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Samenvatting 

Hoewel hout als constructiemateriaal al millennia wordt toegepast, is het 

onderzoeksgebied naar de voorspelling van de sterkte van constructief hout nog in 

ontwikkeling. Op dit moment is de algemene opvatting dat het bepalen van de sterkte-

eigenschappen van constructief hout per houtsoort moet plaatsvinden. Door deze sterkte-

eigenschappen te koppelen aan kenmerken die aan het hout gemeten kunnen worden 

(hetzij visueel of machinaal) kan op sterkte gesorteerd hout aan de markt geleverd 

worden.  

In potentie zijn er meer dan 1000 commercieel beschikbare houtsoorten waarvan het hout 

constructief gebruikt kan worden. Het grootste aantal hiervan zijn tropische 

hardhoutsoorten. Deze worden veelal toegepast wanneer een hoge sterkte en hoge 

duurzaamheid benodigd zijn. Tegenwoordig wordt in toenemende mate (tropisch) hout 

verkregen uit duurzaam beheerde bossen. Door deze manier van bosbeheer blijven de 

(tropische) bossen behouden en hebben ze een economische waarde voor de lokale 

bevolking.  Een gevolg van deze manier van bosbeheer is dat er steeds meer onbekende 

houtsoorten in kleine hoeveelheden op de markt komen, waarvan de sterkte-

eigenschappen moeten worden bepaald. 

De huidige methoden voor de bepaling van de sterkte-eigenschappen van een houtsoort 

vereisen uitgebreide testen. Een probleem daarbij is dat het hout dat getest wordt 

representatief moet zijn voor het hout dat op de markt komt. Hierdoor moeten alle 

mogelijke variaties in de kwaliteit van het hout dat op de markt komt afgedekt worden.  

Om het hout daarna in de praktijk toe te passen moeten sorteerregels worden opgesteld 

waaraan de sterkte-eigenschappen verkregen door testen zijn gekoppeld. Voor visuele 

sortering worden daarbij kenmerken als kwasten en draadverloop gebruikt. Bij machinale 

sortering worden bijvoorbeeld de dichtheid en de elasticiteitsmodulus gebruikt. Voor 

naaldhout is aangetoond dat machinale sterktesortering betrouwbaarder is en hogere 

opbrengsten in hogere sterkteklassen geeft dan wanneer visuele sterktesortering wordt 

toegepast. Voor tropisch loofhout is er het probleem dat het belangrijkste kenmerk voor de 

mechanische eigenschappen, het draadverloop, moeilijk te meten is in de praktijk. 

Daardoor is er slechts één visuele klasse voor tropisch hardhout gedefinieerd en is 

optimalisatie niet mogelijk. 

Een oplossing voor bovengenoemde problemen kan houtsoortonafhankelijke 

sterktesortering zijn, waarbij alleen naar de invloed van de gemeten kenmerken wordt 

gekeken.  Om dat te onderzoeken is in dit proefschrift de vraag gesteld wat de invloedrijke 

parameters zijn voor het ontwikkelen van houtsoortonafhankelijke sterktemodellen en of 

deze gekwantificeerd kunnen worden ten einde het veilig, economisch en duurzaam 

gebruik van naaldhout en hardhout in constructies te waarborgen. 

Om deze vraag te beantwoorden is een database met een grote hoeveelheid testresultaten 

uit buigproeven onderzocht bestaande uit proefstukken van naaldhout, hardhout uit de 
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gematigde zones en tropisch hardhout. Deze database is de laatste 10 jaar in 

samenwerking met de Nederlandse industrie opgebouwd.   

Op basis van literatuuronderzoek kan geconcludeerd worden dat de sterkte en stijfheid van 

foutvrij hout beide afhankelijk zijn van de dichtheid van het hout, onafhankelijk van de 

houtsoort. De natuurlijke spreiding voor de beide eigenschappen sterkte en stijfheid is 

onderling gecorreleerd, waardoor de stijfheid een goede voorspeller is van de sterkte van 

foutvrij hout. Op basis van de toegepaste mechanica zijn mathematische modellen 

opgesteld die de reductie van de sterkte en stijfheid als gevolg van de aanwezigheid van 

kwasten en draadverloop beschrijven.  

Omdat de dichtheid de maximaal mogelijke basissterkte van het hout definieert is 

houtsoortonafhankelijke sterktesortering door middel van visuele sortering niet mogelijk. 

Bij visuele sortering is voor enkele naaldhoutsoorten en hardhout uit de gematigde zones 

de groeiringbreedte een maat voor de dichtheid: bij de meeste hardhoutsoorten is er geen 

significante correlatie. 

Uit het onderzoek is naar voren gekomen dat het zeer moeilijk is om bij tropisch hardhout 

het draadverloop voor een destructieve buigtest goed in te schatten. Hierdoor kan de 

variatie in sterkte eigenschappen tussen partijen groot zijn. Om de sterkte van hout dat 

onder dezelfde handelsnaam op de markt gebracht wordt met voldoende veiligheid te 

bepalen, moet een reductiefactor worden toegepast op de testresultaten. Omdat niet 

bekend is hoe groot de variatie in draadverloop bij tropisch hout dat op de markt gebracht 

wordt is, is het niet mogelijk deze reductiefactor te bepalen. 

Door middel van machinale sterktesortering is de variatie in draadverloop wel te 

detecteren. De reductie van de stijfheid (de elasticiteitsmodulus) is met dezelfde formule 

(de bekende Hankinson formule) te beschrijven  als de reductie van de buigsterkte, alleen 

met andere waarden voor de constanten. Hierdoor zijn de elasticiteitsmodulus en de 

dichtheid samen de parameters die gebruikt kunnen worden voor machinale 

sterktesortering voor hout met draadverloop. 

De reductieformule van de sterkte als gevolg van de aanwezigheid van kwasten heeft 

dezelfde vorm als die voor de reductie van de stijfheid door kwasten, met andere waarden 

voor de constanten. Hierdoor zijn elasticiteitsmodulus en de dichtheid samen ook geschikt 

voor houtsoortonafhankelijke machinale sterktesortering voor hout dat kwasten bevat. 

Doordat de invloed van kwasten en draadverloop op de elasticiteitsmodulus niet te 

onderscheiden is, moet voor houtsoortonafhankelijke machinale sterktesortering het hout 

in twee groepen ingedeeld worden: hout waarbij kwasten het bezwijken veroorzaken en 

hout waarbij draadverloop het bezwijken veroorzaakt. Daarom is het nodig om naast de 

machinale metingen ook een visuele beoordeling uit te voeren, waarin voor de groep die 

met het draadverloopmodel gesorteerd wordt, gecontroleerd wordt dat er slechts kwasten 

met een gelimiteerde grootte aanwezig zijn. Verder dient door de visuele controle hout 

met andere kenmerken die niet door machinale metingen gedetecteerd kunnen worden 

zoals drukbreuk uit het sorteerproces verwijderd te worden. Een kenmerk als drukbreuk 

geeft een onvoorspelbare reductie van de sterkte en mag daarom in constructief hout niet 

aanwezig zijn. 
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De elasticiteitsmodulus kan in de praktijk op eenvoudige wijze door middel van 

trillingsmetingen bepaald worden. 

Op basis van de mathematisch relaties tussen de kenmerken kwasten en draadverloop 

enerzijds en de dichtheid en elasticiteitsmodulus anderzijds is het mogelijk om 

voorspellingsmodellen op te stellen van de sterkte op basis van gemeten dichtheid en 

elasticiteitsmodulus. De waarden voor de buigsterkte, elasticiteitsmodulus en dichtheid 

voor de genormeerde sterkteklassen hebben betrekking op hout met een vochtgehalte van 

12%.  Om de testresultaten van  hout dat met een ander vochtgehalte is beproefd naar dit 

referentievochtgehalte te kunnen omrekenen zijn correctiefactoren afgeleid. Voor 

constructieve afmetingen is geen correctie met betrekking tot de afmeting naar de 

referentieafmetingen noodzakelijk.  

De vorm van de spreiding rond de voorspellingslijnen is theoretisch afgeleid op basis van 

de verdeling van de voorspellingswaarden. De vorm van de spreiding blijkt verschillend te 

zijn voor het voorspellingsmodel van hout met kwasten en voor het voorspellingsmodel 

van hout met draadverloop. Een methode om de vorm van de spreiding af te leiden op 

basis van de experimenteel verkregen data is opgesteld en geverifieerd. 

Om het hout daadwerkelijk te sorteren moeten ‘settings’ worden bepaald. Dit zijn de 

limietwaarden in het voorspellingsmodel op basis waarvan het hout in een bepaalde 

sterkteklasse wordt ingedeeld. De sterktewaarden van hout kunnen alleen geverifieerd 

worden op basis van de eigenschappen van een partij die destructief getest is. Hierbij kan 

bij kleine aantallen in een sorteerklasse de karakteristieke sterktewaarde sterk variëren 

tussen geteste partijen. Om dit te ondervangen is een methode ontwikkeld waarmee op 

basis van de verdelingen van de voorspelde waarden en de spreiding in het 

voorspellingsmodel de karakteristieke waarde voor de sterkte kan worden bepaald. De 

karakteristieke waarde voor de sterkte van een sorteerklasse bij een geëiste 

waarschijnlijkheid kan hiermee onafhankelijk van het aantal proefstukken in een partij 

bepaald worden. 

Met de ontwikkelde voorspellingsmodellen is het mogelijk om houtsoortonafhankelijk 

machinaal op sterkte te sorteren. Met name voor tropisch hardhout kan hiermee de 

afgegeven sterkteklasse op een betrouwbare manier worden bepaald en kan de opbrengst 

in de hogere sterkteklassen worden vergroot. Het resultaat draagt bij aan een 

economische, veilige en duurzame constructieve toepassing van hout. 
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Summary 

Timber as a construction material has been used for millennia, but the research field 

covering the prediction of the strength of structural timber is still in development. 

Currently,  the common conception is that the determination of strength properties has to 

be determined for every wood species individually. By combining these strength 

properties to features that can be measured at the timber (either visually or by machine 

measurements), strength graded timber can be supplied to the market. 

Potentially, there are more than 1000 commercially available wood species, the timber of 

which can be used in structures. The largest amount of these wood species are tropical 

hardwoods. These wood species are often used when high strength and high durability are 

required. Nowadays, (tropical) timber is increasingly coming from sustainably managed 

forests. By application of this method of forest management, the (tropical) forests are 

preserved and have an economic value for the local population. A result of this approach 

is that more and more unknown wood species in small quantities are coming on the 

market, the strength properties of which have to be determined. 

The present methods for the determination of strength properties of a wood species 

require extensive testing. An extra problem is that the timber that is tested has to be 

representative for the timber coming on the market. All future variations in the quality of 

the timber coming on the market have to be covered. 

To be able to use the timber in structures, grading rules have to be formulated that are 

related to the strength properties, determined by tests. For visual grading, features like 

knots and slope of grain are used. For machine grading, for example, the density and 

modulus of elasticity are used. For softwoods it has been proven that machine grading is 

more accurate and gives higher yields in the higher strength classes in comparison with  

visual grading. For tropical hardwoods, a major problem for visual grading is that the 

most important feature for the mechanical properties, the slope of grain, is very difficult to 

measure in practice. For this reason, only one visual grade is defined for tropical 

hardwoods and optimisation is not possible. 

A solution for abovementioned problems can be species independent strength grading, 

where only the influence of the measured features is taken into account, irrespective of the 

species. To investigate whether this would be possible, the research question dealt with in 

this thesis was: what are the influencing parameters for the development of species 

independent strength models, and can they be quantified to ensure safe, economic and 

sustainable use of softwoods and (tropical) hardwoods in structures ? 

To answer this question, a database consisting of a large number of test results from 

bending tests on European softwoods, temperate hardwoods and tropical hardwoods was 

investigated. This database was built-up in the last ten years in cooperation with the Dutch 

industry. 
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Based on a literature survey, it was concluded that both the strength and stiffness of clear 

wood depend on the density of the timber, irrespective of the wood species. The natural 

variation in test values for both properties strength and stiffness are correlated. As a result, 

the stiffness is a good predictor of the strength for clear wood. Based on structural 

mechanics, mathematical models were formulated describing the reduction of strength and 

stiffness caused by the presence of knots and grain angle deviation. 

Because the density defines the maximum possible basic strength of the timber species, 

independent strength grading by visual grading is not possible. For some softwood species 

and temperate hardwoods, the grow ring width can be a measure for the density. For the 

majority of hardwood timber, there is no significant correlation. 

The examination of the visual measurement of the slope of grain has revealed that it is 

very difficult to accurately estimate the slope of grain for tropical hardwoods before a 

destructive bending test. As a consequence, the variation in strength properties between  

test samples from the same wood species can be very large. To determine the strength of 

timber brought on the market under the same trade name with sufficient safety, a 

reduction factor has to be applied to the test results. Because it is not known how large the 

variation can be in the slope of grain for tropical timber brought on the market under the 

various trade names, it is not possible to determine this reduction factor.  

By means of machine strength grading it is possible to detect the variation in slope of 

grain. The reduction of the stiffness (the modulus of elasticity) can be described with the 

same equation (the well-known Hankinson equation) as the reduction of the bending 

strength, only with other constant values. Because of this, the modulus of elasticity and 

the density are parameters that, together, can be used for machine strength grading for 

timber showing grain angle deviation. 

The reduction equation describing  the strength due to the presence of knots has the same 

form as the reduction equation describing the stiffness due to the presence of knots, only 

with other constant values. Because of this, the modulus of elasticity and the density 

together are also the parameters suited for species independent machine strength grading 

of timber containing knots. 

Because the influence of knots and slope of grain on the modulus of elasticity cannot be 

distinguished from each other in the modulus of elasticity measurement, timber has to be 

divided into two groups for species independent machine strength grading: timber for 

which failure is induced by knots and timber for which failure is induced by slope of 

grain. Therefore, it is necessary to perform a visual assessment, to check for the group 

containing grain angle deviation that only knots of limited sizes are present in the timber. 

Furthermore, the visual check has to ensure removal of pieces with features that cannot be 

detected by machine readings, such as compression failures. A feature like a compression 

failure causes an unpredictable strength reduction and is therefore not allowed in 

structural timber. 

In practice, the modulus of elasticity can be determined in a simple manner by means of 

vibration measurements. 

