
Ad

Master of Science Thesis

Numerical study of adaptive mesh
refinement applied to a third order

minimum truncation error Active Flux
method

Jeroen Kunnen

July 13, 2018

Numerical study of adaptive mesh
refinement applied to a third order

minimum truncation error Active Flux
method

Master of Science Thesis

For obtaining the degree of Master of Science in Aerospace Engineering
at Delft University of Technology

Jeroen Kunnen

July 13, 2018

Faculty of Aerospace Engineering · Delft University of Technology

Delft University of Technology

Copyright © Aerospace Engineering, Delft University of Technology
All rights reserved.

DELFT UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF AERODYNAMICS

The undersigned hereby certify that they have read and recommend to the Faculty of Aerospace Engi-
neering for acceptance the thesis entitled “Numerical study of adaptive mesh refinement applied to
a third order minimum truncation error Active Flux method” by Jeroen Kunnen in fulfillment of the
requirements for the degree of Master of Science.

Dated: July 13, 2018

Supervisors:
Dr.ir. M.I. Gerritsma

Prof.dr. S. Hickel

Dr.ir. M. Möller

Summary

Fluid flows are described mathematically by the Navier-Stokes equations. This system of equations is
highly nonlinear, lacking an explicit analytic solution. For many fluid flow problems the range of length
scales is rather broad, which causes obtaining a satisfying solution numerically to be an expensive and
resource-intensive operation. Varying per situation, the Navier-Stokes equations can often be simplified
by neglecting or linearizing certain terms. Even then, however, numerical approximation is in many
cases found to be inevitable. Combined with the exponential growth of computing power, this explains
the severe increase in research on numerical methods over the past few decades.

One challenging problem in this research area is that when flow velocity surpasses acoustic speeds,
shock waves may form. Shock waves are minuscule layers which separate two fluid states, resulting in
extreme gradients throughout the layer. Accurately representing such disruptive features on a discrete
domain requires inordinately small mesh spacing. A too coarse mesh has been shown numerously to
result in either a high dissipation rate or spurious oscillations, depending on the method used. Further-
more, fluid flow problems are frequently dominated by advection. It is therefore key that a numerical
method succeeds in a correct translation of some initial state on the discrete domain. A model equa-
tion that is frequently used for validation of the shape-preserving capabilities of a numerical method is
the linear advection equation, which describes pure advection of a specified initial state. Advection of
a discontinuous initial state then provides an indication of the extent to which a method succeeds at
preserving the shape of a shock wave.

Fairly recently, a new formulation was introduced by Timothy Eymann and Philip Roe under the
name of Active Flux Schemes. This formulation extends a regular finite volume method by placing an
additional variable on the interfaces between computational cells. The advantage of this is that the nu-
merical stencil becomes denser such that higher orders can be reached without extending outside the
physical domain of dependence. Also, the update method for the interface values need not be conser-
vative as this is already satisfied through the underlying finite volume scheme.

In this thesis a third order Active Flux scheme is derived under the constraint of minimizing the
truncation error of a Taylor series expansion. Furthermore, it is recognized that in order to accurately
represent a continuous shape on a discrete mesh, mesh spacing should locally be coherent with the
shape’s spatial frequency. To accomplish this without the drastic increase in computational effort that
results from uniform refinement, the method is extended to incorporate adaptive mesh refinement. The
aim of adaptive mesh refinement is to algorithmically derive the required mesh resolution from local
properties in order to close the gap between high accuracy and low computational load.

The adaptive Active Flux method is implemented for the linear advection equation and verified using
various initial waveforms with different characteristics. It was found that, in line with expectation, adap-
tive mesh refinement is not beneficial for smooth waveforms, increasing both simulation time and error
level compared to the simulation on an analogous uniform mesh. The results of triangle and sawtooth
wave patterns reveal the benefits of adaptive mesh refinement in terms of a reduction in the number of
cells while approaching the error development of a simulation on a full resolution uniform mesh. Fi-
nally, a high resolution simulation of Zalesak’s waveform has been performed. This waveform consists
of four individual waveforms, each of different characteristic shape, allowing verification of the adap-
tion algorithm for all features at once. It is shown that the adaptive simulation reaches the same error
level as a uniform simulation, while using ~9.6 times less computational cells.

For the non-smooth waveforms that were tested, the errors of the adaptive simulations were smaller
than their uniform analogue, given that the refinement/coarsening criteria were strict enough. On the
other hand, execution duration revealed that adaption in its current state is quite expensive computa-
tionally. However, it should be noted that the code has in no way been optimized, causing it to be impos-
sible to make any definite statements concerning performance. Also, only one-dimensional problems
have been tested in this thesis, while the benefits of adaptive mesh refinement become increasingly ap-
parent for higher dimensional problems. For this reason, it is believed that adaptive mesh refinement is
a necessity in the simulation of complex unsteady fluid flows.

v

Acknowledgements

First of all, I would like to take this opportunity to thank my direct supervisor, Marc Gerritsma, for his
overall guidance throughout this thesis project. Computational Fluid Dynamics really has become a
broad research area in which it is frighteningly easy to lose sense of direction and spend an embarrass-
ingly amount of time wandering through this expanding thick forest of complex concepts and theories.
Marc’s valuable feedback has kept me from straying too far from the path that defines a successful grad-
uation project, while leaving me the freedom to change heading every now and then. Although his
mathematical background has resulted in me leaving his office dumbfounded after a discussion more
than once, this forced me to think about concepts on a fundamental level to see if they made sense, not
only mathematically but also physically.

Finally, I am grateful for the unconditional emotional support and understanding of my parents,
which has provided me the momentum to keep going, especially during the periods when motivation
was lacking.

vii

Contents

1 Introduction 1
2 Background: Conservation laws 3

2.1 Derivation . 3

2.2 Characteristics . 3

2.3 Linear advection equation . 5

2.4 Burgers’ equation . 5

2.4.1 Converging characteristics . 6

2.4.2 Diverging characteristics. 8

2.5 Euler equations . 8

2.5.1 Invariants . 10

2.5.2 Jump conditions . 10

3 Literature study 11
3.1 Hybrid methods. 11

3.1.1 Adaptive Riemann solver. 12

3.1.2 HLLCM scheme . 12

3.1.3 Rotated-hybrid Riemann solver . 12

3.1.4 (W)ENO schemes . 13

3.2 Flux limiters. 13

3.3 Direct dissipation manipulation . 14

3.4 Mesh adaption . 14

3.4.1 Types of adaption methods . 15

3.4.2 Adaption criteria . 16

4 Active Flux 19
4.1 Eymann and Roe’s implementation . 19

4.1.1 Linear advection . 22

4.1.2 Analysis . 23

4.2 Multistep scheme generation . 24

4.3 Third order multistep scheme. 26

5 Adaptivemesh refinement 33
5.1 Computational architecture. 33

5.2 Global time step procedure . 36

5.2.1 Refinement . 40

5.2.2 Coarsening. 43

5.3 Adaption criteria . 46

5.3.1 Indicator #1 . 47

5.3.2 Indicator #2 . 47

5.3.3 Indicator #3 . 48

5.3.4 Depth mapping . 48

5.4 Mesh initialization . 49

5.5 Further considerations . 50

5.5.1 Higher order extension. 50

5.5.2 Nonlinear extension . 51

ix

x Contents

6 Results 53
6.1 Mesh deterioration . 54
6.2 Accuracy . 58
6.3 Refinement depth. 61
6.4 Zalesak’s waveform . 64
6.5 Concluding remarks . 68

7 Conclusions 71
8 Recommendations 73
A Single expression derivation 75
B Active Flux form derivation 77
C Squarewave results 79
Bibliography 83

1
Introduction

Since the early 1980’s, research on supersonic flows started to flourish, raising the incentive for the CFD
community to develop numerical solvers for such high-speed flows. Supersonic flows differ from sub-
sonic flows in characteristics due to the fact that supersonic flows allow the formation of shock waves;
extremely thin layers in which flow properties vary rapidly, approaching a theoretical discontinuity. Tra-
ditional numerical solution methods tended to show either oscillatory or excessively dissipative behav-
ior around such features, resulting in a growing demand for new methods that would improve perfor-
mance in terms of accuracy in the presence of discontinuities.

Consequently, a lot of effort continues to be invested in this specific subject, thereby contributing to
the ever expanding collection of numerical schemes. Investigation of these schemes reveals that there is
a general consensus that local variation of the numerical dissipation rate provides a way of suppressing
oscillatory behavior near discontinuities while allowing the use of higher order schemes in smooth re-
gions. A relatively new type of scheme has been introduced in 2011 by Eymann and Roe [24]; the Active
Flux (AF) schemes. In this type of scheme, an extra degree of freedom is imposed on the cell interfaces
of a finite volume grid. This approach enables the use of non-conservative update methods for these in-
terface values, as conservation is automatically adhered to through the conservative update method of
the cell integral values. The paper by Eymann and Roe describes an update method that relies on char-
acteristic tracing, which is physically intuitive but not trivially extendable to the Euler equations as in
that case the state variables cannot be traced along a single path. This thesis will investigate an update
method that is ultimately based on minimization of the truncation error of a Taylor series expansion.
Furthermore, a way of local modification of mesh resolution to reduce the error near discontinuities is
implemented through means of an adaptive mesh refinement algorithm. The question in which these
elements are centralized and this thesis aims to answer is stated as:

How does an Active Flux node update method, derived under the constraint of a minimum Taylor se-
ries expansion truncation error, compare to the method of characteristic tracing and how can adaptive
mesh refinement be implemented in order to cohere to local mesh resolution requirements?

The report is structured as follows. First, Chapter 2 contains a review on the foundation of conservation
laws, along with three examples of conservation laws commonly found in the field of aerodynamics; the
linear advection equation, Burgers’ equation and the Euler equations. Then, a thorough literature study
on methods of local control over the dissipation rate is provided in Chapter 3. The Active Flux method
implementation as proposed by Eymann and Roe is explored in more detail in Chapter 4. This chapter
also introduces a two-step method based on minimum Taylor series expansion truncation error, which
is then rewritten to a single step Active Flux form. Thereafter, Chapter 5 focuses on the implementation
of mesh adaption for Active Flux schemes, including a detailed overview of the code structure. Simula-
tions have been run for various waveforms and several parameter configurations, for which a summary
of relevant findings can be found in Chapter 6. From these results several conclusions are drawn, which
are presented in Chapter 7. Finally, Chapter 8 provides some recommendations and points of attention
for possible future research.

1

2
Background: Conservation laws

Conservation is one of the fundamental laws of nature and often serves as a basis for the understand-
ing and simulation of all kinds of phenomena. It recurs in many scientific fields in various forms. This
broad scope has resulted in the concept being discussed on a large scale, from different perspectives.
The mathematical foundation is well documented, see e.g. [14, 15, 27]. Conservation is necessary to
retain the physical validity of a simulation and is for this reason the underlying principle of many nu-
merical methods. Therefore, this chapter provides a brief recapitulation of the basics, starting with the
derivation in Section 2.1. Section 2.2 introduces the concept of characteristics. Finally, three well-known
conservation laws are treated concisely; the linear advection equation (Section 2.3), Burgers’ equation
(Section 2.4) and the one-dimensional Euler equations (Section 2.5).

2.1. Derivation
Considering a spaceΩ enclosed by a boundary ∂Ω, conservation requires that, in the absence of sources
and sinks, the total amount of a quantity u inΩ can only change by a non-zero average flux of u through
∂Ω. This requirement translates to the following mathematical expression:

∫
Ω

u(ξ, t1) dV =
∫
Ω

u(ξ, t0) dV −
∫ t1

t0

∮
∂Ω

f (u) ·n dSdt (integral form) (2.1a)∫
Ω

u(ξ, t1)−u(ξ, t0) dV =−
∫ t1

t0

∮
∂Ω

f (u) ·n dSdt (2.1b)∫ t1

t0

∫
Ω

ut dVdt =−
∫ t1

t0

∫
Ω
∇∇∇· f (u) dVdt (2.1c)∫ t1

t0

∫
Ω

ut +∇∇∇· f (u) dVdt = 0 (2.1d)

ut +∇∇∇· f (u) = 0 (differential form) (2.1e)

In these equations, f is a vector field representing the flux of quantity u. In (2.1a) and (2.1b), ξ is a
convenient shorthand notation for the collection of spatial parameters, the amount of which is equal to
the dimension of Ω. It should also be observed that the use of the divergence theorem in (2.1c) is only
valid when the vector field ∇∇∇· f is integrable onΩ. When multiple quantities are to be conserved, (2.1e)
can be written as follows, where the gradient vector acts on the vector field column-wise:

ut +∇∇∇· f (u) = 0. (2.2)

2.2. Characteristics
In one spatial dimension, (2.2) reduces to:

ut + f (u)x = 0. (2.3)

3

4 2. Background: Conservation laws

When both the flux function f (u) and the vector of conserved variables u are differentiable, the

Jacobian J = ∂ f
∂u allows this equation to be written as:

ut + Jux = 0. (2.4)

In case the matrix J contains off-diagonal non-zero entries, interaction exists between the entries
of u, complicating the behaviour of the system. In order to simplify the analysis of such a system, an
attempt to decouple the system can be made by applying a change of variables. Letting this new set of
variables be contained in the vector v , the desired form becomes:

vt +Λvx = 0, (2.5)

whereΛ is a diagonal matrix. Introducing a second Jacobian L = ∂v
∂u , this can be rewritten to:

∂v

∂u
ut +Λ∂v

∂u
ux = 0, (2.6)

Lut +ΛLux = 0. (2.7)

This shows that a decoupled system results for the following change of variables:

dv = Ldu. (2.8)

For linear systems, this simply becomes the map v = Lu. In this case, for each variable vi in v , a path
in x − t space exists along which vi is constant. This path is defined by dx

dt =λi , where λi is the i th entry
of the diagonal ofΛ. The vi are commonly referred to as characteristic variables or Riemann invariants.
The system of equations in (2.5) is called the system of characteristic equations. The paths along which
the characteristic variables are constant, have been termed the characteristics. Premultiplying (2.7) by
the inverse of L yields:

ut +L−1ΛLux = 0. (2.9)

Comparing this to (2.4) reveals that L−1ΛL is in fact the diagonalization of the Jacobian J , where the
matrix L thus consists of the left eigenvectors of J , andΛ contains J ’s eigenvalues. Unfortunately, for the
Euler equations, (2.8) cannot be directly integrated to explicitly yield v in terms of u. Therefore, only a
differential form of the characteristic variables is available.

For each point (x, t), the characteristics intersecting that point can be drawn. From this, two regions
can be inferred; the domain of dependence (DOD) and the domain of influence (DOI). The domain of
dependence consists of the collection of points able to influence the state at (x, t). Similarly, the do-
main of influence comprises all points whose states can be influenced by the point (x, t). For a single
conserved variable (or a system with equal characteristic velocities), both domains converge to a single
line on top of the characteristics. For a system with distinct characteristic velocities, the domains are
bounded by the fastest and slowest moving characteristics, see Figure 2.1. Thus, for schemes to cor-
rectly mimic physical phenomena, it should be kept in mind that information travels at a finite velocity,
and the state at some point in space-time can only be affected by points in its DOD. This poses some
constraints on the numerical solution method. In Figure 2.1 for example, a non-directionally-biased
scheme would be an inappropriate choice as the characteristic velocity extrema are of the same sign.

x

t

DOD

DOI

Figure 2.1: The domain of influence (DOI) and domain of dependence (DOD) for a point (x, t) bounded by the minimum and
maximum characteristic velocity.

2.3. Linear advection equation 5

2.3. Linear advection equation
For the case of just one variable, (2.4) becomes:

ut + f (u)x = ut +λ(u)ux = 0. (2.10)

The simplest form of this equation occurs for a constant characteristic velocity, λ(u) = a. This form
is well-known as the linear advection equation. Since the characteristic velocity is invariant throughout
the whole domain, the characteristics are all parallel and straight, their slopes dependent on the value
of a. The following figure shows some characteristics for the possible values of a.

x

t

a > 0

x

t

a = 0

x

t

a < 0

Figure 2.2: Characteristics of the linear advection equation for various values of the wave speed, a.

The characteristic pattern indicates that the linear advection equation performs nothing more than
a shift of the initial conditions with velocity a, preserving the shape. A constant value is tied to each
characteristic, which implies that as long as a value is specified somewhere in the x − t domain for each
characteristic, the solution in the whole domain is known. Therefore, the complete solution becomes:

u(x, t) = u(x −a(t − ts), ts), (2.11)

where ts is the time at which the solution is known. Because the linear advection equation simply
transports a shape without deformation, it serves as a good measure of a scheme’s shape preserving
capability.

2.4. Burgers’ equation
Another interesting equation is found by defining the characteristic velocity at a certain location as the
solution value at that point, or λ(u) = u. This equation known as Burgers’ equation and can be written
in advection/characteristic form and non-conservative form:

ut +uux = 0 (advection/characteristic form), (2.12)

ut +
(

u2

2

)
x
= 0 (conservative form). (2.13)

Mathematically, these equations differ only by the fact that the advection form is more constraining;

cases (e.g. u = |x|) exist for which
(

u2

2

)
x

is continuous but ux is not. Comparing (2.13) to (2.3), the

conserved variable is u itself, and the flux expression equals u2

2 .

Because the characteristic velocity is equal to u, and the quantity that is constant along these char-
acteristics is also u, the characteristics are represented by straight lines in (x, t)-space. However, as the
characteristic velocity is no longer constant, characteristics may converge and diverge. The flux function
is convex, implying that the characteristic velocity increases as u increases. Therefore, regions for which
ux < 0 and thus λx < 0 correspond to converging characteristics, and regions where ux > 0 correspond
to diverging characteristics, see respectively Figures 2.3 and 2.4.

6 2. Background: Conservation laws

x

t

Figure 2.3: Characteristics converging in time as a result of a negative dλ
dx .

x

t

Figure 2.4: Characteristics diverging in time as a result of a positive dλ
dx .

2.4.1. Converging characteristics
For Burgers’ equation, converging characteristics result in shape compression, also known as wave
steepening, see Figure 2.5.

x

u

x

u

x

u

x

t

t0
x

t

t1

x

t

t2

Figure 2.5: A visualization of the steepening process caused by converging characteristics.

As can be seen in this figure, at some point, converging characteristics will intersect. From there on
the solution can be traced back to two distinct origins, yielding multivalued points and thus for many
cases an unphysical solution. It is also at this point, that ∂u

∂x reaches negative infinity. Due to the use
of the divergence theorem in the derivation of the conservation law, Burgers’ equation is only valid in
regions where the flux expression is differentiable. So, to find the complete solution in the presence of
discontinuities, an alternative formulation is required to relate the states on both sides of such discon-
tinuities. To derive this expression, observe the case of a moving discontinuity with constant states on
either side, see Figure 2.6.

2.4. Burgers’ equation 7

u = uL

u = uR

discontinuity

Ω

x0 x1

t0

t1

Figure 2.6: The bounding box used to derive the jump condition.

A rectangular bounding box can be formed using two points on the discontinuity path as opposing
vertices. Since the integral form of the conservation law is still valid in the presence of discontinuities, it
can be applied to the domain created by the projection of the bounding box as follows:

∫
Ω

u(ξ, t1)−u(ξ, t0) dV =−
∫ t1

t0

∮
∂Ω

f (u) ·n dSdt , (2.14a)∫ x1

x0

u(x, t1)−u(x, t0) dx =−
∫ t1

t0

[
f (u(x, t))

]x1
x0

dt , (2.14b)

uL (x1 −x0)−uR (x1 −x0) =−
∫ t1

t0

f (uR)− f (uL) dt , (2.14c)

(uL −uR) (x1 −x0) =−(
f (uR)− f (uL)

)
(t1 − t0) , (2.14d)

x1 −x0

t1 − t0
= f (uL)− f (uR)

uL −uR
, (2.14e)

lim
(t1−t0)→0+

x1 −x0

t1 − t0
= dx

dt
= vd = f (uL)− f (uR)

uL −uR
. (2.14f)

This final sought-after expression is known as the jump condition as it relates the states on both sides
of a discontinuity through the velocity of the discontinuity. Substitution of the flux function for Burgers’
equation into (2.14f) leads to the following expression for the discontinuity speed:

vd = f (uL)− f (uR)

uL −uR

= u2
L −u2

R

2(uL −uR)

= (uL +uR)(uL −uR)

2(uL −uR)

= uL +uR

2
.

