoofdstuk 5 biedt een optomechanische methode om de thermische ei-
genschappen van het membraan te karakteriseren, waaronder de thermische uitzet-
tingscoëfficiënt, specifieke warmte en thermische geleidbaarheid. Deze gegeven metho-
dologie kan echter de experimenteel waargenomen thermische tijdsconstante die twee
ordes van grootte meer is dan verwacht in grafeen resonatoren niet verklaren. Om dit
op te lossen, introduceren we in Hoofdstuk 6 een fononisch verstrooiingsmodel , waar-
bij we de grotere thermische tijdsconstante toeschrijven aan de sterke verstrooiing van
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flexurale akoestische fononen aan de rand van het grafenmembraan tussen zijn gesus-
pendeerde en ondersteunde regio’s. We veroorzaken oppervlaktespanning in de grafeen
resonator door het membraan te buigen door er elektrostatisch aan te trekken, om het
model experimenteel te valideren en een aanzienlijke afstembaarheid op het warmte-
transport te realiseren.

Hoofdstuk 7 werpt een blik op ons lopende werk dat mogelijk een aanzienlijke im-
pact zou kunnen hebben op de domeinen van 2D-mechanica en thermodynamica.
We karakteriseren de warmtegeleiding door het interface in een FePS3/WSe2 hetero-
structuurresonator door optomechanische metingen te combineren met een COMSOL-
simulatie. Tot slot sluiten we af met Hoofdstuk 8, waarin we alle bevindingen in deze
scriptie samenvatten.
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1
INTRODUCTION

In this chapter, we give a overview of background and current status of two-dimensional
(2D) materials and nanomechanical resonators. We provide a motivation for investigat-
ing mechanics and thermodynamics of suspended 2D membranes in this thesis.
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a b c

d e f

Graphene hBN TMDs

BP XMenes Oxide

Figure 1.1: Atomic structure of types of 2D materials. a Graphene. b Hexagonal-Boron Nitride (hBN). c Tran-
sition metal dichalcogenides (TMDs). d Black phosphorus (BP). e MXenes; f Transition metal oxides.

O VER the past century, the aim of ever-smaller devices and systems with high-
power integration has motivated substantial research efforts, produced significant

breakthroughs, and drove scientists into hitherto uncharted fields. Moore’s law, which
states that the number of transistors per square inch will double approximately ev-
ery 18 months, has continued to set the pace for the semiconductor industry since it
was put forward in the 1970s [1]. Owe to the flourishing multidisciplinary field of low-
dimensional nanomaterials, including one-dimensional (1D) nanowires and nanotubes,
as well as two-dimensional (2D) atomic layers such as graphene, growing interests and
consistent effort have been devoted to device technology toward the ultimate limit of
miniaturization-genuinely down to the atomic scale [2, 3]. Nanodevices, in particu-
lar nanomechanical resonators that exploit the vibratory motion in these 1D and 2D
nanoscale structures, offer exceptional device-level properties like ultralow mass, ul-
trawide frequency tuning range, and ultralow power consumption, thus holding strong
potential for both fundamental studies and engineering applications [4, 5].

1.1. TWO-DIMENSIONAL MATERIALS

2D materials have attracted extensive attentions due to their unique crystal struc-
ture and excellent performance in various aspects. Encouraged by the first exfoliated
graphene in 2004, numerous 2D materials have been successfully found and synthe-
sized, such as hexagonal-Boron Nitride (hBN), transition metal dichalcogenides (TMDs),
monochalcogenides (MNs), black phosphorus (BP), transition metal oxides, MXenes
and 2D organic crystals, and polymers. Fig. 1.1 shows the atomic structure of several
typical 2D materials. The exceptional mechanical, thermal, magnetic, electrical, optical
and optoelectronic properties of 2D materials are highly enhanced as the surface to vol-
ume ratio increases, resulting from the transition of atomic structure from bulk to the
few- to mono- layer limit. Such unique attributes brought great revolution in the fields
of semiconductor industry [6], nanoelectronics [7], biomedicine [8], photoelectricity [9],
advanced sensing technology [4] and quantum nanoscience [10].
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Figure 1.2: Wide range of Young’s modulus of 2D materials obtained from experimental studies.

1.1.1. MECHANICS

Due to the atomic thickness and high aspect-ratio, 2D materials are exceedingly flexi-
ble out-of-plane in comparison to their bulk counterparts. However, the in-plane me-
chanical response is quite stiff as a consequence of their high Young’s modulus and
strength. These special properties make 2D materials as the most promising candidates
for flexible and transparent electronics and composite applications [11]. The mechanics
of freely suspended 2D membranes has also been explored in dynamic experiments in
which the 2D materials were used as mechanical resonators. With superior mechanical
strength and toughness, such resonators are ideal for ultra-sensitive applications such
as force sensors and functional switches [12]. On the other hand, the mechanics of 2D
materials is also strongly related to the defects, wrinkles and interface interactions like
friction and adhesion, which play significant roles in 2D applications such as nanoelec-
tronics, nanoelectromechanical systems (NEMS), and nano-composites [13].

A direct measurement of mechanical properties of 2D materials was first reported
by Lee et al. [14], where suspended monolayer graphene membranes are indented by
atomic force microscope (AFM) tapping mode. The indentation force–displacement be-
havior was interpreted as a result of the nonlinear elastic properties of graphene, with
a ultra-high Young’s modulus about 1000 GPa. Besides AFM indentation, MEMS-based
mechanical testing [15], in situ TEM observation [16], and shearing tests [13] by probe
tip are commonly utilized for mechanical characterization. Using these methods, the
Young’s modulus of different types of discovered 2D materials have been experimentally
studied [14, 17–26], showing a wide range from∼ 20 GPa to almost 4000 GPa (see Fig. 1.2).

1.1.2. THERMODYNAMICS

2D materials also provides exciting opportunities for studying the phononic transport
behaviours at nanoscale. Impressively, 2D materials have been demonstrated to exhibit
superior lattice thermal conductivity, e.g., suspended monolayer graphene has a thermal
conductivity between 4800 and 5300 Wm−1K−1 at room temperature, exceeding its bulk
counterpart graphite [27]. This inspires many studies aiming at both understanding its
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Figure 1.3: Lattice thermal conductivity k of 2D materials at room temperature, which are experimentally
obtained by Raman microscopy measurements. Bottom insert: monolayer atomic structures (side view) of
graphene, MoS2, hBN and black phosphorus.

underlying physics and exploring potential applications for thermal managements. The
control of the thermal properties of 2D materials could enable new generations of ther-
moelectric materials, thermal insulators, and even phononic computing devices. Addi-
tionally, 2D materials may present a novel platform to realize phonon thermal diodes,
phonon transistors, topological phonon insulators, and quantum memories [28].

Various methods based on electrical or optical readouts have been developed for
nanoscale thermal measurements, of which the most commonly utilized is optother-
mal method using Raman microscopy [29, 30]. Typically, Raman laser irradiates in the
center of 2D materials and generates heat flux, causing a radial temperature gradient
in a basal plane. Since the peak shifts in Raman spectrum is proportional to the tem-
perature variation, one can connect the temperature rise with the laser heating power,
thus to extract the thermal conductivity of the tested 2D materials. Figure. 1.3 shows the
thermal conductivity of types of 2D materials obtained from experiments at room tem-
perature [27, 31–42]. It is of interest to see that the thermal conductivity of graphene and
hBN, with planar crystal structures, are larger than that of MoS2 with trilayer symmetric
crystal structure and BP with asymmetric structure. This can be explained by the scat-
tering of acoustic phonons in 2D materials that is remarkably influenced by the crystal
structures (see insert in Fig. 1.3).

Regarded as the dominant heat carriers in 2D materials, acoustic phonons have been
theoretically investigated through various approaches, including molecular dynamics
simulations [43], non-equilibrium Green function method [44] and Boltzmann transport
equation [45]. Depending on the polarization, acoustic phonons can be divided into in-
plane longitudinal (LA) and transverse (TA) phonons, as well as out-of-plane flexural
(ZA) phonons. The dispersion relations of LA and TA phonons are related to the elastic
modulus, while that of ZA phonons is determined by the bending rigidity and surface
strain [46–48]. Particularly, it has been demonstrated that ZA phonon with a long mean
free path (> 10 µm) dominates the heat transport in monolayer graphene [49], leading
to its ultra-large thermal conductivity.
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1.2. TWO-DIMENSIONAL NANOMECHANICAL RESONATORS
Intriguing mechanical properties together with atomic thickness makes 2D materials
highly suit for a new class of nanoscale resonators, especially nanoelectromechanical
systems (NEMS). Resonant 2D devices show high fundamental frequencies, outstanding
tunability and broad dynamic range due to the ultrahigh strength, ultralow mass den-
sity and ultrahigh tensile strength. Through coupling electrostatic, optical, thermal, and
magnetic excitation to the membrane vibration, numerous cutting-edge applications
have been made possible by 2D nanomechanical resonators [2]. Further, the compact
size and high stiffness of these devices also possess the potential of greatly increased
sensitivity for detecting a variety of physical stresses [50].

The key procedure for fabricating 2D nanomechanical resonators is suspending 2D
membranes over cavities. To achieve this, 2D nanoflakes are mechanically exfoliated
(similar to the first graphene devices made in 2004) or synthesized through chemical va-
por deposition (CVD), and then transferred onto the target substrate with etched cavities
[51, 52]. For 2D NEMS, a further configuration of top/bottom gate electrodes is needed
[53]. After fabrication, the next challenge is how to actuate and detect the mechanical vi-
bration of 2D resonators. For this, optothermal [12] and electrostatic [54] excitations are
commonly utilized. Figure 1.4a gives the illustration of optothermal excitation: a blue
laser with modulated intensity drives the membrane via periodic thermal expansion,
while a fixed red laser is employed for detection since its reflected intensity depends on
the membrane motion. This method not only provides a efficient drive for mechani-
cal measurement, but also allows to investigate the phononic thermal transport in 2D
membranes. With regards to electrostatic excitation, the cavity gap between the mem-
brane and the substrate forms an electrical capacitor, thus by applying the gate voltage
on top and bottom electrodes, time-dependent electrostatic force is generated to drive
the membrane vibrating periodically. For large-scale resonators with a radius more than
100µm, we adopt a laser Doppler vibrometer with piezoresistive transduction to achieve
the actuation [55, 56].

1.2.1. RESONANT DYNAMICS

FREQUENCY TUNING

The capability of tuning the fundamental resonant frequency, f0, is crucial for 2D
nanomechanical resonators using as voltage-controlled oscillators, tunable RF filters,
and advanced sensing [2]. The strong dependence of f0 on the effective spring constant,
more specifically, the surface tension of the membrane enables a wide-range tuning on
its resonance. For instance, using Joule heating, the tunability of resonance frequency,
∆ f0/ f0, can reach up to ∼ 1300% for few-layer graphene resonators [57]. In addition,
MEMS comb-drive stretching [58] and electrostatic gate [59] are also efficient ways for
realizing large ∆ f0/ f0.

QUALITY FACTOR

Quality factor Q of the resonance (see Fig. 1.4b), a dimensionless metric defined as the
ratio of the peak energy stored in an oscillation cycle to the energy lost each cycle, is
a essential indicator in the design of 2D nanomechanical resonators. A less damped
resonator has an intrinsically high Q meaning that larger resonance peak can be ob-
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Figure 1.4: Optothermal excitation on 2D nanomechanical resonators. a Schematic diagram. The device is
composed of suspended 2D membrane on a circular cavity. b Resonance peak of a FePS3 resonator. Insert,
optical image of the measured FePS3 resonator. c Resonance frequency f0 and quality factor Q for different
types of 2D nanomechanical resonators, measured at room temperature and in vacuum. The dots without
frame are obtained from our measurements.

tained. Q is dominated by the intrinsic dissipation mechanisms of the resonator, such as
materials-defect-induced loss [60], interlayer coupling [54, 61] and thermoelastic damp-
ing [62, 63]. These need to be optimized to produce high-Q resonators, so as to increase
the frequency sensitivity as well as to reduce the power required to maintain the oscilla-
tion. Figure. 1.4c shows the reported results of f0 and Q for types of 2D nanomechanical
resonators [52, 54, 64–68]. In general, we find a decrease of Q as f0 increases in most
cases, which is in line with the reported observations [69]. Also, compared to graphene
resonators, the product f0 ×Q for MoS2, TaS2 and WSe2 resonators are larger because
TMDs exhibit lower intrinsic energy dissipation than graphene [70].

STIFFNESS AND DEFLECTION SHAPE

Attributed to the high ratio of surface area to volume of 2D materials coupled with large
out-of-plane vibration amplitudes, 2D nanomechanical resonators perform a variety of
nonlinear dynamic behaviors [71]. Under nonlinear driven, the large amplitude of mem-
brane vibration induces an enlarged radial in-plane tension, leading to the frequency re-
sponse of the device to extend beyond its linear case, known as hardening or softening
[54, 72, 73]. These phenomenons can be described by a Duffing equation to character-
ize the nonlinear dynamic parameters in 2D nanomechanical resonators [74]. The lin-
ear and nonlinear stiffness, k1 and k3, are highly dependent upon the deflection shape
of the membrane. Table 1.1 summarizes the stiffness parameters and the correspond-
ing deflection shape under three different cases [75]. We see that the linear stiffness is
dominated by surface pretension n0 of the membrane, while the nonlinear stiffness is
related to the Young’s modulus E , Poisson ratio ν, thickness t and radius r of the mem-
brane. In this thesis, the cases of AFM indentation and bulge test have been widely used
to characterize the mechanically static and dynamic behaviours of 2D nanomechanical
resonators.
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Table 1.1: Summary of stiffness of 2D membranes under different deflection shapes, adapted from [75]. k1,
linear stiffness; k3, nonlinear stiffness; n0, pretension; t , thickness; E , Young’s modulus; r , radius; ν, Poisson
ratio.

k1 k3 Deflection shape

AFM indentation [76] πn0
1

(1.05−0.15ν−0.16ν2)
Et
r 2

Bulge test [77] 4πn0
8πEt

3r 2(1−ν)

Nonlinear dynamics [75] 1.56πn0
πEt

r 2(1.27−0.97ν−0.27ν2)

1.2.2. APPLICATIONS
Considering the wide new and abundant range of dynamics brought from 2D nanome-
chanical resonators, they have the potential to be used in many applicable fields. Their
atomic thickness and high aspect-ratio make them ideal candidates for straintronics
and twistronics nanodevices [78, 79]. The out-of-plane flexibility and in-plane stiffness
of suspended 2D membranes increase the tunable capability on resonance frequency
yielding high-performance sensing applications for probing force [80], pressure [81],
mass [4] and temperature [82]. In addition, the ability of 2D nanomechanical resonators
to survive harsh environments involving temperature and pressure makes them well
suited for space applications [83]. Moreover, due to their superior thermal conductiv-
ity, suspended 2D materials are promising for thermal managements in next-generation
flexible electronic devices [84]. Recently, 2D nanomechanical resonators also show im-
pressive potentials in the fields of biological nanotechnology, quantum transport and
computing, as well as RF signal processing [2, 5, 85, 86].

1.3. FRAMEWORK OF THIS THESIS
In this thesis, we focus on the mechanics and thermodynamics of suspended 2D mem-
branes, of which the main research concern for each chapter is listed in Table 1.2. In
Chapter 2, we introduce the fabrication of 2D nanomechanical resonators, where the dry
and wet transfer methods are utilized to suspend 2D flakes on the etched SiO2/Si sub-
strate. We then characterize the structural and static properties of the fabricated devices,
such as the thickness and Young’s modulus, which are taken as the basic parameters in
the following analysis. Optomechanical measurement is further introduced in details,
to explain how we detect the dynamic resonance and phononic thermal transport of 2D
nanomechanical resonators in this thesis.

In Chapter 3, we propose a new technical route for fabricating 2D heterostructure
resonators. This is achieved by growing MoS2 layer on top of suspended graphene mem-
brane through atomic layer deposition (ALD). The fabricated devices show the compa-
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Table 1.2: Research concern of each chapter in this thesis.

Key word Device Property
Chapter 1 Introduction
Chapter 2 Methodology
Chapter 3 ALD MoS2/Graphene heterostructure Mechanics
Chapter 4 Buckling FePS3 Mechanics
Chapter 5 Heat transport 2H-TaS2, Poly Si, FePS3, ... Thermodynamics
Chapter 6 Tunability Graphene Thermodynamics
Chapter 7 Interface WSe2/FePS3 heterostructure Thermodynamics
Chapter 8 Conclusion

rable static and dynamic properties, while surprisingly, a lower interlayer energy dissi-
pation, compared to their exfoliated counterparts, which verifies the feasibility of ALD
technique for designing high-performance 2D resonators.

In Chapter 4, we look at the mechanical buckling bifurcation in 2D nanomechanical
resonators. By heating up the devices, boundary compression is applied on the mem-
brane, resulting in a vertical deformation of the membrane due to the buckling. We build
a mechanical buckling model for clamped circular plate, which well describes the turn-
ing of temperature-dependent resonance frequency at the buckling location. In partic-
ular, we also observe an enhanced amplitude of resonance peak attributed to the low
out-of-plane stiffness of the membrane near buckling bifurcation.

We then turn our attention more to the thermodynamic properties of suspended 2D
membranes. In Chapter 5, we measure the resonance frequency and thermal time con-
stant of 2D nanomechanical resonators as the function of temperature, respectively, so
as to extract the thermal conductivity using a thermodynamic relation. However, this
presented approach cannot be used to explain the heat transport in graphene, where the
experimentally observed thermal time constant is about 100 times larger than theoreti-
cal estimation. As a result, in Chapter 6, we attribute this to a strong scattering of acoustic
phonons, especially flexural phonon at the boundary between the suspended and sup-
ported region of graphene membrane. By applying in-plane tension in the membrane
through electrostatic deflection, we modulate the transmission possibility of phonons at
the boundary, thus to achieve an effective tuning on heat transport.

We further show our unpublished work that also brings exciting results for better un-
derstanding nano-scale mechanics and thermodynamics. In Chapter 7, we fabricate a
double-layered FePS3/WSe2 heterostructure device, and use optomechanical measure-
ment and COMSOL simulation to extract the thermal conductance at the interface. Fi-
nally, we give a summary of all works we have done in Chapter 8 and provide an outlook
for future directions.
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78O. Çakıroğlu, J. O. Island, Y. Xie, R. Frisenda, and A. Castellanos-Gomez, “An automated
system for strain engineering and straintronics of 2d materials”, Advanced Materials
Technologies 8, 2201091 (2023).

79Z. Hennighausen and S. Kar, “Twistronics: a turning point in 2d quantum materials”,
Electronic Structure 3, 014004 (2021).

80M. Hempel, D. Nezich, J. Kong, and M. Hofmann, “A novel class of strain gauges based
on layered percolative films of 2d materials”, Nano letters 12, 5714–5718 (2012).

81E. Kramer, J. Van Dorp, R. Van Leeuwen, and W. Venstra, “Strain-dependent damping
in nanomechanical resonators from thin mos2 crystals”, Applied Physics Letters 107,
091903 (2015).

82R. Wu, L. Ma, C. Hou, Z. Meng, W. Guo, W. Yu, R. Yu, F. Hu, and X. Y. Liu, “Silk compos-
ite electronic textile sensor for high space precision 2d combo temperature–pressure
sensing”, Small 15, 1901558 (2019).

83T. Yildirim, L. Zhang, G. P. Neupane, S. Chen, J. Zhang, H. Yan, M. M. Hasan, G.
Yoshikawa, and Y. Lu, “Towards future physics and applications via two-dimensional
material nems resonators”, Nanoscale 12, 22366–22385 (2020).

84H. Song, J. Liu, B. Liu, J. Wu, H.-M. Cheng, and F. Kang, “Two-dimensional materials
for thermal management applications”, Joule 2, 442–463 (2018).

85G. P. Neupane, W. Ma, T. Yildirim, Y. Tang, L. Zhang, and Y. Lu, “2d organic semiconduc-
tors, the future of green nanotechnology”, Nano Materials Science 1, 246–259 (2019).

86M. C. Lemme, D. Akinwande, C. Huyghebaert, and C. Stampfer, “2d materials for future
heterogeneous electronics”, Nature communications 13, 1392 (2022).



2





2
METHODOLOGY

In this chapter, we introduce the production, transfer, and processing procedures of 2D
nanomechanical resonators, as well as the fundamental testing approaches and the used
experimental setups of this thesis. These ensure the accurate and reliable experimental
outcomes.
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Figure 2.1: Recipes for suspending 2D nanosheets over SiO2/Si substrate. a Preparation of substrate with
etched circular cavities. A layer of electron beam resist is spin-coated and developed on the substrate b Me-
chanical exfoliation transfer method. c CVD transfer method.

2.1. FABRICATION

2.1.1. MECHANICAL EXFOLIATION TRANSFER

Suspended 2D membranes are extremely flexible out-of-plane as a consequence of their
atomic thickness, yet very stiff within the plane due to their high Young’s modulus [1,
2]. To peel off 2D sheets and make them free-standing, we begin by creating patterned
cavities in the substrate. As illustrated in Fig. 2.1a, a layer of silicon dioxide (SiO2) layer
with a thickness of 285 nm is grown on the silicon wafer. To create circular cavities,
the wafer is spin-coated with a positive resist and exposed by electron beam (e-beam)
lithography. Afterwards, SiO2 layer without protection is completely etched using CHF3

and Ar plasma in a reactive ion etcher. This dry etching process results in cavities after
the removal of resist, with high aspect ratios and well-defined dimensions examined by
AFM and scanning electron microscopy (SEM).

Mechanical exfoliation of 2D crystals is a powerful and simple tool to create atomi-
cally thin membranes for research purposes. As shown in Fig. 2.1b, using Scotch tape,
we exfoliate thin pieces of 2D sheets from natural crystal. These pieces are transferred to
a optically transparent Polydimethylsiloxane (PDMS) stamp, where one sheet with suit-
able thickness and size is selected under optical microscopy. We then flip the stamp up-
side-down and clamp it above the SiO2/Si substrate fixed on the XYZ stage. Using optical
microscopy, we align the position of the stamp, making it exactly on top of the circular
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Figure 2.2: Optical images (top view) of 2D nanomechanical resonators fabricated by exfoliation transfer
method. a FePS3. b 2H-TaS2. c MoS2. d WSe2. Black error bar: 10 µm.

cavity. Afterwards, the stamp is brought into contact with the substrate and then slowly
released. Due to a stronger adhesion of 2D materials on SiO2 compared to PDMS, the re-
lease of stamp will leave the sheet on the substrate, forming a suspended 2D membrane
over the cavity. Using the introduced approach, different types of 2D nanomechani-
cal resonators have been fabricated in this thesis, of which several devices are shown
in Figs. 2.2a to 2.2d. Here, the observed color difference under microscopy allows us to
primarily evaluate the thickness of the transferred membranes, from monolayer to bulk.

2.1.2. CHEMICAL VAPOR DEPOSITION (CVD) TRANSFER

Mechanical exfoliation is a time-consuming process that yields relatively small or single
samples. Thus, it is unable to fulfill the requirement for mass fabrication of large-area
uniform 2D membranes. Chemical vapor deposition (CVD) has been demonstrated to
provide large-area coverage [3]. Reliable transfer of large-area 2D membranes onto arbi-
trary substrates is a critical step in the use of CVD-grown 2D materials for most practical
applications. In Chapter 6, the bilayer graphene devices are fabricated by directly trans-
ferring CVD graphene/polymethyl methacrylate (PMMA) over the cavities (see Fig. 2.1c).
The PMMA is then removed by annealing the chip inside a furnace. However, we find
that CVD graphene is usually broken into small pieces during the annealing.

Here, we introduce a novel and feasible pathway for suspending ultra-large CVD
graphene membranes, as depicted in Fig. 2.3. First, multi-layer graphene was deposited
using CVD on a thin-film Mo catalyst (Fig. 2.3a). For this, 50 nm of Mo was sputter coated
on a 100 mm Si (100) wafer with 600 nm of thermal oxide. The CVD deposition was per-
formed at a substrate temperature of 915 °C using 960/40/25 of, receptively, Ar/H2/CH4

at a pressure of 25 mbar. The growth time was set to 60 minutes, after which the wafer
was cooled down in an Ar ambient. The frames to fabricate the drums were manufac-
tured using deep reactive ion etching (DRIE) of a 100 mm Si (100) wafer (Fig. 2.3b). As
hard mask, 6µm of SiO2 was deposited on both side of the wafer using plasma-enhanced
CVD. Holes in the hard mask were subsequently patterned using optical lithography and
reactive ion etching, which was followed by DRIE till the SiO2 hard mask at the bottom
of the hole was reached. Next, Teflon residues from the DRIE were stripped and the SiO2

hard mask was completely removed using wet etching in BHF(1:7). Finally, a 300 nm
thermal oxide was grown on the wafer by wet oxidation.

Next, the graphene was transferred from the growth substrate to the target substrate
with a wet transfer process (Fig. 2.3c). Individual die of graphene on wafer were im-
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Figure 2.3: Wet CVD transfer method to fabricate ultra-large graphene resonators. a Recipe of SiO2/Si substrate
with circular holes. b Preparation for CVD graphene membrane. c Transfer process.

mersed separately in 30% hydrogen-peroxide for 25 mins. Hydrogen peroxide etches
away the Mo underneath the graphene layer, so that the graphene is released, floating
on the surface of the hydrogen peroxide solution. Hydrogen peroxide was exchanged
with deionized (DI) water. The DI water was then replaced twice more to ensure the re-
moval of peroxide. Subsequently, 1.5 ml of detergent solution (1 drop of Triton ×100 in
150 ml of DI water) was dissolved in the water to reduce the surface tension and improve
membrane formation yield. Graphene was then carefully picked up onto the substrate
with holes. Graphene membranes were formed over the holes. The sample was dried at
room temperature for 25 mins, and was put under a glass bell for the next 24 hours to
dry completely.

Figure 2.4 shows the suspended graphene resonators through wet CVD transfer
method, with the radius varies from < 100 µm to > 1000 µm. Since graphene is an
atomically thin membrane, boundary deformation caused by the irregular distribution
of tension between graphene and substrate happens inevitably during transfer, results
in the visible wrinkles and crumples. These kinds of structural defects will play a role
on graphene resonators with respect to their mechanical properties. This CVD transfer
method has also been used to fabricate high-performance graphene microphones in
recent studies [4, 5].

2.2. CHARACTERIZATION
After the 2D nanomechanical resonator is fabricated, we characterize its fundamental
properties, such as thickness, Young’s modulus, Raman spectrum and structural defor-
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Figure 2.4: Optical images of suspended graphene membranes fabricated by wet CVD transfer method.

mation, so as to confirm its quality on the substrate. More importantly, these predeter-
mined parameters are highly required in the following, in order to determine the me-
chanical tuning and phononic thermal transport of the fabricated devices.

2.2.1. ATOMIC FORCE MICROSCOPE (AFM)
Atomic Force Microscopy (AFM) works on the principle of surface sensing by using a
very sharp tip attached to the silicon cantilever. The tip can be used to image the sur-
face features of a sample with atomic resolution or indent the sample depending on the
mode of usage. When the cantilever tip comes in contact with the sample during the
measurements, the cantilever bends. This cantilever bending is detected using a laser
diode and a photodetector. AFM is generally used to capture maps of modulus, adhe-
sion, deformation, conductivity, surface potential, permittivity, and optical absorption
of the sample. All these capabilities contained within one single instrument makes AFM
a versatile platform for investigating highly multidisciplinary research. Therefore, AFM
stands out among other techniques for the characterization of 2D materials.

MEMBRANE THICKNESS

AFM tapping mode is typically used to determine the thickness of 2D membranes. We
scan the edge of the supported part of the membrane, as illustrated in Fig. 2.5a (black
frame). Along with the scanning profile, the height increases from 16.3 nm to 23.8 nm,
indicating a thickness of the membrane about 7.5 nm (see Figs. 2.5b and 2.5c). However,
since graphene membrane is bumpy with bulges and collapses, it is not fairly accurate to
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Figure 2.5: Measurement of membrane thickness t using AFM tapping mode. a Optical image of graphene
membrane (supported part). Black square is the selected area for AFM scanning. b Obtained scanning graph,
where the left and right regions are substrate and graphene, respectively. c Measured height profile follows the
orange line in b. d Height histograms of substrate (cyan) and graphene membrane (blue).

extract the realistic thickness from only a few scanning profiles. Therefore, we count the
height of the entire region which contains thousands of points, as plotted in Fig. 2.5d.
The mean height of both substrate and graphene membrane are thus calculated by the
statistics, so as to obtain the mean thickness of the membrane about 9.6 nm.

YOUNG’S MODULUS

Force-indentation AFM method is a reliable mechanical probe of 2D material membrane
defection in response to a force applied at its center by an AFM cantilever tip, as il-
lustrated in Fig. 2.6a. We first image the fabricated membrane using AFM tapping/AC
mode and thus to align the tip exactly above the center of the membrane (see insert in
Fig. 2.6b). Then the membrane is indented with a preset value of maximum force to ob-
tain its corresponding deflection behaviour. The actual deflection, δ, of the membrane is
accounted for by by subtracting the cantilever deflection ∆zc from the Z-scanner(piezo)
readout ∆z as δ=∆zc −∆z. We use AFM cantilevers of typical stiffness kc ranging from
10−46 N/m in the force-indentation experiments.