On the basis of mathematical relationships between on the one hand the features knots and 

slope of grain and on the other hand the density and the modulus of elasticity, it is 
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possible to formulate prediction models of the strength based on the measured density and 

modulus of elasticity of a piece. The values for the bending strength, the modulus of 

elasticity and the density for the standardized strength classes are related to timber with a 

moisture content of 12%. Correction factors have been derived to be able to adjust the test 

result of timber tested with a different moisture content to this reference moisture content, 

For structural sizes, no adjustments with regard to the reference sizes are necessary.   

The shape of the scatter around the prediction lines is theoretically derived on the basis of 

the distribution of the prediction values. The shape of the scatter turns out to be different 

for the prediction model for timber containing knots and for the prediction model for 

timber containing grain angle deviation. A method to derive the shape of the scatter on the 

basis of available data has been formulated and verified. 

To actually grade timber, "settings" have to be determined. These are limit values for the 

prediction values that determine which strength class the timber can be assigned to. The 

strength values of  timber can only be verified on the basis of the properties of a sample 

that is tested destructively. For small numbers of pieces in a sample, the characteristic 

values of a strength grade can vary significantly between tested samples. To overcome 

this problem, a method was developed  which takes into account the distribution of the 

prediction values and the scatter of the prediction model. The characteristic strength value 

of a strength grade for the required probability can be determined by it, irrespective of the 

number of pieces in a sample. 

With the developed prediction models it is possible to perform species independent 

strength grading. Especially for tropical hardwoods, the assigned strength classes can be 

determined in a reliable way and the yield in the higher strength classes can be increased. 

The research results contribute to an economic, safe and sustainable application of timber 

in structural applications. 
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List of symbols 

Greek letters 

α angle between the beam axis and grain direction, or the confidence 

level. 

β interaction factor for the shear strength in the Norris equation, or the 

reliability index, or the shrinkage coefficient (% per percent change 

of moisture content) 

μ   mean value of a population 

ρ   density (kg/m3) 

σ   stress (N/mm2), or standard deviation of a population 

 

Latin letters 

 

a distance between the support and point load in a four point bending 

tests (mm) 

b dimension perpendicular to the plane of the load of a specimen in in 

a four point bending tests (mm) 

f   strength (N/mm2) 

fm   bending strength (N/mm2) 

fm,stat,mod predicted values of the bending strength according to the mean 

regression line (N/mm2) 

ft   tension strength (N/mm2) 

fc   compression strength (N/mm2) 

fv   shear strength  (N/mm2) 

E   modulus of Elasticity (N/mm2) 

F   Force (N) 

G   shear modulus (N/mm2) 

GKR  Group knot ratio 

h dimension in the plane of the load of a specimen in a four point 

bending tests (mm) 

I   second moment of Inertia (mm4) 

IPfm Indicating Property, prediction value for the bending strength based 

on an equation with measured parameters (N/mm2) 

kf Ratio between the bending strength parallel and perpendicular to the 

grain 



12 

 

km Ratio between the MOE parallel and perpendicular to the grain 

ks,tn   reduction factor describing the influence on the scatter between 

samples based on the number of samples for visual grading  

l   span in a four-point bending test  (mm) 

lb   length of a timber beam  (mm) 

m.c. moisture content in %, the percentage of the weight of the water in a 

wooden piece, related to the weight of the wood with no water inside 

MOEdyn Modulus of Elasticity determined from vibration measurements 

(N/mm2)   

MOEglob Modulus of Elasticity determined in a four point bending test in 

which shear deformation is incorporated (N/mm2) 

MOEloc Modulus of Elasticity determined in a four point bending test under 

pure bending (N/mm2) 

N Number of samples 

OLS Ordinary least squares regression analysis 

WLS Weigthed least squares regression analysis. 

n Number of pieces in a sample 

p(i) factor indicating the probability for a prediction value for the 

bending strength that the actual bending strength is lower than a 

required value. 

pchar the probability that the actual bending strength of pieces in a sample 

graded between a lower and higher IPfm-value  is lower than the 

required value  

PTL Parametric Tolerance Level. The value for which, with a probability 

of α (the confidence level) the p% fractile of the underlying 

population is higher than this value. 

r correlation coefficient, in other books also denoted as ρ 

r2 coefficient of determination 

S Setting. Limit value for the IPfm to grade timber in a strength class. 

When timber is graded to more than one strength class there will be 

more than one value of S, these are then called settings. 

SKR  Single Knot Ratio  

SoG  Slope of Grain, the tangent of α 

s   standard deviation of a sample 

t    thickness, smaller dimensions of a piece (mm) 

w ratio of the standard deviation of the residuals from a regression 

analysis and the prediction model values 

      mean value of a sample 

W   section modulus (mm3) 
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Definitions 

clear wood   pieces of wood with no strength reducing characteristics 

structural timber  pieces of wood intended to be used in structures 

microscopic level  level of wood where cells can be distinguished with a 

microscope 

macroscopic level  level of wood where it is possible to retrieve clear wood 

pieces 

gross level  level of wood where gross features as grain angle deviation 

and knots occur an can be distinguished with the naked eye. 

visual grading  the process by which a piece of timber can be sorted, by 

means of visual inspection, into a grade to which 

characteristic values of strength, stiffness and density may be 

allocated 

machine grading  the process by which a piece of timber can be sorted by a 

machine sensing, non-destructively, one or more properties of 

the timber, with any necessary visual inspection, into grades 

to which characteristic values of strength, stiffness and 

density may be allocated 

settings  limit values for the prediction values of the bending strength, 

to grade structural timber in different strength classes. 

tree species  trees sharing the same morphologic characteristics as leaves 

etc. 

wood species  wood originating from a certain tree species  

trade name  commercial name under which structural timber, coming 

from one or more wood species, is brought on the market 

tropical hardwoods  wood of angiosperm trees of the botanical group dicotyledons 

whose natural distribution lies substantially south of the 

Tropic of Cancer and north of the Tropic of Capricorn 

temperate hardwoods wood of angiosperm trees of the botanical group dicotyledons 

whose natural distribution lies substantially north of the 

Tropic of Cancer and south of the Tropic of Capricorn 

softwoods wood of gymniosperms trees of the botanical group 

coniferales.  
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1  

Introduction 

1.1 Sustainably produced (tropical) timber for structural applications 

Timber has a long history as a construction material for structures made by humans. 

Throughout  the centuries timber has proven to be an important building material. In this 

time era, there is an increasing interest for the use of timber as a building material. There 

are several reasons for this. On one hand, in the developments of engineered wood 

products and connections, there is a great variety in appearances, which addresses 

aesthetic demands. On the other hand, the use of timber plays an important role in the 

reduction of CO2 emission in the building process. In a comparative study Gustavsson 

(2006) showed, that a multi-storey timber building could be CO2-negative, in contrast to a 

concrete building.  

A prerequisite for sustainable timber buildings is that the timber is produced in a 

sustainable way. This means that we want the total worldwide forest area to remain at 

least constant and the biodiversity of species to be maintained.  When this is discussed, 

the problem of deforestation has to be addressed. Pictures of the tropical rainforest, with 

large areas where all trees are felled come to mind. The irresponsible use of the tropical 

forests has certainly led to the present situation where large areas of tropical rainforests 

are gone.  

However, the situation today has changed in that sense that it is now possible to retrieve 

timber from rainforests managed in a sustainable way. These forests are certified by 

independent organisations like FSC (www.fsc.org) or PEFC (www.pefc.org). For a forest 

to be certified, it must be managed in such a way that it is maintained in a sustainable 

way. This means that only selective felling takes place; only trees of a certain diameter 

may be felled in a certain forest section, after which this section must be left alone for 30 

years. Since tropical forests have a large diversity in tree species this means that the yearly 

production might include a large number of tree species. 

Apart from this ecological aspect, there are also social requirements to secure the living 

conditions of the local population. Nowadays, most deforestation is not caused by timber 

production, but for instance by gaining agricultural areas (Lambrechts et al.,2009) 

 

To ensure that timber used for constructions is from a sustainably managed source, the 

buyer of tropical hardwoods can demand that timber is delivered with a recognized 

certificate. The Dutch government has issued guidelines for sustainable purchasing of 

timber (www.tpac.smk.nl) in which recognized certificates are listed. These guidelines are 
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to be followed for all public contracts. This does not only concern tropical hardwoods, but 

also softwood from Europe and North-America. 

The Netherlands Timber Trade Organisation (VVNH) has also committed itself to 

increasing the share of certified sustainably produced timber brought on the market.  The 

report on the first half year of 2013 (Winterink, 2013) shows that for softwoods 96% of 

the imported timber and for hardwoods 54% of the imported timber is from a 

demonstrably sustainably  managed forest with a Chain of Custody certificate. When 

these figures are compared with the situation in 2008 (softwoods 77% and hardwoods 

19%), the impact of this policy is clear. 

It can be concluded that the use of (tropical) timber from sustainably managed forests can 

have a positive impact on reducing CO2-emmision (Gustavsson, 2006) as well as on 

maintaining the forests with an economic benefit (www.fsc.org  and ww.pefc.org). To 

promote the use of sustainable tropical timber,  the European Sustainable Tropical Timber 

Coalition (www.europeansttc.com) was founded, with stakeholders in governments and 

building companies.  

A consequence of making use of sustainably managed forests is that a large number of 

tropical hardwood species become available on the market. These are generally called 

Lesser-Known Timber Species (LKTS), for which the properties have to be determined to 

be able to use them for structural purposes (Van Benthem en Bakker, 2011). Potentially, 

more than 1000 timber species are suitable for structural applications (Wagenfuhr, 2007). 

According to current regulations, it is required to determine the strength properties of each 

wood species separately. It would require an enormous amount of testing to determine the 

strength properties of all these species. This is a huge drawback in the economic use of 

these species. Another problem is that currently for tropical hardwoods only strength 

properties connected with visual assessments are available. This is not a very effective 

method, as will be shown in this thesis. The main objective of this thesis is therefore to 

investigate the development of species independent strength models based on objectively 

(mechanically) measured parameters. 

In section 1.2 the backgrounds of the safe design of timber structures will be briefly 

explained and the consequences for the determination of the strength properties of 

(tropical) hardwood timber. 

1.2 Grading of softwood and hardwood timber 

The safety of a timber structure depends on a number of aspects, such as the correct 

mechanical modelling of the loads, a good prediction of the structural behaviour of the 

design of the connections, and good workmanship during the execution. This dissertation 

is restricted to the accurate and economic determination of the strength and stiffness 

properties and the density of timber to be used in structures. 

The concept of reliability of structures according to NEN-EN-1990 can be described with 

the following formula: 
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                         (1.1) 

In equation (1.1)  R(Resistance) and E(the load effect) are stochastic variables. 

Equation (1.1) describes the probability that the stresses in a structural element due to the 

loads (E) are greater than the resistance strength (R) of the material the structural element 

is made of. The value of Pf is often represented as its transformation to the cumulative 

distribution function of the standardized normal distribution value, called the reliability 

index β.  

The solution of equation (1.1) is a 3D problem that can be solved with a probabilistic 

approach. However, in the normal engineering practice according to the Eurocodes, the 

probability of failure is not calculated with a full probabilistic approach, but with  a semi- 

probabilistic approach using characteristic values (Ek and Rk) together with  a load and 

material factor. The engineer  has to verify that Ek multiplied by a load factor does not 

exceed Rk divided by a material factor. These factors are calibrated to ensure that the 

required reliability index value is reached for different load situations.  

 

Figure 1.1 shows the relationship between the characteristic strength value and the design 

strength value, where the design strength value is the characteristic value divided by the 

material factor. αR is a FORM (First Order Reliability Method) sensitivity factor. 

From Figure 1.1 it is clear that when the material factor is a fixed value, and Rk is a fixed 

percentage fractile of the distribution, the  variability in timber strength properties 

influences the reliability of the structure. Two different strength distributions can have the 

same characteristic value, but different mean and standard deviations. To justify a chosen 

material factor, the scatter in standard deviations of the distribution of different batches of 

timber must be limited. This can be achieved by grading the timber.  

 

Figure 1.1. Relationship between the characteristic strength value and the design 

strength. Re-sketched  after Vrouwenvelder (2008). 
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A typical aspect of timber is that the material properties can have different values 

depending on indirect factors such as size, moisture content and duration of the loads. 

These factors depend on the design and climate conditions the structure is placed in. In 

structural design calculations, these factors are integrated in the design equations 

(Eurocode 5 for timber structures) that an engineer has to apply. It is therefore very 

important that these indirect factors are correctly derived from material tests. 

 

This dissertation deals with the derivation of material properties and the way they are 

influenced by the indirect effects of size and moisture content, and the way they are 

influenced by directly measurable non-destructive properties. As explained in figure 1.1 

the value of Rk (which is called the characteristic value) is used by an engineer as input in 

calculations. In NEN-EN 1990  this value is defined as the 5% fractile of the strength 

distribution of a material. It is this value that has to be determined in material tests on 

structural timber when strength is concerned. However, if timber would be used without 

any selection then - due to its large natural variation in strength properties – the material 

factor would have to be very high to ensure the required safety. Or another option would 

be to change the percentile of the characteristic value. To overcome this problem, the 

timber is selected in groups by a process called grading. 

The process of grading can be defined as the sorting of timber beams into groups to which 

the same strength properties can be assigned. This sorting takes place on the basis of 

parameters (which we will call grading parameters) that have an effect on the strength 

properties. By defining different levels of parameter values, individual beams can be 

assigned to various grades that have different strength properties. There are two grading 

methods: visual grading and machine grading.  

Visual grading takes into account visible strength reducing parameters, such as the size 

and amount of knots, or the slope of grain. Machine grading makes use of parameters 

produced by machine readings like the weight (by which the density can be calculated) or 

by readings (through vibration or bending) by which the modulus of elasticity can be 

calculated.  The grading method and the parameters have an influence on the yield of the 

grading process, which is defined as the amount of timber that can be assigned to the 

different grades. This is because the predictability of the parameters on the strength 

properties differs. In general, the parameters used by machine grading have better 

prediction capabilities than the parameters used in visual grading. To be able to perform 

the grading process, prediction models have to be derived. The grades are mostly related 

to a predefined strength class. Predefined strength classes with its properties as listed in 

European standard EN 338. 

The effect of the grading process of a batch of timber is illustrated by figure 1.2. The 

strength distribution of the total ungraded population is the outside line. During grading, 

the beams are assigned to three grades (a), (b) and (c). The 5% fractiles are indicated with 

vertical dashed lines. The grading has two effects: the 5% fractiles of grades (b) and (c) 
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are higher than the 5% fractile of the ungraded population and the variability in strength 

properties of the three grades is much lower than that of the ungraded material. This 

results in a more economic use of the timber. 