(2.15)

So, for Burgers’ equation, the velocity of the discontinuity is simply the arithmetic average of the sur-
rounding characteristic speeds. For the case of two distinct constant states, the complete characteristic
pattern thus looks as shown in Figure 2.7.

8 2. Background: Conservation laws

x

t

Figure 2.7: The characteristic pattern including the shock path on which the characteristics terminate.

2.4.2. Diverging characteristics
For diverging characteristics, the opposite takes place. The solution is expanded, smoothing the gradi-
ents as time progresses. An example of this process is shown in Figure 2.8.

x

u

x

u

x

u

x

t

t0
x

t

t1

x

t

t2

Figure 2.8: A figure showing shape manipulation due to expanding characteristics.

When the initial solution is smooth, for purely diverging characteristics, the solution throughout the
domain can easily be found by tracing the characteristics. Analogous to the discussion on converging
characteristics, an interesting case to look at is two distinct constant states, separated by a discontinuity.
In this case, the characteristic speed has to increase with increasing x, implying that uR > uL . Observe
that (2.14f) is still valid, and is a symmetric expression in the sense that interchanging uL and uR does
not alter the resulting discontinuity speed. When applying this equation to an expansion, the character-
istic pattern shown in Figure 2.9b is found. This solution is often referred to as an expansion shock, and
is a valid solution of the inviscid Burgers’ equation. For the viscous Burgers’ equation with vanishing
viscosity, the pattern shown in Figure 2.9c is found instead. Since truly inviscid processes are merely
theoretical, we will find the latter solution to be more useful than the expansion shock when modelling
real physics. We should however be aware of this extra solution branch when doing numerics, as conver-
gence to the wrong branch can cause significant deviations from the true flow structure. Since Burgers’
equation allows the formation of discontinuities and has an exact analytic solution, it is an ideal tool to
observe how well a scheme handles nonlinear effects.

2.5. Euler equations
The motion and state of fluids is completely described by the Navier-Stokes equations, which are a
mathematical translation of three physical principles: the conservation of mass, momentum and en-
ergy. While these equations are powerful, they are highly nonlinear and difficult to solve. Simplifications

2.5. Euler equations 9

x

t

?

(a)

x

t

(b)

x

t

(c)

Figure 2.9: Characteristic patterns in the presence of a centered expansion. (b) A possible characteristic pattern of the inviscid
Burgers’ equation. (c) The characteristic pattern found for the viscous Burgers’ equation with vanishing viscosity.

of the Navier-Stokes equations often allow identification of the large-scale flow structure, or modelling
of flows with improved efficiency and no significant accuracy loss. One of these simplifications is the
omission of viscous and gravitational terms, which results in the Euler equations. The integral formula-
tion of the Euler equations is as follows:

∂

∂t

∫
Ω
ρ dV +

∫
∂Ω
ρv ···n dS = 0, (2.16a)

∂

∂t

∫
Ω
ρv dV +

∫
∂Ω

(
ρv ⊗⊗⊗v

)
n dS+

∫
∂Ω

pn dS = 0, (2.16b)

∂

∂t

∫
Ω
ρE dV +

∫
∂Ω
ρE v ···n dS+

∫
∂Ω

pv ···n dS = 0. (2.16c)

In these equations, ρ is the mass density, v is the velocity vector and p is the pressure. Also, the
energy E comprises both the internal and kinetic energy:

E = e + v ···v

2
. (2.17)

By applying the integral equations to an infinitesimal volume, the differential formulation of the
Euler equations can be found:

∂ρ

∂t
+∇· (ρv

)= 0, (2.18a)

∂ρv

∂t
+∇· (ρv ⊗⊗⊗v

)+∇p = 0, (2.18b)

∂ρE

∂t
+∇· (ρE v

)+∇· (pv
)= 0. (2.18c)

In one dimension, these reduce to:

∂ρ

∂t
+ ∂ρu

∂x
= 0, (2.19a)

∂ρu

∂t
+ ∂ρu2 +p

∂x
= 0, (2.19b)

∂ρE

∂t
+ ∂ρEu +pu

∂x
= 0. (2.19c)

This system of equations can be rewritten to vector format:

qt + f (q)x = 0, (2.20)

where

10 2. Background: Conservation laws

q =
 ρ

ρu
ρE

 f (q) =
 ρu
ρu2 +p
ρEu +pu

 . (2.21)

The three equations (2.19a-2.19c) contain four independent variables; density, velocity, energy and
pressure. This makes it an underdetermined system. To close the system, an expression of state is re-
quired. Limiting to calorically perfect gasses, the ideal gas law can be used:

p = ρ(γ−1)e

= ρ(γ−1)

(
E − u2

2

)
.

(2.22)

2.5.1. Invariants
Since (2.20) is in the same form as (2.3), the same approach can be used to determine the characteristic

patterns. To do this, the first step is to find the Jacobian J = d f
dq . Reformulate q and f (q) as:

q =
q1

q2

q3

 , f (q) =


q2

(γ−1)q3 + (3−γ)
q2

2
2q1

γ
q2q3

q1
+ 1−γ

2
q3

2

q2
1

 . (2.23)

The Jacobian then equals:

d f

dq
=


0 1 0

γ−3
2

(
q2
q1

)2
(3−γ) q2

q1
γ−1

−γ q2q3

q2
1

+ (γ−1)
(

q2
q1

)3
γ

q3
q1

+3 1−γ
2

(
q2
q1

)2
γ

q2
q1

 . (2.24)

The eigenvalues of this matrix areλ1 = q2
q1

,λ2 = q2
q1
+

√
γ(γ−1)

(
q3
q1

− 1
2

(
q2
q1

)2
)

andλ3 = q2
q1
−

√
γ(γ−1)

(
q3
q1

− 1
2

(
q2
q1

)2
)
.

Expressed in non-conserved variables, the eigenvalues correspond to λ1 = u, λ2 = u +a and λ3 = u −a,
where u is the flow velocity and a the speed of sound. The extrema of these eigenvalues define the
boundaries of the domains of dependence and influence.

2.5.2. Jump conditions
Similar to what was done for Burgers’ equation, for each equation in (2.20) a jump condition can be
found by applying (2.14f).

vd = f (uL)− f (uR)

uL −uR
, (2.25a)

vd (uL −uR) = f (uL)− f (uR), (2.25b)

vd

 ρL −ρR

ρLuL −ρR uR

ρLEL −ρR ER

=
 ρLuL −ρR uR

ρLu2
L +pL −ρR u2

R −pR

ρLELuL +pLuL −ρR ER uR −pR uR

 . (2.25c)

In case of a steady shock, vd vanishes and we arrive at the Rankine-Hugoniot relations for a steady
normal shock:

ρLuL = ρR uR , (2.26a)

ρLu2
L +pL = ρR u2

R +pR , (2.26b)

ρLELuL +pLuL = ρR ER uR +pR uR . (2.26c)

3
Literature study

Due to the scientific and commercial importance of accurately solving the Euler equations, a lot of re-
search has been performed on the subject. A consequence of the combination of nonlinear behavior
and absence of viscosity in the Euler equations is that it allows solutions to become discontinuous. Be-
cause the large majority of numeric schemes approximate the true solution by discretization on a finite
grid, such discontinuities pose a challenge as they cannot be represented exactly on these grids. In gen-
eral, first order methods show monotonic behavior, so these at least result in a consistent representation
of a discontinuity, be it smeared over multiple cells. The downside of first order methods is that their in-
herent high dissipativity is reflected by their poor shape-preserving capabilities. On the other hand,
higher order methods are less dissipative, but not monotonicity preserving unless additional measures
are taken. This results in (sometimes unstable) oscillatory behavior near discontinuities or other non-
smooth regions in the solution, known as Gibb’s phenomenon. These oscillations spread throughout
the domain, thereby polluting the solution. Over the past few decades, a lot of effort has been put into
research aiming to find new numeric methods that would provide decent accuracy for a broad range of
flow conditions. During this research, several problems proven difficult to solve have been discovered,
which therefore often serve as validation cases for new methods. There is a general consensus that local
control of the dissipation rate is key in the success of the used method [16, 22, 26, 32]. Thus, the majority
of methods can be categorized by their type of approach in accomplishing this dissipation control. Four
main types will be discussed in this chapter: Hybrid methods (Section 3.1), flux limiters (Section 3.2),
direct manipulation of the dissipation rate (Section 3.3) and finally mesh adaption methods (Section
3.4).

3.1. Hybrid methods
The idea of hybrid methods originates from the observation that monotonicity preserving first order
methods are fairly capable at resolving discontinuities, in general spreading them over a few grid cells,
where higher order methods perform better in smooth regions. Higher order methods are less dissi-
pative and are thus better at preserving (smooth) shapes, but show oscillatory behavior near discon-
tinuities. Hybrid solvers tackle this problem by incorporating two or more schemes, locally switching
between these schemes to only increase dissipation in regions where it is required. Of course, the two
important aspects of a hybrid method are the scheme selection and the switching function, which de-
termines the scheme that is to be used. In short, a switching function attempts to value a scheme’s
performance using the local solution state, after which the scheme that is expected to yield the best
result is selected to advance the solution. The switching function can be discontinuous, meaning that
for each computational element exactly one scheme is selected. In other cases, a blend of schemes is
used to smoothen the transitions between regions of different schemes, for example by using a weighted
average.

A disadvantage of hybrid schemes is that the combination of individual schemes makes them hard
to analyze and validate. For complex flow interactions, it is difficult to predict in which regions switch-
ing functions will be active and how they affect the flow structure. Also, the switching functions are
often found empirically and involves tunable parameters. However, as Quirk states in [22], this is pre-

11

12 3. Literature study

ferred over the addition of artificial dissipation as it is easier to determine where dissipation should be
increased opposed to how much dissipation is required. Several examples of hybrid schemes are con-
cisely described in Sections 3.1.1-3.1.4.

3.1.1. Adaptive Riemann solver
A classic example of a hybrid scheme is J.J. Quirk’s adaptive Riemann solver [22]. He primarily used
Roe’s approximate Riemann solver, switching to the more dissipative HLLE scheme in regions where
Roe’s scheme is known to experience difficulties. One of the failings that occurs when using Roe’s ap-
proximate Riemann solver is known as the carbuncle phenomenon. This phenomenon, see Figure 3.1a,
occurs when simulating a hypersonic flow over a blunt object. The solution converges to a state where
a bulge arises on top of the bow shock near the center line. Although it being a valid solution of the
Euler equations, this particular behavior is not reflected by experiments. Figure 3.1b shows how Quirk’s
hybrid method successfully avoids the carbuncle phenomenon when solving a hypersonic blunt body
flow.

(a) (b) (c)

Figure 3.1: A figure showing the impact of locally replacing Roe’s approximate Riemann solver by the HLLE scheme. Taken from
[22]. (a) Solution using only Roe’s scheme. Carbuncle is clearly visible. (b) Solution using hybrid scheme. No carbuncle can be

observed. (c) Visual representation of region where the switching function is active.

3.1.2. HLLCM scheme
A more recent example of a hybrid scheme is proposed by Shen [33]. He introduces a modification to the
HLLC scheme, naming it HLLCM. He finds that the HLLCM performs well in terms of numerical stability,
but is unable to preserve steady shear waves. Since the original HLLC method has no problem resolving
these shear waves, he proposes a linear switching function based on the detection of the presence of a
shear wave, producing accurate results.

3.1.3. Rotated-hybrid Riemann solver
A promising class of hybrid approaches comprises the so-called rotated-hybrid Riemann solvers, first
proposed by H. Nishikawa and K. Kitamura in 2008 [11]. In two dimensional simulations, instead of
solving the one-dimensional Euler equations normal to a cell interface, the solver of Nishikawa and
Kitamura solves the two-dimensional Euler equations, applying a different solver to directions normal
and parallel to a cell interface. A more dissipative solver is used in the normal direction to suppress
the development of carbuncle-like phenomena, while accurately resolving the shear layer by applying
a less dissipative solver in the parallel direction. The Rotated-RHLL solver combines the Roe and HLLE

3.2. Flux limiters 13

flux formulations, yielding very accurate solutions. Similar to the HLLC-HLLCM method, this solver is
able to capture shear waves, which causes it to be able to accurately resolve boundary layers as well. An
advantage of rotated-hybrid solvers over regular hybrid methods is that it avoids the implementation of
a switching function and the inevitable empirical tuning of such a function.

3.1.4. (W)ENO schemes
The Essentially Non-Oscillatory (ENO) schemes is a class of schemes introduced by Harten, Engquist,
Osher and Chakravarthy [6] in 1987. ENO schemes make use of an adaptive stencil to allow higher or-
der interpolation methods without violating the requirement of diminishing total variation. The idea
is to construct a collection of different stencils with the same order of accuracy in smooth regions, of
which one is chosen to advance the solution with, based on the local smoothness of the solution. This
avoids Gibb’s phenomenon near discontinuities without having to resort to first order methods, like
many other schemes do. The ENO approach can be seen as a hybrid method, as it involves multiple nu-
merical methods and a switching function. A significant improvement in terms of accuracy and compu-
tational efficiency of the ENO schemes has been made by the introduction of the Weighted Essentially
Non-Oscillatory (WENO) schemes [31]. Instead of selecting one stencil on which the interpolation is
performed, the interpolations of all considered stencils are combined by weighted averaging, where the
weights are based on local solution smoothness. This approach results in more gradual transitions and
increases the order of accuracy by one.

3.2. Flux limiters
As stated in the introduction of this chapter, linear methods of an order higher than one suffer from spu-
rious oscillatory behavior near discontinuities and sharp changes in the solution. Forcing the solution
to be monotone is a way to remove these oscillations. Godunov’s theorem states that such monotonicity
preserving linear schemes can be of at most order one. Although the monotonicity property is highly
desirable as the solution will not display spurious behavior, first order accuracy heavily smears the so-
lution due to the high dissipation rate. There was thus a need to venture into the domain of nonlinear
methods in order to find monotonicity preserving schemes of order higher than one. A quantity that
indicates whether a scheme is able to introduce spurious wiggles is the solution’s total variation (TV),
defined by Harten in 1983 [8]. In continuous and discrete form, this quantity is defined as:

T V =
∫ ∣∣∣∣∂u

∂x

∣∣∣∣dx (Continuous), (3.1a)

=∑
i
|ui+1 −ui | (Discrete). (3.1b)

A scheme is said to be total variation diminishing (TVD) if the total variation is monotonically de-
creasing for increasing time

(
T V n+1 < T V n

)
. An important observation made by Harten was that TVD

schemes are monotonicity preserving. This means that if higher order linear schemes could be modified
in order to become TVD, spurious wiggles could be avoided while simultaneously maintaining a high or-
der of accuracy. This is exactly what flux limiters aim to do. Flux limiters define the flux term in finite
volume formulations as a weighted combination of flux terms of a low order monotonicity preserving
scheme and a higher order scheme. The total flux then becomes:

F = FL +φ(r) (FH −FL) , (3.2)

where the subscripts L and H represent low and high order scheme flux terms, respectively. Also,
r is a smoothness indicator, commonly defined as the ratio between two subsequent spatial undivided
differences,

r = ui+1 −ui

ui −ui−1
, (3.3)

where r is forced to be ≥ 0. A function φ(r) defines how to balance the low and high order flux terms
based on the smoothness parameter r . In order for the method to be stable and TVD, φ(r) is limited by
the following restrictions:

14 3. Literature study

• φ(r) ≥ 0,

• φ(1) = 1,

• φ(r) lies completely in the TVD region of the high order scheme.

Van Leer [29] implemented a flux limiter by setting bounds to the solution slopes such that they
would not create new local extrema. This approach effectively forces the solution to stay monotone.
Many limiter functions φ(r) have been created over the past few decades with varying levels of success.
Flux limiting has been adopted in schemes made by among others Roe [23], Chakravarthy and Osher
[19] and Harten [8]. The disadvantage of flux limiters is that they tend to wrongly activate at extrema in
smooth regions of the solution, introducing an inordinate amount of dissipation at these locations and
quickly flattening smooth peaks. Examples of this flattening effect are shown in Figure 3.2 for several
limiter functions.

Figure 3.2: Flattening of smooth extrema due to the usage of flux limiters. Taken from [13].

3.3. Direct dissipation manipulation
An obvious way to control dissipation rate is to use a method that allows direct control on numerical
dissipation through some adjustable parameter. An example of such a method can be found within the
class of Conservation Element Solution Element (CESE) schemes. The original formulation of a CESE
scheme designed by Chang [7] is the a −µ scheme. This scheme uses a mesh staggered in both space
and time, marching two variables u and ux independently. The scheme is symmetric in space and time,
causing it to have no numerical dissipation and be reversible. Chang recognized that such a method
cannot be used reliably for the inviscid Euler equations due to the presence of non-reversible phenom-
ena such as shock waves. For this reason, he altered the original a−µ scheme to the a−ε scheme, which
incorporates a controllable amount of numerical dissipation proportional to the adjustable parameter
0 ≤ ε ≤ 1, where ε = 0 corresponds to no dissipation and ε = 1 indicates a high dissipation rate. Al-
though flexible, this method requires the user to define both where and how much dissipation should be
applied, which is found on a trial and error basis.

3.4. Mesh adaption
The leading term of the truncation error for a numerical method is of the form O (∆xn), where ∆x des-
ignates mesh spacing and n the order of the method. Thus, besides increasing the order, decreasing
the mesh spacing also results in reduced numerical dissipation. However, decreasing the mesh spacing
globally may drastically increase computational effort. In order to ensure stability by satisfying the CFL
condition, smaller mesh spacing consequences in smaller time steps. Thus, halving the mesh spacing
means that the amount of calculations multiply by a factor of 2N+1, where N is the number of spatial di-
mensions. Because of this exponential growth of computational effort, a research field exists that focuses
on nonuniform mesh adaption, often referred to as adaptive mesh refinement (AMR). It is an active re-
search area that aims at handling the temporally and spatially varying solution resolution requirement
that is present in many numerical problems. Many of such problems vary in complexity throughout the
computational domain, and some regions within this domain thus are of a higher information density

3.4. Mesh adaption 15

than others. In these cases, the use of a uniform grid is a compromise between an unnecessary waste
of resources in smooth regions when using a fine grid, or a deteriorated solution accuracy in complex
regions in case of a coarse grid. A locally refined grid allows the discrete domain to mimic variations
in resolution that occur in the continuous domain. A refined static mesh provides a good approach
for increased local resolution while avoiding the bookkeeping and increased computational load of an
adaptive method, but requires a priori information on the converged solution structure and is for this
reason often unfeasible for time-dependent problems. A logical train of thought is then to somehow let
the solution method vary such that it can adapt to the local environment. Besides computational fluid
dynamics, mesh adaption is frequently used in astrophysical simulations [2, 12, 20], which are often tied
to extreme variability of time and/or length scales.

3.4.1. Types of adaption methods
In general, methods of adapting solution resolution can be categorized in the following three approaches:

• p-refinement Does not alter grid geometry, but controls accuracy by varying the order of the
solution method;

• r-refinement Involves moving and/or stretching of the grid, see Figure 3.3;

• h-refinement Alters grid resolution without distortion by introducing or removing grid points
hierarchically, see Figure 3.4.

Figure 3.3: An example of r-refinement on a shock wave interaction problem. Taken from [17].

Figure 3.4: An example of h-refinement. Taken from [9].

Although p-refinement techniques have proven accurate in smooth fluid problems, they are gener-
ally less successful when applied in the presence of discontinuities [1]. Higher order methods applied

16 3. Literature study

to high-frequency phenomena tend to stimulate nonphysical oscillations and overshoots through the
Gibbs phenomenon.

