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A B S T R A C T

Data compliance is essential for ensuring that organizations do not run
afoul of data protection and privacy legislation. Geographically dis-
tributed data is an especially relevant topic because of recent develop-
ments in cross-border data protection agreements between the United
States and the European Union. We introduce Qompliance, a novel
system for automated data-centric compliance evaluation in cloud en-
vironments. This approach fills a gap in the research for higher-level
data-centric compliance systems with a particular focus on geographi-
cally distributed data. Its declarative and extensible policy model allows
for defining policies that can govern data movements across borders
and is intended to be understandable without explicit knowledge of the
governed data by employing a tag-based abstraction layer. The particular
challenge is to automate data-centric policy compliance on data move-
ments in a maintainable manner. Qompliance analyzes SQL-defined
data movements to extract what data is being addressed and combines
this information with additional attributes to match policies in a static
manner. Policies can decide whether data movements are allowed and
specify requirements on the query and the execution that should be en-
forced. We provide a qualitative comparison between our approach and
related work, and we performed a performance analysis that shows that
compliance evaluation can be done in seconds for large sets of policies.
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1I N T R O D U C T I O N

Given the complexity and growing scope of regulations, compliance is a
significant challenge for organizations. Data compliance is essential for
ensuring that organizations do not run afoul of the national privacy and
data protection legislation in countries where they operate. In addition,
avoidance of compliance violations gives customers and employees confi-
dence in the organization’s ability to properly handle potentially sensitive
data [34]. A relatively new high-profile example of data-protection legis-
lation that demonstrates the need for solid data compliance practices is
provided by the General Data Protection Regulation (GDPR) introduced
by the European Union in 2016 [15]. Privacy is an especially interesting
theme that has been getting attention in the compliance space because of
these significant regulatory developments. Failure to comply with these
regulations can result in fines and other undesirable consequences for
organizations such as reputational damage. A wide range of research has
gone into modeling, encoding, and automating the implementation of
systems and models to enforce regulations like GDPR [42, 46] and HIPAA
[14, 28]. However, legislation tends to be very general and unspecific
about the measures or controls that must be implemented for an orga-
nization to comply. Furthermore, lawmakers tend to underestimate the
difficulties of automating the compliance to rules with such a broad scope.
As a result, organizations need to fill in the gaps themselves and often
try to compromise by implementing what is feasible without assurance
that their measures are sufficient [48].

Data compliance comprises more than just regulatory compliance. For
example, organizations may have privacy policies or internal policies
that govern the organization’s storage and use of data. Thus, the policy
enforcement systems will include rules to comply with regulations but
likely also consist of additional measures that the organization wants
to take to protect their data. For example, the organization may want
to restrict access to financial records, or they might want to anonymize
customer personally identifiable information (PII) when used for analytics
in order to comply with privacy regulations. The list of controls and
measures can be long, with many variations of conditions and data
transformations required. Therefore, building a robust system that can
take these various controls and measures and verify or even enforce them
is not trivial. This also shows why a compliance system should support
many different checks and operations on the data and ideally should be
extensible for future changes in regulations and policies.

A fascinating trend is the rising importance of regulating cross-border
data movements (also in some literature referred to as data flows) [6].
Although some argue that the value of data is negatively impacted when
it cannot flow freely between countries, the reality is that many countries
are increasingly trying to regulate cross-border data movements [12].
Apart from the need to safeguard the privacy of individuals, there are
various other reasons why countries wish to regulate data movements.

1



2 introduction

Governments may require organizations to keep data in their country
for audit purposes, for national security purposes, or for stimulating the
development of the domestic digital sector [6]. Note that we can distin-
guish between data movement restrictions and local storage restrictions.
The former restricts in some way whether data can move across borders,
whereas the latter requires the data to be stored in the country but does
not necessarily restrict cross-border data movement. Further distinctions
can be made based on the level of restriction, ranging from unrestrained
data flow to the need to conform to some safeguards to the requirement
of case-by-case ad-hoc approval. Especially in the global public cloud
environments that we know today, where the lines between countries
are blurred, compliance is even harder to enforce. Due to the inherent
flexibility in how clouds operate, data may be processed in many different
places and may be quickly moved to optimize for various aspects like
cost or processing time. An interesting challenge here is attempting to
automate the compliance to these safeguards.

The data may be subject to multiple jurisdictions depending on factors
like the location of the data, the jurisdictions that apply to the organi-
zation, and in particular the jurisdictions of individuals whose data the
organization processes. Data movements that are conditionally regulated
based on safeguards are especially relevant because this requirement is
quite widespread in regulations like GDPR. For instance, GDPR allows
for cross-border data movement if the receiving country has been de-
termined to have an adequate data protection system in place by the
standards of the European Commission [6]. On the other hand, the Per-
sonal Information Protection Act in South Korea requires companies to
get consent from the data subjects before moving the data in the first place
[12]. Attempts have been made to build legal frameworks for cross-border
data movements such as the (now invalidated) Safe Harbor and Privacy
Shield agreements [47]. Privacy Shield was the more recent effort of the
two (originally intended to be GDPR compliant) but it was ultimately
deemed incompatible with GDPR by the Court of Justice of the European
Union [13]. This is troubling to companies like Meta (formerly known
as Facebook), which is saying at the time of writing that Meta may not
be able to continue offering many of their services in Europe if a new
transatlantic data transfer framework will not be adopted.1

Another challenge presents itself when we consider who in the or-
ganization is using the data and for what purpose, which is another
dimension that we will consider in this research. Stationary data can
be validated for compliance (e.g., whether sensitive information is en-
crypted), but there are additional aspects that need to be considered.
Regulations and enterprise policies might also govern the use of this data.
For example, only specific teams should be given access to certain data.
Moreover, regulations like GDPR also have a notion of purpose, ensuring
that individuals know for what purposes their data is being used. This
introduces the need for access control measures, for example through
Role-based or Purpose-based Access Control (RBAC and PBAC, respec-
tively). There already has been much research towards policy compliance

1 https://www.sec.gov/ix?doc=/Archives/edgar/data/1326801/000132680122000018/

fb-20211231.htm

https://www.sec.gov/ix?doc=/Archives/edgar/data/1326801/000132680122000018/fb-20211231.htm
https://www.sec.gov/ix?doc=/Archives/edgar/data/1326801/000132680122000018/fb-20211231.htm


1.1 our work 3

for data at rest through the use of access control. However, research
towards compliance for data on the move is lacking. Moreover, these
conventional access control methods are not suitable for modern privacy
requirements with notions like purpose and obligations [31]. According
to Colombo and Ferrari [9], many Big Data systems lack proper data pro-
tection tools such as fine-grained access control or support for enforcing
privacy policies.

It is also essential to consider how to translate and specify these con-
trols and measures into a machine-readable format when attempting to
automate their validation and enforcement. Since regulations and policies
are likely to be written in natural language and mostly by people without
a technical background, converting these policies into a format that can
be processed and enforced by computers is not a trivial task [31]. More-
over, the set of policies can quickly grow to become very large. Therefore,
a standard method for writing and managing these policies should be
considered when designing a compliance validation and enforcement
system.

1.1 our work

In this report, we present a novel system called Qompliance that ad-
dresses the challenges and developments that we have introduced above.
We are specifically targeting data movements as opposed to data at rest
since, as far as known to the authors, only limited research has been
done towards data movement compliance. This scope is especially rel-
evant for batch (ETL-like) workloads and analytics workloads where
data needs to move between (geographically distributed) datacenters, as
employed by companies like Microsoft [45]. SQL is a common denom-
inator for these types of workloads because it is widely adopted and
understood for querying and transforming data. SQL is widely used in
distributed database systems like CockroachDB2 and various ETL and
big/distributed data systems. SQL is also increasingly being used as a
basis in efforts towards building a unified method for querying different
(semi-)structured data sources, including non-relational ones [33, 39]. For
example, Presto3 and its fork Trino4 allow data scientists to run analyt-
ical SQL queries across different structured and semi-structured data
sources [39]. Therefore, SQL is suitable for a unified query experience
when addressing a heterogeneous set of data stores. Furthermore, the
SQL query itself is the earliest point in a SQL-based data processing
pipeline where one can test for compliance. This enables giving early
compliance feedback to the query author. Thus, by targeting SQL-defined
transformations, our system will work across many different storage
solutions and can integrate into existing ETL and analytical workflows,
all while providing valuable feedback to the user. Existing research exists
on enforcing fine-grained access control policies through SQL and on
enforcing privacy policies and regulations. However, as far as known to
the authors, little research has been done towards data-centric compli-

2 https://cockroachlabs.com/product/sql
3 https://prestodb.io
4 https://trino.io

https://cockroachlabs.com/product/sql
https://prestodb.io
https://trino.io


4 introduction

ance that takes other factors such as the geography of the data flows into
account. Recent work by Beedkar, Quiané-Ruiz, and Markl [3] attempts
to address this topic by integrating geographical attributes into the query
optimization process for geo-distributed data.

Our work combines these ideas to build a higher-level declarative
policy model and compliance enforcement system that can enable orga-
nizations to implement compliance policies governing data movements.
This approach combines ideas from various fields such as access control
and query processing to enforce compliance in an SQL-based data move-
ment and transformation context. Note that if we can analyze these data
movements (in the form of SQL queries) before they are executed, we
can enforce access control, validate queries for specific requirements and
even enforce certain required data modifications by statically analyzing
the SQL. In other words, we can make sure that the resulting dataset is
compliant (at least at submission time). Early detection is beneficial in an
ETL context or when executing large analytical queries since these jobs
might take a lot of resources and time to complete. This also removes
some of the burden of achieving compliant data transformations for the
data managers since many aspects of assuring compliance are automated,
in particular ensuring that the result of their queries will be compliant.

This research aims to design and prototype a concept for a system
that defines, evaluates, and enforces data-centric compliance policies
on data movements defined by SQL queries while taking the challenges
introduced here into account. By automating enforcement and simplifying
the policy specification, this system aims to remove some of the difficulty
associated with compliance validation and enforcement when moving
and transforming numbers of datasets in hybrid cloud environments.

1.2 problem statement

We summarize the challenges addressed in this research as the following
research question:

How can we define, evaluate and enforce declarative data-centric policy
compliance on SQL-based data movements across distributed data stores?

To answer this question, we aim to meet the following objectives:

1. Compare systems and approaches from the related work on how
they approach policy definition, evaluation and enforcement.

2. Study and define how we can process SQL to evaluate and enforce
policies on a query.

3. Define an extensible policy definition model.

4. Define a way to write data-centric policies without directly referring
to data and without requiring data access.

5. Determine a set of policy attributes and operations that enable
authoring declarative policies, based on relevant properties from
regulations and related work.
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6. Design a system that can evaluate and enforce the policies from
this policy model on data movements defined by a SQL query.

7. Define a method for evaluating policies and for resolving conflicts
between them in a reasonable amount of time.

1.3 contributions

Our work makes the following contributions:

1. An evaluation of related systems and an identification of gaps in
the research.

2. A description of a system designed to fill these gaps.

3. An extensible universal policy model, along with a suggested set
of policy attributes that fit this model, that can be used to write
declarative policies.

4. A compliance evaluation process based on this policy model.

5. An open source reference implementation of this system.

6. A discussion and future work suggestions that can bring further
advancements in this field.

1.4 report outline

The next chapter discusses related work concerning relevant access con-
trol and compliance automation systems, policy languages, (privacy)
regulations and SQL processing. We will compare different systems
based on their benefits and drawbacks to guide our system design. In
the chapters thereafter, we will discuss the three main elements of this
system: the overall proposed compliance system design in Chapter 3, the
data model in Chapter 4 and the compliance evaluation and enforcement
process in Chapter 5. Chapter 6 will then describe the reference imple-
mentation and Chapter 7 will discuss how we have evaluated the system.
In Chapter 8 we discuss our approach and how we got there, and suggest
topics for future work. Finally, Chapter 9 concludes this report.





2R E L AT E D W O R K

This research touches upon many different topics. In this section, we
will discuss relevant related work from the literature to meet a number
of objectives. First of all, we want to get a better understanding of the
context and positioning in which this concept and system will operate.
For example, this includes regulations and control frameworks. Then we
will discuss work that has made similar efforts towards access control,
compliance enforcement and policy languages. Finally, we will discuss lit-
erature about some more specific topics that have influenced the direction
of this thesis.

2.1 regulations & policies

To understand the types of policies that our system intends to support,
we draw inspiration from existing regulations and control frameworks.
Because this is a large research (and legal) space, we give a few represen-
tative examples in this section.

2.1.1 Regulations

Privacy regulation is increasingly prevalent around the world. Important
representative examples that we will discuss here are the EU General
Data Protection Regulation (GDPR) introduced in 2016 [15] and the
California Consumer Privacy Act (CCPA) introduced in 2018 [5]. These
regulations both dictate the protection and use of Personally Identifiable
Information (PII) from consumers. This includes both explicit/direct and
quasi/indirect identifiers and sensitive information [17, 40].

The databases of many enterprises contain data from users from dif-
ferent jurisdictions. Because both regulations apply to specific groups
of people (i.e. GDPR on EU citizens and CCPA on California residents),
enterprises have to deal with many different laws and regulations. As a
result, they opt to apply a general set of privacy measures that covers
these different laws and regulations for all users. Thus, these laws might
allow for a broader protection of consumers than they initially appear to
do [40].

From these regulations we can derive the main requirements in order
to motivate the need for supporting certain conditions and operations
that can be used to automate privacy regulation compliance.

purpose checking Both GDPR and CCPA have a notion of purpose.
These regulations mandate that consumers have a right to know
about the personal information that is being collected, for what
purpose and whether this information is shared with other parties.
When transforming this data, it could be of great help to know
whether the (result of the) transformation complies with the stated
purposes. It should be noted that purpose restriction checking

7



8 related work

and enforcement is not a trivial problem because it essentially
requires knowledge about the intent and planning of the actor
using the data [44]. However, a data transformation system could
aid well-intentioned actors to comply with purpose policies when
submitting a data transformation, for example by using concept
lattices as done by [22, 38]. By encoding the purposes from a policy
or regulation in a lattice, one can label data attributes with the
allowed/restricted purposes and compare these with the purpose
for transforming the data.

conditionals checking Both GDPR and CCPA require companies
to allow consumers to opt in or out of certain uses for their data [17,
43]. For example, California residents have a right to opt out of the
selling of their personal information. These kinds of conditionals
can be easily checked and even enforced on a data transformation
level (if you know the purpose of the resulting transformed data).

geolocation The physical location of data has certain compliance
consequences. Different laws might apply depending on where the
data resides and regulations might restrict the transfer of data to
different regions [34]. For example, GDPR limits the transfer of
data to countries outside of the EEA.1 Transfer of data to countries
outside of the EEA is only allowed when the third country has sim-
ilar regulations compared to GDPR or when special measures are
taken. Due to the increasing amount of data privacy regulation, this
is becoming less of a problem. Still, it might be quite useful for the
actor wanting to transform and/or store personal data in another
country to be able to check whether this transformation complies
with relevant geolocation policies. Another interesting aspect that
could be considered is that some data center locations (or cloud
providers) might have certain certifications that are required for the
data transformation or storage, which could be used to optimize
the transformation plan.

anonymization and pseudonymization Data without explicit or
quasi-identifiers are not considered to be personal information un-
der GDPR and CCPA [17, 40]. In other words, it should not be
possible to reidentify individuals from the personal data. Therefore,
anonymization or at least pseudonymization are useful preprocess-
ing steps for many different applications such as data mining [26].
Important techniques for doing this include [17]:

• Suppression (completely removing attribute values)

• Generalization (replacing values with more general values)

• Permutation (partitioning and shuffling data within groups)

• Perturbation (replacing values while keeping statistical prop-
erties similar)

1 https://ec.europa.eu/info/law/law-topic/data-protection/

reform/rules-business-and-organisations/obligations/

what-rules-apply-if-my-organisation-transfers-data-outside-eu_en

https://ec.europa.eu/info/law/law-topic/data-protection/reform/rules-business-and-organisations/obligations/what-rules-apply-if-my-organisation-transfers-data-outside-eu_en
https://ec.europa.eu/info/law/law-topic/data-protection/reform/rules-business-and-organisations/obligations/what-rules-apply-if-my-organisation-transfers-data-outside-eu_en
https://ec.europa.eu/info/law/law-topic/data-protection/reform/rules-business-and-organisations/obligations/what-rules-apply-if-my-organisation-transfers-data-outside-eu_en


2.1 regulations & policies 9

It would be useful if (some of) these kinds of operations are built
in to the data transformation system in order to be able to ensure
anonymized processing of data. Because there is a lot of research
around these different techniques, we will just limit our research to
some basic strategies while taking the support for more advanced
procedures into account.

access control GDPR requires “appropriate technical and organiza-
tional measures to ensure a level of security appropriate to the risk”
and access control is a common measure for this [17]. Therefore,
the data transformation system should prevent unauthorized users
from submitting transformations on data that they do not have
access to. Additionally, an access control system could also be used
to give access only to select parts of a dataset. However, it should
be noted that access control is a large topic and to limit the scope
of this system and thesis, only higher-level access control measures
can be taken into account.

encryption In the same spirit as access control, encryption is another
measure to protect the data at rest and during transfer [17]. A
simple way for the actor submitting a data transformation job to
encrypt the data or certain attributes of the data would be a useful
feature, for example to define what data should be encrypted when
the transformed data is stored.

processing records GDPR Article 30 mandates that data processors
maintain a record of the data processing that occurs. These records
should for example contain information on the purposes of the
processing, the categories of personal data and data subjects being
used and whether personal data has been transferred to third
countries or international organizations. A system for compliance
in data movement can ensure that these kinds of records are being
generated.

2.1.2 Control Frameworks

Companies might also have internal policies to implement certain controls.
Such control instruments can be derived from existing frameworks like
NIST SP 800-53 [21] and ISO/IEC 27001 which list controls for security
and privacy for information systems (the latter is not freely accessible).
Frameworks like SP 800-53 implement controls with requirements similar
to regulations, and even mention that the appropriate regulations should
be adhered to. For example, control PT-2 “Authority to process personally
identifiable information” requires that the organization determines what
authorities permit certain data processing and that the processing is
restricted to PII for which it is authorized [21]. Additionally, PT-2 lists two
relevant control enhancements. The first one is called “Data tagging” and
suggests attaching data tags containing the types of processing that are
allowed on the data to the PII. The second one is called “Automation” and
suggests managing the enforcement of processing authorization for PII
using automated mechanisms. SP 800-53 also has other relevant controls
like PT-3 “Personally identifiable information processing purposes” and
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PT-4 “consent” which introduce notions of purpose and consent similar
to regulations like GDPR [21].