 

Figure 1.2. The effect of strength grading (re-sketched after STEP 1,1995). 

 

Defining the characteristic value as the 5% fractile of a distribution is not as simple as it 

seems.  To be able to do this, first the distribution type (parametric: normal, lognormal, 

Weibull or  non-parametric: ranking) has to be determined. The selected distribution type 

will affect the grading result. It seems logical to determine the distribution type for every 

new dataset that fits best. However, in standards often a distribution type for a certain 

mechanical property is prescribed. 

 

Timber is a natural material and is produced in nature as trees. By felling these trees and 

sawing them in dimensions for structural use they become timber. There are more than 

100.000 wood species (Hajela, 2008), but when the amount is restricted to species suitable 

for use in structures and from which timber can be economically produced a number of 

1000 species can be assumed (Wagenfuhr, 2007). Looking at the anatomy (the way the 

wood cells are structured) a division can be made between softwood and hardwood 

species. Botanically, they can be distinguished by the presence of needles (softwoods) or 

leaves (hardwoods). The largest amount of the 1000 potential species for structures are 

hardwood species. Tropical hardwood species are used when high strength and high 

durability is required. Tropical hardwood can be defined as wood of angiosperm trees of 

the botanical group dicotyledons whose natural distribution lies substantially south of the 

Tropic of Cancer and north of the Tropic of Capricorn. Examples of these structures are 

lock gate doors or timber guard rails. For buildings, usually softwood is used. See figure 

1.3. 
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Figure 1.3. An industrial building from glued laminated softwood timber (left) and 

lock gate doors from tropical hardwood timber (right) 

 

It would be practical if for all beams of every wood species the same grading parameters 

and the same parameter levels could be used. Unfortunately, for visual grading this is not 

possible. This is illustrated in figures 1.4 and 1.5. In softwood, the presence of knots is 

mostly the failure initiating parameter. In tropical hardwoods, the presence of knots is 

very rare and the slope of grain is the most critical parameter. The same knot indicator 

gives different strength levels for graded and destructively tested samples for different 

species. Therefore, the strength properties of the same visual grade can be different for 

different species. Only limited combinations of species for which the strength properties 

are the same for a visual grade are used. In North-America, the softwood species spruce, 

pine and fir are combined, mostly for practical reasons, where it is accepted that the 

species with the lowest strength properties are governing in the strength properties 

assignment.  

 

  

Figure 1.4. Spruce tree (picea abies) (left) and typical failure mechanism for a spruce 

timber beam (right) 
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Figure 1.5. Cumaru tree (dypterix spp.) (left)and typical failure mechanism for a 

cumaru timber beam (right) 

  

For machine grading, the same argument is used only for combining spruce and pine or 

spruce and fir. As a consequence, for every wood species used in structures, visual and 

machine grades are connected to strength classes (EN 1912 and EN 14081-4). Unless 

specifically mentioned, it is not allowed to mix species in the grading process. 

This means that for deriving the strength properties, each wood species is basically 

regarded as a different material for which the strength properties have to be derived by an 

extensive testing program. A factor that not has been discussed is the representability of 

the tested samples for the whole population. This is done by defining the strength 

properties not only to the species, but also to the areas where they grow. All these aspects 

particularly hinder the introduction of a large number of “lesser known” species that are 

the result of the felling process in sustainably managed forests. 

Another consequence of the focus on softwood research is that the indirect factors size, 

moisture content and duration of load are determined by research on softwoods. In the 

calculation rules of timber structures NEN-EN 1995-1-1 (2005), which is commonly 

referred to as Eurocode 5 (EC5), these factors are considered to have the same influence 

on softwoods as hardwoods, which is not based on research. 

1.3 Research question 

The current methods for the determination of the strength properties for wood species 

require extensive testing. To make sure that the strength properties are comparable, these 

values must be adjusted to a reference size, moisture content and load duration, which are 

the (safely applied) reciprocals of the calculation factors in EC5. These adjustment factors 

are also a result from research mainly on softwood and it is unclear if these factors are 

correct for hardwoods. For visual grading the problem with tropical hardwoods is that the 

main strength influencing parameter, the grain angle deviation, is very difficult to 

measure. As a result, with visual grading only one visual grade and connected strength 

class can be defined for a species. At present, there is no hardwood species accepted to be 

used in machine grading under the current European standards. Ravenshorst et al. (2004) 
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suggested that a species independent strength grading approach might be a solution to 

apply machine strength grading for tropical hardwoods. Considering the situation 

described in the previous sections, the main question in this dissertation can be formulated 

as follows: 

 

What are the influencing parameters for species independent grading models and how can 

they be quantified to ensure safe, sustainable and economic use of softwood and 

hardwood timber in structures?  

 

The originality in the work described in this dissertation lies in the approach to the 

described problems. The approach to combine strength predicting properties independent 

of the species with the intention of using them in machine grading has not been 

successfully applied before. The originality lies in the attempt to predict the strength of 

structural timber based on physical properties independent of the species, taking into 

account the mechanics behind the occurring failure modes. To investigate the possibilities 

of this approach a synthesis of data of softwood and hardwood species will be made. By 

combining softwoods and hardwoods the range of the strength properties is much larger, 

which could also add knowledge for the accuracy of calculation rules for timber 

structures.  

1.4 Dissertation outline 

In figure 1.6 the outline of the dissertation is illustrated. 

In chapter 2, the aspects of using wood as a structural material are explained and an 

overview is given of the historical development in the assignment of  strength properties 

to structural timber. In chapter 3, the dataset is presented on which the modelling in this 

thesis is based. This is a unique dataset containing 20 tropical hardwood species. This data 

was collected in the last 15 years in the Netherlands in cooperation with the industry. 

Besides the dataset of tropical hardwoods there are datasets of temperate hardwoods and 

European softwoods, which will be used for comparison. Another part of chapter 3 gives 

the description of the test methods to determine the strength properties according to the 

current European standards, and the methods to measure the strength predicting 

parameters in the grading process (of either visual or machine grading). The statistical 

methods are further elaborated to be used for species independent strength grading in 

chapter 6. 

In chapter 4, the basic test results and relationships between measurable characteristics 

and laboratory tests are presented and analysed.  

In chapter 5, the theory is developed to formulate species independent strength models. 

The failure mechanisms of clear wood and of timber with gross features as knots and 

grain angle deviation are studied. The influence of the gross features on the strength and 

stiffness of timber are described by physical models. Adjustment factors for size and 
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moisture content are determined and the developed models are verified on a dataset of 

softwood timber and on a dataset of tropical hardwood timber. In chapter 6, the developed 

models from chapter 5 are applied on the datasets listed in chapter 3 to perform species 

independent grading. In chapter 7 the result of the research is discussed and conclusions 

are drawn.    

 

 

Figure 1.6. Outline of this dissertation. 
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2  

Wood as a 

construction material 

2.1 The source and structure of wood 

2.1.1 The tree 

Wood is converted from trees. Biologically,  trees are a specific form of plants, with a 

special aspect: their stem.  From this stem, the product that we call timber is converted. 

However, in practice the difference in the use of the terms wood and timber is not always 

clear.  In this thesis, wood is defined as the basic material from the stem of the tree. The 

products after it is processed in sizes fit for structural use and strength properties are 

assigned to it are defined as structural timber. In this thesis structural timber is always 

rectangular sawn. In figure 2.1 the main parts of a tree and their functions are shown. 

 

Figure 2.1. Main parts of a tree and their functions (from Smith et al, 2003) 

 

The stem provides the mechanical resistance of the tree for the self-weight and 

environmental loads, and therefore makes that the timber from it is designed by nature to 

carry loads. For commercial timber, the source species can be divided in two main groups, 

the Coniferales (gymniosperms) and Dicotyledons (angiosperms). What in practice is 

called softwood timber belongs to coniferous trees and what is called hardwood timber 
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belongs to dicotyledonous trees. For commercial timber, a division can be made in 

hardwood from the temperate zones and from tropical zones. In appearance, the softwood 

trees have needles and the hardwoods have leaves.  

In the classification system of plants, all tree species are named by their scientific name. 

This classification system is based on morphological features of the tree (such as fruits, 

leaves and flowers). This means that the determination of the tree species can only be 

done by investigation of the tree. To determine the tree species by examination of a wood 

sample is very difficult (Dinwoodie, 2000). The diversity of tree species is the result of an 

evolutionary process, whereby angiosperms have evolved from softwoods and have a 

more complex cellular structure. The classification of plants knows a hierarchy such as 

kingdom, order, family, genus and species. Wood anatomical features are not always 

distinctive enough to determine these different levels. Timber is traded under commercial 

names (trade name), and it normally consists of one or more tree species. In some cases 

the tree species can be determined from wood anatomical features, but in many cases of 

hardwood only on genus or family level a determination of the timber is possible. 

According to EN 14081-1 the tree species has to be given in the trade documents, but this 

is, especially for (tropical) hardwoods, an unrealistic requirement.   

 

2.1.2 The structure and strength of wood 

There are different scale levels at which timber can be examined to explain the properties 

at product level intended for structural use. In figure 2.2, the levels at timber which can be 

classified and analysed are shown. 

 

 

Figure 2.2. Levels at which wood structure can be classified and analysed (from Smith et 

al., 2003).  
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In figure 2.3 the microscopic, macroscopic and gross levels are shown for the species 

massaranduba (Manilkara bidentata) 

 

 

 

Figure 2.3. Massaranduba (Manilkara bidentata) at microscopic level (above, cross 

section), at macroscopic level (below, small clear piece) and gross level  (below, large 

piece) 

 

In this thesis, the main purpose is to predict the strength properties at the level of gross 

features for structural timber based on measurements made at this level. Measurements at 

the macroscopic level can be useful to understand and predict the influence of gross 

features and will be studied in this thesis. The level of microscopic features, 

ultramicroscopic features and molecules is part of the specialism of wood material 

science. In this section, a brief description at the cell level will be given to evaluate if they 

can affect the mechanical properties at timber level (gross features). This does not mean 

that at ultramicroscopic level no influence is expected. In many literature (for instance 

Dinwoodie (2000) and Thelandersson et al. (2003)) the direction of the microfibrils in the 

S2-layer of the cell wall is believed to have an important influence on the strength 

properties of the cell wall, but this property cannot be distinguished from the influence of 

gross features on strength measurement of the product timber. Their influence will be 

140 mm

30 mm
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implicitly incorporated in measurements at gross level or could be the cause of the natural 

variation timber has. 

At microscopic level, a tree trunk is composed of millions of individual woody cells, that 

are organized in recognizable patterns varying with the species (Kollmann and Cȏté, 

1968). In gymnosperms there are two basic types of cells and in angiosperms four types of 

cells. They have to perform the following functions: storage of organic substances, 

conduction upwards of dilute mineral solutions, and support of the crown. Storage is 

performed by parenchyma cells in both softwood and hardwood, tracheids perform the 

support and conduction function in both softwoods and hardwoods. In hardwoods, there 

are additionally also fibers for support and vessels (pores) for conduction.  

Most cells are many times longer than broad. The long cells, which are arranged 

longitudinally (in the direction of the stem), make up the bulk of the wood and provide 

‘grain’ to the material.  

The wood cells with the conduction function are positioned near the bark of the stem and 

are called sapwood. The cells in the centre of the stem are called heartwood. The 

durability of sapwood and heartwood is very different, but for the mechanical properties 

this makes no difference, assuming that they have the same moisture content.  

Although there are no fibers in softwoods, there are general terms for both softwoods and 

hardwoods that use the word fiber, for instance the term fiber saturation point, which 

indicates the moisture content at which the cell walls are saturated. Water in wood is first 

absorbed by the cell walls and therefore affects the mechanical behaviour. When the fiber 

saturation point is reached, the moisture content can increase, but the water will then be in 

the lumen of the cell and is called free water, with no influence on the mechanical 

properties. 

The strength and stiffness of the cells is determined by the cell wall thickness. The density 

of the cell walls seems to have a rather constant value of 1500 kg/m3 (Dinwoodie,2000). 

Therefore, this is also the maximum possible density at gross level of the timber if the cell 

walls would be that thick that no inner opening would be left. Then there would be no 

room for conduction.  Therefore, species with these densities do not exist. Apart from the 

cell itself, also the longitudinal connection between the cells might be a governing factor 

for the strength and stiffness of the system of cells. 

The growing pattern of the cells (circularly grown, many times longer than broad with the 

bulk of the material in longitudinal direction) causes wood to be anisotropic, or more 

specific orthotropic with different mechanical properties in 3 directions. See figure 2.4 

In figure 2.4 (left),  a part of a tree stem is cut and the surfaces of the 3 main directions are 

indicated: 

- X is the longitudinal direction parallel to the stem axis 

- R is the radial direction perpendicular to the stem axis from the pith to the bark 

- T is the tangential direction perpendicular to the stem axis and perpendicular to the 

radial direction. 
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Figure 2.4. Main directions of wood in a tree (left) and in a wooden board (right) 

 

From a stem from figure 2.4 (left), a piece of wood can be cut according to figure 2.4 

(right). At macroscopic level this is called clear wood. At microscopic level wood is 

certainly not homogeneous, but at macroscopic level this could be assumed. For clear 

wood, the grain direction (the direction of the tracheids, vessels and fibers) is exactly 

parallel to the longitudinal axis of the board. And for clear wood there are no gross 

features such as knots present. 

The ratio between the strength parallel and perpendicular to the grain can be a factor thirty 

(Kollmann and Coté, 1968). From figure 2.4, the strength ratios of clear wood in different 

directions become clear when wood is modelled as a bundle of straws. Parallel to the grain 

in longitudinal direction, the tension strength depends on the strength of tracheids and 

fibers. In longitudinal compression strength depends on the stability (for buckling) of the 

tracheids and fibers. In the direction perpendicular to the fibers, the tension strength is 

governed by the strength of the cell walls or the connection between the cells in transverse 

direction. For compression perpendicular to the grain the strength is governed by the 

deformation of the cells and is therefore also a stability failure. For shear along the grain, 

the strength of the connection between the tracheids and fibers is governing. Based on 

these analogies, brittle behaviour is expected under tension and shear and a more or less 

plastic behaviour under compression.  