A disadvantage of r-refinement is that the amount of grid points is constant, and thus requires a
prediction on how the complexity of the solution will evolve over time to guarantee a good enough so-
lution accuracy during the complete simulation [4]. The formation of a shock wave is an example where
a smooth solution transitions to a more complex structure and, depending on the implementation, this
may cause a pileup of grid points at the shock location and near-vacuum grid densities elsewhere, re-
sulting in a highly deformed grid. The method of h-refinement is in this sense more flexible and less cou-
pled in that alterations of the grid structure in some region do not affect the remainder of the domain,
which is one of the reasons for its popularity in fluid problems [5, 25, 30]. Since shock development
and propagation problems are of interest in this thesis, h-refinement is the most suitable approach for
controlling the local solution resolution and is therefore focused on here. The method of h-refinement
can be further categorized in patch based and cell-based methods, see Figure 3.5.

In cell-based refinement, flagged cells are recursively refined individually. On the other hand, patch-
based methods first create clusters of flagged cells and enclose each cluster by a rectangular patch in
which all cells are refined. This method allows for easier parallelization and can thus be better opti-
mized compared to cell-based methods. A disadvantage is that the code has to incorporate additional
algorithms for the clustering step.

3.4.2. Adaption criteria
Besides the bookkeeping that is often the source of headaches in h-refinement code design, another
hard part is the decision making that is involved in the adaption step. In literature, often the concept
of equal distribution of error is used to decide where to coarsen or refine the mesh [1, 3, 21]. Of course,
the exact solution has to be known in order to determine the error exactly, so a method to estimate
the error is required. One such method is Richardson extrapolation, where an approximation of the
first truncation error term of the numerical method is retrieved by applying the numerical scheme to
overlapping meshes with different levels of uniform refinement. Thus, this error estimator is ideal for
patch-based codes, but less intuitive to implement in cell-based codes. Another error indicator that is
more applicable to individual cells is referred to as feature detection, and is used in other research fields
such as image and signal processing as well. Feature detection aims at identifying relatively complex
regions in data, often through analysis of first or higher order derivatives of variables of interest [1, 10].
Feature detection is also an important aspect of hybrid methods, commonly used as switching function.

3.4. Mesh adaption 17

(a)

(b)

(c)

Figure 3.5: Three types of h-refinement, taken from [28]. (a) Patch-based refinement. (b) Cell-based refinement. (c) Hybrid
tree-patch refinement.

4
Active Flux

A relatively new class of numerical approaches for solving hyperbolic conservation laws are Active Flux
schemes. The term Active Flux was introduced in 2011 in a conference paper by Eymann and Roe [24].
The core concept of these schemes is an implementation of van Leer’s train of thought of increasing a
scheme’s order of accuracy by introducing additional degrees of freedom intra-cell rather than extra-
cell. This prevents extending the computational stencil beyond the physical domain of influence. In
an Active Flux method, this is accomplished through modification of a finite volume method by adding
an extra variable on the interfaces separating the computational cells. This creates a method where
interface values and cell average values are updated differently. Updating the cell average values in
a conservative way leaves the cell interface values to be updated through a method that need not be
conservative. This is the same as a regular finite volume method, where now the flux function is to be
expressed in terms of cell interface values and cell average values explicitly. With ui+ 1

2
representing the

interface value at xi+ 1
2

, and ui the average integral value at xi , the finite volume update method equals:

un+1
i = un

i − 1

∆x

∫ tn+1

tn

fi+ 1
2

(t)− fi− 1
2

(t)dt , (4.1)

where the flux f is thus a function of u and u. What remains is defining f (t), and choosing a method
to update the interface values in time. Using e.g. an exact Riemann solver with u on both sides of the
interfaces as input states, one arrives at a form of Godunov’s first order method.

4.1. Eymann and Roe’s implementation
Eymann and Roe use the properties of characteristics to find the interface values at the next time level.
The advantage of this is that this method inherently preserves directionality in the flow, thereby adhering
to physical constraints. Assume a scalar conservation law in one spatial dimension, see (2.10). We have

seen that u is the characteristic variable that is advected with velocity ∂ f (u)
∂u . Thus, if the characteristic

pattern is known, it is possible to determine the solution values on the cell interfaces at an elevated time
level by tracing along the characteristics to a time level at which the solution is known, see Figure 4.1.

∂u

∂t
+ ∂ f (u)

∂x
= 0. (2.10)

19

20 4. Active Flux

x

t

i −
1

2
i +

1

2
ξn+1

0

n

n + 1

Figure 4.1: Visualization of how character tracing is used to find interface values at an elevated time level.

As can be seen in this figure, the interface value ui+1/2 at time level n+1 is equal to the solution value
u

(
ξn+1

0

)
at time level n. Because the solution is only known at discrete points, a local interpolation of

the solution on each cell’s interior domain is required to estimate the value of u(ξ0). To keep the stencil
compact, only the information available within each cell is used to construct the interpolation. For k
knowns, a sum of k weighted basis functions can be used as interpolation:

u (ξ) =
∑
k

ckφk (ξ) , (4.2)

where ξ= x−xi−1/2
∆x is a local scaling parameter such that ξ= 0 and ξ= 1 match the left and right cell

interface respectively. In this case, one average cell integral value u and two interface values u are known
for each cell, so k ranges from 1 to 3. Eymann and Roe use second order polynomials as basis functions,
meaning that the interpolation u(ξ) also takes the form of a second order polynomial:

u(ξ) =αξ2 +βξ+γ. (4.3)

The coefficients α, β, and γ are determined by the following constraints:

• u(0) = ui− 1
2

(left interface),

• u(1) = ui+ 1
2

(right interface),

• 1
∆x

∫ ∆x
0 u(x)dx = ∫ 1

0 u(ξ)dξ= ui .

This results in the following system:0 0 1
1 1 1
1
3

1
2 1

αβ
γ

=

ui− 1
2

ui+ 1
2

ui

 , (4.4)

the solution of which provides the values of α, β and γ:

αβ
γ

=

 3ui− 1
2
−6ui +3ui+ 1

2

−4ui− 1
2
+6ui −2ui+ 1

2

ui− 1
2

 . (4.5)

Substitution into (4.3) yields:

u(ξ) =αξ2 +βξ+γ (4.6a)

=
(
3ui− 1

2
−6ui +3ui+ 1

2

)
ξ2 +

(
−4ui− 1

2
+6ui −2ui+ 1

2

)
ξ+ui− 1

2
(4.6b)

= (
3ξ2 −4ξ+1

)
ui− 1

2
+ (−6ξ2 +6ξ

)
ui +

(
3ξ2 −2ξ

)
ui+ 1

2
. (4.6c)

This final expression contains three quadratic equations that give a more intuitive view on the con-
struction of the interpolation. Visualized in Figure 4.2, their properties are as follows:

4.1. Eymann and Roe’s implementation 21

φ (ξ) φ(0)
∫ 1

0 φ (ξ)dξ φ(1)
3ξ2 −4ξ+1 1 0 0
−6ξ2 +6ξ 0 1 0
3ξ2 −2ξ 0 0 1

ξ
0 1

-1/3

0

1

3/2

3ξ2 − 4ξ + 1

−6ξ2 + 6ξ

3ξ2 − 2ξ

Figure 4.2: The three polynomial basis functions used to reconstruct the solution.

The final step requires a method to find the characteristic origin ξ0 given the characteristic pattern.

Although the direction of the characteristics completely depends on ∂ f
∂u , we know that the characteristics

are straight as u is constant along dx
dt = f (u), and thus dx

dt is constant. It then becomes trivial to select
the cell from which the characteristic originates and the goal of finding its origin is simplified to solving
the following implicit problem:

ξ0 =


1− ∂ f

∂u

∣∣∣
ξ0

∆t
∆x if ∂ f

∂u

∣∣∣
ξ0

> 0 (cell left of interface)
∂ f
∂u

∣∣∣
ξ0

∆t
∆x if ∂ f

∂u

∣∣∣
ξ0

< 0 (cell right of interface)

0 if ∂ f
∂u

∣∣∣
ξ0

= 0.

(4.7)

The expression for the flux integral is now known as well:

Fi+ 1
2
=

∫ t n+1

t n
fi+ 1

2
(t)dt (4.8a)

=
∫ t n+1

t n
fi+ 1

2

(
ui+ 1

2
(t)

)
dt (4.8b)

=
∫ t n+1

t n
fi+ 1

2

(
un (ξ0 (t))

)
dt . (4.8c)

Because the flux is derived from u, whose approximation is quadratic and thus second order accu-
rate, a second order approximation of the integral in (4.8c) is sufficient; higher orders will not increase
accuracy. Eymann suggests to use Simpson’s rule, for which an additional flux value at intermediate time

level t n+ 1
2 is required, meaning that a second characteristic origin has to be found. The total amount of

u that has crossed the interface between time levels t n and t n+1, F , is then evaluated by:

Fi+ 1
2
= ∆t

6

(
f n

i+ 1
2
+4 f

n+ 1
2

i+ 1
2

+ f n+1
i+ 1

2

)
. (4.9)

Adopting the notation ξn
0 as the characteristic origin of the characteristic that intersects the interface

22 4. Active Flux

at time level n, as already used in Figure 4.1, the flux terms become:

f n
i+ 1

2
= fi+ 1

2

(
un (

ξ0
0

))= fi+ 1
2

(
un

i+ 1
2

)
, (4.10a)

f
n+ 1

2

i+ 1
2

= fi+ 1
2

(
un

(
ξ

n+ 1
2

0

))
, (4.10b)

f n+1
i+ 1

2
= fi+ 1

2

(
un (

ξn+1
0

))
. (4.10c)

4.1.1. Linear advection
For the linear advection equation, ∂ f

∂u is constant throughout the whole domain, which means that (4.7)

becomes explicit and the characteristic origin is easily found by substituting ∂ f
∂u = a. Assuming a > 0:

ξn+1
0 = 1− a∆t

∆x
. (4.11)

Or, in terms of the Courant number, denoted by ν:

ξn+1
0 = 1−ν. (4.12)

Using symmetry, inserting this into (4.6c) results in the following expression for u at the characteris-
tic origin:

un (
ξn+1

0

)= (
3ν2 −2ν

)
un

i− 1
2
+ (−6ν2 +6ν

)
un

i + (
3ν2 −4ν+1

)
un

i+ 1
2

. (4.13)

This equation is also used to update the interface values to the next time level. In the previous sec-
tion we have seen that the characteristic origin halfway the time step is required to find a second order
accurate representation of the integral flux F . Replacing ∆t by ∆t

2 in (4.11) yields:

ξ
n+ 1

2
0 = 1− a∆t

2∆x

= 1− ν

2
.

(4.14)

And thus:

un
(
ξ

n+ 1
2

0

)
=

(
3

4
ν2 −ν

)
un

i− 1
2
+

(
−3

2
ν2 +3ν

)
un

i +
(

3

4
ν2 −2ν+1

)
un

i+ 1
2

. (4.15)

Since for the linear advection equation the flux function is f = au, the integral flux value is found by
substituting (4.13) and (4.15) into (4.9):

Fi+ 1
2
= ∆t

6

(
f n

i+ 1
2
+4 f

n+ 1
2

i+ 1
2

+ f n+1
i+ 1

2

)
= a∆t

6

(
un

i+ 1
2
+4u

n+ 1
2

i+ 1
2

+un+1
i+ 1

2

)
= a∆t

6

(
un

i+ 1
2
+4un

(
ξ

n+ 1
2

0

)
+un (

ξn+1
0

))
= a∆t

((
ν2 −ν)

un
i− 1

2
+ (−2ν2 +3ν

)
un

i + (
ν2 −2ν+1

)
un

i+ 1
2

)
.

(4.16)

After calculating the integral flux values at each cell interface, the average integral cell values can be
updated through:

un+1
i = un

i − 1

∆x

(
Fi+ 1

2
−Fi− 1

2

)
= un

i − (−2ν3 +3ν2)(un
i −un

i−1

)+ (ν−1)ν

(
νun

i− 3
2
+ (1−ν)un

i+ 1
2
−un

i− 1
2

)
.

(4.17)

4.1. Eymann and Roe’s implementation 23

4.1.2. Analysis
Although the Active Flux method essentially doubles the degrees of freedom by introducing an addi-
tional variable, this form where point updates are isolated from integral updates makes it trivial to ad-
here to conservation laws. However, due to this compound formulation of the scheme, standard analysis
techniques cannot be applied directly. Therefore, the scheme is rewritten to a single multistep form that
can be applied to a standard uniform grid. This reformulation is derived in Appendix A, where the grid
point update expression is found to be:

un+1
i =2ν

(−1+3ν−ν2)un
i−1

+2(1−ν)
(
1−ν−ν2)un

i

−ν4un−1
i−2

+2ν(1−ν)(1+ν−ν2)un−1
i−1

− (1−ν)4 un−1
i .

(4.18)

This form shows that the scheme uses a stencil as shown in Figure 4.3, where each grid point value
is multiplied by a constant. The sum of these constants equals one, so the new value essentially is a
weighted average of the five grid point values. The constants are polynomial functions of the Courant
number, and it is not hard to see that for Courant numbers of 0 and 1, (4.18) reduces to a first order
upwind scheme along the characteristics, which is exact if the characteristic variable is constant.

Figure 4.3: Stencil used for Eymann’s Active Flux scheme.

The form presented in (4.18) lends itself to a von Neumann stability analysis which reveals some
of the error development characteristics. Since this is a multistep method, the amplification factor is
obtained in the form of a matrix of size N × N , where N is the amount of time levels over which the
used grid points are distributed, which in this case equals 2 (n and n−1). Stability then requires that the
magnitudes of all N eigenvalues retrieved from this matrix are ≤ 1. For (4.18), the amplification matrix
is as follows:

G =
[

2(1−ν)
(
1−ν−ν2

)+2ν
(−1+3ν−ν2

)
e−iφ 2ν(1−ν)(1+ν−ν2)e−iφ− (1−ν)4 −ν4e−2iφ

1 0

]
. (4.19)

The characteristic polynomial for this matrix reads:

−λ
(
2(1−ν)

(
1−ν−ν2)+2ν

(−1+3ν−ν2)e−iφ−λ
)

−2ν(1−ν)(1+ν−ν2)e−iφ+ (1−ν)4 +ν4e−2iφ = 0.
(4.20)

Solving for the two eigenvalues λ1,2 yields:

24 4. Active Flux

λ1 =− (e−iφ−1)ν3 +3e−iφν2 − (e−iφ+2)ν+1

+ (ν−1)ν
√

e−2iφ(ν2 −4ν+1)−2e−iφ(ν2 −ν−5)+ν2 +2ν−2 ,
(4.21)

λ2 =− (e−iφ−1)ν3 +3e−iφν2 − (e−iφ+2)ν+1

− (ν−1)ν
√

e−2iφ(ν2 −4ν+1)−2e−iφ(ν2 −ν−5)+ν2 +2ν−2 .
(4.22)

Both eigenvalues are visualized in Figure 4.4, from which can be derived that the method is stable
for Courant numbers up to one.

Re(λ)
-1 -0.5 0 0.5 1

Im(λ)

-1

-0.5

0

0.5

1

λ1

λ2

(a)

Re(λ)
-1 -0.5 0 0.5 1

Im(λ)

-1

-0.5

0

0.5

1

(b)

Re(λ)
-1 -0.5 0 0.5 1

Im(λ)

-1

-0.5

0

0.5

1

(c)

Re(λ)
-1 -0.5 0 0.5 1

Im(λ)

-1

-0.5

0

0.5

1

(d)

Re(λ)
-1 -0.5 0 0.5 1

Im(λ)

-1

-0.5

0

0.5

1

(e)

Figure 4.4: Eigenvalues for Courant numbers of 0.2 (a), 0.4 (b), 0.6 (c), 0.8 (d) and 1.0 (e).

4.2. Multistep scheme generation
As shown in the previous section, the interface update method of Eymann and Roe’s Active Flux scheme
can be expressed in the form of a weighted average. In general, a linear update method can be con-
structed by choosing which grid points to use and which weights to assign to these points. This is equiv-
alent to using finite differences to approximate derivatives to a certain degree of accuracy. One way to
distribute the weights is by minimizing the Taylor series expansion truncation error (TSETE). This con-
straint allows us to generate update methods of arbitrary order based solely on a selection of grid points.
On a uniform grid, a two dimensional Taylor series expansion can be used to relate the values of two
distinct grid nodes in time and space. If two nodes are separated by i spatial intervals and j temporal
intervals, as shown in Figure 4.5, the Taylor series expansion is equal to:

u
(
x + i∆x, t + j∆t

)= ∞∑
k=0

1

k !

(
i∆x

∂

∂x
+ j∆t

∂

∂t

)k

u(x, t). (4.23)

Figure 4.5: Auxiliary visualization on the relation between two nodes through Taylor series expansion.

Since a uniform grid is assumed here, we can shorten the notation by using indices when referring
to grid points. Suppose the unknown grid point value at the next time step is designated by un+1

m . The
Taylor expansion with respect to a node at

(
m + i ,n +1+ j

)
then equals:

un+1+ j
m+i =

∞∑
k=0

1

k !

(
i∆x

∂

∂x
+ j∆t

∂

∂t

)k

un+1
m . (4.24)

4.2. Multistep scheme generation 25

For the linear advection equation, we know that ∂u
∂t =−a ∂u

∂x , and this expression can thus be rewrit-
ten to:

un+1+ j
m+i =

∞∑
k=0

1

k !

(
i∆x −a j∆t

)k ∂
k un+1

m

∂xk
. (4.25)

A linear combination of the Taylor series expansions with respect to N nodes allows a value estima-
tion with a truncation error on the order of O

(
∆xN +∆t N

)
. This information can be used to generate

optimal (in a minimum truncation error sense) update methods, by solely specifying which nodes to
use. The general form of the update method is expressed as:

un+1
m =

∞∑
i=−∞

∞∑
j=−∞

c j
i un+ j

m+i , (4.26)

which, considering only explicit schemes, reduces to:

un+1
m ≈

∞∑
i=−∞

∞∑
j=0

c j
i un− j

m+i . (4.27)

The coefficients c j
i are found by solving the system

AT c =


1
0
...
0

 ,

where A contains the expansion coefficients:

A =


1 i1∆x −a j1∆t . . . (i1∆x−a j1∆t)N−1

(N−1)!

1 i2∆x −a j2∆t . . . (i2∆x−a j2∆t)N−1

(N−1)!
...

...
. . .

...

1 iN∆x −a jN∆t . . . (iN∆x−a jN∆t)N−1

(N−1)!

 .

When applying this procedure to the stencil shown in Figure 4.3, we end up with the following update
method, which will be referred to as MTSETE4:

un+1
i =−4ν

1−2ν

ν+1
un

i−1

−4
(2ν−1)(ν−1)

ν−2
un

i

−ν2 1−2ν

ν−2
un−1

i−2

+4ν (1−ν)un−1
i−1

+ (ν−1)2 (2ν−1)

ν+1
un−1

i .

(4.28)

This method is 4th order accurate. Unlike Eymann and Roe’s method, which is exact for Courant
numbers of 0 and 1, this method is also exact for a Courant number of 1

2 . Since its order of accuracy is
one higher, it has a lower dissipation rate and instead dispersive errors are expected to be more apparent,
see Figure 4.6a. Near discontinuities however, this method suffers from highly oscillatory behaviour,

26 4. Active Flux

x

0 0.2 0.4 0.6 0.8 1

u

-1

0

1 Exact

Eymann

MTSETE4

(a)

x

0 0.2 0.4 0.6 0.8 1

u

-1

0

1 Exact

Eymann

MTSETE4

(b)

Figure 4.6: Solutions of a smooth and discontinuous waveform on a 32 node grid and a Courant number of 0.8. (a) Solutions of a
sine wave after 20000 domain traversals. (b) Solutions of a square wave after 200 domain traversals.

while Eymann and Roe’s Active Flux method dampens out such oscillations over time, see Figure 4.6b. It
appears that an order of accuracy is exchanged for reduced spurious oscillatory behavior.

