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ARTICLE INFO ABSTRACT

Keywords: We propose three procedures based on association rules (AR) learning and random forests (RF)
Machine learning to support the specification of a portfolio choice model applied in data from complex choice
Choice experiments experiment data, specifically a Participatory Value Evaluation (PVE) choice experiment. In a

Participatory value evaluation
Association rules
Random forests

PVE choice experiment, respondents choose a combination of alternatives, subject to a resource
constraint. We combine a methodological-iterative (MI) procedure with AR learning and RF
models to support the specification of parameters of a portfolio choice model. Additionally, we
use RF model predictions to contrast the validity of the behavioural assumptions of different
specifications of the portfolio choice model. We use data of a PVE choice experiment conducted
to elicit the preferences of Dutch citizens for lifting COVID-19 measures. Our results show model
fit and interpretation improvements in the portfolio choice model, compared with conventional
model specifications. Additionally, we provide guidelines on the use of outcomes from AR
learning and RF models from a choice modelling perspective.

1. Introduction

In the last years, Participatory Value Evaluation (PVE) choice experiments have become an alternative to capture more complex
and realistic forms of human decision making in diverse fields (Mouter et al., 2021b; Rotteveel et al., 2022; Mulderij et al.,
2021). PVE is a preference elicitation framework based in a portfolio choice experiment (Wiley and Timmermans, 2009), in which
respondents select their preferred set of alternatives, subject to one or more resource constraints (Mouter et al., 2021a). In the PVE
choice experiment, respondents face a set of available alternatives, the attributes and costs of each alternative, and the available
resources. Then, respondents must choose a combination of alternatives (if any), without violating the constraints. As in recently
developed experiments (Caputo and Lusk, 2022; Carson et al., 2022; Neill and Lahne, 2022), a PVE choice experiment is an extension
of the discrete choice experiment (DCE) approach that provides a more realistic experimental setting for choice situations where a
multiple choice subject to constraints is required (e.g., policy makers deciding to fund certain policies with a scarce budget).

While PVE choice experiments offer a more realistic experimental setting than a conventional DCE, specifying choice models
to analyse data from such experiments is challenging. Hitherto, choice models developed to analyse PVE choice experiments
data (Dekker et al., 2019; Bahamonde-Birke and Mouter, 2019) have been built to address multiple-discrete (portfolio) choices, the
presence of resource constraints and interaction effects when two or more alternatives are chosen together (Bahamonde-Birke and
Mouter, 2019). However, the specification process of these models usually relies on prior knowledge from the analyst concerning, for
example, how respondents derive utility, how attributes interact (e.g., linear-in-parameters specification), the respondents’ decision
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rule, what interactions between alternatives are relevant to include, etc. Furthermore, finding a proper model specification usually
involves a trial-and-error procedure, in which several candidate specifications are tested and the most parsimonious or plausible
model is chosen. This process is already cumbersome for discrete choice models (Ortelli et al., 2021), but for more complex choice
models, and models for PVE choice experiments data in particular, even more so. The presence of considerably more variables,
possible combinations of chosen alternatives, and potential interactions effects between alternatives impose more complexity in the
specification of a choice model for PVE choice experiments data, with the consequently longer estimation times than for a discrete
choice model, namely from the range of minutes for a simple specification, to an hour in more complex cases.

In the last years, there has been an increasing interest on assisting the specification of choice models with data-driven methods.
Data-driven methods (e.g., machine learning, data mining) are methodological approaches that aim to identify relevant patterns
and/or learn the underlying data-generating process (DGP) directly from the data. Recent studies have shown that data-driven
methods can complement the toolbox of choice modellers (see, for example van Cranenburgh et al., 2022; Sifringer et al., 2020;
Wang et al., 2020), or provide further insights for researchers, without explicitly using choice models (e.g., Keuleers et al., 2001; van
Cranenburgh and Kouwenhoven, 2020). Furthermore, specific approaches based in data-driven methods to assist the specification of
discrete choice models have been recently proposed in literature (Ortelli et al., 2021; Hillel et al., 2019; Shiftan and Bekhor, 2020).
However, to the authors’ knowledge, no studies have explored methods to assist the specification of choice models to analyse data
from more complex type of choice experiments than a DCE, and particularly from PVE choice experiments, or they explored potential
insights obtained from using this methods with PVE choice experiments data.

In this paper, we propose three procedures to assist the specification of choice models for PVE choice experiments based in two
data-driven methods, and we provide insights on the interpretation of the outcomes of such methods a choice modelling perspective.
The first method is Association Rules (AR) learning (Agrawal et al., 1993); a data mining approach used to identify frequent
interactions between the variables of a dataset in terms of a set of empirical relational statistics. Applications of AR learning in
areas where choice models are standard methods can be seen in the works of Keuleers et al. (2001), Geurts et al. (2003) and Kaur
and Kang (2016), but solely focused on gathering association rules between explanatory variables of choice data. We use AR learning
to gather association rules between chosen alternatives of the PVE choice experiment that can be interpreted as relevant interactions
made by respondents. The second method is a Random Forest (RF) model (Breiman, 2001); a predictive machine learning model
built from an ensemble of decision tree models. RF models can model complex relationships from the data, while yet providing a
degree of interpretability through the computation of variable importances. We build upon the works of Hillel et al. (2019), Yao
and Bekhor (2020) and Shiftan and Bekhor (2020), and we propose two methodological-iterative (MI) procedures to specify the
parameters of the utility functions of a portfolio choice model applied in PVE experiments data (Bahamonde-Birke and Mouter,
2019) in a structured way, based on the outcomes of AR learning and RF models, respectively. Finally, we propose a procedure to
test the validity of the behavioural assumptions of different specifications of the portfolio choice model, based on comparing their
ranking of combinations of alternatives with highest choice probability with the ranking obtained from a RF model.

For our analyses we use data from a PVE choice experiment to elicit the preferences of Dutch citizens for relaxing COVID-19
restrictions after the first wave of the Coronavirus pandemic (Mouter et al., 2021a). In this experiment, respondents were asked to
choose their preferred package of COVID-19 restrictions to be relaxed from eight options, such that a constraint of pressure to the
healthcare system is not violated. On the one hand, relaxing COVID-19 restrictions may lead to increasing deaths due to COVID-
19; on the other hand, it can provide psychological relief and reduce economic losses. Interactions between individual relaxations
are reasonably expectable in this PVE choice experiment, as well as differences in terms of the preferences for an impact among
different options. Furthermore, it is reasonable to expect the existence of complex interactions that are difficult to uncover from a
choice model. In fact, analyses of written arguments to make a choice in this PVE choice experiment suggest the existence of semi-
compensatory and lexicographic choice behaviour in a significant amount (Mouter et al., 2021a). In that sense, a more agnostic
approach (in terms of behavioural assumptions), such as a RF model can be more appropriate for prediction purposes than a choice
model.

This paper is organised as follows. Section 2 details the PVE choice experiment data preparation and data description. Section 3
formalises AR learning, RF models, the portfolio choice model and the procedure to assist the specification of choice models.
Section 4 presents the results. Section 5 concludes and provides a discussion of our findings and further research directions.

2. Data
2.1. The COVID-19 PVE choice experiment data

We use data from a PVE choice experiment conducted to elicit the preferences of Dutch citizens to relax COVID-19 measures in
the Netherlands (Hernandez et al., 2021),' henceforth the COVID-19 PVE choice experiment. In this experiment, respondents were
asked to choose which COVID-19 restrictions should be relaxed, without surpassing a maximum level of pressure increase to the
healthcare system. Respondents faced eight relaxation options (alternatives):

1. Nursing and care homes allow visitors (NH),
2. Re-open businesses, other than contact professions and hospitality industry (RB),

1 The dataset is available from https://doi.org/10.4121/14413958.v1
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Table 1
Example of a choice matrix of a PVE choice experiment.
Participant NH RB RC YP RH
ID
1 1 1 0 0 1
2 1 1 1 0 1
3 0 0 0 1 1
N 0 0 0 0 0
Table 2
Variables of the COVID-19 PVE choice experiment dataset.
Variable Description
Choice_1to 8 Binary choice indicator (=1 if alternative is chosen)
Y_index Unique index of chosen combination of alternatives (from 0 to 181)
Pressure_1to 8 Additional pressure to the healthcare system
Deaths_70plus_1 to 8 Additional deaths of people of 70+ years old
Deaths_less70_1 to 8 Additional deaths of people of less than 70 years old
Plus_physical_injury_1to 8 Additional people with (permanent) physical injury
Minus_mental_injury_1 to 8 Decrease of people with (permanent) mental injury
Minus_HH_incloss_1to 8 Decrease of households with severe income loss

. Re-open contact professions (RC),

. Young people may come together in small groups (YP),

. All restrictions lifted for people with immunity (LI),

. All restrictions lifted in Northern provinces (LN),

. Direct family members from other households can have social contact (DF),
. Re-open hospitality and entertainment industry (RH).