We extract the pretension n0 and Young’s modulus E of the membrane from the ob-
tained force-deflection curve, as shown in Fig. 2.6b. Small applied force F causes the lin-
early proportional membrane deflection δ, thus the linear spring constant of the mem-
brane k1 is related to both its pretension n0 and bending rigidity. However, at large F
range, we find F is cubic in δ. The tip radius of 7−10 nm, confirmed by scanning elec-
tron microscope imaging, is far smaller than the equivalent radius of the membrane.
Therefore, the force-deflection responses of AFM indentation (Fig. 2.6b), corresponding
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Figure 2.6: Characterizations on suspended 2D membrane. a Schematic of AFM nanoindentation. b Indenta-
tion curve of force F versus deflection δ for a polycrystalline silicon membrane, which is fitted with Eq. 2.1 to
extract the Young’s modulus of the membrane. ∆z is the motion of piezoelectric-actuated cantilever in verti-
cal direction. Insert, optical image of polycrystalline silicon membrane. c Schematic of Raman microscope. d
Measured Raman spectrum of the suspended CVD graphene membrane. Insert, optical image of the measured
device. e Schematic of white light interferometry. f Heating-induced membrane deflection in FePS3 resonator
measured by white light interferometry. Inserts, optical and height profile images of the measured device.

to the deflection shape in Table 1.1, can be described by [6]:

F = (
16πD

r 2 δ)+n0πδ+Et q3(
δ3

r 2 ), (2.1)

where D = Et 3/(12(1−ν2)) is the bending rigidity of the membrane which can be ignored
if t is small enough, ν is Poisson ratio, n0 = Etϵ0/(1−ν) is the pretension, ϵ0 is the built-in
strain, and q = 1/(1.05−0.15ν−0.16ν2) is the geometry-related parameter. Note that the
cubic term of F versus δ is only determined by E while independent to n0, thus generally
in our experiments, we adopt a large enough force to trigger the nonlinear indentation.
This allows us to extract the accurate E of the membrane from Eq. 2.1, with the measured
r and t from AFM tapping mode and the value of ν taken from literature

2.2.2. RAMAN MICROSCOPY

Raman spectroscopy is a fast, non-destructive, and high-resolution tool for investigating
layered materials. Attributed to Raman scattering, the frequency of light will shift when it
passes through a medium. This shift is related to the modes of molecular vibration or ro-
tation, means that each molecule has its own characteristic Raman spectrum. As a result,
Raman has the capability of characterizing the structural properties of 2D materials, as
well as detecting the layer thickness, band structures, doping type, concentration, elec-
tron–phonon coupling, and interlayer coupling [7, 8]. Figure 2.6c shows the schematic
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illustration of Raman measurement. We used a Horiba Raman Spectroscopy that pro-
vides two kinds of optical wavelengths: 532 nm (green) and 633 nm (red) lasers. We fix
our sample on x y piezoelectric positioning stage, thus to obtain the Raman spectrum
anywhere in the membrane. As shown in Fig. 2.6d, through the measured amplitude ra-
tio between G peak at 1596 cm−1 and 2D peak at 2709 cm−1 [9], we determine that our
fabricated CVD graphene is multilayer.

2.2.3. WHITE LIGHT INTERFEROMETRY

As shown in Figs. 2.6e and 2.6f, we use scanning white light interferometry to character-
ize the structural deformation of the suspended 2D membrane. The white light from a
source is reflected at a beam splitter and passes into a Michelson infinite conjugate inter-
ferometric objective, where it is split into a reference beam and a sample beam [10]. The
two beams interfere and produce patterns of bright and dark fringes that depend upon
the path length difference between the reference and sample beams. The fringe pat-
tern is detected with a camera as a piezo actuator displaces the interference objective to
produce a series of data, which is digitally processed to yield a 3D image of the surface.
This technique is mainly utilized in Chapter 4 to check the downward deformation of 2D
membranes due to mechanical buckling.

2.3. OPTOMECHANICAL MEASUREMENT

2.3.1. LASER INTERFEROMETRY AND RESONANT MEMBRANE MOTION

With the fabrication of 2D nanomechanical resonators complete, an experimental setup
is required to actuate and detect their motion. To this end, we fix the sample onto a
laser interferometry system, as depicted in Figs. 2.7a and 2.7b. An alternating current is
used to adjust the intensity of diode laser (λ= 404sinm), which produces a periodically-
changing heat flux and actuate the membrane moving due to thermal expansion. On
the other hand, a helium-neon laser (λ = 632 nm) is employed for the readout of mo-
tion. This is performed using Fabry-Perot interferometry, in which the substrate and
the membrane act as a fixed back mirror and a moving mirror, respectively (Fig. 2.7a,
bottom). The resulting optical cavity makes it possible to probe the membrane motion,
since the reflected light intensity is a clear function of the membranes location along the
horizontal direction.

The transmission from the diode laser modulation to the signal detected by the pho-
todiode is then handled by a vector network analyzer (VNA). This gives the amplitude
and phase of the signal as function of frequency. The sample is mounted on a x y z
piezopositioning stage inside a vacuum chamber. The laser spot irradiated on the mem-
brane is in the order of ∼1−2 µm, allowing to measure membranes > 2 µm in lateral size.
The whole operation is done under a high vacuum of 10−6 mbar.

Using the laser interferometry technique, we acquire the amplitude |A f | of the fre-
quency response for a 2H-TaS2 resonator over the frequency ranging from 10 kHz to
100 MHz, as plotted in Fig. 2.7c. Near the fundamental resonance peak (see Fig. 2.7d),
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Figure 2.7: Detection on resonant membrane motion. a Schematic of 2D nanomechanical resonator under op-
tomechanical drive. b Schematic of the laser interferometry setup. c Amplitude |A f | of frequency response for
a 2H-TaS2 resonator. Insert, optical image of the measured device. d |A f | of fundamental resonance frequency
peak, which is fitted with Eq. 2.2 to extract the resonance frequency f0 and its quality factor Q. e Correspond-
ing phase φ of the resonance peak.

|A f | can be described by a linear harmonic oscillating model [11] given by:

|A f | =
A/m√(

ω2
0 −ω2

)2 +
(
ω0ω

Q

)2
, (2.2)

where A is amplitude of driven force, m is the effective mass of the membrane, ω= 2π f ,
ω0 = 2π f0, and Q is the quality factor for a membrane in motion that indicates the energy
dissipation together with the mechanical oscillation. The phase φ of the vibration, with
a shift of 180◦ near f0 (see Fig. 2.7e), is given by:

φ f =−arctan

(
ω0ω

Q
(
ω2

0 −ω2
))

. (2.3)

Here, by fitting Eq. 2.2 to the measured |A f | in Fig. 2.7d, we extract f0 = 9.21 MHz and
Q = 153.5 for 2H-TaS2 resonator.

For vibration of clamped circular resonator, the fundamental resonance frequency
f0 is determined by both the bending rigidity D and pretension n0 of the resonator [11,
12]:

f0 ≈
√

f 2
membrane + f 2

plate =
√(

2.4

πd

)2 n0

ρt
+

(
5.1

πd 2

)2 D

ρt
, (2.4)



2

28 2. METHODOLOGY

where d = 2r is the diameter of the resonator and D = Et 3

12(1−ν2)
. Note that the constants

2.4 and 5.1 in Eq. 2.4 are determined by assuming a specific mode shape of the resonator
[13]. Eq. 2.4 is appropriate for estimating the resonance of the exfoliated few-layer 2D
samples, as commonly used in this thesis. While for thin membrane-like resonators,
such as the double-layer CVD graphene resonators, n0r 2/D → ∞, thus f0 ≈ fmembrane

and the contribution from the flexural rigidity can be negligible.

2.3.2. TUNING RESONANCE FREQUENCY

The resonant tunability of 2D nanomechanical resonator make it promising for ultra-
sensitive sensing designs. In this thesis, we mainly utilize the electrostatic deflection or
temperature changing to modulate the in-plane surface tension in 2D resonators, so as
to achieve an effective modulation of their resonance frequency.

ELECTROSTATIC METHOD

For electrostatic method, as illustrated in Fig. 2.8a, the suspended membrane forms a
capacity Cg with a bottom Si gate electrode underneath. The gate voltage Vg change
leads to an electrostatic force on the membrane and pull it downwards, resulting in the
enhanced tensile stress in the membrane. This tuning approach was firstly studied by
Chen C. in graphene drumheads [14, 15]. According to a continuum mechanics model
that analyses the minimum of total energy in a circular membrane under electrostatic
loading, the tuned f0 can be expressed as:

f0(Vg) = 1

2π

√√√√ 1

meff

(
2πEtϵ0

1−υ2 + 8πEt

(1−υ2)r 2 z2
g −

1

2

∂2Cg

∂z2
g

V 2
g

)
, (2.5)

where meff = 0.271πr 2ρt is the effective mass,
∂2Cg

∂z2
g
≈ 0.542ε0πr 2

g 3
0

is the second derivative

of capacitance, g0 is the depth of capacitor between membrane and Si substrate, ε0 is the

permittivity of vacuum, zg ≈ ε0r 2(1−ν)V 2
g

8g 2
0 Etϵ0

is the deflection of membrane [16]. Notice that

in Eq. 2.5 the contribution from bending rigidity is already ignored. Assume t = 1 nm,
r = 4 µm, ν = 0.16, ρ = 2330 kg/m3, ϵ0 = 1×10−4, and E = 200 GPa for a graphene res-
onator, we estimate f0 as the function of Vg using Eq. 2.5, as plotted in Fig. 2.8a. We
see f0 first decreases and then increases again as |Vg| increases, attributed to the elec-

trostatic softening (related to
∂2Cg

∂z2
g

) and the enhanced deflection zg of the membrane,

correspondingly. This kind of W-shape f0(Vg) is typically observed in previous studies
on the gate-tuning 2D NEMS [17, 18], as well as the double-layer graphene resonators
studied in Chapter 6.

THERMAL METHOD

For thermal method, surface strain in the membrane is controlled through tempera-
ture change (Fig. 2.8b). Ye, F. [19] has reported on the first experimental demonstration
of electrothermally tuned graphene NEMS resonators operating in the high frequency
band. Owe to the unique negative thermal expansion coefficient (TEC) of graphene,
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Figure 2.8: Tuning resonance frequency f0 in 2D nanomechanical resonators. a Electrostatic tuning on
graphene resonator. b Thermal tuning on graphene resonator. c Thermal tuning on 2D resonators with posi-
tive thermal expansion coefficient.

temperature rise from heating causes a tensile strain in the membrane, leading to an
enhancement of resonance frequency. This variation can be expressed by:

f0(T ) = 2.4

2πr

√
E

ρ(1−ν)
(ϵ0 +∆ϵ(T )), (2.6)

where the thermally-induced strain is ∆ϵ(T ) = ∫ T
T0

(
αg −αSi

)
dT , T0 is the initial tem-

perature, αg and αSi are the TECs of graphene and substrate, respectively. Because
αSiO2 ≪ αSi, the effect of the thin SiO2 layer in the substrate can be neglected. As-
sume αg = −3× 10−6 K−1 and αSi = 2.63× 10−6 K−1, we estimate f0 as the function T
for graphene resonator by Eq. 2.6, as shown in Fig. 2.8b. It should be noticed that the

TEC of 2D materials, αm , is a T -dependent parameter, thus the slope of d f0
dT is not always

a constant, especially at high T range. The direct connection between f0 and αm opens
up the prospect of studying condensed matter physics based on 2D nanomechanical
resonators. In addition, according to the thermodynamic relation, the thermal expan-
sion coefficient is proportional to a fundamental material parameter of the materials -
the specific heat [16, 20]. This allows to further investigate the thermal properties and
phononic transport of 2D membranes, as we discuss in Chapter 5.

Opposite to graphene, the TECs for most 2D materials, such TMDs like MoS2, are
positive and much larger than αSi. Temperature rise generates compressive stress in the
membrane, resulting in a decrease of f0. However, this reduction will not end up to a
zero f0. Actually, f0 of 2D resonators first decreases, while as T further increases, f0

levels off and then starts increasing with T , as observed before in 1D-beam resonators
[21, 22]. This increase in f0 arises from the thermally-induced buckling of the membrane
when the internal thermal stress exceeds the critical load. Following our derivation in
Chapter 4, f0 for a clamped circular plate under buckling is found as:

f0(T ) = 10.33t

πd 2

√√√√ E

3ρ(1−ν2)
(1+β(1−ν2)

3z2 − z2
f r ee

t 2 + 3

8
(1+ν)

U (T )d

t 2 ), (2.7)

where U (T ) is the thermally induced in-plane displacement of the plate, ρ is the mass
density, d = 2r is the diameter, z(T ) is the central deflection of the membrane, z f r ee is
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Figure 2.9: Measurement method to characterize the heat transport in suspended 2D membrane. a Illustration
to depict how the optical power is transduced into mechanical motion of the membrane. b Corresponding
block diagram that describe how deflection signal readout from the optothermal actuation, adapted from [23].

the central deflection of free plate without loading (when U = 0), and β is a fitting factor
which is related to ν (see Chapter 4). The expression of z is:
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3

(
1− z f r ee

z

)
−10.7β(1−ν2)

(
z2

f r ee − z2

t 2

)
+4(1+ν)

Ud

t 2 = 0. (2.8)

We adopt Eq. 2.8 to plot f0 as a function of T for buckled 2D material resonators. For
practical reasons, we use materials parameters t = 30 nm, r = 4 µm, ν = 0.304, ρ =
3375 kg/m3, ϵ0 = 5.8× 10−4, αm = 2.5× 10−5 and E = 70 GPa, that are close to that of
FePS3, which is used in Chapter 4 to Chapter 7. As shown in Fig. 2.8c, f0 first decreases
and then starts increasing with T , which is attributed to the increase of z(T ) once the
buckling happens.

2.3.3. OPTOMECHANICAL DELAY
It is discovered that, in relation to the intensity modulation of the laser that opto-
thermally actuates a circular membrane, its mechanical motion is delayed by a typical
thermal time constant τ [23]. This is attributed to the time required for heat flux to
diffuse through the system. Therefore, the optomechanics offers a tool for researching
the dynamic thermal characteristics of 2D materials. Details of the physical mecha-
nism for optomechanics in the membrane can be found in Fig. 2.9. The diode (blue)
laser with modulated intensity Pblue is absorbed by 2D membrane through photon-
electron-phonon couplings [24, 25], generating a virtually instantaneous heat flux Q
in the center. This heat will raise the membrane’s temperature and flow in-plane to-
ward the substrate, leading to the temperature increase ∆T of the membrane. This
results in a time-dependent thermal expansion force Fact that actuates the motion of the
membrane, which is in-phase at the range far below resonance frequency. Finally, the
intensity modulation Pred of the red laser due to the interference effect is used to detect
the motion and generate the entire spectrum.

Since the coupling of photoexcited carriers in 2D membrane and the detection of
red laser are instantaneous with timescales of a few picoseconds, we thus conclude that
the time delay in optothermal drive of the membrane is nearly arisen from the delay
that the heat flux requires to diffuse through the membrane to increase the temperature.
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Figure 2.10: Determining thermal time constant τ of suspended 2D membrane under optothermal actuation.
a Amplitude |A f | (blue) and phase φ (red) of the measured frequency response for 2H-TaS2 resonator. b Back-
ground signals of laser interferometry system, which is obtained by directly irradiating blue laser on the photo
diode. c Calibrated signals A f of the amplitude, of which the imaginary part (blue) is fitted with Eq. 2.9 to
extract τ of the membrane.

Following a thermal model that describes the heat equation in a circular thin plate [23],
the motion of the membrane A f at the frequencies far below resonance is given by:

A f =
Ath

i 2π f τ+1
, (2.9)

where Ath is the thermal expansion amplitude. We still use the experimental data of 2H-
TaS2 device (the same one in Fig. 2.7c), |A f 1| and φ f 1, as shown in Fig. 2.10a. In order
to correct the intrinsic phase shifts in the laser interferometry setup, the blue laser is
directly irradiated to photodiode to obtain the calibration curves, |A f 2| and φ f 2, for the

system (Fig. 2.10b). This is done by the deconvolution given as |A f | = |A f 1|
|A f 2| and φ f =

φ f 1 −φ f 2. In Fig. 2.10c, we fit Eq. 2.9 to the deconvoluted imaginary part of A f (drawn
solid line). Here, the thermal signal in the imaginary part of A f is located at around
362.87 kHz, corresponding to τ= (2π×362.87 kHz)−1 = 438.58 ns.

2.4. COMSOL SIMULATION
The "heat transport in thin shells" module of COMSOL Multiphysics allows us to sim-
ulate the thermal transport in suspended 2D membranes. We build a simple circular
domain as illustrated in Fig. 2.11a, where a point heat source of radius r0 is set in the
center of the membrane. We define thermal insulation condition on the edge of the en-
tire system, with a initial temperature T0 = 273.15 K. The mesh size is using "Extra fine"
to ensure the simulation accuracy of thermal transport (see the insert in Fig. 2.11b).

The simulated temperature distribution of the built model in COMSOL is shown in
Fig. 2.11b. Here, we adopt r0 = 0.5 µm which is equal to the realistic size of laser spot
in our optomechanical measurements, the membrane radius r = 4 µm, specific heat
cp = 700 J/kgK, mass density ρ = 3375 kg/m3, and thermal conductivity k = 5 W/mK. We
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Figure 2.11: COMSOL simulation of thermal transport in suspended 2D membrane. a Schematic diagram
(cross-section view) of COMSOL model. b Temperature distribution of the membrane. Insert, mesh setting
in COMSOL software. c Simulation results of average temperature Tave versus heating frequency f , which are
fitted with Eq. 2.9 to extract thermal time constant τ of the membrane.

further define a harmonic perturbation of heating with a frequency varies from 10 kHz to
100 MHz, and thus to obtain the average temperature Tave of the membrane as a function
of heating frequency f , as shown in Fig. 2.11c. By fitting Eq. 2.9 to the simulated Tave

versus f , we extract the thermal time constant τ= 1506.9 ns.
From literature [26], we know that the in-plane thermal time constant τ of 2D mem-

brane is related to its thermal characteristics give by:

τ= r 2cpρ

µ2k
, (2.10)

where µ2 is the thermal diffusive constant. By substituting r , cp , ρ and k, as well as the
simulated τ into Eq. 2.10, we extract µ2 ≈ 5.02. In comparison, we obtain a larger result
of µ2 = 5.78 from analytical model in Chapter 5. Considering the small size of laser spot
as well as the influence of Si substrate, the analysis via COMSOL simulation is reliable to
the realistic case. In Chapter 7, we use COSMOL model to study the thermal transport
in 2D heterostructure, providing us a more convenient pathway compared to analytical
solution.

BIBLIOGRAPHY
1P. G. Steeneken, R. J. Dolleman, D. Davidovikj, F. Alijani, and H. S. Van der Zant, “Dy-

namics of 2d material membranes”, 2D Materials 8, 042001 (2021).
2C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and

intrinsic strength of monolayer graphene”, science 321, 385–388 (2008).
3J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg,

and R. S. Ruoff, “Transfer of cvd-grown monolayer graphene onto arbitrary substrates”,
ACS nano 5, 6916–6924 (2011).



BIBLIOGRAPHY

2

33

4G. Baglioni, R. Pezone, S. Vollebregt, K. C. Zobenica, M. Spasenović, D. Todorović, H.
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NANOMECHANICAL RESONATORS

FABRICATED BY ATOMIC LAYER

DEPOSITION ON SUSPENDED 2D
MATERIALS

Atomic layer deposition (ALD), a layer-by-layer controlled method to synthesize ultra-
thin materials, provides various merits over other techniques such as precise thickness
control, large area scalability and excellent conformality. In this chapter, we demon-
strate the possibility of using ALD growth on top of suspended 2D materials to fabricate
nanomechanical resonators. We fabricate ALD nanomechanical resonators consisting of a
graphene/MoS2 heterostructure. Using AFM indentation and optothermal drive, we mea-
sure their mechanical properties including Young’s modulus, resonance frequency and
quality factor, showing a lower energy dissipation compared to their exfoliated counter-
parts. We also demonstrate the fabrication of nanomechanical resonators by exfoliating
an ALD grown NbS2 layer. This study exemplifies the potential of ALD techniques to pro-
duce high-quality suspended nanomechanical membranes, providing a promising route
towards high-volume fabrication of future multilayer nanodevices and nanoelectrome-
chanical systems.

Parts of this chapter have been published in 2D Materials 10, 045023 (2023) by Hanqing Liu, Saravana B. Basu-
valingam, Saurabh Lodha, Ageeth A. Bol, Herre S.J. van der Zant, Peter G. Steeneken and Gerard J. Verbiest.
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3.1. INTRODUCTION
The properties of 2D materials, in particular their ultralow weight and ultrahigh mechan-
ical flexibility, provides them with an excellent sensitivity to external forces [1–3]. Hence,
resonators from 2D materials have become a popular choice for the next generation of
nanoelectromechanical systems (NEMS) [4, 5]. Recently, there is surge towards stacking
different 2D materials into heterostructures often exhibiting better sensing properties.
Such heterostructures are used for tunable resonators and oscillators [6], and can po-
tentially lead to better sensors in microphone and pressure sensing applications [5].

To achieve high-performance nanomechanical resonators, clean interfaces between
different 2D materials are important [7]. Therefore, bottom-up synthesis methods were
developed, of which chemical vapor deposition (CVD) is the most attractive due to its
large-scale and high-quality growth. The main shortcoming of CVD, however, is the
difficulty to accurately control the thickness and morphology of grown 2D materials.
Atomic layer deposition (ALD), a vapor phase thin film deposition technique based on
self-limiting surface reactions, inherently yields atomic-scale thickness control, excel-
lent uniformity, and conformality [8]. ALD processes exists for a large variety of materials
ranging from pure elements to metal oxides and chalcogenides [9]. In terms of 2D ma-
terials, ALD was applied to fabricate 2D-based field effect transistors, p-n diode devices,
solar cells and photodetectors, displaying high electrical and optical uniformities [10].
Since experimental research of ALD materials for nanomechancial resonators is unex-
plored territory, it is of interest to study the potential of such devices and evaluate their
mechanical performance.

In this chapter, we show two types of nanomechancial resonators fabricated using
ALD: one consists of a heterostructure made from exfoliated graphene (bottom layer)
and ALD MoS2 (top layer) and the other is ALD NbS2. We use atomic force micro-
scope (AFM) indentation to determine their Young’s moduli and use an optomechanical
method to study their resonance frequency and corresponding quality factor in vacuum
conditions. The extracted parameters from our measurements agree well with literature
values for 2D exfoliated or CVD resonators. Furthermore, by fitting a relation between
the quality factors before and after ALD, we verify a low-level dissipation induced by
ALD MoS2. This work indicates the potential of ALD fabrication techniques for realizing
multilayer nanomechanical membranes and resonators with enhanced functionality
and thickness control.

3.2. RESULTS AND DISCUSSION

3.2.1. FABRICATION

The ALD layers are deposited (see Figs. 3.1a and 3.1b) by plasma-enhanced atomic layer
deposition (PE-ALD) technique using an Oxford Instruments Plasma Technology FlexAL
ALD reactor. The base pressure of the system is 10−6 Torr. The metal-organic pre-
cursors bis(tert-butylimido)-bis(dimethylamido) molybdenum (STREM Chemical, Inc.,
98%) and (tert-butylimido)-tris-(diethylamino)-niobium (STREM Chemical, Inc., 98%)
are used for MoOx and NbOx growth, respectively [9, 11]. The Mo and Nb precursors are
kept in stainless steel bubblers at 50 ◦C and 65 ◦C, respectively and are bubbled using
Ar as the carrier gas. In both the processes, O2 plasma is used as the coreactant. The
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Figure 3.1: Fabrication of the ALD nanomechanical resonators measured in this work. a Fabrication process
of exfoliated graphene/ALD MoS2 heterostructure resonators. MoS2 is directly deposited onto the suspended
graphene membrane. b Fabrication process of ALD NbS2 resonators. ALD NbS2 flake is exfoliated from glassy
carbon using PDMS, and then transferred on top of a prepatterned Si/SiO2 substrate with circular cavities.
Inserts between a and b are the cross-section views of the heterostructure and NbS2 resonators, respectively.
c and d Optical images of our fabricated heterostructure and NbS2 devices, respectively, where the black scale
bars are 20µm. Note that the heterostructure devices D3 and D9 were broken during deposition. e and f,
Height histograms of SiO2/Si substrate (black), graphene (pink) and MoS2 (blue) measured by AFM scanning,
allow us to extract the thicknesses tg = 13.3 nm, tm = 7.8 nm, and tn = 56.1 nm. The scanning areas for fixing
tg and tn are the black frames in c and d, respectively, while that for fixing tm is the scratch on MoS2 layer after
deposition. We observe that the thickness distribution of ALD MoS2 is satisfyingly as uniform as the exfoliated
graphene, while the surface of thick ALD NbS2 is rugged.

MoOx and NbOx films are deposited at 100 ◦C and 150 ◦C, respectively. More details on
the PE-ALD recipes can be found in Appendix section 1.

Both the MoS2 and NbS2 films are synthesized by a two step approach. As the first
step, metal oxide (MoOx or NbOx ) film is deposited by PE-ALD technique. Next, the
metal oxide film is sulfurized at 900 ◦C in H2S environment (10% H2S and 90% Ar) to
form metal sulfide film (MoS2 or NbS2). As shown in Figs. 3.1a and 3.1c, the MoS2 film is
synthesized by PE-ALD on top of suspended graphene drums, resulting in 10 resonators
with a radius r = 4µm. Note that device D3 and D9 broke (buckled, Fig. 3.1c) during fab-
rication and will not be considered further. On the other hand, NbS2 film is synthesized
by growing NbOx on glassy carbon followed by sulfurization at 900 ◦C. Then, we fab-
ricate the NbS2 resonators by transferring the NbS2 films from glassy carbon substrate
over circular cavities in a SiO2/Si substrate to form suspended drums using the Scotch
tape method [5] (see Fig. 3.1b). We tested the transfer of ALD nanoflakes with different
thicknesses grown on different susbtrates and found that only the transfer of thick NbS2

films from glassy carbon to the substrate with cavities was possible (see table 3.1). The
cavities have a depth of 285 nm and were fabricated by reactive ion etching [4]. The fabri-
cated NbS2 resonators, shown in Fig. 3.1d, have a radius of r = 4µm (devices D1 and D2)
or r = 3µm (devices D4 and D5). We use AFM (tapping mode) to scan the surface of our
fabricated samples, to determine the thickness of the 2D materials. By calculating the
height difference between the membranes and substrate (see the statistics in Figs. 3.1e
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and 3.1f), we extract the mean thickness of the graphene tg = 13.3 nm (40 layers), MoS2

tm = 7.8 nm (12 layers) and NbS2 tn = 56.1 nm (92 layers), respectively. The total thick-
ness of the heterostructure is thus th = tm + tg = 21.1 nm.

Raman spectra of both ALD heterostructures and NbS2 devices, obtained with a
515 nm green laser at room temperature (see Appendix section 1), clearly show the
expected Raman modes and thereby verify the quality of fabricated devices after the
high-temperature ALD synthesis processes. We also measure and theoretically analyse
the Raman intensity ratio between the Si peak of suspended MoS2/graphene membrane
and that of substrate (see Fig. 3.4), from which we conclude that ALD MoS2 layer is
only deposited on top (but not on bottom) of the exfoliated graphene membrane in the
fabricated heterostructure devices.

3.2.2. AFM INDENTATION AND STATIC MECHANICS
After fabrication, we determine the Young’s modulus of the ALD devices by indenting
with an AFM (contact mode) cantilever at the centre of the suspended area (see Fig. 3.2a,
insert). Following literature [12], the applied vertical force F versus membrane deflection
δ for a circular membrane (composed of single material), as depicted in Fig. 3.2a, is given
by

F =
(

16πD

r 2

)
δ+n0πδ+Et q3

(
δ3

r 2

)
, (3.1)

where D = γEt 3/(12(1−ν2)) is bending rigidity, E is Young’s modulus, ν is the Poisson
ratio, n0 is pretension, q = 1/(1.05−0.15ν−0.16ν2), and γ is a factor that quantifies the
effect of interlayer shear interactions on D in multilayer 2D materials [13]. The first two
terms in Eq. 3.1 scale linearly with δ (F ∼ δ) and are set by D and n0; while the third cubic
term (F ∼ δ3) is due to the geometric nonlinearity of the membrane, which lead to an
increase in the in-plane stress that depends on its Young’s modulus E . Note that Eq. 3.1
is suitable for NbS2, while for heterostructures, it contains contributions from graphene
and MoS2 layers (see Eq. 3.6). We use the bulk Poisson ratios νg = 0.165, νm = 0.25 and
νn = 0.28 of graphene, MoS2 and NbS2, respectively, in further analysis. In addition,
considering the measured layer numbers of graphene, MoS2 and NbS2 membranes, we
use the factors γg = 0.1 and γm = 0.4 from literature [13] and assume γn = γm .