For the strength properties of small size clear wood several databases worldwide are 

available. Clear wood is mostly tested in small sizes (cross section 20 mm x 20 mm, span 

360 mm in a four-point bending test, or 50 mm x 50 mm, span 700 mm in a third-point 

bending test) because it is difficult to obtain it in larger sizes. When it is assumed that the 

amount of cell wall material determines the strength and stiffness of clear wood, then this 

will appear in the relationship of the density with these properties. For clear wood there 

are several studies and databases showing that the bending strength and MOE of clear 

wood can well be explained with the density. Armstrong et al. (1984) defined formulas for 

the bending strength and the modulus of elasticity based on the density (or specific 

gravity) with different constants for softwoods and hardwoods. 
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In figures 2.5, 2.6 and 2.7, the values as listed in the Houtvademecum (Wiselius, 2010), 

are presented. These values are based on a literature search of tests on small clear 

specimens worldwide of softwoods and hardwoods. The values presented here are for 

tests at a moisture content between approximately 12% and 15%. The datapoints in the 

figures represent mean values of 160 hardwood species and 32 softwood species. 

Because the sizes of the test specimens and the loading configurations might differ, the 

coefficient values of the regression lines cannot easily be compared with other databases 

and certainly not with structural timber. The datapoints given in figures 2.5 and 2.6 give 

the mean values for strength and stiffness against the mean density for a large number of 

wood species, both softwoods and hardwoods. The regression lines are forced through the 

origin. It can be observed that a linear relationship exists between density and strength and 

between density and MOE. This supports the assumption that there is a basic strength and 

stiffness of the woody cell wall material, independent of the wood species and that purely 

the amount of cell wall material determines the strength and stiffness. The amount of cell 

wall material is of course directly related to the density. The good correlation between 

MOE and bending strength is then a result of the fact that both can be well predicted by 

the density. This will be further elaborated in chapter 5. 

 

 

Figure 2.5. Mean bending strength values plotted against mean density values for clear 

wood for 192 softwood and hardwood species 
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Figure 2.6. Mean Modulus of Elasticity values plotted against mean density values for 

clear wood for 192 softwood and hardwood species 

 

 

Figure 2.7. Mean bending strength values plotted against mean Modulus of Elasticity 

values for clear wood for 192 softwood and hardwood species 
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not be used for timber of structural sizes. The differences between clear wood and 

structural timber are the influence of gross features, and the effects of size and moisture 

content.  

The most important gross features are: 

- Knots. Knots are the remains of branches in the stem. The branches  start from the 

pith and develop in radial direction of the stem. This means that in the board, the 

grain direction of the knot material is perpendicular to the grain direction of the 

longitudinal direction of the board. A knot can have very different shapes 

depending on the growth development and the cutting pattern of the board. 

Another effect of the knot is that the main grain direction of the board will deviate 

around the knot. 

- Grain angle deviation. For clear wood the grain angle deviation from the board 

longitudinal axis is zero. Apart from local grain deviation due to the presence of 

knots, there can also be a global grain angle deviation that is present over the 

whole length of the board. Other types of grain angle deviation are spiral or cross 

grain, where the grain angle differs in radial direction on the tangential surfaces. 

The grain angle deviation can also be presented as slope of grain (SoG). The slope 

of grain is the tangent of the grain angle deviation from the longitudinal beam axis.  

- Cracks and fissures. Due to moisture content changes, internal stresses can occur 

that may cause cracks and fissures along the grain.  

- Brittleheart or compression failures. These are failures in longitudinal direction 

that can occur due to growth stresses to impact loads. The result can be a crack 

perpendicular to the longitudinal axis of the board, leading to a very low strength. 

At gross level, timber is therefore anisotropic but also inhomogeneous. 

For clear wood it is proven that there is a size effect for properties with brittle failure as 

for instance the bending strength. E.g. Bohannan (1966) showed that larger sizes lead to 

lower strengths.  Also the moisture content clearly has effect on the strength and stiffness. 

This effect is present until the cell walls are saturated with water. This is called the fiber 

saturation point (FSP). Above FSP the water cannot be absorbed by the cell walls and is 

free water in the timber, where it has no effect anymore on the mechanical properties. In 

the Wood Handbook (Ross et al., 2010) for a large number of species the strength and 

stiffness values for clear wood above FSP and at 15% m.c. are given. At 15% m.c., the 

bending strength can be up to 1.4 times as high than above the fiber saturation point. 

The effect of size and moisture content for clear wood cannot be applied on structural 

timber because the effect of the gross features might interact with the effects of moisture 

content and size. 
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2.2 Timber as an engineering material 

For engineering purposes, a concept of timber for structural applications has to be 

adopted. In the system of Eurocode 5 the following simplifications are made:  

- The timber properties are assumed to be constant over the length of a structural 

element.  Therefore, timber is assumed to be homogeneous in its properties. 

- Timber is assumed to have strength and stiffness properties in the directions 

parallel and perpendicular to the longitudinal direction of the element. 

This does not mean that in the process of assigning these properties (the grading process) 

more accurate models of timber cannot be used, incorporating knots, grain angle 

deviation, etc. In this thesis the concept of assuming similar mechanical properties in the 

planes perpendicular to the grain will be adopted. 

A linear relation between strains and stresses according to Hooke’s law is assumed for 

tension, compression and bending. (Remark: As will be shown in chapter 5 in 

compression and bending tests there is a linear relation visible, and after the elastic limit 

there is also a non-linear phase. However, Eurocode 5 does not takes this phase into 

account in the calculation rules). 

For engineering purposes the following strength and stiffness properties must be 

determined experimentally to describe the properties of timber: ft,0, ft,90, fc,0, fc,90, fm,0, , fv,0,90, 

fv,90,90, E0, E90 and  G0,90. The index 0 refers to the property parallel to the grain and the 

index 90 refers to the property perpendicular to the grain. Although these properties are 

independent from each other, some experimental relations are found that are used for 

strength assignments. In a testing program, only the mechanical property fm,0 and E0 are 

determined together with the physical property density (ρ). All other properties are 

derived from these three tested properties to define strength classes with strength and 

stiffness profiles. The accompanying equations are based on experimental experiences, 

mainly on softwoods. Whether these equations are applicable for (tropical) hardwoods for 

all properties is questionable.   

A special remark has to be made on the index 0 in the engineering properties. With the 

index 0, is meant parallel to the longitudinal axis of the timber element. This does not 

have to be the angle of the grain with the longitudinal axis of the timber element (although 

it is specifically mentioned in EC 5 that this means parallel to the grain). The limits for the 

grain angle of the timber pieces are considered in the grading process. Timber with grain 

angles within certain limits is tested and is assigned to properties denoted with index 0. 

Later in this thesis, when a model for the strength properties of timber is developed, the 

real grain angle with the longitudinal axis is considered. 

 

Strength under an angle with the grain. 

The strength class profiles gives the strengths parallel and perpendicular to the grain. For 

the strength under an angle with the grain, two failure criteria are used in EC5, the criteria 

of Hankinson and of Norris. 
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In figure 2.8,  the strength distribution of a piece of timber subjected to a force under an 

angle of the grain is explained. This could be a piece subjected to an axial force over the 

entire height, but could also be the bottom slice of a  beam under bending, small enough 

to assume a constant axial stress.  

 

Figure 2.8. Strength distribution in a timber piece subjected to a force under an angle 

with the grain. 

 

For timber beams subjected to tension with the grain angle deviating α from the beam 

axis, the stresses can be calculated directly from equilibrium equations for any value of 

the grain angle α. 

The equations are: 

 

𝜎       𝜎       𝛼          (2.1) 

𝜎      𝜎       𝛼          (2.2) 

        𝜎      𝛼    𝛼         (2.3) 

 

The strength ft,α can then be expressed as a function of the grain angle deviation α and the 

tension strength parallel and to the grain, perpendicular to the grain and shear strength 

parallel to the grain. 
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The equation that is used to describe the strength of timber under an angle with the grain 

is known as the Hankinson equation. It was first presented in a paper issued by the chief 

of air service in 1921 (Hankinson, 1921).  This paper dealt with the compression under an 

angle with the grain. The following equation was presented: 

      
    

                 
         (2.7) 

With  

𝑘  
    

     
           (2.8) 

 

Equation  (2.7)  was derived by curve fitting of test results on softwood and temperate 

hardwood species. The formula fitted well, both on the elastic limit as on the ultimate 

(plastic) limit. In the article where the Hankinson formula is proposed, the author gives an 

overview of the interaction formulas used before. The Hankinson formula was superior to 

the previous ones. Tension under an angle with the grain is not specifically mentioned in 

EC 5, but in for instance the Dutch National Annex, the Hankinson formula is used for 

tension under an angle with the grain. In EC 5, the Hankinson formula is used on graded 

timber, but it can also be used to model the strength of individual pieces since this is the 

way the formula was derived.  

Equation (2.7)  can be elaborated to a failure criterion, which gives the interaction 

between stresses parallel and perpendicular to the grain. This is shown for a timber piece 

under tension. 
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When ft,α is replaced by 𝜎t,α the failure criterion becomes: 
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This means that the Hankinson equation is a linear interaction equation between the 

stresses parallel and perpendicular to the grain. The influence of shear is not taken into 

account.  

Several researchers have reported that the assumption of the Hankinson equation gives 

good results for practical applications. For instance Pope et al. (2005) performed tests on 

pieces taken from spruce scaffold boards with a range of grain angle deviations. The 

pieces were tested on bending. They found a good fit with the Hankinson equation. 

 

The second failure criterion used in EC 5 is the Norris criterion. Where Hankinson 

describes a linear relationship, Norris (1962) describes a quadratic relationship. Norris 

proposes equation (2.14).: 

 
    

    
 
 

  
     

     
 
 

  
  

    
 
 

                   (2.14) 

 

Whereas the Hankinson equation is experimental, the Norris equation is based on physical 

(constitutive) relations for orthotropic materials.  

In EC 5, this relationship is used in the verification of tapered beams. The reference 

document by Riberholt (1979) states that the Norris criterion is only valid for glued 

laminated timber. Riberholt states that this has to do not specifically with the failure 

criterion but with the determination of stresses in a tapered edge which is assumed as an 

orthotropic continuum, which might give a good description for glulam (with relatively 

small inhomogeneities), but not for sawn timber beams with greater inhomogeneities. 

To predict the failure bending strength, the axial strengths parallel and perpendicular to 

the grain and the shear strength are required. Riberholt concluded that it seemed that the 

shear strength is larger when it is combined with compression stresses perpendicular to 

the grain than when it is combined with a tension stress perpendicular to the grain. In 

Möhler (1979) this was confirmed by performing a regression analysis on test results with 

the Norris formula as basis. It was found that the Norris formula fitted well on the 

compression side when the shear strength value was doubled as compared to the tension 

side. This finding is integrated in extra factors in the EC 5 verification formula for tapered 

beams. Some tests were reported where the Norris criterion suited better for glulam than 

for sawn timber. 

 

The Norris equation can also be rewritten as a strength function based on the grain angle 

deviation α with the beam axis and the strengths ft,0 and ft,90 , and shear strength  fv,0: 
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The factor β  is then also to be determined from experiments and can be different for shear 

in combination with tension parallel and perpendicular to the grain in comparison with 

shear in combination with compression parallel and perpendicular to the grain.  

Both failure criteria are intended to be used for forces acting under an angle with the beam 

axis in EC 5, but they can also be used in the grading process, where the occurring 

stresses are parallel to the beam axis, but the grain angle deviates from the beam axis.  In 

chapter 5 it will be investigated which failure criterion is most suited to be used in the 

modeling in this thesis. 

 

Size effects on structural timber 

Wood is considered as a brittle material under tension and as an elasto-plastic material 

under compression. Weibull (1939) developed a theory for homogeneous brittle materials 

that describes the effect of size on the strength distributions. The theory is based on the 

weakest link, viewing the material as a summation of elements with the same probability 

of failure. Assuming a serial system, the strength will be reduced when more elements are 

present. The size effect can occur in all three dimensions width, height and length. Since 

in the testing of the bending strength of timber the ratio of the span length and the height 

of the specimen is kept constant, these two cannot be distinguished. Then, for this size 

effect, either the height or the span length can be used. The size effect can be modeled as 

follows: 

 
    

    
   

  

  
 
 

                  (2.16) 

 

Where fm,1 is the strength at a chosen reference height  h1. This means that for any other 

height h2 the bending strengthfm,2 can be calculated with: 

      
  

  
 
 
                      (2.17) 

 

It must be emphasized that the Weibull theory predicts differences in the strength 

distributions of a homogeneous brittle material.  The factor k is related to the cumulative 

percentage level of the strength distribution of a material for a certain height.  

The same formula can be set up for the width and length, but these effects are not included 

in the Eurocode 5. 

The above formula might be valid for timber without knots, for timber with knots it is 

debatable. The timber elements then are no longer homogeneous, so a pure Weibull size 

effect is not to be expected. However, there can be a size effect that has a physical reason: 

the relative size of the knots will decrease when specimens are cut from a larger element.  

On the other hand, a larger beam might also increase the probability of the presence of the 

pith of a beam, which has a lower strength and stiffness. In Rouger (1995), values for size 

factors found by different researchers are listed. More recently, Denzler (2007) studied the 

size effect  based on visual grading for structural timber. Denzler concludes that there are 
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counteracting effects, and that an effect might be present for average strength values, but 

this effect might not be present on the 5% fractile. An average Weibull factor of  k=0.10 

was found for both knot-free and knotty specimens. The recommendation was that the size 

factor could be removed from the design codes for softwoods with knots. Stapel and Van 

de Kuilen (2013) compared different visual grading methods for softwoods and showed 

that the size effect is dependent on the method of quantifying knots. 

For this research, the main purpose is not to find the size effect for visual grades, but only 

for machine grading and in particular to find the differences between softwoods and 

hardwoods. Therefore, the size effect that arises after machine grading has to be 

investigated. This will be done in chapter 5 for a dataset of softwood (containing knots 

and no grain angle deviation) and a dataset of  hardwood (containing grain angle deviation 

and no knots). The size effect will be studied for the developed models in this thesis and is 

to be used in machine grading. 

A size effect for the MOE is not expected. A size effect could only be present when for 

instance the density would vary considerably over the height of the specimen. In practice 

the variation in density between beams is larger than within beams.  

 

Effect of moisture content on structural timber 

The effect of moisture content on the bending strength and stiffness is of particular 

importance for tropical hardwoods, because the moisture content at testing is mostly 

higher than the reference moisture content of 12%. The effect of moisture content on the 

MOE is quite clear, also for structural timber. Research has shown that this effect occurs 

for both the static MOE (derived from laboratory bending tests) and for the dynamic MOE 

(derived from the stress wave velocity and density). Gerhards (1975) found for sweetgum 

that the  stress wave velocity decreased with increasing moisture content. Unterwieser and 

Schickhofer (2011) repeated this research for spruce and found that the dynamic MOE 

decreased at FSP to approximately 85% of the 12%-value and above FSP remained 

practically constant.  