2.2 access control

Many compliance requirements can be enforced through the use of or
some variation on access control. Therefore, a lot of research in the area
of compliance enforcement builds upon access control methodology. In
this section, we will first introduce useful access control research that
relates to our work towards compliance enforcement. In the next section,
we will discuss other approaches towards compliance automation beyond
traditional single-point access control (e.g. in a database), which may also
include access control ideas.

The most basic way to enforce policies that govern data is at the
moment of data access through an access control layer. Most relational
database management systems but also many non-relational systems
support access control to some extent. Common access control techniques
include Role-Based Access Control (RBAC) and Attribute-Based Access
Control (ABAC) [19]. RBAC is the most common access control paradigm
and can be found in many relational and non-relational DBMSs. In the
RBAC paradigm, roles describe access privileges which can then be
assigned to users or groups of users.

ABAC on the other hand is a paradigm where access is granted through
combining attributes of the user and the context using boolean logic in
order to make access decisions. These attributes can include attributes
about the user making the request and the attempted actions, but alsoRBAC can be seen as

a subset of ABAC. attributes from the data being accessed or even attributes from the envi-
ronment of the request [19]. This is a useful property because it decouples
policies from the data subject and object, i.e., no prior knowledge about
the subject or object is needed. This makes access control very customiz-
able, and the power of the system is essentially defined by the available
attributes and the expressiveness of the policy language. However, it also
requires some extra work to define these attributes and their allowable
values, and to associate them with subjects, objects and the environment.
NIST SP 800-162 gives a definition of ABAC and a framework for how it
can be implemented in an organization [19]. The framework also provides
an ABAC-compatible set of “functional points” which together function
to make the access decisions. The following main functional points are
considered:

policy administration point (pap) Responsible for the interface
for managing and creating policies. Also manages storing policies.

policy information point (pip) Responsible for fetching attribute
metadata to evaluate policies, such as environment conditions.

policy decision point (pdp) Responsible for making the access de-
cisions by evaluating the applicable policies and resolving conflicts
between them.

policy enforcement point (pep) Responsible for enforcing policy
decisions made by the PDP once a request comes in.



2.3 systems & languages 11

A notable difficulty with ABAC systems is that it is generally less straight-
forward to check beforehand what access each individual has (before
the fact audit) or to check who has access to a particular resource or set
of resources compared to simpler access control paradigms like RBAC.
Other challenges include planning the ABAC system (e.g. the required
attributes, authorities, etc.) and maintaining traceability between high-
level natural language policies and the implemented (low-level) ABAC
policies.

Other access control variations have been proposed which more closely
relate to compliance and privacy. Ni et al. [31] introduce what they call
Privacy-aware Role-Based Access Control (P-RBAC). It is an extension of
RBAC with privacy-related features like purposes and obligations. They
give algorithms for evaluation and conflict checking for their model, as
well as a policy authoring tool intended to make policy authoring easier
to understand. Colombo and Ferrari [9] refer to variations like P-RBAC
using a broader term: Privacy Aware Access Control (PAAC).

2.3 systems & languages

In this section we compare relevant compliance-related systems and pol-
icy languages to get a better understanding of the field and to determine
the benefits and drawbacks of different approaches, as described in Ob-
jective 1. We establish a framework of generally applicable challenges
that can be used to compare different approaches. This framework of
challenges can then be used to identify a gap in the research where
Qompliance should fit in, which ultimately fulfills Contribution 1. In
Chapter 3 we will revisit this framework and discuss where our ap-
proach should lie within these aspects to motivate our design choices.
We consider the following aspects:

aspect 1, system scope: An important axis to differentiate systems
on is their intended scope. Some systems are designed to work
with very high-level policies like regulations or privacy policies,
while other systems are only designed to deal with low-level rules.
The latter is often the case for purely access control or database
approaches. For example, whereas regulations and privacy policies
tend to make general statements about how to treat PII, internal
policies may reference specific columns or data types.

aspect 2, policy abstraction level: We can also distinguish data-
centric systems on how abstracted away they are from the data.
Some systems and languages allow for directly referencing data and
are thus not abstracted away, whereas other systems and languages
add layers of abstraction.

aspect 3, policy complexity: The complexity of a policy depends on
how understandable its model is and how many variables there are.
More complex policies are likely to be more difficult to maintain.

aspect 4, policy expressiveness: The expressiveness of a policy de-
scribes how much a policy can express. Policies with more attributes,
functions, operators, etc. tend to be more expressive. However, pol-
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icy models that are highly expressive are likely to be more complex
because of the many options.

aspect 5, enforcement vs . audit: Some compliance systems are
built for enforcement: they output an access decision, change the
data or query in some way, etc. Other approaches take a less re-
strictive approach solely meant for audit purposes by for example
retrospectively analyzing what events or data flows occurred [38].

aspect 6, stationary vs . moving: Many traditional systems focus on
stationary data, e.g. by putting access control in front of a database.
However, other systems specifically take moving data into account.

2.3.1 Policy & Compliance Systems

We start by discussing systems that address the challenge of automating
compliance in some way. A common method is automating compliance
using access control, but many other methods are also proposed such
as analyzing data flows. Note that this is not a properly confined space.
Rather, we opt to include all systems that have an interesting or relevant
approach to similar (sub)problems related to data-centric compliance.

An interesting approach to policy compliance for moving data is by
analyzing the information flows between systems [38]. The authors in-
troduce Grok which is a data inventory that tracks information flows
in MapReduce-like systems, and Legalease which is a language for
formally encoding privacy policies in a way that can be mapped to these
information flows. This system specifically focuses on public-facing pri-
vacy policies close to natural language and is thus high-level according to
Aspect 1. It works in an auditing manner rather than proactively enforc-
ing access control techniques, since the information flows are analyzed
retrospectively. The Legalease policy model has a low complexity, low
expressiveness and a high abstraction level because the authors argue
that four attributes are enough to describe all privacy policies that they
have analyzed, see Section 2.3.2.

Full end-to-end enforcement of compliance policies, from data inges-
tion to data storage to data use, is a complex challenge and presents
challenges over the whole data lifecycle. A paradigm that allows for
end-to-end policy enforcement is the Data Capsule paradigm [46]. It
specifically targets regulations like GDPR and its consent and data pro-
cessing concepts, which makes the scope high-level following Aspect 1.
This paradigm has the data subjects encapsulate their personal data along
with the policy that will govern the use of this data, which then moves
along with the data from ingestion to its use. However, this approach as
described by the authors is limited to personal data and also requires
complete control over the data lifecycle. Nevertheless, this paradigm is an
interesting approach towards compliance checking that can potentially
be generalized. Their policy language is heavily inspired by Legalease

albeit a bit more expressive and complex. On the contrary, data capsules
are built for enforcement as opposed to Legalease. Although the authors
do not mention it, the Data Capsule paradigm can be considered an im-
provement over the previously proposed Sticky Policy paradigm which
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is a common paradigm in many policy enforcement systems [16, 23, 37].
It should also be noted that many of these aforementioned approaches
mostly concern compliance at the point of data access and do not take
data transformations into account.

A step in the direction of data transformations is made by Khaitzin
et al. [24]. They propose a system called Deep Enforcement with a strong
focus on enforcement that cannot only make permit/deny decisions for
data access requests, but can also transform the data to be compliant
as required by the policies. These transformations are performed at the
data storage level by so-called Deep Enforcers which are customized
for different storage systems, in order to prevent the system from being
circumvented by simply accessing the data store directly (as would
be possible with some of the other systems mentioned in this section).
However, this system has no control over the data once it has left the
data store. Moreover, the explanations for their enforcement methods
(the authors propose query rewriting and dynamic views) are lacking
in this paper. Their policies are metadata based but have a limited set
of attributes meaning that the policies have low expressiveness. Because
enforcing happens at the database level, the deep enforcement system
has a focus on stationary data.

Similar but less sophisticated database-level approaches are proposed
by Agrawal et al. [1] and LeFevre et al. [25]. Agrawal et al. [1] suggest
a compliance enforcement strategy using a simple query rewriting ap-
proach that only seems to work for non-nested queries. LeFevre et al. [25]
suggest two enforcement approaches: one by using table views and the
other by modifying the query that is limited to cell-level enforcement (i.e.
they do not consider removing columns or tables). Both works suggest a
meta-model to which higher-level policy language like EPAL and P3P are
supposed to map to. However, these meta-models are restricted to low-
level data references and a few simple other attributes like purposes and
recipients. Overall, although insightful, their approach is quite limited.

Another database-level approach but specifically aimed at purpose-
based access control is proposed by [4]. Their model allows for attaching
multiple purpose labels on data at various levels of granularity. Further-
more, they propose to represent purposes as trees and give a method for
storing these trees. Lastly, they also give a query rewriting algorithm for
enforcing fine-grained access control based on these purposes, but their
rewriting approach is also limited to basic queries.

There is also quite some research at the database level for NoSQL data
stores, mostly document stores [9, 11]. An example of an approach close
to the data but specifically aimed at document stores has been proposed
by Colombo and Ferrari [10]. It relies on SQL++, a SQL extension with
support for JSON documents, and needs to operate on the data directly
because schema data cannot be known a priori. These kinds of approaches
are interesting but generally out of scope for our goals because they
require significant deviations from standard SQL that are not commonly
used yet, and because the policies in this work cannot be evaluated in
advance.

Limited research has been done towards compliance automation for
geographically distributed data. Recent work by Beedkar, Quiané-Ruiz,
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and Markl [3] on Compliant Geo-distributed Query Processing (CGQP)
introduces a method for taking geographical data flow restrictions into
account when building query plans. This allows the query optimizer
to not only take cost into account but also compliance restrictions im-
posed on the geolocation by policies. Thus, their work puts a focus on
enforcement and moving data. Furthermore, they introduce SQL-like
statements for expressing these policies that directly operate on the data
and thus have a low abstraction level. The policies have low complexity
but are limited by their expressiveness. However, their approach is lim-
ited to distributed DBMSs, but it does allow for very granular control
and optimized execution plans.

The systems discussed until now all have a fairly specific application.
There are also more generally applicable systems for policy evaluation
and management. A notable example in this space is Open Policy Agent2,
a relatively novel general purpose policy system with its own policy
language called Rego. The system itself does not make any assumptions
about the kind of policies that it supports or what the policies manage,
and is fully able to implement RBAC and ABAC. Even though OPA
can technically be implemented to work with a higher-level scope, we
consider their system to be low-level according to Aspect 1 because the
policy language is very low level. The policy language essentially requires
all of the logic to be in the rules, and is thus very expressive but they
can also be quite complex. Generic systems like OPA are not specifically
intended to be data-centric and thus they can have both a high and low
abstraction level, depending on the implementation.

In the space of generic policy systems, one can also look at public cloud
offerings. Most cloud vendors have some (first generation) compliance
services. For example, Azure provides a compliance system for the cloud
with Azure Policy, AWS has AWS Audit Manager and Google Cloud has
Google Cloud Security Command Center. However, these systems mainly
operate on the infrastructure and system compliance level for the various
cloud products and thus cannot properly operate in a data-centric way
like the other systems that we have discussed.

2.3.2 Policy Languages

Many different policy languages can be found in the literature, with
various approaches and intended uses. For the policies for our system, an
ABAC-like approach seems suitable: making access decisions based on
contextual attributes from the user, the data and the transformation. An
example of an ABAC policy language is the eXtensible Access Control
Markup Language or XACML, originally introduced in 2001 [32]. It
defines how access requests should be handled based on policy rules
that rely on attributes to describe the user, action or resource. XACML is
a standard published by OASIS in order to provide a specification of a
common language which can be used across different systems. This in
turn prevents the need to write multiple policies for different systems.
XACML is XML-based and intended to be used by development teams.

2 https://openpolicyagent.org

https://openpolicyagent.org
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Therefore, it is not very human-friendly and cannot easily be used by
other teams such as a compliance team.

IBM introduced a similar approach to XACML in 2003, called the En-
terprise Privacy Authorization Language (EPAL) [2]. It is approximately
a functional subset of XACML, with a special focus on privacy. This
resulted in some privacy specific design decisions like the required pur-
pose attribute. Furthermore, EPAL has support for not-applicable policies:
policies that do not make a decision but still can list obligations.

Yet another approach is Rego, a declarative policy language used in
the Open Policy Agent policy engine. It has an even broader scope than
XACML. Rego is very generic and does not make any assumptions about
the context in which it is used. In essence, OPA can be seen as a solver
for the logic programming language Rego that is used to write context-
aware policies. Rego is inspired by Datalog, another logic programming
language.

A significantly different approach is Legalease [38]. Legalease is
specifically designed for encoding privacy policies. The main goal when
designing this language was to create a highly usable language that can
also be used by people with no knowledge about first-order or temporal
logic. The language closely resembles regular policies written in the
English language. The authors of Legalease argue that in practice the
language only needs four attributes for encoding public-facing privacy
policies:

• InStore: Used to restrict how data is stored (e.g., certain data being
stored together).

• UseForPurpose: Used to restrict what purposes data can be used
for.

• AccessByRole: Used to restrict access to data to certain roles.

• DataType: Used to restrict policies to a certain data type.

2.4 formalization & semantics

For getting a better understanding of SQL and policy systems, one can
also look at the research done towards formalizing the semantics of these
fields.

The semantics of XACML have been formalized by Masi, Pugliese, and
Tiezzi [27]. The XACML standard is written in prose and does not have a
formal specification of its semantics. According to Masi, Pugliese, and
Tiezzi [27], it has a number of loose points which can result in inter-
pretation issues. The authors also give a BNF-like grammar alternative
because XML is confusing and insufficient for formally defining the se-
mantics of XACML. Furthermore, the authors give a formalization of the
denotational semantics of XACML.

Various attempts have been made towards formalizing the semantics
of SQL [7, 8, 18, 30]. These attempts often rely on translating SQL to
relational algebra [7] or some other representation compatible with the
SQL semantics like (extended) predicate calculus [30]. However, many
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of these approaches make some simplifying assumptions which do not
represent SQL in its entirety.

The approach by Guagliardo and Libkin [18] instead attempts to for-
malize the semantics of SQL directly. The authors also experimentally test
their formalization by executing many different queries and comparing
the results with existing RDBMSs. Their approach assumes what they re-
fer to as basic SQL, which excludes aggregation operations. Furthermore,
they assume that queries have been type-checked and compiled and thus
that all attribute names have been annotated with their corresponding
table names. This means that all base tables and subqueries have an
explicit name and that the names of all output attributes are explicitly
listed in the SELECT clause. Moreover, they discuss how full names in
queries can be resolved. However, the rest of this paper is more oriented
towards the further evaluation of SQL queries, which is less relevant for
this work.

Another approach has been made by Chu et al. [8], which does take
major SQL features into account like bags, aggregation and indexes,
but instead leaves out three-valued logic (NULLs). The semantics they
propose are based on K-Relations and homotopy type theory, which
allows for implementing the semantics in the Coq theorem prover. Their
main goal is to show query equivalence for use in query optimizers and
thus the query semantics have to be preserved. However, preservation of
semantics is not a goal for this work.

2.5 query rewriting

Query rewriting for privacy policy enforcement and access control has
been researched before. For example, LeFevre et al. [25] demonstrate
a method for rewriting queries to include access conditions based on
policies. These access conditions are specified on a cell level and are also
stored in a table, which allows for joining these conditions with the actual
data by modifying the query to limit the disclosure of values. Similarly,
Agrawal et al. [1] and Byun and Li [4] provides similar techniques but
are only shown to work for basic or non-nested queries.

Other relevant work towards query rewriting for the purposes of
this research is the work towards SQL++ query rewriting for ABAC in
NoSQL data stores from Colombo and Ferrari [10]. They demonstrate a
method for modifying the SQL++ queries to create in-memory authorized
views which comply with fine-grained access policies, meaning that this
method can also enforce policies at the cell level. The main benefit of this
proposed method is that the system does not need any prior knowledge
about the schema of the data. However, their approach also suffers from
disadvantages: because of the reliance on SQL++ it is not compatible with
RDBMSs and for performance reasons they have to modify the source
data to include policy information that apply on a document.
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In this chapter, we will combine the challenges set out in Chapter 1 with
the ideas from various fields of related work discussed in Chapter 2 to
introduce our proposed system. First, we will discuss the positioning
of our intended approach compared to related work. We will then dis-
cuss important aspects of the system design and how they relate to the
challenges and related work. The details about the policy model and
evaluation are then elaborated upon over the next chapters.

3.1 positioning

As we have seen in the introduction and related work, compliance is
a complex topic with requirements and challenges at many different
levels. To be able to discuss the design decisions made for this system, we
first explain the design spectrum in which the system will be positioned.
We do this by making a relative comparison between different relevant
approaches from the related work using the aspects defined in Section 2.3.
We then discuss where our own approach is intended to be positioned in
this design spectrum. Note that the common denominator between the
systems that we compare here is that they are all data-centric approaches Data-centric here

means that the
compliance system
uses the governed
data as part of the
context (and possibly
also performs actions
on it).

towards compliance in some way. An overview of this analysis is depicted
in Figure 3.1. Note that for this comparison and in this figure, we have
used a representative set of the most interesting and relevant systems
from the related work with widely differing approaches. Some systems
are not included on all axes if the axis is not directly applicable.

aspect 1, system scope: Systems clearly have varying expectations
and goals when it comes to the targeted scope of the system. It be-
comes clear from Figure 3.1 that no systems that we have evaluated
seem to target the middle ground between higher-level policies like
privacy regulations and lower-level policies like business rules on
tables. Systems like Legalease [38] and Data Capsule [46] both are
purpose-built for regulations and therefore have limited support for
more versatile lower-level policies. On the other hand, the systems
that live closer to the database level like Compliant Geo-distributed
Query Processing [3] generally have a policy model that is far away
from high-level policies. OPA does not have a clearly defined sys-
tem scope as it is designed to work with any kind of input data.
Our intention is to target the gap in the middle: the system should
be able to handle lower-level internal rules about the data, but
also high level privacy policies and regulations. This means that
we sacrifice something on both sides: the policy model will be too
low-level to be able to directly encode regulations without some
effort, but will be too high-level to be able to enforce highly specific
cell-level rules.