We extract Eh and En by the fitting the measured F versus δ with Eq. 3.6 and Eq. 3.1,
respectively, which nicely describe the experimental data for the NbS2 device D1 (pink
points) and the heterostructure device D2 (green points) as shown in Fig. 3.2a. The ex-
tracted statistics of effective Young’s moduli for heterostructure devices (Eh) and Young’s
moduli (En) for NbS2 devices give the mean values of Eh = 952± 161 GPa and En =
101± 13 GPa, respectively. In Fig. 3.2b, we compare Eh and En with values reported in
the literature: En shows a good agreement with the reported values of 75± 35 GPa [14–
16]; Eh is between the reported values for MoS2 250 ± 120 GPa and graphene membranes
1025 ± 125 GPa [12, 17–20], but higher than the reported values for similar fully exfoli-
ated heterostructures 461 ± 43 GPa [17, 21, 22]. The larger Eh might be caused by the
stronger interlayer adhesion or the larger intrinsic Young’s modulus of ALD MoS2. The
standard deviations in extracted Young’s moduli, ±13 GPa and ±161 GPa for NbS2 and
heterostructure resonators, respectively, are comparable to the ones reported in litera-
ture for exfoliated materials. This illustrates the high homogeneity of ALD materials.
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Figure 3.2: Static characterization of the fabricated ALD nanomechanical resonators. a Typical force-deflection
curve obtained by AFM indentation onto the suspended part of heterostructure (green points) and NbS2 (pink
points) resonators. The solid lines show fits using the model from Eq. 3.1, gives the pretension and Young’s
modulus of the membranes. Insert: schematic of AFM indentation. Statistics over all devices give the mean
values of Eh = 952 GPa (heterostructure) and En = 101 GPa (NbS2). b Comparison of Young’s modulus between
this work (errorbars, marked with arrows in x-axis) and previous studies (bars and points). The numbers in
brackets give the citations we select in b.

In addition to the Young’s modulus, we also extract the pretension n0 for each device.
Tables 3.2 and 3.3 in Appendix show a complete overview of the obtained parameters
from the fitting to Eq. 3.1. The extracted n0 ranges from 0.45 to 1.55 N/m for all het-
erostructure and NbS2 resonators, which are similar to values reported in the literature
for resonators made by exfoliation and CVD methods [4, 21, 23].

3.2.3. DYNAMICS OF ALD RESONATORS

Let us now focus on the dynamics of the ALD resonators. We measured the dynamic
response of the membranes with a laser interferometer [23] (see Fig. 3.3a, bottom). A
power modulated blue diode laser (λ= 405 nm) photothermally actuates the resonator,
while the refection of a continuous-wave red He-Ne laser (λ = 632 nm) is sensitive to
the time-dependent position of membrane. A vector network analyzer (VNA) provides a
signal at drive frequency f (OUT port) that modulates the blue laser intensity while the
intensity of the red laser recorded by a fast photodiode is connected to the IN port. The
VNA thus measures a signal z f that is proportional to the ratio of the membrane am-
plitude and actuation force. By sweeping the drive frequency f , we locate the resonance
peak in the range from 100 kHz to 100 MHz. Laser intensities are set to 0.3 mW (blue) and
1.1 mW (red), respectively. These intensities are low enough for the resonator to vibrate
in the linear regime. All measurements were performed at room temperature in vacuum
at a pressure of 10−5 mbar.

Figure 3.3a (top inserts) shows the measured signal z f of NbS2 device D6, at around
the fundamental and second resonance frequency, respectively. By fitting z f to the re-
sponse function of a harmonic oscillator, we extract f0 = 16.0 MHz with Q = 28.9 and
f1 = 25.3 MHz with Q = 34.4. For vibrations of clamped drums, we can compute the
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Figure 3.3: Dynamic characterization of the fabricated ALD nanomechanical resonators. a Top, the measured
amplitude z f (points) of NbS2 device D6, around the fundamental and second resonance, respectively; z f is
fitted by a harmonic oscillator model (black lines) to extract resonance frequency and corresponding quality
factor. Bottom, interferometry setup. ALD device is placed inside the vacuum chamber (VC). The diode laser
(LD) is modulated by a vector network analyzer (VNA) to actuate the resonator, while intensity variations of
the reflected He-Ne laser caused by resonator motion, are measured by photodiode (PD) and recorded with
the VNA. PBS: polarized beam splitter; DM: dichroic mirror; x50: 50-fold objective. b The measured Q versus
f0 for graphene resonators before ALD (Qg , yellow points) and for heterostructure resonators after ALD (Qh ,
red points). c The measured Qn versus f0 for NbS2 resonators. d Qh versus the extracted pretension n0. e Qn
versus the extracted Young’s modulus En .

resonance frequencies fi using [3]

fi =
( µi

2π

)√
D

σr 4

[
µ2

i +
n0r 2

D

]
, i = 0,1, ..., (3.2)

where σ= ηρt is the areal mass density, η is a correction factor of mass considering the
contaminations on resonators, and µi is a mode-specific factor. We have µ1 = 2.4048 for
the fundamental mode and µ2 = 3.8317 for the second mode. For an ideal membrane,
in which n0r 2 is much larger than the flexural rigidity D and thus n0r 2/D →∞, we have
f1/ f0 = µ1/µ0 = 1.59; while for an ideal plate where D is much larger than n0r 2, we have
n0r 2/D → 0 and thus f1/ f0 = (µ1/µ0)2 = 2.54. The measured f1/ f0 are 1.595±0.167 and
1.959±0.642 for heterostructure and NbS2 devices, respectively (see tables 3.2 and 3.3),
suggesting that the modes of heterostructure resonators are near the membrane limit,
while the modes of NbS2 resonators are in between the membrane and plate limit. We
plot the extracted Q versus f0 for all heterostructure resonators (Qh) and NbS2 resonators
(Qn) in Figs. 3.3b and 3.3c, respectively, including the quality factor Qg of the exfoliated
graphene membranes before ALD. As expected from Eq. 3.2, f0 decreases with increas-
ing r for the NbS2 resonators, while f h

0 for heterostructure resonators varies widely from
14.6 to 30.7 MHz. This is attributed to the inhomogenieties like wrinkles and crumples in
the heterostructures (see images in Fig. 3.8) and large differences in pretension. All mea-
sured resonance frequencies are comparable to those in literature reported for similar
devices [3, 12].
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ies (bars). Purple errorbar shows the measured Q of purely exfoliated heterostructure devices, as introduced
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Gray shadow represents the fitting error bar.

The extracted values of Qn and Qh are also comparable to values of previously stud-
ied resonators made by exfoliation and CVD [2, 6, 21, 24], as illustrated in Fig. 3.3f. To
gain insight into the damping, we plot Qh versus n0 for heterostructure resonators and
Qn versus En for NbS2 resonators, respectively, as plotted in Figs. 3.3d and 3.3e. For both
cases, we observe a linear relation, indicating that pretension plays a more important
role on damping than bending rigidity for heterostructure resonators, while it is on the
other way around for NbS2 resonators. This is exactly as expected based on the ratio
f1/ f0. On the other hand, we do not see clear relations of Qh versus Eh and Qn versus n0

as plotted in Figs. 3.9a and 3.9b, respectively.
Concerning the effective masses, we determine the correction factors ηh and ηn by

substituting the measured f0, and the extracted n0 and E into Eq. 3.2 (see values in ta-
bles 3.2 and 3.3). We obtain ηh = 1.34±0.92 and ηn = 2.87±0.83, respectively. The high
ηn of NbS2 devices is attributed to the contaminations from the PDMS stamping. The
values ηh for the heterostructure are surprisingly close or even below 1. This suggests
the absence of any residues and possibly even the thinning of the graphene membrane
during the ALD process, while the ALD MoS2 layer is mainly deposited on top of the
suspended graphene membrane instead of bottom.

We also observe a general decrease of quality factor in heterostructure resonators
after ALD (Qh < Qg ), as shown in Fig. 3.3b. Considering the dissipation mechanism for
two parallel membranes, the overall Qh can be modeled as

1/Qh =α/Qg +1/Qm , (3.3)

where α can be different than 1 on account of structural changes in the graphene be-
cause of the ALD process, and Q−1

m is a fit parameter that represents the damping in the
heterostructure originating from the ALD MoS2. We fit the measured Q−1

h versus Q−1
g

with Eq. 3.3 (see Fig. 3.3g) and extract α = 1.1± 0.1 and 1/Qm = 4.7± 3.1× 10−3. The
fact that the obtained α (within errors) is close to 1, provides evidence that there little
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to none increase of the dissipation in the graphene during the ALD process. A control
experiment has been done with purely exfoliated graphene/MoS2 heterostructures (see
Fig. 3.10), giving us α = 1.1±0.2 and 1/Qm = 17.6×10−3. The lower 1/Qm of ALD het-
erostructure compared to exfoliated layers can be attributed to a better conformality of
the ALD layer and the absence of contamination by transfer polymers.

Compared with PE-CVD method that grows 2D materials under a temperature more
than 400 ◦C, the reaction temperature window for ALD here is much lower (100 ◦C for
MoOx deposition), which significantly improve the survival rate of suspended graphene
membranes. Therefore, PE-ALD is a safer and more efficient method for fabricating
high-performance 2D heterostructure resonators. In addition, although ALD is known
to be capable of wafer-scale synthesis, the dimensions of our fabricated devices are still
quite small due to the use of exfoliation in the fabricating process. A strategy could be to
grow transferless suspended CVD 2D material membranes like graphene [25], and sub-
sequently grow ALD material heterostructures from them. In addition, ALD could bene-
fit from a method to precisely control the flatness, so as to avoid the cragged surfaces of
nanoscale devices as illustrated in Figs. 3.8a and 3.8b.

3.3. CONCLUSIONS
In conclusion, we presented the fabrication and mechanical characterization of ALD-
based nanomechanical resonators. We developed two PEALD based approaches to sus-
pend ALD flakes on a patterned Si/SiO2 substrate: one is dry transfer using PDMS (ex-
foliate ALD Nb2 flakes from glassy carbon); the other is ALD deposition of MoS2 on
mechanically exfoliated suspended graphene drums. AFM indentation allows us to de-
termine their Young’s moduli as 101.4± 13.3 GPa and 951.7± 161.0 GPa. Using an op-
tomechanical method, we extracted their resonance frequencies and the corresponding
quality factors. All of the above parameters are well comparable to the reported values
of exfoliated and CVD resonators. We found experimental indications that the dissipa-
tion of ALD MoS2 membranes in heterostructures is roughly 3.7 times lower than that of
purely exfoliated MoS2 membranes, which is promising for high-performance 2D het-
erostructure resonators. Our results show possibilities toward exploiting ALD technique
for nanomechancial resonators in explorations on atomically thin tunable resonators
and 2D sensors. Further work could focus on the thickness control of ALD resonators,
which can bring significant improvements in device performance and lead to new func-
tionalities.

3.4. METHODS
A Si wafer with 285 nm dry SiO2 is spin coated with positive e-beam resist and exposed by
electron-beam lithography. Afterwards, the SiO2 layer without protection is completely
etched using CHF3 and Ar plasma in a reactive ion etcher. More details on the fabrication
of substrate can be found in Appendix section 1. The edges of cavities are examined
to be well-defined by scanning electron microscopy (SEM) and AFM (see Figs. S2a and
S2b). After resist removal, few-layer graphene and ALD NbS2 nanoflakes are exfoliated
by Scotch tape, and then separately transferred onto the substrate at room temperature
through a deterministic dry stamping technique.
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We use an interferometer setup to measure the resonance frequency and Q factor
of the fabricated resonators. An intensity-modulated blue laser (λ = 405 nm) irradiates
the membrane resulting in a periodic heat flux to actuate it, while a intensity-fixed red
laser (λ = 633 nm) is utilized to detect the motion. The heat flux results in a motion
of the drum due to the thermal expansion force. All measurements are performed at
room temperature inside a vacuum chamber at 10−6 mbar. A vector network analyzer
(VNA) modulates the intensity of a blue laser at frequency ω to optothermally actuate a
resonator while it analyzes the resulting intensity modulation of the red laser caused by
the mechanical response of the same resonator. The red and blue laser powers used are
1.20 and 0.13 mW respectively, where the resonators vibrate in the linear regime and the
temperature increase due to self-heating was negligible.

3.5. APPENDIX

3.5.1. SAMPLE FABRICATION

Our starting substrates are 4 inch wafers of dry low pressure chemical vapour deposition
(LP-CVD) SiO2 grown on doped Si commercially available. The thickness of SiO2 layer
is 285 nm. Pre-cleaning were done in advance before the spin coating: we placed the
wafer in the beaker with HNO3, and then placed the beaker into the sonicator and start
sonicating (7 minutes, 27 ◦C with power 9); afterwards, we prepared 2 DI beakers with
water, and then removed the wafer from the acid and rinsed in each DI beakers for 30
seconds; finally, we set down the wafer on the wet bench and blew dry it.

In order to etch cavities in wafer, we did the spin coating with a positive e-beam resist
AR-P 6200, which has a high dry etching resistance compared to PMMA. To ensure the
wafer is clean enough before spin coating, we whirled the wafer in Acetone for 30 sec-
onds and then in IPA for another 30 seconds, and finally blew dry. The resist was spun
at a speed of 6000 rpm, resulting in a 650 nm thick layer. After spin coating, we put the
wafer on a hot plate and baked the AR-P 6200 at 150 ◦C for 3 minutes. The cavity de-
sign was exposed using e-beam lithography EBPG-5000+ and then developed in pentyl
acetate for 60 seconds, MIBK:IPA (1:1) for 60 seconds, rinsed in pure IPA for 60 seconds
and finally blow-dried. The exposure beam current is set as 32 nA.

We then used Sentech Etchlab to etch exposed SiO2 all the way to the Si layer. The
exposed substrate areas were etched with CHF3 (500 sccm) and Ar (2.5 sccm). The cham-
ber pressure was set to 0.01 mbar. An RF power of 55 W was applied and the resulting
DC bias voltage was measured at -225 V. Finally, the remnant resist was removed in a
warm bath of PRS-3000, rinsed in DI water, blow-dried and plasma cleaned in a Tepla
300 oxygen plasma asher. After RIE etching, the wafer was spin coated with S1813 (for
the protection of the high quality oxide during dicing) and diced using Disco dicer into
6 mm × 6 mm small squared substrates, which were then plasma-cleaned in O2 barrel
asher and prepared for 2D material resonators in the following. Figures. 3.5a and 3.5b
give the AFM scanning results of the etched circular cavities, showing a good quality of
the edge definition of the substrate.

For PE-ALD process, we adopted the same recipes for MoOx and NbOx as we have
reported in previous works [9, 11]. PE-ALD is done in two half-reactions: the metal pre-
cursors ((Nt Bu)2(NMe2)2Mo precursor to grow MoOx and t BuN=Nb(NEt2)3 precursor to
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a b

c d e

Figure 3.5: a AFM image of the fabricated substrate with etched circular cavities. Scale bar: 5 µm. b Height
curve of the cavities along with the red and blue profiles in (a), showing good quality of the edge definition of
the substrate. c and d Large-scale ALD NbS2 nanoflakes on glassy carbon substrate and on PDMS, respectively.
e ALD NbS2 nanoflakes on SiO2 substrate, which are broken to small pieces after stamping.

grow NbOx in this work) is first adsorbed on the deposition substrate and the reactants
(O2 plasma) then react with the adsorbed precursors to produce the target metal oxide
film (MoOx and NbOx ). ALD method has a better uniformity than PE-CVD, additionally
also offers higher thickness control on both planar and high-aspect ratio 3D surfaces.

Here we introduce the PE-ALD and sulfurization processes of MoS2 as an example.
MoOx films were deposited in a home-built ALD reactor, consisting of a vacuum cham-
ber connected to an inductively coupled plasma source and a pump unit. The liquid
((Nt Bu)2(NMe2)2Mo precursor was contained in a bubbler at 50 ◦C, at which it is re-
ported to have a vapor pressure of 0.13 Torr. The standard ALD recipe consists of precur-
sor dosing for 6 s in the first half of the ALD cycle. Ar gas is used as a carrier gas during the
precursor dose, resulting in a chamber pressure of 7.5 mTorr. Subsequently, the reactor
is purged with Ar for 3 s and pumped down for 3 s. The second half cycle consists of O2

plasma exposure with a plasma power of 100 W at a chamber pressure 5.1 mTorr for 4 s
[9]. Afterwards, MoOx thin films were sulfurized in a tube furnace at 900 ◦C under at-
mospheric pressure. A combination of H2S + Ar gas (10 % H2S) was used as sulfurization
gas. Corresponding process details for fabricating NbS2 can be found in [11].

The thickness of MoS2 layers is controlled by controlling the thicknesses of the initial
ALD grown MoOx films. The thickness of the ALD grown MoOx layers are controlled by
the number of ALD cycles, as growth per ALD cycle is around 0.06 nm. Based on this
growth per cycle, a MoOx thickness range of 0.6 to 12.4 nm was obtained for 10 to 160
ALD number of cycles. The relation between the MoOx thickness and the final MoOx

thickness is also detailed in [9]. Overall, the final MoS2 films were thinner than the initial
MoOx counter-parts. This is most likely due to the MoOx sublimation that can occur
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Figure 3.6: Raman measurements of fabricated ALD devices using 514.5 nm laser line. a Entire Raman spectra
of ALD heterostructure device D1. b Raman spectra of MoS2 for device D1, which is the zoom-in graph of
carmine frame in a. c Raman spectra of NbS2 for ALD NbS2 device D1.

during the sulfurization process at elevated temperatures.

3.5.2. RAMAN MICROSCOPE MEASUREMENTS ON ALD RESONATORS
We measure the Raman spectrum of the fabricated ALD devices using 514 nm green laser
at room temperature. As shown in Figs. 3.6a and 3.6b, E2g (∼383 cm−1 for MoS2), A1g

(∼407 cm−1 for MoS2), G (∼1579 cm−1 for graphene) and 2D (∼2723 cm−1 for graphene)
modes are observed in ALD graphene/MoS2 heterostructure device D1. This means the
ALD heterostructures still has good physical and chemicall properties after the high-
temperature ALD synthesis process for the MoS2 layer. As depicted in Fig. 3.6c, we also
measure the Raman spectrum of ALD NbS2 and observe its E2g (∼301 cm−1) and A1g

(∼382 cm−1) modes. The Raman shift of all the measured modes above are exactly where
we expect them based on values reported in the literature at room temperature [26–28].

In order to determine whether the ALD MoS2 layer is deposited on top or bottom
(or on both sides) of the exfoliated graphene layer, we extract the Raman intensity ratio,
I1/I2, between the Si peak (∼520 cm−1 in Fig. 3.6a) from the suspended devices (region
1, Fig. 3.7a) and that from the substrate (region 2, Fig. 3.7a). As depicted in Fig. 3.7b,
assume MoS2 is deposited on both sides of graphene, the multilayer structure is made
of air, MoS2 (top layer) with thickness d1, graphene with thickness d2 = tg = 13.3 nm
(tg is measured by AFM in the main text), MoS2 (bottom layer) with thickness d3, air
with thickness d4 = 285 nm (cavity depth) and Si from top to bottom. We number each
material as the i -th layer (i = 0, ...6) of heterostructure. The thickness of ALD MOS2 on
Si substrate is tm = 7.8 nm as measured by AFM, thus we have the geometrical relation
tm = d1 +d3.

For a four-layer structure, Wang et al.[29] used Fresnel’s equations to solve the trans-
mitted and reflected amplitudes of light between different layers. Here, we extend this
approach to our six-layer structure (Fig. 3.7b, region 1), and thus the normalized Raman
intensity of Si peak is given by

I =
∫ ∞

0

∣∣∣T05e−i
2πñ5 y
λ eβ5 y T50e−i

2πñ5 y
λ eeβ5 y

∣∣∣2
d y , (3.4)

where T05 is the total transmitted amplitude of light from the air into the Si substrate
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and T50 is the one from the Si substrate into the air, β5 =− 2πk5
λ , ñ5 is the complex refrac-

tive index of Si, λ = 514.5 nm is the wavelength of Raman laser, and k5 is the extinction
coefficient of Si. The expressions of T05 and T50 are given by

T05 = T04 ·T45 ·e−i f4 ·eβ4d4

1+R04 ·R45 ·e−2i f4 ·e2β4d4
, and T50 = T54 ·T40 ·e−i f4 ·eβ4d4

1+R54 ·R40 ·e−2i f4 ·e2β4d4
,

where β4 = − 2πk4
λ , and f4 = 2πñ4·d4

λ is the phase difference for light passing through the
5-th media (air). R represents the reflected amplitude of light, e.g., R45 is the reflected
amplitude of light from 4-th media (MoS2) to 5-th media (air). To determine T05 and T50,
the expression of Ti j and Ri j on different interfaces (i -th/i -th) are

Ri j = ñi−ñ j

ñi+ñ j
, R j i =−Ri j , Ti j = 2ñi

ñi+ñ j
, T j i =

1−R2
i j

Ti j
, when i = j −1,

R04 = R03+R34·e−2i f3 ·e2β3d3

1+R03·R34e−2i f3 ·e2β3d3
, R40 = R43+R30·e−2i f3 ·e2β3d3

1+R30·R43e−2i f3 ·e2β3d3
, T04 = T03T34·e−i f3 ·eβ3d3

1+R03·R34e−2i f3 ·e2β3d3
,

T40 = T43T30·e−i f3 ·eβ3d3

1+R43·R30e−2i f3 ·e2β3d3
, R03 = R02+R23·e−2i f2 ·e2β2d2

1+R02·R23e−2i f2 ·e2β2d2
, R30 = R32+R20·e−2i f2 ·e2β2d2

1+R32·R30e−2i f2 ·e2β2d2
,

T03 = T02T23·e−i f2 ·eβ2d2

1+R02·R23e−2i f2 ·e2β2d2
, T30 = T32T20·e−i f2 ·eβ2d2

1+R32·R20e−2i f2 ·e2β2d2
, R02 = R01+R12·e−2i f1 ·e2β1d1

1+R01·R12e−2i f1 ·e2β1d1
,

R20 = R21+R10·e−2i f1 ·e2β1d1

1+R21·R10e−2i f1 ·e2β1d1
, T02 = T01T12·e−i f1 ·eβ1d1

1+R01·R12e−2i f1 ·e2β1d1
, T20 = T21T10·e−i f1 ·eβ1d1

1+R21·R10e−2i f1 ·e2β1d1
,

where βi =− 2πki
λ and fi = 2πñi ·di

λ (1 ≤ i ≤ 4).
Using Eq. 3.4, we calculate the normalized Raman intensity I1 of the suspended

membrane (region 1) using the complex refractive index ñ0 = ñ4 = 1 (air), ñ1 = ñ3 =
4.47−0.7i (MoS2), ñ2 = 2.6−1.1i (graphene) and ñ5 = 4.21−0.06i (Si). We compute the
normalized Raman intensity I2 of the supported region (region 2) using d2 = 0 (without
graphene) and ñ4 = 1.47 for SiO2. In Fig. 3.7d (blue line), we obtain I1/I2 as a function
of the layer number Ltop of the top ALD MoS2 (d1 = Ltop·0.65 nm). It shows that I1/I2

gradually enhances as Ltop increases from 0 to 12.
Fig. 3.7c shows the measured amplitude of I1 and I2 using Raman spectroscope,

where we separately tested four suspended devices (D1, D2, D5 and D6) and four dif-
ferent spots on the substrate. The mean value of the measured I1/I2 is 0.406. When
comparing this ratio to the one expected for a given thickness, see Fig. 3.7d, we find that
the layer number Ltop of top ALD MoS2 should be equal to 12 and thus 7.8 nm (see in-
tersection of orange and blue line). As this is exactly equal to the total thickness tm mea-
sured with the AFM (see Fig. 3.1), we conclude that ALD MoS2 layer is only deposited
on top (but not on bottom) of the exfoliated graphene membrane in the fabricated het-
erostructure devices.

3.5.3. AFM INDENTATION MEASUREMENTS ON ALD RESONATORS
We fit the measured curves of F versus δ to extract the pretension n0 and Young’s mod-
ulus E of the fabricated resonators. The applied force F equals the product of the can-
tilever stiffness kc and its deflection ∆zc . We use a cantilever with kc = 53.7 ± 0.1 N/m,
and repeat the indentation measurement three times for each device.

The classical relation for the bending rigidity, D = Et 3/(12(1−ν2)), in general, is not
valid for multilayer 2D materials, where the interlayer shear interactions are weak and
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Figure 3.7: Characterizing hierarchical medias of ALD heterostructure devices by Raman methodology. a Ex-
perimental positions, including suspended (region 1) and supported (region 2) parts. b Illustration of het-
erostructure device (cross-section view). c Raman intensity I1 (red) and I2 (blue) of Si peak measured on
region 1 and 2, respectively. Four heterostructure devices (D1, D2, D5 and D6) and four different spots on sub-
strate are tested in total. Insert, measured Raman spectra of Si peak from region 1 and 2. d Ratio I1/I2 versus
top layer number Ltop of ALD MoS2. The intersection between experiment (orange line) and calculation (blue
line) verify that ALD MoS2 is deposited on top of the exfoliated graphene.

Table 3.1: Transfer of exfoliated ALD NbS2 and MoS2 nanoflakes.

t = 5 nm t = 15 nm t = 30 nm t > 50 nm
MoS2 on Scotch tape No No
NbS2 on Scotch tape No No
MoS2 on Si wafer No No No
NbS2 on Si wafer No No
MoS2 on Glassy carbon No No No Yes
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Table 3.2: Nanomechanical properties of graphene/MoS2(ALD) heterostructure resonators, including Young’s
modulus E (GPa), pretension n0 (N/m), resonance frequency f

g
0 (MHz) and its Q factor Q for pure graphene,

correspondingly f h
0 (MHz) and Q for graphene/MoS2, ratio f h

1 / f h
0 , and effective layer number η.

Device E n0 f g
0 Qg f h

0 Qh f h
1 / f h

0 η

D1 951.7 1.418 8.3 100.6 23.5 84.2 1.41 1.16
D2 771.4 1.547 13.6 99.1 30.7 94.0 1.49 0.61
D4 825.5 1.074 8.5 63.2 16.2 33.9 1.58 2.03
D5 1095.7 1.293 9.0 57.5 14.6 34.0 1.71 3.23
D6 1182.6 1.462 7.6 125.9 22.9 72.8 1.53 1.44
D7 950.7 1.318 8.4 99.4 28.3 63.0 1.67 0.78
D8 1162.9 0.892 10.2 33.6 25.8 26.4 1.92 1.01
D10 820.9 1.010 12.4 43.0 35.0 50.3 1.45 0.43

slippage is inevitable. As a result, a calibration factor γ is induced to describe this inter-
action, giving the formula as D = γEt 3/(12(1−ν2)). Since the layers number of graphene
and MoS2 in the fabricated heterostructures are 40 and 13 roughly, we adopt γg = 0.1 and
γm = 0.4 from literature [13], respectively. We also assume γn = γm due to their similar
lattice structures. For NbS2 resonators, we can directly fit the measured F versus δ to Eq.
1 to obtain n0 and En . However, for heterostructure resonators, considering the different
mechanical properties of graphene and MoS2 layers, their effective Young’s modulus Eh

and effective bending rigidity Dh are given by [21, 23]

Eh th = Eg tg +Em tm and Dh th = Dg tg +Dm tm , (3.5)

respectively, where th = tm + tg . As a result, the relation of F versus δ for heterostructure
resonators is expressed as

F =
[

4π

3r 2 ·
(
γg Eg t 4

g

1−ν2
g

· 1

th
+ γmEm t 4

m

1−ν2
m

· 1

th

)]
δ+n0πδ+ (Eg tg +Em tm)q3

(
δ3

r 2

)
. (3.6)

Using the values of tg = 13.3 nm, tm = 7.8 nm, νg = 0.165, νm = 0.25, γg = 0.1 and γm =
0.4, the part inside parenthesis of the first term in Eq. 3.6 can be rewritten as (Eg tg ·11.46+
Em tm ·9.60)×10−18. This part is then replaced by Eh th ·9.60×10−18 and Eh th ·11.46×10−18

separately in the fit, causing only a deviation < 0.7% to the extracted n0.

3.5.4. NANOMECHANICAL CHARACTERISTICS FOR ALL FABRICATED ALD
RESONATORS

As shown in Table 3.1, we tested directly exfoliating ALD nanoflakes from the grown sub-
strate to fabricate the ALD resonators, including different thicknesses of ALD MoS2 and
NbS2 flakes on different substrates. The only successful way is thick NbS2 films (with a
thickness of 56.1 nm) grown on glassy carbon, where the adhesion between NbS2 and
SiO2/Si is weak enough, thus allows us to use Scotch tape and PDMS to suspend ALD
NbS2 on the cavities. Therefore, compared to the exfoliation transfer method, growing
ALD films on top of the suspended 2D membranes is more effective for enabling ALD
nanomechanical resonators.
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Table 3.3: Nanomechanical properties of ALD NbS2 resonators.