To determine the stability of this scheme, we can again set up an amplification matrix and find the
eigenvalues of this matrix. The amplification matrix equals:

G =
[
−4 (2ν−1)(ν−1)

ν−2 −4ν 1−2ν
ν+1 e−iφ 4ν (1−ν)e−iφ+ (ν−1)2(2ν−1)

ν+1 −ν2 1−2ν
ν−2 e−2iφ

1 0

]
, (4.29)

whose eigenvalues are:

λ1 =4ν3(e−iφ−1)+ν2(2−10e−iφ)+4ν(e−iφ+1)−2

(ν−2)(ν+1)

+ 3(ν−1)ν
√

2ν2(e−iφ−1)2 +ν(−5e−2iφ+4e−iφ+1)+2e−2iφ+8e−iφ−1

(ν−2)(ν+1)
,

(4.30)

λ2 =4ν3(e−iφ−1)+ν2(2−10e−iφ)+4ν(e−iφ+1)−2

(ν−2)(ν+1)

− 3(ν−1)ν
√

2ν2(e−iφ−1)2 +ν(−5e−2iφ+4e−iφ+1)+2e−2iφ+8e−iφ−1

(ν−2)(ν+1)
.

(4.31)

Plots of both eigenvalues, see Figure 4.7, shows that this method is stable up to ν= 1.

Re(λ)
-1 -0.5 0 0.5 1

Im(λ)

-1

-0.5

0

0.5

1

λ1

λ2

(a)

Re(λ)
-1 -0.5 0 0.5 1

Im(λ)

-1

-0.5

0

0.5

1

(b)

Re(λ)
-1 -0.5 0 0.5 1

Im(λ)

-1

-0.5

0

0.5

1

(c)

Re(λ)
-1 -0.5 0 0.5 1

Im(λ)

-1

-0.5

0

0.5

1

(d)

Re(λ)
-1 -0.5 0 0.5 1

Im(λ)

-1

-0.5

0

0.5

1

(e)

Figure 4.7: Eigenvalues for the fourth order minimum error scheme. Courant numbers of 0.2 (a), 0.4 (b), 0.6 (c), 0.8 (d) and 1.0 (e).

Using the TSETE as parameter to minimize, each unique stencil yields one scheme. Stability and
accuracy are however not guaranteed by this method, so not every stencil results in a useful scheme.

4.3. Third order multistep scheme
A stencil whose corresponding update method is of the same order as the Active Flux method by Eymann
and Roe is displayed in Figure 4.8. Although the order is the same, the stencil is more compact.

4.3. Third order multistep scheme 27

Figure 4.8: Stencil resulting in a third order accurate update method.

The update method for this stencil reads:

un+1
i =−2ν

1−2ν

ν+1
un

i−1

+2(1−2ν)un
i

+2νun−1
i−1

− (2ν−1)(ν−1)

ν+1
un−1

i .

(4.32)

The amplification matrix for this method equals:

G =
[−2ν 1−2ν

ν+1 e−iφ+2(1−2ν) 2νe−iφ− (2ν−1)(ν−1)
ν+1

1 0

]
, (4.33)

whose eigenvalues equal:

λ1 =(2ν−1)
ν

(
e−iφ−1

)−1

ν+1

+ ν
√

(2ν−1)2e−2iφ+2(−4ν+5)(ν+1)e−iφ+2(ν+1)(2ν−1)

ν+1
,

(4.34)

λ2 =(2ν−1)
ν

(
e−iφ−1

)−1

ν+1

− ν
√

(2ν−1)2e−2iφ+2(−4ν+5)(ν+1)e−iφ+2(ν+1)(2ν−1)

ν+1
.

(4.35)

In Figure 4.9 the eigenvalues are visualized, in which can be seen that this method is only stable up
to a Courant number of 0.5.

Re(λ)
-1 -0.5 0 0.5 1

Im(λ)

-1

-0.5

0

0.5

1

λ1

λ2

(a)

Re(λ)
-1 -0.5 0 0.5 1

Im(λ)

-1

-0.5

0

0.5

1

(b)

Re(λ)
-1 -0.5 0 0.5 1

Im(λ)

-1

-0.5

0

0.5

1

(c)

Re(λ)
-1 -0.5 0 0.5 1

Im(λ)

-1

-0.5

0

0.5

1

(d)

Re(λ)
-1 -0.5 0 0.5 1

Im(λ)

-1

-0.5

0

0.5

1

(e)

Figure 4.9: Eigenvalues for the third order minimum error scheme. Courant numbers of 0.1 (a), 0.2 (b), 0.3 (c), 0.4 (d) and 0.5 (e).

Similar to how (4.18) was derived in Appendix A, this process can be reversed to find the Active Flux
form of the above update method, see Appendix B. This results in the following:

28 4. Active Flux

un+1
i+ 1

2
= un

i+ 1
2
−2ν

un
i− 1

2

−3un
i +2un

i+ 1
2

ν+1
+ν

un
i− 1

2

−un
i+ 1

2

ν+1

 (Node update). (4.36)

un+1
i = un

i −ν
(
un+1

i+ 1
2
−un+1

i− 1
2

)
(Integral update). (4.37)

This method, from here on referred to as MTSETE3, being of the same order as Eymann’s Active Flux
method, shows similar characteristics. In order to compare the two methods in terms of accuracy, the
L2 error is used, which is calculated through:

L2 =
√∑N

i=1

(
ui −ui ,exact

)2

N
, (4.38)

in which N designates the amount of nodes. Figure 4.10a shows how the L2 errors of a simulation
of a sine wave vary with the Courant number. For lower Courant numbers, the methods behave almost
equally, as can be seen in Figure 4.10b. As the Courant number increases, the errors diverge in favor of
the MTSETE3 method. The lower dissipation rate and increased accuracy for higher Courant numbers
can be observed in Figure 4.10d. For a square wave, similar error patterns are obtained, as summarized
in Figure 4.11.

4.3. Third order multistep scheme 29

ν

0 0.2 0.4 0.6 0.8 1

L
2

0

0.05

0.1

0.15

0.2

Eymann

MTSETE3

(a)

x

0 0.2 0.4 0.6 0.8 1

u

-1

-0.5

0

0.5

1
Exact

Eymann

MTSETE3

(b)

x

0 0.2 0.4 0.6 0.8 1

u

-1

-0.5

0

0.5

1
Exact

Eymann

MTSETE3

(c)

x

0 0.2 0.4 0.6 0.8 1

u

-1

-0.5

0

0.5

1
Exact

Eymann

MTSETE3

(d)

Figure 4.10: Results of advecting a sine wave on a 20 node grid for 10000 time steps. (a) A plot showing the L2 error for varying
Courant number. The other figures show the actual solution at (b) ν= 0.01, (c) ν= 0.25 and (d) ν= 0.49.

An important observation was made when simultaneously plotting the node and average integral
values separately, see Figure 4.12. This figure contains the results of the same simulation as shown in
Figure 4.10d, with the exception that u and u are plotted separately. According to Figure 4.12b, there is
a clear constant spatial disagreement, δ, between both plots, where the plot of u appears to lag behind.
After doing multiple simulations with varying Courant number and mesh spacing, δ was found to be
consistent with:

δ= ν∆x

2

= a∆t

2
,

(4.39)

showing that the node values thus lag behind by ∆t
2 . This reveals that the node and average integral

values are staggered in time, and (4.36) and (4.37) are rewritten to:

30 4. Active Flux

ν

0 0.2 0.4 0.6 0.8 1

L
2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Eymann

MTSETE3

(a)

x

0 0.2 0.4 0.6 0.8 1

u

-1

-0.5

0

0.5

1
Exact

Eymann

MTSETE3

(b)

x

0 0.2 0.4 0.6 0.8 1

u

-1

-0.5

0

0.5

1
Exact

Eymann

MTSETE3

(c)

x

0 0.2 0.4 0.6 0.8 1

u

-1

-0.5

0

0.5

1
Exact

Eymann

MTSETE3

(d)

Figure 4.11: Results of advecting a square wave on a 20 node grid for 10000 time steps. (a) A plot showing the L2 error for varying
Courant number. The other figures show the actual solution at (b) ν= 0.01, (c) ν= 0.25 and (d) ν= 0.49.

u
n+ 1

2

i+ 1
2

= u
n− 1

2

i+ 1
2

−2ν

u
n− 1

2

i− 1
2

−3un
i +2u

n− 1
2

i+ 1
2

ν+1
+ν

u
n− 1

2

i− 1
2

−u
n− 1

2

i+ 1
2

ν+1

 (Node update). (4.40)

un+1
i = un

i −ν
(
u

n+ 1
2

i+ 1
2

−u
n+ 1

2

i− 1
2

)
(Integral update). (4.41)

As the figures have shown and is to be expected, the discontinuities that are present in the square
wave are troublesome to represent on a discrete grid. The tendency to smoothen these discontinuities
causes the solution in the whole domain to significantly deviate from the exact solution. Also, the deriva-
tive at the locations of the discontinuities is increasingly underestimated over time. Although the exact
solution is truly discontinuous and the derivative is thus infinite, the profile approximates the very steep
gradients that occur within a shock wave. The question then arises whether it is realistic to try to repre-
sent such high frequency features on a relatively coarse mesh. The spurious behavior occurs due to the

4.3. Third order multistep scheme 31

x

0 0.2 0.4 0.6 0.8 1

u, u

-1

-0.5

0

0.5

1

Exact

u

u

(a)

x

0.45 0.5 0.55

u, u

-0.5

0

0.5

δ

Exact

u

u

(b)

Figure 4.12: (a) Plots of u and u after advecting a sine wave on a 20 node grid for 10000 time steps, with ν= 0.49. (b) Enhanced
view of the region in (a), showing a spatial offset, δ.

local profile not being smooth enough relative to the mesh spacing at that specific location. Thus, it is
believed that mesh spacing should be dependent on the smoothness of the profile. For this reason, the
next chapter will introduce the concept of adaptive mesh refinement (AMR), which is a scientific field
that aims at algorithmically conforming local mesh resolution to local smoothness requirements.

5
Adaptive mesh refinement

As the bandwidth of time and/or length scales in numerical simulations grows, uniform mesh structures
become increasingly less efficient. As explained in Chapter 3, adaptive mesh refinement (AMR) provides
a way of local control over the solution resolution in order to adhere to mesh spacing requirements
resulting from these variations in time and/or length scales, while keeping computational effort within
bounds. Although AMR is a broad term that encompasses multiple types of adaption, h-refinement
was found to be most fitting for problems subject to discontinuities. This chapter will aim to provide
a detailed overview of the implementation of h-refinement for the Active Flux method introduced in
Section 4.2. Section 5.1 describes the internal data structures used in the code. Then, the procedure
for performing a global time step is elaborated upon in Section 5.2. The adaptive part of AMR requires
decision making on which cells to refine or coarsen. These criteria are presented in Section 5.3. In
Section 5.4 a method of mapping continuous initial conditions onto the discrete domain is explained.
Finally, Section 5.5 provides some ideas on how the method can be extended to multiple dimensions
and nonlinear equations.

5.1. Computational architecture

Since for h-refinement the positions of the individual nodes are static and child nodes are always con-
tained within their respective parent boundaries, a simple and natural way of representing such a mesh
is through some hierarchical structure. Depending on the structure chosen, this poses some constraints
to the creation and removal of nodes. Since the problems at hand have just one spatial dimension, a bi-
nary tree, see Figure 5.1, is a simple yet effective representation of the computational mesh. In general,
a binary tree consists of one root node to which all other nodes are (in)directly attached and each node
has between zero and two direct children. The ’distance’ a node is separated from the root is referred to
as depth. All higher depth nodes attached to a certain node make up the set of nodes labelled as descen-
dants. Similarly, all nodes, including the root node, that provide the connection between a node and the
root node are the ascendants. Further following tree terminology, nodes with at least one descendant
are called branches, while childless nodes are referred to as leaves.

33

34 5. Adaptive mesh refinement

Figure 5.1: Two different binary tree representations. The representation on the right clarifies that the union of each nodes’
descendants covers the same domain as the node itself.

In order to handle mesh adaption programmatically, we require a data structure for which one aspect
is crucial: Easy access from one node to its surrounding nodes, both horizontally (direct neighbouring
nodes) and vertically (parent and child nodes). One such structure that has been adopted by others
[10, 18] in mesh refinement codes and is efficient in terms of memory management is called the fully
threaded tree. Because we don’t want gaps in our mesh, each node in the tree can not have just a single
child, but always either zero or two children. It is this restriction on the general binary tree definition
that allows the implementation of the fully threaded tree. As explained in [10], time-stepping of compu-
tational cells often requires access to neighboring nodes, which is not a trivial task for a regular binary
tree. As shown in Figure 5.2, a fully threaded tree overcomes this problem by reusing the empty node
references of the leaves as references to their respective neighbours.

Figure 5.2: Example of a small fully threaded tree, showing how each leaves’ empty child node references are reused to simplify
access to neighbouring nodes. Top right corner values indicate depth level.

Each node in a fully threaded tree consists of the following properties:

• Parent A reference to this node’s parent node.

• Depth Integer that represents the number of nodes between this node and the root node.

• Left Either a reference to the left child node (branches) or the neighbour to the left (leaves).

• Right Either a reference to the right child node (branches) or the neighbour to the right (leaves).

• Data The actual payload carried by the node.

For an Active Flux method, the data carried by a tree node equals a single computational cell in the
mesh. Because the term ’node’ is in numerical context used as a container for point quantities, from

5.1. Computational architecture 35

here on we let the term ’cell’ inherit all properties of a tree node such that we can drop all references to
the term ’node’ in tree context, avoiding confusion later on.

Although the spatial domain is one-dimensional, the time variable does add another dimension.
For a constant advection velocity, the CFL condition poses a constraint on the maximum aspect ratio
(=∆t/∆x) of the computational cells. To guarantee stability of the solution method in a global sense for
a mesh built from cells of varying size, one could limit the time step size for all cells such that the spatially
smallest cell satisfies the CFL condition. A more efficient yet more complex solution is to scale the time
step according to the spatial refinement for each cell individually, resulting in a globally constant aspect
ratio. Because the root cell spans the entire computational domain and the refinement factor is 2, cell
size scales according to:

∆xd = ∆x0

2d
, (5.1)

where d designates cell depth. The constant aspect ratio ensures that local time step size scales
equally:

∆td = ∆t0

2d
, (5.2)

where ∆t0 is referred to as the global time step size. A global time step for the binary tree shown in
Figure 5.1 can then be visualized as follows:

Figure 5.3: Example of a global time step for the tree shown in Figure 5.1.

In order to avoid arithmetic under-/overflow related issues and infinite refinement tendencies near
discontinuities, a manually set parameter, dmax , is introduced here to provide an upper bound to cell
depth. This means that the smallest possible time step size equals:

∆tmi n = ∆t0

2dmax
. (5.3)

As will become clear later, it is convenient to define a discrete integer time scale as:

t̂ =
⌊

t

∆tmi n

⌋
mod 2dmax . (5.4)

In Chapter 4 it was found that the nodes and volumes of the cells are staggered both spatially and
temporally. This is visualized in Figure 5.4, replacing the cells in Figure 5.3 with the positions of the
nodes and volumes. Assuming a maximum depth of 3, alongside the discrete time scale is shown.

36 5. Adaptive mesh refinement

Figure 5.4: A visualization of the locations of node values and integral values. The colors are used to indicate distinctive depths
and make clear which cell the nodes correspond to.

This figure reveals that the nodes on the shared interface between neighbouring cells of equal depth
refer to the same value. Also observe that nodes of unequal depth cells never share the same time levels.
In order to minimize the time level differences between neighbouring cells and simultaneously create a
smooth cell depth graduation, the depth difference between two neighbouring cells is limited to at most
one and the example mesh that has been used in Figures 5.1-5.4 is therefore invalid.

To account for the spatial and temporal nonuniformity of the mesh, several extra variables are intro-
duced in a cell. To be able to concisely refer to these variables, the naming convention is expanded here.
First, in order to adhere to the conservation constraint at interfaces separating cells of varying depth,
the intermediate fluxes for the smaller cell need to be kept track of. This ensures that, when the larger
cell completes its local time step, the sum of fluxes on both sides of the interface are equal. Secondly,
refining/coarsening criteria are often based on the smoothness of the local solution. However, because
within a cell the nodes and volumes are never aligned time wise, interpolation is required to determine
the actual solution at a specific discrete time level. These two requirements result in the following layout
of variables within a cell:

Figure 5.5: Distribution of variables within a cell.

As before, volume quantities are recognized by their overline. A subscript is added to distinguish the
new value (+1) from the old value (−1). An extra subscript has been added to node quantities to indicate
whether they lie on the left (L) or right (R) interface. Also, the subscript 0 is reserved for the interpolated
volume-aligned nodes.

5.2. Global time step procedure
This section elaborates on the procedure that is performed to advance the solution a single global time
step. Because the logical flow of the whole procedure is quite complex due to nested loops and the
inevitable amount of bookkeeping, it is split up in several smaller routines, which will be discussed in
order of appearance.

5.2. Global time step procedure 37

By definition, a global time step is equal to the local time step of the root cell. With each increasing
depth level, the amount of steps in a global time step doubles, such that a cell at a maximum depth dmax

completes 2dmax steps every global time step. This forms the iteration for the main loop, shown in the
flowchart in Figure 5.7. Since not every node or volume is advanced at each iteration, we need a way to
determine which quantities require re-evaluation during a certain iteration. As can be observed from
Figure 5.4, every smallest time step the nodes and volumes of the maximum depth cells are advanced.
More generally, the volume of a cell of depth d is advanced every 2dmax−d time steps. Furthermore, a
cell’s node values are advanced at the same rate, but at intermediate time levels. At this point another
variable dl i m is introduced which provides the lower limit on the depth range of cells for which the
volumes are advanced. Clearly, this variable is dependent on the discrete time level t̂ . If one manually
determines dl i m for several values of t̂ , the result is a specific non-repeating sequence. Subtracted from
the maximum depth dmax , one finds a sequence of the form (0,1,0,2,0,1,0,3,0,... etc.). In computer
science fields the algorithm that produces this sequence goes under the name of ’count trailing zeros’
(CTZ). As the name implies, given an input integer in binary form, this function returns the amount of
trailing zeros after the least significant set bit. Thus, dl i m is defined as:

dl i m = dmax −C T Z
(
t̂
)

. (5.5)

In Figure 5.6 an attempt is made at visually clarifying the use of this algorithm. From this figure it can
also be deducted that at a certain t̂ , the nodes of cells of depth dl i m −1 are updated (given that dl i m > 0).

Figure 5.6: Example visual representation of the relation between the C T Z function and depth range. Upper right corner values
indicate cell depth. Maximum depth equals 3.

38 5. Adaptive mesh refinement

Figure 5.7: Flowchart of the main loop of a single global time step.

The main loop contains three functions, which are executed in succession:

• advanceCells() Responsible for advancing cell nodes and volumes.

• handleRefinements() Checks cell state and refines if necessary.

• handleCoarsements() Checks cell state and coarsens if possible.

In Figure 5.8 the function that advances the nodes and volumes is expanded. This shows that first the
nodes of the maximum depth cells are advanced. Then the volumes of the cells whose depth is ≥ dl i m

are advanced. Finally, if possible, the nodes of cells of depth dl i m −1 are advanced.

Figure 5.8: Flowchart of the procedure that handles advancing the nodes and volumes.

Figure 5.9 displays the procedure of advancing the nodes of all cells at a depth d . These cells are
iterated over and their left node value is calculated. Then it is checked whether the neighbouring cell on

5.2. Global time step procedure 39

the right is of equal depth. If so, the nodes of both cells refer to the same value, meaning that this node
will be advanced when the procedure is performed for the neighbouring cell and there is thus no need
to do that here.

Figure 5.9: Flowchart of the procedure that advances the nodes.

The procedure for advancing the cell volumes is shown in Figure 5.10, displaying a simple iteration
over all cells whose depth is in the interval [dl i m ,dmax].

Figure 5.10: Flowchart of the procedure that advances the volumes.

40 5. Adaptive mesh refinement

The final part in the main loop as shown in Figure 5.7 is where the adaptive part of the method takes
place. Here, for each eligible cell a decision is made whether to alter its structure through refinement or
coarsening.