Green and Evans (1992) conclude from studies on softwoods species that the change in 

strength distributions with the change in moisture content is a function of the quality of 

the timber. However, when only the 5% fractile strength level is regarded, this values does 

not necessarily increase with decreasing moisture content. With the quality of softwood is 

meant the presence of knots relative to the dimensions. For tropical hardwoods, very little 

data on structural timber are available. Since in tropical hardwoods knots are rare, the 

effect on strength might be different. 
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2.3 Determination of mechanical properties of structural timber 

2.3.1 General principles 

Because wood is a natural material,  there is a great variability in mechanical properties of 

structural timber coming on the market. To make economic use of structural timber, it is 

divided into different groups to which strength properties are assigned. The divisions are 

based on characteristics that influence the mechanical properties. This process of dividing 

timber into different groups is called grading. The two common methods are visual 

grading and machine grading, which will be explained in the next sections. 

To assign strength properties to grades, a testing program has to be performed in which  

material is tested that is representative for the timber coming on the market in the future. 

The objective of the testing program is therefore to predict with a high degree of certainty 

the strength properties of grades that incorporate the possible scatter to be expected within 

that grade. Possible causes of the scatter include aspects as: 

- The growth conditions of the trees, which can be influenced by forest management 

and climate. 

- The tree species. 

- The processing of the tree to timber. 

- The accuracy of the grading method. 

- The influence of moisture content. 

- The influence of size. 

To identify the scatter within a grade in the testing program, the following requirements 

are made to the sampling according to the European system (EN 14081-1): 

The testing program must include: 

- Sufficient samples from the entire growth region the strength class assignments 

will be valid for. 

- Timber specimens that are representative for the regular production. 

- Identification of the tree species tested for which the strength class assignments 

will be valid. 

- A range of sizes and moisture contents for which the strength class assignments 

will be valid. 

- Sufficient specimens within a sample to state reliable strength properties.  

 

It may be clear that it is very difficult to distinguish all possible causes of scatter in 

advance and set-up a testing program incorporating all possible influences. The 

determination of the sampling program is therefore one of the most delicate activities and 

is subject of many discussions.  

As described in section 2.2, in Europe, strength class profiles are defined to make 

application easier in practice, but one’s own profiles can also be defined. In both cases, 
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the testing program should determine the characteristic values of the bending strength, the 

modulus of elasticity and the density. The characteristic values are defined as: 

- The 5% fractile for the bending strength 

- The mean value for the modulus of elasticity 

- The 5% fractile value for the density. 

The other mechanical properties may be derived from these values. 

The characteristic values of the grade of a species have to be calculated by combining the 

test results of the samples. In the next sections it will be explained how these are 

combined for use with visual grading and for machine grading.  

The strength properties according to EN 338 are given for a reference moisture content of 

12% and a reference depth of 150 mm. The test results have to be adjusted to these 

reference conditions before the characteristic values are determined. The methods and 

factors to combine samples and to adjust the test results for moisture content and size are 

ongoing subject of discussion. In this thesis the situation described in the European 

standards, valid in 2013, is taken as a basis. 

The test set-ups used for the determination of the material properties used in this thesis are 

described in chapter 3. 

 

2.3.2 Strength properties based on visual grading 

Visual grading is the oldest method to predict the mechanical properties of timber. The 

method is based on identifying the strength and stiffness reducing features and puts limits 

to the extent they occur in a piece of timber. According to EN 14081-1 (CEN, 2011), 

visual strength grading is defined as: “The process by which a piece of timber can be 

sorted, by means of visual inspection, into a grade to which characteristic values of 

strength, stiffness and density may be allocated.” In the accompanying note it is 

mentioned that electronic or mechanical instruments can be used to assist the visual grader 

in this process. The most influencing features are knots and grain angle deviation. Another 

parameter that can be used is ring-width, which can be a measure for the density, 

depending on the wood species. The visual grading rules have been developed on national 

levels and until now it has not been possible to agree on common European visual grading 

rules.  

 

When all the features have been measured, a linear prediction model can be defined, with 

the strength, stiffness or density as the dependent parameter and the characteristics as 

independent parameter. The most critical value of that feature of a specimen within the 

tested area is used as input. With a multiple linear regression, the correlation coefficient r 

or the coefficient of determination r2 can be calculated. Hanhijarvi (2005) gives an 

overview of the increase of the r2-value, by adding more features as parameters in the 

regression. The number of grades (and different strength class assignments for each grade) 
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that can be defined depend on the range of the magnitude the features appear. This is 

explained in figure 2.9.  

A common measure for the influence of knots is the knot ratio. The simplest definition of 

this is the size of the knot perpendicular to the length axis divided by the depth of the 

beam at the cross-section where the knot occurs. The depth is the dimension of the beam 

in the loading direction, this is normally the largest dimension of the cross section. (When 

the largest dimension is used as depth this is called edgewise bending. For the tests 

performed in this thesis all beams were tested edgewise).The largest value for this 

measure on either side of the beam within the test length is used. In the top of figure 2.9 

an example is given for a test set with a knot ratio range of 0 to 0.6. The plot shows a 

contour of the data points knot ratio-bending strength for every test specimen. This plot is 

typical for softwood. In practice, three is the maximum number of grades that can be 

distinguished. In this case,  in figure 2.9,  two grades are defined with knot ratios between 

0-0.2 for the highest grade and between 0.2-0.3 for the lowest grade. The pieces with a 

knot ratio higher than 0.3 are called reject: no strength properties can be assigned to them. 

The data points containing the lowest 5% bending strength values in every grade are 

marked with a black triangle. The horizontal line above these triangles gives the 5% 

fractile of the grade at the intersection point with the vertical axis. There must be 

sufficient distance between the 5% fractiles of the grades to make the grading useful. This 

plot is typical for softwood species and some temperate hardwood species. At  the bottom 

of figure 2.9, a typical situation for tropical hardwoods is given. In most hardwood 

species, knots are rare in the timber retrieved from the trees. (This is due to the fact that 

the trees from hardwood species  normally have a larger diameter and that the crown is 

not used to convert it to structural timber). When this is the case, only one visual grade 

can be distinguished. 

 

In practice, a predicting model based on a multiple regression of the features as 

parameters is not used for visual grading. Using this model would mean that the visual 

grader has to enter the parameter values in a software program which then calculates the 

predicted strength and stiffness values. In practice, the visual grader checks all the 

features. The feature that is present with a magnitude that is connected to the lowest visual 

grade (the grade connected to the lowest strength properties) is governing. The timber 

beam is assigned to that critical visual grade and the connected strength class.  

In appendix B the requirements for visual grading according to the Dutch standard NEN 

5493 for tropical hardwood are given. 
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Figure 2.9. Typical regression plots of the bending strength against the knot ratio for 

softwoods (top) and hardwoods (bottom). 

 

2.3.3 Strength properties based on machine grading 

According to EN 14081-1 machine strength grading is defined as: “process by which a 

piece of timber can be sorted by a machine sensing, non-destructively, one or more 

properties of the timber, with any necessary visual inspection, into grades to which 

characteristic values of strength, stiffness and density may be allocated.”  Machine 

grading also requires a so-called visual override. This means that each machine graded 

piece has to be checked for strength reducing features that cannot be detected by the 

machine. These can be soft rot or insect damage, fissure lengths and distortions, but also 

abnormal incidental defects like compression failures. 
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Strength grading machine can use the concept of a machine controlled system or an output 

controlled system. For machine controlled systems, the settings (grading limits) are 

determined in a research plan comprising representative testing of the timber to be graded 

in future. With output controlled systems, only a small testing plan is performed to 

determine the initial settings, and during production, on a regular basis pieces are taken 

from production and tested. When necessary, the settings are updated. Output controlled 

systems are mainly used in situations where over time a relative homogeneous production 

is present. This implies that the same species and same dimensions are graded over a long 

period of time. Machine controlled systems are used where a wider variation of species 

and sizes is expected. In Europe, only machine controlled systems are used. Because this 

thesis deals with the possibility of defining species independent strength models, it will 

focus on models intended for machine controlled systems. 

Machine strength grading uses properties derived by electronic measurements on the 

timber to predict the strength without damaging the timber. The measurements can be 

deformation, vibration, the transmission of irradiation etc. These measurements are used 

to calculate material properties like the modulus of elasticity, the density, dimensions and 

moisture content. In Hanhijarvi (2005), an overview of non-destructive measurement 

techniques is given. The calculated material properties from non-destructive 

measurements are used to create predicting models. It has been shown that material 

properties from NDT-measurements have much better predicting capabilities than 

measurements performed in visual grading. As a result, there is less scatter around the 

prediction line and a higher yield in higher grades is possible. In figure 2.10 typical results 

for machine grading are given. These figures can be compared with figure 2.9 for visual 

grading.  

In the top and bottom figures 2.10, typical data clouds are shown for the relationship 

between the modulus of elasticity and the bending strength. At the top, a typical result is 

given for softwoods. The scatter is much less than for visual grading and therefore it is 

possible to grade in a higher strength class than with visual grading and because of the 

higher accuracy also with higher yields.  At the bottom of figure 2.10 a typical result for a 

sample size with a limited number of specimens for a single tropical hardwood species is 

given. Because the range in both MOE and bending strength is more limited than for the 

softwood in the top of the figure, the prediction capability is low. This is one of the 

motives to investigate species independent modelling in this thesis.  
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Figure 2.10. Typical regression plots of the bending strength against the modulus of 

elasticity for softwoods (top) and hardwoods (bottom). 

 

For machine grading it is possible to derive predicting models with multiple parameters, 

because the software integrated in the machine is capable of calculating these and send 

signals to the marking unit to mark the piece with the right strength class on the basis of 

the model prediction compared with the settings. Settings for different strength class 

combinations can be made. In this way e.g. higher yield in a high grade or less amount of 

pieces that are rejected can be optimised. 
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The procedure for deriving settings for machine grading is given in European standards 

EN 14081-1 (2011) , EN 14081-2 (2012)  EN 384 (2010)  and  EN 408 (2012)   

 

2.4 Overview of standardised methods for determining 5% fractiles based on 

one sample. 

To evaluate which strength class may be assigned to a strength grade (either determined 

by visual or machine grading) the characteristic values of the strength grade have to be 

determined. Structural timber is susceptible to a variation in strength properties. This has 

to be taken into account when the characteristic values of a strength grade are determined. 

The objective is to give a good estimation of the characteristic value of the population 

from the test data. “Good” can be difficult to define, because whatever statistical method 

is used, all methods make certain assumptions about the underlying population which are 

very difficult to verify. In this section the statistical methods and backgrounds for deriving 

the characteristic value according to several worldwide standards for timber are analysed 

when one or more test samples for a specific (visual) grade are present. In section 3.3, the 

statistical methods used in this thesis to determine the characteristic values of timber for  

visually graded samples are presented. Section 3.4 will focus on the derivation of 

characteristic values based on a prediction model. A method has been developed by the 

author under the assumption that the distribution properties of prediction model values 

and the scatter of model errors gives more information about the scatter in strength 

properties and that this information can be used to determine the characteristic value. In 

this chapter, the focus will be on strength, for which the 5% fractile is accepted worldwide 

as characteristic value. 

 

2.4.1 Parametric methods 

There is a difference between calculating the 5% fractile of a sample property simply 

based on the available data and estimating the 5% fractile of the population the data is 

sampled from. For the first approach, the 5% fractile can be calculated using the 

distribution the data follows. This is called the 5% point estimate. When the data follows a 

normal distribution, the t-distribution could be used. However, for engineering purposes, 

the second approach is necessary. In this section the parametric methods according to EN 

14358 (2007) and ASTM D2915 (2003) are described. They both follow the same 

approach for determining the Parametric Tolerance Limit (PTL). The PTL can be defined 

as the value for which, with a probability of α the p% fractile of the underlying population 

is higher than this value. The assumption is made that the underlying population is 

normally distributed. α is called the confidence level. 

For calculations with the available sample data the standard deviation has to be multiplied 

by a factor k (the confidence level factor) and subtracted from the mean: 
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       𝑘                    (2.18) 

 

 

Where 

   is the sample mean value 

s is the sample standard deviation  

k is the factor determined from the non-central t-distribution based on α, p and n, the 

number of specimen. 

From the definition of the PTL follows the requirement: 

 

        𝑘  𝜇    𝜎  𝛼                               (2.19) 

Where  

μ  is the mean of the underlying population 

𝜎  is the standard deviation of the underlying population 

zp is the value of the normal distribution for the (1- p)th-fractile. 

p is the fractile to be evaluated.  For p= 0.05 the value zp =1.645. 

 

The outcome of the derivation of the factor k out from equation (2.19) is given in equation 

(2.20): 

 

𝑘                   𝛼                     (2.20) 

Where  

NCT-1 is the inverse of the non-central t-distribution 

n is the number of datapoints in the test sample. 

The factor k is for the percentile value that is evaluated (zp) therefore depending on the 

required confidence level α and the number of datapoints n in the test sample.   

 

ASTM D2915 gives a table with values of k for various values of α and p. EN 14358 gives 

values for k for α=0.75 and p=0.05 only. 

 

The above procedure is also applicable when the underlying population is assumed to be 

lognormally distributed. Then for all the data the natural logarithmic value is taken. These 

transformed data can be assumed to come from a normally distributed population and the 

confidence level factor k can be applied on them. After the PTL of the transformed data is 

calculated, the exponential value has to be taken to find the PTL of the untransformed 

data. 

 

ASTM D2915 leaves open which underlying distribution should be used for strength 

properties.   EN 14358 states that for strength a lognormal distribution should be assumed. 
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2.4.2 Non-parametric methods 

By non-parametric methods is meant that the distribution properties of the test data are not 

used in the determination of the 5% fractile. This method is used by ranking the test 

values in ascending order and selects the appropriate order value for the required test 

value. Contrary to parametric methods therefore only the lower tail values are used. Non-

parametric methods might be an alternative when the distribution of the test data is not 

known or no clear distribution can be fitted.  

In EN 384,  the 5% fractile of  a sample is the order number n/20, where n is the number 

of pieces in the test sample. If this is not an actual test value, then linear interpolation 

between the two adjacent values is required. A confidence interval is not given, which 

means that this actually is a point estimate of the 5% fractile. 