Device r En n0 f0 Qn f1/ f0 η

D1 4 116.3 0.899 12.4 31.2 1.81 2.05
D2 4 101.8 0.447 11.2 28.6 2.26 2.12
D3 4 96.5 0.593 10.8 26.7 1.58 2.20
D4 3 87.5 1.320 15.2 25.9 1.67 3.30
D5 3 106.7 1.077 15.8 28.5 1.72 3.60
D6 3 117.5 1.005 16.0 28.9 1.57 3.79
D7 3 83.2 0.797 15.1 25.1 3.10 3.05
D8 2 − − 21.0 32.7 − −

Table 3.2 gives the measured parameters of all ALD heterostructure devices, includ-
ing radius r of drums, Young’s modulus Eh , pretension n0, fundamental resonance fre-
quency f h

0 and f g
0 (corresponding to the graphene membrane before ALD), quality fac-

tor Qh and Qg , modes ratio f h
1 / f h

0 , and the calibration factor η with respect to the mass
of membrane. Table 3.3 gives the measured parameters of all ALD NbS2 devices. We
cannot extract a precise value of En for device D8 due to its small size, which needs a
quite large loading F to achieve the effective indentation with cubic regime. The second
resonance frequency f1 of device D8 is missed as well, since we use a low pass filter (up
to 60 MHz) on VNA during the dynamic measurements.

Note that in the calculation of η for heterostructure resonators, we have already used
the relation σ = η(ρg tg +ρm tm), where the thickness tm of ALD MoS2 is determined by
scanning the scratch of MoS2 layer on Si/Si2 substrate. We assume that ALD MoS2 mainly
grows on top of the graphene membrane, since the average value of η in Table 3.2 is close
to 1, indicating that the thickness of ALD MoS2 layer in heterostructure is roughly equal
to that on substrate. For heterostructure devices D4 and D5, η is larger than 1, which
might result from a small quantity of ALD MoS2 deposited on the bottom of graphene.

Figure 3.8 shows the AFM scanning images of ALD NbS2 device D1 and D2, as well
as all ALD heterostructure devices. We can observe the visible polymer residues, crum-
ples and wrinkles on these devices, which significantly affect their static and dynamic
properties. More details about the TEM images of ALD MoS2 can be found in our previ-
ous work [30]. In addition, we also observe that the ALD MoS2 layer on the substrate, as
well as the surface of heterostructure devices are uniform as we expect (see Figs. 3.8i and
3.8m), indicating the good qualities of our fabricated resonators.

Figures 3.9a and 3.9b give the obtained Eh versus Qh for heterostructure resonators
and n0 versus Qn for NbS2 resonators, respectively. Unlike the proportional relations
shown in Fig. 3b and 3c in the main text, we see Eh versus Qh and n0 versus Qn are
irregular here.

3.5.5. QUALITY FACTORS FOR PURELY EXFOLIATED GRAPHENE/MOS2 RES-
ONATORS

To shed light on the energy dissipation Q−1
m of MoS2 layer in the heterostructure, purely

exfoliated graphene/MoS2 heterostructure devices are fabricated (Fig. 3.10a) and mea-
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Figure 3.8: AFM scanning results of our fabricated ALD devices. a and b ALD NbS2 device D1 and D2, respec-
tively. c−j All measured ALD heterostructure devices D1 to D10, except the broken ones D3 and D9. k ALD
MoS2 on the substrate which is scratched by tweezers. Scale bar is 5µm. l Height profile of ALD MoS2 layer
along with the black line in k. m Height profiles of heterostructure devices along with the red and blue lines in
m and h, respectively.

(a) (b)ba

Figure 3.9: Discussion on mechanical properties of fabricated ALD devices. a Effective Young’s modulus Eh
versus quality factor Qh for heterostructure resonators. b Pretension n0 versus quality factor Qn for NbS2
resonators.
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Figure 3.10: Discussion on the dissipation of MoS2 layer in purely exfoliated graphene/MoS2 heterostructure
resonators. a Optical images of partial fabricated devices (marked by dotted circles), where the red and blue
frames represent graphene (bottom) and MoS2 (top) flakes, respectively. Scale bar is 20µm. b The measured
results of Q−1

h versus Q−1
g (green points) and its fitting with Eq. 3.3 (black line and shadow).

sured in interferometry setup. As plotted in Fig. 3.10b, the measured Q−1
h versus Q−1

g is

fitted with Eq. 3 and thus extract α= 1.1±0.2 and 1/Qm = 17.6±1.9×10−3.
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4
ENHANCED SENSITIVITY AND

TUNABILITY OF

THERMOMECHANICAL RESONANCE

NEAR THE BUCKLING BIFURCATION

The high susceptibility of ultrathin two-dimensional (2D) material resonators to force and
temperature makes them ideal systems for sensing applications and exploring thermome-
chanical coupling. Although the dynamics of these systems at high stress has been thor-
oughly investigated, their behaviour near the buckling transition has received less atten-
tion. Here, we demonstrate that the force sensitivity and frequency tunability of 2D ma-
terial resonators are significantly enhanced near the buckling bifurcation. This bifurca-
tion is triggered by compressive stress that we induce via thermal expansion of the devices,
while measuring their dynamics via an optomechanical technique. We understand the
frequency tuning of the devices through a mechanical buckling model, which allows to ex-
tract the pre-strain, central deflection and boundary compressive stress of the membrane.
Surprisingly, we obtain a remarkable enhancement of up to 14× the vibration amplitude
attributed to a very low stiffness of the membrane at the buckling transition, as well as a
high frequency tunability by temperature of more than 4.02 % K−1. The presented results
provide insights into the effects of buckling on the dynamics of free-standing 2D mate-
rials and thereby open up opportunities for the realization of 2D resonant sensors with
buckling-enhanced sensitivity.

Parts of this chapter is preprinted online (arXiv:2305.00712) by Hanqing Liu, Gabriele Baglioni, Carla Boix-
Constant, Herre S.J. van der Zant, Peter G. Steeneken and Gerard J. Verbiest.
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4.1. INTRODUCTION
A flat mechanical plate subjected to a sufficiently high in-plane compressive stress be-
comes unstable, as its out-of-plane stiffness gradually reduces to zero [1]. When this
happens, the plate experiences a buckling bifurcation. Even the slightest imperfection in
the device, like a very small initial deformation, can determine whether the plate buck-
les up or downward. This high sensitivity to initial conditions offers exciting prospects,
both for studying material properties [2, 3] and for realizing new sensing applications
[4]. Therefore there has been a growing interest for buckling in nano-electromechanical
systems (NEMS) and resonators such as phononic waveguides [5], carbon nanotubes [6]
and SiNx drumheads [7], showing reversible control of signal transmission, high sensi-
tive switching, as well as remarkable nonlinear effects and high tunability of resonance
frequencies. These properties of buckled resonators make them very suitable for appli-
cations as actuators, sensors, and energy harvesters [8, 9].

Nanomechanical resonators made of free-standing 2D materials are stiff within the
plane, due to their high Young’s modulus, but extremely flexible out-of-plane due to their
atomic thickness[10–12]. As a result, free-standing 2D materials buckle at relatively low
compressive stress values and thereby present an ideal platform for studying the buck-
ling bifurcation in nanoscale systems. In fact, the buckling bifurcation provides a sen-
sitive method to determine the bending rigidity of 2D materials [2, 13]. However, most
of the work on 2D NEMS resonators has focused on flat 2D mechanical resonators un-
der tensile stress, because these can be more reproducibly fabricated [14, 15]. Moreover,
the experimental detection of the buckling bifurcation in 2D NEMS remains difficult, as
it requires a methodology to induce symmetric in-plane compression in suspended 2D
materials while measuring their mechanical motion with high spatial resolution.

In this chapter, we study the effect of the buckling bifurcation on the dynamics of
optothermally driven nanomechanical resonators made of FePS3 membranes. By vary-
ing temperature, the membranes expand, causing a compressive stress that triggers
the membranes to deflect out-of-plane. Interestingly, this buckling bifurcation does
not only cause a large change in the temperature-dependent resonance frequency, but
also gives rise to a significant enhancement of vibration amplitude of the resonators
when driven on-resonance. To account for these observations and relate them to the
device parameters, we fit a mechanical buckling model to the experiments that quan-
tifies prestrain, central membrane deflection, and boundary compressive stress of the
membrane. Based on the model we attribute the force response to a significantly re-
duced out-of-plane stiffness at buckling transition. The large frequency tuning and high
responsivity to forces of 2D resonators near the buckling bifurcation might be utilized to
enhance sensitivity in future designs of 2D NEMS devices like microphones and pressure
sensors.

4.2. FABRICATION AND METHODOLOGY
We fabricated 2D nanomechanical resonators by transferring exfoliated 2D flakes over
etched circular cavities with a depth of dp = 285 nm and varying radius R in a Si/SiO2

substrate (Methods). In total, we made three FePS3 devices D1−D3. Figure 4.1a shows
a schematic cross-section and a top view (optical microscope) of the fabricated devices
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Table 4.1: Characteristics of the fabricated devices including radius R, thickness h, Young’s modulus E , Pois-
son ratio ν, mass density ρ, initial resonance frequency f0(T0), temperature at turning point Tt , resonance
frequency at turning point ft , central deflection without boundary displacement loading z f r ee , initial dis-
placement U0, and pre-strain ϵ0. D1 and D2 are from the same nanoflake (see Fig. 4.1a).

R (µm) h (nm) E (GPa) f0(T0) (MHz) Tt (K)
D1 4 33.9 69.9 5.89 302.0
D2 4 33.9 70.3 5.52 303.0
D3 3 34.5 93.1 11.18 307.5

ft (MHz) z f r ee (nm) U0 (nm) ϵ0 ×10−5

D1 5.53 20.6 0.08 1.84
D2 3.97 6.2 0.08 1.99
D3 6.89 4.3 0.04 1.32

D1 and D2 with R = 4µm. Using tapping mode atomic force microscopy (AFM), we mea-
sure the height difference between the membrane and the Si/SiO2 substrate. As Fig. 4.1b
shows, we find a membrane thickness h of 33.9 nm for devices D1 and D2. To determine
the Young’s modulus E of the resonators, we indent the membrane centre by an AFM
cantilever while measuring its deflection [16]. We fit the applied force F versus inden-
tation δ, as depicted in Fig. 4.1c (orange points), to a model for point-force loading of a

circular plate given by F = ( 16πD
R2 δ)+n0πδ+Ehq3( δ

3

R2 ), where D = Eh3/(12(1−ν2)) is the
bending rigidity of the membrane, ν is Poisson ratio, n0 = Ehϵ0/(1−ν) is the pre-tension
in the membrane, and ϵ0 is the built-in strain. From the fit (black line, Fig. 4.1c) we ex-
tract E = 69.9 GPa for device D1. The AFM measurements on devices D2 and D3 can be
found in Appendix section 2. The extracted Young’s moduli of all devices are listed in
Table 4.1 and are similar to values reported in the literature [17].

To probe the thermodynamic properties of the fabricated devices, we use a laser in-
terferometer (see Methods)[18, 19]. As shown in Fig. 4.1d, we place the samples in a
vacuum chamber with a pressure below 10−5 mbar during the measurements. A power-
modulated diode laser (λ = 405 nm) photothermally actuates the resonator, while the
reflection of a He-Ne laser (λ= 632 nm) from the cavity with the suspended membrane
captures its motion. The reflection is measured by a photodetector (PD) and processed
by a Vector Network Analyzer (VNA) and then converted to the response amplitude |z f |
of the resonator in the frequency domain. Figure 4.1e shows the measured frequency
response around the fundamental resonance (green points) and a fit to a harmonic os-

cillator model (black line), given by |z f | = Ares f 2
0

Q
√

( f 2
0 − f 2)2+( f0 f /Q)2

, where f0 is resonance fre-

quency, Ares is the vibration amplitude at resonance and Q is quality factor. Here, we
extract f0 = 5.57 MHz, Q = 195.93 and Ares = 1.64 V/V for device D1. We will now out-
line how the characteristics of the resonance frequency ( f0, Q and Ares) can be used to
provide information about the temperature dependent properties of 2D material res-
onators, in particular near the buckling bifurcation.
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Figure 4.1: Characterization of FePS3 resonator. a Top, cross-section of a FePS3 membrane suspended on
the substrate with etched cavities. Bottom, optical images of the fabricated devices D1 and D2. Scale bar is
15 µm. b Height histogram of the substrate (red), as well as FePS3 membrane (cyan), measured by AFM. Insert,
AFM scanning image on the boundary of FePS3 flake. c AFM indentation results for device D1 (orange points),
where the Young’s modulus E of the membrane is extracted by fitting the measured force F to the cantilever
deflection δ (black line). d Intereferometry setup, where the chip is fixed inside a vacuum chamber (VC). VNA,
vector network analyzer; PBS, polarized beam splitter; PD, photo diode; DM, dichroic mirror. e Measured
signal |z f | around fundamental resonance mode (green points), which is fitted with a harmonic oscillator
model to extract the resonance frequency f0, quality factor Q and the vibration amplitude Ares (black line).

4.3. RESULTS AND DISCUSSION

Figure 4.2a shows the measured |z f | as a function of actuation frequency and tempera-
ture (in the range from 300 to 316 K) for device D1. Interestingly, the resonance frequen-
cies, including fundamental mode (indicated by the blue arrows) and second mode, first
decrease and then increase as temperature increases, with a turning point at temper-
ature Tt = 302 K (see Fig. 4.2b). Similarly, the measured vibration amplitude Ares and
quality factor Q for device D1 also reach to their maximum at Tt (see Fig. 4.2c). These
behaviors are also experimentally observed in devices D2 and D3 (see Appendix section
3). We attribute the turning of f0 versus T to the mechanical buckling of the nanome-
chanical resonators under critical compressive loading, which has been reported before
in carbon nanotube resonators [6] and arch MEMS devices [20]. In fact, the bulk ther-
mal expansion coefficients (TEC),αm , of the measured FePS3 membranes in this work is
much larger than the TEC αSi of the Si/SiO2 substrate. Hence, heating induces compres-
sive displacement in the resonators and buckling is a natural consequence.

Due to the buckling, we cannot use the standard equation for the resonance fre-
quency of a pre-tensioned plate or membrane for further analysis. Therefore, we use
a mechanical buckling model for clamped circular plate, as illustrated in Fig. 4.2d. Using
a Galerkin method from literature [21, 22], we obtain an expression of f0 under boundary
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Figure 4.2: Thermally induced buckling in 2D nanomechanical resonator. a Mechanical response |z f | of device
D1 as the function of frequency f and temperature T . The fundamental resonance frequency f0 first decreases
and then increases with increasing T (blue arrows). b f0 versus T (red points). The minimum in f0 is indicative
of the temperature Tt at around 302 K. Drawn line, f0 versus T fitted with the mechanical buckling model to
the measurement, using αm = 1.1×10−5 K−1. The deviation at high T indicates that αm is T -dependent. c
Vibration amplitude Ares at resonance and quality factor Q as a function of T for device D1, respectively. d Me-
chanical buckling illustration for a clamped circular membrane, where a boundary compressive displacement
U causes a central deflection z of the membrane. e z versus U in the membrane estimated by Eq. 4.2. Lines,
results under different values of free deflection z f r ee of the membrane. Dotted line, supercritical bifurcation
at the critical buckling load when z f r ee = 5 nm. f f0 of the resonator versus U . Black dots, resonance frequency
ft at the turning point.

compressive displacement:

f0(T ) = 10.33h

πd 2

√√√√ E

3ρ(1−ν2)
(1+β(1−ν2)

3z2 − z2
f r ee

h2 + 3

8
(1+ν)

Ud

h2 ), (4.1)

where U is the thermally induced in-plane displacement of the plate, ρ is the mass den-
sity, d = 2R is the diameter, z is the central deflection of the plate, z f r ee is the central
deflection of free plate without loading (when U = 0), and β = 0.52 is a fitting factor as
ν= 0.304 (see Appendix section 1). Both U and z depend on temperature T . The details
of derivation of Eq. 4.1 can be found in Appendix section 1. In contrast to the standard
equation for the resonance frequency of a pre-bending plate [23], we now find that not
only the bending rigidity determine f0(T ), but also the thermally-induced boundary dis-
placement U and the center deflection z of the membrane.

To find the relation between U and z, we consider a uniformly-clamped plate as de-
picted in Fig. 4.2d. By studying the static state of the plate using Gakerkin method (see
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more details in Appendix section 1), we obtain an analytic solution:

32

3

(
1− z f r ee

z

)
−10.7β(1−ν2)

(
z2

f r ee − z2

h2

)
+4(1+ν)

Ud

h2 = 0. (4.2)

Therefore, the change of central deflection z of the plate versus U as buckling happens
can be extracted from Eq. 4.2. We further use COMSOL simulation method to obtain
z and f0 as the function of U , showing good agreements with the analytical solution
obtained from Eqs. 4.1 and 4.2 (see Fig. 4.6). By substituting the parameters R = 4 µm,
E = 69.9 GPa, h = 33.9 nm, ρ = 3.375 g/cm3 and ν = 0.304 into Eq. 4.2, we can evaluate
z as a function of U for different z f r ee . As plotted in Fig. 4.2e, z gradually increases with
increasing U . The dotted black line in Fig. 4.2e represents a supercritical bifurcation
at the critical buckling load when z f r ee = 5 nm. This physically indicates an unstable
equilibrium that the plate will either buckle up or down when it is slightly perturbed.
For nonzero z f r ee in this work, the 2D membrane always buckles in the direction of its
pre-deflection.

In order to investigate the effect of buckling on the resonance frequency f0, we sub-
stitute the relation between z and U into Eq. 4.1. This results in a relation between f0

and z f r ee , as plotted in Fig. 4.2f. When decreasing the displacement U by compression,
f0 reduces to a minimal value (the turning point) and then starts to increase. At this turn-
ing point, the minimum resonance frequency ft of the resonator is reached (marked as
dots in Fig. 4.2f). Both the experimental curves in Fig. 4.2a and the theoretical curves in
Fig. 4.2f clearly show this frequency minimum, which we take as qualitative evidence for
the occurrence of buckling in the 2D resonators.

Let us now quantify U and z as a function of T for device D1, using a model that
follows the flow chart depicted in Fig. 4.3a. First, we need to determine the value of
z f r ee in the mechanical buckling model. For this, we use the specific feature in the mea-

sured f0 versus T data, which is d f0
dT |T=Tt = 0 at the turning point (Fig. 4.2b). Assuming

the Young’s modulus of the membrane remains constant within the probed temperature
range [24], z f r ee can be determined by ft (see derivation in Appendix section 2). Here,
using the parameters in Table 4.1 and the measured value of ft (Tt ) = 5.53 MHz, we ex-
tract z f r ee = 20.6 nm for device D1.

By substituting the obtained z f r ee into Eqs. 4.1 and 4.2, we further extract U and z as
a function of T from the measured f0 at each temperature for device D1. In Fig. 4.3b, we
observe that the compressive displacement U becomes more than 10 times larger than
its initial tensile value U0 = 0.073 nm (Table 4.1) by heating the membrane by only 16 K.
To validate the extracted U (T ), we determine the TEC αm of the membrane. Using the
TEC of the substrate αSi, we can use the relation 1

R
dU
dT = −(αm −αSi) to determine αm

[17]. We thus fit this relation to the obtained ϵ as shown in Fig. 4.3c (orange line) and
find αm is approximately 1.1 to 0.2×10−5 K−1, which is in good agreement with values
reported in the literature for FePS3[25]. The fitting deviation for f0(T ) in Fig. 4.2b is thus
attributed to the temperature dependence of αm of FePS3, or the irregular deflection of
the membrane as buckling happens.

To experimentally validate the extracted z(T ) from the buckling model in Fig. 4.3c,
we use a white light interferometer to image the surface profile of the suspended FePS3
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Figure 4.3: Change in boundary displacement and central deflection of device D1. a Flow chart of the me-
chanical buckling model, which allows to extract the boundary displacement U and central deflection z of the
membranes as the function of temperature T . b U versus T . Orange line, the result obtained from mechanical
buckling model; black lines, calculation with fixed values of TEC αm . c z versus T . Orange line, the result
obtained from mechanical buckling model; points, measurement by white light interferometry. d Top, im-
ages of FePS3 flake under white light interferometry. Bottom, surface profile of the membrane as T increases
(corresponding to the black arrow in top insert).

membranes as a function of temperature. As shown in Fig. 4.3d, we observe from the
height profiles (black arrows, top panel) that the membrane deformation increases as
T goes up (bottom panel). As a measure for z(T ), we take the difference between the
maximum and minimum height for two height profiles and take the average value. As
plotted in Fig. 4.3c, the extracted z(T ) (points) for device D1 quantitatively matches the
estimated z(T ) (orange line), which confirms that device D1 exhibits mechanical buck-
ling. In addition, the total strain in the FePS3 membrane also changes from the initial
tensile strain to a strong compressive strain. From the obtained U0 = 0.078 nm and
z f r ee = 20.6 nm, we extract the initial strain ϵ0 = 1.84×10−5 for device D1 using Eq. 4.27

and the relation Nr = Ehϵ
1−ν . All obtained ϵ0 for devices D1 to D3 are listed in Table 4.1.

We now focus on the vibration amplitude of the fundamental mode of the mem-
brane. As shown in Fig. 4.2c, we observe a remarkable enhancement of up to 14× the
vibration amplitude Ares at the turning point Tt = 302 K. This is attributed to the re-
duction of out-of-plane stiffness, keff = meff(2π f0)2, of the membrane near the buckling
transition. Furthermore, we also find the thermally induced buckling in devices D2 and
D3 during optomechanical measurements (see Appendix section 3). We quantify the fre-
quency turning of these devices with the mechanical buckling model, and extract their
z0, ϵ0 and ϵt as listed in Table 4.1. Similar to what was observed for device D1 (Fig. 4.2c),
Ares for devices D2 and D3 also show more than 14 times enhancements near the buck-
ling transition (see Fig. 4.10).

The implications of the observed phenomena extend beyond FePS3 resonators. Even
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for 2D materials with a negative TEC such as graphene, buckling might occur if it is
cooled down and the initial tensile stress is low enough. A key assumption in Eqs. 4.1
and 4.2 is a uniform compressive force at the boundary of the membrane and a constant
Young’s modulus over the measured temperature range. In reality, inhomogeneities due
to uneven adhesion between membrane and substrate could lead to multiple smaller
corrugations and wrinkles superimposed in the membrane when buckling occurs. This
potential limitation, which we did not observe for the devices studied in this work, de-
serves future study as the buckled mode shape as well as the Young’s modulus depend on
it [26, 27]. Possibly, the experimental quantification of the Young’s modulus for each de-
vice with AFM, as we did in Fig. 4.2c, compensates for some of the effects of corrugations
and wrinkles on the buckling bifurcation.

Despite the fact that the temperature-dependence of resonance frequency has been
investigated in earlier works on 2D membranes [28–30], mechanical buckling has not
been reported yet. It seems that one study on MoS2 resonators might have almost

reached the buckling point ( d f0
dT → 0) at around 373 K [28]. In this chapter it was rel-

atively straightforward to reach the buckling bifurcation due to the large TECs of the
selected 2D materials. It is of interest to speculate on the ultimate limits of buck-
ling induced resonance frequency decrease. As indicated in Fig. 4.2d, theoretically it
might be possible to have the resonance frequency approaching zero for a deflection
z f r ee = 0 nm. However, in practice it will be difficult to reach that point. Nevertheless,
by making the membranes flatter and with low pre-stress, the zero resonance frequency
might be approached, which allows for an extremely high tunability and therefore a
high force, stress and temperature sensitivity of f0 near the minimum ft . For such flat
and low stress membranes, we expect the bending rigidity of 2D materials to dominate
the performance and resonance frequency versus temperature curve near the buckling
bifurcation point.

Also from an application perspective, the thermally induced buckling in 2D nanome-
chanical resonators deserves further exploration. First, the frequency tuning with tem-
perature is considerable. As shown in Fig. 4.4, we obtain a tunability, ∆ f0/( ft∆T ), more
than 4.02 % K−1 for device D1, which is at least 2.3 times higher than reported in ear-
lier studies [28, 29, 31]. The slope of frequency tuning for device D1 is ∆ f0/(∆T ) =
194.3 kHz/K, which, when considering an accuracy of 1 kHz in determining f0, results in
a temperature resolution of 5.1 mK. This value is comparable to state-of-the-art temper-
ature sensors [32] and thus highlights the application buckled 2D resonators as bolome-
ter [33] and NEMS resonant infrared detector [34]. Furthermore, precise control over the
buckling bifurcation can be obtained by tailoring the initial deflection of the membrane
by applying, among others, electrostatic gating on the resonators [11], a gas pressure
difference [35], or straining the resonators by MEMS actuators [36].

4.4. CONCLUSION

In summary, we reported the experimental observation of thermally-induced buckling
in 2D nanomechanical resonators made of suspended FePS3 membranes. Using an op-
tomechanical method, we probed their dynamic responses as a function of tempera-
ture. A mechanical buckling model was developed to explain the observed large turning
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Figure 4.4: Frequency tunability by varying temperature for 2D nanomechanical resonators.

of the resonance frequency with temperature, which allows to determine the boundary
compressive displacement and center deflection of the fabricated devices. Using white
light interferometer, we independently validated the extracted deflection of the mem-
brane versus temperature from buckling model. We found an enhancement of up to
14× vibration amplitude near buckling bifurcation, which we attributed to the decrease
in out-of-plane stiffness of the membrane. The gained insight not only advances the
fundamental understanding of buckling bifurcation membranes made of 2D materials,
but also enables pathways for buckling-enhanced designs and applications such as tem-
perature detectors, thermoelectric and NEMS devices.

4.5. METHODS
Sample Fabrication. A Si wafer with 285 nm dry SiO2 is spin coated with positive e-
beam resist and exposed by electron-beam lithography. Afterwards, the SiO2 layer with-
out protection is completely etched using CHF3 and Ar plasma in a reactive ion etcher.
The edges of cavities are examined to be well-defined by scanning electron microscopy
(SEM) and AFM. After resist removal, FePS3 nanoflakes are exfoliated by Scotch tape,
and then separately transferred onto the substrate at room temperature through a de-
terministic dry stamping technique. Detailed descriptions of the FePS3 crystal growth
and characterization can be found in earlier works [37].

Laser Interferometry Setup. We present temperature-dependent optomechanical
measurements in a laser interferometry setup [17]. The fabricated devices is fixed on
a sample holder inside the vacuum chamber. A PID heater and a temperature sensor
are connected with the sample holder, which allows to precisely monitor and control the
temperature sweeping. A piezo-electric actuator below the sample holder is used to opti-
mize the X-Y position of the sample to maintain both the blue and red laser in the center
of the 2D resonators. We use a red and blue laser power of 0.9 and 0.13 mW respectively.
Note we verified that the resonators vibrate in linear regime and the temperature raise
due to self-heating is negligible [38].
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Figure 4.5: Schematic diagram of a clamped circular plate under buckling.

4.6. APPENDIX

4.6.1. MECHANICAL BUCKLING MODEL FOR CLAMPED CIRCULAR MEM-
BRANES

BASIC EQUATION AND BOUNDARY CONDITIONS

Assume that a thin circular plate with radius R and thickness h, as shown in Fig. 4.5,
undergoes axisymmetric non-linear bending vibrations under an uniformly distributed
periodic lateral load p cos(Ωt ), where Ω is the excitation frequency in the range of the
lower natural frequencies of the plate. Denoting the axisymmetric initial and total de-
flections by W0(r ) and W (r, t ), respectively, and the stress function Φ in the r direction,
we obtain the motion of the plate by means of the dynamic analog of the Marguerre
equations as [21]:

Φ,r r + (1/r )Φ,r − (1/r 2)Φ=−(Eh/2r )(W 2
,r −W 2

0,r ), (4.3)

D∇4(W −W0)−Nr W,r r − (1/r )NθW,r +ρhW,t t = p cosΩt , (4.4)

where
D = Eh3/12(1−ν2),∇2 = ∂2/∂r 2 + (1/r )∂/∂r. (4.5)

Here D is the flexural rigidity, E , ν and ρ are the Young’s modulus, Poisson’s ratio and
mass density of the plate, respectively, and subscripts following a comma indicate
derivative. The boundary conditions at r = R are given as:

W −W0 = (W −W0),r = 0, U =U0 or Φ,r − (ν/r )Φ= (Eh/r )U0, (4.6)

where U (r, t ) is the displacement of the middle surface of the plate in the r direction,
and U0 is the initial displacement.