5.2.1. Refinement
The refinement step involves splitting a cell into two smaller sized cells, thereby essentially doubling the
degrees of freedom in this domain, which then hopefully provide a more accurate display of the solution
than the original cell. Here, the refinement step is explained in detail.

Due to the fact that earlier we posed the constraint that two neighbouring cells’ depths may differ by
at most one, the validity of this condition has to be checked for when refining a cell. However, because
refinement is crucial in preserving and accurately propagating the solution, it is desirable to be able
to split a cell when the algorithm determines it needs to, without the possibility of failing due to this
constraint. This means that before a cell is refined, the algorithm will iteratively traverse the neighbours
in a specific direction to check if these cells need to split in advance. The iteration direction depends on
the original cell’s position in the binary tree. An example of this refinement step is shown in Figure 5.11.

Figure 5.11: Visual representation of the steps taken during iterative splitting of a cell.

When splitting a cell, some nodes and/or volumes of the newly created cells are not aligned with the
original cell node/volume locations. The solution values at these locations are found by interpolation.
Which properties can be extracted from neighbours and which have to be interpolated depends on the
neighbours’ relative depth levels and the discrete time level. Due to the previous mesh validation step,
the neighbours of a to be refined cell are either on the same depth level as this cell, or one level above it.
All this means that upon refining, a cell and its neighbours are in one of 16 possible states. A refinement
step for one of these states is shown in Figure 5.12.

(a) (b)

Figure 5.12: One out of a possible 16 states when refining a cell. (a) Before refinement. (b) After refinement.

For sake of clarity, for just this state we will shortly discuss the steps that are taken to transition from
Figure 5.12a to Figure 5.12b. To refer to the variables in a clear and concise way, a superscript is added

5.2. Global time step procedure 41

to indicate the cell. The cells that will be referred to are the left neighbour
(

L
)
, right neighbour

(
R
)
, left

child cell
(

LC
)
, right child cell

(
RC

)
and the original cell

(
O

)
. Right after the two child cells are created, the

state is as shown in Figure 5.13:

Figure 5.13: The initial cell state immediately after splitting a cell.

The three newly created node values on the left interface
(
uLC
−1,L ,uLC

0,L ,uLC
+1,L

)
can be retrieved from the

neighbouring cell on the left. Similarly, uRC
0,R is set equal to uR

+1,L :

Figure 5.14: Step 1 of the reconstruction of variables within the child cells.

Now, uRC
+1,R is calculated by advancing the original cell by a quarter of its normal time step:

Figure 5.15: Step 2 of the reconstruction of variables within the child cells.

Now that both uLC
+1,L and uRC

+1,R are known, we can construct flux terms on these interfaces and use

them in conjunction with uO
+1 to find the sum of uLC

−1 and uRC
−1 :

(
uLC
−1 +uRC

−1

)
= uO

+1 +
A

2

(
f
(
uRC
+1,R

)
− f

(
uLC
+1,L

))
, (5.6)

where A designates a cell’s aspect ratio (= ∆t/∆x). Since the nodes enclosing the union of these
volumes, uLC

0,L and uRC
0,R , are known, it is now possible to make a quadratic reconstruction. Based on this

reconstruction, the volume sum
(
uLC
−1 +uRC

−1

)
can be separated into individual components, by means of

integration.

42 5. Adaptive mesh refinement

uLC
−1 =

(
uLC
−1 +uRC

−1

)
+

uLC
0,L −uRC

0,R

4
, (5.7)

uRC
−1 =

(
uLC
−1 +uRC

−1

)
−

uLC
0,L −uRC

0,R

4
. (5.8)

uLC
0,R

(
= uRC

0,L

)
is determined by the reconstruction as well:

uLC
0,R =

−uLC
0,L +6

(
uLC
−1 +uRC

−1

)
−uRC

0,R

4
. (5.9)

Figure 5.16: Step 3 of the reconstruction of variables within the child cells.

uLC
+1,R is found in a similar way, using the average of the surrounding volumes to again create a

quadratic reconstruction:

uLC
+1,R =

−uLC
+1,L +6

(
uLC
−1+uRC

−1

)
+uO

+1

2 −uRC
+1,R

4
. (5.10)

Figure 5.17: Step 4 of the reconstruction of variables within the child cells.

The flux term constructed using the previously calculated node value uLC
+1,R is used in conjunction

with the previously calculated flux and volume terms to find the individual green volume values of the
child cells as:

uLC
+1 and uRC

+1 can now be found using conservation:

uLC
+1 = uLC

−1 − A
(

f
(
uLC
+1,R

)
− f

(
uLC
+1,L

))
, (5.11)

uRC
+1 = uRC

−1 − A
(

f
(
uRC
+1,R

)
− f

(
uRC
+1,L

))
. (5.12)

5.2. Global time step procedure 43

Figure 5.18: Step 5 of the reconstruction of variables within the child cells.

uRC
−1,R is determined by a flux equality constraint:

f
(
uRC
−1,R

)
= 2 f

(
uR
+1,L

)− f
(
uRC
+1,R

)
. (5.13)

As the final step, uLC
−1,R can be interpolated using again a quadratic reconstruction:

uLC
−1,R =

−uLC
−1,L +6

(
uLC
−1+uRC

−1

)
+uO

−1

2 −uRC
−1,R

4
. (5.14)

Figure 5.19: The final step of the reconstruction of variables within the child cells.

5.2.2. Coarsening
The coarsening procedure takes place after refinement, and is done to decrease the amount of cells in
the mesh by determining if the local solution in two child cells is smooth enough to be represented by
a single cell, thereby reducing its computational burden. The first step in doing this is to define if two
child cells are actually allowed to merge. In the refinement step, a cell’s neighbours can be forced to
split if this is necessary to retain the validity of the mesh. Contrarily, the coarsening procedure may not
iteratively force neighbours to merge, as these neighbours may concern cells whose increased resolution
is required for an accurate solution representation. Thus, some constraints have to be checked for before
a cell can even be considered to be merged.

Due to the use of the binary tree, the mesh always consists of ’left’ and ’right’ cells (excluding the root
cell), see Figure 5.2. Because only cells with two child leaves are eligible for merging, only the parents of
either ’left’ or ’right’ cells in the mesh have to be traversed in order to cover all coarsening possibilities.
Then, it should be checked whether the parent cell has any grandchildren. If it does, apparently the
cell depth is still needed and the cell cannot be merged. Finally, to sustain the validity of the mesh,
the depths of neighbouring cells have to be checked for. To visualize these steps, each cell in the mesh
traverses the flowchart as shown in Figure 5.20. Also, the cells are traversed in order of increasing depth
level, so as to avoid multiple merges on a single tree path in one coarsening step.

44 5. Adaptive mesh refinement

Figure 5.20: The procedure to determine if two child cells can be merged into their parent cell.

Because cell merges are only performed after a volume update, there are 8 unique cell states that
have to be considered opposed to the 16 states found when refining. The coarsening procedure for one
of these states, which in fact is the same state shown in Figure 5.12 but in the opposite direction, is
explained here. Because in this case the total degrees of freedom within the domain of the target cell are
reduced, this procedure involves less interpolation steps. The same sub- and superscripts are the same
as used in the previous section, except that the ’original’ cell has become the ’target’ cell, and thus the
superscript O is replaced by T .

In Figure 5.21 the original and target state of the coarsening step are shown.

After doing the structural cell changes, the situation is as shown in Figure 5.22.

5.2. Global time step procedure 45

(a) (b)

Figure 5.21: One out of a possible 8 states when coarsening a cell. (a) Before coarsening. (b) After coarsening.

Figure 5.22: The initial cell state immediately after merging two cells into their parent.

As was the case for the refinement step, several values can be retrieved from the neighbours. As the

neighbour to the right is of the same depth level, the node values on this interface
(
uT
−1,R ,uT

0,R ,uT
+1,R

)
can be directly retrieved. On the left interface, uT

+1,L is set equal to uL
0,R .

Figure 5.23: Step 1 of the reconstruction of variables within the target cell.

The average volume value uT
+1 is found from the child cells as follows:

uT
+1 =

uLC
+1 +uRC

+1

2
. (5.15)

Figure 5.24: Step 2 of the reconstruction of variables within the target cell.

Then, the conservation requirement is used to calculate the previous average volume value uT
−1:

46 5. Adaptive mesh refinement

uT
−1 = uT

+1 +
A

2

(
f
(
uT
+1,R

)− f
(
uT
+1,L

))
. (5.16)

Figure 5.25: Step 3 of the reconstruction of variables within the target cell.

At this point only two node values at previous time levels remain. These are calculated by simple
first order extrapolation:

uT
0,L = 2uL

0,R −uT
+1,L . (5.17)

uT
−1,L = 4uL

0,R −3uT
+1,L . (5.18)

Figure 5.26: The final step of the reconstruction of variables within the target cell.

5.3. Adaption criteria
The most difficult aspect of AMR is the adaptive part, which requires implementing automated deci-
sion making on when and where the mesh should be refined or coarsened. This decision making is
based on some indication of the local solution error or complexity. In Section 3.4 it was mentioned that
Richardson extrapolation is a popular choice of error estimator in patch-based codes, but not feasible
for codes where cells are treated individually due to boundary conditions. Since the latter is the case for
the adaption method described in this chapter, it was decided to implement a feature detector as error
estimator. In order to find a suitable adaption indicator for the linear advection equation, it is necessary
to first identify the features that cause relatively rapid degradation of the solution accuracy. These fea-
tures are problem dependent and the indicators therefore as well. For linear advection, the accuracy of
representing a continuous signal on a discrete domain is related to signal smoothness and the sample
interval in the discrete domain. The dissipation that is present in nearly all numerical schemes to guar-
antee stability, also has a smoothening effect that is particularly well observable near discontinuities,
kinks (discontinuities in the derivative) and rapidly varying signals. In order to define an indicator that
has a strong response in the vicinity of these features, Zalesak’s waveform will be used as a test case.
This waveform consists of a Gaussian distribution, a square wave, a triangle wave and an elliptic shape.
These four shapes all have different characteristics and are therefore a good test case to validate the
feature indicator. Three different indicators will be explored here.

5.3. Adaption criteria 47

5.3.1. Indicator #1
The first indicator that was tested is a simple indicator based on the local curvature. The idea is that
large second derivatives occur near discontinuities as well as other rapid signal changes, which will thus
be detected. For the quadratic reconstruction within a cell, the second order derivative equals:

φ= ∂2u

∂x2 = 6uL −12u +6uR

∆x2 , (5.19)

where φ designates the indicator value. Applying this to Zalesak’s waveform while normalizing the
result is shown in Figure 5.27. These figures show that the indicator is quite sensitive to cell placement.
When 100 cells are used, the discontinuity clearly shows a peak, while for 200 cells the integrated value at
the discontinuity is approximately halfway it’s surrounding node values, resulting in a very low curvature
value. The sharp peak of the triangle wave is also no longer detected after doubling the cell count.

x

φ
u

(a)

x

φ
u

(b)

Figure 5.27: Feature indicator based on curvature. (a) 100 cells. (b) 200 cells.

5.3.2. Indicator #2
The first indicator suggests that use of the values of one cell is not sufficient to detect a discontinuity in
all cases. Therefore this next indicator makes use of information of neighbouring cells. For this indicator
the idea is that near discontinuities the difference in linear slopes between a cell and its neighbours has
a large value for at least one neighbour. This idea is depicted in Figure 5.28.

x

u

uLL uL

uR uRR

Figure 5.28: Visualization of the rationale behind the linear slope indicator. Blue solid lines indicate the signal, the red dots the
node values, and the green dashed lines represent the slopes.

The value of the indicator is defined as:

φ= abs

(
∂u

∂x
− ∂u

∂x

∣∣∣∣
L

)
+abs

(
∂u

∂x

∣∣∣∣
R
− ∂u

∂x

)
= abs

(
uR −uL

∆x
− uL −uLL

∆xL

)
+abs

(
uRR −uR

∆xR
− uR −uL

∆x

)
.

(5.20)

48 5. Adaptive mesh refinement

When again applied to Zalesak’s waveform, the indicator detects the discontinuity for both cases, see
Figure 5.29. Although smaller, there is also a response for sharp corner values, which are apparent in the
triangle and elliptic shape.

x

φ
u

(a)

x

φ
u

(b)

Figure 5.29: Feature indicator based on the sum of the absolute differences in slopes (of the linear reconstruction) between
neighbouring cells. (a) 100 cells. (b) 200 cells.

5.3.3. Indicator #3
For the last indicator that is tested, the same approach as indicator #2 is taken, except instead of the
linear reconstruction, we now use the quadratic reconstruction to approximate the slopes at the cell
interfaces, see Figure 5.30.

x

u

uLL uL

uR

uRR

uL

u

uR

Figure 5.30: Visualization of the rationale behind the quadratic slope indicator. Blue solid lines indicate the signal, the red dots
the node values, the red solid line the cell’s integral value, and the green dashed lines represent the slopes.

For this indicator, the value becomes:

φ= abs

(
∂u

∂x
− ∂u

∂x

∣∣∣∣
L

)
+abs

(
∂u

∂x

∣∣∣∣
R
− ∂u

∂x

)
= abs

(−4uL +6u −2uR

∆x
− 2uLL −6uL +4uL

∆xL

)
+abs

(−4uR +6uR −2uRR

∆xR
− 2uL −6u +4uR

∆x

)
.

(5.21)

As seen in Figure 5.31, this indicator also responds well to the discontinuity. However, the response
to the Gaussian function is much smaller, which is desirable as this shape is quite smooth. Also, the
response for sharp corners seems to be more concentrated compared to indicator #2.

5.3.4. Depth mapping
After choosing a feature indicator, the last step is to map the indicator values to a corresponding re-
finement level. This involves a manually set parameter Φ that determines how aggressive the adaption
is and therefore influences the average amount of cells in a simulation and thereby its accuracy. The
interval [0,Φ] is linearly binned to accommodate all possible depth levels, see Figure 5.32. When the
value of the indicator for a specific cell is above the upper limit of this cells’ depth bin, the cell is refined.

5.4. Mesh initialization 49

x

φ
u

(a)

x

φ
u

(b)

Figure 5.31: Feature indicator based on the sum of the absolute differences in slopes (of the quadratic reconstruction) between
neighbouring cells. (a) 100 cells. (b) 200 cells.

Coarsening is done similarly, but for this situation a parent cell is merged only when the indicator values
of both child cells drop below the lower limit. Merging is still only possible when the requirements as
explained in section 5.2.2 are met.

x

dmin

dmin+1

...

dmax−1

dmax

φ

u

Φ

0

Figure 5.32: A plot showing how the indicator value φ is mapped to a required depth level through the introduction of the
parameterΦ.

Of course, instead of a linear division, where each depth bin is equally spaced, more advanced non-
uniform divisions can be defined, but this introduces more degrees of freedom and is deemed out of
scope for this thesis.

5.4. Mesh initialization
An accurate simulation starts with an accurate reflection of the initial conditions on the discrete domain.
A poor translation of the continuous initial conditions to a discrete mesh leads to a large discretization
error. Mesh creation can be done in multiple ways, including visual inspection. However, this section
focuses on automatic generation of the mesh.

Since mesh initialization is a step to be performed just once per simulation and will therefore likely
not be dominant in efficiency issues, accuracy and simplicity of translating the initial conditions to a
mesh are in general prioritized over efficiency. The only manual step in this process is to determine
the maximum depth. Performing a Fourier transform on the input signal provides a good indication of
the maximum level of refinement required to capture the highest frequencies. Of course, for kinks and
discontinuities the required depth goes to infinity, and the optimum depth level will then need to be
derived from the user’s requirements. Once the maximum depth is determined, the following steps are
taken:

1. Refine mesh uniformly to the maximum depth dmax .

2. Use initial conditions to set the node and volume values for each cell in the mesh.

50 5. Adaptive mesh refinement

3. Starting at the maximum depth, iteratively traverse the mesh and coarsen cells where possible,
solely using the node and integral values.

This process can be executed in batches by segmentizing the mesh in advance. This allows for easy
parallelization to decrease time consumption, or sequential processing to decrease memory overhead.

Once the mesh has been defined in terms of required refinement levels, a final step has to be per-
formed before the simulation can start. The nodes and volumes are temporally staggered, but the initial
conditions are often provided at a single moment in time. One method of converting the initial condi-
tions to a useful input state for the MTSETE3 scheme is to derive the node values at time level −∆td /2
from the initial conditions by means of characteristic tracing, see Figure 5.33. Although there are other
ways of obtaining the staggered initial conditions, this step has been deemed of minor importance here
and was thus not investigated further.

Figure 5.33: This figure shows how tracing of characteristics is used to derive the node values from the continuous initial
conditions at time levels < 0, which is necessary due to temporal staggering.

5.5. Further considerations
Since the whole procedure of implementing mesh adaption for linear advection in one dimension has
been described now, this chapter is concluded here by some preliminary prospects for extension to
higher spatial dimensions and also for Burgers’ equation and, very briefly, the Euler equations.

5.5.1. Higher order extension
One aspect that separates a one-dimensional advection problem from its higher dimensional analogue
is the fact that the characteristic velocity becomes a vector in higher dimensions. Thus, in addition to a
normal component, the velocity has a shear component. Since a shear velocity does not contribute to an
interface flux, higher dimensional problems are commonly reduced to a set of one-dimensional prob-
lems. Figure 5.34 provides a visualization of how this approach could be used in case of the MTSETE3
scheme. In this figure, the green plane represents the average integral value, which is depicted as a
line in the one-dimensional problem. The dots indicate the node values, where the blue and red colors
provide a visual distinction between the nodes used for the two one-dimensional problems in x- and
y-direction respectively. The locations of the nodes at elevated time level reveal that this situation cor-
responds to the case where both components of the (constant) characteristic velocity a = (ax , ay) are
positive. Of course, in case of non-orthogonal interfaces, or for example triangular cells, the situation
becomes more complicated.

Concerning refinement depth inequalities of neighbouring cells, the two-dimensional situation is
also somewhat different. Assuming quadrilateral cell geometries and a refinement factor of two in both
x- and y-direction, upon refinement four cells will be created from a parent cell. This means that, in
order to use the fully threaded tree, each cell has four references to either neighbouring or descending
cells, depending on whether the cell is a leaf or a branch. However, as Figure 5.35 suggests, a single cell
may now have up to eight neighbours. One way to resolve this incompatibility is to still refer to one
neighbour per interface and in addition set a convention on reference order, such that a reference to the
disconnected neighbour (C3) can be obtained through the connected neighbour (C2), see Figure 5.35b.

In addition, in higher dimensions the refinement and coarsening procedures themselves are more
complex and there are more unique cases that are to be considered. Another difference is that in one
dimension, the nodes sharing the interface between two cells of unequal refinement levels were only
staggered temporally, and could thus be updated by halving the time step of the larger cell. However, in
two dimensions such nodes will still be staggered temporally, but also in the spatial direction parallel to

5.5. Further considerations 51

(a) (b)

Figure 5.34: Visualization of how an orthogonal two-dimensional problem can be decomposed into two one-dimensional
problems. (a) The one-dimensional problem. (b) The decomposed two-dimensional problem. The plane represents the average

integral value, and the dots correspond to the locations of the interface nodes.

(a) (b)

Figure 5.35: (a) A visualization of neighbouring cell references. Note that cell C1 has no direct link to cell C3. (b) The route
through which the reference to cell C3 can be obtained from cell C1.

the interface. Thus, some attention is required on how to handle such cases. After handling these issues,
transitioning from two to three dimensions is simpler than the transition from one to two dimensions
as all concepts in three dimensions are direct extensions of the two-dimensional implementation.

5.5.2. Nonlinear extension
Besides exploring an increased number of spatial dimensions, it is interesting to touch upon the impli-
cations of applying the MTSETE3 method in combination with mesh adaption to nonlinear equations.