17
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Figure 3.1: Comparison of selected related work and our intended approach for
various aspects. The absolute position of the points do not represent
any concrete value, but rather serve to compare the related work in a
relative manner. Mentioned are: Compliant Geo-distributed Query
Processing [3], XACML [32], Deep Enforcement [24], Data Capsule
[46], Legalease/Grok [38] and Open Policy Agent.
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aspect 2, policy abstraction level: This is somewhat related to
the previous aspect, as is apparent from Figure 3.1. For systems that
attempt to take on a broad scope, the policies will tend to be more
abstracted away from the underlying data, Deep Enforcement [24]
being the exception. Both approaches have their advantages and
disadvantages. A notable disadvantage of low-abstraction policies
is that they tend to make direct references to the data, such as in
many ABAC or database approaches. However, this does allow
for a lot of flexibility and custom low-level rules. For policies that
are abstracted away from the data, the inverse holds true: policies
become more maintainable and understandable, but are generally
less powerful. Moreover, higher-level policies tend to be closer to
the natural language used in privacy policies or regulations by
using some kind of abstraction layer such as references to data
types or tags. Ideally, our approach would live somewhere in the
middle to correspond with our intentions for Aspect 1.

aspect 3, policy complexity: Policy complexity seems to go hand in
hand with expressiveness. For example, the XACML policy model is
quite complex since it supports many different operators, matching
functions, conditions and obligations which makes the policies
quite hard to understand and write. OPA is similarly complex, but
has an easier to read declarative language. However, these policies
are very versatile and powerful. On the other hand, Legalease

is on the other end of the spectrum with only 4 attributes, but is
therefore also very limited [38]. Our goal is to be in the middle here,
leaning towards the lower complexity side. We can remove a lot of
complexity by moving the attribute definition and evaluation to the
application layer (as opposed to models like XACML or OPA/Rego
where the matching logic is determined in the policies themselves).
That way, the model is still somewhat extensible by someone with
some knowledge about the system, but the policies become easier
to write and understand by laymen.

aspect 4, policy expressiveness: As we have seen with Aspect 3,
expressiveness seems to be correlated with complexity. One notable
system is OPA, which is the most expressive because it is the most
general approach. Again, the middle ground would be ideal, with
a balance between expressiveness and complexity. Furthermore, it
would be useful if our system takes extensibility into account so
that someone who implements this system can steer this tradeoff
based on their own goals.

aspect 5, enforcement vs . audit: Another distinctive aspect is
whether the systems are targeted towards enforcement or audit.
Basically all evaluated systems put a clear emphasis on enforcement.
Legalease [38] is the only exception, since it analyzes data flows
retrospectively and thus does not enforce anything. Our system also
targets early enforcement. However, we recognize the importance The importance of

auditability is
demonstrated by
GDPR Article 30,
which mandates that
data processors
maintain processing
records. See
Section 2.1.

of auditability and thus our design should take this into account.

aspect 6, stationary vs . moving: With an increasing focus on cloud
and distributed data, it makes sense to track data flows and take
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the geography into account. Our intention is to put the main focus
on moving data, since the main challenges of this research are
related to geographically distributed data. However, the approach
we propose in this chapter is still suitable for stationary data in
some ways.

As Figure 3.1 clearly shows, our approach is meant to cover the middle
ground for many of these aspects. Over the next subsections, we will
explain what Qompliance looks like and how it manages to balance the
tradeoffs represented by these aspects.

3.2 access control paradigm

We will first approach the system design from the perspective of access
control, a well-established field with related work that can serve as a
basis for our design. The focus of this project is on designing a service
that governs data movement and transformations for another system
that handles the SQL-based data processing (e.g. an ETL platform), and
will thus process the outcomes of our system. The policy language and
the evaluation system are used as a way to authorize certain uses of
data. Clearly, parallels can be drawn to the field of access control, which
has been discussed in Section 2.3.2. Note that access control security
policies and privacy policies often govern the same set of data and
because access control is even a common measure to comply with GDPR
requirements, using a single integrated model for doing both will simplify
its management [31].

A suitable model for our policy language is the Attribute-Based Access
Control (ABAC) model. It is especially suitable because we can attach nu-
merous attributes to the users, data and environment [19, 20]. The power
of policies in ABAC is in practice defined by the supported attributes and
the policy model [19]. Therefore, attributes have the potential to bridge
the gap between higher level policies for privacy policies and regulations
and lower-level policies such as business rules about data, as identified
in Aspects 1 and 2. These attributes can either be manually assigned
or automatically inferred. Policies can then use these attributes to allow
or deny data movements without directly addressing individual per-
missions, which makes ABAC very suitable for distributed and rapidly
changing systems [20]. Because of this abstraction, if new users are added,
the managed data changes or the environment changes, policies do not
have to be updated which is a useful property that we wish to extend.

A policy language that implements ABAC like XACML would be
somewhat suitable for our purposes. However, XACML is a fairly compli-
cated policy model. XACML is XML-based and supports many different
attributes, relationship, functions and even conflict resolution strategies
within the policies. Therefore, it is difficult to get a quick understanding
of a policy.

For the purposes of this research we can make a few simplifications
and sacrifices compared to a sophisticated policy language like XACML,
in favor of a simpler and higher level policy language as proposed
for Aspect 3. This research attempts to demonstrate how data-centric
compliance validation and enforcement could work when moving data in
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a cloud environment. For the purposes of this research we opt to design
a novel policy model, inspired by ideas from the related work discussed
in Section 2.3. This novel policy model is intended to be take take our
goals for this system into account, notably Objectives 3 and 4. Especially
the latter objective is the main reason why we need a new policy model,
because by extension we aim to make the policies simpler to understand
for people unfamiliar with technical details such as the schemas of the
governed data and complex policy languages.

This novel policy model will be a similar but simpler ABAC-like
implementation. We will use ideas from ABAC, but the intention is not
to strictly adhere to the traditional definition of ABAC as defined by
NIST [19]. For example, we will move most of the logic, which ABAC More on how we

deviate from ABAC
in the traditional
sense will be
discussed in the next
sections.

implementations like XACML allow for, to the application layer to reduce
policy complexity (see Aspect 3). Moreover, our goal is not to perform
strict access control to a dataset per se. This is because of our focus on
moving data, as explained in Aspect 6. We want to govern how this
data moves, which can mean denying a movement entirely, but also just
requiring that the data will move to a particular location without making
an access decision.

3.3 policy model

Now that we have a basis for our policy model and we have an idea of the
challenges that we are trying to solve (Chapter 1) and an impression of
the design spectrum (Section 3.1), we can start shaping our policy model
more in-depth. Our system takes a unique approach towards the policy
model. The policy model is intended to be declarative and relatively high-
level, meaning that the policy author does not need to know of or engage
with the exact schema of the governed data or with the supported checks
and operations in the compliance system. This means that the policy
author can write relatively simple policies that can be closely mapped to
how someone would discuss them in natural language, like:

• Store all medical personally identifiable information in HIPAA compliant
storage

• Make sure that all data that is currently in the Netherlands stays within
the Netherlands

• Deny data scientists access to transform sensitive data

Note that the first two examples here do not actually allow or deny a
data movement, they simply tell what a data movement should adhere to.
This is a notable feature of our policy model which departs from access
control in the traditional sense. The policy model supports what we call
non-deciding policies: policies that do not make a decision. They are
meant to put restrictions on what data movements should adhere to,
without deciding whether this data movement is allowed or not in the
first place.

The examples above show how someone would ideally want to write
policies for compliance. As discussed in Aspects 1 and 2, our goal is
to find the middle ground between high-level and lower-level policies.



22 system design

This requires a flexible abstraction layer to map between policies and
data. This layer of abstraction between the declarative policies and the
low-level implementation is facilitated by a few key assumptions and
design decisions:

metadata The system is metadata-heavy, meaning that a lot of at-
tributes assume the presence of detailed metadata. This metadata
gives meaning to the entities addressable by the policies, which
enables better human comprehension. For example, data stores
are assumed to have metadata on their location and additional
attributes like compliance level (e.g. HIPAA compliant, suitable for
financial data, suitable for government data).

tags This is an extension of the design decision to make the system
metadata-heavy. Tags are used as a human-friendly way to give
context to governed resources at almost any level of detail without
knowledge about the exact schema. Moreover, tags can work on
other data models than just the relational model, meaning that
our design can support data stores with alternative data models as
long as it supports SQL and mapping its data model to schemas
and tables. In our design, tags can be attached to data stores,An example of an

alternative data
model could be data

files on HDFS
managed using

Apache Hive, queried
with SQL through

Presto.

datasets/tables and columns. This way, policies are decoupled
from the underlying data definition, which in turn results in easier
policy writing and management. They can be used to make broad
references to the data, like ‘all PII’ or ‘all email addresses’, that
can provide more meaning to policy authors than data references
would and without having knowledge of the data definition. In
case the underlying schema changes, policies do not have to be
changed. Compared to low-level related work that supports policies
that directly reference data in some way, a set of policies will be
easier to comprehend, author and maintain. Compared to high-level
related work that only supports very general policies, a tag-based
system allows for more flexibility because tags can also be highly
specific (e.g. only apply on a single column or table) and therefore
cater to the needs of policies closer to the data. A disadvantage
of this approach is that you may need a lot of metadata on the
governed data for this to work, depending on the complexity of
the policies that need to be supported. However, a lot of research
has been done towards automatically generating, inferring and
adding metadata like this [38, 41, 48]. Moreover, tags can be used
in other systems as well and may even already be present. Another
challenge is that the lifecycle of the tags in the system has to be at
least as long as the lifecycle of the data in the system, meaning that
the set of tags can grow overtime to become more complicated. To
keep the set of tags structured and maintainable, and to prevent
tags with highly similar meanings from being added, we propose
to store the tags in the system in a hierarchy.

attribute types By having predefined attribute types, some flexibility
is taken away in favor of reduced policy complexity and clear se-
mantics (compared to highly expressive but complex languages like
XACML and Rego). This decision is what makes the system and its
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policies the most opinionated because it makes some rigid assump-
tions about the attributes and how they are processed. A suitable
example that demonstrates the usefulness of these assumptions is
the hierarchical attribute type. Because most context attributes are
stored in a hierarchy, how these attributes get evaluated becomes
quite easy to understand. Furthermore, a hierarchical organization
can reduce the number of attribute values needed in policies and by
extension improve the clarity and maintainability of policies. The
set of possible attribute values is limited by the tree, and conflict
resolution is as easy as taking the more specific policy applicable
on the input to take precedence. Note that in many applications of
attributes there is already an implicit hierarchy (e.g. purposes and
roles), which makes them trivial to understand. Tags are a special
kind of hierarchical attribute, which not only improves maintain-
ability but also allows tags to benefit from this conflict resolution
property. Although we suggest attribute types like hierarchies in
this research, the attribute system is designed to be extensible at
the application layer.

From here, we can introduce the actual structure of a policy. Because of
the context in which Qompliance is intended to operate, the structure is
slightly different from traditional ABAC systems or other policy systems
that we have reviewed in Chapter 2. A policy has four main elements,
namely:

1. Basic metadata like a unique policy name which acts as a natural
identifier, the owner/author of the policy, etcetera.

2. The context in which the policy applies, specified by attributes in a
manner comparable to ABAC, i.e. attribute-value pairs. Between
attributes we assume a conjunction relation (i.e. AND-relation)
because this more closely follows natural language in legislation.
Between attribute values for the same attribute, we assume a dis- For more discussion

on the assumed
relations between
attributes, see
Section 8.1.1.

junction relation (i.e. OR-relation).

3. The decision about whether the movement is allowed under the pol-
icy’s context. Note that this differs slightly from an access decision
in the context of access control because this does not make a direct
decision about access to the data itself but rather whether a data
transformation (defined by the SQL and additional attributes) is
allowed or not. Still, this can theoretically serve as an access control
mechanism if all data access is required to go through this system
first. As discussed at the beginning of this section, policies do not
have to make a decision as they can also be non-deciding. This allows
the policy author to specify requirements that should be enforced
in a particular context, without making a final decision.

4. The requirements that should be fulfilled if the data movement is
allowable. Allowable means that in principle, the set of applicable
policies allows the data movement. However, it will only be allowed
iff all requirements can be satisfied. Note that the ‘requirements’
naming differs from the conventional naming in some ABAC and
privacy systems where a name like ‘obligations’ is more common.
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Whereas obligations in these systems mostly refer to actions that
should be taken once a policy is applied, requirements in our sys-
tem work a little bit differently. The requirements name is carefully
chosen because it implies that the requirements should also be
fulfilled for the input to be valid and allowable. Because of this
requirements element, an allow policy essentially reads as: “if the
policy context applies to the input, allow the movement iff all re-
quirements can be satisfied”. Similarly, a non-deciding policy reads
as: “if the policy context applies to the input, make sure the re-
quirements are satisfied without making a decision”. Note that this
implies that deny policies cannot specify requirements, because if a
movement is not allowed, requirements on this movement cannot
be enforced anyway. This allows for obligation-like actions, but also
for imposing additional restrictions on the data movement. In turn,
this enables our system to provide recommendations to the user
on how to make their input compliant or output requirements that
can be automatically fulfilled by another system (e.g. the required
data geolocation). Additionally, this naming also implies that these
requirements can be evaluated at any time. For instance, if some-
one were to build a continuous/repeatable ETL pipeline where the
compliance state needs to be reevaluated from time to time, the
system would be able to check whether the data is still compliant
with a “data should stay within the EU” requirement.

3.4 attributes

To get an understanding of the types of policies that we can write with this
policy model, we propose a set of attributes that Qompliance supports.
For determining this set of attributes, we have mainly looked at the
related work and regulations that have been discussed in Chapter 2

as well as discussions with IBM Research employees with compliance-
related experience about what would be useful attributes. We categorize
attributes in the two categories that can be used in the policy model:
context and requirements. Some attributes may be applicable to both
categories, others may only be applicable to a single category. Note that
these attributes also have types. The type of attribute determines the
values that it can take and how they are processed. These types will
be introduced in Chapter 4 once we have an understanding of the data
model.

3.4.1 Context Attributes

tag An important attribute which enables to the policy author to write
data-centric yet declarative policies. Because of this layer of abstrac-
tion, data can be referred to by including tags in a policy. These
tags are then resolved to the data schemas that have been labeled
with these tags, which can then be matched to the input.

role The role attribute is similar to Role-Based Access Control systems.
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purpose The purpose attribute is added because it is a common notion
in data and privacy regulations. It can be used to select purposes
for which a policy should apply. This attribute value is assumed to
be provided by the submitter of the transformation.

data location The data location attribute enables the geolocation
features of this system. It allows policy authors to write policies
that govern how data should be managed across borders and in
different jurisdictions. Together with the data location requirement,
it can also be used to ‘steer’ data to the right location.

storage classification The storage classification context attribute
can be used to write policies for data that lives on data stores with
a particular classification.

3.4.2 Requirement Attributes

data location The requirement counterpart of the context attribute.
This attribute can be used to require the data to be processed
and stored in a certain location, for example to prevent data from
leaving a particular jurisdiction.

storage classification The storage classification requirement dic-
tates where data can be stored based on classification metadata
attached to data stores. These can be used to ensure that data re-
sides in data stores which conform to a particular classification, for
example: compliance certifications, disk encryption, or classified as
suitable to store sensitive data.

without The ‘without’ requirement can be used to mandate that data
is not included in the final query result. This is useful for writing
policies that restrict what data can be included in the final output,
without preventing the data access entirely. This attribute can be
used to make rewrite suggestions for the SQL to make it compliant
if it is not already.

aggregate The ‘aggregate’ requirement can be used as an alternative
to the ‘without’ requirement when the resulting dataset is still
allowed to contain some statistical properties about certain data. It
can for example be used as an alternative anonymization strategy.

3.5 data flow & processing

Given the policy model that Qompliance should support, we can now
discuss how the data should flow to, within and from the compliance
system. This data flow gives a general overview of how the system is
supposed to work. Detailed descriptions of the data model used in the
system and the compliance evaluation process are given in Chapters 4

and 5 respectively.
The data flows similar to how it would work in an ABAC system with Refer to Section 2.2

for more information
on the ABAC
functional points.

its functional points as defined by NIST [19]. Figure 3.2 gives a visual
representation of our system mapped to the ABAC functional points.
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Figure 3.2: Diagram showing the different functional points in our system, based
on the main functional points for the access control mechanism for
ABAC described by Hu et al. [19].

Note that the scope of our system is a service which can interact with a
data management system like an ETL platform to evaluate and enforce
compliance on data transformations. Therefore, our service delegates the
responsibility of enforcing the decisions and requirements to another
system. The system is not designed to touch the actual data or to generate
execution plans, which is possible because data references in policies are
entirely based on and evaluated with the schemas of the data. In other
words, our system outputs a decision along with a set of requirements
that are supposed to be enforced by another system that processes the
data. Thus, in terms of the ABAC functional points, our system is not
responsible for the Policy Enforcement Point, but only for the Policy
Information, Administration and Decision Points. This is represented by
the dashed line in Figure 3.2.

The diagram also shows a few other small differences from the tradi-
tional ABAC model. First, for our system the PEP also responds to the
user in case the user needs to modify their submitted transformation in
some way or if the request gets denied entirely. Furthermore, the PDP
does not only output a decision but also a set of requirements whenever
applicable. Lastly, an important difference is that our system allows for
pre-checking whether a transformation is allowed or not. Our approach
with policy model from Section 3.3 and the set of attributes from Sec-
tion 3.4 allows for completely static evaluation of the policies. Therefore,
we can check whether a transformation will be allowed or not before it
needs to be handled by a data processor and thus it can be evaluated
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in advance without touching the data. A major benefit here is that we
can let the user more directly interact with the Policy Decision Point, by
allowing the user to submit their intended transformation for a pre-check.
The system can then just perform the evaluation like it normally would
and provide the user with direct feedback, which is especially useful if
the user needs to change something before the transformation can be
submitted. A use case of this would be an editor-like user interface for
writing SQL queries, which can then periodically submit the SQL for
compliance evaluation. Thus, our system can provide early feedback to
the user about whether their intended SQL-based transformation will be
allowed, where the data can be processed and stored and whether the
user needs to change anything to ensure compliance.

The PIP is responsible for retrieving and managing metadata and
attributes. Similarly, the PAP is responsible for retrieving and managing
policies. Because our system is designed to not require changing the data
model of the governed data, or even data access in the first place, the PIP
is also responsible for managing the schema information. This schema
information is assumed to be fed by some other system. Not all attribute
information has to come from the PIP though, as attributes can also be
provided along with the submission to the PDP (as shown in Figure 3.2).
For example, the user should provide the purpose for the transformation,
as explained in Section 3.4.