Here, the equations of motion (Eqs. 4.3 and 4.4), and the boundary conditions
(Eq. 4.6), can be converted to:

φ,r r + (1/ζ)φ,ζ− (1/ζ2)φ=−(1/2ζ)(w2
,ζ−w2

0,ζ), (4.7)

L(w) ≡ c(∇)4(w −w0)+ cw,ττ− (1/ζ)(φw,ζ),ζ−p cosωτ= 0, (4.8)

w −w0 = w,ζ−w0,ζ = 0 and φ,ζ−νφ= u0atζ= 1, (4.9)

∇2 = ∂2/∂ζ2 + (1/ζ)∂/∂ζ. (4.10)
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With the notations:

ζ= r /R, (w, w0) = (W,W0)/h, (u,u0) = (U ,U0)R/h2, φ= RΦ/Eh3,

p = pR4/Eh4, c = 1/12(1−ν2), Ω0 = (1/R2)
√

D/ρh, ω=Ω/Ω0, τ=Ω0t . (4.11)

GALERKIN METHOD

Assuming that both w0 and w satisfy the clamped boundary conditions, one can put:

w0(ζ) = ∑
m=1

am wm(ζ), w(ζ,τ) = ∑
m=1

bm(τ)wm(ζ), m = 1,2,3, ..., (4.12)

wm(ζ) = (1−ζ2)2ζ2(m−1). (4.13)

In Eq. 4.12, the am are given constants while the bm are unknown time functions. Sub-
stituting these expressions into Eq. 4.7 gives:

φ,r r + (1/ζ)φ,ζ− (1/ζ2)φ=−(1/2ζ)(w2
,ζ−w2

0,ζ) = ∑
k=1

Ak (τ)ζ2k−1, k = 1,2,3, ..., (4.14)

For the determination of bm(τ), we apply the Galerkin procedure to Eq. 4.8, which leads
to the following conditions for each spatial function wi :∫ 1

0
L(w)wi (ζ)ζdζ= 0, i = 1,2,3, ..., (4.15)

Performing the integration gives:

∑
j=1

[Mi j b j ,ττ+Ki j (b j −a j )−12(1+ν)uoUi j b j ]− 1

c

∑
j=1

∑
k=1

Ni j k b j Bk = 1

c
Qi p cosωτ,

i , j ,k = 1,2,3, ..., (4.16)

where the notations are:

Mi j =
∫ 1

0
wi w j ζdζ, Ki j =

∫ 1

0
wi (∇4

w j )ζdζ, Ui j =
∫ 1

0
wi (ζw j ,ζ),ζdζ, Qi =

∫ 1

0
wiζdζ,

Ni j k =
∫ 1

0
wi

[(
ζ2k − 2k +1−ν

1−ν
)
ζw j ,ζ

]
,ζ

dζ, Bk (τ) = Ak (τ)/4k(k +1). (4.17)

The normalized stress in the radial direction can be expressed as:

φ= u0

1−νζ+
∑
k=1

Bkζ

(
ζ2k − 2k +1−ν

1−ν
)

, k = 1,2,3, ..., (4.18)

NUMERICAL SOLUTION AND COMSOL SIMULATION

We can carry out the numerical solution of Galerkin method for the three degree of free-
dom system using the assumption:

w0 = a1w1(ζ), w =
3∑

m=1
bm(τ)wm(ζ), (4.19)
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a b c

Figure 4.6: Solutions obtained from Galerkin method and COMSOL simulation. a Central deflection z versus
in-plane displacement U of the plate. Red points, COMSOL simulation results. Blue line, Galerkin solution
using three modes. Dash line, analytical solution of Eq. 4.22 without the calibration factor β. Dotted line,
analytical solution of Eq. 4.22 with β = 0.52. b Fundamental resonance frequency f0 versus U of the plate,
under the corresponding conditions in a. c Relation between the average in-plane radial strain ϵ and U of the
plate.

where a1 represents the ratio of the maximum initial deflection to the plate thickness.
For the static state, b j ,ττ = 0 and p = 0, we can thus extract the static maximum deflec-
tion at the center of the plate, z = h

∑3
m=1 bm , by substituting Eq. 4.19 into Eq. 4.16. For

the dynamic state, to determine the linear natural frequencies of the plate under the
influence a1 and an initial edge displacement u0, we directly substitute Eq. 4.19 into
Eq. 4.16 with p = 0. By solving a set of three homogeneous equations (Eq. 4.16) in b j (τ),
we can finally obtain the natural frequencies ω∗

1 , ω∗
2 ,..., of the plate. More details can be

found in Ref [21].

Here we set the parameters of the circular plate as: R = 4 µm, h = 33.9 nm, E =
69.6 GPa, ν= 0.304, ρ = 3375 kg/m3, and the central deflection of the plate z f r ee = a1h =
10 nm (when U = 0). We plot the central deflection z and fundamental resonance fre-
quency f0 of the plate as the function of the in-plane displacement U , respectively, as
shown in Fig. 4.6 (blue lines). Similar to our experimental observations, as the displace-
ment varies from positive to negative values, z gradually increases due to the buckling
(z = z f r ee at U = 0), while f0 first decreases and then increases again, with a lowest value
at the turning point.

To further verify our solutions of static deformation and resonance frequency of
buckled plate based on Galerkin method, we now introduce the simulation method us-
ing COSMOL, as shown in Fig. 4.7. Adopting the same parameters in COSMOL model as
used in Galerkin equations above, we obtain the simulation results of both z and f0 of
the plate as the function of U , respectively, as shown in Fig. 4.6 (red points). We observe
that the simulation results are matched well with the numerical solutions, where the ex-
isting deviations could probably because of the inaccuracy in the COMSOL simulation,
such as coarse mesh size.

We further calculate the relation between the average radial strain ϵ and in-plane
displacement U of the plate using Eq. 4.18, as plotted in Fig. 4.6c. We see ϵ is proportional
to U in the pre-buckling regime, while the slope of ϵ versus U remarkably reduces in the
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Figure 4.7: COMSOL model of a clamped circular plate under buckling.

post-buckling regime. This indicates that as buckling happens, the radial displacement
will mainly convert to the deformation of the plate instead of in-plane strain.

ANALYTICAL SOLUTION OF GALERKIN METHOD

We now extract the analytical solution of deformation z(U ) and fundamental resonance
frequency f0(U ) of Galerkin method by only considering the first mode for both static
and dynamic states:

w0 = a1w1(ζ), w = b1(τ)w1(ζ). (4.20)

Therefore, we can directly extract the values of notations in Eq. 4.17. For the static state,
combining Eq. 4.20 with Eq. 4.16, we obtain:

32

3
(b1 −a1)−10.7(1−ν2)b1(a2

1 −b2
1)+8(1+ν)b1u = 0. (4.21)

Considering the notations in Eq. 4.11, we convert Eq. 4.21 to:

32

3

(
1− z f r ee

z

)
−10.7β(1−ν2)

(
z2

f r ee − z2

h2

)
+8(1+ν)

U R

h2 = 0. (4.22)

Using the given parameters in Fig. 4.6, we thus can extract z as the function of U from
Eq. 4.22, as plotted in Fig. 4.6a (dotted line). In Eq. 4.22, we add a factor β for calibrating
the constant 10.7, since the second and three Gelerkin modes in Eq. 4.16 will soften the
nonlinear component b j Bk . As shown in Fig. 4.6a, by setting β as 0.52, we obtain a good
agreement between the analytic solution and the Gelerkin solution considering all three
modes. The fitting value of β will be discussed in the following.

For dynamic state, assume the dynamic mode as b1 +bd , we combine Eq. 4.20 with
Eq. 4.16 and get:

−λbd

10
+ 32

3
(b1 +bd −a1)−10.7(1−ν2)(b1 +bd )(a2

1 − (b1 +bd )2)+8(1+ν)(b1 +bd )u = 0.

(4.23)
Ignoring the static components (as already solved in Eq. 4.21), Eq. 4.23 can be simplified
as:

−λbd

10
+ 32

3
bd −10.7(1−ν2)(bd a2

1 −3b2
1bd )+8(1+ν)bd u = 0. (4.24)
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Figure 4.8: Discussion of variables in analytic solution. a and b Central deflection z and resonance frequency
f0 versus in-plane displacement U of the plate, as z f r ee increases from 5 to 20 nm, respectively. Blue lines,
Galerkin solutions (three modes). Dotted lines, analytical solutions using β= 0.52. c f0 versus U as the Poisson
ratio ν increases from 0.1 to 0.4. Red points, COMSOL simulation results when ν= 0.1. d Values of the fitted β
as a function of ν, showing a linear relation.

We then adopt the normalization bd = 1 and substitute the notations in Eq. 4.11 into
Eq. 4.24:

λ= 10

[
32

3
−10.7(1−ν2)

z2
f r ee −3z2

h2 +8(1+ν)
U R

h2

]
. (4.25)

Therefore, we express the fundamental resonance frequency f0 of the plate:

f0 = Ω0

2π

p
λ= 10.33h

πd 2

√√√√ E

3ρ(1−ν2)

(
1+β(1−ν2)

3z2 − z2
f r ee

h2 + 3

4
(1+ν)

U R

h2

)
. (4.26)

Here, the calibration factor β is induced in Eq. 4.26. By adopting β= 0.52 in Eq. 4.26, we
extract the result of f0 versus U as shown in Fig. 4.6b (dotted line), which matches well
with the Galerkin method and COMSOL simulation. In addition, Eq. 4.26 is comparable

to the expression f0 = 10.21h
πd 2

√
E

3ρ(1−ν2)
of the vibrated plate in the previous studies [23].

According to the expressions of Ni j k and Bk , we see the fitting factor β is only related
to the Poisson ratio ν of the material. In Figs. 4.8a and 4.8b, it is verified that when ν =
0.304, β = 0.52 can be used for fitting the analytical solution under different values of
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Figure 4.9: a Measurement results of FePS3 nanoflake under white light interferometry. Left, 300 K; right, 323 K.
Scale bar is 10 µm b Scanning of the surface profile of device D2 as temperature goes up from 300 K to 323 K,
following the black line in a.

z f r ee . We then find that in order to obtain a good agreement between the analytical and
Galerkin solutions, the fitting factor β follows the relation β= 0.35ν+0.415, as shown in
Figs. 4.8c and 4.8d. As a result, when quantifying the buckling of resonators made up of
other 2D materials, β can be estimated through this linear relation above.

Furthermore, we can extract the average radial tension on the plate by Nr =
∫ R

0
φ(r )

r
Eh3

R2 dr .
Substituting the normalized radial stress φ in Eq. 4.18, a1 = z f r ee /h and b1 = z/h, we ob-
tain:

Nr = Eh

R2

[(
z2 − z2

f r ee

3
+U R

)
1

1−ν − 29

105
(z2 − z2

f r ee )

]
. (4.27)

Thus the boundary displacement U can be expressed as:

U = Nr R

Eh
(1−ν)−

z2 − z2
f r ee

3R
−

29(z2 − z2
f r ee )

105R
(1−ν). (4.28)

Substituting Eq. 4.28 and the strain ϵ= Nr (1−ν)
Eh back into Eq. 4.26, and using β= 0.52, we

finally get:

f0 = c1

2πR

√√√√ E

ρ(1−ν2)

[
ϵ(1+ν)+

c21z2 + c22z2
f r ee

R2 + c3
h2

R2

]
, (4.29)

where c1 = 2.58, c21 = 2.02−1.77ν2 +0.25ν, c22 =−0.98+0.73ν2 −0.25ν and c3 = 4
3 .

Figure 4.9 shows the scanning results of FePS3 devices D1 and D2 using white light
interferometer. We observe that both of them buckle downwards as T increases from
300 K to 323 K (see Fig. 4.9a). T -dependent surface profile of devices D1 and D2 are
shown in Figs. 3c and 4.9b, respectively. This also allows to extract the central deflection
z of the membrane as the function of T . As depicted in Fig. 4.3e above, the measured
values of z(T ) are comparable to the estimation from mechanical buckling model.

4.6.2. DETERMINING CENTRAL DEFLECTION OF 2D NANOMECHANICAL

RESONATORS AT THE FREE STATE WITHOUT FORCE LOADING
We now explain how to extract the central deflection z f r ee of the plate when the dis-
placement U = 0 from the measured f0 versus T . As introduced in the main text, we use
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one specific feature: at the turning point T = Tt , we have ∂ f0
∂T |T=Tt = 0. Firstly, we rewrite

Eq. 4.26 as:

f 2
0 (T ) = 1

ct

[
1+β(1−ν2)

3z2 − z2
f r ee

h2 + 3

4
(1+ν)

U R

h2

]
, (4.30)

where the constant 1/ct = ( 10.33h
πd )2 E

3ρ(1−ν2)
. From the condition at turning point above,

we find that the derivative of Eq. 4.30 is expressed as:

β(1−ν2)

h2 6zt
∂z

∂T
+ 3

4
(1+ν)

R

h2

∂U

∂z

∂z

∂T
= 0, (4.31)

and thus:
∂U

∂z
=−8zt

β(1−ν)

R
, (4.32)

where zt is the central deflection of the plate at the turning point. Using the relation
between z and U in Eq. 4.22, we then have:

∂U

∂z
= h2

8(1+ν)R

[
−32

3

z f r ee

z2
t

+10.7β(1−ν2)
2zt

h2

]
. (4.33)

Substituting Eq. 4.33 into Eq. 4.32, and using β= 0.52, we extract:

z3
t =

0.24z f r ee h2

1−ν2 . (4.34)

On the other hand, at the turning point, we can also rewrite Eq. 4.22 and Eq. 4.26 as:

32

3

(
1− z f r ee

zt

)
−10.7β(1−ν2)

(
z2

f r ee − z2
t

h2

)
+8(1+ν)

Ut R

h2 = 0, (4.35)

and

ft (T = Tt ) = 10.33h

πd 2

√√√√ E

3ρ(1−ν2)

(
1+β(1−ν2)

3z2
t − z2

f r ee

h2 + 3

4
(1+ν)

Ut R

h2

)
, (4.36)

where Ut represents the in-plane displacement of the plate at the turning point. Eq. 4.34
and Eq. 4.35 allow to express Ut as the function of z f r ee . Therefore, by substituting the
obtained zt (z f r ee ) and Ut (z f r ee ) into Eq. 4.36, we can finally determine that the mea-
sured frequency ft at the turning point is only related to the free central deflection z f r ee

of the plate.

4.6.3. RAW DATA OF OPTOMECHANICAL MEASUREMENTS FOR DEVICES D2
AND D3

Using optomechanical measurement, we also observe the thermally induced buckling
on devices D2 and D3, respectively. As shown in Figs. 4.10a and 4.10c, the frequency
tuning of these devices can be well explained with the buckling model for 2D resonators,
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Figure 4.10: Optomechanical measurements on devices D2 and D3. a Points, measured resonance frequency
f0 versus temperature T for device D2; drawn line, f0 estimated by Eqs. 1 and 2 using a TEC αm = 2.1×10−5.
Inserts, optical images of device D2. b Measured vibration amplitude Ares and quality factor Q of the resonance
peak versus T . c and d Corresponding results for device D3, where we adopt αm = 1.5×10−5 in c.

a b c

h

SiO2 FePS3

Figure 4.11: AFM measurements on devices D2 and D3. a and b AFM indentation results for device D2 and
D3 (orange points), respectively, where the Young’s modulus E of the membrane is extracted by fitting the
measured force F to the cantilever deflection δ (black line). c Height histogram of the substrate (red), as well
as FePS3 membrane (cyan), measured by AFM. Insert, AFM scanning image on the boundary of FePS3 flake.
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where their extracted values of z f r ee and U0 are listed in Table 4.1. The deviation be-
tween the measured and estimated f0(T ) in device D2, especially at high T , suggests that
αm or E of the membrane is T -dependent. We also observe the enhancements of 14×
and 47× vibration amplitude Ares near the buckling transition for devices D2 and D3,
respectively, which are similar to what we found in device D1. In addition, the frequency
tunability of these devices are about 6.51 % K−1 and 8.08 % K−1, respectively, as plotted
in Fig. 4.4. Therefore, we demonstrate that the force sensitivity and frequency tunability
of 2D material resonators are commonly enhanced near the buckling bifurcation.

Furthermore, we also show the AFM measurement results for determining the
Young’s modulus of devices D2 and D3, as well as the thickness of device D3, as shown
in Fig. 4.11. By fitting the applied force F versus AFM indentation δ, we extract the
Young’s modulus is equal to 70.3 GPa and 93.1 GPa for device D2 and D3, respectively.
In addition, using tapping mode AFM, we extract a thickness h of 34.5 nm for device
D3. These results are listed in Table 4.1, which are adopted to further investigate the
buckling phenomena in 2D resonators.
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5
OPTOMECHANICAL METHODOLOGY

FOR CHARACTERIZING THE

THERMAL PROPERTIES OF 2D
MATERIALS

Heat transport in two-dimensions is fundamentally different from that in three dimen-
sions. As a consequence, the thermal properties of 2D materials are of great interest, both
from scientific and application point of view. However, few techniques are available for
accurate determination of these properties in ultrathin suspended membranes. Here, we
present an optomechanical methodology for extracting the thermal expansion coefficient,
specific heat and thermal conductivity of ultrathin membranes made of 2H-TaS2, FePS3,
polycrystalline silicon, MoS2 and WSe2. The obtained thermal properties are in good
agreement with values reported in the literature for the same materials. Our work provides
an optomechanical method for determining thermal properties of ultrathin suspended
membranes, that are difficult to measure otherwise. It can does provide a route towards
improving our understanding of heat transport in the 2D limit and facilitates engineering
of 2D structures with dedicated thermal performance.

Parts of this chapter have been done as a manuscript and will be submitted to an academic journal.
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5.1. INTRODUCTION
Soon after the discovery of monolayer graphene, it was found that 2D materials have
unique thermal properties, which open opportunities for heat control at the nanoscale
[1–5]. Due to their ultrasmall thickness, thermal properties of 2D materials are domi-
nated by surface scattering of acoustic phonons, which is highly sensitive to strain [6],
grain size [7] and temperature [8], as well as material imperfections such as defects and
impurities [9]. To understand and optimize heat transport in 2D materials, precise ther-
mal characterization methods are of great importance.

So far, a variety of experimental techniques have been developed to characterize
thermal transport in 2D materials, of which the transient micro-bridge method [10, 11]
and the steady-state optothermal method based on Raman microscopy are most com-
monly used [12, 13]. However, the construction of a micro-bridge is complicated and
thermal contact resistances can affect measurement results, while for Raman measure-
ments, the probed temperature resolution is usually relatively small, leading to large
error bars. These limitations undermine the accuracy of probing heat transport in 2D
materials, causing large variations in the thermal material parameters reported in lit-
erature. For example, literature values for the thermal conductivity vary from 2000 to
5000 Wm−1K−1 for suspended monolayer graphene [14].

In this chapter, we demonstrate an optomechanical non-contact method for mea-
suring the thermal properties of nanomechanical resonators made of free-standing 2D
materials. The presented methodology allows us to simultaneously extract the ther-
mal expansion coefficient, the specific heat and the in-plane thermal conductivity of
the material. It involves driving a suspended membrane using a power-modulated
laser and measuring its time-dependent deflection with a second laser. Thus both the
temperature-dependent mechanical fundamental resonance frequency of the mem-
brane and characteristic thermal time constant at which the membrane cools down [15]
are measured. A major advantage of the method is that no physical contact needs to
be made to the membrane, such that its pristine properties are probed and no complex
device fabrication is needed. Buckling effects are incorporated in the model to account
for the induced compressive stress during temperature variations. Our results on 2H-
TaS2, FePS3, polycrystalline silicon (Poly Si), MoS2 and WSe2 show good agreement with
reported values in the literature.

5.2. FABRICATION AND METHODOLOGY
We fabricate 2D nanomechanical resonators by transferring 2D flakes over circular cav-
ities with a depth of 285 nm and a radius R of 3 to 4 µm in a silicon (Si) substrate with
a 285 nm thick silicon oxide (SiO2) layer, as illustrated in Fig. 5.1a. The devices D1−D5
studied in this work are made of 2H-TaS2, FePS3, Poly Si, MoS2 and WSe2, respectively.
By using tapping mode Atomic Force Microscope (AFM), we determine the thickness, h,
of each membrane (see Table 5.1). All details about the device fabrication and thickness
measurement can be found in Appendix section 1. To determine the Young’s modulus E
of each membrane, we use the AFM to indent the centre of suspended area with a force F
while measuring the cantilever indentation δ [16]. The measured F versus δ, as depicted
in Fig. 5.1b for device D1, is fitted with a model for point-force loading of a circular plate
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Figure 5.1: Sample characterization and experimental setup. a Top, schematic diagram of 2D nanomechanical
resonators, composed of 2D flake suspended on the etched SiO2/Si cavities; bottom, optical image of device
D1 (2H-TaS2). Scale bar is 5 µm. b AFM indentation results for device D1 (points), from which the Young’s
modulus E of the membrane is extracted by fitting the measured force F to the cantilever deflection δ (drawn
line). c Laser interferometry setup used for the optomechanical measurement. The sample is mounted in a
vacuum chamber (VC) with a pressure below 10−5 mbar. The reflected red laser is detected by the photodi-
ode (PD) and input to the vector network analyzer (VNA). PBS, polarized beam splitter; DM, Dirac mirror. d
Resonant peak of device D1 measured at MHz regime (points), which is fitted with a harmonic model (drawn
line) to extract the resonance frequency f0 of device D1. e Thermal signal measured at kHz regime, including
imaginary (red points) and real (blue points) parts. The imaginary part is fitted with Eq. 5.1 (drawn lines) to
obtain the thermal time constant τ of device D1.

given by F = ( 16πD
R2 δ)+n0πδ+Et q3( δ

3

R2 ), where D = Eh3/(12(1−ν2)) is the bending rigidity
of the membrane, ν is Poisson ratio, n0 = Ehϵ0/(1−ν) is the initial tension in the mem-
brane, and ϵ0 is the prestrain. We extract E = 108.45 GPa and ϵ0 = 6.75×10−3 from the fit
shown in Fig. 5.1b (drawn line), which are in good agreement with typical values found
in literature for 2H-TaS2 [17]. The obtained values of E for devices D2−D5 are listed in
Table 5.1.

The setup for the optomechanical measurements [18, 19], is shown in Fig. 5.1c. A
power-modulated diode laser (λ= 405 nm) photothermally actuates the resonator, while
a constant He-Ne laser (λ= 632 nm), of which the reflected laser power depends on the
position of the membrane, is used to detect the motion of the resonator. The power-
modulation is supplied by a Vector Network Analyzer (VNA), which also analyzes the
photodiode signal containing the reflected laser power and converts that to the response
amplitude, A f , of the resonator in the frequency domain. All measurements were done
in vacuum at a pressure below 10−5 mbar. As shown in Fig. 5.1d, the amplitude A f shows
a clear fundamental resonance peak, which we fit with a harmonic oscillator model. For
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Table 5.1: Characteristics of devices D1−D5, including radius R, thickness h, mass density ρ, Young’s modulus
E , atomic mass M , Poisson ratio ν, Grüneisen parameter γ, as well as the obtained average TEC αm , specific
heat Cv and in-plane thermal conductivity k. The values of ρ, M , ν and γ are taken from literature [17, 21–25].

R (µm) h (nm) ρ (kgm−3) E (GPa) M (gmol−1)
D1 (2H-TaS2) 4 23.2 6860 108.45 245
D2 (FePS3) 4 33.9 3375 69.60 183
D3 (Poly Si) 4 24.0 2330 140.52 28
D4 (MoS2) 3 4.8 5060 174.32 160
D5 (WSe2) 3 5.5 9320 94.42 342

ν γ αm (×10−6 K−1) Cv (Jmol−1K−1) k (Wm−1K−1)
D1 0.35 2.13 6.96 42.0 8.6
D2 0.304 1.80 12.7 68.2 1.8
D3 0.22 0.45 3.10 20.7 5.3
D4 0.25 0.41 3.37 90.6 28.8
D5 0.19 0.79 7.63 53.8 11.0

device D1, we obtain a resonance frequency f0 = 9.53 MHz and quality factor Q = 160.31.
In addition, we find a maximum in the imaginary part of A f at kHz frequencies (see
Fig. 5.1e), which we attribute to the thermal expansion of the membrane that is delayed
with respect to the increase in membrane temperature by the power-modulated laser
[19, 20]. By solving the in-plane heat equation in membrane, the thermal signal can be
expressed as:

A f =
Ath

i 2π f τ+1
, (5.1)

where Ath and τ are the thermal expansion amplitude and thermal time constant of the
membrane, respectively. The red and blue laser powers are fixed at 0.9 and 0.13 mW
respectively, to ensure linear vibration of the resonators with a negligible temperature
raise of the membrane by self-heating [20]. We extract τ by fitting the measured imagi-
nary part of A f to Eq. 5.1 (see Fig. 5.1e). Here, we obtain the maximum of A f at around
366.19 kHz for device D1, corresponding to τ= (2π×366.19 kHz)−1 = 434.62 ns.

5.3. RESULTS

5.3.1. THERMALLY-INDUCED BUCKLING PHENOMENON
When changing the temperature, the thermal expansion coefficient (TEC) αm of the
membrane, which is higher than that of the silicon substrate αSi, changes the in-plane
displacement of the membrane from the boundary by a quantity U . This results in a re-
markable change in the dynamics of 2D nanomechanical resonators, which can be used
for probing the thermal properties [26, 27]. Therefore, we heat up the fabricated de-
vices and investigate the dependence of resonance frequency f0 on temperature T . As
shown in Fig. 5.2a, we observe a decrease of f0 with increasing T for device D1, which
is in agreement with trends shown in literature [28] and can be attributed to a reduction
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Figure 5.2: Optomechanical methodology for obtaining thermal properties. (a)-(c) Resonant peak measured as
the function of temperature T for devices D1 to D3, corresponding to cases I to III, respectively. (d) Schematic
diagram of the buckled device, where the central deflection z of the membrane increases as the boundary
compression ∆ϵ loaded. (e) Squared resonance frequency f 2

0 as the function of total strain ϵ in the membrane

estimated by Eq. 5.2 and Eq. S1 under different z0. f 2
0 first decreases and then increases again as ϵ varies from

tensile to compressive stress, which is comparable to the measurement result for device D2. (f) The proposed
procedure to determine thermal properties of 2D material membranes.
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in strain when the material thermally expands. However, the results obtained for de-
vices D2 and D3 are substantially different: as shown in Figs. 5.2b and 5.2c, we observe
an initial decrease in f0 with increasing T towards a minimum frequency (which we call
the turning point), followed by a continuous increase. We attribute this to the thermally-
induced buckling of the mechanical resonators as found in earlier studies [29–31], which
is caused by the loaded compression since αm > αSi. Here, as depicted in Fig. 5.2d, the
thermal expansion of the membrane causes a compressive displacement that triggers
the membrane to buckle. We label the pre-buckling, the transition from pre- to post-
buckling, and the post-buckling regions in Fig. 5.2e as cases I, II and III, respectively.

We use a Galerkin model for a clamped circular plate (details can be found in Chap-
ter 4), to find an approximate analytical expression of the fundamental resonance fre-
quency f0 under thermally-induced buckling [32]:

f0(T ) = 10.33h

πd 2

√√√√ E

3ρ(1−ν2)
(1+β(1−ν2)

3z2 − z2
f r ee

h2 + 3

8
(1+ν)

Ud

h2 ), (5.2)

where d is the diameter of the plate, U is the thermally changed in-plane displacement
from boundary, ρ is the mass density, z is the central deflection of the plate, z f r ee is
the central deflection of the plate at free state when U = 0 (without loading), and β is
a fitting factor related by the Poisson ratio ν (see Fig. 4.8). Equation 5.2 shows that f0

depends on the in-plane displacement U (T ) from boundary and the central deflection
z(T ) of the membrane. The relation between z(T ) and U (T ) can be found in Appendix
section 1 (Eq. 5.10). Following the literature [32] and Chapter 4, z f r ee can be extracted
from the measured value of the fundamental resonance frequency at the turning point,
ft , using the built Galerkin model. By substituting R = 4 µm, h = 23 nm, E = 108 GPa,
ρ = 6860 kg/m3, ν = 0.35 and β = 0.54 (determined by ν) into Eq. 5.2 and Eq. S1, we
obtain f 2

0 versus U as shown in Fig. 5.2e. For case I, f 2
0 decreases as U increases; while

as buckling happens (cases II and III), z increases as U decreases, leading to an increase
of f 2

0 since the components in Eq. 5.2 satisfy the condition β(1−ν2)(3z(T )2 − z2
f r ee ) >

| 3
8 (1+ν)U (T )d |. The estimation in Fig. 5.2e can thus account for all measured results of

f0 versus T for devices D1 to D3. In the following, we describe how to extract the slope
of thermal-changed displacement U versus temperature dU

dT for cases I to III, which is
related to the TEC αm of the membrane through [26]:

1

R

dU

dT
=−[αm(T )−αSi(T )]. (5.3)

CASE I: PRE-BUCKLING REGIME

For case I, the suspended membrane is nearly flat while the change of deflection z with
increasing temperature T can be negligible. Therefore, assume dz

dT = 0, the derivative of
Eq. 5.2 can be simplified as (see details in Appendix section 2):

d f 2
0

dT
= ct

dU

dT
. (5.4)

where ct = 13.34E
π2d 3ρ(1−ν)

. Therefore, in the pre-buckling regime, we can directly extract dU
dT

from the measured
d f 2

0
dT using Eq. 5.4 (see the flow chart in Fig. 5.2f). Besides device D1,
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we also show that devices D4 and D5 are in case I according to their measured f0 versus
T (see Appendix section 4).