0 NOU AW

Choosing an alternative generated an additional (percentage) pressure to the healthcare system. Respondents cannot surpass an
increase of 50% of pressure to the healthcare system. In addition, each alternative was characterised by five attributes: a) additional
deaths of people with 70 or more years old, b) additional deaths of people with less than 70 years old, c) additional cases of
(permanent) physical injury, d) reduction of cases of (permanent) mental injury, and e) reduction of households with severe income
loss. A more detailed description of the design of this experiment is presented in the work of Mouter et al. (2021a). The choices
of a PVE choice experiment can be represented in a matrix of size N x J, as illustrated in Table 1. Each row is a choice situation
(respondent) from 1 to N, while each column is an alternative from 1 to J. A choice in a PVE choice experiment is a combination
of choices among the J alternatives, represented by ones (if chosen) and zeros (if not chosen).

2.2. Data preparation and description

The COVID-19 PVE choice experiment dataset contains 29,669 responses and 57 variables. Table 2 provides a definition of the
variables of this dataset. First, we define the choice indicators in two forms: eight individual indicators per alternative (Choice_
from 1 to 8) used by AR learning and the choice model, and a single variable that uniquely identifies a chosen combination of
alternatives used by the RF model (Y_index) ranging from 0 to 181. Second, we define the attributes of each alternative as a set
of numeric variables, per alternative and per attribute (Pressure_ to Minus_HH_incloss_ 1 to 8). Except for pressure to the
healthcare system, all attributes are scaled by 10,000 to avoid numerical overflow issues in the estimation/training routines of the
portfolio choice model.

Fig. 1 summarises the market shares (a) and the distribution of the number of chosen alternatives (b) the dataset. The most chosen
alternatives are re-opening contact professions (RC) and other businesses (RB), with 62.4% and 50.1%, respectively; in contrast,
lifting all restrictions for immune people (LI) and in the Northern provinces (LN) are the least chosen alternatives with 10.2%
and 5% respectively. The vast majority of respondents choose between two and four alternatives (more than 80% of respondents).
As expected, no respondents choose more than six alternatives due to the existence of a resource constraint. On the other hand,
5.3% of respondents choose no alternative at all (no choice). While this percentage is rather low if taken as a dropout measure
(i.e., respondents who did not answer the choice experiment), it is considerably higher than the probability of randomly choosing
any combination of alternatives of the dataset (1,/182).

In addition to the empirical data, we create four datasets with pseudo-synthetic choices. Pseudo-synthetic datasets are generated
to corroborate if our proposed methods are able to recover the true data-generating process and/or identify interactions included
a priori in the data. For instance, we use pseudo-synthetic data to test whether the metrics of AR learning are aligned with the
inclusion of explicit interactions. Pseudo-synthetic datasets are generated by using the experimental design of the COVID-19 PVE
choice experiment data to generate synthetic choices, assuming a previously known DGP and “true” parameters. We provide a detail
of the dataset generation process and parametrisation in Appendix A.
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Fig. 1. Descriptive statistics of choice variables, COVID-19 PVE choice experiment.

3. Methods
3.1. Association rules learning

AR learning is a data mining method that aims to identify frequent relationships between variables of a transactions dataset (Agrawal
et al., 1993). In an AR learning application, an algorithm scans combinations of variables in the dataset named as itemsets, keeping
only the combinations that satisfy a minimum support (relative frequency) threshold defined by the analyst. Then, a set of association
rules of the form A = B, with A and B itemsets, are constructed, considering only those rules with a confidence (conditional
frequency) higher than a threshold defined by the analyst. By doing so, AR learning rules out combinations of alternatives that
scarcely appear in the dataset. In this paper, we use the seminal approach of AR learning provided by Agrawal et al. (1993) to
identify association rules between combinations of discrete alternatives using the “Apriori” algorithm.

We proceed to formalise AR learning. Consider a transactions dataset D with N rows and J columns. Each row »n € {1,..., N}
of the dataset is a transaction over J items (columns). Each transaction is represented as a vector y, = {¥,1, ¥, ---» ¥,y }, il Which
each variable y,; is a binary indicator that is equal to one if item j € {1, ..., J} is selected, and zero otherwise. Some examples of
transaction datasets are supermarket purchase data, accesses to webpages, etc. In this paper, we treat the choice data of the PVE
choice experiment as a transaction dataset, in which each transaction is a choice situation over J alternatives.

Define an itemset as a subset of items of the dataset. For example, A = {y,1.¥2}> B = {Vu3: Vs> Vus} a0d C = {¥,1, V2> Vna}
are itemsets of the dataset D. An association rule between itemsets A and B is a directional implication of the form A = B, with
AN B =, in which A is defined as the antecedent and B is the consequent. If itemsets A and B are two (disjoint) combinations of
alternatives, the rule A = B can be interpreted as “if combination of alternatives A is chosen, then combination of alternatives B
is chosen”.

The problem of AR learning is to find all the itemsets that satisfy a minimum support threshold, and then generate all the
association rules that satisfy a minimum confidence threshold. The support supp(A) of an itemset A as the relative frequency that A
appears in dataset D. The support of an itemset A can be interpreted as the probability P(A) on the domain of the dataset.

The confidence of an association rule A = B is defined as:

conf(A= B)= SUPPAVB) @
supp(A)

Confidence is the percentage of transactions of itemset A that also contain itemset B. In the context of PVE choice experiments
data, a support of A equal to s is interpreted as “s * 100% of the choices of the dataset involve the combinations described in A”,
whereas a confidence of the rule A = B equal to c is interpreted as “c * 100% of the choices that involve A also involve B”. The
confidence of A = B can be interpreted as the conditional probability of B given A.

While support and confidence measure how often an itemset or rule appear in the dataset, they do not provide information about
the degree of dependence of the components of a rule. Thus, AR learning can generate trivial rules with high confidence and support
for itemsets A And B, even if such itemsets have a small or no dependence (Keuleers et al., 2001). In light of this, computing the
lift of the association rules is recommended. The lift of an association rule A = B measures the degree of dependence between A
and B as:

supp(A U B)
supp(A) - supp(B)’

The lift is a ratio between the support of A and B together, divided by the independent supports of each itemset. If /i ft1(A = B) > 1
then A and B are more often to be found in the dataset than if A and B were independent, and viceversa for /i ft(A = B) < 1.

The final outcome of an AR learning application is a list of association rules described by their support, confidence and lift. The
analyst can refine this list according to their research needs. For instance, the analyst may be interested only in rules that contain a
certain set of variables in the antecedent, and other sets of variables in the consequent; or finding the rules that are more frequent
to appear than expected, by sorting them in terms of lift.

lift(A= B) = @
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Fig. 2. Example of a RF model.

RF Model algorithm:

Training: Let (X,y) be the training sample.
1. For r=1,R:

la. Draw a bootstrapped sample (X*,y*) from (X,y).
1b. Train a DT model using (X*,y"), selecting random k variables from X* to do each split of the tree.
1c. Store the DT model as 7.

Prediction: Let (X*) be a subset of the original explanatory variables, different from the training data.
1. For r = 1, R, predict the choice probabilities on each decision tree.

2. Compute the final choice probabilities as the average among the R trees.

Fig. 3. RF model algorithm.

3.2. Random forests

A RF model (Breiman, 2001) is a supervised machine learning method that benefits of the strengths of three techniques from
machine learning: an ensemble of decision tree (DT) models, bootstrap aggregation or bagging, and random feature selection. The
process of constructing a RF model is illustrated in Fig. 2. Firstly, a set of R DT models is estimated. A DT is a supervised machine
learning method based on partitioning the space of the explanatory variables into finite regions to construct a tree structure that
best describes the response variable (Friedman et al., 2001). Secondly, to allow variability among trees, each DT model is trained
(estimated) using a bootstrapped sample of the data. Thirdly, the partitions of each individual DT model are done using a random
subset of explanatory variables, in order to reduce the correlation between trees. Finally, each tree generates a set of predictions
that are averaged to provide the final prediction of the RF model.