When a non-parametric tolerance limit (NTL) is to be determined with a confidence level 

α, tables are available in ASTM D2915. These are based on Guttman (1970). He describes 

and proves the work of Wilks (1941), who showed that distribution free tolerance 

intervals can be described by the Beta distribution. The only requirement is that the 

probability density function has to be continuous, which means that every Xi+1 value must 

be higher than the Xi value, where Xi is the order number of the test value. Guttman 

(1970) also presents the approximation equation given by Scheffé and Tukey (1944), for 

which he reports that the outcome deviates from the exact solution by less than 0.1 % 

only. This equation is given here as equation (2.21). 

 

              
  

  
 
   

   
                         (2.21) 

Where 

n is the required sample size when the mth  order is to be used for the (1-β)th percentile 

value with a confidence level of γ. 

        
  

  
 is the inverse of the cumulative distribution function (CDF) of the chi-

squared distribution for a probability of 1-γ with 2m degrees of freedom. 

 

β in equation (2.21) is related to p as defined below equation (2.19)  by : β = 1-p. When p 

is inserted in equation (2.21) , this becomes: 

 

              
  

  
 
   

 
                          (2.22) 

 

With  

p is the probability to be evaluated and 

α is the required confidence level 

 

For α=0.75, α=0.95, α=0.99 and p=0,05 the required number of specimens n when order 

value m is to be used is calculated with equation (2.22) and tabulated in ASTM D2915. 
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The influences of sample size on for instance the tolerance limits of samples from a 

population can also be investigated with Monte-Carlo methods, whereby sampling 

simulations are made on existing or simulated populations. 

The derived characteristic values and Tolerance Limits are derived for the situation that 

one random sample is taken from a normally distributed population. With more than one 

sample, the accuracy of the estimation of the population tolerance limit increases, and 

therefore the k-factor could decrease. 

2.5 Overview of standardised methods for determining 5% fractiles based on 

N samples. 

In the previous section, the focus was on the determination of the values of interest of a 

population, based on one sample. It was thereby assumed that the tested sample was 

representative for the entire population, meaning that the tested dataset is randomly drawn 

from a population that is homogeneous in itself. For timber to be tested for strength class 

assignments,  it can be questioned how the definition of the population is and whether this 

population is homogeneous. Therefore it is recommended that more than one sample is 

taken from the population. This introduces the following questions: 

- How should these samples be drawn from the population? 

- How should the test results be combined? 

In order to answer these questions we first have to define the population. In Europe, the 

visual and machine grading systems are based on an initial testing plan. From the 

population samples are drawn that are representative for the present and future production. 

When samples are drawn from a single population, the test data will represent the 

expected scatter. The question is how the population is defined: 

- Timber from a species from a specified forest area? 

- Timber with the same trade name? There are situations that the timber is sold 

under a trade name, where the timber can be of the same genus, but coming from 

different tree species. 

- Timber from a species from a sawmill? 

- Timber from a species from a number of sawmills? 

- Timber delivered to a building site? 

It may be not clear in advance that the samples to be combined are coming from the same 

population. In fact, it may happen that samples from different populations are merged and 

strength properties are derived as if they were coming from one population. This may 

happen for instance with a tropical hardwood species coming from two regions, which we 

want to market as one population (the wood species),  when in fact there are two 

populations (for instance because there are different growth conditions in the two 
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regions).  Two populations could also be created by the way of processing. When there is 

a limit for a visual strength class for the slope of grain of a maximum of 1:10, for  a wood 

species from the same region one batch could be sawn very precisely with a very low 

slope of grain (<1:20), whereas in the other batch the slope of grain varies from 1:15 to 

1:10.  Both batches comply with the visual grading rules for the grade, but because the 

grain angle deviations are not randomly equally distributed over the two batches, they 

could strictly speaking also be regarded as two different populations, although they will be 

put on the market as coming from the same population. 

 

The question whether samples are drawn from the same population is very difficult to 

answer, but is mostly handled in a practical way. Standards have to deal with these 

practical differences. Basically, there are two approaches: 

1. The samples with the weakest strength properties are governing. 

2. The strength properties of the samples are averaged. 

Approach 1 of course is the safest and approach 2 the more economical one. The 

consequences of the choice for either approach 1 or 2 could also be integrated in the safety 

factors that are applied. However, according to the author, at present the choice for 

approach 1  or 2 is based more on expert judgment than a thorough statistical analysis. 

 

Combining of samples according to current standards 

 

In the pre-standard ISO/CD 12122-1(2012), the samples with the weakest strength 

properties are governing for the population.  By a chi-squared test it has to be evaluated 

whether the samples are coming from a homogenous population. This is done by first 

determining a provisional 5% fractile with a 75% confidence interval based on all data 

together. For every sample, the percentage of pieces below this value is calculated and a 

chi-squared test is performed on these values compared with the expected amounts of 

pieces (which is 5% for every sample). When  for a set of  samples the chi-squared test is 

not significant at the 0.01 level the hypothesis that the samples could come from the 

different populations is rejected. In that case these samples are combined to one sample 

that is used in further calculations (In this thesis they sometimes will be called 

homogeneous, although this is strictly not the outcomes of the statistical test performed). 

The procedure starts with the 2 weakest samples. When the chi-squared test is not 

significant at the 0.01 level,  then stepwise samples are added (in order of the 5% fractiles 

of the samples) until the chi-squared test is significant at the 0.01 level (then the 

hypothesis that the samples could come from the different populations cannot be rejected). 

The samples for which the chi-squared test was not significant are assumed to be able to 

be combined to one sample and are regarded as a homogeneous population. The 5% 

fractile with a 75% confidence interval based on the merged data of these samples is then 

determined and this value is the 5% fractile of the  population the samples represent. 
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The approach of EN 384 is based on the average strength of the samples. The mean of the 

5% fractiles of all samples, weighted according to the number of pieces in each sample, is 

calculated. If this mean value is higher than 1.2 times the 5% fractile of the weakest 

sample, then a characteristic value of 1.2 times the 5% fractile of the weakest sample has 

to be used. That value has to be multiplied by a factor ks, taken from a figure depending 

on the number of samples and the number of specimens n in the sample with the lowest 

number of specimens in it. The factor ks varies from 0.78 (n=40) to 0.9 (n>200) for one 

sample, from 0.88 (n=40) to 0.96 (n=150) for three samples and is 1.0 (for n>40) for 5 

samples. 

The background for the ks factor can be found in Fewell and Glos (1988). To take into 

account the variability between the 5% fractiles of subsamples, 20 subsamples of 100, 200 

and 300 pieces were randomly selected from a parent sample of 652 pieces of European 

redwood/whitewood. The result is shown in figure 2.11. This figure was adopted and 

modified to the ks factor, and included in EN 384. 

Evaluating the background of the ks-factor, it can be concluded that it was based on 

simulations on a homogeneous population, therefore a lot of the questions for defining a 

population are not incorporated in the derivation of the ks-values. 

Apparently, the standard authors were aware of this fact and therefore introduced the 

requirement that the mean of the 5% fractiles of the samples may not be higher than 1.2 

times the 5% fractile of the  weakest sample.  

 
Figure 2.11 Ratios of bending strength 5% fractiles bending strength of 

randomly selected sub-samples from a parent sample of 652 pieces. Taken from 

Fewell and Glos (1988). 
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2.6 Historical development of strength properties values for structural 

hardwood timber based on visual grading 

In the 20th century the standardisation of grading procedures and property assignment of 

structural timber has evolved, and is not finalised yet. The main topic of discussion 

throughout history has been how to develop test methods and grading rules in such a way 

that they reflect the strength properties of timber used in construction. Since timber is a 

natural product, solid timber is the outcome of the growth process of trees and the 

processing of the timber. The challenge for the researchers has been to address the 

variability that is a consequence of these processes and to provide industry with safe and 

economically useable strength figures. 

Historically, strength properties have been derived from samples of small clear test 

samples. To determine the full size properties, adjustment factors have been derived. 

Nowadays, full size testing is the main method.  

The first standards with visual requirements for structural timber as a building material in 

The Netherlands were developed in the 1920’s (N1012:1927). The standard N1055:1955 

included both design rules as material properties tables. The strength values given were 

allowable stresses. In N1055:1955, strength values for oak and djati (teak) were given. 

The source of these strength values is not known. The timber had to comply with the 

visual sorting criteria according to N1012:1932. 

In the early 1960s, a number of tropical wood species were tested at the TNO 

Houtinstituut (reported in Houtinstituut TNO (1961,1961,1961,1962,1962)) in bending for 

both structural sizes (50 x 150 mm) and small clear pieces (50 x 50) cut from them.  The 

structural sizes were tested in a four–point bending test with a span of 3000mm (l/h=20), 

where the small clear pieces were tested in a three point bending test with a span of 700 

mm (l/h=14). Also, compression tests were performed. 50 specimens of every species 

were tested. These species were tola branca, iroko, keruing (yang), peroba de campos and 

basralocus. 

To address the variability of species iroko and basralocus, the timber was supplied by  

respectively 5 and 4 different suppliers. It was noticed that a small number of pieces were 

left out of the analysis because anomalies were detected before any visual quality rules 

were applied. All specimens were graded according to N1012:1940 and the non-

conforming specimens were left out of the analysis. 

Based on the comparisons between the ratio of the 1-percentile values of the structural 

sizes and the small clears, a factor between 0.69 and 0.88 was found. A factor of 0.75 was 

determined as an average ratio between small clears and full size test data for all species, 

which was called the quality factor. (The possible influence of loading configurations and 

size was not taken into account).  

In the Dutch design standard for timber structures of 1972 NEN 3852 (1972), the list of 

species was extended as compared to the 1955 version. 

The backgrounds for these assignments were given in Houtinstituut TNO (1963). 
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In Govers (1966) an overview is given of the procedures for deriving strength properties 

from small clears and structural sizes. Various research organisations used different 

statistical methods: 

- Forest product research laboratory (FPRL), USA. Bending test results were carried 

out on small clear specimens. The basic strength (which could be compared with 

the characteristic value as we use nowadays) was the 1-percentile value, assuming 

a normal distribution. To make the step to full size specimens (which was called 

commercial quality), the 1% fractile was multiplied by a factor of 0.75 which was 

called the quality factor. A safety factor of 2,25 was used. 

- Division of Forest Products (DFP), Australia. Bending test results were carried out  

on small clear specimen. Also the 1% fractile was determined. This value was 

multiplied by 9/16 to address the long-term strength of timber and by 4/5 to 

address errors in design and execution. 

- Timber Research And Development Association (TRADA), United kingdom. 

Bending tests were carried out on timber of commercial quality. The basic stress 

was the 2.5% fractile. This value was multiplied by 9/16 to address the long-term 

strength of timber and by ¾ as a safety factor. 

 

In Houtinstituut TNO (1963) the procedure of FPRL was applied. The full size test results 

were used to determine the quality factor for which an average of 0.75 was found. From 

data from literature on small clear specimens, the 1% fractile were determined assuming a 

normal distribution. Then, this value was multiplied by the quality factor and divided by a 

safety factor of 2.25.  The values were given based on data on green (wet) small clear 

data. The allowable stresses for hardwoods in TGB 1972 NEN 3825 were given for use in 

wet conditions only. Therefore, no correction factor was given for use in dry conditions. 

Based on this report, a list of 15 hardwood species with strength values were incorporated 

in NEN 3825. These species were: tolabrance, sipo, European oak, wane, yang(keruing), 

iroko, niangon, afzelia, kopie, peroba de campos, basralocus, bilinga, merbau, azobé and 

Demerara greenheart. 

For TGB 1990 (NEN 6760), the system of limit state design was applied. This implied 

that for the material strength properties the characteristic values were now given, and 

safety factors and modification factors had to be applied in the calculations by the 

engineer. A test standard for timber based on structural sizes was then developed (NEN 

5498:1991) which became the mandatory test method in The Netherlands. Based on 

international research, the size factor was introduced in timber design standards. In the 

Dutch standard, the reference test set-up now was a four-point bending test with l/h =18 

with h=200 mm as the reference height and l being the span.. The bending test value had 

to be readjusted to 200 mm by dividing it by the factor (200/h)2. The characteristic value 

was defined as the 5% fractile determined by the method of ranking.  As a result, the test 

data based on small clear specimens could no longer be used anymore. Based on historical 

structural sized data on azobé in the period 1970-2000, the strength class for azobé with 
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the connected visual grading rules was determined. The backgrounds for this assignment 

are given in Van de Kuilen and Blass (2005). 

With the introduction of the Eurocodes the European test standards were introduced. The 

main difference with the Dutch standard NEN 5498 was the reference height. According 

to the European standard EN 384, the reference height is 150 mm, so all test results have 

to be adjusted to this size.  

Strength class assignments based on (national) visual grades are listed in the European 

standard EN 1912 (2012). This standard is a collection of strength class assignments of 

both softwood species and hardwood species with their connected visual grades. Their 

assignments are based on full size data except for a number of hardwood species, which 

will be discussed in the next section. 

 

A development in Europe is the introduction of harmonised standards. With the 

introduction of the system of Eurocodes, the derivation of strength properties is 

harmonised. Before the Eurocodes were developed on a national level strength class 

profiles where defined. Also for machine grading national standards were written. The 

Eurocodes (with NEN-EN 1995-1-1:EC 5 for Timber Structures) are a set of design and 

verification rules, that refer to harmonised product standards for the material properties. 

The objective of the harmonised product standards is to ensure that the material properties 

are derived in a similar manner all over Europe. The harmonised product standard EN 

14081-1 was developed for this purpose. This includes a harmonised testing standard (EN 

408) and a harmonised standard for determining the characteristic strength values (EN 

384) of tested and non-tested properties. Also, a European standard with a strength class 

system (EN 338) was developed. Although not mandatory, this strength class system is 

used by most producers all over Europe. In appendix C, the strength classes according to 

prEN 338 (CEN, 2014) and the characteristic values for the bending strength, modulus of 

elasticity and density are presented. In this thesis these strength class profiles will be used 

to assign graded timber to strength classes. 

For visual grading, the characteristic values have to be assigned to visual grades. So far, it 

has not been possible to develop visual grading rules European wide.  

To overcome this problem for visual grading, the standard EN 1912 was developed, which 

connects the visual grading rules used by an individual country or a group of countries to 

the European strength class system. The testing and derivation of characteristic values is 

done according to the European standards. In principle the assignments are based on full 

size testing. 