CASE II: TRANSITION FROM PRE- TO POST-BUCKLING

For case II, Eq. 5.4 is not applicable anymore since z(T ) varies significantly with increas-
ing temperature. We thus calculate the derivative of Eq. 5.2 (see Appendix section 2) and
obtain:

d f 2
0

dT
= ct

1− 32

16
3(1−ν2)

z f r ee h2

z3 +10.7

 dU

dT
, (5.5)

As depicted in the flow chart of Fig. 5.2f, we first extract z f r ee = 20.6 nm for device D2
from the measured f0 at the turning point using Eq. 5.2 and Eq. 5.2, as well as z versus
T (see Fig. 4.3c). The obtained z f r ee and z(T ) are then substituted into Eq. 5.5 to extract
dU
dT . The result of U versus T for device D2 shows the expected transition of displacement
from tensile (U > 0) to compressive (U < 0), as plotted in Fig. 4.3b.

CASE III: POST-BUCKLING REGIME

For case III, Eq. 5.5 can be simplified as z3 ≫ z f r ee h2, which results in:

d f 2
0

dT
=−2ct

dU

dT
. (5.6)

Thus the result of dU
dT for device D3 can be directly extracted from the measured f0 versus

T . The calculated curves in Fig. 5.2e also verify the linear relations given by Eq. 5.4 and
Eq. 5.6.

5.3.2. EXTRACTING IN-PLANE THERMAL CONDUCTIVITY OF 2D MATERIALS
The flow chart depicted in Fig. 5.2f also shows how optomechanical measurements as
a function of temperature enable a precise pathway for studying the thermal properties
of 2D resonators. We first extract the TEC αm of the membrane from the the results of
dU
dT for cases I to III, which are obtained from Eqs. 5.4 to 5.6, respectively, as discussed
in the previous section. Then, we quantify the specific heat cv of the membrane from
its thermodynamic relation with αm , which will be discussed in this section in more
detail. Finally, from the solution of the 2D heat equation, we determine the in-plane
thermal conductivity k of the membrane from the measured τ and the obtained cv . In
the following, we go step by step through this procedure for device D1.

Let us start with extracting the TEC αm of the membrane. Since the in-plane dis-
placement U originates from the boundary thermal expansion of the membrane, we can
extract the TEC αm(T ) of the membrane from the obtained dU

dT using Eq. 5.3, where the
values ofαSi(T ) are taken from literature [33]. The obtainedαm versus T for device D1 is
shown in Fig. 5.3a (left).

In the second step, since the specific heat at constant volume is approximately equal
to that at constant pressure for solid, we can directly extract the specific heat, Cv , of the
membrane from the TEC αm using the thermodynamic relation [25]:

Cv = 3αmK VM

γρ
, (5.7)
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Figure 5.3: Quantifying thermal characteristics of device D1. (a) Thermal expansion coefficientαm and specific
heat Cv of 2H-TaS2 membrane versus temperature T . (b) Measured thermal time constant τ versus T . Insert,
schematic diagram of heat transport in suspended 2D membrane. (c) In-plane thermal conductivity k versus
T extract from Eq. 5.8 using the measured τ and the obtained Cv .

Table 5.2: Comparison of different thermal conductivity measurement methods, including Ramana mi-
croscopy, Micro-bridge method and our optomechanics method, where the required temperature range is
quantified by the studies of MoS2 [10, 34, 35].

Raman Micro-bridge Optomechanics
Required temperature range 50−100 K 10−50 K < 10 K
Sample preparation Easy Difficult Easy
Applicability to 2D materials Applicable Limited Applicable

where K = E
3(1−2ν) is the bulk modulus, VM = M/ρ is the molar volume, M is the atomic

mass, and γ is the Grüneisen parameter of the membrane taken from literature. These
parameters are listed in Table 5.1 for the used materials. Using the obtained αm , we
extract Cv versus T for device D1, as plotted in Fig. 5.3a (right).

In the last step, we focus on the heat transport in 2D membranes. As shown in
Fig. 5.3b, we experimentally observe that τ is between 434.6 and 444.0 ns in the probed
T range for device D1. Considering the heat transport in a circular membrane, we solve
the heat equation in the membrane with an appropriate initial temperature distribution
and well-defined boundary conditions (see Appendix section 3), and obtain the thermal
time constant based on the thermal properties of the membrane:

τ−1 = τr r
−1 +τzz

−1 = k

ρcv

(
µ2

R2 + π2

4h2

)
, (5.8)

where τr r and τzz are the in-plane and out-of-plane thermal time constants of the mem-
brane (see Fig. 5.3b, insert), respectively, cv =Cv /M , µ2 = 5 is the in-plane diffusive con-
stant (see Appendix section 3), and k is the thermal conductivity of the membrane. Due
to the low h/R ratio for 2D materials, we find that τzz ≪ τr r and thus the extracted τ from
our measurement is equal to τr r . By substituting the obtained Cv and the measured τ

into Eq. 5.8, we extract k = 8.6±0.3 Wm−1K−1 for device D1, as plotted in Fig. 5.3c.
The obtained in-plane thermal conductivity k for all devices D1−D5 are listed in Ta-

ble 5.1, of which the raw data can be found in Fig. S6. For both 2H-TaS2 (device D1) and
FePS3 (device D2), since relevant studies on their thermal properties are quite limited,
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Figure 5.4: In-plane thermal conductivity k of 2D material membranes versus their thickness t . Circular points,
the obtained k for devices D1−D5 in this work; triangle points, literature values; drawn lines, estimations of k
versus t by Fuchs–Sondheimer model using Eq. 5.9.

we directly compare the obtained k with the values from the literature [21, 36] and ob-
serve good agreements (see Fig. 5.4). For Poly Si (device D3), MoS2 (device D4) and WSe2

(device D5), we observe that k depends on the membrane thickness h. We attribute this
to a smaller mean free path (MFP) of phonons in thin membranes compared to their
bulk counterparts [8]. To account for this effect, we use the Fuchs–Sondheimer model
[23, 37] that evaluates thermal conductivity of 2D materials as a function of thickness:

k

kbulk
≈ 1− 3

8

Λbulk

h
+ 3

2

Λbulk

h

∫ ∞

1

(
1

x3 − 1

x5

)
e
− h
Λbulk

x
dx, (5.9)

where kbulk and Λbulk are the thermal conductivity and MFP of bulk, and x is a inte-
gration variable. The bulk thermal conductivities kbulk for Poly Si, MoS2 and WSe2 are
13.8 Wm−1K−1, 98.5 Wm−1K−1, and 35.3 Wm−1K−1, respectively [22, 24, 38]. We find that
the given k versus h, including our results and literature values [21–24, 36, 39–41], is well
described by Eq. 5.9 as indicated by the fitted solid lines in Fig. 5.4 using Λbulk as fit pa-
rameter, obtaining 75 nm, 19 nm, and 19 nm for Poly Si, MoS2 and WSe2, respectively.
These fitted values ofΛbulk are also in good agreement with previously reported phonon
MFPs [22, 42, 43], supporting the validity of employing Eq. 5.9 to predict the thickness
dependent thermal conductivity of 2D materials.

5.4. DISCUSSION
Compared to other methods for determining the thermal conductivity of 2D materials,
the optomechanical approach has several advantages, as summarized in Table 5.2. For
the Raman microscopy method, since relatively large temperature changes are needed
to resolve the resulting shift in Raman mode frequency, a very wide temperature range
has to be measured to get an accurate slope χT of the Raman peak shift with temper-
ature. For example, χT for MoS2 is -0.013 cm−1/K. Considering a limited resolution
0.25 cm−1 for a Raman microscope, a temperature increase of at least 20 K is required to
obtain meaningful results [44]. In our measurements, we require only a narrow T range
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to study the thermal transport (see Fig. 5.6). For the micro-bridge method, either thick
crystals or stiff 2D materials like graphene are required to survive the complicated fabri-
cation procedures including lithography and etching [1]. In contrast, for the presented
contactless optomechanical method, one only needs to suspend membranes over cavi-
ties in a Si substrate, which is applicable for most 2D materials and can be done for any
thickness.

Although we estimate the average MFP for bulk in Fig. 5.4, we note that the phonon
MFP in 2D materials is highly related to the phonon dispersion relation, surface strain,
crystal grain size, and temperature. These factors can be further studied using the
presented optomechanical approach, which would help us to better understand the
phonon scattering mechanisms in 2D materials. Moreover, our work suggests a new
way to further investigate acoustic phonon transport in recently emerged 2D materials,
such as phosphorene and MXenes with distinct thermal anisotropy [45, 46], as well as
the magic-angle multilayer superconductor family [47]. It is also of interest to probe
the dynamics of phonons across the interface in vdW heterostructures, so as to realize a
coherent control of thermal transport across 2D interfaces [48, 49].

5.5. CONCLUSIONS

We demonstrated an optomechanical approach for probing the thermal transport in
2D nanomechanical resonators made of few-layer 2H-TaS2, FePS3, Poly Si, MoS2, and
WSe2. We measured the resonance frequency and thermal time constant of the devices
as a function of temperature, which are used to extract their thermal expansion coef-
ficient, specific heat, as well as in-plane thermal conductivity. The obtained values of
all these parameters (see Table 5.1) are in good agreement with values reported in the
literature. Compared to other methods for characterizing the thermal properties of 2D
materials, the presented contactless optomechanical approach requires a smaller tem-
perature range, allows for easy sample fabrication, and is applicable to any 2D material.
This work not only advances the fundamental understanding of phonon transport in 2D
materials, but potentially also enables studies into the use of strain engineering and het-
erostructures for controlling heat flow in 2D materials.

5.6. APPENDIX

5.6.1. SAMPLE FABRICATION AND CHARACTERIZATION

A Si wafer with 285 nm dry SiO2 is spin coated with positive e-beam resist and exposed by
electron-beam lithography. Afterwards, the SiO2 layer without protection is completely
etched using CHF3 and Ar plasma in a reactive ion etcher. The edges of cavities are ex-
amined to be well-defined by scanning electron microscopy (SEM) and AFM. After resist
removal, 2D nanoflakes are exfoliated by Scotch tape, and then separately transferred
onto the substrate at room temperature through a deterministic dry stamping technique.
Using tapping mode atomic force microscopy (AFM), we measure the height difference
between the membrane and the Si/SiO2 substrate. As Fig. 5.5 shows, we find a mem-
brane thickness t of 24.0 nm for device D3.
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Substrate Poly silicon membrane

Figure 5.5: Height histogram of substrate (red), as well as Poly Si membrane (cyan), measured by tapping mode
AFM. Insert, scanning image on the boundary of Poly Si membrane.

5.6.2. THERMALLY-INDUCED BUCKLING MODEL
In this Chapter, we observe different types of dynamic response in the measured devices
D1−D3, attributed to the thermally-induced buckling in 2D nanomechanical resonators.
Eq. 5.2 gives the expression of the resonance frequency f0(T ) in buckled resonators. As
discussed in Chapter 4, Eq. 5.2 can be solved by the relation between central deflection
z of the membrane and compressive displacement U from the boundary:

32

3

(
1− z f r ee

z

)
−10.7β(1−ν2)

(
z2

f r ee − z2

h2

)
+4(1+ν)

Ud

h2 = 0, (5.10)

where U is the thermally induced in-plane displacement of the plate, ρ is the mass den-
sity, z is the central deflection of the plate, z f r ee is the central deflection of free plate
without loading (when U = 0), and β is a fitting factor depends on ν (see Chapter 4 Ap-
pendix). Therefore, using Eq. 5.10 and Eq. 5.2, we can extract z f r ee = 20.6 nm and z(T )
from the measured f0(T ) for FePS3 device D2, where more details can be found in Chap-
ter 4.

For pre-buckling regime (case I), assume the deflection z nearly keeps constant, the
only time-dependent parameter in Eq. 5.2 is ∆ϵ, which allows us to obtain the derivative
d f 2

0
dT = ct

dU
dT for case I. For transition regime from pre- to post-buckling (case II), we first

calculate the derivative of Eq. 5.10:

−dU

dT
=

[
32

3

(
1+ z f r ee

z2

)
+10.7β(1−ν2)

2z

h2

]
h2

4d(1+ν)

dz

dT
. (5.11)

Therefore, by substituting Eq. 5.11 into the T -derivative of Eq. 5.2, we obtain Eq. 5.5. For
post-buckling regime (case III), the thermally-induced buckling results in a large central

deflection of the membrane, thus we assume z f r ee h2 ≪ z3 and simplify Eq. 5.5 as
d f 2

0
dT =

ct (1− 32
10.7 ) dU

dT =−2ct
dU
dT .

5.6.3. HEAT TRANSPORT MODEL
In this subsection, we explain how we derive thermal time constant τwith respect to the
thermal properties of 2D membrane, as given in Eq. 5.8.
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Consider the situation that a modulated-laser irradiates at the center of the sus-
pended 2D membrane, the Fourier heat conduction equation in cylindrical coordinate
for this problem can be written as:

∂u

∂t
= κ

(
∂2u

∂x2 + 1

x

∂u

∂x
+ ∂2u

∂z2

)
+ 1

cpρ

dQ

dt
in 0 < z < zt 0 < x < r, (5.12)

where u(x, z, t ) is time t-dependent temperature distribution in the membrane along

with the radial x and perpendicular z directions, κ= k
cpρ

is thermal diffusivity, dQ
dt is the

absorbed heat energy per unit time per unit volume at the center of the membrane, cp

and k denote the specific heat and thermal conductivity of the membrane, respectively.
Here we use the symbol zt to represent the thickness of membrane, so as to distinguish
it with time.

TRANSIENT STATE

We firstly discuss the transient state of heat transport in the membrane, corresponding
to a laser pulse irradiates. As a result, Eq. 5.12 is rewritten as:

∂u

∂t
= κ

(
∂2u

∂x2 + 1

x

∂u

∂x
+ ∂2u

∂z2

)
in 0 < z < zt 0 < x < r, (5.13)

with the boundary conditions:

u = 0 at x = r, u = 0 at z = 0 and
∂u

∂z
= 0 at z = zt , (5.14)

and the initial condition:

u = u0(x, z) for t = 0 in 0 ≤ z ≤ zt and 0 ≤ x ≤ r, (5.15)

We adopt the Fourier method (separation of variables) to solve Eq. 5.13 combined
by the boundary and initial conditions. Thus temperature distribution has a general
expression as u(x, z, t ) = ψ(x)χ(z)Γ(t ), of which the independent cases, ψ(x), χ(z) and
Γ(t ) are separately given by:

1
ψ

(
d 2ψ

d x2 + 1
x

dψ
d x

)
=−η2, ψ= 0 at x = r

1
χ

d 2χ

d z2 =−γ2, χ= 0 at z = 0 and ∂χ
∂z = 0 at z = zt

1
Γ

dΓ
d t =−λ2,

(5.16)

where the constants η, γ andλ are determined by solving the above equations combined
with the corresponding conditions. We derive the eigenvalue solution of the first term in
Eq. 5.16 as:

ψm(ηm , x) = J0(ηm x) , m = 1,2,3, .., . (5.17)

where ηm is the m-th root if the formula J0(ηmr ) = 0, e.g., η1 = 2.4048
r . Next, the solution

of the second term in Eq. 5.16 is given as:

χn(z) = an sin
(2n −1)πz

2zt
, n = 1,2,3, ..., (5.18)
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where an is the constant of integration, γn = (2n−1)π
2zt

is called the eigenvalues of the
Sturm-Liouville problem. Then, the solution of the third term in Eq. 5.16 is given as:

Γmn(t ) = bmne−λ
2
mn t , m = 1,2,3, ..., n = 1,2,3, ..., (5.19)

where bmn is the constant of integration, λ2
mn = κ(η2

m +γ2
n). Totally, combine the solu-

tions together, we have, from Eqs. 5.18 to 5.19:

u(x, z, t ) =
∞∑

m=1

∞∑
n=1

Amn J0(ηm x)(sin
(2n −1)πz

2zt
)e−λ

2
mn t , (5.20)

where the Fourier coefficient, Amn , can be further extracted from the initial condition as
[50]:

Amn =
∫ r

0

∫ zt
0 xψm(ηm , x)χn(z)u0(x, z)d zd x∫ r

0 xψ2
m(ηm , x)d x

∫ zt
0 χ2

n(z)d z
. (5.21)

Finally, Eq. 5.20 and Eq. 5.21 are the derived solutions of the Heat Equation Eq.5.13 in
the membrane, with the corresponding boundary conditions in Eq. 5.14.

Suppose the initial temperature distribution u0(x, z) in the membrane is constant,
i.e. u0(x, z) = u0, we extract the series of Fourier coefficient as A11 ≈ 2.04u0, A12 ≈ 0.68u0,
A12 ≈ 0.41u0, A31 ≈ −0.62u0...; on the other hand, the values of constant λ2

11 = κ(η2
1 +

γ2
1), λ2

12 = κ(η2
1 +γ2

2),..., making the ratio
λ2

mn

λ2
11

≫ 1. This indicates that the first term in

Eq. 5.20 dominates the sum of the rest of the terms, allows us to approximately express
the temperature distribution as:

u(x, z, t ) ≈ 2.04u0 J0(
2.4048x

r
)(sin

πz

2zt
)e−λ

2
11t . (5.22)

As a result, the thermal time constant of the membrane, extracted from λ2
11, can be ex-

pressed as:

τr r = 1

κη2
1

= r 2cpρ

5.78k
, τzz = 1

κγ2
1

= 4z2
t cpρ

π2k
, (5.23)

where τr r and τzz represent the time constant along in-plane and across-plane direc-
tions, respectively. Note that the ratio r

zt
is quite large in atomic-layer-thick 2D mem-

brane, we thus have τr r ≫ τzz .

QUASI-STEADY STATE

Define the temperature distributions of transient and quasi-steady as utr ans and uquasi ,
respectively. It should be noticed that utr ans will be negligible as the time t →∞, since

e−λ
2
11t → 0 in Eq. 5.22. As a result, we only focus on uquasi in the following and adopt

u = uquasi . In addition, to simplify discussion, we assume u is uniform in z- direction
in 2D membrane, and the heat transport here in the quasi-steady case converts to 1D
problem. Hence, Eq. 5.12 changes to:

∂u

∂t
= κ

(
∂2u

∂x2 + 1

x

∂u

∂x

)
in 0 < z < zt 0 < x < r. (5.24)
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a b

2D membrane

SiO2

Si

u = 0

u = 0

Figure 5.6: a 3D schematic diagram of 2D nanomechanical resonators in COMSOL simulation software. Insert,
side view, where the boundary condition changes to the bottom of SiO2/Si substrate. b Average temperature
of the membrane as the function of heating rate f . Points, simulation results; lines, fitting by Eq. 5.1.

Due to the optothermal drive, we consider the oscillatory boundary conditions (along x-
axis):

u = A cos(ωt ) at x = 0 and u = 0 at x = r, (5.25)

where A denotes the amplitude of temperature changing in membrane’s center and ω is
the modulating angular frequency of the laser. As t →∞, the solution of u will become
periodic with ω, i.e. u(x, t ) = A(x)cos(ωt +φ(x)), where A(x) and φ(x) are the amplitude
and phase of the quasi-steady state, respectively. We rewrite u(x, t ) with complex form:

u(x, t ) = 1

2
(U (x)e iωt +U∗(x)e−iωt ), (5.26)

where A(x) = |U (x)| and φ(x) = arctan
(

Im(U (x))
Re(U (x))

)
. Substitute Eq. 5.26 back into Eq. 5.24,

we obtain:

iωU (x)e iωt−iωU∗(x)e−iωt = κ
(
U

′′
(x)e iωt +U∗′′

(x)e−iωt + 1

x
U

′
(x)e iωt + 1

x
U∗′

(x)e−iωt
)

.

(5.27)
Using the Lemma (zero sum of complex exponentials) condition, Eq. 5.27 can be simpli-
fied as:

iωU (x)−κU
′′

(x)− κ

x
U

′
(x) = 0. (5.28)

According to Eq. 5.28, now the problem becomes to solve the formula:

1

U (x)

(
U

′′
(x)+ 1

x
U

′
(x)

)
=−

(√
ω

2κ
(1− i )

)2

, (5.29)

with the boundary conditions:

U (0) = A and U (r ) = 0. (5.30)

Note that Eq. 5.29 has the same forms as the first terms of Eq.5.16 in transient case. Solv-
ing it gives:

U (x) = c1 J0(mx)+ c2Y0(mx), (5.31)
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a b c

Figure 5.7: a COMSOL simulation results under different heating power. The amplitude of thermal signal
increases as the heating power enhances from 1 to 3×1012 Wm−3, while its location is still fixed, indicating
an unchanged thermal time constant τ. The measured τ for a MoS2 sample as the function of b red and c blue
laser powers, respectively.

where m =
√

ω
2κ (1− i ). The constants c1 and c2 are determined by the boundary condi-

tions Eq. 5.30 as:

c1 = AJ0(mr )

Y0(0)J0(mr )−Y0(mr )J0(0)
and c2 = AY0(mr )

J0(0)Y0(mr )−Y0(0)J0(mr )
. (5.32)

Finally, the average temperature U in the membrane can be expressed as:

U = 1

r

∫ r

0
U (x)d x. (5.33)

Note that Y0(x) →∞ as x → 0, we assign Y0(0) with a tiny ∆ as Y0(∆), which then allows
us to extract the effective and finite value of U integrated from Eq. 5.33.

To verify the accuracy of the built model at quasi-steady state, we extract U as the
function of laser driving frequency f from Eq. 5.33. Assume r = 4 µm, t = 31.4 nm,
ρ = 3375 kgm−3, cp = 700 Jkg−1 K−1, and k = 5 Wm−1 K−1 for the membrane, we obtain
τ = 1291.0 ns, corresponding to a thermal diffusive constant µ2 = 5.86. This value is
comparable to the obtained result of 5.78 at transient state.

COMSOL SIMULATION

We now calibrate the solution of heat equation using COMSOL simulation, as illustrated
in Fig. 5.6a. We first fix the radius of laser spot as its realistic value r0 = 0.25µm. While for
the boundary condition, u|x=r = 0, considering the substrate, we change it to the bottom
of Si (see the insert in Fig. 5.6a). The thicknesses of SiO2 and Si layers are set at 285 nm
and 1 µm, respectively, while the other parameters for the membrane, including r , t ,
ρ, cp and k, are used the same values as given. We obtain the simulated temperature
distribution of the membrane, as shown in Fig. 5.6b. By fitting Eq. 5.1 to simulation, we
extract τ = 1506.9 ns, corresponding to µ2 = 5.02. This value is thus adopted in Eq. 5.8,
allowing us to estimate in-plane thermal conductivity of all fabricated devices.
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a b c

Figure 5.5: Measured resonance frequency f0 as the function temperature T for a MoS2 device D4, b WSe2
device D5, as well as c another Poly Si device with buckling transition.

a b c

Figure 5.6: a-c Specific heat cv , thermal time constant τ and in-plane thermal conductivity k as the function
of T for the fabricated devices D2−D5, respectively.

DEPENDENCE ON LASER POWERS

Furthermore, we discuss the effect of laser powers on our optomechanical measure-
ment, as depicted in Fig. 5.7. According to COMSOL simulation, we verify that the heat-
ing only plays a role on the amplitude of thermal signal, instead of its location which is
related to τ (Fig. 5.7a). Next, we test MoS2 device D4, and plot the extract τ as the func-
tion of red and blue laser powers, respectively (see Figs. 5.7a and 5.7b). As expected, the
obtained τ nearly keep constant and are independent to both Pr and Pb . Therefore, we
verify that the proposed optomechanical methodology does not need a laser calibration
for determining the in-plane thermal conductivity of 2D materials.

5.6.4. RAW DATA OF OPTOMECHANICAL MEASUREMENTS
In Figs. 5.5a and 5.5b, we see that the measured f0 decreases as T increases for devices
D4 (MoS2) and D5 (WSe2). Therefore, both of them are in pre-buckling regime (case I),
same as device D1 (2H-TaS2). In addition, one could argue that the observed increase of
f0 with T for device D3 (Fig. 2c in the main text) is attributed to αm < αSi, instead of a
post-buckling performance. As shown in Fig. 5.5c, we obtain the first decrease and then
increase of f0 with T increasing (case II) for another measured Poly Si device, which ver-
ify that αm >αSi for Poly Si and the observed increase of f0 in device D3 corresponds to
the mechanical response in post-buckling regime. Figure. 5.6 shows the obtained spe-
cific heat cv , the measured τ and the obtained in-plane thermal conductivity as the func-
tion of T for the fabricated devices D2−D5, respectively.
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6
TUNING HEAT TRANSPORT IN

GRAPHENE BY TENSION

Heat transport by acoustic phonons in 2D materials is fundamentally different from that
in 3D crystals because the out-of-plane phonons propagate in a unique way that strongly
depends on tension and bending rigidity. Here, using optomechanical techniques, we ex-
perimentally demonstrate that the heat transport time in freestanding graphene mem-
branes is significantly higher than the theoretical prediction, and decreases by as much
as 33 % due to an electrostatically induced tension of 0.07 N/m. Using phonon scatter-
ing and Debye models, we explain these observations by the tension-enhanced acoustic
impedance match of flexural phonons at the boundary of the graphene membrane. Thus,
we experimentally elucidate the tunability of phononic heat transport in 2D materials by
tension, and open a route towards electronic devices and circuits for high-speed control of
temperature at the nanoscale.

Parts of this chapter have been published in Physical Review B 108, L081401 (2023) by Hanqing Liu, Martin
Lee, Makars Siskins, Herre S.J. van der Zant, Peter G. Steeneken and Gerard J. Verbiest.
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6.1. INTRODUCTION
Although in most bulk materials the propagation speed of different types of acoustic
phonons is of similar magnitude, the situation is vastly different in 2D materials [1–
5]. In these atomically thin materials, in-plane phonons have a constant propagation
speed that is determined by the atomic bond stiffnesses, whereas out-of-plane flexu-
ral phonons, exhibit a frequency-dependent speed that is determined by both in-plane
strain and bending rigidity [6–9], such that flexural and in-plane phonon velocities
can differ by more than an order of magnitude. Initial studies suggested that flexural
phonons provide the dominant pathway for heat transport and storage in 2D materials
[10, 11], however it has been difficult to experimentally separate flexural and in-plane
phonon contributions.

Evidence for the importance of speed differences on the phononic heat transport
in 2D materials was provided by theoretical analysis [12] and by the experimental ob-
servation of two distinct thermal time constants in graphene membranes, of which the
longest, τ, is a probe for studying heat transport by the relatively slow flexural phonons
[13–16]. To understand heat propagation via these different in-plane and out-of-plane
phononic channels in 2D materials, studies of the role of flexural phonons are essential.
Yet, unlike the lattice thermal conductivity of 2D materials, which has been well char-
acterized by Raman microscopy [17, 18], a microscopic picture of how the rate of heat
transport is related to the properties of flexural phonons remains elusive, as it requires
a methodology for measuring their effect on temperature variations in suspended 2D
materials with nanosecond resolution.

In this chapter, we demonstrate that heat flow in graphene can be tuned by ten-
sion using an optothermomechanical method to experimentally characterize heat trans-
port in graphene drum resonators with nanosecond resolution. We control the tension
by an electrostatic force induced by a voltage Vg on a gate underneath the graphene
drum. Using an optothermal drive, we actuate the graphene drum resonators [19]. From
the mechanical resonance frequency ω0/(2π) (>10 MHz) as a function of Vg, we deter-
mine the in-plane tension and effective mass of the drum and from the mechanical
response at low frequencies (<1 MHz), we extract the thermal time constant τ of the
resonators. To explain the observed tension-dependence of τ, we combine the Debye
model for phononic heat transport with a boundary scattering model that describes
acoustic phonon reflection and transmission at the edge of the graphene drum. From
this analysis it follows that heat transport mainly depends on tension due to its effect
on the acoustic impedance match between the flexural phonons on the suspended and
supported part of membrane.

6.2. RESULTS AND DISCUSSION
Four graphene drum resonators, device D1−D4, are measured to study the effect of ten-
sion on heat transport, as shown in Figs. 6.1a and 6.1b. The surface profile measured
by atomic force microscopy indicates an initial downward deflection of the membrane,
resulting from sidewall adhesion at the edge of the membrane [20] (see Fig. 6.1c). We
measure the motion of the resonators using the interferometer depicted in Fig. 6.1d. By
exciting the membrane with a modulated blue laser, while interferometrically detect-
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ing its motion, the frequency response of the devices is determined and used to charac-
terize both the mechanical and thermal parameters of the devices. Figure. 6.1e shows
the measured motion amplitude zω of device D1 at Vg = 0 V over the frequency range
from 0.1 to 100 MHz. We extract ω0/(2π) and quality factor Q of the device by fitting
the measured data to a harmonic oscillator model (Fig. 6.1f). For device D1 this results
in ω0/(2π) = 25.49 MHz and Q = 43.25. The average quality factor of the four devices
at room temperature is Q = 36.5±8.4, which is comparable to literature values [21, 22].
Around 1 MHz, we observe an additional broad signal in the imaginary part of the fre-
quency response (Fig. 6.1g). This signal is associated [19] with the frequency dependent
optothermal force Fth,ω on the resonator, because it is only present when driving the
membrane optothermally. Following literature [13], far below mechanical resonance,
the displacement zω = Fth,ω/k is proportional to the effective thermal expansion force
Fth,ω that is delayed with respect to the laser power P (t ) = Pace iωt as a consequence of
the time τ it takes to increase the membrane temperature by laser heating. As shown by
the fits in Fig. 6.1g, the low-frequency zω is given by:

zω = Cslow

1+ iωτ
+Cfast, (6.1)

where Cslow and Cfast are the normalized thermal expansion amplitudes contributed
from out-of-plane and in-plane phonons, respectively [13]. We extract these parame-
ters by fitting Eq. 6.1 to the real and imaginary parts of the measured zω, as depicted in
Fig. 6.1g. Here, the peak in the imaginary part of zω is located at 1.23 MHz, corresponding
to τ= (2π×1.23 MHz)−1 = 129 ns. We checked the laser power dependence and verified
that it has no significant effect on the measured value of τ (see Fig. 6.4).