As mentioned before, Burgers’ equation is often used to model the development of a discontinuity
from smooth initial conditions. In Burgers’ equation the characteristic velocity equals the solution value
itself, meaning that information does not necessarily flow in a single direction. In terms of characteris-
tic tracing, the characteristic origin may now have multiple solutions. This requires decision making on
how to handle this situation. Also, for the linear case, the characteristic velocity is constant, such that a
constant cell aspect ratio is sufficient to guarantee stability throughout the simulation. While Burgers’
equation is theoretically unable to generate new extrema which surpass the extrema of the initial condi-
tion, non-monotone numerical schemes are likely to cause overshoots as discontinuities develop, which
may destabilize the simulation if not acted upon. One way to solve this is to base the cells’ aspect ratio
on an overestimation of the maximum absolute local velocity. A more robust option would be to inves-
tigate the use of separate refinement factors in time and space. This would enable treating the problem
locally, instead of penalizing the whole simulation. At the same time, this approach enables cells in
which characteristic velocities are low to take larger time steps.

An important aspect in which the approach for Burgers’ equation will differ from the linear case is the

52 5. Adaptive mesh refinement

fact that regions which require high levels of refinement are known from the start for the linear case. This
means that such regions will be contained in a fine mesh throughout the whole simulation. Contrarily,
since Burgers’ equation enables the development of discontinuities from smooth initial conditions, it is
unclear where and when troublesome regions may arise. The main problem here is that many feature
indicators aim to trigger as soon as the scheme attempts to resolve behavior for which the mesh is not
fine enough. However, because this indicates that refinement level is not high enough, ideally one would
want to go back in time and refine the smoother local solution, instead of inevitable interpolation of
the erroneous solution. This requires the implementation of performing retroactive time steps, which
increases the amount of memory used since the program will need some form of short-term memory.

Numerically approximating the Euler equations is much more complex. As seen in Chapter 2, the
Euler equations describe a simplified version of the Navier-Stokes equations through three coupled non-
linear conservation equations. Since the characteristic variables cannot be explicitly solved for, it no
longer makes sense to solely rely on tracing along characteristics. The solution state is dependent on
the collection of states inside a conical domain bounded by the relative acoustic velocities u ± a. Be-
cause each of the three state variables may have individual refinement requirements, one may decide to
use a separate mesh for each variable. However, shock waves result in discontinuous jumps in all state
variables, such that these regions of high refinement overlap. A contact discontinuity is the only feature
that causes a discontinuous density profile, without disrupting velocity and pressure profiles, which will
thus be overly refined here. Further research is required to determine which approach is more appro-
priate.

6
Results

In this chapter the results of multiple simulations are discussed. The focus will be on evaluating the
impact of adaptive mesh refinement in terms of accuracy improvement and the expectation on overall
efficiency. To do this, simulations on the five waveforms as shown in Figure 6.1 have been performed.
All simulations have been run for 100 global time steps, for varying levels of the maximum depth and
refinement parameter Φ. The accuracy of the simulations will be quantified through analysis of the dif-
ference in L2 error norm for an adaptive simulation and a simulation at constant maximum refinement
depth. Because the results for the square wave were found to display trends nearly identical to those
found for the sawtooth wave, these results are excluded here. However, for sake of completeness, these
results can be found in Appendix C. To be able to investigate the effects of mesh adaption, for each wave-
form a reference solution is retrieved by turning off the adaption, thereby using a uniform mesh at the
specified maximum refinement level.

x

u

(a)

x

u

(b)

x

u

(c)

x

u

(d)

x

u

(e)

Figure 6.1: The five waveforms used in the simulations: (a) Sine wave, (b) sawtooth wave, (c) triangle wave, (d) square wave and
(e) Zalesak’s waveform.

Because the scheme is stable up to a Courant number of 0.5, but also exact at this value, simulations
are run at a slightly lower value of ν = 0.4. Furthermore, the depth mapping parameter Φ is set to one
of 0.1, 0.5, 1.0 and 2.0. Finally, it was observed that the structure of the mesh on initialization and a
few steps after that were in some cases quite different. For this reason, it was chosen to not use mesh
adaption in the initialization step, but refine to the maximum depth uniformly and from there on let the
method decide which regions to coarsen. Because simulations are run for 100 time steps, this decision
will be of negligible influence on further analysis.

This chapter contains five sections in which different aspects will be elaborated on. First, Section
6.1 focuses on the evolution of the mesh structure over time, varying the refinement aggressiveness pa-
rameter Φ. The impact of mesh adaption on the solution quality relative to a non-adaptive simulation
is visualized in Section 6.2. Then, Section 6.3 aims at clarifying the effect of maximum refinement depth
on the accuracy and efficiency in terms of computational savings. The results of a high resolution sim-
ulation on Zalesak’s waveform, see Figure 6.1e, are presented in Section 6.4. Finally, a few concluding
remarks on the results are made in Section 6.5.

53

54 6. Results

6.1. Mesh deterioration

An important aspect of stable solution accuracy in prolonged simulations of linear advection with an
adaptive mesh is sustaining the structure of the mesh. The value of Φ plays an important role in this. A
too low value of this parameter will tend to unnecessarily increase the amount of cells in the domain. On
the other hand, a too high value underestimates the need for refinement and the mesh will thus show
a faster rate of resolution loss. The expectation is that due to numerical dissipation, all simulations will
at some point be smeared out and converge to a one-cell mesh. These effects are observed best at a low
initial resolution, so for low maximum depth levels. Therefore, the maximum refinement depth is set
to 7, such that the mesh contains 128 cells at most. Tables 6.1, 6.2 and 6.3 contain figures of the mesh
structure at different steps and Φ, for a sine, sawtooth and triangle wave respectively. All tables show
that increasing Φ results in coarser meshes. Especially for the triangle wave the mesh coarsens rather
quickly, due to the two kinks in the original waveform being increasingly smoothened by dissipation.

Table 6.1: Mesh visualizations at different time steps and varyingΦ for a sine waveform. Horizontal axis corresponds to the
spatial domain, and the vertical axis spans a single global time step. Colors indicate depth level. Legend at the bottom indicates

refinement depth.

Φ

Step
0 50 100

0.1

0.5

1.0

2.0

1 2 3 4 5 6 7

6.1. Mesh deterioration 55

Table 6.2: Mesh visualizations at different time steps and varyingΦ for a sawtooth waveform. Horizontal axis corresponds to the
spatial domain, and the vertical axis spans a single global time step. Colors indicate depth level. Legend at the bottom indicates

refinement depth.

Φ

Step
0 50 100

0.1

0.5

1.0

2.0

1 2 3 4 5 6 7

56 6. Results

Table 6.3: Mesh visualizations at different time steps and varyingΦ for a triangle waveform. Horizontal axis corresponds to the
spatial domain, and the vertical axis spans a single global time step. Colors indicate depth level. Legend at the bottom indicates

refinement depth.

Φ

Step
0 50 100

0.1

0.5

1.0

2.0

1 2 3 4 5 6 7

The effects of Φ can also be observed by plotting the amount of cells for each depth level over time.
Figures 6.2-6.4 display the same trend of decreasing refinement depth for increasing Φ. In Figures 6.4c
and 6.4d emphasize the effect already observed in Table 6.3, where decay of the sharpness of the kinks
causes rapid mesh coarsening.

6.1. Mesh deterioration 57

Step

0 20 40 60 80 100

#
 C

e
lls

0

20

40

60

80
7

6

5

4

3

2

1

(a)

Step

0 20 40 60 80 100

#
 C

e
lls

0

20

40

60

80
7

6

5

4

3

2

1

(b)

Step

0 20 40 60 80 100

#
 C

e
lls

0

20

40

60

80
7

6

5

4

3

2

1

(c)

Step

0 20 40 60 80 100

#
 C

e
lls

0

20

40

60

80
7

6

5

4

3

2

1

(d)

Figure 6.2: The cell count per depth level during the simulation of a sine wave for 100 global time steps. Legend entries indicate
depth level. The first step is excluded as the simulation starts with a uniform mesh. (a)Φ= 0.1, (b)Φ= 0.5, (c)Φ= 1.0, (d)Φ= 2.0.

Step

0 20 40 60 80 100

#
 C

e
lls

0

10

20

30

40

50
7

6

5

4

3

2

1

(a)

Step

0 20 40 60 80 100

#
 C

e
lls

0

10

20

30

40

50
7

6

5

4

3

2

1

(b)

Step

0 20 40 60 80 100

#
 C

e
lls

0

10

20

30

40

50
7

6

5

4

3

2

1

(c)

Step

0 20 40 60 80 100

#
 C

e
lls

0

10

20

30

40

50
7

6

5

4

3

2

1

(d)

Figure 6.3: The cell count per depth level during the simulation of a sawtooth wave for 100 global time steps. Legend entries
indicate depth level. The first step is excluded as the simulation starts with a uniform mesh. (a)Φ= 0.1, (b)Φ= 0.5, (c)Φ= 1.0, (d)

Φ= 2.0.

58 6. Results

Step

0 20 40 60 80 100

#
 C

e
lls

0

10

20

30

40

50
7

6

5

4

3

2

1

(a)

Step

0 20 40 60 80 100

#
 C

e
lls

0

10

20

30

40

50
7

6

5

4

3

2

1

(b)

Step

0 20 40 60 80 100

#
 C

e
lls

0

10

20

30

40

50
7

6

5

4

3

2

1

(c)

Step

0 20 40 60 80 100

#
 C

e
lls

0

10

20

30

40

50
7

6

5

4

3

2

1

(d)

Figure 6.4: The cell count per depth level during the simulation of a triangle wave for 100 global time steps. Legend entries
indicate depth level. The first step is excluded as the simulation starts with a uniform mesh. (a)Φ= 0.1, (b)Φ= 0.5, (c)Φ= 1.0, (d)

Φ= 2.0.

6.2. Accuracy
In this section the accuracy of the adaptive simulations will be analyzed. This will be done by inspecting
the L2 error norm, which for one cell is defined as:

L2
cel l =

√∫ 1

0
(u −uexact)2 dξ. (6.1)

Summing over all cells in the mesh, scaling for cell size, the total error of the mesh becomes:

L2 = ∑
cel l s

L2
cel l∆xcel l . (6.2)

In order to compare simulations with adaption enabled to their uniform analogue (in terms of com-
putational effort), it is necessary to determine how many cells the uniform mesh should contain. To do
this, first the simulations are run with adaption enabled and the total number of computational cells
used during the whole simulation is kept track of. With this number, the amount of cells for the uniform
mesh such that in total an approximately equal amount of cells is used in both simulations can be found
through:

N =
⌈√

T

S

⌉
, (6.3)

where T represents the total number of cells used in the adaptive simulation, S the number of steps
which equals 100 here, and finally N the resulting number of cells in the uniform mesh. As reference,
the results for uniform simulations at maximum refinement are included in the plots. This allows us not
only to see whether the adaptive simulation actually displays smaller errors compared to a uniform so-
lution of approximately equal computational intensity, but also to which extent the adaptive simulation
approximates the smallest error possible with this mesh configuration and update method. Figures 6.5,
6.6 and 6.7 show for varyingΦ how the L2 error develops over time. The maximum depth level is still set
to 7, and besides Φ, the legend entries also indicate the cell load, which we define as the percentage of
total number of cells used in a simulation compared to the total number of cells used for the reference

6.2. Accuracy 59

solution. The lower the cell load, the higher the potential for mesh adaption to efficiently distribute
computational resources over the domain. It should be kept in mind that a low cell load does not imply
reasonable solution accuracy. Figure 6.5, which shows the error development for a sine wave, proves
that mesh adaption is not useful for use on smooth waveforms. For all tested values of Φ, the adaptive
simulation performs worse than its uniform analogue.

step
0 10 20 30 40 50 60 70 80 90 100

L2

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Φ = 0.1 (24.39%)

Φ = 0.1 (25.00%, uni)

Φ = 0.5 (15.93%)

Φ = 0.5 (16.50%, uni)

Φ = 1.0 (4.51%)

Φ = 1.0 (4.79%, uni)

Φ = 2.0 (1.31%)

Φ = 2.0 (1.37%, uni)

Reference

Figure 6.5: L2 error development over time for a sine wave. Maximum refinement depth is set to 7. The green line indicates the
uniform maximum refinement reference simulation. The dashed lines indicate the uniform mesh simulations with

approximately equal cell load.

For a sawtooth wave, see Figure 6.6, the positive effect of mesh adaption becomes clear. From this
figure it can be observed that for decreasingΦ, both the adaptive and uniform simulations approach the
reference solution. This is expected as the number of cells increases. However, it is also shown that the
adaptive simulations converge to the reference solution faster than the uniform solutions do. AtΦ= 0.1
and after 100 steps, the L2 error of the adaptive solution is 2.1% higher than the error of the reference
solution, while the error of the uniform analogue is 71.6% higher. For Φ = 2.0, the time derivative of
the error shows an instantaneous jump after around 30 time steps. This behavior corresponds to the
results shown in Figure 6.3d, where between step 30 and 40 all cells of depth 7 are coarsened to depth 6,
resulting in faster error growth.

60 6. Results

step
0 10 20 30 40 50 60 70 80 90 100

L2

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Φ = 0.1 (23.92%)

Φ = 0.1 (24.22%, uni)

Φ = 0.5 (17.64%)

Φ = 0.5 (17.80%, uni)

Φ = 1.0 (14.61%)

Φ = 1.0 (14.65%, uni)

Φ = 2.0 (8.41%)

Φ = 2.0 (8.81%, uni)

Reference

Figure 6.6: L2 error development over time for a sawtooth wave. Maximum refinement depth is set to 7. The green line indicates
the uniform maximum refinement reference simulation. The dashed lines indicate the uniform mesh simulations with

approximately equal cell load.

Finally, Figure 6.7 contains the error development results for a triangle wave. Similar behavior as
observed for the sawtooth wave is found. The improvements of the adaptive solution over their uniform
analogue are still apparent for lower values ofΦ, although smaller. ForΦ= 2.0 andΦ= 1.0, eventually the
error growth rates of the adaptive simulations surpass those of the uniform simulations, where for Φ =
0.5 andΦ= 0.1 the error development appears to be more stable, at least until the end of the simulation.

6.3. Refinement depth 61

step
0 10 20 30 40 50 60 70 80 90 100

L2

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Φ = 0.1 (21.75%)

Φ = 0.1 (21.97%, uni)

Φ = 0.5 (9.07%)

Φ = 0.5 (9.28%, uni)

Φ = 1.0 (5.56%)

Φ = 1.0 (5.87%, uni)

Φ = 2.0 (1.23%)

Φ = 2.0 (1.37%, uni)

Reference

Figure 6.7: L2 error development over time for a triangle wave. Maximum refinement depth is set to 7. The green line indicates
the uniform maximum refinement reference simulation. The dashed lines indicate the uniform mesh simulations with

approximately equal cell load.

6.3. Refinement depth
In the previous section we have seen that the accuracy of the simulation over time is largely affected by
the value of Φ. Lowering the value of Φ decreases the L2 error, but also increases the amount of cells in
the mesh. The simulations in the previous sections have used a fixed maximum refinement depth of 7.
In this section the effect of increasing refinement depth on performance and accuracy will be elaborated
on.

The maximum depth will be increased from 7 to 15, in steps of 2. Table 6.4 shows the maximum
amount of cells that the mesh can contain, along with the total amount of time steps performed for the
reference solutions.

Depth No. cells No. time steps
7 128 12800
9 512 51200

11 2048 204800
13 8192 819200
15 32768 3276800

Table 6.4: The maximum number of cells in the mesh per depth level, along with the number of time steps taken by the reference
solution (100 global steps).

First, we will consider the performance in terms of computational savings when using the adaptive
method. Computational efficiency is difficult to compare as it is directly dependent on the way in which
the code is written. It is only after this code has been optimized that conclusions can be drawn about its
performance, although even then, other variables outside the scope of code structure that affect perfor-
mance remain. Therefore it is assumed here that, in general, the cost of having the additional memory
overhead and resource usage in the adaptive code will be outweighed by the resource savings resulting
from using significantly less computational cells. Thus, these savings will be solely expressed in terms
of the number of cells here.

As seen in the previous section, cell load is the parameter that expresses how many cells are used

62 6. Results

relative to the amount of cells used in the reference simulation. Because it was shown in the previous
section that the accuracy of the reference solution serves as an asymptote for the accuracy of the adap-
tive solution, the cell load does not represent the exact resource savings accountable to using less cells.
It is not trivial to quantify these exact savings, as one would have to find the uniform mesh resolution
such that it displays approximately equal error development. In Figures 6.8, 6.9 and 6.10, the cell load for
varying Φ is shown for the three waveforms discussed, as function of the maximum refinement depth.
All three figures show the same pattern of decreasing cell load with increasing depth. This effect is par-
ticularly apparent for the sawtooth and triangle waveforms. This indicates that the increased maximum
depth allows the solution method to isolate the troubling regions in a smaller part of the domain, by
relatively less cells.

depth
6 8 10 12 14 16

%

0

5

10

15

20

25

Φ = 0.1

Φ = 0.5

Φ = 1.0

Φ = 2.0

Figure 6.8: Cell load for a sine wave as a function of maximum refinement depth, for varyingΦ.

depth
6 8 10 12 14 16

%

0

5

10

15

20

25

Φ = 0.1

Φ = 0.5

Φ = 1.0

Φ = 2.0

Figure 6.9: Cell load for a sawtooth wave as a function of maximum refinement depth, for varyingΦ.

depth
6 8 10 12 14 16

%

0

5

10

15

20

25

Φ = 0.1

Φ = 0.5

Φ = 1.0

Φ = 2.0

Figure 6.10: Cell load for a triangle wave as a function of maximum refinement depth, for varyingΦ.

In order to compare the accuracy the L2 error is again considered. Because we want to show the
effect of varying depth on the error, instead of showing the error over time, only the error at the end
of the simulation is shown, indicated by L2

100. As for the previous results, Figures 6.11, 6.12 and 6.13
contain the plots for the sine, sawtooth and triangle wave. The error for the sawtooth waveform shows
stable behavior when varying the maximum refinement depth. Especially for Φ = 0.5 and Φ = 0.1, the
errors tend to stay parallel to the reference asymptote. This is much less the case for the triangle wave.
For increasing depth the errors stray away from the reference solution much quicker, even showing

6.3. Refinement depth 63

converging behavior, such that at some point, increasing the maximum refinement depth does not seem
to really decrease the error anymore. This converging behavior is reflected by plotting the cell count over
time for a maximum refinement depth of 15, see Figure 6.14. This plot shows that soon after the start
of the simulation, all cells of depth 15 are coarsened such that for the majority of the simulation cells of
depth 14 are used. This indicates that a value ofΦ smaller than 0.1 is necessary at this depth level for the
triangle wave in order to decrease error levels further.

depth
7 8 9 10 11 12 13 14 15

L2
100

10
-8

10
-6

10
-4

10
-2

Φ = 0.1

Φ = 0.1 (uni)

Φ = 0.5

Φ = 0.5 (uni)

Φ = 1.0

Φ = 1.0 (uni)

Φ = 2.0

Φ = 2.0 (uni)

Reference

Figure 6.11: L2 error after 100 global time steps for a sine wave as a function of maximum refinement depth, for varyingΦ.

depth
7 8 9 10 11 12 13 14 15

L2
100

10
-3

10
-2

Φ = 0.1

Φ = 0.1 (uni)

Φ = 0.5

Φ = 0.5 (uni)

Φ = 1.0

Φ = 1.0 (uni)

Φ = 2.0

Φ = 2.0 (uni)

Reference

Figure 6.12: L2 error after 100 global time steps for a sawtooth wave as a function of maximum refinement depth, for varyingΦ.

64 6. Results

depth
7 8 9 10 11 12 13 14 15

L2
100

10
-6

10
-5

10
-4

10
-3

10
-2

Φ = 0.1

Φ = 0.1 (uni)

Φ = 0.5

Φ = 0.5 (uni)

Φ = 1.0

Φ = 1.0 (uni)

Φ = 2.0

Φ = 2.0 (uni)

Reference

Figure 6.13: L2 error after 100 global time steps for a triangle wave as a function of maximum refinement depth, for varyingΦ.