There are, however, some critical points in the present assignments, particularly in the 

allowed growth areas for a visual grade. They are sometimes very large and are not 

always supported by testing over the whole growth area.  

For hardwoods there is a mixture of assignments based on full size specimens and on 

small clear specimens. Especially some species graded under UK rules are not based on 
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full size specimens. A part of the UK data for small clear specimens is summarized in 

Dinwoodie (2000). 

It can be questioned whether it is possible to make the connection between mean values of 

small clears and the full size data for tropical hardwoods. In the past, the quality of the full 

size timber was closer to clear wood than what presently comes on the market. Also the 

most important visual characteristic responsible for the reduction of strength, the grain 

angle deviation, is very difficult to measure.  

2.7 Discussion 

 

- Over the last century (tropical) hardwoods have been used in Europe in structural 

applications where high strengths and high durability are required. In The 

Netherlands this meant application in hydraulic structures like bridges, lock gate 

doors, fenders etc. 

- The number of (tropical) hardwood species to be used in structural applications 

will increase due to the use of timber from sustainably managed forests. 

- For tropical hardwoods, only relatively small amounts of test data are available for 

timber of structural sizes.  

- Because grain angle deviation, which is the governing strength reducing 

characteristic for (tropical) hardwoods, is difficult to measure, a larger variation 

between samples fulfilling the same visual grade can be expected than for 

softwoods. 

- Very little is known about  the effect of size and moisture content on the strength 

and stiffness properties on tropical hardwoods of structural sizes.  

- One of the biggest problems in assigning strength properties to structural timber is 

to define the population the tested timber is representative for. This is subject of 

ongoing research and is not solved yet.  

- To be able to develop species independent strength models, it is therefore 

necessary to be able to predict the variability in strength properties of the entire 

population of timber. 

- Because of the variability in strength properties and the relatively low number of 

pieces in a strength grade, the choice of the statistical method to determine the 5% 

fractile of a  sample or a number of samples greatly affects the outcome.  
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3  

Materials and methods   

 

3.1 Materials 

To be able to develop species independent strength models, the developed models have to 

be derived and tested with data from non-destructive and destructive experiments. For this 

purpose, a large number of tropical hardwood species has been tested in the Netherlands 

in the recent years in cooperation with the industry.  Also, a smaller number of temperate 

hardwoods has been tested. Furthermore, a dataset of European softwoods is available to 

derive species independent strength models. Although the most promising application of 

species independent strength grading is foreseen for tropical hardwoods, temperate 

hardwoods and softwoods are included to test the derived models also on these datasets. 

 

Dataset of tropical hardwoods 

In table 3.1, the collection of tropical hardwoods is given.  

 

 

 

 

 

 

Table 3.1. Dataset of tested samples of tropical hardwoods 

Sample 

ID 

Species trade 

name 

Botanical name Origin 

 

Dimensions 

 

n= 

AV1 angelim vermelho Diniza excelsa Brazil 60 x 150 40 

AV2 angelim vermelho Diniza excelsa Brazil 60 x 150 49 

AV3 angelim vermelho Diniza excelsa Brazil 60 x 150 50 

AV4 angelim vermelho Diniza excelsa Brazil 60 x 150 57 

AV5 angelim vermelho Diniza excelsa Brazil 60 x 150 57 

CUM1 cumaru Dypterix spp. Brazil 65 x155 40 

CUM2  cumaru Dypterix spp. Brazil 50 x 105 44 

CUM3 cumaru Dypterix spp. Brazil 50 x 130 47 

CUM4 cumaru Dypterix spp. Bolivia 55 x 155 40 

CUM5 cumaru Dypterix spp. Peru 55 x 155 49 
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MAS1 massaranduba Manilkara bidentata Brazil 50 x150 41 

MAS2 massaranduba Manilkara bidentata Brazil 40 x 100 54 

MAS3 massaranduba Manilkara bidentata Brazil 60 x 145 51 

MAS4 Massaranduba Manilkara bidentata Brazil 60 x 150 55 

MAS5 massaranduba Manilkara bidentata Brazil 50 x 100 48 

AZ1 azobé Lophira alata West Africa 50 x 150 46 

AZ2 azobé Lophira alata Cameroon 65 x 150 79 

AZ3 azobé Lophira alata Cameroon 50 x 110 30 

GR1 greenheart Ocotea rodiaei Surinam 50 x 110 , 50 x 

150 

20 

GR2 greenheart Ocotea rodiaei Guyana 50 x 110 43 

GR3 greenheart Ocotea rodiaei Guyana 70 x 160 27 

GR4 greenheart Ocotea rodiaei Guyana 30 x 75 103 

OK1 okan /denya Cylicodiscus gabunensis 

Harms 

Ghana 50 x 150 42 

OK2 okandenya Cylicodiscus gabunensis 

Harms 

Cameroon 65 x 150 44 

OK3 okan /denya Cylicodiscus gabunensis 

Harms 

Cameroon 50 x 100 50 

KA1 karri Eucalyptus diversicolor South africa 60 x 150 38 

NA1 nargusta Terminalia amazonia Honduras 80 x 150 41 

PI1 piquia Caryocar spp. Brazilie 70 x 150 39 

VI1 vitex Vitex spp. Solomon Islands 105 x 150 40 

BAS1 basralocus Dicorynia guianensisAmsh Suriname 50 x 150 37 

BAN1 Bangkirai Shorea spp. Indonesia 40 x 100, 50 x 

75, 75 x 150 

94 

SV1 sucupira vermelho Andira spp. Brazil 50 x 130 54 

CR1 castana rosa Pouteria oppsitifolia Brazil 60 x 150 50 

LA1 louroa marela Ocotea spp. Brazil 60 x 155 50 

LF1 louro faia Euplassa spp. Brazil 60 x 150 48 

PU1 purpleheart Peltygone spp. Brazil 60 x 150 45 

TV1 tauari vermelho Cariniana spp. Brazil 75 x 145 46 

FA1 favinha Entorolobium spp. Brazil 63 x 150 50 

SA1 sapupira Hymenolobium spp. Brazil 67 x 160 48 

FP1 favinha prunelha Pseudopiptadenia spp. Brazil 65 x 165 50 

BIL1 bilinga Nauclea diderrichii Cameroon 65 x 150 49 

BIL2 bilinga Nauclea diderrichii Cameroon 50 x 100 44 

EV1 evuess Klainedoxa gabonenis Pierre Cameroon 50 x 95 50 

EV2 evuess Klainedoxa gabonenis Pierre Cameroon 65 x 150 49 

TA1 tali Erythrophleum ivorense Cameroon 65 x 150 44 

TA2 tali Erythrophleum ivorense Cameroon 50 x 100 46 

    Total 2218 
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Dataset of temperate hardwoods 

In table 3.2  the collection of temperate hardwoods is given. 

Table 3.2. Dataset of tested samples temperate hardwoods 

Sample ID Species 

trade name 

Botanical name Origin 

 

Dimensions 

 

n= 

O1 oak Quercus robur Poland 80 x 150 39 

O2 oak Quercus robur Germany,France 40 x 100, 50 x 75, 

75 x 150 

117 

R1 robinia Robinia pseudoacacia L. Hungary 50 x 150 39 

C1 chestnut Castanea sativa Italy 50 x 100, 80 x 80 292 

    Total 487 

 

 

Dataset of European softwoods 

In table 3.3  the collection of European softwoods is given.  

 

Table 3.3. Dataset of tested samples European softwoods 

Sample ID 

Species 

trade 

name 

Botanical 

name 

Origin 

 

Dimensions 

 
n= 

S1 spruce Picea abies Belgium 60 x 125, 75 x 150 288 

S2 spruce Picea abies South-Germany 
36 x100, 36 x 150, 50 x 100, 60 x 

150 
180 

S3 spruce Picea abies 
Germany-Czech 

Republic 

50 x 150, 70 x 173, 95 x 245, 145 x 

285 
243 

S4 spruce Picea abies North-Italy 40 x 122, 53 x 116, 60 x 146 271 

S5 spruce Picea abies Estonia 50 x 100, 64 x 150 103 

S6 spruce Picea abies Latvia 45 x 110, 64 x 150 104 

S7 spruce Picea abies Sweden 50 x 118 50 

S8 spruce Picea abies Russia,Vologda 45 x 78 49 

D1 douglas 
Pseudegotsi 

menzisii 
Netherlands 

78 x 100, 70 x 135, 70 x 170, 75 x 

190 
356 

L1 larch Larixspp Netherlands 75 x 150 40 

L2 larch 
Larix 

siberica 
Russia 50 x 70, 75 x 200, 75 x 200 100 

    Total 1784 
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3.2 Test methods 

3.2.1 Methods for testing of mechanical and physical properties 

In this section, the test set-ups used for the determination of mechanical and physical 

properties is described. In principle, the test set-ups as described in the European test 

standard EN 408 are followed together with the provisions of EN 384, except where they 

were not suitable for the tested dataset.  

Bending strength test set-up: 

 

         

Figure 3.1. Test set-up for determining the bending strength from a four point bending test 

according to EN 408 (above) and the mechanical scheme for the test set-up (below). 

 

For the bending tests, a four-point bending test with a span of 18 times the depth and the 

point loads at 6h (=a) from the supports was applied. For softwoods, mostly an overlength 

of 1 meter on both sides was used. The critical section, being the position with the 

0.5 F 0.5 F

0.5 F 0.5 F

0.5 F 0.5 F
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governing visual defect, was placed in the center part between the two load heads, when 

possible. For tropical hardwoods, the critical section is difficult to visually assess. 

Therefore, for tropical hardwoods, the total length of the pieces used was the span length 

plus an overlength of 1 or 2 times of the depth. 

The top side of the test pieces in the test set-up was randomly selected. The load head 

speed was chosen in such a way that the pieces broke in approximately 5 minutes. 

The bending strength is then calculated with: 

   
    

              (3.1) 

Where F is the total maximum load (the summation of the two point loads) and a  the 

distance from the support to the point load, b and h are thickness and depth respectively. 

The adjustments for size according to EN 384 were not followed. The reason is given in 

section 2.2. Because the size effect could depend on the grading method, and therefore on 

the parameters used in the strength predicting models, this effect for the models developed 

in this thesis will be investigated in chapter 5. 

The adjustment for moisture content according to EN 384 was not followed either. Before 

testing, the pieces were conditioned at 65% relative humidity and 20 °C for 2 weeks. 

According to EN 384, no adjustment for the bending strength should be carried out when 

the moisture content differs from 12%. However, whether this is correct for tropical 

hardwoods is questionable. Softwoods are normally tested at 12% moisture content. For 

tropical hardwoods this is usually higher. Because the reference moisture content for 

which the strength properties are given is 12% m.c., the values have to be readjusted to 

this m.c. In chapter 5, the adjustments for moisture content will be derived for the used 

material. 

 

Local Modulus of Elasticity: 

 

Figure 3.2. Test set-up for the determination of the local modulus of elasticty according to 

EN 408. 

0.5 F0.5 F
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The test configuration is the same as that for the bending strength. The deflection of the 

test pieces in the centre over a distance of 5h within the point loads (where a constant 

moment occurs) in the neutral layer is measured by means of LVDTs (Linear Variable 

Differential Transformer) at both sides of the test piece. The local modulus of elasticity is 

then calculated with structural mechanics according to the following formula 

       
   

        

          
         (3.2) 

Where a= 6h (the distance from the supports to the point loads), I is the second moment of 

inertia, l1 = 5h, F2 and w2 are the total force and the deflection at 40% of the maximum 

load and F1 and w1 are the total force and the deflection at 10% of the maximum load. 

This derived value is called the local modulus of elasticity because it is determined by 

measurements on a limited part of the test piece. 

No size effect is expected for the Modulus of Elasticity (MOE). For the adjustments to 

12% moisture content the provisions of EN 384 will not be followed, but they will be 

derived in chapter 5. 

 

Global Modulus of Elasticity: 

 

 

Figure 3.3. Test set-up for the determination of the global modulus of elasticty according 

to EN 408. 

 

The test configuration is the same as that for the bending strength and the local modulus 

of elasticity. The difference with the local modulus of elasticity is the position of the 

measurement of the deflection. In this case, the deflection is measured at midspan on the 

test piece relative to the supports. The deflection of the test piece was measured at the 

bottom of the test pieces with an optical laser as indicated in figure 3.3. The measured 

0.5 F 0.5 F

a a
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deformation includes any local indentations that might occur at the supports and loading 

points, and deformations of the supports themselves. Small steel plates of lengths not 

greater than half the depth of the test piece were inserted between the piece and the 

loading heads or supports to minimize local indentations. These steel plates were also 

present for the tests to determine  the bending strength and the local modulus of elasticity. 

Usually, all deformations and forces to determine the local and global modulus of 

elasticity, were recorded in one test. The global modulus of elasticity is then calculated 

with structural mechanics according to the following formula: 

 

        
         

          
  

  

  
   

 

 
 
 
         (3.3) 

 

Where a= 6h (the distance from the support to the point load), F2 and w2 are the total force 

and the deflection at 40% of the maximum load and F1 and w1 are the total force and the 

deflection at 10% of the maximum load.  

Equation (3.3) only takes into account the deformation caused by bending, although there 

is also shear deformation. As a consequence of neglecting the deformation due to shear, 

the global modulus of elasticity is lower than the local modulus of elasticity. However, 

using standardised shear modulus values cannot explain the differences found. A purely 

experimental relationship was presented in Ravenshorst and Van de Kuilen (2009), and 

for the material from section 3.1 the relationship will be presented in chapter 4.  

The local MOE is the MOE due to pure bending and this value is used by the engineer in 

design calculations. Therefore, when only the global MOE is measured (which is easier to 

perform)  a conversion equation to the local MOE is required. 

 

Dynamic Modulus of Elasticity: 

For grading purposes, in practice the Modulus of Elasticity can be measured in different 

ways. For instance, in bending machines the flatwise (with the small side of the piece 

placed in the direction of the load head) Modulus of Elasticity is calculated from the 

deformations in a three-point bending set-up over a span of normally 900 mm. The piece 

is fed through the machine and the lowest calculated flatwise MOE over the length of the 

beam is used as grading parameter. Nowadays, most grading machines use the method of 

calculating the MOE from vibrations measurements. In this thesis, this method is used for 

determining the MOE for grading purposes. Both methods described above are called  the 

dynamic Modulus of Elasticity. The dynamic modulus of elasticity is called dynamic 

because they are determined in a very short time period while the tested piece is in 

movement, in  contrast with the local and global Modulus of Elasticity which are called 

static MOEs. The static MOE is determined in a laboratory test set-up with a target testing 

time to failure of about 300 seconds. With dynamic methods, the MOE can be determined 

with measurements that take place in a very short time. In this thesis, the dynamic method 

of introducing stress waves and measuring the frequency response is used. The actual 
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measurements take place in less than 0.2 seconds. When in this thesis the dynamic MOE 

is mentioned, the MOE retrieved by introducing stress waves is meant. 