By applying Vg on graphene drum resonators, we observe a clear change in both the
measured ω0/(2π) and τ (see Fig. 6.2). Vg generates an electrostatic force, pulling the
drum down and thereby increasing tension. Figure. 6.2a shows plots of ω0/(2π) against
Vg for all devices from −4 V to 4 V. The typical W-shaped curves show both electro-
static softening and tension hardening, as often observed in electrostatic gate-tuning
of graphene membranes [21]. The observed values of τ, of all above 75 ns, are signif-
icantly higher than the value of τ ≈ 2 ns obtained from the theoretical expression τ =
r 2ρg cp /(2k), that follows from solving the heat equation for a perfect circular graphene
membrane [23] for typical values of specific heat cp and thermal conductivity k. Inter-
estingly, it is also shown here that τ reduces by as much as 33 % when the tension in the
membrane is increased by Vg (Figs. 6.2b−6.2d). This n-dependent decrease in τ is unex-
pected from the heat equation, because recent studies show that cp increases [24] while
k decreases [25, 26] as the tension in graphene increases, from which one would expect
τ to increase at higher n, precisely opposite to our experimental observations.

To shed light on the obtained large magnitude of τ and its negative dependence on
Vg-induced tension in Figs. 6.2b−6.2e, we firstly quantify n in the drum. Following liter-
ature[21], we model ω0/(2π) tuning of the drum resonator by continuum mechanics:

ω0(Vg) =
√√√√ 1

meff

[2πEt s0

1−υ2 + 8πEt

(1−υ2)r 2 z2
g −

1

2

∂2Cg

∂z2
g

V 2
g

]
, (6.2)

in which s0 is the built-in strain, meff is the modal mass of the fundamental mode of the
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Figure 6.1: Graphene membrane characterization. a Schematic of a graphene drum of radius r over a cavity of
depth d1 in a SiO2/Si substrate irradiated by lasers. The graphene has a sidewall of length d0 into the cavity.
The voltage Vg pulls the drum down by zg , increasing its tension. b Optical image of the drums with a scale
bar of 10µm. c Atomic force microscope line trace over device D4 indicates a downward deformation of drum,
originating kink at the boundary. Note the different units for x and z on the axis. d Interferometric setup.
The sample is placed inside a vacuum chamber (VC). The blue (405 nm) laser is intensity modulated by a
vector network analyzer (VNA) to actuate the resonator. Intensity variations of the reflected red (633 nm) laser
caused by resonator motion, are measured by photodiode (PD) and recorded with the VNA. PBS: polarized
beam splitter; DM: dichroic mirror. e Frequency response of device D1, including real (red) and imaginary
(blue) parts of the motion zω. f Fits of zω/(2π) (lines) to Eq. 1 to obtainω0. g Fits of Eq. 1 to zω near the thermal
peak (black solid and dashed lines) provide τ, Cfast and Cslow of the resonator.

Table 6.1: Characteristics of devices D1−D4: radius r (µm), effective gap g0 (nm), pretension n0 (N/m), effec-
tive mass meff (×10−16kg), normalized areal density η, the second derivative of the capacitance with respect

to the electrostatic deflection
∂2Cg

∂z2
g

(mFm−2), bending rigidity κ (eV), and percentual energy absorption γ.

device r g0 n0 meff η
∂2Cg

∂z2
g

κ γ

D1 2.5 212 0.24 0.50 19.40 6.56 3.8 8.18
D2 2.5 237 0.34 0.96 37.10 9.12 9.4 6.90
D3 5 227 0.21 1.06 10.36 34.75 2.2 3.26
D4 5 237 0.18 0.39 3.80 30.35 0.6 1.29
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a b c

d e

Figure 6.2: Tuning thermodynamic properties of graphene drum devices with gate voltage. a Solid dots: ω0
versus Vg measured in devices D1−D4; drawn lines: fits based on Eq. 6.2. b−e Points: τ versus Vg measured
in devices D1−D4, respectively; solid lines: fits to data using the Debye and scattering models; error bars are
from the fits to the measured thermal signals as plotted in Fig. 6.1g.

circular membrane resonator with a theoretical value meff,th = 0.271πr 2ρg where ρg is
the mass density of double-layer graphene, Cg is the capacitance between membrane

and bottom gate, and the second derivative
∂2Cg

∂z2
g

quantifies the electrostatic softening.

The 2D Young’s modulus Et ≈175.39 N/m in average and Poisson ratio υ= 0.16 were de-
termined via AFM indentation[27] (see Appendix section 1). The center deflection zg can
be expressed[28] as ε0r 2V 2

g /(8g 2
0 n0), where n0 = Et s0/(1−υ) is the pretension, ε0 is the

permittivity of vacuum, and g0 = d1+d2/εSiO2−d0 is the effective gap between the drum
and the electrostatic gate. We fit the measured Vg dependence of ω0 by Eq. 6.2 (black

lines in Fig. 6.2a) to extract the fit parameters n0, meff and
∂2Cg

∂z2 for each device, as listed
in Table 6.1. The extracted initial tension n0 for all devices ranges from 0.18 to 0.34 N/m,
which corresponds to typical literature values reported for graphene membranes [21,
28–30]. The modal mass meff ranges from 0.39 to 1.06 ×10−16 kg, which is larger than
the mass expected for double-layer graphene. This difference can be attributed to poly-
mer residues left on or between the double-layer graphene after fabrication [29, 31]. The
good quality of the fits with Eq. 6.2 in Fig. 6.2a (drawn lines) allows us to use the obtained
fit parameters to extract the membrane deflection zg at all Vg . By using the equation [21]
n = n0(1+4z2

g /r 2), we obtain the corresponding membrane tension n(Vg ).

Since the classical heat equation clearly does not suffice to account for the observed
τ and its tension dependence, we now will use a phonon scattering model to assess the
transient thermal conduction in the membrane [12]. This model assumes that the trans-
port of the relevant flexural acoustic phonons is ballistic on the membrane, since their
mean free paths are much longer than the radius r of the membrane [32–34]. Moreover,
we neglect any heat transport through polymer residues left over after fabrication as its
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thermal conductivity (0.2 W/mK) is much lower than that of graphene (> 1000 W/mK)
[17, 35]. The kink at the membrane edge (Fig. 6.1c) is the main source of n-dependent
phonon scattering [36] (see Fig. 6.5) and results in the following expression for τ:

τ= r

2cz
∑

j w1z→2 j
, j = l , t , z, (6.3)

in which the transmission rate w1z→2 j is the probability that a flexural phonon on the
suspended part of the graphene (subscript 1) is transmitted across the membrane edge
and becomes a phonon of type j on the supported part of the graphene (subscript 2),
where j can either be a flexural phonon ( j = z), or a longitudinal or transverse in-plane
phonon ( j = l , t ). w1z→2 j depends both on n and on the speed of sound cz of flexu-
ral phonons (see Appendix section 2). Due to the scattering at the edge of the mem-
brane, the calculated magnitude of w1z→2 j is much lower than 1, which results in a value
of τ that is much larger than the value τ = r 2ρg cp /(2k) in the absence of scattering.
This scattering is a kind of Kapitza thermal boundary resistance [37] and thus poten-
tially accounts for the large value of τ observed in our fabricated graphene resonators
(Figs. 6.2b−6.2e). The transmission rates for in-plane (LA and TA) phonons, w1l→2 j and
w1t→2 j , are much higher than w1z→2 j , which results in a negligible contributions to τ

in Eq. 6.3 (see Appendix section 2). Therefore, we only consider the incidence of flexural
phonons in the scattering model.

Heat is transported by phonons of many different frequencies, while w1z→2 j de-
pends on the speed of these phonons. Therefore, to analyze the effect of tension on heat
transport, the dispersion relation for flexural phonons is needed, which is given [38] by

ωq =
√

(κq4 +nq2)/(ηρg ), where q is the wavenumber, κ is the bending rigidity of the

membrane, and η= meff/(0.271πr 2ρg ) is the normalized areal density of the membrane
(listed in Table 6.1 for all devices). From this dispersion relation, the speed of sound for

flexural phonons is found using cz = ∂ωq

∂q .

We now theoretically estimate the thermal time constant of graphene drum res-
onators. In practice, flexural phonons over a large frequency span, ranging up to
the Debye frequency ωqd , will contribute to τ. To account for this (see flow chart in
Fig. 6.9a), we analyze the heat transport contribution for every q using the tension de-
pendent phonon speed cz (ωq ,n) and determine the thermal time constant for phonons
of that wavenumber τ(ωq ,n) using Eq. 6.3. Then, we use the Bose-Einstein distribu-
tion to determine the expected phonon energy density via the specific heat spectral
density C z

v,ω(ωq ,n) of flexural phonons of a certain q (Debye model). The detailed
expression of C z

v,ω(ωq ,n) can be found in Eq. 6.5. Finally, we take a weighted inte-
gral over the contributions of all flexural phonons to determine τ(n) using 1/τ(n) =∫ ωqd

0 C z
v,ω(ωq ,n)/(C z

v (n)τ(ωq ,n))dωq , where the total specific heat due to flexural phonons

is determined using C z
v (n) = ∫ ωqd

0 C z
v,ω(ωq ,n)dωq [38, 39]. More details about the

phononic scattering and Debye models can be found in Appendix sections 2 and 3.
The obtained function τ(n) is fit to the experimental data in Figs. 6.2b− 6.2e, obtain-

ing good agreement between fit and experiments for all four devices, using κ as the only
fit parameter. All other model parameters are determined independently from measure-
ments. The fitted values of κ vary over a range from 0.6 to 9.4 eV, which is similar to
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Figure 6.3: Analysis and experimental demonstration on tunable heat transport in graphene drum resonators.
a Ratio of normalized thermal expansion amplitudes |Cfast/Cslow| versus tension n. Points: the measurements;
solid lines: the modelled estimates. b

∑
j w1z→2 j ( j = l , t , z) of flexural phonons for devices D1−D4 as cz =

575 m/s, indicating the tension-enlarged impedance matching of acoustic phonons at the boundary of mem-
brane. This tunability is the same for all-frequency phonons with different cz . c Left panel: calculatedωq (q) for
devices D1−D4. ωq (q) is dominated by n in ∼MHz regime (red shadow) and dominated by κ in ∼THz regime
(blue shadow), respectively, while the cross-over frequency ωqc is located at ∼GHz regime. Right panel: C z

v,ω
for all devices. d Tunable τwith n varying from 0.1 to 10 N/m, using device D3 as an example. Green points: the
measured τ versus n for device D3; blue line: estimated τ by the scattering model; red line, tension tunability
|dτ/dn|; grey region: the estimation of τ using r 2ρg cp /(2k).

values reported in literature [40, 41]. Although the exact mechanism behind these bend-
ing rigidity variations remains unclear, we observe in Fig. 6.9b that κ increases with η of
the membranes, potentially indicating that polymer residues do not only affect the mass
of the membrane, but also play an important role in the heat transport by increasing the
membrane’s bending rigidity.

To analyze the main mechanism by which n can reduce τ in graphene resonator, we
investigate three different ways: via cz (n,ωq ), via C z

v,ω(n,ωq ), and via w1z→2z . Since n
mainly affects the dispersion relation of low-frequency (MHz) phonons, the direct im-
pact of n on τ via the first two paths is relatively small (see Fig. 6.10). Therefore, the
observed decrease of τ in Figs. 6.2b−6.2e is mainly attributed to the n-induced increase
in

∑
j w1z→2 j , as plotted in Fig. 6.3b. Specifically, we see the wave amplitudes |u2 j | of all

three transmitted modes increase with n (Fig. 6.5b), indicating an enhanced impedance
matching of acoustic phonons between the suspended and supported part of the mem-



6

110 6. TUNING HEAT TRANSPORT IN GRAPHENE BY TENSION

brane.

Besides τ, the normalized thermal expansion amplitudes Cfast and Cslow in Eq. 6.1
can provide us with more information on the heat flow. We attribute the opposite signs
of Cfast and Cslow in the measurements to the opposite signs of the Grüneisen parameters
for the in-plane and out-of-plane phonon modes. Here we will use them to analyze the
relative contributions of the in-plane and flexural phonons to the thermal expansion
force [13], and also show that the tension dependence of these amplitudes Cfast and Cslow

agrees well to the presented model. From the low frequency fits of zω (see Fig. 6.1g), we
determine the tension dependence of Cfast and Cslow in Eq. 6.1. Because the thermal
expansion amplitude is proportional to the temperature increase, the measured ratio
|Cfast/Cslow| is approximately proportional to the relative temperature increase of both
phonon baths [13]. Qualitatively, the n-enhanced cz will reduce the edge scattering rate
according to Eq. 6.3, and therefore increases the cooling rate of the flexural phonon bath.
As a consequence, the temperature increase of that phonon bath and Cslow decrease [7],
which leads to an increase of the ratio |Cfast/Cslow| with n as observed in Fig. 6.3a. Also
shown in Fig. 6.3a (lines), our model also accurately captures the relation between n and
|Cfast/Cslow| for all devices (see more details in Appendix section 5).

We now turn to Fig. 6.3c to get more insight in the tension tuning mechanism of τ.
For high-frequency (∼THz) flexural phonons (blue shadow, Fig. 6.3c), κ dominatesωq (q)
for all devices D1−D4 (Fig. 6.3c, left panel), and thus C z

v,ω(ωq ) also shows significant
device-to-device variations (Fig. 6.3c, right panel) which is responsible for the measured
variations in τ. More details about how κ and η affect ωq (q) and C z

v,ω(ωq ) can be found
in Appendix section 4. On the other hand, for low-frequency (∼MHz) flexural phonons
(red shadow, Fig. 6.3c), the situation is completely different. The resonance frequency
of the graphene membranes can be understood as a standing wave of flexural acoustic
phonons and is thus proportional to the ratio cz ∝ √

n/η and the membrane radius,
such thatκ does not play an important role. cz is thus fully determined by n and η, in line
with experimental graphene resonators reported in the literature [21]. We estimate the
cross-over frequencyωqc where the phonon dispersionωq (q) makes the transition from
tension n- dominated to κ- dominated regime, at around 84.8, 52.6, 174.4 and 422.7 GHz
for devices D1−D4, respectively.

The measured parameters (listed in Table 6.1) allow us to model the phonon disper-
sion and specific heat spectral density in Fig. 6.3c over the wide frequency range from
the MHz to the THz regime. Let us discuss how this results in the tunability of the heat
transport using Fig. 6.3d. As n increases from 0.1 to 10 N/m, τ decreases from ∼1µs to
less than 4 ns (blue line), while the tunability |dτ/dn| also decreases significantly (orange
line). In such a wide tuning of n, the tunability of heat transport is attributed not only
to the increase of the transmission rate w1z→2 j of flexural phonons, but also to the in-
creased speed of sound (cz ≈

√
n/(ηρg ) for n ≫ κq2) and the change of C z

v,ω(n,ωq ). The
low τ (∼2 ns at n = 10 N/m) under high tension is comparable to its value obtained from
the heat equation r 2ρg cp /(2k), demonstrating that at high tension, the heat flow rate
from the centre to the boundary of membrane [19, 22] (grey region, Fig. 6.3d) sets a lower
limit on the acoustic phonon transport rate, whereas at low tension the boundary scat-
tering determines the upper limit. Understanding these limits on the tension tunability
of heat transport is important for proposed applications in the field of 2D phononics,
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such as switchable thermal transistors, ultra-sensitive thermal logic gates, and reconfig-
urable phononic memories [42, 43].

6.3. CONCLUSION
To conclude, we measured the thermal time constant that governs nanosecond-scale
heat transport in suspended graphene drums and presented experimental evidence for
its tunability via gate-controlled in-plane tension. Using a Debye model that captures
the scattering of acoustic phonons at the membrane edge, we present a microscopic pic-
ture of heat transport in suspended graphene membranes, where bending rigidity and
tension dominate the flexural dispersion relation for THz and MHz frequency phonons,
respectively. Tension is responsible for tuning the transmission rate of flexural phonons
from the suspended to the supported part of the graphene. The gained insight not only
advances our fundamental understanding of acoustic phonons in 2D materials, but
also enables pathways for controlled and optimized thermal management in 2D-based
phononic, thermoelectric, electronic and quantum devices, as well as in 2D sensing
applications such as nanoelectromechanical system (NEMS).

6.4. METHODS
Sample fabrication. We pattern circular cavities with a depth of 240 nm using reactive
ion etching into a Si/SiO2 chip. We pattern Ti/Au electrodes (5/60 nm) on the chip which
are used to define the cavities. The cavity depth is less than the SiO2 thickness of 285 nm
to prevent an electrical short-circuit between the Si electrode and the suspended drums.
We subsequently transfer large-scale CVD graphene over the cavities. This double-layer
graphene is fabricated by stamping one monolayer CVD graphene on top of another one,
where an extra layer of polymethyl methacrylate (PMMA) is attached on each graphene
layer. During this process, polymer residues between the layer potentially affect the in-
terlayer coupling. Finally, we remove the PMMA by annealing the devices for 30 min in
a furnace at a pressure of 500 Torr, with a constant flow of 0.5 SLPM of an inert dry gas
(Ar or N2) at a temperature of 300 ◦C. The initial thickness of PMMA is 800 nm. Us-
ing the extracted effective mass of the membrane meff and the mass density of PMMA
(1180 kg/m3), we obtain the thicknesses of polymer residue about 6.7, 14.0, 2.9, 0.3 nm
for devices D1−D4, respectively, which means most of the PMMA has been evaporated
after annealing.

Optothermal drive. To measure ω0, τ, Cfast, and Cslow in the graphene drums, we
use an interferometer (red laser, λ= 633 nm) to detect their motion. An intensity modu-
lated blue laser (λ= 405 nm) irradiates the suspended drum resulting in a periodic heat
flux[22] to actuate it. The heat flux results in a motion of the drum due to the thermal
expansion force. All measurements are performed at room temperature inside a vac-
uum chamber at 10−6 mbar. A vector network analyzer (VNA) modulates the intensity
of a blue laser at frequency ω to optothermally actuate a resonator while it analyzes the
resulting intensity modulation of the red laser caused by the mechanical response of the
same resonator. The red and blue laser powers used are 1.20 and 0.13 mW respectively,
where the resonators vibrate in the linear regime and the temperature increase due to
self-heating was negligible[19]. We experimentally verified that the extracted thermal
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time constant τ does not depend on the laser power (see Fig. 6.4).

Scattering model of acoustic phonons. We develop this model for scattering of
phonons at the sidewall between the suspended and supported graphene to evaluate
the thermal time constant τ. Due to phonon transmission across the graphene-support
interface and strong interface-scattering of flexural modes, the mean free path of flex-
ural phonons on supported graphene will be much reduced[44], thus we only assume
the ballistic transport of acoustic phonons on domain 1. For incoming flexural phonons
(defined as mode 1z), the transmission rate w1z→2 j ( j = l , t , z) can be calculated as
a function of the incident angle θ1z (see Fig. 6.5b for details). Here, cl =21.6 km/s and
ct =16 km/s are determined from the linear dispersion of in-plane phonons in graphene,
using[45] Lame parameters λ= 48 J/m2 µ= 144 J/m2. The total transmission coefficient
w1z→2 j is then obtained by integrating w1z→2 j over all incidence angles from −π/2 to
π/2. We also assume kink angle β = 90◦ at membrane edge. More details can be found
in Appendix section 2.

6.5. APPENDIX

6.5.1. MECHANICAL CHARACTERIZATION OF GRAPHENE DRUM RESONATORS

We use indentation measurements with an atomic force microscope (AFM) to determine
the 2D Young’s modulus Et of the suspended graphene drums. This indentation mea-
surement is modelled as a clamped circular membrane with central point loading. The
relationship between the applied force F with the AFM cantilever and the resulting de-
formation δ is given by F = n0πδ+Et q3δ3/r 2, where q = 1/(1.05− 0.15ν− 0.16ν2) is a
geometrical factor with a Poisson’s ratio ν = 0.16 [46] and n0 is the pretension in the
membrane. We extract Et of our graphene devices through fitting the measured curves
of F vs δ and obtain a mean Young’s modulus Et =175.39 N/m [27]. We thus employ this
value to estimate the surface tension of graphene resonators.

As described in Methods section, an optomechanical drive allows us to actuate the
graphene resonators and measure their thermodynamic properties. For the detection of
the motion of the graphene membranes, we use a red laser (λ=633 nm) with a power Pdc

of 1.2 mW, whereas we use an intensity modulated blue laser (λ=405 nm) with a power
Pac of 0.13 mW. We sweep the frequency ω/2π of the intensity modulation from 100 kHz
to 100 MHz. To correct for intrinsic phase shifts from the interferometric setup, we cali-
brate the measured signals on the VNA by pointing the blue laser directly onto the pho-
todiode (see more details in [19]). This correction allows us to obtain the real and imagi-
nary part of the membrane motion zω as shown in Figs. 6.1e−6.1g.

We verified that the thermal time constant τ is not related to the laser powers Pac

and Pdc in the previous derivation [19]. Here as expected, for our fabricated graphene
resonators, τ nearly remains unchanged with Pdc and Pac increasing, as shown in Figs.
6.4a and 6.4b, respectively. Therefore, the small change of laser powers caused by elec-
trostatic deflection will not play a role on the tension-tuning τ. In addition, the thermal
signal only occurs in case of optothermal drive rather than other kinds of actuation, such
as electrostatic and piezo drive methods, indicating the unique thermodynamic mecha-
nism behind the thermal signal we observed in measurements.
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ba

Figure 6.4: Optothermal measurements on graphene resonators as laser powers tuned. a Thermal time con-
stant τ of graphene membrane versus red laser power Pdc, as blue laser power Pac fixed at 0.13 mW. b τ versus
Pac as Pdc fixed at 1.1 mW. Inserts are the cross-section illustrations of the membrane when we tune Pdc and
Pac, separately.

6.5.2. SCATTERING MODEL FOR ACOUSTIC PHONONS
Since the measured τ (see Figs. 6.2b−6.2d) are much larger than the theoretically esti-
mate of heat transport from the center of membrane to its boundary, we attribute this to
the strong scattering of acoustic phonons at the kink, as illustrated in Fig. 6.5a. This scat-
tering can be regarded as the Kapitza thermal boundary resistance between suspended
and supported regions of graphene membrane. Domain 1 and domain 2 represent the
suspended membrane and the sidewall, respectively. Using the Snell’s law, and the con-
tinuities of deflection and stress, we can extract the transmission rate for the different
phonon modes (2 j , j = l , t , z) at specific incident angle θ of flexural phonons, given by

w1z→2 j =
c j |u2 j |2Re(cosθ2 j )

cz |u1z |2 cosθ1z
, j = l , t , z (6.4)

where |u1z | and |u2 j | are wave amplitudes of modes 1z and 2 j , respectively. The rela-
tion between incoming angle θ1z and outgoing angle θ2 j is determined by Snell’s law
as sinθ2 j = c2 j /c1z sinθ1z , where cl =21.6 km/s, ct =16 km/s, and the speed of flexural
phonons cz depends on tension n, bending rigidity κ and the normalized areal density
η. Wave amplitudes |u2 j | is related to |u1z |, incoming angle θ1z and tension n, as derived
in ref. [36]. Fig. 6.5b plot |u2z | as a function of θ1z , assume the incoming wave amplitude
|u1z | = 1, cz = 575 m/s, and β= 90◦. Here, the observed two transmission peaks emerge
due to a resonant excitation of waves residing at the kink of membrane. Using the ob-
tained |u2 j | and Eq. 6.4, we further plot the transmission ω1z→2 j and reflection ω1z→1 j ′
possibilities over all θ as shown in Fig. 6.5c. It shows that that flexural phonons can only
transmit across over the kink under the condition of θ < 0.055.

Importantly, it should be noticed that |u1z | rapidly increase as tension n increases
from 0.1 to 0.5 N/m (Fig. 6.5b). This leads to the increasing transmission rate w1z→2 j

( j = l , t , z) with tension (Fig. 6.5d), where w1z→2 j is obtained by integrating w1z→2 j over
all incident angles from −π/2 to π/2. As a result, we verify that the induced tension
will weaken the impedance mismatch of acoustic phonons at the boundary of graphene
membrane, results in the observed decreasing τ in Figs. 6.2b−6.2e. On the other hand,
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Figure 6.5: Phonons scattering at the boundary of graphene membrane. a Diagram of the scattering model
for an incoming flexural phonon (mode 1z) on the kink. Transmitted and reflected modes are denoted by (2l ,
2t , and 2z) and (1l ′, 1t ′, and 1z′), respectively. b Wave amplitude |u2z | of the transmitted mode 2z in the
condition of tension n = 0.1 N/m and n = 0.5 N/m, respectively. Assume cz = 575 m/s. c Transmission ω1z→2 j
and reflectionω1z→1 j ′ possibilities versus angle θ1z of the incoming flexural phonon, computed by the full set

of equations given in ref.[36]. Assume n = 0.3 N/m and cz = 575 m/s. d Transmission rates w1z→2 j ( j = l , t , z)
of flexural phonons versus n, fixing cz at 575 m/s.
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Figure 6.6: Thermal time constants of three types of acoustic phonons as functions of phonons frequency
ωq /(2π) and tension n. a−c, Results of τl (n,ωq ), τt (n,ωq ) and τ(n,ωq ), respectively. In general, the magni-
tude of τ(n,ωq ) is three order larger than that of τl (n,ωq ) and τt (n,ωq ), indicating the dominant contribution
of flexural phonon on the thermal characterization in graphene. The calculated result in c is then weighted by
the ωq -dependent specific heat and obtain the total τ(n) in theory.

the amplitudes of w1z→2 j are quite low (< 0.01), which apparently explains the large
values of τ.

In Figs. 6.7a−6.7c, we calculate all transmission rates w1z→2 j ( j = l , t , z) as the func-
tions of n and cz . Besides w1z→2z , we see w1z→2l and w1z→2t also increases with n
as expected. Meanwhile, w1z→2z also displays a positive dependence on cz , meaning
that high-speed (corresponds to high q) flexural phonons will be more easily to trans-
mit across over the kink and leave the suspended membrane. By substituting w1z→2 j

into Eq. 6.2, we determine τl (n,ωq ), τt (n,ωq ) and τ(n,ωq ) as shown in Figs. 6.6a to 6.6c,

respectively. The speed cz is ωq -dependent given by cz = ∂ωq

∂q . Here, we adopt the ra-
dius r = 5µm and the bending rigidity κ = 0.6 eV. τl and τt are roughly three orders of
magnitude lower than τ as expected, due to the much high values of w1z→2l and w1z→2t

compared to w1z→2z (see Fig. 6.7c).
Note that in Eq. 6.2 and Eq. 6.4, we only consider the incidence of ZA phonons to

the kink and thus to determine the thermal time constant. This is because the con-
tributions from in-plane (LA and TA) phonons to τ can be ignored compared to that
from ZA phonons. Using the scattering model, we calculate the values of in-plane τ for
graphene resonator D1. The results are 0.22 ns and 8.16×10−3 ns for LA and TA phonons,
respectively, which are much lower than the measured τ as plotted in Fig. 6.2b. This is
attributed to the higher speeds cl and ct compared to cz , and the higher transmission
coefficients w1l→2 j and w1t→2 j compared to w1z→2 j as well. The negligible contribu-
tion from in-plane phonons show that flexural phonons dominate the phononic heat
transport in graphene [10, 47].