The SQL query defining a data transformation is the earliest point
where one can intercept what a transformation will look like (as opposed
to later downstream in a data processing pipeline). Therefore, analyzing
the SQL query is a suitable method providing early compliance feedback.
Because our system is intended to operate directly on the SQL specifica-
tion of a data transformation, the system has to include SQL parsing and
validation capabilities. That way, the system is fully able to ingest a user-
specified job containing a SQL query and possibly additional attributes.
The need for parsing the SQL is evident. The SQL needs to be validated
to make sure that it contains valid references to schemas that our system
is aware of (through the PIP), or provide feedback to the user if this is
not the case. Moreover, parsing and validating the SQL in our system is
especially useful in the scenario where the user directly interacts with
the compliance system. The user not only gets compliance feedback but
also feedback about the validity of their SQL query, all without reaching
the actual data stores or a data processing service. This feedback can for
example be added to the editor-like interface we proposed earlier in this
section.

3.6 other considerations

There are a few other smaller design considerations that are worth men-
tioning. First, because our system is supposed to operate as an external
service to a data processing system, care should be taken to ensure that
the communication between these systems is secure. Part of the solu-
tion can be networking measures that are out of scope of this research.
However, a good measure for our system would be to attach crypto-
graphic signatures to the output of our system. This way, anyone can
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validate whether a particular decision was indeed made by our system at
a particular point in time.

Furthermore, as discussed in Aspect 5, we want to take audit into
account as is for example required by GDPR. For this, our system should
write all of the decisions made to a log, along with the signature.

Lastly, one of the challenges of this research was to target distributed
settings and data movements. However, it is worth noting that the tech-
niques presented here are also suitable for stationary data in a single
database setting. By employing our system as a layer in front of the
database, many of the same ideas can be utilized (apart from distributed
data-related attributes). That way, our work can be compared to and
used in a similar manner as some of the other related work that we have
discussed, such as the work by Agrawal et al. [1], Khaitzin et al. [24], and
LeFevre et al. [25].
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In this chapter we introduce a universal data model that is used through-
out this work to map all related data back to a common model. The basis
for this model is the policy definition model that is used for writing the
declarative data-centric compliance policies introduced in Chapter 3. Fur-
thermore, we present a metadata model for storing the metadata that can
be used for writing policies. We give a formal description of this universal
model and explain its various components. The benefit of this universal
model is that we can map this model to other representations, such as a
policy language and a database implementation. These representations
are explained in Chapter 6 which discusses the reference implementation
of the system and how it relates to this model. The formalization provides
a common language for further use throughout this work.

4.1 schema metadata

First, we present a model for the metadata that the system needs to keep
track of. The most important type of metadata are the schemas of the
data that the system is governing. Other metadata for example includes
information on the data stores and tags.

We will start by defining the three levels of schema data that the system
keeps track of.

definition 1, data store: A data store d contains metadata about the
data stores/databases that the system keeps track of. It is defined
as d = 〈id, name, location, S〉. D with d ∈ D denotes a set of data
stores.

definition 2, data set: A data set s contains metadata about the
individual data sets/tables in the tracked data stores. It is defined
as s = 〈id, name, CL〉. S with s ∈ S denotes a set of data sets.

definition 3, column: A column cl is the lowest level of data that
we consider. It contains metadata about the columns/fields within
data sets. A column is defined as cl = 〈id, name, type〉, and CL with
cl ∈ CL denotes a set of columns. The type of the column is the
data type in the database.

4.2 attribute metadata

Attribute metadata is additional metadata that enables the functionality
of a policy attribute. This can be the values that the attribute can take, and
possibly additional metadata for connecting the attribute values to other
data such as schema data. Thus, the specific metadata that is needed will
differ per attribute. We will provide some generic definitions that can be
extended to fit the requirements of a particular attribute.

29
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definition 4, attribute: An attribute is a policy element that is used
to add functionality to a policy, specifically context information or
requirements. An attribute at is defined as at = 〈id, type, category,
values〉, with AT being a set of attributes where at ∈ AT. Here, type
is the attribute type and category specifies whether this attribute is
a context attribute, a requirement attribute, or both. Our proposed
attributes have three main attribute types: enum, hierarchy and tag-
reference. values are the set of values that the attribute can take,
which may differ by type.

Thus, Definition 4 introduces the notion of attribute types for the
attributes introduced in Section 3.4. These attribute types determine how
attribute values are validated, matched and defined.

definition 5, attribute values: An attribute value v can have
varying properties depending on the attribute type. In the case of
an enum type, we assume that v = 〈enum_value〉 where enum_value
is just a unique name for the value. In the case of a hierarchy type, a
value will instead look something like v = 〈id, node, children〉. Valid
attribute values for tag-reference types are simply names of the tags
that the system is aware of, i.e. v = 〈t.name〉 for some t where t ∈ T
(see Definition 8). This is a somewhat rough recursive definition ofOf course, the actual

implementation of a
tree can differ from

this definition.

a tree, where node is the unique name of the node in the tree and
children refers to the id of other tree values.

It is important to recognize that Definition 5 is just a generic repre-
sentation of an attribute value, and that the actual semantics of these
values will differ between attributes. For example, for determining a
policy match or for processing requirements, additional metadata may
be needed. An example of which are storage classifications:

definition 6, storage classification: A storage classification
sc provides additional information about the properties of a data
store. It extends the idea of an enum attribute type and is defined
as sc = 〈name, D〉, with SC being a set of storage classifications
where sc ∈ SC. Storage classifications thus have a many-to-many
relationship with data stores D.

To be able to discuss attributes in a universal way and thus without
knowing their exact underlying semantics, we define functions which all
attributes should have:

1. evaluate(inputVals, policyVals), which determines if the policy con-
tains attribute values which are considered to match with the input
value.

2. checkCon f licts(inputVals, policyVals1, policyVals2), which checks
if there are conflicts between the two sets of attribute values on the
input and returns what set of attribute values is more specific.

3. evaluateRequirement(policyVals), which processes the attribute val-
ues from a policy for this particular requirement (i.e. checking if
they are valid values and generating further output).
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4. generateFinalOutcomes(evaluatedRequirements), which generates
the final set of outcomes by combining the evaluated requirements
for this attribute.

The first two functions should be available for context attributes, the
latter two functions should be available for requirement attributes. The
exact implementation of these functions may differ, but this functionality
should be present. The system does not even need to be aware of addi-
tional attribute metadata for certain attribute implementations, as long
as two properties are satisfied: the above functions are implemented and
the system knows how to parse and process the attribute’s values. An
example of such an attribute could be a ‘role’ attribute that externally
validates whether the input role (e.g. the role of the user) complies with
a role listed in a policy. The system just needs to be aware of how to
process these role values and implement the above methods using this
external service.

Tags deserve some special attention as they serve an important role
within the system: they enable the layer of abstraction between the gov-
erned schemas and the policies. A reference to a tag can be used as a
special type of attribute value.

definition 7, data reference: A data reference dr points to a par-
ticular schema element, either a data store, dataset or column and
can be referenced by tags. It is defined as 〈id, re f 〉, where DR is a
set of data references with dr ∈ DR. Here, re f is a SQL like data
reference, e.g. DB.Table.Column.

definition 8, tag: A tag t references a set of data references DR to map
the name of the tag to the underlying data. It extends the idea of
a hierarchy attribute, and is defined as t = 〈id, name, children, DR〉,
where T denotes a set of tags with t ∈ T. Thus, tags have a many-
to-many relationship with data references.

Thus, tags are a hierarchy attribute with the special property that the
nodes also contain a set of data references which map the tags to actual
data. Organizing tags in trees has the benefit that it gives additional
meaning to the tags, which helps with writing clear declarative policies.

4.3 policies

Now that we have established the metadata models, we can finally define
what policies should look like. A policy consists of a combination of
attributes from Section 4.2, for context and optionally for requirements.

definition 9, context attribute value: A set of context attribute
values C together define in what context a policy should apply
on the input. A context attribute value should be valid as defined
by Definition 5 for the particular attribute (Definition 4) that it
references. Formally: c = 〈id, at.id, val〉, where c ∈ C, at ∈ AT and
val ∈ at.values.

In other words, the context of a policy is defined by a set of attribute
name-value pairs. The system can then use the name to resolve what
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attribute the value belongs to, and pass the value to its functions. The
definition of requirement attribute values is very similar:

definition 10, requirement attribute value: A set of require-
ment attribute values R together define the requirements that
should be enforced or output by the system if the policy applies. A
requirement attribute value should be valid as defined by Defini-
tion 5 for the particular attribute (Definition 4) that it references. For-
mally: r = 〈id, at.id, val〉, where r ∈ R, at ∈ AT and val ∈ at.values.

Finally, we can define a policy:

definition 11, policy: A policy p is defined by context and require-
ment attribute values, a decision, and additional metadata. We de-
fine it as: p = 〈id, name, owner, decision, C, R〉. The decision should
be one of: allow, deny, non-deciding.
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In Chapter 3 we have introduced the general design of the system and
in Chapter 4 we set out the data model for the policies and metadata.
In this chapter, we describe how the policies are actually matched and
processed to reach a final compliance outcome.

The input for a compliance evaluation job consists of the raw SQL
which represents the data transformation, internal metadata and external
metadata. Internal metadata is metadata that is managed or can be
accessed directly by the compliance engine, an example of which would
be the location of a data store. External metadata is metadata that should
be provided by the user alongside the SQL or that is retrieved by an
attribute for evaluation, e.g., the purpose for a transformation.

The entire compliance evaluation process of a job is divided into the
following general steps:

1. Parse and validate the SQL and extract what tags are applicable on
the SQL

2. Match input attributes with policy attributes to find what policies
are applicable on the input

3. Check for policies that make conflicting decisions and try to resolve
these conflicts

4. Evaluate and process the policies’ requirements and resolve con-
flicts between them

5. Generate, sign and return/forward the final output

This chapter dedicates a section to each of these steps with explanations
of the process along with examples and pseudocode.

5.1 analyzing the sql

The first step of a compliance evaluation job is to validate the user-
defined SQL to see whether it matches the schemas that the system is
keeping track of and to see if the SQL itself is valid in the first place. This
involves parsing the SQL (while taking to account possible dialects and
extensions), checking the SQL semantics and checking whether the data
references in the SQL conform to a known schema. The assumption here
is that our system has to be aware of the schemas of the data that it is
governing. Although parsing and validating SQL is an important step in Remember that for

the proposed static
compliance
evaluation we only
keep track of the data
stores, tables and
columns.

an evaluation job, it is not in the scope of this work and existing solutions
exist that can be used here (see Chapter 6).

After the SQL has been validated, all data references should be ex-
tracted. Note that in this work we only consider SELECT queries because
data definition and manipulation are not relevant for the purposes of this
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research. However, the ideas presented here can be extended to include
other types of SQL statements for systems with broader applications.

Because the proposed system is intended to work across different data
stores (possibly also with other models than the relational model, as long
as they support SQL), we will make a simplifying assumption about how
data is referenced in the SQL statements that our system supports: a
schema name refers to a data store. This simplification was made because
data stores are assumed to have their own attributes such as their location.
Furthermore, it makes reasoning about the system somewhat easier and
schemas can still be used if you map them as data store names with
aliases. Thus, we consider a fully qualified data identifier to consist of the
column name, the table name and the data store name. Tags can reference
all three of these data identifier levels, thus we have to extract all three
from the SQL.

A typical SQL SELECT query over a relational database under our model
contains references to columns, tables and data stores. The entire set of
referenced data identifiers is the set of columns, tables and data stores
referenced in any place in the SQL. This set can then be joined with the
set of all tags tracked by the system to discover what tags are applicable
on the query. Important to note is that we need to know what tables and
data stores a column belongs to, otherwise the column name may not
be unique. Similarly, we need to know what data store a table belongs
to. In some cases, these may not be immediately apparent, such as when
using the asterisk or when columns are referenced without explicit table
references, as shown in Listing 5.1.

SELECT column1, column2

FROM db.table1, db.table2

WHERE column1 IS NOT NULL;

(a) Column references without explicit ta-
ble references

SELECT *
FROM db.table1;

(b) Use of asterisk to project all columns

Listing 5.1: Examples of column references that need to be resolved.

We assume that the validation process enriches the data references
in the SQL by introducing aliases by using the database schemas to be
able to resolve these cases. This means that we are now dealing with
SQL that looks like the example in Listing 5.2. Building the set of data
identifiers then becomes as simple as building two maps: a map from the
column aliases to column-table pairs and a map from the table aliases to
table-store pairs. To resolve what data stores columns are under, these
two maps can be joined. By then adding all data store, table and column
references to a set we have a set of all data identifiers in the query. For
Listing 5.2, this set will look like the following:

{db, db.table1, db.table2, db.table1.column1, db.table2.column2}

It is trivial to then join this set of data identifiers with the set of tags
tracked by the system to reveal what tags apply on the query, which is
used as input for the policy matching alongside the other attributes (see
Definitions 7 and 8).
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SELECT t1.column1 AS c1,

t2.column2 AS c2

FROM db.table1 AS t1,

db.table2 AS t2

WHERE c1 IS NOT NULL;

Listing 5.2: SQL with resolved references by introducing aliases.

5.2 match input with policies

At this point, we assume to have all of the input attributes, including the
tags. Some attributes may require internal metadata before we can add
them to the input attributes, so these should be retrieved at this point as
well. Thus, from now on we assume that the input will contain all attribute
values so that the policy matching can commence. We consider matching
policies with the input at two levels: per policy and per attribute.

5.2.1 Policy Match Evaluation

The basic matching algorithm for matching policies on the input is shown
in Algorithm 1. For the pseudocode used in this chapter we will use the
notation from Chapter 4.

Algorithm 1: Pseudocode for policy matching
Data: Set of all policies P, set of input attributes I
Result: Set of applicable policies AP

1 for p ∈ P do
2 if I.atIds does not contain all p.C.atIds then
3 continue
4 end
5 policyMatch← true
6 policyAttrs← group p.C by atId
7 for (atId, atVals) in policyAttrs do
8 inputAtVals← I[atId].atVals
9 if evaluate(inputAtVals, atVals) = false then
10 policyMatch← f alse
11 end
12 end
13 if policyMatch then
14 AP← AP ∪ p
15 end
16 end
17 return AP

Simply put, the algorithm loops over all policies and checks whether
they apply on the set of input attributes (i.e. the attribute values related to
or derived from the request). Because all of our proposed context attribute
types have the property that the set of policy attribute values that will
result in a match can be solely determined based on the input attribute
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values, we can make an important optimization. By only determining
the set of allowable values once in advance, we reduce the evaluation
of a single attribute value match to a simple O(1) lookup. This would
not be possible in case the attribute evaluation requires other data than
just the input attribute values, e.g. through an external service. However,
in practice the implementation allows for a hybrid approach because
this evaluation is implemented per attribute type, see Chapter 6. The
optimized version based on this property is shown in Algorithm 2.

Algorithm 2: Optimized version of pseudocode for policy match-
ing

Data: Set of all policies P, set of input attributes I
Result: Set of applicable policies AP

1 for i ∈ I do
2 allowableValuesi.atId ← getAllowableValues(i)
3 end
4 for p ∈ P do
5 if I.atIds does not contain all p.C.atIds then
6 continue
7 end
8 policyMatch← true
9 policyAttrs← group p.C by atId

10 for (atId, atVals) in policyAttrs do
11 attrMatch← f alse
12 for atVal in atVals do
13 if allowableValuesatId contains atVal then
14 attrMatch← true
15 end
16 end
17 if attrMatch = false then
18 policyMatch← f alse
19 end
20 end
21 if policyMatch then
22 AP← AP ∪ p
23 end
24 end
25 return AP

5.2.2 Attribute Match Evaluation

What constitutes a match at the attribute level can differ per attribute
type. With our proposed set of context attributes, we have two main
attribute types: hierarchical and enum. Evaluating a match for the enum
type is trivial: if the set of registered enum values contains the value that
we are checking, it is a match. This can obviously be implemented in
O(1).



5.3 policy decisions & conflicts 37

All Purposes

Research

Audience
Research

Strategy
Research

Marketing

Advertising

Figure 5.1: Example of a hierarchical attribute. Blue represents the input, orange
represents the policy.

Checking for a match for a hierarchical attribute is also fairly intuitive.
If a policy references a value from an hierarchical attribute, it matches
that value and all values below it in the tree. Thus, checking for a match
involves looking up the input value in the tree, and seeing if any of the
policy’s values for that same attribute is a parent. The set of all values
that result in a match (assuming OR-semantics) can be built by looking
up all of the input values and their parents and adding them to a set.

This is illustrated in Figure 5.1. Assume we have a policy that references
the purpose ‘Research’. The orange arrows show that this purpose and
its two children are covered by the policy. Now say a data transformation
is submitted for purpose ‘Audience Research’. We then search for this
purpose in the tree and find its parents, which is shown by the blue
node and arrow in the tree (this only has to be done once!). Because
there is an overlap between the orange and blue paths in the tree, we
know that this policy attribute value matches the input attribute value
for {Research, Audience Research}.

5.3 policy decisions & conflicts

In the set of matched policies, there can be policies with different deci-
sions. In this section we introduce the different possible decisions, how
they can conflict and how we resolve these conflicts.

5.3.1 Decisions

As we have seen, the system supports three different policy decisions:
allow, deny, non-deciding. However, the result of evaluating a policy
can actually have four different states: allow, deny, non-deciding and
indeterminate. Note that allow in our system actually implies allow

if requirements can be enforced, which shows the need for this new inde-
terminate state. The indeterminate result will be returned if there is a
problem with evaluating the policy, for example if not all requirements
can be evaluated or enforced. The exact behavior can be defined per
attribute, as various situations may warrant an indeterminate. This
result implies that a transformation will be denied (even if the original
decision was allow) and that the user should be notified about the
problem. For example, if a particular tag used in the require section could
not be resolved in the current query, the result will be indeterminate.
This indicates that the submitted transformation needs modification be-
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fore it can be allowed. Note that yet another set of final decisions apply
when we have evaluated all applicable policies: allow, deny, indetermi-
nate. The final outcome of evaluating all applicable policies can never
be non-deciding because if no applicable policies make a decision, the
system-wide default decision will be returned.

5.3.2 Context Conflicts

Consequentially, if multiple policies apply on the input, there can be con-
flicts between policies with different decisions and overlapping contexts.
We define a conflict as a policy that makes the opposite decision of an-
other policy while having a (partially) overlapping context that applies on
a particular input. Note that we only consider allow and deny decisions
to be able able to conflict. non-deciding are by definition not able to
conflict. We suggest to have indeterminate always take precedence over
the other decisions and thus always result in an indeterminate outcome.
This is a strict approach for the sake of clarity and security. Furthermore,Other more lenient

approaches to deal
with

indeterminate are
possible, depending
on the requirements
and strictness of the
organization using

the system. See
Chapter 8.

we only have to look at the context of the policy, not its requirements
since requirements can only be enforced if the policy decision is allow.
Conflicts between requirements will be considered separately as they are
semantically different from context conflicts.