We proceed to formalise the RF model used in this paper. Let y, be a response variable that uniquely identifies a choice over J
alternatives for respondent n. X,, is a set of explanatory variables, such as attributes and costs. Define (y, X) as a dataset of size N
wherey = {y,...,yy} and X = {X|, ..., Xy }. The goal of the RF model is to construct an ensemble of DT models that predicts y as
a function of X.

The RF algorithm is described in Fig. 3. On each DT model r, a bootstrapped sample (X", y") of the original data is drawn and
used to train the individual tree. Each split of the DT model r is done using a random subset of the variables contained in X". Finally,
each trained DT model r is stored. To make predictions with a RF model, a sample (X*,y*) — that is different from the sample used
for training - is used to predict the choice probabilities of each combination of alternatives among the R trees. The final choice
probabilities of the RF model are computed by averaging the predictions of all trees.

In addition, RF models can be used to determine the importance of the explanatory variables used on the training process. This
is done by computing the mean decrease of impurity of each explanatory variable among the splits (Friedman et al., 2001). The
decrease of impurity is the contribution of an explanatory variable on reducing misclassifications in terms of the Gini index (Cheng
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et al., 2019) on a split of a DT:

J
G(X) = Z P(X;=L;)(1-PX;=1L)), 3)

j=1
where X; is the candidate variable for making a split in the RF model, with a possible number of categories L, ..., L;, and P(X; = L)

is the predicted probability of X; = L;. The mean decrease of impurity of a RF model is the average contribution of each explanatory
variable on reducing misclassifications on each tree, and among trees of the RF model. Therefore, higher values of the mean decrease
of impurity for a variable X; imply a major importance of such variable in the RF model, and viceversa.

We identify two considerations on the training and use of results of RF models. The first consideration is the proper selection of
so-called hyperparameters. The hyperparameters of the RF model (i.e., the number of DT models, the maximum depth of each tree
and the number of variables used per split) can have a significant impact on the final predictions. In light of this, we followed a grid
search process to determine the best hyperparameters of the RF model applied to our data. We describe in detail such procedure
in Appendix B. The second consideration is that variable importances are computed from the training data, which can lead to
difficulties to generalise their interpretations. In light of this, the importance measures employed in this paper are computed by
using a cross-validation process based on training 100 RF models using random samples (with replacement) of the original data,
and averaging the obtained importances of each explanatory variable among all repetitions.

3.3. The portfolio choice model for PVE choice experiments data

The model we aim to assist its specification is a portfolio choice model for PVE choice experiments data proposed by Bahamonde-
Birke and Mouter (2019). This model is an extension to the joint choice model (Lerman, 1976), modified to only consider
the choice probabilities of combinations that do not violate the resource constraint. In addition, this model can incorporate
interaction parameters that address increases (decreases) of utility when two or more alternatives are chosen at once, interpreted
as positive/negative synergies.

We proceed to formalise the portfolio choice model. Let be N respondents of a PVE choice experiment with J alternatives and
an available amount of resources of B. Each alternative j € {1,...,J} that respondent n € {1, ..., N} is characterised by the unitary
cost of resources c,; and the vector of K attributes X, ;. Each respondent perceives utility from their choice of a combination of
alternatives p, where p is a number from one to 27 —U,, i.e., the number of possible combinations between alternative choices, minus
the number of unfeasible combinations. Additionally, each respondent perceives utility from the amount of non-spent resources.

Following (Bahamonde-Birke and Mouter, 2019) and assuming only interactions between two alternatives, the utility of choosing
a combination p for respondent » is defined by Eq. (4):

J J
. J
Zynj'Unj+50.<B_Zy"j'C”j)-'—Zzeijyiyj—i_e"p ’lf (B—Zj=1y,,j~cnj>20
Up =7 j=i i=l T )
—oo , if (B—Z}]=1ynj.cnj><0

where y,; are binary indicators that are equal to one if respondent n selected alternative j and zero otherwise, U,; is the utility
of each individual alternative, &, is a parameter that captures the preference for not spending resources, 6;; is a parameter that
captures the increase (or reduction) of utility when alternatives i and j are chosen together with i # j, and ¢,, is a stochastic error
term with an Extreme Value distribution. U, j 1s defined by Eq. (5):

Uyj=6;+ B Xy (5)

where §; are alternative-specific constants and f is a vector of parameters associated with the attributes of each alternative.
Assuming that each individual choose the combination of alternatives that maximise his/her utility, the probability of choosing
alternative i by respondent » is defined by Eq. (6):
exp(V,;)
2 exp(Vyy) '
where V,; is the observed (non-stochastic) part of the utility function U,;. Notice that the choice probabilities take the form of the

MNL function, since the utility of a combination of alternatives incorporates an additive Extreme Value stochastic term. Furthermore,
the choice probability of an unfeasible combination of alternatives collapse to zero, since V,; = —co.

P = P(U, >U,,Vp#i) =

(6)

3.4. Assisted specification of the portfolio choice model: methodological-iterative approaches

Shiftan and Bekhor (2020) and Yao and Bekhor (2020)? propose a methodological-iterative (MI) approach to assist the
specification of a discrete choice model using the variable importances of a RF model. We build upon these works, and we propose
two separate variations of their MI approach, in which we assist the specification of the parameters of a portfolio choice model
using the outcomes of AR learning and RF models, respectively.

2 We appreciate the suggestion of one anonymous reviewer on considering this work.
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Fig. 4. Methodological-Iterative algorithm for AR learning, based on Shiftan and Bekhor (2020) and Yao and Bekhor (2020).

The first approach, named as MI/AR and detailed in Fig. 4, aims to use the set of association rules with highest and lowest
lift values to specify alternative interaction parameters in the portfolio choice model. In the first step, we apply AR learning in
the PVE choice experiment data, and we select the N rules with highest and lowest lift, with N chosen by the analyst. We name
the set of rules with highest lift as “group 1”, and the set of rules with lowest lift is named as “group 2”. The algorithm starts by
estimating a portfolio choice model with all the interactions of group 1 specified in the utility functions. Then, the algorithm selects
the interaction with the lowest lift value of group 1 and evaluates whether the estimated parameter associated to such interaction
is statistically significant. If the parameter is non-significant, the interaction is discarded from the model specification and a new
portfolio choice model without the interaction is estimated, otherwise the interaction is kept and the process is repeated until all
the interactions of group 1 are considered, in an increasing order in terms of lift. After all interactions of group 1 are considered,
the process is repeated for group 2. The algorithm stops when all interactions of both groups are considered.

The second approach, named as MI/RF and illustrated in Fig. 5, aims to use the variable importances of a trained RF model
to evaluate the inclusion/exclusion of attribute-specific parameters in the portfolio choice model. In the first step, we train the RF
model with the PVE choice experiment data, we calculate the variable importances and we sort them in descending order. Then, we
separate the variable importances in two groups: “group 1” contains the attributes with highest variable importances, and “group
2” contains the attributes with lowest variable importances. The algorithm starts by estimating a portfolio choice model with all
the attribute-specific parameters of group 1 specified in the utility functions. Then, the exclusion of attribute-specific parameters is
determined by their statistical significance, starting by the attributes with lowest importance from group 1. After all the attributes of
group 1 are evaluated, the process is repeated for group 2. The algorithm stops when all the attributes of both groups are considered.

3.5. Using the RF model predictions to test the behavioural assumptions of the portfolio choice model

The final method proposed in this paper is a procedure to test the behavioural assumptions and specification of a portfolio choice
model based on the predictions of a RF model. Specifically, we train the RF model with the PVE choice experiment data, and we
compute the ranking of combinations of alternatives with the highest choice probability. This ranking consists of predicting the
choice probabilities of all possible combinations of alternatives and sort them by their choice probability in decreasing order. The
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Fig. 5. Methodological-Iterative algorithm for RF models, based on Shiftan and Bekhor (2020) and Yao and Bekhor (2020).

same ranking is computed from the predictions of a portfolio choice model under different utility specifications, and we evaluate
the (dis)similarity between these rankings and the ranking obtained from the RF model.