6.5.3. DEBYE MODEL OF ACOUSTIC PHONONS
Acoustic phonons in graphene exhibit dispersion relations [48]. In-plane (LA and TA)
phonons have a linear dispersion relation ωq = c j q ( j = l , t ) where q is the wavenumber
(Fig. 6.8a, left panel). Following the previous theoretical and experimental works, we use
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a b c

Figure 6.7: Transmission rates of three types of acoustic phonons as functions of sound speed cz and tension
n. a−c, Results of w1z→2l , w1z→2t and w1z→2z , respectively.

cl =21.6 km/s and ct =16 km/s in our work [38, 49]. In contrast, flexural phonons have a

nonlinear dispersion relation [50] expressed as ωq =
√

(κq4 +nq2)/(ηρg ), where κ is the

bending rigidity of the membrane, and η is the normalized areal density extracted from
the effective mass of the membrane meff (obtained from the fits in Fig. 6.2a). The specific
heat spectral density C z

v,ω of flexural phonons in graphene is given by [38]:

C j
v,ω = kB

(ħωq

kT

)2 eħωq /kT(
eħωq /kT −1

)2 D
(
ωq

)
, j = l , t , z (6.5)

where kB is the Boltzmann constant, ħ is the Planck constant divided by 2π, D(ωq ) is the
density of states for the given dispersion relations, and T = 293.15 K represents the room
temperature. Using Eq. 6.5, we obtain the specific heat spectral densities C l

v,ω and C l
v,ω

of in-plane phonons (see Fig. 6.8a, right panel), as well as C z
v,ω under different η, κ and n

as plotted in Fig. 6.3c (right panel). Here we demonstrate C l
v,ω and C l

v,ω are unchanged
over all different devices owe to the linear dispersion of in-plane phonons.

In the flexural dispersion ωq =
√

(κq4 +nq2)/(ηρg ), n dominates the low frequency

(MHz) regime while κ dominates the high frequency (THz) regime. The point, where
ωq transit from n- domination to κ- domination, can be defined as the cross-over fre-
quency ωqc of dispersion (see Fig. 6.8b). Through intersecting ωq = q

√
n/(ηρg ) and

ωq = q2√κ/(ηρg ), we can determine ωqc for all devices D1−D4, which are located at
84.8, 52.6, 174.4 and 422.7 GHz, respectively (see Fig. 6.3c).

6.5.4. ANALYSIS OF TUNABLE THERMAL TRANSPORT
As depicted in Fig. 6.9a, there are three paths to affect τ in graphene resonator: via the
speed of sound cz (n,ωq ), via the specific heat spectral density C z

v,ω(n,ωq ), and via the
transmission rate w1z→2z . According to the calculation on scattering and Debye models,
the path through w1z→2z dominates the tunable τ in our devices.

The extracted bending rigidity κ (Fig. 6.9b) is seen to increase with the normalized
areal density η (as listed in Table 6.1). Since the devices are fabricated identically, we
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Cross-over point

b

Figure 6.8: Dispersion relations of in-plane phonons. a Left panel: dispersion relations of in-plane phonons LA
(red line) and TA (blue line); right panel: the corresponding specific heat spectral densities C l

v,ω (red line) and

C t
v,ω (blue line). b Dispersion relation of flexural phonons for device D1 (black line), using the extracted tension

n = 0.25 N/m, bending rigidity κ = 3.8 eV and normalized areal density η = 19.401 from the main text. The
cross-over frequency ωqc = 84.8 GHz shows the transition of dispersion relation from n- dominated regime to
κ- dominated regime.
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Figure 6.9: Roles of tension played on heat transport tuning. a Flow chart of the theoretical model to estimate
the thermal time constant τ and the ratio of normalized thermal expansion amplitudes |Cfast/Cslow|. Green
frames: measured parameters; pink frames: fitting parameters. From Debye model we obtain the phonon
frequency ωq - dependent speed cz and specific heats C z

v , C l
v , C t

v for phonons, which are used as weighing
factors in the scattering model to evaluate τ and |Cfast/Cslow| as a function of tension n. b Fitted bending
rigidity κ of the membrane versus the normalized areal density η. These values of κ result in a good match
between the modelled and measured τ for devices D1−D4 (drawn lines).
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attribute these differences to variations in residues on and between the double CVD
graphene layers. These residues affect acoustic phonon transport and the resulting
forces on the graphene membrane in three different ways. First, residues decrease ξ, the
relative optical power absorbed by flexural phonons (Fig. 6.12), and thus decrease their
contribution to the thermal expansion amplitude of graphene [51] which is reflected in a
reduction of |Cfast/Cslow|; second, the effective mass of the membrane, quantified by the
normalized areal density η, increases which influences the flexural phonon dispersion,
thus affecting τ; third, the bending rigidity κ increases with increasing η (Fig. 6.9b). For
a bulk material, of uniform composition, the bending rigidity κ is expected to exhibit
cubic scaling with thickness [52] and normalized mass η, however, if the interlayer shear
interaction between the layers is weak, a more linear dependence is predicted to occur
[53]. Since the data in Fig. 6.9b seems to be in between these two limiting cases, further
study is needed to completely understand the observed relation between κ and η in our
devices.

Let us now focus on the roles of κ, η and n played on the Debye scattering model.
Assume r = 5µm, and the initial conditions of the discussed parameters are set as
κ= 0.6 eV, η= 10, n = 0.3 N/m. We plot ωq (q), cz , C z

v,ω and τ versus κ, η and n, respec-
tively, as shown in Figs. 6.10a−l. Similar to what we have discussed on ωq , it is clearly
observed that n and κ dominate the MHz- and GHz- regimes, respectively, while η im-
pacts both sides. More importantly, it should be noticed that the sensitivity of n on τ is
extremely higher compared to that of κ and η (see Figs. 6.10a−l). This verifies again that
the tunable heat transport we measured in graphene resonators is mainly attributed to
the acoustic impedance matching at the edge of the membrane.

For each ωq , the above calculation gives us the thermal time constant and the spe-
cific heat spectral density for all types of acoustic phonons at the given tension n. Fol-
lowing the definition of specific heat, we use a weighing relation:

1/τ=
∫ ωqd

0
C i

v,ω(ωq )/(C i
vτ(ωq ))dωq , (6.6)

where C i
v = ∫ ωqd

0 C i
v,ω(ωq )dωq is the total specific heat of a particular phonon type

i = l , t , z, to separately obtain the weighted τ, τl and τt . In the flow chart depicted of
Fig. 6.10a, κ is the only fitting parameter to match the theoretically estimated to the
experimentally measured τ.

We further discuss the role ofκplayed on the tension-dependent tunable τ (Fig. 6.11).
It shows that as κ goes up from 0.06 to 19 eV, the magnitude of τ is improved obviously.
This is attributed to the improved contribution rate of high-frequency flexural phonons
to the heat transport. In addition, we also observe the slope |dτ/dn| increases as κ
increases, indicating a enlarged tunability on τ.

6.5.5. THERMAL NONEQUILIBRIUM OF ACOUSTIC PHONONS
Characterizing thermal nonequilibrium among phonons in graphene has recently re-
ceived a remarkable attention [2, 54, 55]. In this work, we consider the absolute ratio of
normalized thermal expansion amplitudes |Cfast/Cslow|. According to the 2D heat equa-
tion [19], the thermal expansion amplitude is equal to αPabsR, where α and R is the
thermal expansion coefficient and thermal resistance of acoustic phonons, and Pabs is
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Figure 6.10: Discussion for phononic scattering and Debye models. Four parameters of flexural acoustic
phonons, including phonons frequencyωq , speed of sound cz , specific heat spectral density C z

v,ω and thermal
time constant τ are discussed with respect to bending rigidity κ, normalized areal density η and tension n.
Initial settings are κ= 0.6 eV, η= 10, n = 0.3 N/m and r = 5µm.

Figure 6.11: Influence of bending rigidity on the tension tuning of heat transport. Green points, the measured
thermal time constant τ as a function of tension n for device D3 in the main manuscript; lines, estimated τ

versus n under different values of κ.
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Figure 6.12: Percentual energy absorption ξ by flexural phonons as a function of η shows a strong decrease of
ξ with increasing mass due to polymer residues.

the absorbed laser power by the phonons. Assume the values of α are equivalent for all

acoustic phonons [56], using τ = RCv , we have |Cfast/Cslow| = γ
(τl /C l

v+τt /C t
v )

τ/C z
v

, where γ =
P l ,t

abs/P z
abs represents the power absorption ratio between in-plane and flexural phonons.

Through the fitting of γ, we obtain a good match between the computed and measured
tension-dependence of |Cfast/Cslow| for all devices (see Fig. 6.3a). using the expression
Cslow = αRPac, we also extract that the magnitude of Cslow is much smaller than 1 pm,
which is negligible compared to the nm-scale deflection tuned by electrostatic force. Ad-
ditionally, from γ, we can calculate the percentage ξ of optical power that is converted
into flexural phonons, expressed as ξ = P z

abs/(P l ,t
abs +P z

abs)×100% = (1+γ)−1 ×100%. As
Fig. 6.12 shows, ξ rapidly decreases from 43.7% to less than 15% when the normalized
areal density η increases.
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7
DETERMINING THERMAL

INTERFACE CONDUCTANCE

BETWEEN TWO 2D MATERIALS BY

OPTOMECHANICS

For the development of nanoscale electronics and photonics based on 2D van der Waals
(vdW) technology, energy dissipation at 2D interfaces is a significant issue. This causes
high power densities during devices operation, which in turn limits their performance. To
shed light into fundamental aspects of this challenge, in this chapter, we report a novel
approach for characterizing the heat transport in pure FePS3 and WSe2 membranes, as
well as their stacked heterostructure. Using optothermal actuation, we measure their res-
onance frequency and thermal time constant as a function of temperature. These allow us
to extract a thermal interface conductance of 2.73±1.71 MWm−2K−1 in the FePS3/WSe2

heterostructure, which is comparable to the reported values obtained from Raman mi-
croscopy. This work opens the door for efficient thermal management at nanoscale and
offers significant new insights into energy dissipation in 2D vdW devices.
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7.1. INTRODUCTION

A DVANCES in 2D heterostructure offer great opportunities for next-generation elec-
tronic, photonic and thermoelectric applications at nanoscale, including field-effect

transistors, quantum cascade lasers, photonic bandgap crystals and light emitters [1, 2].
However, low thermal interface conductance in 2D heterostructures, due to the pres-
ence of phonons-state mismatch by van der Waals interaction, limits the heat transport
and results in large thermal isolation, causing significant restrictions on device perfor-
mance. Therefore, characterizing thermal interface conductance is of importance to op-
timize heat transport in 2D heterogeneous devices, which provides a pathway toward
well-cooled, high-performance functional nanodevices and efficient thermal manage-
ment in nanosystems.

In this section, different from the commonly adopted technique based on Raman
thermometry [3–5], we employ an optothermal approach for determining the ther-
mal interface conductance, G , between two different 2D materials that are stacked
in a double-layer heterostructure. Three resonators are fabricated by the Scotch tape
method, including pure FePS3 and WSe2 devices, as well as a FePS3/WSe2 heterostruc-
ture device. Optomechanical measurement has been done to obtain their resonance
frequency f0 and thermal time constant τ as a function of temperature. By using a
COMSOL model, we extract the thermal interface conductance of a FePS3/WSe2 het-
erostructure device, from its measured τ and the obtained specific heat and thermal
conductivity for both pure FePS3 and WSe2 membranes.

7.2. RESULTS AND DISCUSSION

7.2.1. LASER INTERFEROMETRY OF HETEROSTRUCTURE RESONATORS

To prepare the proposed heterostructure resonators, WSe2 and FePS3 nanoflakes are me-
chanically exfoliated by Scotch tape, and then transferred and suspended over cavities
with a radius of r = 3 µm, as shown in Fig. 7.1a. Three types of membranes are formed:
pure WSe2 membranes (like device D2), pure FePS3 membranes (D1) and FePS3/WSe2

heterostructures (D3). The overlapped region of two flakes forms the heterostructure.
After fabrication, we use AFM to characterize the thickness and Young’s modulus of the
suspended 2D membranes. Here, we obtain t1 = 34.5 nm and E1 = 93.1 GPa for pure
FePS3, while t2 = 8.6 nm and E2 = 98.3 GPa for pure WSe2 membrane. The heat trans-
port in FePS3/WSe2 heterostructure can be captured by a thermal model, as shown in
Fig. 7.1b. In order to determine the thermal conductance at the interface, we adopt an
optomechanical approach together with COMSOL finite element simulation: first, res-
onance frequency f0 and thermal time constant τ of the pure devices D1 and D2 are
measured as a function of temperature T ; accordingly, the specific heat cp and thermal
conductivity k for both pure membranes can be extracted using the theory introduced
in Chapter. 5; then, we input these results into a double-layer COSMOL model, where
the heat transport is simulated to estimate τ under different G ; finally, by adjusting G
such that the tau from the model matches the measured τ, we extract the thermal con-
ductance G for heterostructure device D3.

Figures 7.1c and 7.1d show the results of optomechanical measurements for all de-
vices D1−D3. Note that the observed minimum in f0 versus T curve for device D1 is
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Figure 7.1: Temperature-dependent optomechanical measurements on 2D resonators. a Optical image (top
view) and the 3D schematic of the devices. D1, pure FePS3 device; D2, pure WSe2 device; D3, FePS3/WSe2
heterostructure device. b Left, cross-section view of the heterostructure; right, equivalent thermal model cor-
respondingly. c Measured resonance peak for devices D1−D3 as temperature T increases. d Thermal time
constant τ as the function of T for devices D1−D3, extracted from the fits to the measured thermal signal.

attributed to the thermally-induced buckling bifurcation (see Chapter 4). The experi-
mental values of τ for heterostructure device D3 (∼ 780 ns) is between those of device

D1 (∼ 1250 ns) and device D2 (∼ 280 ns). Using the measured τ(T ) and the slope
d f 2

0
dT ,

we extract cp1 = 775.1±30.4 Jkg−1K−1 and k1 = 3.9±0.5 Wm−1K−1 for FePS3, as well as
cp2 = 102.2±4.5 Jkg−1K−1 and k2 = 7.0±0.2 Wm−1K−1 for WSe2, respectively. All of the
extracted values above are comparable to values reported in the literature [6–9].

7.2.2. DETERMINING THERMAL INTERFACE CONDUCTANCE

After characterizing the thermal properties for pure membranes, we now move on to the
thermal interface conductance in heterostructure G . As shown in Fig. 7.2a, we build a
double-layer model in COMSOL to simulate the heat transport in heterostructure, where
a thermal contact, with interface conductance G , is set at the interface. More details
of the model can be found in Appendix. The thermal properties (cp and k) of top and
bottom layers in the model are set with the values obtained for pure FePS3 and WSe2
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a b c

This work

Interface

Figure 7.2: Determining thermal interface conductance in FePS3/WSe2 heterostructure. a Comsol simulation
of the volume averaged ac temperature modulation T of the membrane, when optothermally heated by a
power modulated laser in its center. Blue line, real part; red line, imaginary part; insert, diagram of COMSOL
model. Boudary heat source is setting as 100 Wm−2. b Yellow points, thermal time constant τ versus thermal
interface conductance G simulated by COMSOL. Green points, the measured τ3 for heterostructure device D3.
c Extracted G of FePS3/WSe2 interface in this work and reported results for other kinds of 2D interfaces from
[3].

membranes, respectively. Assume a thermal interface conductance G = 1 MWm−2K−1,
we simulate the heat transport in heterostructure and obtain its volume-average tem-
perature modulation amplitude T as a function of he frequency f of a power modulated
laser, as shown in Fig. 7.2a. This result is then fitted with the thermal equation (Eq. 2.9 in
Chapter. 2), giving us a thermal time constant τ3 = 797.66 ns for heterostructure.

Using COMSOL simulation, we then extract the relation between G and τ3 for
FePS3/WSe2 heterostructure, as plotted in Fig. 7.2b (yellow dots). We find that τ3 gradu-
ally decreases as G increases, indicating the heat transport will be affected more by the
bottom WSe2 layer in case of a better heat conduction between the layers. Thus, using
the measured τ3 (green points in Fig. 7.2b), we extract G = 2.73± 1.71 MWm−2K−1 for
heterostructure device D3. Compared to the reported results for monolayer graphene,
MoS2 and WSe2 interfaces [3], our obtained G is a little bit smaller (Fig. 7.2c). This could
be attributed to a larger mismatch of acoustic phonons between the FePS3 and WSe2

membrane, or the contamination such as polymer residues induced by fabrication. In
addition, we assume that the thermal properties of each layer in the heterostructure
device D3 is equivalent to their pure counterparts (devices D1 and D2), which, in case of
lateral variations in the material properties, could cause errors in the estimations of G .

Our proposed method is suitable for studying other kinds of 2D interfaces, and since
it is performed on suspended membranes, has the advantage of excluding the influence
of substrate on the propagation of heat carriers in 2D materials. Additionally, large T -
measuring range is required to achieve a recognizable detection for the Raman shift∆χT

of 2D materials. By contrast, optomechanical measurement is done with a T -accuracy
of 1 K, which provides a much more precise and sensitive platform for characterizing the
thermal transport in 2D materials.

It has been verified that the heat flow across the 2D interfaces is dominated by the
overlapping phonon density of states (PDOS) of flexural phonons [3]. As a result, it is of
interest to further quantify the acoustic mismatch between the FePS3 and WSe2 by PDOS
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calculations, to analyze the cause of thermal interface conductance from its underlining
physical essence. Additionally, it is worth to explore the thermal interface conductance
in anisotropic 2D materials such as black phosphorus, which could provide a strategy
for guiding heat in desired directions.

7.3. CONCLUSION
In conclusion, we fabricated a FePS3/WSe2 heterostructure resonator and presented
a method to determine its thermal interface conductance by optothermomechanical
means. Independent optomechanical measurements have been done firstly on pure
FePS3 and WSe2 membranes to extract their thermal properties, which are then im-
ported into a built double-layer model in COMSOL. The simulation result allows us to
extract the thermal interface conductance G = 2.73±1.71 MWm−2K−1 for heterostruc-
ture device from its measured thermal time constant, showing a good agreement with
the reported values from literature. Our methodology could elucidate the fundamental
heat transport through the vdW heterostructure and benefit the thermal management
and optimization at nanoscale.

7.4. APPENDIX

7.4.1. HEAT TRANSPORT IN DOUBLE-LAYER CIRCULAR PLATE
For a double-layer circular plate under cylindrical coordinates, as depicted in Fig. 7.3,
the homogeneous of heat conduction equations are given as:

∂T1
∂t = κ1

(
∂2T1
∂x2 + 1

r
∂T1
∂x + ∂2T1

∂z2

)
, in 0 < z < z1 0 < x < r,

∂T2
∂t = κ2

(
∂2T2
∂x2 + 1

x
∂T2
∂x + ∂2T2

∂z2

)
, in z1 < z < z2 0 < x < r,

(7.1)

where we use the heights z1 and z2 to define the thickness of the membranes, κ1 = k1
cp1ρ1

and κ2 = k2
cp2ρ2

represent the thermal diffusivity, k, cp and ρ are the thermal conductivity,

specific heat and mass density of the membrane, respectively. To obtain the distributions
of temperature T1 and T2, we combine Eq. 7.1 with the boundary and initial conditions:

T1 = 0, at x = r,

T1 = 0, at z = 0,

T2 = 0, at x = r,

−k1
∂T1
∂z =G(T1 −T2), at z = z1

k1
∂T1
∂z = k2

∂T2
∂z , at z = z1,

∂T2
∂z = 0, at z = z2,

(7.2)

where G is the thermal interface conductance.
In the following, we employ the commonly used method, separation variables, to

solve T1 and T2: {
T1(r, z, t ) =ψ(r )Z1(z)Γ(t ),

T2(r, z, t ) =ψ(r )Z2(z)Γ(t ).
(7.3)
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Figure 7.3: Illustration of double-layer circular plate.

Combining the boundary and initial conditions in Eq. 7.2, the general solutions for
Eq. 7.3 are:{

T1(r, z, t ) =∑∞
m=1

∑∞
n=1 Amn J0(ηmr )sin(γn z)e−λ

2
mn t ,

T2(r, z, t ) =∑∞
m=1

∑∞
n=1Bmn J0(ηmr )[cos(µn z)+ tan(µn z2)sin(µn z)]e−λ

2
mn t ,

(7.4)

where m = 1,2,3, ... and n = 1,2,3, ... are the m-th and n-th eigenvalues values, Amn and
Bmn are integration parameters. γn and µn can be determined by the relations λ2

mn =
κ1(η2

m +γ2
n) = κ2(η2

m +µ2
n) and∣∣∣∣∣∣

κ1γn cos(γn z1)+G sin(γn z1) −G cos(µn z1) −G sin(µn z1)
κ1γn cos(γn z1) κ2µn sin(µn z1) −κ2µn cos(µn z1)

0 sin(µn z2) −cos(µn z2)

∣∣∣∣∣∣= 0. (7.5)

Similar to the derivations in Appendix of Chapter 5, the thermal time constant τ of the
double-layer structure here can be expressed by τ= 1/λ2

mn . Thus from Eq, 7.5 we know
that τ is related to the thermal diffusivity and thickness of both top and bottom mem-
brane, as well as the interface conductance G .

7.4.2. COMSOL SIMULATION FOR HEAT TRANSPORT
Although T1 and T2 in Eq. 7.4 can be solved with the form of Green’s functions in previous
study [10], it is complicated to obtain the analytical solution for λ2

mn , much less consid-
ering the size of laser spot r0 is smaller than r , and the existing of Si substrate in realistic
case. Therefore, we adopt COMSOL simulation method to estimate τ in heterostructure
device, as shown in Fig. 7.4.

For structural parameters, we set r = 3 µm, r0 = 0.25 µm, t1 = 34.5 nm, t2 =
8.6 nm, ρ1 = 3375 kgm−3 and ρ2 = 9320 kgm−3. The independent optomechanical
measurements on pure FePS3 and WSe2 membranes give us cp1 = 775.1 Jkg−1K−1,
k1 = 3.9 Wm−1K−1, cp2 = 102.2 Jkg−1K−1 and k2 = 7.0 Wm−1K−1. The initial and bound-
ary conditions of heat transport in Eq. 7.2 are also set in this model. To simulate the
modulated laser irradiation on the membrane, we use a boundary heat source on the
upper surface of FePS3 layer (with a radius of r0) and add a harmonic perturbation. As
a result, by varying G from from 0.5 to 5 MWm−2K−1, we obtain the relation between τ

and G as plotted in Fig. 7.2b.
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Figure 7.5: COMSOL model for simulating heat transport in a double-layer circular membrane.

As we know from Eq. 7.5, thermal time constant τ of heterostructure is not only re-
lated to G , but also highly depends on the thicknesses of both top and bottom layers, t1

and t2. Therefore, by fixing G = 1 MWm−2K−1, we further discuss the influence of t1 and
t2 on the heat transport through simulation, as shown in Fig. 7.5. When fixing t2 = 20 nm
and tuning t1 from 10 to 50 nm, τ3 gradually increases from 418.62 to 825.70 ns; when
fixing t1 = 20 nm and tuning t2 from 10 to 50 nm, τ3 gradually decreases from 710.92 to
404.41 ns. Note that for pure FePS3 and WSe2 membranes, the measured τ1 ≈ 1250 ns
and τ2 ≈ 280 ns. Therefore, we conclude that the increase of thickness of one layer will
cause it to contribute more to the heat transport in the heterostructure, as expected.
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CONCLUSION

In this thesis, by focusing on the mechanics and thermodynamics of suspended 2D mem-
branes, we investigated a wide variety of topics, including fabrication techniques, me-
chanical phenomena, heat transport and energy dissipation. This concluding chapter
summarizes the key results from individual chapters and gives a perspective on future
works.
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T HIS thesis gives an overview of experimental study on the mechanics and thermo-
dynamics of nanomechanical resonators composed of 2D materials. The research

outline, as depicted in Fig. 8.1, is in-line with the author’s scientific research progression
in the past four years.

8.1. INTRODUCTION AND METHODOLOGY
In Chapter 1, We began by giving an introduction on the excellent characteristics of 2D
materials, as well as the fundamental performance and applications of 2D nanomechan-
ical resonators, which, at the very beginning, elucidated the background and motivation
of this thesis.

In Chapter 2, we first outlined the process for suspending 2D membranes on the
etched Si substrate to fabricate nanomechanmical resonators. Afterwards, various of
typical techniques that characterize the fundamental properties of 2D membranes were
discussed, including AFM (tapping/contact modes), Raman microscopy and white light
interferometry. Then, emphasis was given to introducing the laser interferometry setup,
which was commonly used to probe the mechanical and thermodynamic properties of
manufactured devices in this thesis. We also introduced the basis for how to tune the
mechanical resonance frequency of 2D nanomechanmical resonators.

8.2. MECHANICS: NOVEL TECHNIQUE AND PHENOMENA
During the transfer and fabrication of 2D nanomechanical resonators, we already faced
the restrictions arisen from the Scotch tape approach such as irregularly structural defor-
mations and residue contamination, especially when making multilayer heterostructure
devices. In Chapter 3, aiming at a more efficient and reliable technical route, we realized
a pathway for high-quality MoS2/graphene resonators using the atomic layer deposi-
tion (ALD) method. More importantly, our fabricated heterostructure devices showed
a lower energy dissipation at the interface, compared to their exfoliated counterparts,
making them promising for atomically thin tunable resonators and 2D sensors.

The large and sensitive tunability of dynamic properties makes 2D nanomechanical
resonators promising candidates for sensing applications. However, during the demon-
stration of thermal tuning in FePS3 resonators, we observed an unexpected minimum in
the resonance frequency versus temperature curve, which is significantly different from
previous studies. In Chapter 4, we focused on this new discovery and described it in
details through a built mechanical buckling model. The change of surface strain and
central deflection of the membrane were characterized as a function of temperature.
This phenomenon was also observed in 2H-TaS2 and WSe2 resonators. Furthermore,
we found that the amplitudes of both thermal expansion and resonance were remark-
ably enhanced near the buckling bifurcation point, which is attributed to the low out-of-
plane stiffness of the membrane.

8.3. THERMODYNAMICS: PRECISE PROBE AND MODULATION
We then moved on to the thermodynamics of suspended 2D membrane. The laser in-
terferometry setup provides a precise platform to probe the phononic heat transport
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with nanosecond resolution. In Chapter 5, we proposed an optomechanical methodol-
ogy for characterizing the thermodynamic properties of 2D membranes, including the
thermal expansion coefficient, specific heat and thermal conductivity. To achieve this,
we measured the resonance frequency and thermal time constant of the membrane as
a function of temperature. Our work shows comparable results compared to previous
first-principle studies and Raman measurements.

To our surprise, the aforementioned approach utterly failed to work with the best-
known 2D material, graphene. In Chapter 6, a two-order-higher magnitude of thermal
time constant was tested in double-layer graphene resonators. Instead of the phononic
transport in the membrane, we accounted for these experimental observations by the
strong phonons scattering at the boundary of membrane between the supported and
suspended part. This scattering turned out to be highly correlated with the surface ten-
sion in the membrane. As a result, by applying tension using electrostatic deflection, we
realized a ∼ 33% decrease of heat transport in graphene resonators.

8.4. OUTLOOK
As discussed above, the link between mechanics and thermodynamics has already been
established by optomechanical measurement on 2D nanomechanical resonators. This
motivated us to investigate additional mechanisms and phenomena in suspended 2D
membranes that have not been thoroughly studied. In Chapter 7, we concentrated on
the thermal transport in 2D heterostructure. Optomechanical measurement was pre-
sented combined by COMSOL simulation, which allows us to characterize the thermal
conductance at 2D interface.

Additionally, there are still many directions and topics that are worthwhile to be
done. In terms of dynamic phenomena, besides the studied buckling, mode coupling,
particularly the coupling of various resonators, still needs to progress. Such coupling
effects can lead to rich physics in 2D nanomechanical resonators. Using optomechan-
ical measurement, it is worth to study the control of energy between modes through
phononic heat transport. With regard to material performance, a basic assumption in
this thesis is that the mechanics and thermodynamics of 2D membranes are anisotropic.
Considering that many 2D materials, like As2S3 and black phosphorus (BP), exhibit large
in-plane isotropy, it is of interest to explore their phononic transport, buckling bifurca-
tion and thermoelastic damping along different lattice axis.

In the manufacture and integration of 2D-based NEMS, it is still challenging to fab-
ricate these suspended devices at large scale. ALD technique, as already demonstrated
the strong adaptability for multi-layer and uniform nanofabrication, would be ideal for
making ultra-large NEMS with low energy dissipation. Additionally, the semiconduc-
tor devices based on 2D vdW bilayer structures might greatly benefit from the accurate
thickness control of the ALD approach. For advanced sensing applications, we proved
that the amplitudes of thermal expansion and resonance of suspended 2D membrane
will be significantly enlarged near buckling bifurcation. This could open up opportuni-
ties for the realization of ultra-sensitive sensors that rely on buckled 2D resonators.

In 2D materials industry, the route toward novel characteristics and advanced ap-
plications is always accompanied by difficulties and challenges. How to stabilize the
performance of 2D NEMS so as to achieve their repeatability? Where is the upper limit
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of 2D sensors performance? How to realize large-scale fabrication with considerable
yields for semiconductor manufacturing? Is it possible to push 2D resonators to me-
chanical qubits for storing and processing quantum information? Can we achieve room-
temperature superconductor in twisted graphene or vdW heterostructures? Keeping in
mind that it takes almost 30 years for carbon fibers to go from laboratory to aircraft and
aerospace industries, we do believe, at the milestone of graphene’s coming 20th birth-
day, that the explosive industrial applications of 2D materials will come soon. With the
encouraging achievements over the past two decades and the promising opportunities
in front of us, let’s keep going!
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