Since a policy context consists of a conjunction of different attributes,
conflicts can be quite complex. A (partial) overlap is considered to oc-
cur if any of the individual context attributes of two policies overlap
together with the input. Suppose we have two policies with purposes
P1 = {Advertising, Research} and P2 = {Advertising, Reporting}, and
suppose P1 makes decision allow while P2 makes decision deny. If we
then receive a transformation for purpose ‘Advertising’, both policies
apply and make conflicting decisions. However, if this transformation
has purpose ‘Research’, there would not be a conflict because P2 does not
apply in the first place.

Note that the tag attribute requires some special attention. The decision
was made to also make this a hierarchical attribute. This has certain
consequences for how policies and conflicts are interpreted by someone
who runs into a conflict. It is important to recognize the distinction
between two interpretations of overlap:

1. Overlap in terms of tag trees. This is the same notion of overlap
as for the other hierarchical attributes: when two policies refer to
overlapping branches in the value tree.

2. Overlap in terms of the selected data. One could also look at what
data is overlapping (after resolving the tags). For example, if we
have two policies that select columns {a, b, c} and {a, b, d} from the
same table, these policies have an overlap on columns a and b.

The former interpretation of overlap was chosen because it is similar
to how all other hierarchical attributes work. Moreover, this approach
puts the emphasis on the meaning of the data and not the actual data
itself, which is consistent with our declarative approach towards policy
authoring.
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Our proposed conflict detection and resolution strategy again rely on
the property of our policy model that most attributes have a hierarchical
basis. Because there is an inherent scope in these hierarchical attribute
values, we can relatively easily resolve the vast majority of these conflicts
by taking these scopes into account. Attributes like tags and geolocations
are all structured in trees, meaning that we can take the most specific
context to take precedence. In the rare case that two policies live in the Again, various

improvements to this
basic approach
towards conflict
resolution edge cases
can be made, see
Chapter 8.

exact same scope, the system will return the system-wide default decision
for the sake of clarity and security. In the following subsections we will
first discuss how conflict detection and resolution works for individual
attributes of the two main context attribute types, and then introduce how
this gets combined in a conflict resolution algorithm between policies.

5.3.2.1 Hierarchical Attributes

To detect and resolve conflicts between values of the same hierarchical
attribute, we look between each value from both sets of attribute values
at what attribute value is the most specifically applicable to the input.
Algorithm 3 lists pseudocode for how this algorithm works. We assume
that previously it has already been checked what branches are selected
by the input values (see Section 5.2.2). For each branch, we then compare
all pairs to see what values are more specific (if they can be found in the
branch). By counting the amount of times either a value from policy A or
B is more specific, we can decide which policy is overall the most specific.
Note that in Line 11, we need to check whether a policy already has listed
an attribute value before in the same branch. If policies were allowed
to have multiple values within the same branch (e.g. ‘Research’ and
‘Audience Research’ in Figure 5.1), one can cheat the system by adding
many values within the same branch. Furthermore, multiple values in
the same branch do not make logical sense in the first place because the
hierarchical definition makes this redundant.

As an example we can take the values from Figure 5.1 again. Take
the (user-provided) purpose value ‘Audience Research’. Then, branch =
[Audience Research, Research, All Purposes], as indicated by the blue ar-
row. Thus, if the index of a value from policy A is lower in this list than
the index of a value from policy B, A is more specific.

5.3.2.2 Enum Attributes

For enum attributes, the conflict resolution strategy is simpler but also
less powerful. We simply take the intersection of the attribute values from
the input with the attribute values from policies A and B. If the number
of values in the residual list from A is larger than the residual list from B,
we take A to be more specific. This is quite a rudimentary approach and
therefore hierarchical attributes are clearly a better choice if applicable.

5.3.3 Conflict Resolution

Now that we know how to detect and resolve conflicts for the two
attribute types, we can introduce an algorithm for detecting and resolving
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Algorithm 3: Conflict resolution pseudocode for two sets of hier-
archical attribute values.

Data: Set of attribute values for policy A A, set of attribute values
for policy B B, set of branches covered by input Branches

Result: 1 if A is more specific, 2 if B is more specific, 0 if one is not
more specific than the other, −1 in other cases

1 ACount, BCount← 0
2 for branch ∈ Branches do
3 AInBranch, BInBranch← f alse
4 for a ∈ A do
5 if a /∈ branch then
6 continue
7 end
8 for b ∈ B do
9 if b /∈ branch then
10 continue
11 else if AInBranch or BInBranch = true then
12 illegal policy
13 else if a is deeper in branch than b then
14 ACount← ACount + 1
15 AInBranch← true
16 else if b is deeper in branch than a then
17 BCount← BCount + 1
18 BInBranch← true
19 end
20 end
21 end
22 return 1 if ACount > BCount, 2 if ACount < BCount, 0 if

ACount = BCount, otherwise −1

conflicts in a set of policies. Algorithm 4 lists the pseudocode for this
algorithm.

We have to compare the contexts of all policy combinations by call-
ing the checkConflicts method on the individual attributes, which are
implemented at the attribute type level as described in Sections 5.3.2.1
and 5.3.2.2. Like with the individual attribute values, a pair of policies
are scored based on how many of the attributes of one policy are more
specific than the other policy. The less specific policy of the two gets
removed from the set of policies. In case the two policies have the same
scope, the policy that conforms to the system’s default decision takes
precedence. Thus, the policy with the opposite decision of the system’s
default decision gets removed from the set of policies.

Note that the complexity of this algorithm is exponential because of
the nested loop to check between all policies for conflicts. However, this
algorithm should be run after the initial policy matching already has
been done, meaning that P should only contain policies that actually
apply on the input, which is not expected to grow very large where
this becomes a problem. Furthermore, the checkConflicts algorithm can
have a high complexity depending on the implemented attribute types.
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Still, a maintainable set of attribute values is also not expected to become
large enough for this complexity to become a problem.

Algorithm 4: Conflict resolution pseudocode for a set of policies.
Data: Set of policies P, set of input attributes I, system default

decision d
Result: Set of policies with resolved conflicts R where R ⊆ P

1 R← P
2 for Pa at index a from 0 until size(P) do
3 if Pa.decision 6= allow or deny then
4 continue
5 end
6 for Pb at index b from a + 1 until size(P) do
7 if Pa does not have opposite decision of Pb then
8 continue
9 end

10 AScore, BScore← 0
11 for (inputId, inputVals) ∈ I do
12 atValsA← Pa.C[inputId]
13 atValsB← Pb.C[inputId]
14 if atValsA or atValsB = ∅ then
15 continue
16 else
17 precedence←

checkCon f licts(inputVals, atValsA, atValsB)
18 if precedence = 1 then
19 AScore← AScore + 1
20 else if precedence = 2 then
21 BScore← BScore + 1
22 end
23 if AScore = BScore then
24 if Pa.decision = d then
25 R← R− {Pb}
26 else if Pb.decision = d then
27 R← R− {Pa}
28 else if AScore > BScore then
29 R← R− {Pb}
30 else if BScore > AScore then
31 R← R− {Pa}
32 end
33 end
34 return R

5.4 evaluate requirements

Evaluating the requirement attributes involves checking whether the
requirements are applicable, generating the outcomes and combining
outcomes (and resolving conflicts if applicable). The basic algorithm is
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listed in Algorithm 5. Policies that do not have requirements can just be
added as is to the resulting set of evaluated policies. Also, note that deny

and indeterminate policies cannot list requirements. In case a policy
does have requirements, we call the evaluateRequirement method for that
policy. Similar to policy matching, this is implemented at the attribute
level as explained in Section 4.2.

Algorithm 5: Pseudocode for requirement evaluation and out-
comes generation for individual policies in a set of policies.

Data: Set of policies P
Result: Set of evaluated policies with evaluated requirements E

1 E← ∅
2 for p ∈ P do
3 if p.R = ∅ then
4 E← E ∪ p
5 else if p.R 6= ∅ and p.decision = deny or indeterminate then
6 illegal policy
7 else
8 outcomes← ∅
9 indeterminate← f alse

10 for (atId, atVals) ∈ p.R do
11 res← evaluateRequirement(atVals)
12 if res = exception then
13 indeterminate← true
14 else
15 outcomes← (atId, res)
16 end
17 peval ← p
18 peval .outcomes← outcomes
19 if indeterminate = true then
20 peval .decision←indeterminate

21 end
22 E← E ∪ peval
23 end
24 return E

For requirements, we propose three main attribute types: enum, hierar-
chical and tag reference. The first two are shared with the context attributes,
while with the latter type, attribute values refer to tag names which can
then be resolved to see whether they apply on the query so that something
can be enforced on this data. The implementation of evaluateRequirement
depends on the attribute type (or even the individual attribute). For the
enum type, evaluating a value simply involves checking whether the value
is valid. For the tag reference type, we not only check if the name belongs
to a valid tag, but also resolve all data references in the query that the tag
belongs to. Lastly, the result of evaluating a hierarchy type is a flattened
list of the evaluated value and its children in the tree. This is because if
we require a particular value from the tree, its children are also expected
to conform to this requirement. An example of this is that if data location
‘Europe’ is required by a policy, data can also live in data stores with
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locations that are children of ‘Europe’ in the tree, such as countries like
‘The Netherlands’.

5.5 generate final output

The final output that Qompliance returns to the user or the data proces-
sor should consist of the following elements:

• The policies that were applied on the input, along with their in-
dividual decisions and possible explanations (for example why a
policy evaluated to indeterminate).

• The set of outcomes that resulted from the evaluation of the re-
quirements.

• A final decision based on the combination of all policy decisions.

• The timestamp for when the final result was generated.

• A signature as security measure.

• The validated SQL.

Note that if the SQL was not valid in the first place, the system should
respond with a validation error instead of the above response. Most of
these elements are trivial, but we discuss finding the final outcomes,
making the final decision and signing the output in more detail.

5.5.1 Final Outcomes

Determining the final outcomes is again implemented at the attribute level
with the generateFinalOutcomes function first described in Chapter 4. The
outcomes are the set of values that have to be enforced. Important to
note is that requirement values have AND-semantics (as opposed to
context attribute values), which is according to our definition that all
requirements have to be applied, see Section 5.3. Outcomes have two
meanings: they can either require the user to change something (which
results in an indeterminate decision), or require the system to enforce
something and conditionally allow the transformation based on that
assumption.

The semantics for the different outcomes differ between attributes,
and it is up to the user-facing interface or data processing system to
correctly interpret and process these requirements. The general outcomes
generation algorithm is trivial and therefore we omit its pseudocode, but
it simply involves calling the generateFinalOutcomes implementations for
all requirements with a set of all evaluated requirement values.

However, “enforcing all requirements” can have different semantics
per attribute. For enum requirements, we take the union of all values
and the resulting set of values should all be enforced. E.g., if one policy
requires HIPAA-compliant storage and another policy requires drive
encryption, both of these requirements should be satisfied. For hierarchical
requirements, we take the intersection of the flattened sets of evaluated
requirement values selected by a policy to find the set of allowable values
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(that do not all have to apply!). E.g., if one policy requires data to be stored
in Europe (and thus the evaluated requirement also contains countries
like The Netherlands), and another policy requires data to be stored in
The Netherlands, the intersection and thus the final outcome will only be
The Netherlands. Thus, note that this result can be empty, meaning that
two policies give conflicting requirements that cannot be resolved. This
results in an indeterminate final decision. For tag reference requirements,
the semantics for outcomes and how to combine them will differ per
attribute. If we take the ‘without’ attribute as an example, combining
values involves taking the union of all resolved data references as the
final set of data references that need to be excluded from the query.

5.5.2 Final Decision

After the individual decisions from policies have been considered, poten-
tial conflicts have been checked and resolved and requirements have been
evaluated, the decisions from policies can be combined to reach a final
decision. Thus, at this point we assume that the set of applicable policies
has been reduced to only contain the more specific policies (whenever
applicable). The final decision is made by taking the logical conjunction
between all policies in the set of applicable policies. We assume a conjunc-
tion relation because this most closely resembles how legislation would
work, e.g., usually all articles in an act should be enforced [31]. Formally,
with di denoting an individual policy decision of a policy in the set of
applicable policies and n denoting the total number of applicable policies:

dres = d0∧ · · · ∧ dn (5.1)

Furthermore, we assume the following rules:

allow ∧ allow = allow (5.2)

allow ∧ deny = deny (5.3)

deny ∧ deny = deny (5.4)

allow ∧ nondeciding = allow (5.5)

deny ∧ nondeciding = deny (5.6)

(allow ∨ deny ∨ nondeciding) ∧ indeterminate = indeterminate
(5.7)

5.5.3 Signing the Output

At this point, a final decision has been made and the output has been
generated. Thus, the system can guarantee that at this point in time
the submitted transformation has been validated and has resulted in a
decision, plus any additional outcomes if applicable. This result is ready
to be ingested by other systems, such as a user-facing UI or an ETL
system that will actually execute the transformation while taking the
outcomes into account. Adding a cryptographic signature to the output
can allow someone to check that the validation decision and outcome
was really generated by our system. It can also prevent the output from
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being tampered with along the way. In case the signature is invalid
or absent when parsing the output from our system, it should refuse
to perform any further action. A timestamp should be included in the
output, which enables someone to demonstrate that at that particular
time the transformation was authorized, which can be important for
audit purposes.

A signature can be generated by using a public key cryptosystem [35],
like RSA. By first encrypting (the hash of) the output using the system’s
private key, anyone can then decrypt the signature using the system’s
public key to verify that the message indeed came from the owner of the
corresponding private key.
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For evaluating the proposed system, we have built a reference imple-
mentation that demonstrates the proposed algorithms and features. The
implementation is written in Kotlin1, which runs on the JVM (version
17). Appendix A contains more information about the source code. In
this section we discuss notable details and challenges that warrant more
in-depth explanations.

6.1 general architecture

The implementation consists of two main components which are imple-
mented separately because of their different sets of responsibilities: the
data manager and the compliance checker. The data manager is responsible
for the PEP and PIP (as depicted in Figure 3.2) while the compliance
checker is comparable to the Policy Decision Point. Furthermore, the
project contains a utilities library for shared logic.

These components are built using a microservice approach where these
two components can run as standalone services that expose a REST API
using Spring2. Apart from the separation of concerns that this approach
provides, it also allows for scaling the individual components. The data
manager is responsible for handling the storing, querying and modifying
of policies, schema information for the governed data and additional
attribute metadata. Its implementation is fairly trivial, with simple CRUD
operations on the database being its main responsibility. Furthermore, the
data manager contains the logic for parsing the YAML policy language
implementation that is described later in this chapter. The data manager’s
API has three consumers: the compliance checker, user-facing frontends
and the data processor such as an ETL platform.

The compliance checker is solely responsible for handling validation
requests which will be submitted by a user-facing frontend once the user
submits a query for a pre-check, or by the PEP for a final decision. The
step-by-step architecture for both modules is depicted in Figure 6.1.

The reference implementation uses a PostgreSQL database for stor-
ing the policies, schema information and additional metadata for the
proposed attributes. The database model is trivially based on the univer-
sal data model from Chapter 4. The entity-relationship diagram for the
database can be found in Figure 6.2.

Submitting a validation request is as simple as submitting a POST re-
quest to the validation endpoint from the compliance checker. A request
comprises of the SQL defining the transformation and any additional
external attributes. By external attributes we mean attributes that have
to be provided by an external system such as the purpose for a transfor-
mation, whereas with internal attributes the values can be derived from

1 https://kotlinlang.org
2 https://spring.io
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Figure 6.1: System design of the components and processing flow.

the metadata such as the geolocation of the data being addressed by the
SQL. An example JSON request body is shown in Listing 6.1.

"sql": "SELECT * FROM \"DB0\".\"financial_data\"",

"attributes": {

"purpose": ["Research"]

}

Listing 6.1: Example JSON body for a validation POST request.

6.2 sql

For parsing and validating the SQL we use Apache Calcite3, a framework
for building databases while not managing the data or metadata itself. Its
many features include a SQL parser and a relational algebra API which
are especially useful for our purposes. Our system passes the schema

3 https://calcite.apache.org

https://calcite.apache.org
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Figure 6.2: Entity-Relationship Diagram of the database for storing policies
and (schema) metadata, based on the universal data model from
Chapter 4.

information of the governed data to Calcite, which in turn can use these
schemas to validate whether a SQL query conforms to this schema. By
configuring Calcite to add aliases and expand data references as discussed
in Section 5.1, our implementation can then resolve these aliases to extract
all data identifiers from the query. An additional benefit of Calcite is that
it has support for a large variety of SQL dialects, including ANSI and
many RDBMSs but also for data processing systems like Hive, Spark and
Presto. This is especially beneficial for our use case because it makes our
service independent of the data processing system.

6.3 extensibility

Because this is only an implementation for demonstration purposes with
carefully selected but still basic attributes, a design goal was to build
the system in an extensible manner as mentioned in Aspects 3 and 4.
By making use of object-oriented design patterns, the system defines
interfaces that can easily be overridden to define additional attributes.
Each attribute is its own class which inherits from two interfaces: what
attribute it is (i.e., context or requirement) and its attribute type (e.g.
hierarchical). The latter is actually implemented as an abstract class so that
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it can contain certain implementations for methods defined by the policy
role. The interfaces for ContextAttribute and RequirementAttribute

contain the methods from Chapter 4 that are required to be implemented
for a functional attribute. The AttributeType abstract classes can then
provide implementations for these functions, and can specify additional
abstract functions and properties that need to be implemented by the
actual attribute classes. Figure 6.3 gives a simplified illustration of this
class hierarchy, the full version of which can be found in Figure B.1. Note
that we only show two example types and attributes for clarity (indicated
by the dots).

In this figure, the DataLocationType implements ContextAttribute

and HierarchyAttributeType and thus only has to implement where to
get the attribute value tree for it to become a fully functional attribute.
In the case of the WithoutRequirementAttribute, the attribute itself has
to implement more because it does some operations that are unique
to that particular attribute (e.g. extracting the necessary information
from the SQL). Note that, in the full version in Figure B.1, we also
show a SqlProcessingAttribute interface that requires an extension of
evaluateRequirement with an additional parameter for a SqlProcessor.
This class contains the SQL parsing and processing logic that can be
passed around to attributes and other classes that need to analyze the
SQL in some way.