Fig. 6 details the procedure to compute the ranking of combinations of alternatives with highest choice probability using a RF
model. The procedure is equivalent to compute the ranking using a portfolio choice model, but replacing the RF model by the
portfolio choice model. We consider a RF model trained with a sample of the original data, and a prediction (test) sample that
differs from the training data. First, we predict the choice probabilities for each combination of alternatives using the prediction
sample using the trained RF model. Then, we average the choice probabilities among each choice situation to obtain a single vector
of choice probabilities per combination of alternatives. This vector is sorted in descending order and the ranking is constructed by
matching each combination of alternatives with their corresponding choice probability. Additionally, the cost of each combination
is reported, and in case the portfolio choice experiment considers resource constraints, then combinations that violate such resource
constraint are discarded.

To evaluate the (dis)similarity between predicted rankings, we use the Kendall’s Tau correlation coefficient (Kendall, 1945). This
statistic measures the correlation between two pairs of ranked lists. The statistic is defined as:

= P_Q
VP+Q+T)P+0+U)

where P is the number of concordant pairs between lists, O is the number of discordant pairs, T' the number of ties of the first list
and U the number of ties in the second list.

T

@

4. Results
4.1. Association rules learning
4.1.1. Gathering and interpreting association rules from the PVE choice experiment data

Table 3 summarises the found association rules from the COVID-19 PVE choice experiment data. We set low threshold values
for support and confidence in order to avoid discarding rules that can be a sign of negative interactions between alternatives.
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Ranking of combinations of alternatives with highest choice probability using RF models

Start: Consider a trained RF model. Let (X*,y*) be a prediction sample.

1. Predict the choice probabilities ¥ with the prediction sample using the trained RF model.

2. Average the choice probabilities among choice situations (rows).

3. Sort the resulting average choice probabilities in descending order.

4. Construct the portfolio ranking by matching each combination with their respective choice probability.
5

. Output the ranked combinations, their choice probabilities, and their total cost of resources.

Fig. 6. Algorithm for computing the ranking of combinations of alternatives with highest choice probability.

Table 3
Summary of found association rules.
Value

Number of rules 2,100
Mean confidence 0.09
Confidence range [0.0, 1.0]
Mean lift 0.458
Lift range [0.013, 1.994]

Specifically, we set minsupport ~ 0 and minconfidence = 0 as support and confidence thresholds, respectively.® In total, we find
2100 association rules, with an average confidence of 9%, and average lift of 0.46, with a range between 0.01 and 2 approximately.
We expected a low average confidence and large range of lift due to the low thresholds we specify for support an confidence.
Additionally, we confirmed that confidence and lift values of association rules are aligned with the inclusion of interactions and
unobserved correlation between chosen alternatives in the pseudo-synthetic data. We present the results of these analyses in
Appendix C

For the purposes of an easier interpretation, we focus on binary (one antecedent and one consequent) association rules, and
we discard rules with swapped antecedent and consequent, since their lift is the same than the kept rules. Table 4 summarises
the support, confidence and lift of the top- and bottom-10 binary association rules sorted by lift. The interpretation of confidence
for the found rules is the extent that the consequent is found in the antecedent. For instance, the confidence value of 0.74 of the
second association rule means that 74% of respondents that choose to re-open the hospitality sector (RH) also choose to re-open
contact professions (RC). In contrast, only 3% of respondents that choose re-opening the hospitality sector (RH) also choose to lift
restrictions in Northern provinces (LN). The interpretation of lift is in terms of the extent that two alternatives are more (less) prone
to be chosen together than each alternative separately, compared with the other rules after applying filter criteria. For instance, we
find that choosing together to lift restrictions in the Northern provinces (LN) and for immune people (LI) is more prone to be chosen
than independently, compared with the rest of binary association rules. Conversely, choosing to re-open the hospitality sector (RH)
and lift restrictions in the Northern provinces (LN) together is found to be lower than choosing them independently, compared with
the other binary rules.

4.1.2. Using association rules to assist the specification of the portfolio choice model

We use three different model specifications of the portfolio choice model. The first model is a baseline specification with
alternative-specific constants, attribute parameters that do not vary across alternatives, and no alternative interaction parameters.
The second model considers all interactions described in Table 4. The third model is specified with the MI/AR approach to discard
non-significant alternative interaction parameters.

Table 5 details the estimation results of the portfolio choice model under the three different specifications. We find that the
models that include interaction terms (last two columns) outperform the baseline specification in terms of log-likelihood and
Akaike/Bayesian information criteria (AIC and BIC). Furthermore, the model specified using the MI/AR approach outperforms
the other two specifications in terms of information criteria, which means that this model is more parsimonious. All interactions
associated with high lift values are statistically significant and have a positive sign, in line with out expectations. On the other
hand, we find that two of the interactions associated with lower lift (Interaction: ['YP’, ‘RH’] and Interaction: ['RH’, ‘LI’]) have a
positive sign and are statistically significant, against our expectations. However, we also observe that the inclusion of alternative
interaction parameters induce a change of sign of some of the alternative-specific constants of the models. Furthermore, it is easy to

3 We used a value of minsupport = 1 % 1076 since the Apriori algorithm only accepts support thresholds above zero.
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Table 4
Top- and bottom-10 binary association rules ordered by lift.

Antecedents Consequents Support Confidence Lift

LN LI 0.0067 0.1342 1.3192
RH RC 0.2343 0.7423 1.1906
YP DF 0.2082 0.5171 1.1792
RB YP 0.2184 0.4354 1.0814
LI YP 0.0419 0.4113 1.0216
YP RC 0.2548 0.6328 1.0149
RC RB 0.3130 0.5021 1.0011
DF RC 0.2720 0.6202 0.9947
LI DF 0.0443 0.4352 0.9924
RB DF 0.2121 0.4230 0.9645
RH YP 0.1110 0.3518 0.8738
LN RB 0.0206 0.4107 0.8190
DF LN 0.0170 0.0388 0.7729
RH DF 0.1058 0.3353 0.7645
RC LN 0.0226 0.0362 0.7201
LI RH 0.0228 0.2237 0.7090
LN NH 0.0097 0.1933 0.5998
RH NH 0.0602 0.1907 0.5917
LI NH 0.0190 0.1863 0.5781
RH LN 0.0064 0.0202 0.4020

Pressure_1
Pressure_7 NH RB RC YP L LN DF RH

Pressure 2
Pressure_3
Pressure_8 Deaths_70plus

Pressure_5
Deaths_less70_6
Plus_Physical_Injury_3 Deaths less70
Plus_Physical_Injury_7 -
Plus_Physical_Injury_4
Pressure_6 N N
Plus_Physical_Injury_1 Plus_Physical_Injury
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Deaths_70plus_5 Minus_Mental_Injury
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(a) Top-ranked variable importances (b) Heatmap view

Fig. 7. RF variable importances, empirical data.

see that the utility of choosing ‘LI’ and ‘RH’ together is lower in the model specified with the MI/AR approach than in the baseline
model (—1.87 against —1.16, respectively). Thus, the interpretation of positive or negative interactions does not rely solely on the
alternative interaction parameters, but also on the combination of such parameters with the alternative-specific constants.

4.2. Random forests

4.2.1. Obtaining and interpreting variable importances

Fig. 7 presents the top-half of variables ordered by their importance (a), as well as a heatmap view of the importance of all
variables (b). We observe that the constrained attributes of the PVE choice experiment (i.e., pressure to the healthcare system) are
among the most important variables. Visual inspection of the heatmap view allows to confirm that attributes other than pressure
to the healthcare system play a rather minor role in terms of importance. In light of these results, we may expect that parameters
associated with pressure to the healthcare system will predominate in a portfolio choice model specified with the MI/RF approach,
and that most of the discards are focused on the remaining attribute-specific parameters.

4.2.2. Using variable importances to assist the specification of the portfolio choice model

Table 6 summarises the log-likelihood, rho-squared and information criteria of the baseline portfolio choice model detailed in
Table 5 (first column), a model with all attribute-specific parameters separated per alternative (second column), and a model with
attribute-specific parameters specified with the MI/RF approach (third column). We observe that the model fit measures of the three
models are similar, with slightly better performance in the MI/RF specification. This result can be explained by the low contribution
of attributes to explain the portfolio choice model, other than pressure to the healthcare system.
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Table 5
Estimation results of portfolio choice models.