Step

0 20 40 60 80 100

#
 C

e
lls

0

20

40

60

80

100

120

140
15

14

13

12

11

10

 9

 8

 7

 6

 5

 4

 3

 2

 1

Figure 6.14: The cell count per depth level during the simulation of a triangle wave for 100 global time steps. Legend entries
indicate depth level. The first step is excluded as the simulation starts with a uniform mesh.

6.4. Zalesak’s waveform

As a final summarizing test case, simulations have been run for Zalesak’s waveform. As explained previ-
ously, this waveform is a collection of four individual waveforms that each have their own specific shape
and accompanying challenges in terms of shape preservation in linear advection. At the end of this
section the reconstructed solution is shown.

Because of the more compressed waveforms and the eagerness to do a high resolution simulation,
the maximum refinement depth has been set to 15. Analogous to the previous sections, several plots
on the mesh structure and solution accuracy will be presented here. First, Table 6.5 aims at revealing
changes in mesh structure over time by showing the mesh for a global time step at different time steps.
In the figures in this table the different waveforms can be easily distinguished. The two discontinuities of
the square wave and three kinks of the triangle shape are recognized by the five thin consecutive regions
of high refinement. Also, the refinement patterns of the Gaussian and elliptic wave appear to be each
other’s inverse, where the Gaussian reaches maximum refinement in the center of the wave while the
elliptic shape displays maximum refinement at the sharp edges.

6.4. Zalesak’s waveform 65

Table 6.5: Mesh visualizations at different time steps and varyingΦ for Zalesak’s waveform. Horizontal axis corresponds to the
spatial domain, and the vertical axis spans a single global time step. Legend at the bottom indicates refinement depth.

Φ

Step
0 50 100

0.1

0.5

1.0

2.0

 1 2 3 4 5

 6 7 8 9 10

11 12 13 14 15

The fact that there is visually barely any change in mesh structure during the simulation, especially
for lower Φ, shows the stability of the mesh composition. This observation is also reflected by Figure
6.15, showing only gradual changes in total cell count.

66 6. Results

Step

0 20 40 60 80 100

#
 C

e
lls

0

500

1000

1500

2000

2500
15

14

13

12

11

10

 9

 8

 7

 6

 5

 4

 3

 2

 1

(a)

Step

0 20 40 60 80 100

#
 C

e
lls

0

500

1000

1500

2000

2500
15

14

13

12

11

10

 9

 8

 7

 6

 5

 4

 3

 2

 1

(b)

Step

0 20 40 60 80 100

#
 C

e
lls

0

500

1000

1500

2000

2500
15

14

13

12

11

10

 9

 8

 7

 6

 5

 4

 3

 2

 1

(c)

Step

0 20 40 60 80 100

#
 C

e
lls

0

500

1000

1500

2000

2500
15

14

13

12

11

10

 9

 8

 7

 6

 5

 4

 3

 2

 1

(d)

Figure 6.15: The cell count per depth level during the simulation of Zalesak’s waveform for 100 global time steps. Legend entries
indicate depth level. The first step is excluded as the simulation starts with a uniform mesh. (a)Φ= 0.1, (b)Φ= 0.5, (c)Φ= 1.0, (d)

Φ= 2.0.

Figure 6.16 shows how the L2 error term develops over time in relation to the reference solution.
Similar trends to those found in section 6.2 are displayed, where the error of the adaptive simulation
strays from the reference solution, eventually surpassing the error of the uniform solution at equal cell
load.

step
0 10 20 30 40 50 60 70 80 90 100

L2

0

0.005

0.01

0.015

Φ = 0.1 (3.47%)

Φ = 0.1 (3.47%, uni)

Φ = 0.5 (1.31%)

Φ = 0.5 (1.31%, uni)

Φ = 1.0 (0.94%)

Φ = 1.0 (0.94%, uni)

Φ = 2.0 (0.63%)

Φ = 2.0 (0.63%, uni)

Reference

Figure 6.16: L2 error development over time for Zalesak’s waveform. Maximum refinement depth is set to 15. The green line
indicates the uniform maximum refinement reference simulation. The dashed lines indicate the uniform mesh simulations with

approximately equal cell load.

6.4. Zalesak’s waveform 67

The presence of discontinuities and kinks within the domain raises the expectation that an increase
in resolution through means of a higher refinement depth allows a more accurate and therefore more
efficient distribution of cells, lowering the cell load. This expectation is once more verified based on the
results contained in Figures 6.17 and 6.18a.

depth
6 8 10 12 14 16

%

0

20

40

60

80

100

Φ = 0.1

Φ = 0.5

Φ = 1.0

Φ = 2.0

Figure 6.17: Cell load for Zalesak’s waveform as a function of maximum refinement depth, for varyingΦ.

An interesting result is how in Figure 6.17 the cell load forΦ= 0.1 reaches 100% at a refinement depth
of 7. This means that due to the waveforms being compressed on a relatively small domain, no pair of
cells is deemed smooth enough to collapse into a cell of depth 6, such that this specific simulation is
in fact equal to the uniform reference solution. This observation is reinforced by Figure 6.18a, where
L2

100 of the adaptive and reference solution lie on top of each other. Figure 6.18b shows that the error
level of a uniform solution with 214.2068 ≈ 18909 cells is approximately equal to that of the adaptive solu-
tion with a maximum depth of 15. However, the uniform simulation would require ~9.6 times as many
computational cells compared to the adaptive simulation.

depth
7 8 9 10 11 12 13 14 15

L2
100

10
-3

10
-2

10
-1

Φ = 0.1

Φ = 0.1 (uni)

Φ = 0.5

Φ = 0.5 (uni)

Φ = 1.0

Φ = 1.0 (uni)

Φ = 2.0

Φ = 2.0 (uni)

Reference

(a)

depth
14 14.2 14.4 14.6 14.8 15

L2

100

×10
-3

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

(b)

Figure 6.18: (a) L2 error after 100 global time steps for Zalesak’s waveform as a function of maximum refinement depth, for
varyingΦ. (b) Detailed view showing that the adaptive simulation reaches an error level equal to that of a uniform simulation

with 214.2068 cells.

In Figure 6.19 the complete solution reconstruction is shown for a simulation run at a maximum
refinement depth of 15. This figure displays the exact solution, the reference (uniform + maximum
refinement) solution, the solution retrieved from the adaptive simulation at cell load 0.0347 and finally
the uniform solution at equal cell load.

68 6. Results

x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u

0

0.2

0.4

0.6

0.8

1 a

b
c

d

e

Exact
Reference (1)
AMR (0.0347)
Uniform (0.0347)

Figure 6.19: The final results after advecting Zalesak’s waveform for 100 global time steps, withΦ= 0.1.

Due to the high resolution, these four results overlap. Therefore, five regions (a,b,c,d ,e) are focused
upon in Figure 6.20 in order to show how the different simulations compare to the exact solution. Since
a linear update method is used and each of these closeups features a discontinuous change in either
signal or signal derivative, overshoots and other relatively large deviations from the exact solution shape
are expected. However, these closeups indicate that the adaptive simulation approaches the reference
solution much better than the uniform simulation does.

6.5. Concluding remarks
In the present chapter an attempt has been made at presenting the impact of mesh adaption in a struc-
tured way by treating several relevant aspects separately. It has been observed that linear advection of
low bandwidth waveforms does not benefit from mesh adaption, as is expected. For waveforms of higher
bandwidth, especially where high-frequency features comprise only a small part of the spatial domain,
the advantages of mesh adaption become more apparent. At this point it is impossible to quantify the

6.5. Concluding remarks 69

x

0.1248 0.1249 0.1249 0.1250 0.125 0.1251 0.1251 0.1252 0.1252

u

0.9991

0.9991

0.9991

0.9991

0.9991

0.9991

0.9991

0.9991

(a)

x

0.305 0.306 0.307 0.308 0.309 0.31 0.311 0.312 0.313

u

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

(b)

x

0.558 0.559 0.56 0.561 0.562 0.563 0.564

u

0

0.005

0.01

0.015

0.02

0.025

(c)

x

0.623 0.6235 0.624 0.6245 0.625 0.6255 0.626 0.6265 0.627

u

0.97

0.975

0.98

0.985

0.99

0.995

1

(d)

x

0.808 0.809 0.81 0.811 0.812 0.813

u

0

0.02

0.04

0.06

0.08

0.1

0.12

(e)

Figure 6.20: The five regions from Figure 6.19 on which is focused to compare the different solutions. Legends are omitted, but
the line styles correspond to those displayed in Figure 6.19.

computational efficiency in an absolute way, as only after code optimization it becomes clear whether
the additional adaption-induced efforts are truly outweighed by an overall decrease in number of cells.
What can be stated, however, is that the high resolution simulation of Zalesak’s waveform at a uniform
refinement depth of 15 took 173 minutes to complete, while the adaptive simulation finished in 58 min-
utes, which is nearly 3 times less. However, since the total number of cells used during the reference
simulation is approximately 28 times that of the adaptive simulation, it is estimated that the adaptive
simulation increases computation time by a factor of 10 compared to a simulation of equal cell count.
This shows that, with the code in its current state, it is quite costly to enable adaptivity. However, it
should again be noted that these are very rough estimates and the actual price tag can only be deter-
mined after code optimization. Furthermore, only the one dimensional case is considered here. The
relative cell savings increases for higher spatial dimensions, corresponding to exponentially lower cell
loads.

7
Conclusions

Since technological advancements have pushed the extent of research in the field of fluid dynamics past
the sound barrier, there is a demand for numerical methods that are able to correctly simulate the ex-
tremely rapid flow property changes that occur in shock waves. Over the past quarter century there has
been a lot of discussion on the best way to approach problems with such large range of scales, which has
resulted in an extensive and still expanding collection of numerical schemes. Each scheme has its strong
and weak points and since many of the more successful methods incorporate nonlinearity in some way,
it is generally not possible to prove that a method will yield correct results for all cases. Due to this, com-
putational fluid dynamics remains an active research area.

Active Flux schemes provide a flexible framework where an extra degree of freedom is introduced
on grid cell interfaces such that the conservation constraint can be isolated, enabling the use of a non-
conservative interface update method to complete the scheme. A third order update method based on
characteristic tracing was proposed by Eymann and Roe. In this thesis, update methods have been con-
structed by minimizing the truncation error of a Taylor series expansion. A fourth order method using
the same stencil as the characteristic tracing update method was found to obviously have a lower dis-
sipation rate, but also suffer from large oscillations near discontinuities, which is not surprising for an
even-order scheme. A third order method with a more compact stencil was then derived, which showed
similar behavior as the characteristic tracing method, although being somewhat less dissipative. Fur-
ther investigation of the interface and integral values used in this method resulted in the discovery that
they are staggered in time.

Contamination of a large part of the solution through the Gibbs phenomenon has led to the deci-
sion to implement mesh adaption in order to provide a mechanism to increase mesh resolution where
needed and to slow down spreading of spurious oscillations. Due to its ability to adjust the mesh to local
conditions in both the spatial and temporal domain without negatively affecting the remainder of the
mesh, h-refinement is the most sensible choice of mesh adaption in the field of fluid dynamics and is
thus also used here. Because of the additional interface value, hanging nodes occur between cells of
unequal depth. The fact that the interface and integral values are staggered in time further complicated
the cell refinement and coarsening procedures through an increase in the number of possible states. In
total, 16 unique refinement states and 8 unique coarsening states are accounted for.

The most important aspect of mesh refinement is determining the criteria for refinement and coars-
ening. Since a cell-based method is used, a feature indicator was found to be most convenient to use
as adaption criterion. Three feature indicators were tested among which the one based on the abso-
lute value of the difference in reconstruction derivatives was selected due to its desirable response near
discontinuities and kinks. A configurable parameter Φ was introduced which controls the strictness of
refinement. The lowerΦ, the lower the threshold for a cell to refine.

Simulations of various waveforms have been run with varying Φ and maximum refinement depth.
As expected due to the small range of scales, applying mesh adaption for a globally smooth waveform
such as a sine wave resulted in a negative impact in terms of both accuracy and computation time. For
decreasingΦ, the simulation converges to a uniform mesh at maximum refinement depth. Simulations

71

72 7. Conclusions

of a sawtooth and triangle wave, characterized by the presence of a discontinuity and two kinks respec-
tively, showed how mesh adaption is increasingly beneficial for higher maximum refinement depths.
For the triangle wave it was found that the parameter Φ should vary inversely with maximum refine-
ment depth in order to maintain the accuracy improvement of increased maximum refinement depth.
Finally, as a verification case, a high-resolution simulation of Zalesak’s waveform was analyzed. This
waveform serves as an interesting test case as it is composed of multiple waveforms with each a chal-
lenging characteristic shape. As was also done for the other waveforms, snapshots of the mesh structure
at different instances throughout the simulation showed the stability of the mesh composition. For a
low value of Φ, the spurious oscillations produced by the Gibbs phenomenon tended to slowly widen
the regions of maximum refinement throughout the simulation, while keeping the amount of cells of
lower depth nearly constant. It was found that at Φ = 0.1 and a maximum refinement depth of 15, a
simulation on a uniform mesh would need ~9.6 times as many cells as the adaptive simulation in order
to reach the same error level. On the other hand, higher values ofΦ result in a higher overall dissipation
rate due to a lower average cell depth. This increases the rate of smoothening, eventually causing indi-
cator values to fall below thresholds at which point cells collapse into coarser cells.

In conclusion, the results reflect that, given the appropriate settings, adaptive mesh refinement is
beneficial for fluid flow problems which require large variations in mesh resolution. Especially for higher
dimensional problems it becomes increasingly important to be able to efficiently distribute computa-
tional resources. One has to keep in mind that the presented implementation of mesh adaption is ac-
companied by several issues, e.g. the introduction of tunable parameters, mesh deterioration and an
increased complexity of verification of the results. The possible performance increase, however, pro-
vides the motivation for further research and overcome these limitations.

8
Recommendations

Based on experience gained during this thesis, there are several aspects on which can be improved. The
following list concisely provides some recommendations for future research.

• The results have shown that no matter the level refinement, a higher-order linear scheme near a
discontinuity or otherwise instantaneous change induces oscillatory behavior. Some form of non-
linearization of the method is required to suppress these oscillations. This is often done through
the use of limiters. However, a common issue of limiters is that they tend to wrongly activate near
smooth extrema, introducing an unnecessary amount of diffusion at these locations, resulting in
flattened shapes. The adaptive mesh refinement framework as presented in this thesis provides a
simple way of preventing incorrect limiter activation through means of checking the refinement
depth in addition. For example, one could constrain a limiter to only be activated at maximum
refinement depth, analogous to turbulence models where dissipation only occurs at the smallest
length scales.

• Several of the 16 refinement and 8 coarsening procedures as presented in this thesis involve in-
terpolation. This implies that information loss is taking place, and these procedures are not re-
versible. Thus, repeated refining and coarsening tends to add dissipation and degrade the solu-
tion. It may be worthwhile to investigate adjusting these procedures so as to minimize the dissi-
pation introduced or even remove it completely.

• There is room for improvement in defining the refinement/coarsening criteria. Feature detection
is a relevant research topic in disciplines other than computational fluid dynamics and covers a
separate research area on its own. In comparison, the feature detector used in this thesis is very
basic, and more advanced feature detection is likely to improve the results.

• Setting the depth mapping parameterΦ is currently manually done through trial and error. Inves-
tigating the influence of this parameter on the accuracy of a simulation may lead to an empirical
relationship between Φ and accuracy, allowing Φ to be derived from a more tangible and univer-
sally used parameter. Furthermore, at the moment the depth binning happens in a linear fashion,
meaning that the domain [0,Φ] is subdivided in equally spaced bins. More complex distributions
can be investigated in order to create nonuniform adaption sensitivity.

• Of course, the exact solution for the linear advection equation is easily derived and is therefore not
particularly interesting. It simply serves as a tool to investigate various important properties of a
numerical scheme. A logical next step would be to implement the method for Burgers’ equation.
The ability to form discontinuities from smooth initial conditions poses additional challenges for
the scheme in terms of correct development and propagation of the waveform.

73

A
Single expression derivation

The goal of this appendix is to rewrite the compound Active Flux scheme formulation as presented by
Eymann and Roe to a single explicit update expression with the values defined on a uniform grid. In the
original scheme, the computational domain consists of cells, with solution values at the cell interfaces
and average integral values on the cell domain. Characteristics are used to advance the edge values and
calculate the interface flux terms, with which the integrated values are updated.

For linear advection, interface values at the next time level are found through:

un+1
i+ 1

2
= ν(3ν−2)un

i− 1
2
+6ν(1−ν)un

i + (1−ν)(1−3ν)un
i+ 1

2
. (A.1)

The solution at time level n is mapped to the time domain using characteristics, and integrated over
a time step to find the flux terms:

f i+ 1
2
= a

(
ν(ν−1)un

i− 1
2
+ν(3−2ν)un

i + (1−ν)2un
i+ 1

2

)
. (A.2)

Finally, the cell averages are updated conservatively:

un+1
i = un

i − ∆t

∆x

(
f i+ 1

2
− f i− 1

2

)
. (A.3)

Substituting (A.2) into (A.3) results in:

un+1
i = un

i − a∆t

∆x

(
ν(ν−1)

(
un

i− 1
2
−un

i− 3
2

)
+ν(3−2ν)

(
un

i −un
i−1

)+ (1−ν)2
(
un

i+ 1
2
−un

i− 1
2

))
. (A.4)

Or:

un+1
i −un

i =−ν2(ν−1)

(
un

i− 1
2
−un

i− 3
2

)
−ν2(3−2ν)

(
un

i −un
i−1

)−ν(1−ν)2
(
un

i+ 1
2
−un

i− 1
2

)
. (A.5)

The next step is to eliminate the integrated values from this expression. To do this, first subtract (A.1)
from itself, shifted by a spatial interval:

un+1
i+ 1

2
−un+1

i− 1
2
= ν(3ν−2)

(
un

i− 1
2
−un

i− 3
2

)
+6ν(1−ν)

(
un

i −un
i−1

)+ (1−ν)(1−3ν)

(
un

i+ 1
2
−un

i− 1
2

)
. (A.6)

Separating integrated values from edge values yields:

75

76 A. Single expression derivation

6ν(1−ν)
(
un

i −un
i−1

)= un+1
i+ 1

2
−un+1

i− 1
2
−ν(3ν−2)

(
un

i− 1
2
−un

i− 3
2

)
− (1−ν)(1−3ν)

(
un

i+ 1
2
−un

i− 1
2

)
. (A.7)

Now again subtract (A.1) from itself, but shifted by a single time step:

un+2
i+ 1

2
−un+1

i+ 1
2
= ν(3ν−2)

(
un+1

i− 1
2
−un

i− 1
2

)
+6ν(1−ν)

(
un+1

i −un
i

)+ (1−ν)(1−3ν)

(
un+1

i+ 1
2
−un

i+ 1
2

)
. (A.8)

Again separating integrated values from edge values:

6ν(1−ν)
(
un+1

i −un
i

)= un+2
i+ 1

2
−un+1

i+ 1
2
−ν(3ν−2)

(
un+1

i− 1
2
−un

i− 1
2

)
− (1−ν)(1−3ν)

(
un+1

i+ 1
2
−un

i+ 1
2

)
. (A.9)

To prepare the final substitution, multiply (A.5) by 6ν(1−ν):

6ν(1−ν)
(
un+1

i −un
i

)=6ν3(1−ν)2
(
un

i− 1
2
−un

i− 3
2

)
−6ν2(1−ν)3

(
un

i+ 1
2
−un

i− 1
2

)
−ν2(3−2ν)6ν(1−ν)

(
un

i −un
i−1

)
.

(A.10)

Substitute (A.7) and (A.9) into (A.10):

un+2
i+ 1

2
−un+1

i+ 1
2
−ν(3ν−2)

(
un+1

i− 1
2
−un

i− 1
2

)
− (1−ν)(1−3ν)

(
un+1

i+ 1
2
−un

i+ 1
2

)
=

6ν3(1−ν)2
(
un

i− 1
2
−un

i− 3
2

)
−6ν2(1−ν)3

(
un

i+ 1
2
−un

i− 1
2

)
−ν2(3−2ν)

(
un+1

i+ 1
2
−un+1

i− 1
2
−ν(3ν−2)

(
un

i− 1
2
−un

i− 3
2

)
− (1−ν)(1−3ν)

(
un

i+ 1
2
−un

i− 1
2

))
.