Attribute classes are then registered and matched using a factory
pattern. A factory allows for easy matching between the attribute keys as
used in the YAML and the corresponding attribute class implementations
in an extensible way. Our current implementation just stores sets and
hierarchies of attribute values at the application level. Thus, at the time
of writing there is no interface to add values or tags. However, this can
be trivially added at a later point in time.

ContextAttribute

+ evaluate
+ checkConflicts

RequirementAttribute

+ evaluateRequirements
+ generateFinalOutcomes

DataLocationAttribute

+ getTree

WithoutRequirementAttribute

+ evaluateRequirement
+ generateFinalOutcomes

HierarchyAttributeType

+ getTree
+ evaluate
+ checkConflicts
+ evaluateRequirement
+ generateFinalOutcomes

TagReferenceAttributeType

+ evaluateRequirement

Attribute AttributeType

...

...

Figure 6.3: Simplified version of class diagram representing how attributes are
implemented.

6.4 yaml policy language implementation

To be able to easily write and process policies using the system’s policy
model (discussed in Chapter 4), we present a YAML implementation
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of the policy model. This implementation serves as a policy language
which closely resembles the structure of the universal policy model.
The language is based on YAML4, a human-friendly data serialization
language with minimal syntax. Examples of YAML-based policies can be
found in Chapter 7. The entire specification of the YAML-based policy
language can be found in Appendix C.

The decision for YAML was made because it strikes a balance between
human-readability and machine-readability. A disadvantage of YAML is
that its syntax may be somewhat hard to learn for someone unfamiliar
with these kinds of languages. However, because of our relatively simple
policy model, all attributes are as simple as a key for the attribute name
with a list of attribute values. This decision also inherently requires us
to adapt the policy language to fit the YAML model and syntax as well
as possible. A policy language even closer to natural language would be
helpful for the comprehension of policies to someone unfamiliar with the
policy language, but this would require more extensive design which is
out of scope for this research.

6.5 signature

After the final output has been generated, we calculate a cryptographic
signature over the JSON representation of the output. However, because
many different representations can result in the same valid JSON, we need
a way to consistently get to the same JSON representation. Otherwise,
calculating a hash will be hard to repeat in other places than our specific
implementation. Therefore, our implementation canonicalizes the JSON
according to RFC8785 by Rundgren, Jordan, and Erdtman [36]. The
canonicalized JSON is then hashed using SHA-256, which in turn gets
encrypted using an RSA-2048 private key to create the signature. For
demonstration purposes, our implementation generates the key pair in
memory and logs the public key. However, a production implementation
should use proper key management.

6.6 data generator & experiment script

The implementation includes a data generator that can generate schemas,
tags, conditions, requirements and policies. The attribute values for con-
ditions and requirements are retrieved from a default implementation
of the different attribute value trees and enums. Schemas can either be
generated using a predefined list of names for data stores, datasets and
columns (that is randomly extended if necessary), or using the schema
from the TPC-W database benchmark [29]. We use these predefined
schemas so that we can use a fixed set of queries that are always valid.
Furthermore, we use a fixed set of tags that only reference a fixed set of
data stores. This means that if we query a different data store, an entirely
different set of policies will apply. Policies are generated with a random
set of context and requirement attributes chosen from pre-defined values
so that the evaluation of the attributes itself is consistent across different
tests. Different parameters can be set that influence the processing time

4 https://yaml.org

https://yaml.org
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of a request, which will be explained in Chapter 7. For running the exper-
iments using the data generator, we have built an accompanying Python
script that runs the experiments with the appropriate variables.



7E VA L UAT I O N

We evaluate our system design and compliance evaluation algorithms in
three ways: by means of a use case, by means of a qualitative comparison
based on the comparison framework from Section 2.3 and with a few
empirical experiments.

7.1 use case

In this section we discuss a qualitative evaluation of our design based on
a use case. Qars is an imaginary car manufacturer from The Netherlands.
They design, build and sell smart connected cars across Europe and they
have just entered the United States market. Their cars can communicate
all kinds of data points about their status, which Qars wants to use to
detect problems and to improve their products.

When Qars was preparing to start selling their cars in the US, the
legal team advised that it would be best to keep the data from cars
that belong to US customers in a database in the US because of the
new jurisdiction. However, these different jurisdictions introduce some
challenges for Qars. Ideally, Qars’s management wants to get insights
over their entire fleet of cars, but their lawyers are really adamant about
adhering to the regulations of the different jurisdictions. This is where
Qompliance comes in.

First, we look at what data Qars is dealing with. Qars has two databases,
one in The Netherlands called qars-nl and one in the United States called
qars-us. Qars uses the schema shown in Figure 7.1 in both of these data
stores. They have a cars dataset that contains unique identifiers for the
cars called vehicle identification number (VIN) and other information
such as its configuration. They have a customers dataset that contains
customer information because car owners can create an account to con-
nect to their car and which is considered to be PII by the legal department.
This dataset contains a reference to the car that customers own. Further-
more, cars log their vitals (e.g. engine status, tire pressure, etc.) to a
car_vitals table and events (e.g. seatbelt fastened, doors unlocked, etc.)
to a car_events table. Entries in these tables also refer to the car that they
belong to.

When the legal department was asked to come up with requirements
for the data, they came up with the following list:

1. PII has to reside on an encrypted datastore.

2. PII has to stay in the country where it is generated at all times.

3. No one in the company can access car data, except for accident
investigation by investigator employees.

4. Data scientists and engineers can also access car data for product
improvement but without the VIN.
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Figure 7.1: Database schema used by Qars in data stores qars-nl and qars-us.

7.1.1 Defining Policies

We now demonstrate how these requirements can be converted into poli-
cies in our policy model using the reference implementation. We will
use the YAML policy representation introduced in Section 6.4 and ap-
pendix C for simplicity and because we can directly input them into the
system. Note that Qars assumes allow-by-default.

name: PII has to reside on a disk-encrypted datastore

context:

tags:

- PII

require:

storage-classification:

- DiskEncrypted

Listing 7.1: PII has to reside on an encrypted datastore.

The first requirement is implemented in Listing 7.1, which reads as: in
a context where PII data is referenced, it is required that data is stored
on a data store with the DiskEncrypted classification.

name: EU PII stays in EU

context:

tags:

- PII

data-location:

- EU

require:

data-location:

- EU

(a) Policy that requires that PII that is cur-
rently in the EU stays in the EU.

name: US PII stays in US

context:

tags:

- PII

data-location:

- United States

require:

data-location:

- United States

(b) Policy that requires that PII that is cur-
rently in the US stays in the US.

Listing 7.2: PII has to stay in the country where it is generated at all times.

Listing 7.2 contains two policies to implement the second requirement.
Our implementation currently does not support an explicit directive for
‘keeping data in the same place’. Thus, we have to write explicit policies
for the two regions that we have, which are trivial to understand.

The YAML representation of the third requirement is shown in List-
ing 7.3. For this, we also have to implement two policies. Because Qars
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name: No one can access Car Data

context:

tags:

- Car Data

decision: deny

(a) Policy that denies all access to Car Data.

name: Car data can be accessed for accident investigation

context:

tags:

- Car Data

purposes:

- Accident Investigation

roles:

- Investigator

decision: allow

(b) Policy that allows Car Data access for Accident Investigation.

Listing 7.3: No one in the company can access car data, except for accident
investigation by investigator employees.

assumes allow-by-default, we have to define two policies. Therefore, we
first write Listing 7.3a to make sure that we deny all access to Car Data.
We can then make an exception by writing a more specific policy, which
demonstrates the usefulness of the conflict resolution algorithm. List-
ing 7.3b is more specific because it puts more conditions on the context
by adding more attributes. Only if the system can match all of these
attributes on the input, the policy in Listing 7.3b will be applied instead
and thus allow the Car Data access.

name: Access car data for product improvement without VIN

context:

tags:

- Car Data

roles:

- Data Scientist

- Engineer

purposes:

- Product Improvement

decision: allow

require:

without:

- VIN

Listing 7.4: Data scientists and engineers can also access car data for product
improvement but without the VIN.

For the last requirement, we can write a policy as shown in Listing 7.4.
This policy reads as: in a context where either a Data Scientist or an
Engineer is accessing Car Data for the purpose of Product Improvement,
allow the request given that the query does not in any way reference a
VIN.
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Understanding and writing these policies only requires very limited
knowledge about the underlying data. The author or reader of the policies
just has to have an understanding about the kind of data that is processed.
Someone still has to do some manual work to make sure that the tags are
right, or at least automate assigning these tags, but from that point the
policies become very high-level and declarative. Therefore, this satisfies
the goal that we have set out in Objective 4.

7.1.2 Queries & Compliance Checking

Now that Qars has implemented their first set of policies, they can start
to submit their first queries for validation and compliance checking. In
this section we will demonstrate how queries get analyzed and policies
get matched to satisfy Objective 6. The first query that they submit looks
like SELECT * FROM qars-nl.customers. This returns the output that can
be seen in Listing 7.5. This response is entirely according to the system
design as explained in Section 5.5. Note that two policies have been
applied because the query addressed PII (the customers table) in an
EU datastore. In fact, the metadata of the qars-nl indicates that it is
located in the Netherlands, which is a good demonstration of hierarchical
attributes. Because The Netherlands is part of the EU in the hierarchy, it
is within the context of that particular policy. Furthermore, the outcomes
of the policy in Listing 7.2a show how hierarchical requirements work:
the EU policy value is resolved to the value itself and all children in the
tree. These are both non-deciding policies, meaning that the default
access decision was used for the final decision of this check.

A data scientist at Qars now wonders if they can trick the system and
query data from both the US and the EU. However, in this case Listing 7.2b
will also apply and the system returns indeterminate. This is because
when combining the requirements from both location policies, there is
no overlapping subtree meaning that there are no possible locations to
execute or store this result.

Next, we consider the policies for the third requirement in Listing 7.3.
Again, note that Listing 7.3a will apply any time any data tagged ‘Car
Data’ is referenced in a query, also at lower levels in the query. For
example, SELECT model FROM qars-nl.cars will also match ‘Car Data’
even though only a single column of this tagged dataset is referenced.
Furthermore, this also applies when combined with other data. If we take
a query: SELECT vin, email FROM qars-nl.cars, qars-nl.customers,
the columns get resolved to the datasets that they belong to. Then, the
system outputs three policies: ‘EU PII stays in EU’, ‘PII has to reside on a
disk-encrypted datastore’ and ‘No one can access Car Data’. This request
is denied because of the last policy of the three.

However, now we set the role to ‘Investigator’ and the purpose for
the transformation to ‘Accident Investigation’. This demonstrates how
the more specific policy takes precedence in our system, because now
Listing 7.3b is returned instead and thus the query is allowed.

We have seen tags at the dataset level. Now we demonstrate tags at the
column level. Remember that a tag can apply on any number of columns,
datasets and data stores. This is why Qars has added a VIN tag to all
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{

"result": {

"decision": "allow",

"acceptablePolicies": [

{

"id": 1,

"name": "EU PII stays in EU",

"decision": "nondeciding",

"contextConditions": [...],

"requirements": [...],

"outcomes": {

"data-location": [

"EU",

"Netherlands",

"Germany",

"Belgium"

]

},

"evaluatedDecision": "nondeciding"

},

{

"id": 3,

"name": "PII has to reside on a disk-encrypted datastore",

"decision": "nondeciding",

"contextConditions": [...],

"requirements": [...],

"outcomes": {

"storage-classification": [

"DiskEncrypted"

]

},

"evaluatedDecision": "nondeciding"

}

],

"reason": "No deciding policies, default decision allow was used",

"outcomes": {

"data-location": [

"EU",

"Netherlands",

"Germany",

"Belgium"

],

"storage-classification": [

"DiskEncrypted"

]

},

"validatedAt": "2022-01-20T12:00:00.000000Z"

},

"validatedSql": "SELECT ...\nFROM \"qars-nl\".\"customers\"",

"signature": "..."

}

Listing 7.5: Example JSON response for a compliance check. Some values have
been collapsed for brevity as indicated by the dots.

columns containing a VIN, which is useful because the VIN is used as
a (foreign) key in multiple tables. This allows Qompliance to detect
queries that reference a VIN in any way, which is especially important



58 evaluation

because in the specific case of Listing 7.4 Car Data can only be used if
the VIN is left out. Different examples of queries that reference a VIN are
shown in Listing 7.6. In all cases except for Listing 7.6d the decision will
be indeterminate because the blocking ‘without’ requirement cannot be
satisfied. Thus, the Data Scientist or Engineer submitting these queries
should update their query until a VIN is not referenced in any way. Only
then will the decision turn into an allow.

SELECT *
FROM qars-nl.car_vitals

JOIN qars-nl.cars

ON car_vitals.vin=cars.vin

(a) Illegal query because it references the
VIN.

SELECT v.datetime, c.model

FROM qars-nl.car_vitals AS v

JOIN qars-nl.cars AS c

ON car_vitals.vin=cars.vin

(b) Illegal query because even though a
VIN is not in the output, it is still used
in the join.

SELECT *
FROM qars-nl.car_vitals

(c) Illegal query because it references the
VIN (through the asterisk).

SELECT id, datetime, sensor, value

FROM qars-nl.car_vitals

(d) Legal query because it does not refer-
ence VIN in any way.

Listing 7.6: Queries that demonstrate excluding a column.

7.1.3 Extending the Policy Model

At this point, Qars is very enthusiastic about the Qompliance refer-
ence implementation and they decide to properly implement it for
their own purposes. However, they want an extra context attribute
in their implementation, namely the clearance level of the user sub-
mitting the query. This can be implemented fairly quickly by intro-
ducing a new class ClearanceAttribute for this attribute that extends
the HierarchyAttributeType and ContextAttribute interfaces. Further-
more, they have to register this class in the factory and in the policy
parser in the data manager. Lastly, they have to define the value tree and
override the getTree method to point to the tree. Although implementing
this requires understanding of the system’s code, Qars does not have a
problem with this because they do not expect to extend this model often.

The attribute-value pairs just map like all other attributes to the model
defined in Chapter 4. This demonstrates the extensibility of our policy
model, which is an important part of Objective 3. Because of our decision
to move more decision and processing logic to the application level,
extending the policy model is a bit more involved than a language like
XACML [32]. However, because of the simpler policy model and because
extending the model is not regularly necessary, we think this is a fair
compromise to make.

7.2 qualitative comparison

In this section we reflect back on the design space framework that we
introduced in Sections 2.3 and 3.1. We revisit the axes of comparison
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and give qualitative evidence to explain our positioning on these axes
compared to other data-centric systems. Through this comparison, we
confirm to what extent we have met the intended positioning. For com-
parison, we will use the same representative set of related approaches as
used in Figure 3.1.

aspect 1, system scope: The systems we have surveyed for this re-
search have widely differing scopes. This is inherent to the different
intended applications of these systems. Whereas Legalease [38] is
specifically tailored towards privacy policies, the policies of Beedkar,
Quiané-Ruiz, and Markl [3] are tailored towards low-level restric-
tions on cross-border data movements. And whereas Data Capsule’s
[46] policy model is intended to be able to encode high-level reg-
ulations like GDPR, the general purpose models of XACML and
OPA are built for more complex decision logic.

Qompliance is somewhat in the middle of this spectrum. Its pol-
icy model is further away from natural language compared to
Legalease and by extension Data Capsules. However, it is higher-
level than other systems like the work from Beedkar, Quiané-Ruiz,
and Markl [3] that has very low-level policies (see the next aspect).
Somewhat closer to the middle we find [24], who also mention that
they attempt to bridge the gap between storage-level controls and
regulations. Still, their approach relies on storage-level adaptations
that we consider lower-level compared to Qompliance.

Qompliance is intended to be able to implement requirements close
to regulations, but also lower level requirements on the data. This
is enabled by the hierarchical approach and the direct link between
tags and the governed data definition. Furthermore, non-deciding

policies is another important feature that allows for writing higher-
level policies compared to systems that closely relate to storage-level
controls. Lastly, its extensibility allows someone to steer the policy
scope of the implementation.

aspect 2, policy abstraction level: The policy abstraction level is
a major distinguishing factor for Qompliance. On the low-level end
of the spectrum, we have approaches that include direct references
to the schema of the governed data in the policies. These approaches
are generally related to database access control or query processing.
For example, in the work of Beedkar, Quiané-Ruiz, and Markl [3],
a policy takes the following shape: ‘SHIP attribute list FROM table TO
location list WHERE condition list’. On the other end of the spectrum
we can find approaches like Legalease/Grok by Sen et al. [38]
and Wang et al. [46] that only rely on inferred abstract data types
that are organized in lattices and without direct traceability to the
governed data model.

Qompliance lives in between. Tags have a clear link to the schemas of
the governed data and can apply at multiple levels of granularity.
Moreover, our approach enjoys many of the same benefits as the
systems with a high level of abstraction thanks to their hierarchical
definition. Note that since general purpose approaches like XACML
[32] and OPA can technically operate at any level of abstraction, we
cannot directly compare them here.
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aspect 3, policy complexity: Systems and languages with a high
policy complexity notably include XACML [32] and OPA/Rego.
These languages have a large learning curve because of their many
features and constructs that allow for writing complex yet expres-
sive policies. On the other end of the spectrum we find languages
like Legalease [38] but also the simple query-like policies from
Beedkar, Quiané-Ruiz, and Markl [3]. Legalease has a low complex-
ity because of its intuitive data types and clearly defined semantics
that are intended to be close to the natural language constructs
used in privacy policies. The query-like policies from Beedkar,
Quiané-Ruiz, and Markl [3] are similarly intuitive because they are
understandable by anyone who understands SQL and because they
include very little language features. A language that is somewhat
in between is the model from Wang et al. [46] that for example
supports boolean operators between clauses.

Our policy model is a little more complex because authoring policies
for this model requires a little more understanding of the policy
processing that is not immediately clear at first sight (e.g., conflict
resolution and attribute semantics) compared to the mentioned
low-complexity approaches. Furthermore, our model is missing
some constructs that would bring it closer to natural language
such as negations and exceptions, see Section 8.1.4. Still, our policy
model is confined to practically only consist of attribute-value pairs
and decisions and thus there is very little structural difference
between policies. Therefore, once the reader is familiar with the
policy processing and the individual attribute semantics, all policies
will be trivial to understand.

aspect 4, policy expressiveness: Languages like XACML [32] and
OPA/Rego are highly expressive (but have high complexity as we
have seen). Because they are very general purpose and can serve at
a low level, one can draw a parallel to the field of programming lan-
guages and compare these policy languages to Assembly Language.
They can be used to write very detailed policies, but can also serve
as the foundation for other policy systems. Other data-centric policy
systems trade some expressiveness in favor of lower complexity, by
adding syntactic sugar and making more assumptions, somewhat
comparable to higher-level programming languages.