Baseline model

All interactions

MI/AR

Remaining pressure
Constant of NH
Constant of RB
Constant of RC
Constant of YP
Constant of LI
Constant of LN
Constant of DF
Constant of RH

0.0442 (0.0014)***
0.5185 (0.0415)***
0.6956 (0.0311)***
1.2643 (0.0351)***
0.1102 (0.0172)***
—0.9674 (0.0354)*
—1.1536 (0.0547)***
0.5025 (0.0389)***
0.4653 (0.0528)***

0.0422 (0.0014)***
0.5959 (0.0477)**
0.3510 (0.0382)***
0.5193 (0.0431)***
—0.6477 (0.0339)***
—1.2422 (0.0505)***
—1.2205 (0.0807)***
0.0779 (0.0472)
—0.2946 (0.0616)***

0.0421 (0.0013)***
0.5932 (0.0471)***
0.3604 (0.0340)***
0.5197 (0.0397)***
—0.6497 (0.0319)***
—1.2427 (0.0479)***
—1.2166 (0.0563)***
0.0903 (0.0433)*
—0.2998 (0.0577)***

Additional deaths 70 y.o. or more —0.0707 (0.0965) —0.0890 (0.1245) —0.0873 (0.1204)

Additional deaths less than 70 y.o. —0.7498 (0.2242)*** —0.7653 (0.1884)*** —0.7686 (0.2174)***
Additional physical injury —0.1109 (0.0220)*** —0.1049 (0.0213)*** —0.1049 (0.0208)***
Reduction of psychological injury 0.0204 (0.0046)*** 0.0179 (0.0046)*** 0.0180 (0.0045)***

Reduction of income losses 0.0211 (0.0032)*** 0.0229 (0.0030)***

0.8907 (0.0853)***
1.2155 (0.0280)***
0.6693 (0.0253)***
0.4431 (0.0251)***
0.3420 (0.0401)***
0.2710 (0.0259)***
0.2515 (0.0248)***
0.2836 (0.0252)***
0.2841 (0.0404)***
0.0221 (0.0243)
0.1255 (0.0270)***
0.0089 (0.0582)
0.0230 (0.0569)
—0.1504 (0.0268)***
0.0066 (0.0540)
0.2838 (0.0493)***
—0.2198 (0.0672)**
—0.1082 (0.0317)***

0.0229 (0.0029)***

0.8942 (0.0852)***
1.2171 (0.0288)***
0.6701 (0.0248)***
0.4454 (0.0246)***
0.3419 (0.0390)***
0.2708 (0.0258)***
0.2508 (0.0244)***
0.2824 (0.0250)***
0.2822 (0.0412)***

Interaction: [‘LD’, ‘LN’]

Interaction: [‘RH’, ‘RC’]
Interaction: [‘YP’, ‘DF’]
Interaction: [‘YP’, ‘RB’]
Interaction: [‘LI’, ‘YP’]

Interaction: [‘YP’, ‘RC’]
Interaction: [‘RC’, ‘RB’]
Interaction: [‘RC’, ‘DF’]
Interaction: [‘LI’, ‘DF’]

Interaction: [‘DF’, ‘RB’]
Interaction: [‘YP’, ‘RH’]
Interaction: [‘LN’, ‘RB’]
Interaction: [‘LN’, ‘DF’]
Interaction: [‘RH’, ‘DF’]
Interaction: [‘LN’, ‘RC’]
Interaction: [‘LI’, ‘RH’]

Interaction: [‘LN’, ‘NH’]
Interaction: [‘RH’, ‘NH’]

0.1269 (0.0272)***

—0.1523 (0.0273)***

0.2861 (0.0494)***
—0.2147 (0.0633)***
—0.1043 (0.0316)***

Interaction: [‘LI’, ‘NH’] —0.3192 (0.0550)*** —0.3186 (0.0495)***
Interaction: [‘LN’, ‘RH’] —0.0611 (0.0854)
Log-likelihood -124,119.02 -122,336.75 -122,337.59
AIC 248,266.03 244,741.50 244,733.18
BIC 248,382.19 245,023.61 244,973.80
Rho-squared 0.0981 0.1110 0.1110
***p < 0.001; **p < 0.01; *p < 0.05.
Table 6
Model fit metrics of portfolio choice models.
Baseline model Separated parameters MI/RF
Log-likelihood —124,119.02 —124,003.24 —124,014.63
AIC 248,266.03 248,116.48 248,093.27
BIC 248,382.19 248,572.83 248,358.78
Rho-squared 0.0981 0.0989 0.0988

Table 7 summarises the estimation results of the portfolio choice model specified with the MI/RF approach. We observe that
all alternative-specific constants are positive and statistically significant. The parameters associated with pressure to the healthcare
system suggest mixed effects depending of each individual alternative. Notice that for this model specification (and the model
with all attribute-specific parameters separated per alternative), pressure to the healthcare system is included as an additional
attribute, hence it should be interpreted in terms of pressure increases, instead of remaining pressure such as in the results of Table 5.
With respect to the remaining attributes, all but one of the attribute-specific parameters have the expected sign. Furthermore, the
estimated parameters of additional deaths of people of 70 years old or older become statistically significant and have a negative
sign. Finally, we find that the estimate of additional physical injury by choosing to allow visitors in nursing homes has a positive
sign, against our expectations.

4.2.3. Testing the behavioural assumptions of the portfolio choice model

Table 8 summarises the model fit measures of the trained RF model compared with three specifications of the portfolio choice
model: the baseline model, the specification based on the MI/AR approach used in Table 5 and the specification based on the MI/RF
approach detailed in Table 7. We find that the RF model outperforms all the other choice modelling approaches, at least in terms of
log-likelihood and rho-squared. We previously verified that the RF model is able to recover the true DGP of different specifications
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Table 7
Estimation results, portfolio choice model specified with MI/RF approach.
NH RB RC YP LI LN DF RH
Constant 0.0383*** 0.0476"** 0.0418"** 0.0850*** 0.0511"** 0.0427** 0.0677* 0.0190"**
(0.0023) (0.0036) (0.0043) (0.0078) (0.0054) (0.0052) (0.0038) (0.0033)
Additional pressure 0.3043*** 0.6364*** 1.2694*** 0.4563*** —0.9228*** —0.9068*** 0.7593*** 0.1239
(0.0666) (0.0427) (0.0885) (0.0542) (0.0774) (0.1541) (0.0987) (0.1061)
Additional deaths 70 y.o. or more —2.1694*** —0.6655* 1.0220*
(0.6454) (0.2797) (0.4918)
Additional deaths less than 70 y.o. —1.1370** —3.1763*** —1.7083**
(0.4034) (0.8106) (0.5999)
Additional physical injury 0.8199* —-0.1210* —0.3540** —0.1324** —-0.1014*
(0.3810) (0.0524) (0.1363) (0.0463) (0.0437)
Reduction of psychological injury 0.0284** 0.0240*
(0.0091) (0.0096)
Reduction of income losses 0.0261*** 0.0235%** 0.0143*
(0.0049) (0.0063) (0.0064)
Log-likelihood -124,014.63
AIC 248,093.27
BIC 248,358.78
Rho-squared 0.0988
“*p < 0.001; *p < 0.01; *p < 0.05.
Table 8
Model fit measures, RF model compared with portfolio choice models.
Baseline MI/AR RF/AR RF
Log-likelihood —124,119.02 -122,337.59 —-124,014.63 -120,197.17
Rho-squared 0.0981 0.1110 0.0988 0.1266
Table 9
Comparison of Kendall’s Tau of rankings of combinations of alternatives with highest choice probability.
RF vs. Baseline RF vs. MI/AR RF vs. MI/RF
Top-5 —0.4000 —0.2000 —0.4000
Top-10 0.3778 0.4667* 0.3778

P-values of Kendalls Tau: * : p <0.1.

of the portfolio choice model, and that the RF model can approximate the ranking of combinations of chosen alternatives with
highest choice probability. A more detailed descriptions of such tests can be found in Appendix D.

Table 9 details the Kendall’s Tau value obtained from contrasting the top-5 and top-10 rankings of combinations of alternatives
with highest choice probability of the RF model with their respective top-5 and top-10 rankings obtained from the baseline portfolio
choice model and the specifications specified with the MI/AR and MI/RF approaches. Among all the contrasts, the only case in which
the hypothesis of no-correlation is rejected (at 90%) of confidence is between the top-10 rankings of the RF model and the portfolio
choice model specified with the MI/AR approach.