(A.11)

Rearranging and factorizing:

un+2
i+ 1

2
=2(1−ν)

(
1−ν−ν2)un+1

i+ 1
2

+2ν
(−1+3ν−ν2)un+1

i− 1
2

+2ν(1−ν)(1+ν−ν2)un
i− 1

2

− (1−ν)4 un
i+ 1

2

−ν4un
i− 3

2
.

(A.12)

Finally a shift in reference is applied such that the new edge value equals un+1
i :

un+1
i =2(1−ν)

(
1−ν−ν2)un

i

+2ν
(−1+3ν−ν2)un

i−1

+2ν(1−ν)(1+ν−ν2)un−1
i−1

− (1−ν)4 un−1
i

−ν4un−1
i−2 .

(A.13)

B
Active Flux form derivation

In node form, the update method equals:

un+1
i =−2ν

1−2ν

ν+1
un

i−1 +2(1−2ν)un
i +2νun−1

i−1 − (2ν−1)(ν−1)

ν+1
un−1

i . (B.1)

The goal is to rewrite this to an Active Flux form, where nodes and integral values are updated sepa-
rately. In the Active Flux form, we want the node update to be formulated as:

un+1
i = un

i −ν∆x
∂u

∂x

∣∣∣∣n

i
. (B.2)

To mold (B.1) into this form, we first introduce the additional time level n−1 by shifting (B.2) in time
and finding the difference between the two:

un+1
i −un

i = un
i −un−1

i −ν
(
∆x

∂u

∂x

∣∣∣∣n

i
−∆x

∂u

∂x

∣∣∣∣n−1

i

)
. (B.3)

Relocating several terms in (B.1) yields:

un+1
i −un

i = un
i −un−1

i −ν
(
−2

2ν−1

ν+1
un

i−1 +4un
i −2un−1

i−1 +2
ν−2

ν+1
un−1

i

)
. (B.4)

The next step is to express the term in parenthesis in terms of time differences of node values, or:

un+1
i −un

i = un
i −un−1

i −ν(
c1

(
un

i−1 −un−1
i−1

)+ c2
(
un

i −un−1
i

)+ c3
(
un

i −un
i−1

)+ c4
(
un−1

i −un−1
i−1

))
. (B.5)

The coefficients c1−4 are found through solving the following system:


1 0 −1 0
0 1 1 0
−1 0 0 −1
0 −1 0 1




c1

c2

c3

c4

=


−2 2ν−1

ν+1
4
−2

2ν−2
ν+1

 , (B.6)

resulting in:

c1 = 2,

c2 =−2
ν−2

ν+1
,

c3 = 6ν

ν+1
,

c4 = 0.

77

78 B. Active Flux form derivation

We end up with:

un+1
i −un

i = un
i −un−1

i −ν
(
2
(
un

i−1 −un−1
i−1

)−2
ν−2

ν+1

(
un

i −un−1
i

)+ 6ν

ν+1

(
un

i −un
i−1

))
, (B.7)

where only the last term needs to be converted from a spatial difference to a temporal difference.
This is resolved by introducing the average integral value, u. The average integral value advances in
time by the summation of flux contributions on its enclosing boundaries. In one dimension this equals:

un
i− 1

2
= un−1

i− 1
2
− 1

∆x

∫ n

n−1
fi − fi−1dt . (B.8)

For linear advection, the flux equals f (t) = au(t). If the flux integral is estimated by
∫ n

n−1 fi dt ≈
aun

i ∆t , (B.8) becomes:

un
i− 1

2
=un−1

i− 1
2
−a

∆t

∆x

(
un

i −un
i−1

)
=un−1

i− 1
2
−ν(

un
i −un

i−1

)
.

(B.9)

This equation thus can be used to map a spatial node undivided difference to a temporal integral
value undivided difference, which is exactly what is required to remove the spatial difference from (B.7).
The result is then:

un+1
i −un

i = un
i −un−1

i −ν
(
2
(
un

i−1 −un−1
i−1

)−2
ν−2

ν+1

(
un

i −un−1
i

)− 6

ν+1

(
un

i− 1
2
−un−1

i− 1
2

))
. (B.10)

This expression reveals that in Active Flux form, the nodes will be updated by:

un+1
i = un

i −ν
(
2un

i−1 −2
ν−2

ν+1
un

i − 6

ν+1
un

i− 1
2

)

= un
i −2ν

un
i−1 −3un

i− 1
2
+2un

i

ν+1
+νun

i−1 −un
i

ν+1

 .

(B.11)

Finally, a spatial shift puts the update methods in the same framework as used in the original Active
Flux formulation:

un+1
i+ 1

2
= un

i+ 1
2
−2ν

un
i− 1

2

−3un
i +2un

i+ 1
2

ν+1
+ν

un
i− 1

2

−un
i+ 1

2

ν+1

 (Node update). (B.12)

un+1
i = un

i −ν
(
un+1

i+ 1
2
−un+1

i− 1
2

)
(Integral update). (B.13)

C
Square wave results

As explained in Chapter 6, the results for the square wave were found to be very similar as those found
for the sawtooth wave. For this reason, the square wave results are solely shown here. From a numerical
point of view, the extra discontinuity in a square wave is the only aspect that distinguishes it from a
sawtooth wave. Because of the constant distance between the discontinuities, there is only very little
interaction in terms of mesh structure. This decreases further with increasing maximum refinement
level. Therefore, in terms of mesh structure, there should be no radical difference between an adaptive
sawtooth wave simulation of maximum refinement depth D and an adaptive square wave simulation of
maximum refinement depth D+1. For consistency, most simulations for the square wave are still run at
a maximum depth of 7. Mesh deterioration for increasingΦ is clearly shown in Table C.1.

79

80 C. Square wave results

Table C.1: Mesh visualizations at different time steps and varyingΦ for a square waveform, at a maximum refinement depth of 7.
Legend at the bottom indicates refinement depth.

Φ

Step
0 50 100

0.1

0.5

1.0

2.0

1 2 3 4 5 6 7

Figure C.1 visualizes how for Φ= 0.1 and Φ= 2.0 the number of cells shows diverging trends, where
the cell count appears more stable forΦ= 0.5 andΦ= 1.0.

81

Step

0 20 40 60 80 100

#
 C

e
lls

0

10

20

30

40

50

60

70

80
7

6

5

4

3

2

1

(a)

Step

0 20 40 60 80 100

#
 C

e
lls

0

10

20

30

40

50

60

70

80
7

6

5

4

3

2

1

(b)

Step

0 20 40 60 80 100

#
 C

e
lls

0

10

20

30

40

50

60

70

80
7

6

5

4

3

2

1

(c)

Step

0 20 40 60 80 100
#

 C
e

lls
0

10

20

30

40

50

60

70

80
7

6

5

4

3

2

1

(d)

Figure C.1: The cell count per depth level during the simulation of a square wave for 100 global time steps. Legend entries
indicate depth level. The first step is excluded as the simulation starts with a uniform mesh. (a)Φ= 0.1, (b)Φ= 0.5, (c)Φ= 1.0, (d)

Φ= 2.0.

Next, Figure C.2 shows how the L2 error develops over time. The same trends as found for the saw-
tooth wave are displayed, differing by an expected factor of two.

step
0 10 20 30 40 50 60 70 80 90 100

L2

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Φ = 0.1 (47.10%)

Φ = 0.1 (47.27%, uni)

Φ = 0.5 (34.67%)

Φ = 0.5 (35.25%, uni)

Φ = 1.0 (28.85%)

Φ = 1.0 (29.06%, uni)

Φ = 2.0 (16.50%)

Φ = 2.0 (16.50%, uni)

Reference

Figure C.2: L2 error development over time for a square wave. Maximum refinement depth is set to 7. The green line indicates
the uniform maximum refinement reference simulation. The dashed lines indicate the uniform mesh simulations with

approximately equal cell load.

82 C. Square wave results

Nearly equal trends are also observed for the cell load and L2 error as function of the maximum
refinement depth, see respectively Figures C.3 and C.4.

depth
6 8 10 12 14 16

%

0

10

20

30

40

50

Φ = 0.1

Φ = 0.5

Φ = 1.0

Φ = 2.0

Figure C.3: Cell load for a square wave as a function of maximum refinement depth, for varyingΦ.

depth
7 8 9 10 11 12 13 14 15

L2
100

10
-3

10
-2

10
-1

Φ = 0.1

Φ = 0.1 (uni)

Φ = 0.5

Φ = 0.5 (uni)

Φ = 1.0

Φ = 1.0 (uni)

Φ = 2.0

Φ = 2.0 (uni)

Reference

Figure C.4: L2 error after 100 global time steps for a square wave as a function of maximum refinement depth, for varyingΦ.

Bibliography

[1] Timothy J. Baker. Mesh adaptation strategies for problems in fluid dynamics. Finite Ele-
ments in Analysis and Design, 25(3):243 – 273, 1997. ISSN 0168-874X. doi: https://doi.org/10.
1016/S0168-874X(96)00032-7. URL http://www.sciencedirect.com/science/article/pii/
S0168874X96000327. Adaptive Meshing, Part 2.

[2] D. Balsara. Adaptive Mesh Refinement in Computational Astrophysics – Methods and Applications.
Journal of Korean Astronomical Society, 34:181–190, December 2001. doi: 10.5303/JKAS.2001.34.4.
181.

[3] Marsha J Berger and Joseph Oliger. Adaptive mesh refinement for hyperbolic partial differ-
ential equations. Journal of Computational Physics, 53(3):484 – 512, 1984. ISSN 0021-9991.
doi: https://doi.org/10.1016/0021-9991(84)90073-1. URL http://www.sciencedirect.com/
science/article/pii/0021999184900731.

[4] M.J. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics. Jour-
nal of Computational Physics, 82(1):64 – 84, 1989. ISSN 0021-9991. doi: https://doi.org/10.
1016/0021-9991(89)90035-1. URL http://www.sciencedirect.com/science/article/pii/
0021999189900351.

[5] M.W. Bern, J.E. Flaherty, and M. Luskin. Grid Generation and Adaptive Algorithms. The IMA Vol-
umes in Mathematics and its Applications. Springer New York, 2012. ISBN 9781461215561. URL
https://books.google.nl/books?id=V_TUBwAAQBAJ.

[6] A. Harten, B. Engquist, S. Osher, S. Chakravarthy. Uniformly high order accurate essentially non-
oscillatory schemes, iii. Journal of Computational Physics, Vol. 131, 1987.

[7] S. Chang. The method of space-time conservation element and solution element - a new approach
for solving the navier-stokes and euler equations. Journal of Computational Physics, Vol. 119, 1995.

[8] Ami Harten. High resolution schemes for hyperbolic conservation laws. Journal of Computa-
tional Physics, 49(3):357 – 393, 1983. ISSN 0021-9991. doi: https://doi.org/10.1016/0021-9991(83)
90136-5. URL http://www.sciencedirect.com/science/article/pii/0021999183901365.

[9] J.Patrick Jessee, Woodrow A. Fiveland, Louis H. Howell, Phillip Colella, and Richard B. Pember. An
adaptive mesh refinement algorithm for the radiative transport equation. Journal of Computa-
tional Physics, 139(2):380 – 398, 1998. ISSN 0021-9991. doi: https://doi.org/10.1006/jcph.1997.
5870. URL http://www.sciencedirect.com/science/article/pii/S0021999197958708.

[10] A. M. Khokhlov. Fully threaded tree algorithms for adaptive refinement fluid dynamics simula-
tions. Journal of Computational Physics, 143(2):519 – 543, 1998. ISSN 0021-9991. doi: https:
//doi.org/10.1006/jcph.1998.9998. URL http://www.sciencedirect.com/science/article/
pii/S0021999198999983.

[11] H. Nishikawa, K. Kitamura. Very simple, carbuncle-free, boundary-layer-resolving, rotated-hybrid
riemann solvers. Journal of Computational Physics, Vol. 227, 2008.

[12] Richard I. Klein. Star formation with 3-d adaptive mesh refinement: the collapse and fragmen-
tation of molecular clouds. Journal of Computational and Applied Mathematics, 109(1):123 –
152, 1999. ISSN 0377-0427. doi: https://doi.org/10.1016/S0377-0427(99)00156-9. URL http:
//www.sciencedirect.com/science/article/pii/S0377042799001569.

[13] A.J. Kriel. Error analysis of flux limiter schemes at extrema. Journal of Computational Physics,
328:371 – 386, 2017. ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2016.10.024. URL http:
//www.sciencedirect.com/science/article/pii/S0021999116305228.

83

http://www.sciencedirect.com/science/article/pii/S0168874X96000327
http://www.sciencedirect.com/science/article/pii/S0168874X96000327
http://www.sciencedirect.com/science/article/pii/0021999184900731
http://www.sciencedirect.com/science/article/pii/0021999184900731
http://www.sciencedirect.com/science/article/pii/0021999189900351
http://www.sciencedirect.com/science/article/pii/0021999189900351
https://books.google.nl/books?id=V_TUBwAAQBAJ
http://www.sciencedirect.com/science/article/pii/0021999183901365
http://www.sciencedirect.com/science/article/pii/S0021999197958708
http://www.sciencedirect.com/science/article/pii/S0021999198999983
http://www.sciencedirect.com/science/article/pii/S0021999198999983
http://www.sciencedirect.com/science/article/pii/S0377042799001569
http://www.sciencedirect.com/science/article/pii/S0377042799001569
http://www.sciencedirect.com/science/article/pii/S0021999116305228
http://www.sciencedirect.com/science/article/pii/S0021999116305228

84 Bibliography

[14] C.B. Laney. Computational Gasdynamics. Birkhäuser, 1998. ISBN 9783764324643.

[15] R.J. LeVeque. Numerical methods for conservation laws. Cambridge University Press, 1992. ISBN
9780521625586.

[16] Hong-Chia Lin. Dissipation additions to flux-difference splitting. Journal of Computational Physics,
117(1):20 – 27, 1995. ISSN 0021-9991. doi: https://doi.org/10.1006/jcph.1995.1040.

[17] D.Scott McRae. r-refinement grid adaptation algorithms and issues. Computer Methods in Applied
Mechanics and Engineering, 189(4):1161 – 1182, 2000. ISSN 0045-7825. doi: https://doi.org/10.
1016/S0045-7825(99)00372-2. URL http://www.sciencedirect.com/science/article/pii/
S0045782599003722. Adaptive Methods for Compressible CFD.

[18] Tomoya Ogawa, Kazuyuki Yamashita, Takuma Ohta, Ryoji Matsumoto, and Mitsue Den. Hydrody-
namical simulations using a fully threaded tree. Advances in Space Research, 30(3):561 – 563, 2002.
ISSN 0273-1177. doi: https://doi.org/10.1016/S0273-1177(02)00343-5.

[19] S. Chakravarthy, S. Osher. High resolution applications of the osher upwind scheme for the euler
equations. AIAA-83-1943, 1983.

[20] T. Plewa and E. Müller. Amra: An adaptive mesh refinement hydrodynamic code for astrophysics.
Computer Physics Communications, 138(2):101 – 127, 2001. ISSN 0010-4655. doi: https://doi.org/
10.1016/S0010-4655(01)00199-0.

[21] Kévin Pons and Mehmet Ersoy. Adaptive mesh refinement method. part 1: Automatic thresholding
based on a distribution function. 2016.

[22] J.J. Quirk. A contribution to the great riemann solver debate. International Journal for Numerical
Methods in Fluids, Vol. 18(no. 6), 1994. ISSN 1097-0363. doi: 10.1002/fld.1650180603. URL http:
//dx.doi.org/10.1002/fld.1650180603.

[23] P.L. Roe and Royal Aircraft Establishment. Numerical Algorithms for the Linear Wave Equation.
Technical report: Royal Aircraft Establishment. Royal Aircraft Establishment, 1981.

[24] T.A. Eymann, P. Roe. Active flux schemes for systems. 2011.

[25] J. A. Schmidt, C. R. Johnson, J. C. Eason, and R. S. Macleod. Applications of Automatic Mesh
Generation and Adaptive Methods in Computational Medicine, pages 367–393. Springer New
York, New York, NY, 1995. ISBN 978-1-4612-4248-2. doi: 10.1007/978-1-4612-4248-2_18. URL
https://doi.org/10.1007/978-1-4612-4248-2_18.

[26] Sung soo Kim, Chongam Kim, Oh-Hyun Rho, and Seung Kyu Hong. Cures for the shock instability:
Development of a shock-stable roe scheme. Journal of Computational Physics, 185(2):342 – 374,
2003. ISSN 0021-9991. doi: https://doi.org/10.1016/S0021-9991(02)00037-2.

[27] E.F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction.
Springer Berlin Heidelberg, 2009. ISBN 9783540498346.

[28] B. van der Holst and R. Keppens. Hybrid block-amr in cartesian and curvilinear coordinates:
Mhd applications. Journal of Computational Physics, 226(1):925 – 946, 2007. ISSN 0021-
9991. doi: https://doi.org/10.1016/j.jcp.2007.05.007. URL http://www.sciencedirect.com/
science/article/pii/S002199910700215X.

[29] B. van Leer. Towards the ultimate conservative difference scheme, II: Monotonicity and conserva-
tion combined in a second order scheme. Journal of Computational Physics, Vol. 14, 1974.

[30] R. Verfürth. A review of a posteriori error estimation and adaptive mesh-refinement techniques.
Advances in numerical mathematics. Wiley-Teubner, 1996. ISBN 9780471967958. URL https:
//books.google.nl/books?id=DtRUAAAAYAAJ.

[31] T. Chan X. Liu, S. Osher. Weighted essentially non-oscillatory schemes. Journal of Computational
Physics, Vol. 115, 1994.

http://www.sciencedirect.com/science/article/pii/S0045782599003722
http://www.sciencedirect.com/science/article/pii/S0045782599003722
http://dx.doi.org/10.1002/fld.1650180603
http://dx.doi.org/10.1002/fld.1650180603
https://doi.org/10.1007/978-1-4612-4248-2_18
http://www.sciencedirect.com/science/article/pii/S002199910700215X
http://www.sciencedirect.com/science/article/pii/S002199910700215X
https://books.google.nl/books?id=DtRUAAAAYAAJ
https://books.google.nl/books?id=DtRUAAAAYAAJ

Bibliography 85

[32] Kun Xu and Zuowu Li. Dissipative mechanism in godunov-type schemes. International Journal for
Numerical Methods in Fluids, 37:1 – 22, 09 2001.

[33] Z. Shen, W. Yan, G. Yuan. A robust HLLC-type riemann solver for strong shock. Journal of Compu-
tational Physics, Vol. 309, 2016.

	Introduction
	Background: Conservation laws
	Derivation
	Characteristics
	Linear advection equation
	Burgers' equation
	Converging characteristics
	Diverging characteristics

	Euler equations
	Invariants
	Jump conditions

	Literature study
	Hybrid methods
	Adaptive Riemann solver
	HLLCM scheme
	Rotated-hybrid Riemann solver
	(W)ENO schemes

	Flux limiters
	Direct dissipation manipulation
	Mesh adaption
	Types of adaption methods
	Adaption criteria

	Active Flux
	Eymann and Roe's implementation
	Linear advection
	Analysis

	Multistep scheme generation
	Third order multistep scheme

	Adaptive mesh refinement
	Computational architecture
	Global time step procedure
	Refinement
	Coarsening

	Adaption criteria
	Indicator #1
	Indicator #2
	Indicator #3
	Depth mapping

	Mesh initialization
	Further considerations
	Higher order extension
	Nonlinear extension

	Results
	Mesh deterioration
	Accuracy
	Refinement depth
	Zalesak's waveform
	Concluding remarks

	Conclusions
	Recommendations
	Single expression derivation
	Active Flux form derivation
	Square wave results
	Bibliography