One can look at expressiveness from various different viewpoints. For
example, just like Qompliance, the policy model of Legalease is
quite simple with a very limited set of constructs. Legalease does
support some more advanced constructs compared to Qompliance

such as exceptions and negations. However, Qompliance supports
a wider range of attributes and explicitly intended to be extensible,
which increases the expressive power of the policies. The Data
Capsule system [46] even takes the policy model a step further
compared to Legalease (on which their design was based) by
adding boolean operators. Deep Enforcement [24] and Compliant
Geo-distributed Query Processing [3] only have very simple policy
models with small sets of attributes and possibilities. Therefore,
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we consider Qompliance to live close to Legalease and the Data
Capsule system towards the middle of the expressivity spectrum.

aspect 5, enforcement vs . audit: Most systems that we have sur-
veyed simply target enforcement without mentioning auditing as a
requirement or a goal. The exception to this is Legalease/Grok by
Sen et al. [38], which takes a passive approach by retrospectively
automatically auditing data flows. Although Qompliance has a
clear focus on enforcement, we do not position the system entirely
on the enforcement side of this axis for two reasons. Firstly, Qom-
pliance is not solely responsible for all enforcement. Although any
requests that do not conform to the decisions and requirements
set by policies are denied, enforcement of certain requirements is
left to the data processor (e.g., data location). Secondly, Qompli-
ance explicitly takes auditability into account, with features like
timestamping, cryptographic signatures and evaluation logs.

aspect 6, stationary vs . moving: On one end of this spectrum we
find approaches that explicitly target moving data. For example, the
Data Capsule paradigm by Wang et al. [46] targets makes strong
assumptions, but clearly targets moving data by accompanying the
data with the policies that belong to it. Legalease/Grok [38] also
targets moving data by tracking data flows, and the work by Cory
[12] is targeted towards data location management. On the other
end we find systems that are simply aimed at access control at the
database level such as Deep Enforcement by Khaitzin et al. [24] or
general policy languages like OPA/Rego and XACML [32]. Our
approach has a clear focus on moving data with its geolocation fea-
tures and SQL-based data movements. However, the fundamental
approach for Qompliance can technically also serve for stationary
data by routing all queries through it before database access. By
ignoring its geolocation features, Qompliance can function as a
compliance system closer to how Deep Enforcement [24] works.

As we can see when re-evaluating our work compared to the related
work over these axis, most of these systems target a particular niche.
This is often defined by a large set of assumptions about the system’s
application. Although our comparison framework allows for comparing
these systems on some reoccurring aspects, it is difficult to make direct
comparisons between many different approaches. We have drawn paral-
lels to programming languages, in particular in Aspect 4. The spectrum
seems to mainly consist of either low-level general purpose Assembly-
like languages (e.g., OPA/Rego and XACML), or very high-level but
domain specific languages (e.g., Legalease/Grok). There is a gap in the
middle here that can be compared to higher-level but general purpose
programming languages like Java. We have shown that Qompliance

lives in the middle of this spectrum using this comparison framework
according to Contribution 2.
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7.3 performance

Although high performance is not a main objective of this work, it is still
an important aspect to consider. Because our system can provide direct
feedback to the user, a response should be generated in a reasonable
amount of time, as we set out in Objective 7. In this case, a maximum
reasonable response time would be the length of an HTTP request (i.e. a
few seconds).

7.3.1 Variables and Bottlenecks

The policy matching and especially the conflict resolution is likely to
be a bottleneck, along with the database querying for policies. In the
absolute worst-case scenario, the conflict resolution algorithm has to
compare all policies that have been retrieved from the database and
their context attributes. A few optimizations can be made here to cache
some intermediate results, but ultimately this comparison has to be done
because of how our proposed conflict resolution works. Still, this is only
becoming a problem with a very large number of applicable policies.
Note that in our implementation, we already only retrieve policies by
tags that apply on the query. Furthermore, we only have to execute the
conflict resolution algorithm for the policies that actually apply based on
all context attributes.

The compliance checking has the following variables that can influence
the processing time:

1. The number of policies. As already briefly discussed above, this is
likely to be the most influential factor. Note however that the
number of policies can be interpreted in two ways: the number of
policies managed by the system or the number of policies applicable
on the input. Even though most of the policy matching occurs at
the application side, the system uses the tags applicable on the
input to only get policies from the database that apply on these
tags. This greatly reduces the amount of policies that need to be
considered by the matching algorithm. Furthermore, for algorithms
further down the line (e.g., conflict resolution and requirements
evaluation), even less policies need to be considered because likely
only a subset of the set of retrieved policies will apply. Still, for
conflict resolution the algorithm has exponential runtime for the
number of policies.

2. The number of attribute values per policy. If more attribute values
apply, more checks have to be done to see if a policy matches and
if that policy conflicts with other policies. Furthermore, if we add
more alternative values (remember that values for a single attribute
have OR-semantics), more policies will apply on the same input.
Adding context attributes is more likely to significantly influence
the processing time compared to requirement attributes because
their evaluation is generally more involved. Furthermore, context
attributes are involved in conflict resolution whereas requirement
attributes are not.
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3. The implementation (and size) of the attribute-level algorithms (i.e. match-
ing, conflict resolution, etc.). If some algorithms with high complex-
ity are required for evaluating an attribute value, this will need to
be done for all policies and possibly even for all combinations of
applicable policies. We do not test their individual impact since
it is trivial to derive this from the algorithms, but we show how
a combination of different attribute types interact with randomly
generated policies.

4. The number of data stores, datasets and columns that are referenced by
the set of tags that apply on the query. If this number is large, more
schema information needs to be retrieved and ingested by Calcite.
However, Calcite’s processing time is out of our hands and we are
not going to evaluate its performance. The only optimization made
here is that we only retrieve the schemas that are applicable on the
query by performing some early parsing, but the actual validation
is left to Calcite.

5. The size of the input SQL can also influence the processing time, but
similar to the previous point this is left to Calcite and thus we do
not explicitly evaluate its performance for this research.

7.3.2 Method

For testing the performance of our system we use the data generator
that is part of our implementation, along with the schema from the
TPC-W database benchmark. TPC-W is a well-known benchmark in the
database space modeling an e-commerce environment [29]. We use this
schema because it is a common application that many are familiar with.
Its schema consists of 8 tables with 4 to 22 columns per table. We add the
same schema to 5 different data stores. This allows for creating entirely
contained sets of policies on the same schemas, which in turn allows us
to set the exact number of tag-applicable policies. Using 5 contained sets
of policies enables us to run 5 experiments with the same parameters but
with a different set of policies. Because policies and their attributes are
randomly generated, we run 5 experiments on different sets of policies
with the same parameters to reduce major deviations introduced by the
randomness by averaging the processing times over these 5 runs.

We will try various different values for the most influential parameters
in order to evaluate how they affect response time. We measure the
processing time as the moment right before sending the validation request
to the moment that we receive a HTTP 200 response (that the system will
only send if everything went right). The experiments in this chapter were
executed locally on a MacBook Pro (i7-7820HQ, 16GB) with a PostgreSQL
13 instance running in a Docker container. Furthermore, we use Java/JDK
17. The jars for the two system components are started and managed by
our Python evaluation script, which is also responsible for managing the
experiment execution flow and processing the results.

The script initializes the data manager with the corresponding param-
eters for a particular experiment, which in turn will generate the data.
After the initialization is done and the data is generated, the script fires
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a first warmup request. Then, we measure the mean processing time
over 5 requests that each address a different data store for the same set
of parameters. The generated policies contain randomly chosen context
attributes and requirement attributes from a predefined set of values or
trees depending on the attribute type.

7.3.3 Results

To understand the influence of the number of attribute values per policy,
we plot the processing times for various numbers of applicable policies
and various numbers of attribute values against each other. We run two
experiments: one where we keep the number of requirement attribute
values consistent (at 10) and vary the number of context attributes, and the
other way around. This is done for various amounts of applicable policies,
while keeping all other parameters at their default values. Figure 7.2
shows the results of these experiments. As expected, adding requirements
has less of a performance impact compared to adding context attributes.
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(a) Varying the number of context attribute
values per policy.
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(b) Varying the number of requirement at-
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Figure 7.2: Total processing time for various numbers of tag-applicable policies
against various numbers of attribute values while keeping the other
parameters consistent.

Interestingly, one can also see in these plots the processing time seems
to scale approximately linearly with the number of context attributes
and requirement attributes (for the same number of applicable policies).
This is somewhat surprising because evaluating hierarchical attributes
involves comparing subtrees from two policies with the input. However,
if the input and the attribute value trees do not grow too big, it seems
that this influence is negligible. We expect that with the proposed higher-
level attributes for this system, the performance will stay within reason.
Furthermore, note that enum and tag reference attributes can be evaluated
in constant time.

To analyze the differences in processing time between numbers of
context attributes in a bit more detail, Figure 7.3 splits the processing
time into three different components. The two major contributors to the
processing time once we get into larger sets of policies and attributes are
the policy retrieval from the database and the policy matching (which
includes conflict resolution). This shows that the database querying is
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also a major factor in the processing time, and both contributors seem to
grow fairly linearly with the number of context attributes.
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Figure 7.3: Processing times for the three major contributors to the processing
time for a set of 600 tag-applicable policies with various amounts of
context attributes. The ‘get’ subtask is the time it takes to retrieve the
policies from the database based on their tags, ‘match’ is the policy
matching and conflict resolution and ‘other’ includes all other time,
which together makes up the total processing time.

However, the figures we have seen up until now do not clearly show
an exponential growth like we would expect. This becomes more clear
from Figure 7.4a, which shows the processing time for a higher number
of tag-applicable policies while keeping all other parameters constant.
For these results, policies were generated with 10 context attributes and
10 requirement attributes. Note that the y-axis is in log-scale, thus the
fairly straight line indicates that indeed the number of tag-applicable
policies have an exponential relationship with the total processing time.
Important to remember here is that we again consider the tag-applicable
policies here. There can be many more unrelated policies in the database
which likely do not have a major influence on the total processing time.
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three major contributors for a large set
of tag-applicable policies.

Figure 7.4: Total processing time for large amounts of tag-applicable policies
with other parameters consistent (10 context and 10 requirement
attributes per policy).
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On this particular configuration and input, on average about 10-15%
of the tag-applicable policies were considered a full match on the input
and were thus passed on to the conflict resolution algorithm. In the case
of 5000 tag-applicable policies, an average of around 800 policies were
evaluated to match the input. This is an unrealistically high number of
policies for the intended policy model and use case. We expect the amount
of applicable policies on a SQL query not to be exorbitant, because in that
case the high-level approach of our system will be hard to maintain and
may not be suitable for an implementation that requires policies at that
scale. Therefore, we would argue that even though this implementation
has an exponential relationship with the number of applicable policies,
the point at which this becomes a problem is beyond what would be a
reasonable set of policies. Thus, we do not expect the response time to
become unreasonable for an HTTP request, which satisfies Objective 7.



8D I S C U S S I O N

In this discussion chapter, we discuss go into more detail about some no-
table results from Chapter 7. We also discuss other notable considerations
and limitations, and we give recommendations for future research.

8.1 system scope & assumptions

The design decision to cover the middle ground between high-level and
low-level policies and policy languages (as discussed in Section 3.1)
has resulted in a number of assumptions and choices. As it turns out,
this positioning in the design spectrum was not an easy space to cover
and one size does not seem to fit all. Like other systems that we have
evaluated from the related work, our system and policy model also has
its limitations because of design decisions. However, in Chapter 7 we
have shown that our system has a use case in which it can operate well.
The assumptions and choices made for this work have been described
as much as possible throughout this work, but in this section we will
discuss some especially important examples that are worth considering
when implementing or extending Qompliance.

8.1.1 Combining Attribute Values

We realize that the design decisions made in this work may not work in
every environment. A notable example is the semantics of attributes in
policies that list multiple values. Whereas other systems like XACML [32]
allow for complex functions within the policies to compare attributes,
we opted to move some of this logic to the application level to simplify
the policies without compromising too much on policy expressiveness.
However, this moves the decision making about the policy structure
and evaluation from the policies themselves to the application design,
meaning that instead of the policy author, the system’s designer is now re-
sponsible for these decisions. In Qompliance, there is an OR-relationship
between values for the same context attribute (e.g. a policy with tags PII
and Health Data will apply if either tag is applicable, they do not have
to be both applicable). This is different for requirements, which have
AND-semantics (as explained in Section 5.5.1) because all requirements
have to be considered.

The decision to give context attributes OR-semantics has been made
because it was the more suitable approach for our purposes because
it enables one policy to govern a broader range of contexts. However,
for other applications of our system, one could imagine how policy
authors might want to use AND-relationships between values for the
same context attribute instead, to write more specific policies. Although
AND-semantics can technically be simulated by writing two policies
(e.g. one for PII and one for Health Data), this may be undesirable if
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this is a recurring pattern in the policies that an organization wants to
implement. Therefore, Qompliance has been designed with extensibility
at the application level in mind. In the case of this example, changing the
behavior to AND-semantics is as easy as replacing line 13 of Algorithm 2

with: ‘allowableValuesatId contains all atVals’. This can even be done at
the level of an individual attribute.

8.1.2 Conflict Resolution & Indeterminate Decisions

Our proposed conflict resolution algorithm, that is based on how specific
policies are, is easy to understand but it cannot resolve all conflicts. If
policies are considered equally specific by our algorithm, there is cur-
rently no way to tell the system what to do. This is opposed to languages
like XACML which support different rule combining algorithms within
the policies themselves [32]). This is a consequence of the design deci-
sions made to do all of the policy matching and conflict resolution at the
application level. Remember that in case a conflict cannot be resolved,
Qompliance prefers the policy that conforms to the (configurable) sys-
tem’s default decision. Again, the conflict resolution strategies can be
changed at the application level though by overriding the relevant meth-
ods, if another approach is deemed more suitable when implementing
the described system.

Similarly, how the system deals with indeterminate policies is also
worth considering when implementing this system. Although we pro-
pose indeterminate policies to always take precedence, an organization
may want to take a more lenient approach, for example by allowing a
transformation irregardless of the indeterminate policy if the outcome
would have been allow.

8.1.3 Tagging

The foundation of the proposed declarative policies relies on metadata
tags on the governed data. This layer of abstraction provides many
benefits such as decoupling the policies from the governed data definition
and making policies more understandable. However, tags have their
challenges and limitations too, some of which we have already discussed
in Chapter 3. Most importantly, we assume that tags are consistently
and reliably applied. Because of this layer of abstraction, any decisions
and guarantees made by Qompliance regarding the data are only as
strong as the tags allow for. Thus, if sensitive information is not tagged as
such, policies that should apply on this data may not actually be applied.
Therefore, Qompliance cannot provide strong guarantees about the data
itself. For example, if an adversary incorrectly tags data, Qompliance

will not be able to correctly apply the right policies.
Furthermore, when facing large amounts of data, it may be cumber-

some to correctly tag all data. Similarly, another factor to consider is the
level of tags that the organization wishes to apply. If the organization
wishes to create highly specific policies, tagging the data will be more
work. However, it is important to recognize that in systems with a low
policy abstraction level, similar and even more problems will exist. In
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these systems, if new data gets added or removed, the policies them-
selves have to be updated and it might be hard to find the appropriate
policies that should apply on new data if the system manages a large
set of policies. Qompliance aims to make this process easier with the
tag hierarchy and by allowing tags to apply to different data levels (i.e.,
data store, dataset, column). Furthermore, the metadata can be separately
maintained from the policies as opposed to systems with a low level of
abstraction. Similar assumptions of reliance on metadata and tags have
been made in previous work, notably Grok by Sen et al. [38]. Their work
also suggests techniques for automating the data tagging. Automatic data
tagging could also serve as an interesting topic for future work.

8.1.4 Exceptions & Negations

The proposed policy model does not allow for explicit exceptions and
negations in requirements, which are features in some related work like
OASIS [32] and Sen et al. [38]. For instance, it is not possible to specify
a policy that explicitly says “if the data is in NL, it cannot be moved
to the US” (see also Listing 7.2). This decision was made to simplify
the policy model, but it introduces some limitations to the policies that
can be written. Similarly, if a policy specifies a requirement, another
policy cannot provide an exception for this requirement (e.g. a ‘without’
requirement that another policy should override). Note that policy excep-
tions are possible with context attributes and thus policy applicability
by adding a more specific policy, this only concerns requirements. These
missing features somewhat limit the expressivity of our policy model,
although in many cases they can be worked around thanks to the hierar-
chical attributes such as in Listing 7.2. Future work can look into making
the policy model more expressive by adding these kinds of constructs
and possibly also look into performing user experiments for optimizing
human comprehension.

8.2 scalability & performance

Although the results from our experiments show that the system’s per-
formance is as expected and sufficient for the use cases that we intend
the system to be used for, further research could look into optimizing the
algorithm design in this work. Exponential worst-case time complexity is
not ideal but due to time restrictions for this thesis we were not able to
get to optimizing the reference implementation.

Furthermore, the metadata database querying has a fairly significant
impact on the processing time for larger sets of policies. Because of how
we mapped the universal data model to a database design, two table
joins need to be performed to join the context and requirement attributes
on the policies. This database design can theoretically be simplified to
improve performance.

Another interesting design tradeoff to look at from a performance
perspective is the attribute evaluation logic. In this work, the attribute
evaluation logic (i.e., attribute matching) is implemented at the applica-
tion level for flexibility and extensibility. However, one could also consider
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pushing down this logic to the database level so that the policy matching
can be entirely done by the database. This could improve performance
at the expense of the system’s flexibility. One exception to this is that
Qompliance already does the tag matching at the database level because
it is so fundamental to the design.

Lastly, it is important to recognize that Qompliance was designed
to be able to statically evaluate policies, meaning that no access to the
governed data is required. This has a number of benefits, especially with
regards to the scalability of the system. The system proposed in this
paper can be horizontally and individually scaled or even distributed at
every level, down from the database up to the compliance engine. Even
the evaluation algorithms can be parallelized, which can bring down the
processing times for very large numbers of applicable policies. Further
research could look into scaling and distributing the policy evaluation
across systems and regions.