Finally, Table 10 details the top-10 ranking of combinations of alternatives with highest choice probability of the RF model, the
baseline portfolio choice model and the portfolio choice model specified with the MI/AR approach. We observe that not choosing
any alternative is the combination with the highest probability from the predictions of a RF model. For the baseline portfolio choice
model, the combination with highest choice probability is to re-open businesses, re-open contact professions and allow contact
between direct family members of different households, which aligns with the results of Mouter et al. (2021a) despite a different
choice model was used i.e., a Multiple Discrete-Continuous Extreme Value (MDCEV) model. The combination of alternatives with
highest choice probability in the MI/AR portfolio choice model is to re-open businesses, re-open contact professions, allow young
people to come together in groups and allow contact between direct family members of different households. None of the portfolio
choice models include not choosing any alternative among the top-10 probability ranking, whereas the ranking of the RF model
ranks as third-best the combination that ranks the first in the model specified with the MI/AR approach.

5. Conclusion and discussion

In this paper, we propose procedures based on AR learning and RF models to support the specification of a portfolio choice
model applied in data from a PVE choice experiment, and we provide insights on the interpretation of the outcomes of the proposed
models from a choice modelling perspective. We use data from a PVE choice experiment conducted to elicit the preferences of
Dutch citizens to lift COVID-19 restrictions during the first wave of the Coronavirus pandemic in 2020. On the one hand, AR
learning is used to identify relevant interactions between different combinations of alternatives chosen by respondents of the PVE
choice experiment and support the specification of alternative interaction parameters in a portfolio choice model. On the other
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Table 10
Top-10 ranking of combinations of alternatives with highest choice probability, RF and portfolio choice models.

Random forest

Rk.1 Rk.2 Rk.3 Rk.4 Rk.5 Rk.6 Rk.7 Rk.8 Rk.9 Rk.10
Comb. ID 0 134 78 6 70 5 69 7 76 196
NH X X X
RB X X X X X
RC X X X X X X X X X
YP X X
LI
LN
DF X X X X X
RH X X
Choice probability 5.34% 4.94% 3.71% 2.7% 2.6% 2.6% 2.53% 2.53% 2.46% 2.44%
Pressure 0.0% 40.41% 38.22% 21.5% 31.71% 29.54% 39.75% 39.49% 28.26% 40.66%
Baseline portfolio choice model

Rk.1 Rk.2 Rk.3 Rk.4 Rk.5 Rk.6 Rk.7 Rk.8 Rk.9 Rk.10
Comb. ID 70 6 78 14 68 134 4 7 76 12
NH X
RB X X X X X X
RC X X X X X X X X X X
YP X X X X
LI
LN
DF X X X X
RH X
Choice probability 3.68% 3.56% 2.93% 2.9% 2.87% 2.82% 2.78% 2.67% 2.34% 2.27%
Pressure 31.71% 21.5% 38.22% 28.01% 21.75% 40.41% 11.54% 39.49% 28.26% 18.05%
MI/AR portfolio choice model

Rk.1 Rk.2 Rk.3 Rk.4 Rk.5 Rk.6 Rk.7 Rk.8 Rk.9 Rk.10
Comb. ID 78 134 132 196 6 70 4 7 204 14
NH X
RB X X X X X X
RC X X X X X X X X X X
YP X X X
LI
LN
DF X X X X
RH X X X X
Choice probability 3.98% 3.79% 3.2% 3.18% 2.92% 2.64% 2.44% 2.41% 2.37% 2.31%
Pressure 38.22% 40.41% 30.45% 40.66% 21.5% 31.71% 11.54% 39.49% 47.17% 28.01%

hand, RF models are used to identify the most (least) relevant attributes of the PVE choice experiment, and with this information
assist the inclusion/exclusion of attribute-specific estimates of the portfolio choice model. Finally, RF models are used to predict
the combinations of alternatives with the highest choice probability, and use that information to test the validity of the behavioural
assumptions of several specifications of the PVE choice model.

5.1. Main findings

Firstly, we show that AR learning successfully identifies relevant interactions between chosen alternatives of a PVE choice
experiment. For instance, we find that choosing to lift all restrictions for the immune people (LI) and in the Northern provinces
(LN) together have the highest lift among binary association rules, despite both alternatives are the least chosen independently.
Furthermore, we find that the MI/AR approach to specify interactions in the portfolio choice model leads to model fit improvements
in terms of log-likelihood and information criteria, compared with a baseline portfolio choice model. Additionally, we find that
directly interpreting the sign of the interaction parameters does not indicate whether an interaction is positive or negative. Instead,
a comparison of the utilities of the baseline model and the model with specified interactions can shed light on the positive or
negative effect of interactions.

Secondly, our data analyses with RF models show that respondents of the PVE choice experiment mostly care about the
constrained attribute (additional pressure to the healthcare system) across almost all alternatives, whereas they put considerable
lower relevance to the other attributes of the PVE choice experiment. We find that the MI/RF approach leads to modest improvements
of model fit compared with estimating the baseline portfolio choice model. This can be a consequence of the small relevance of the
attributes, other than pressure to the healthcare system, found from the variable importances of the RF model. Despite the latter,
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Table 11
DGP specification of pseudo-synthetic datasets.
Dataset Utility specification
Dataset 1 and Dataset 2 Upp = Ty Yoy 6+ B X, 0) + 8 - (B =X Yy c,,,) + 2T, 0,59 e,

€,p ~ Gumbel(0,1)
0, =0,vi,j (dataset 1)

Dataset 3 and Dataset 4 U, = (B - Z/’:l Vuj * c,,j) - exp(8y + £,9) + Z/J=1 Vaj - €xp(8; + ' X,; +¢,)
€,; ~ Gumbel (for dataset 3)
€,; ~ GEV (for dataset 4)

we find additional insights from the MI/RF approach in terms of interpretation of parameters, such as preference differences for the
same attribute across individual alternatives. For instance, additional deaths of people of less than 70 years old due to COVID-19
has significantly different effects (in terms of magnitude) between re-opening contact professions (RC) and allowing young people
to come together in groups (YP), despite both estimates having a negative sign.

Finally, we find that RF models are able to recover the true DGP from PVE choice experiment data under different specifications of
pseudo-synthetic data, and they outperform portfolio choice models in terms of model fit using empirical data, under different model
specifications. We find that portfolio choice model specified with the support of AR learning leads to a predicted ranking that tends
to get closer to the ranking obtained from a RF model (in terms of the Kendall’s Tau), compared with the other model specifications
(i.e., baseline model and the model assisted with the variable importances of a RF model). Nevertheless, all portfolio choice models
underestimate the choice probability of not choosing any alternative, which ranks as the highest in the ranking obtained with a RF
model. Our findings evidence that the portfolio choice models still have misalignments between their behavioural assumptions and
the actual DGP embedded in the data, but the procedures we propose in this paper can help to mitigate such misalignments.

5.2. Additional uses of the outcomes of AR learning and RF models

Besides assisting the specification of portfolio choice models, the outcomes of AR learning and RF models applied in PVE
choice experiments data can be directly used. With respect to AR learning, this method provides beforehand information about
frequent interactions between chosen (combinations of) alternatives, without the need of specifying and estimating a choice model
or compute welfare measures. Such interactions can be used in policy making to, for example, recommend in favour of conducting
combinations of policies that rank high in terms of lift. In that regard, when the aim is merely identifying frequent combinations of
chosen alternatives, using AR learning is advantageous because it does not rely on strict behavioural assumptions that can restrict
(or privilege) certain interactions over others. Additionally, the computation runtime of AR learning is shorter than the regular
estimation time of a portfolio choice model.

With respect to the variable importances of RF models, this approach can be used as an alternative to estimating the attribute-
specific parameters or marginal utilities of a portfolio choice model, without the need of explicitly specifying the form of the utility
function. This information can be used to prioritise (or avoid) policy options that perform high on desirable (undesirable) attributes
such as, for instance, not lifting restrictions to visits in nursing homes since the relevance of the pressure to the healthcare system
is high for this option. As an additional advantage, the time dedicated to train a RF model and obtain the variable importances is
generally shorter than the estimation time of a portfolio choice model, and such differences are bigger as the number of individual
alternatives of the PVE choice experiment increase. However, variable importances only provide information about the relevance
of an alternative, and they do not inform whether the effect of an attribute is positive (negative) for choosing an alternative, unlike
the attribute-specific estimates of a portfolio choice model.

Finally, when the aim is solely prediction (i.e., no focus on behavioural interpretation), the RF model is advantageous to
determine the ranking of combinations of alternatives with the highest choice probability without relying on a priori behavioural
assumptions. We find that RF models outperform several specifications of a portfolio choice model, in terms of predictive
performance. We argue in favour that the probability ranking of an RF model trained with PVE choice experiment data should
be a closer reflection of the true ranking that is embedded in the data.

5.3. Considerations and further research

As a consideration of this work, we advice that, while we provide potential uses and interpretations of the outcomes of AR
learning and RF models, we recall that such outcomes should not be treated as equivalent to the outcomes of a choice model. For
instance, finding that an association rule has a high (low) lift value does not necessarily mean that the corresponding interaction
specified in a choice model will be statistically significant. As shown in this paper, we recall that interactions with the highest
(lowest) lift does not necessarily lead to interaction parameters with positive (negative) sign in the choice model. We emphasise
that AR learning and RF models are used as supportive tools in this paper, whereas choice models are used as confirmatory tools.

In addition, we provide suggested interpretations of the outcomes that can be obtained with currently developed data-driven
methods, but a potential step beyond is to develop outcomes that are particularly tailored to the particularities of the data that
is analysed, such as in the case of a PVE choice experiment. For instance, the formulas of support, confidence and lift used in
AR learning are built for analysing transaction datasets, but they were not thought for the case of a PVE choice experiment, in
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Table 12
Parametrisation of synthetic datasets.

Type of parameter Description Parameter Value

Marginal utility of non-spent resources Datasets 1 and 2 N 0.01
Datasets 3 and 4 -3

Alternative-specific constants ASC for NH ) 0
RB 5, 0.2
RC 83 -0.3
YP 5, 0.4
LI 8 0.5
LN 86 0.4
DF 8, 0.3
RH g -0.9

Attribute-specific parameters Additional 70+ deaths b -0.6
Additional < 70 deaths b -0.8
Additional people w. physical injuries Ps -0.1
Reduction people w. psychological injuries A 0.03
Reduction households w. income losses Ps 0.03

Interaction parameters (only dataset 2) Interaction LI & LN Os6 2.5
Interaction RB, RC & RH 035 -4.8
Interaction NH & DF 0,7 -0.3

Dissimilarity parameters (only dataset 4) NH & RB Ara 0.03
RC & YP g 0.05
LI & LN s 0.1
DF & RH s 0.2

which choices have a resource constraint, and hence the interpretation of measures can be affected. In this regard, developing
expressions that consider constrained choices, such as in a PVE choice experiment, can provide more strength to the use of AR
learning in these contexts. Finally, this paper opens the door to new research directions in the field of bringing data-driven methods
to the choice modelling field. For instance, based in recent research (Alwosheel et al., 2021) and our experience with obtaining
variable importances from RF models, we see opportunities to integrate explainable Al techniques to analyse data from PVE choice
experiments.
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Appendix A. Pseudo-synthetic data generation and parametrisation

A.1. Data-generating processes

We generate four pseudo-synthetic datasets using the experimental design of the COVID-19 PVE choice experiment. The first two
datasets are generated using the behavioural assumptions of the portfolio choice model proposed by Bahamonde-Birke and Mouter
(2019), whereas the last two datasets are based on the MDCEV-based model proposed by Dekker et al. (2019). Table 11 summarises
the utility and stochastic specification of each of the pseudo-synthetic datasets. For datasets 1 and 2, we use the utility specification

15



J.I. Hernandez et al. Journal of Choice Modelling 46 (2023) 100397

Table 13
Hyperparameter values for RF model specification.
Parameter Values
Number of trees From 10 to 1,000, in multiples of 10.
Depth 3, 5, 10, max (default).
Maximum variables per split 4, 8, 16, \/J * (K + 1) (auto)

of Bahamonde-Birke and Mouter (2019) that relies in a linear-in-parameters utility of each possible combination of alternatives, plus
the addition of combination-specific stochastic errors (notice that errors are specified as ¢,,) with a Gumbel (Extreme-Value type 1)
distribution. Dataset 1 and 2 differs in the specification of explicit interactions: in dataset 1, we assume that no interactions between
chosen alternatives are present (i.e., 0; ;= 0,Vi, ), whereas in dataset 2 we let these parameters free to be estimated. Datasets 3
and 4 are generated using the utility specification of Dekker et al. (2019), hence relying in the assumptions of the MDCEV-type
choice model. Apart from differences in the specification of the utility function, the MDCEV-type datasets differ from the former
approach in the specification of stochastic terms, which in this case correspond to alternative-specific terms (notice that ¢,; are
at alternative-level). For dataset 3, we assume i.i.d. Gumbel-distributed terms, whereas for dataset 4 we incorporate unobserved
correlation between alternatives by using a Generalised Extreme Value (GEV) distribution.

Table 12 details the values used to parametrise each of the pseudo-synthetic datasets. We define eight alternative-specific
constants ranging from —0.9 to 0.5. The attribute-specific parameters are assumed equal across different alternatives and range
from —0.8 to 0.03. The parameters associated to the marginal utility of non-spent resources as 0.01 for datasets 1 and 2, and —3 for
datasets 3 and 4. In addition, we define positive and negative interactions between chosen alternatives for dataset 2. Specifically,
we define a positive interaction when lifting all restrictions to immune people and from Northern provinces (LI and LN) are chosen
together, a negative interaction when re-opening all types of businesses (RB, RC and RH) are chosen together, and a negative
interaction when allowing visits in nursing homes and allowing contact between direct family members (NH and DF) are chosen
together. In the same way, we explicitly define unobserved correlation between alternatives through different so-called dissimilarity
parameters of the GEV distribution on dataset 4, varying across consecutive pairs of alternatives.

Appendix B. Hyperparameter tuning of the RF model

We conduct a grid search process to find the best combination of hyperparameters, and we keep the combination that reports the
highest test (out-of-sample) log-likelihood. Table 13 presents the values considered for the tuning process. We tested trees ranging
from 10 to 1,000 individual decision trees, increasing this number in multiples of ten. In terms of maximum depth, we used three,
five, ten and the default setting (max) of the RF model optimisation algorithm. Finally, we fixed the maximum number of variables
per split in power values of four, from four to 16, plus the default setting of /J * (K + 1), named as “auto”. We constructed RF
models using all possible combinations of parameters of Table 13.

To identify the best combination of hyperparameters, we proceed in two stages. First, we train each possible RF model under
different combinations of hyperparameters. Second, we fix either the tree depth or the maximum number of variables per split, and
we plot the (out-of-sample) log-likelihood for different specifications of the other parameter as a function of the maximum number
of trees. Finally, we choose the combination of hyperparameters that reports the maximum log-likelihood.

Fig. 8 details the log-likelihood values for different number of variables per split and different number of trees, for a tree depth
fixed in five layers, trained with the empirical data. We conclude that a RF model with maximum depth of five layers, 16 variables
per split and 200 decision trees lead to the best log-likelihood. We conducted the same process in the pseudo-synthetic datasets,
leading to the same combination of hyperparameters.

Appendix C. AR learning outcomes of pseudo-synthetic data

We show that the confidence and lift values of AR learning align with the specification of interactions and unobserved
heterogeneity in pseudo-synthetic data. Specifically, we gather association rules from the pseudo-synthetic datasets, and we compare
the confidence and lift between datasets without and with such interactions.

Table 14 summarises the support, confidence and lift of a selection of rules in which we explicitly defined interactions or
correlations between errors. As expected, incorporating interactions between alternatives in the portfolio choice dataset induce
a change of magnitude and direction of the confidence and lift values for a same association rule. For instance, the association rule
of lifting restrictions for immune people (LI) and from Northern provinces (LN) has a confidence of 24% and a lift equal to 0.74 in
dataset 1 (without interactions), whereas in dataset 2 (with interactions) these values increase to 74% and 1.18, respectively, in line
with the positive interaction defined for these two alternatives in dataset 2. We observe the same behaviour for association rules
in which we defined negative interactions. Similar patterns are observed in the case of correlated errors in MDCEV-type datasets,
in which the incorporation of these correlations induce an increase on confidence and lift values, contrasted with the same rule in
the dataset with i.i.d. errors. Notice that incorporating interactions or correlated errors does not necessarily mean that the lift of a
rule will be above (below) one. Instead, we observe changes with respect to the lift value computed in the datasets without explicit
interactions.
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Fig. 8. Log-likelihood of RF models at different parameter specifications, empirical data.