We also note that it is difficult to compare evaluation performance with
other systems, or even with a baseline. We have concluded in Section 7.2
that, although these systems have some aspects in common, related sys-
tems target very different applications and scopes in a manner somewhat
comparable to programming languages. Therefore, it is difficult to com-
pare the performance between systems or for example with a common
benchmark that can serve as a baseline. Future work could elaborate
upon our work towards modeling the data-centric policy systems design
space and possibly even design a benchmark for this space or subsets of
the space.

8.3 future work

Apart from the suggestions that we have already made in the previous
section, we also give two notable suggestions for future work that go
beyond the current scope of the system.

8.3.1 Query Rewriting

One of the original ideas for this research was to include query rewriting
as a way to enforce requirements on data transformations through the
SQL. This way, by intercepting and modifying the SQL before further
processing, little to no modification to existing data processing systems is
needed. Similar techniques have been applied before in previous research,
see Section 2.5. Suitable requirements for this idea were attributes that
mandate that certain data is not included in the SQL or that certain
data needs to be aggregated or anonymized in some other way for a
transformation to be allowable. It is important to recognize that these
modifications generally break the semantics of a query. Therefore, before
proceeding with the rewritten query, it should first be presented to the
query author to get confirmation whether the newly proposed compliant
query is satisfactory. Qompliance is in the ideal position to give this
feedback to the query author.

Let us take the ‘without’ requirement as an example. For typical SELECT,
FROM, WHERE queries, this rewriting is fairly trivial: remove all references
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to data that is not allowed to be in the query from all places. It will break
the semantics of the query but as a result we still have a presentable
and valid query that can be returned to the user. However, this quickly
gets more complicated with more sophisticated queries. Take subqueries
as an example: the outer query may use columns from the inner query.
These references will then also need to be removed. Although this would
technically still be possible, one can imagine that if a query needs to be
rewritten to the point that an outer query that depends on the result
of an inner query cannot use this result anymore, the meaning of the
rewritten query will likely be far from what was originally intended.
From an automated enforcement perspective, one could argue that this
still is desirable behavior. But for the purposes of this system, we want
the user to have the ultimate control over what the result looks like.

Therefore, the original idea was to have the user verify whether the
rewritten query suggestion is still in line with what the goal of the query
was. However, the rewritten query suggestions are likely quite difficult to
understand when the rewriting is done using rudimentary approaches,
especially for complex queries with many interdependencies. Alternative
approaches derived from related work were also considered, such as
wrapping the entire query in another projection that only includes allow-
able columns, and replacing cell values with NULLs or other values. Still,
both of these approaches suffer from similar problems: the former can be
exploited to reveal information about the data, while the latter is in many
cases likely to also break the meaning of queries, in particular when fur-
ther processing expects a certain data to be populated. Furthermore, most
related work only provides semantics-preserving approaches for basic
queries or have made other tradeoffs or assumptions. We are currently
not aware of related work that can make (semantics-breaking) query
rewrites or suggestions for the modifications that our system intends to
do.

Another intended application for query rewriting is the static enforce-
ment of selecting rows that conform to a particular condition. This would
be particularly useful for conditionals checking like a customer’s opt-in
(without any data access), as is a common notion in many regulations
(see Section 2.1).

Ultimately, query rewriting was deemed out of scope for this research
given the time constraints. Our alternative approach presented in this
research is based on the idea that it is more intuitive to output a list of
requirements that should be implemented before the query is allowable.
This list of outcomes can then be parsed by a user-facing front-end that
can visually aid the user with rewriting the SQL to become compliant,
for example using code highlighting. Future work could look at building
an editor-like interface that can assist the user with rewriting the query
to make it compliant. Still, further research could also look into more
advanced query rewriting strategies that attempt to provide the user with
(possibly multiple) sensible alternative query suggestions that are easy to
understand.
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8.3.2 Compliance as Optimization Constraint

An interesting path for further research could be to develop a more close
integration with the data processor. The data processor can then use the
compliance evaluation output as input to the query plan optimization
algorithm. This can for example be used to optimize the query plan based
on allowable data locations, an idea proposed by Beedkar, Quiané-Ruiz,
and Markl [3].



9C O N C L U S I O N

Throughout this work, we have introduced Qompliance, an approach
towards data-centric policy compliance on SQL-defined data movements.
SQL is a common denominator between many different databases and
data processing workloads such as analytical queries and batch process-
ing. Because SQL is a suitable point for early compliance detection in a
data processing pipeline, we have devised a system that can statically
evaluate the compliance of a SQL query to a set of policies. This en-
ables query authors to get early feedback about the compliance of their
intended query.

To simplify policy authoring and management, we introduce a data-
centric policy model that allows for defining declarative policies that
regulate how data can be used without directly referencing the data
schemas. Based on related work and privacy legislation like GDPR, we
derive a set of attributes that can be included in these policies to define
the context in which they apply and to define requirements that should be
fulfilled. The policy model and evaluation are based on Attribute-Based
Access Control and other data-centric policy-based systems, extended
with properties like non-deciding policies to allow for high-level declar-
ative policies. We propose an extensible application-level approach for
defining and evaluating these attributes. By making more assumptions
about how policies are structured and processed compared to languages
like XACML [32], policy complexity is reduced. Furthermore, we show
basic algorithms for matching and evaluating these policies on an SQL
input. We also propose a set of requirement attributes that can be used
to enforce requirements, for example, on the environment during or after
the data processing or on the SQL itself.

We have qualitatively evaluated the use of this approach in a use case
covering the significant features of Qompliance. This use case demon-
strates the intended scope and implementation of the approach presented
in this work. Furthermore, we have proposed a comparison framework
for the design space and have qualitatively compared our approach with
other data-centric compliance systems. Lastly, we have shown through
empirical experimentation that the system can give feedback within a
few seconds for a manageable set of policies, even though the processing
time is exponentially proportional to the number of policies that apply
on an input.

Qompliance is a novel middle-of-the-road approach that draws inspi-
ration from various approaches towards access control and (privacy)
policy compliance. By balancing the scope of the system and its policy
model, we have addressed a gap that we have identified in the state of the
art. Many considerations and assumptions go into the design of access
control and compliance systems, and no one size will fit all. However,
with Qompliance we hope to offer an interesting and flexible alternative
approach towards data-centric policy compliance that may spark further
ideas.
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AS O U R C E C O D E

The source code for the reference implementation described in Chapters 6

and 7 can be found on GitHub:
https://github.com/doudejans/qompliance
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Figure B.1: Full version of attributes class diagram from Section 6.3.
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This document describes the YAML implementation of the policy model.
The YAML implementation serves as a policy language and is used as
the format for submitting policies to the system. This specification uses
the example attributes used in the thesis, but can be trivially extended to
support other attributes.

c.1 specification

A policy consists of the following basic elements:

• A unique name

• Context attributes that define the applicability of a policy

• A decision about whether the transformation/movement on which
the policy applies is allowed or not

• Requirement attributes that dictate what should happen if a policy
applies on the request (only allowed for allow and nondeciding

policies)

Attributes can have different types which in turn have their own
semantics. In the following sections, we will discuss these basic elements,
and their supported attributes.

c.1.1 Name (required)

Every policy should have a name that can be used as a natural identifier,
for referring to the policy in other places or for example in (audit) logs.
This name should be unique.

Syntax:

name: <name>

c.1.2 Context (required)

The ’context’ section of a policy lists all context conditions that should
hold for a policy to be applicable. It can contain the following attributes:
tag, role, purpose, data location and storage classification. A policy does
not have to specify all attributes. Between the attributes in the context
themselves there is a logical conjunction (AND): they all have to apply in
some way for a policy to apply. Between attribute values for all attributes
there is a logical disjunction (OR): any value has to apply on the input for
the attribute to apply. For example, if a policy specifies tags and purposes,
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some tags and some purposes of the policy should be applicable on the
input for the policy to be applicable on the input.

Note that exact semantics of what constitutes an attribute ’match’ can
differ between attribute types. Especially if a policy lists multiple attribute
values per attribute, this introduces the challenge of how to consider
these multiple values (e.g., all values should apply or at least one). Theo-
retically, the system supports defining attribute types which use different
semantics when determining a match. However, the context attribute
types in this proposed model only really consider the attribute values
using OR-semantics. In short, this means that for all attributes in the policy,
at least one value should apply on the input.

Syntax:

context:

tag:

role:

purpose:

data-location:

storage-classification:

c.1.2.1 Tag

The most powerful contextual attribute in the system are tags. They play
a central role in the data-centric approach of this system. Because of this,
they have a few special traits that other attributes do not have (and they
are treated a bit differently internally), more on this later.

Tags are used for restricting what data a policy should apply to. Tags
serve as a layer of abstraction between the ’low-level’ data model of
the data that the system is governing, and the ’high-level’ policies. This
decouples the data definition from policies, and together with the implied
meaning of the tags it allows the policy author to write declarative
policies. For this to work well, all input data for the transformation has
to be tagged with predefined tags that can apply to datastore(s), table(s)
and column(s).

The decision to use tags comes with a number of benefits and draw-
backs. We will list some here which should be taken into account when
implementing the system.

Benefits include:

• Flexible: Tags can apply at any level of detail, both the meaning of a
tag and the level at which data is tagged (datastore, table, column).

• Decoupling policy from data definition: Policies do not directly refer-
ence the schema of the governed data (like in many other systems).
This means that new schemas can easily be added to the system
without rewriting policies, and the other way around.

• Easier to understand policies: Because of this decoupling, policy au-
thors can write more declarative policies by using the meaning of
the tags, all without knowledge of the data in the system. Policies
will also be easier to understand for people unfamiliar with the
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data at all: a policy that simply references a ’PII’ tag will be eas-
ier to understand than a policy referencing all columns that are
considered PII.

• Tags/metadata are common: The use of tags and metadata in general
is well-established in the industry. Many systems use metadata
and tags for managing data, and a lot of research has been done
towards managing and proactively generating metadata (which can
be useful for this system as well). The tags in this system can also
be used by other systems or the other way around.

Drawbacks include:

• Picking the right tags: Assigning the right tags can be difficult, es-
pecially if there are many tags, and there is more potential for
conflict.

• Adds a layer of abstraction: Using tags creates an implicit layer be-
tween the policies and the data which could make it less obvious
to see what policies apply on what data. This might influence the
’effectiveness’ of the compliance system (i.e., whether all data that
should be governed by a policy is in fact linked to this policy so
that it can be checked). Moreover, these tags have to actually be as-
signed, either automatically or by someone with knowledge about
the data. However, a clear user interface for managing this layer
could help with managing this problem.

• No support for direct references in policies: In some cases, it could
be powerful to write very specific policies with highly specific
conditions on the data. By not supporting direct references to
the data, the policy model loses some power and expressiveness.
However, with specific enough tags these references can technically
be emulated if desired.

Tags have to be predefined in the system, and data has to be tagged
before the policies can be enforced. Tags are stored in a hierarchy, meaning
that tags can have parents and children. This hierarchy can be used to
organize the tags, and is also used for conflict resolution. An important
difference to note is that this hierarchy of tags does not imply that if a
certain tag is used in a policy, its children are also used for matching
policies. This is an exception because for all other hierarchical attributes,
this is in fact the case. This decision was made because it makes policies
more understandable. With attributes like a geolocation, it is very clear
that if a country is included in a policy, all cities in this country are
implicitly also included. However, with tags this behavior can quickly get
confusing, thus we opted to require exact tag matches between policies
and the tagged data.

Remember that, as with all context attribute values, tags in policies
always have an OR relationship meaning that it is considered to be a
match for the tag attribute if any of the tags apply.

Syntax:
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tag:

- <tag>

c.1.2.2 Role

The role of a user is used for simple role-based access control, which is
a typical feature in many access control systems. This is a hierarchical
attribute, meaning that the finite set of role names should be predefined
in a tree, where roles can also inherit from other roles. These role names
can for example be mapped from LDAP groups.

Syntax:

role:

- <role>

This attribute is optional. If roles are not included in a policy, the policy
applies to all roles.

c.1.2.3 Purpose

The submitter of the job should specify the purpose for the transforma-
tion (from a fixed hierarchy of options). This is a hierarchical attribute,
meaning that the finite set of purposes should be predefined in a tree,
where purposes can also inherit from other purposes.

Syntax:

purpose:

- <purpose>

This attribute is optional. If purposes are not included in a policy, the
policy applies to all purposes.

c.1.2.4 Data location

The data location is another important attribute in the system, which
enables the geolocation features of this system. It allows policy authors to
write policies that govern how data should be managed across different
borders and in different jurisdictions. Together with the data location
requirement attribute, it can also be used to ’steer’ data to the right
location.

This is again a hierarchical attribute, meaning that the locations have
to be predefined in a tree. Implicitly, these trees can be based on the
hierarchy of locations, e.g., Amsterdam is in the Netherlands, which is in
Europe.

Syntax:

data-location:

- <data-location>

This attribute is optional. If data locations are not included in a policy,
the policy applies to all locations.



C.1 specification 85

c.1.2.5 Storage classification

The storage classification context attribute can be added to a policy to
restrict on what types of data stores a policy applies on. The classifications
are labels that are attached to data stores in the metadata. Classifications
can for example be useful to select data stores that have a particular
compliance certification, are disk encrypted or are permitted to store
sensitive data. This attribute’s requirement counterpart can be used to
’steer’ data to a data store with a certain classification.

Storage classifications have an enum data type, meaning that all possi-
ble values are a simple predefined list of values.

Syntax:

storage-classification:

- <storage-classification>

This attribute is optional. If storage classifications are not included in a
policy, the policy applies to all storage classifications.

c.1.3 Decision (required)

A decision determines whether the policy allows the input to be pro-
cessed or not, given that the policy context applies on the input. This
is comparable to and derived from traditional access control where this
would control whether someone has access to the data or not. However,
because these decisions are not enforced at data access but rather at the
point of data transformation or movement, this decision should be inter-
preted a bit differently. This can still enable ’traditional’ access control if
all data access is required to go through SQL queries via our system.

A decision can be one of: allow, deny, nondeciding.
A nondeciding policy is a policy which does not make an actual de-

cision about whether a policy allows a certain input. The main benefit
of a nondeciding policy is that it still allows the policy to specify re-
quirements. A deny policy cannot specify requirements because since the
transformation is not allowed, requirements cannot be enforced anyways.
One could for example use a nondeciding policy to put requirements on
the data location, without attaching this to decisions about specific data.
A nondeciding policy does not influence the final decision and lets other
policies determine the decision outcome. If all policies are nondeciding,
the system’s (configurable) default decision is used.

Syntax:

decision: <allow/deny/nondeciding>

Note that although every policy has to have one of the three decision
values, a policy in the YAML implementation does not have to explicitly
list a decision. In this case, the decision will be set to nondeciding since
this naturally follows from how you would read such a policy.
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c.1.4 Require

The ’require’ section of a policy lists all requirements that are required
to be enforced once a policy is determined to be applicable on the input
(based on the policy’s context). A policy should either have decision allow

or nondeciding to be allowed to list requirements. It can contain the
following requirement attributes: data locations, storage classifications,
without and aggregate. Requirements are entirely optional, meaning
that a policy does not have to specify all attributes or any requirements
at all. Requirement attributes all have to be enforceable for a policy to
be considered valid and applicable. If a policy matches with a certain
input and the requirements are validated, but the system determines that
they cannot be enforced in some way, the policy decision will be set to
indeterminate.

Note that the semantics of the requirements and what constitutes a
valid requirement can vary between requirement types and what opera-
tions they enforce. Conflict resolution, handling multiple attribute values
and the semantical meaning of the output of a requirement can also differ
per requirement.

Syntax:

require:

data-location:

storage-classification:

without:

aggregate:

c.1.4.1 Data location

Together with the data location context attribute, this requirement enables
the geolocation features of this system. It allows policy authors to write
policies that govern where data is being processed and stored.

This attribute has the same properties as its context counterpart, mean-
ing that the values use the same predefined tree.

Syntax:

data-location:

- <data-location>

c.1.4.2 Storage classification

The storage classification requirement is another powerful requirement
which can be used to dictate where data can be stored. The storage
classifications are labels that are attached to data stores in the metadata.
These can be used to select data stores that conform to a particular
classification. Classifications can for example be useful to select data
stores that have a particular compliance certification, are disk encrypted
or are permitted to store sensitive data.

Storage classifications have an enum data type, meaning that all possi-
ble values are a simple predefined list of values.
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Syntax:

storage-classification:

- <data-location>

c.1.4.3 Without

The ’without’ requirement can be used to mandate that data is not
accessed in the transformation and is not included in the final result, and
thus the final SQL. This is useful to write policies that restrict what data
can be accessed without preventing the data access entirely. It can be
used to prevent data from being queried/joined and stored together. The
possible values of this attribute are the set of tags that are registered in
the system. This requirement is only considered to be satisfied if all tags
mentioned in the policy do not reference any data touched by the SQL.

The requirement operates in the following way: first the tag is resolved
to see what data it applies on. Then, the query is being checked for any
references to the data in this set. If any of this data is included, a rewritten
query suggestion will be made to the user. The input will not be allowed
until this requirement is satisfied, either by rewriting the query or by
accepting the query suggestion.

Syntax:

without:

- <tag>

c.1.4.4 Aggregate

The aggregate requirement is used similarly to the ’without’ requirement,
but instead only allows a SQL query where the referenced data has been
aggregated (or not present at all). This is another way to restrict what
data ends up being used, but is a bit more lenient than entirely excluding
the data from a column. The possible values of this attribute are the set of
tags that are registered in the system. This requirement is considered to
be satisfied if all tags mentioned in the policy refer to data that is either
in the SQL as aggregated columns or not in the SQL at all.

The requirement operates in the following way: first the tag is resolved
to see what data it applies on. The set of data references to columns that
are actually in the query and need to be aggregated according to the
policy is the intersection between the data references in the query and
in the set of resolved tags. Then we subtract the set of data references
in the query that are in an aggregation function. If there is any column
references left, these have not been aggregated and thus the user needs
to update the query to reflect this requirement.

Syntax:

aggregate:

- <tag>
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c.2 examples

In this section we show various interesting examples to demonstrate the
YAML policy syntax.

name: Keep data from leaving the EU

context:

data-location:

- EU

require:

data-location:

- EU

name: Marketing department can access customer data without PII

context:

tag:

- customer_data

role:

- Marketing Dept

decision: allow

require:

without:

- PII

name: Medical information should be kept in HIPAA compliant storage

context:

tag:

- medical

require:

storage-classification:

- HIPAA

name: Data scientists can access all data for specific purposes

context:

tag:

- sales_data

- customer_data

- financial_data

purpose:

- analytics

- research

role:

- Data Science Dept

decision: allow

require:

without:

- PII
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