Table 14
Effect of interactions in association rules.

Portfolio choice model

Association rules Dataset 1 Dataset 2

Without interactions With interactions
Antecedents Consequents Support Confidence Lift Support Confidence Lift
LI LN 0.0962 0.2415 0.7147 0.5018 0.7435 1.1881
RC RB 0.1562 0.4451 0.94 0.0916 0.3519 0.937
RH RB 0.0815 0.4097 0.8651 0.0354 0.3053 0.8128
RH RC 0.0555 0.2789 0.7948 0.0219 0.1888 0.7254
RH, RC RB 0.0199 0.3588 0.7578 - - -
DF NH 0.0884 0.2124 0.8638 0.0383 0.1196 0.7656
NH DF 0.0884 0.3597 0.8638 0.0383 0.2449 0.7656

MDCEV-type model

Association rules Dataset 3 Dataset 4
i.id. errors GEV (correlated errors)
Antecedents Consequents Support Confidence Lift Support Confidence Lift
RB NH 0.1479 0.248 0.9942 0.1857 0.2912 1.216
RC YP 0.2822 0.6726 0.9867 0.3242 0.768 1.0677
LI LN 0.1341 0.2897 0.7443 0.1542 0.3374 0.8611
DF RH 0.0725 0.135 0.8504 0.0751 0.4992 0.927
Table 15
True and predicted log-likelihood values, pseudo-synthetic datasets.
DGP Portfolio choice model MDCEV-type model
Dataset 1 Dataset 2 Dataset 3 Dataset 4
Without interactions With interactions ii.d. errors GEV (correlated errors)
True log-likelihood —134476.81 —110298.15 -113452.41 —97375.57
RF log-likelihood —-135041.43 —111779.66 —119345.83 —113775.94

Note: True log-likelihood of datasets 3 and 4 are computed using 10,000 simulations.

Appendix D. Probability rankings with pseudo-synthetic data

Table 15 shows the predicted log-likelihood of the RF models trained with each pseudo-synthetic datasets (RF log-likelihood),
compared with their respective log-likelihood values obtained from the true DGP (True log-likelihood). The RF model is able to get
close to the true DGP with a considerable precision in datasets 1 and 2, and with more distance in datasets 3 and 4. This distance
between the true and predicted log-likelihood in the latter datasets can be attributed by slight differences in the choice probabilities
across different combinations of alternatives, as well as the different error structures imposed in these datasets, compared with
datasets 1 and 2.

Table 16 summarises the Kendall’s Tau values resulting from comparing the top-5 and top-10 rankings of the trained RF models
with their respective rankings obtained from the true DGP, for each pseudo-synthetic dataset. We observe that the Kendall’s Tau
of the top-5 portfolio is close to one in three out of four datasets (Datasets 2, 3 and 4), which means that the trained RF model
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Table 16
Kendall’s Tau correlation between most likely chosen portfolios and “true” rankings. Pseudo-synthetic datasets.
DGP Portfolio choice model MDCEV-type model
Dataset 1 Dataset 2 Dataset 3 Dataset 4
Without interactions With interactions i.i.d. errors GEV (correlated errors)
Top-5 0.583** ~ 1.000** ~ 1.000** ~ 1.000**
Top-10 0.513** ~ 1.000** 0.800** 0.500**

P-values of Kendalls Tau: ** : p < 0.001, * : p <0.01.

Table 17
Probability ranking, dataset 1.
Rk. 1 Rk. 2 Rk. 3 Rk. 4 Rk. 5 Rk. 6 Rk. 7 Rk. 8 Rk. 9 Rk. 10
NH
RB X X X X X X
RC
YP X X X X X X X
True LI X X X X X X
LN X X X X X
DF X X X X X
RH
Choice prob. 0.018 0.017 0.017 0.016 0.015 0.014 0.014 0.014 0.014 0.014
Pressure 42.0% 38.49% 31.65% 38.99% 35.46% 26.74% 31.96% 43.91% 37.37% 32.15%
NH
RB X X X X X X
RC
YP X X X X X X X
LI X X X X X X
RE LN X X X X X
DF X X X X X
RH
Choice prob. 0.018 0.018 0.017 0.016 0.015 0.015 0.015 0.014 0.014 0.013
Pressure 31.65% 42.0% 38.49% 38.99% 26.74% 32.15% 31.96% 43.91% 37.37% 35.46%
Table 18
Probability ranking, dataset 2.
Rk. 1 Rk. 2 Rk. 3 Rk. 4 Rk. 5 Rk. 6 Rk. 7 Rk. 8 Rk. 9 Rk. 10
NH X
RB X X X
RC X
YP X X X
True LI X X X X X X X X X X
LN X X X X X X X X X X
DF X X X
RH X
Choice prob. 0.098 0.081 0.059 0.05 0.042 0.034 0.025 0.02 0.015 0.012
Pressure 37.37% 43.91% 47.22% 47.72% 48.86% 53.76% 54.26% 55.33% 57.57% 56.44%
NH X
RB X X X
RC X
YP X X X
RF LI X X X X X X X X X X
LN X X X X X X X X X X
DF X X X
RH X
Choice prob. 0.098 0.082 0.058 0.05 0.043 0.035 0.025 0.02 0.016 0.012
Pressure 37.37% 43.91% 47.22% 47.72% 48.86% 53.76% 54.26% 55.33% 57.57% 56.44%

is able to retrieve the true ranking in this case, whereas in Dataset 1 the Kendall’s Tau is of 58,3%, but still statistically different
from zero, which suggests a correlation between the prediction of the RF model and the true DGP. The Kendall’s Tau values of the
top-10 portfolios show a decrease of predictive power on this ranking, which can be explained due to slight changes of position
of some combinations. Despite the latter, all correlation values are statistically different from zero, and thus still suggesting the
existence of correlation between the predicted and true probability rankings. We provide a detail of the rankings for each dataset
in Tables 17 20.
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Table 19
Probability ranking, dataset 3.
Rk. 1 Rk. 2 Rk. 3 Rk. 4 Rk. 5 Rk. 6 Rk. 7 Rk. 8 Rk. 9 Rk. 10
NH
RB X X X X X X X X
RC X X X X X
YP X X X X X X X X X X
True LI X X X X X
LN X X X X X
DF X X X X X X
RH
Choice prob. 0.041 0.032 0.028 0.025 0.024 0.021 0.019 0.018 0.018 0.017
Pressure 42.0% 48.84% 38.23% 53.5% 43.15% 43.65% 38.49% 53.76% 38.99% 49.99%
NH
RB X X X X X X X X
RC X X X X X
YP X X X X X X X X X X
LI X X X X X X
RE LN X X X X X
DF X X X X X
RH
Choice prob. 0.042 0.032 0.029 0.025 0.025 0.02 0.02 0.018 0.018 0.017
Pressure 42.0% 48.84% 38.23% 53.5% 43.15% 38.49% 43.65% 53.76% 49.99% 43.91%
Table 20
Probability ranking, dataset 4.
Rk. 1 Rk. 2 Rk. 3 Rk. 4 Rk. 5 Rk. 6 Rk. 7 Rk. 8 Rk. 9 Rk. 10
NH X
RB X X X X X X X X
RC X X X X X X
YP X X X X X X X X X X
True LI X X X X X X
LN X X X X
DF X X X X X X
RH
Choice prob. 0.04 0.035 0.031 0.029 0.028 0.024 0.022 0.021 0.02 0.019
Pressure 42.0% 38.23% 48.84% 53.5% 43.15% 43.65% 53.76% 56.19% 49.99% 43.91%
NH X
RB X X X X X X X X
RC X X X X X X
YP X X X X X X X X X X
LI X X X X X X
RF LN X X X X
DF X X X X X X
RH
Choice prob. 0.041 0.037 0.032 0.03 0.027 0.023 0.023 0.022 0.021 0.019
Pressure 42.0% 38.23% 48.84% 53.5% 43.15% 43.65% 56.19% 53.76% 49.99% 43.91%
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