 

Figure 3.4. Test set-up for MOEdyn 

 

The dynamic modulus of elasticity MOEdyn is based on vibration measurements of a beam 

in which a longitudinal stress wave is initiated. In the beam in figure 3.4 the shape of a 

measuring signal of the acceleration of a beam end in time is drawn. From these vibration 

measurements the first natural frequency is determined by using a Fourier Transformation. 

The MOEdyn can be calculated according to the following physical law: 

 

                    (3.4) 

With   as the density in kg/m3 and c as the wave speed in m/s. The unity of MOEdyn is 

then kg/(m* s2). This can be rewritten as (kg*m/s2) * (1/m2), which is N/m2. The normal 

unity for the MOE is in N/mm2; therefore, value the found in N/m2 has to be multiplied by 

1E-6.  

This      is a general property of solid materials and its applicability on wood was 

already known in the first half of the 20th century (Kollmann and Cote, 1968). Görlacher 

(1990) showed that this principle could also be used in strength grading of structural 

timber. After that, industrial application has been proven in practice and nowadays most 

strength grading machines make use of this measurement technique. Theoretically, the 

beam should be free from supports, but practice has shown that when the beam is 

supported locally by rubber or wooden sticks, the difference with the free supported beam 

can be neglected compared to the total amount of uncertainties involved in the grading 

process.  

The wave speed can be calculated from the first natural frequency determined from a 

Fourier Transformation of the measurement data, which can be accelerations or 

displacements, measured with an appropriate sensor on either cross end of the beam. The 

wave speed can be calculated with: 

                         (3.5) 

Where f is the first natural frequency in Hz, and lb is the length of the beam in meters. 

The adjustments for moisture content for the dynamic MOE that are used in thesis will be 

derived in chapter 5.  

For this thesis, the MTG handheld from Brookhuis Micro Electronics was used to perform 

the measurements for the calculation of the dynamic MOE. Some softwood batches were 

also measured in an in-line version with the same principle, the mtgBatch from Brookhuis 
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Micro Electronics. Both systems are approved to grade structural timber with CE-marking 

in compliance with the European standard EN 14081-1. 

 

Moisture content 

In EN 408 it is stated that test pieces should be conditioned at an environment of 20 (+/- 

2)°C and 65(+/-5) % relative humidity until they attain a constant mass. For most 

softwoods, in this environment the timber achieves a moisture content close to 12%. 

However, tropical hardwoods are mostly used and supplied with a high moisture content 

and therefore also tested with this high moisture content. To prevent distortions due to 

shrinkage and drying cracks, tropical hardwoods are stored either outdoors under a cover 

or in a climate chamber at 20°C and 85% relative humidity. Before testing, the specimens 

are kept in an environment at 20°C and 65% relative humidity for two weeks. 

In accordance with EN 13183-1, the moisture content has been determined on a section 

free from knots and resin pockets with a length of 25 mm, which is often called the 

ovendry method. The test pieces are dried at 103°C until the mass is stable (then the 

moisture content is 0%). The moisture content at the test can then be calculated from the 

wet and dry mass with: 

        
               

       
        (3.6) 

The moisture content is therefore expressed as the amount of moisture (water) in the piece 

related to the dry mass and is a percentage measure. This means that the moisture content 

can have a value higher than 100%, which can be the case for softwoods in the standing 

tree and directly after felling. 

 

Density 

The density is determined by dividing the mass of each piece by its volume. In this thesis 

the density is used as a grading parameter. According to EN 408, the density of the test 

piece has to be determined on a section taken from the test piece. For structural timber, 

this has to be from a full cross section, free from knots and resin pockets. A normal length 

of this cross section is 25 mm. This density has to be used in the strength class 

assignments. 

According to EN 384 it is also permitted to determine the density from the mass and 

volume of the whole specimen and to adjust to the density of defect-free specimen by 

dividing it by 1.05. 

For strength class assignments, the density in this thesis is determined as follows: 

- For softwoods and temperate hardwoods, the density is determined from a knot-

free section of 25 mm length, if available. Otherwise, the density is determined by 

dividing the mass by the volume of a piece divided by 1.05. 

- In tropical hardwoods, knots are very rare. The density is determined by dividing 

the mass by the volume of a piece without any further correction.  
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Because the reference density in the strength class tables to be used by the engineer in 

design calculations is given at 12% moisture content, the density has to be adjusted to this 

reference moisture content.   

 

The density at a certain moisture content is 

    
     

     
           (3.7) 

With Gm.c. as the mass of the piece and Vm.c. as the volume of the piece. 

When the moisture content of a piece of timber changes, then two effects occur: 

- The dimensions of the piece of timber changes due to shrinkage or swelling by ΔV 

in %. 

- The mass of the of the piece of timber changes by ΔG in %. 

The target moisture content is normally lower than the measured moisture content. Then, 

when ΔV and ΔG are positive, the relationship between the density at the target moisture 

content and at the measured moisture content is: 

                        

   
  

   
 

   
  

   
 
        (3.8) 

 

The density at a target moisture content can be formulated  according to equation (3.9) 

                       

   
  

   
 

   
  

   
 
        (3.9) 

ΔV can be described as:    𝛽                        in % 

Where mcmeasured cannot be higher than the fiber saturation point (FSP), because above that 

moisture content timber does not change its volume. βv is the percentage volume change 

per percent change of the moisture content according to equation (3.10) 

𝛽  𝛽  𝛽  𝛽  
    

   
                                (3.10) 

 

Where: 

- 𝛽 . Is the radial shrinkage (in % per percent change of the moisture content) 

- 𝛽 . Is the tangential shrinkage (in % per percent change of the moisture content) 

- 𝛽 . Is the longitudinal shrinkage (in % per percent change of the moisture content) 

ΔG can be described as:                         , in %, because the change in 

weight is linear with the change in moisture content (the weight of the water). 

 

The density at the target moisture content can then be calculated with the following 

formula for the moisture content below fiber saturation point: 
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             (3.11) 

The density at the target moisture content can then be calculated with the following 

formula for the moisture content above fiber saturation point. 

                       
                            

                              
             (3.12) 

In Rijsdijk and Laming (1994) the fiber saturation points and the shrinkage coefficients 

are given for 145 softwood and hardwood species. In this thesis, as a mean approximation 

for all wood species, a fiber saturation point of 25% m.c. is used. As an average value for 

βv a value of 0.5% per percent moisture content change is used as approximation for all 

species for moisture contents between 12% and 25%. 

 

3.2.2 Methods for measuring visual characteristics 

In appendix B it is listed which visual characteristics are addressed in the visual grading 

standard for tropical timber. The main strength reducing characteristics are: 

- Knots 

- Grain angle deviation (or slope of grain) 

- Fissures 

- Compression failures 

- Wane 

 

In principle, the first two, knots and grain angle deviation can be quantified and used to 

make models to assign pieces into different strength classes. Fissures, compression 

failures and wane reduce the strength regardless of which strength class the timber is 

assigned to when their influence is greater than the influence of knots and grain angle 

deviation. Therefore, grading standards  limit the occurrence of these characteristics to a 

level where they are assumed to have no influence on the strength. For fissures, limits are 

given in length and depth, but compression failures and wane are not allowed at all in the 

Dutch grading standard NEN 5493 for hardwood timber to be used in hydraulic structures. 

The exact magnitude of fissures, compression failures and wane is therefore not recorded 

for the investigated timber pieces. They are only assessed as acceptable or not. In this 

section, some examples are given. In appendix B pieces are listed that are not acceptable 

to be used in structures and were removed from the analysis. 

 

Knots 

 

The influence of knots is calculated as a ratio of their size perpendicular to the beam axis 

with the thickness or height of the beam. In figure 3.5 examples are given. The knot ratio 

(SKR) is then: 
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                 (3.13) 

 

The knot with a maximum value of the knot ratio within the critical test area is the 

recorded knot ratio for a beam. 

 

 

 

Figure 3.5. Maximum knot on the height (above) or on the thickness of the beam (below) 

 

For one dataset, softwood species douglas with ID D1, the group knot ratio was recorded 

In this case, over a part of 150 mm of the length of the beam, the knot sizes perpendicular 

to the beam axis were summed (overlapping parts were counted only once) and divided by 

the circumference.  

                           
            

     
                                        (3.14) 

In figure 3.6, an example is given. When for instance knot d1 is also visible on the other 

side of the beam, this size has to be summed also. At the top thickness of the beam two 

knots are visible. The overlapping size over the thickness is counted. 

For a beam the GKR part of 150 mm in the critical section with the maximum value of 

group knot ratio is recorded. 

 

d1

h

d2t
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Figure 3.6. Beam with multiple knots over a length of 150 mm. 

 

Grain angle deviation or slope of grain 

 

In practice, for grading purposes the grain angle deviation has to be measured on the 

beam. In figure 3.7 this is denoted as α2. Normally, in grading standards, the slope of grain 

is used. This is the tangent of the angle, so for α2 it is h2/l2. This slope of grain, however, 

is very difficult to measure in practice. The slope of grains (SoG) given in this thesis are 

measured after the destructive test. The recorded slope of grain in figure 3.7 after the 

destructive test was h1/l1. 

 

 

 

Figure 3.7. Measurement of slope of grain before and after the destructive test. 

t

h
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For the data listed in this thesis the slope of grain measured in the plane parallel to the 

direction of the load is given. Of course the slope of grain is a 3D phenomena, and to 

address this, also the slope of grain in the plane perpendicular to the direction of the load 

should be measured. However, as will be explained later, measuring the slope of grain 

visually is a difficult task and 3D slope of grain measurements on limited samples were 

not very successful (in terms of improving the correlation of the slope of grain with the 

bending strength).  

 

Compression failures 

Compression failures give an unpredictable reduction of the strength and a beam 

containing compression failures is not allowed in structural timber. This has to be detected 

by a visual override on the timber. At the top of figure 3.8 an example of a compression 

failure in a timber beam detected by visual inspection is shown. This beam should not be 

used in structures and is not included in the analysis. At the bottom of 3.8 the effect of a 

compression failure in a destructive test is shown. In this case, the unpredictable influence 

led to a very low bending strength. 

 

  

Figure 3.8. Compression failure in a timber beam (left) and the effect of a compression 

failure in a bending test (right). 

 

Fissures 

Fissures are allowed when they are limited in length along the beam axis and the depth 

through the thickness. Large fissure might affect the bending strength, but could also 

affect for instance the shear strength. The fissures should not pass through the thickness 

(half the thickness is used as a maximum in standard EN 14081-1) and be limited in 

length. In figure 3.9, examples are given of fissures that are not allowed.   
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Figure 3.9. Examples of fissures that are not allowed in structural timber. On the left, an 

end fissure passes trough the thickness. On the right, a fissure running out of the top side 

of the beam. 

   

Wane 

Wane gives a  reduction of the nominal cross section, because the beam is sawn from a 

part of the stem near the bark. The reduction in cross section gives a reduced section 

modulus and therefore a reduced strength capacity compared with a full cross section. 

Another point is that the presence of wane also means that non-durable sapwood is 

present, which is not allowed in application for hydraulic structures. Figure 3.10 gives an 

example of wane in a timber beam. 

 

 

Figure 3.10. Wane in a timber beam. 

 

Other anomalies. 

Timber with any other anomalies that might affect the strength should not be used as 

structural timber. An example is given in figure 3.11. 
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Figure 3.11. Anomaly  in a timber beam that might affect the strength in an unpredictical 

way. Timber with these kinds of anomlies should not be used as structural timber 

3.3 Statistical method to determine the 5th percentile values of visual strength 

grades of a timber species based on N samples 

 

In section 2.5, the procedures for determining the 5% fractile of visual strength grades 

based on more than one sample were discussed. However, as they were presented, they 

are not suited to be used to process the test results tropical hardwoods with more than one 

sample. 

A reason for this is that especially for tropical timber, it can be questioned whether the 

samples can be regarded as a homogeneous population. Therefore, this uncertainty should 

be addressed in the determination of a timber species. A timber species is hereby defined 

as the trade name under which timber is brought on the market. A timber species might be 

timber of the same genus, but from different species. The determination of the species is 

very difficult when it must be based on the timber pieces themselves (instead of the tree). 

This uncertainty should be investigated. The current ks factor in EN 384 is not suited to 

describe this uncertainty because it is based on a random sampling from a homogeneous 

population. In this section, a ks,tn (tn=trade name) will be derived based on experimental 

data of timber with trade names cumaru and massaranduba. 

This factor ks,tn should be applied to the 5% fractile of the investigated dataset and 

depends on the number of samples. 

The objective of this thesis is to compare the suitability of visual grading and machine 

grading for species independent grading. Therefore, the methods should be comparable. 

To make them comparable, the following principle is defined: The characteristic values of 

each batch graded with either visual or machine grading should meet the required 

characteristic values of the strength class assigned to this batch. As a consequence of this 

principle, then, for the determination of the 5% fractile of the tested samples, the 5% 

fractile value of the weakest samples that can be considered as a homogeneous population 
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has to be used. (It is noted that this approach differs from the standardised procedure in 

Europe for visual grading, where an average 5% fractile is used).  

Therefore the following methods have to be developed: 

- Determination of the weakest homogeneous samples 

- Determination of the 5% fractile of the homogeneous samples 

- Determination of the factor ks,tn that has to be applied on this 5% fractile. 

 

Determination of the weakest samples that are combined as a homogeneous sample 

 

In the pre-standard ISO/CD 12122-1 it is proposed to use the chi-squared test to determine 

whether samples can be regarded as a homogenous population. However, this standard 

gives an indication for a minimum of 100 pieces in each sample, where in practice a lower 

number of pieces in a sample is used. Furthermore, ISO/CD 12122-1 uses the number of 

pieces in each sample below the 5% fractile of the total sample to evaluate and compare 

them with the expected values. This can lead to a very low number or low percentage 

values and even numbers or percentages of zero. According to De Vocht (2006) the 

following requirements to perform a chi-square test have to be fulfilled: 

- All expected cell frequencies must be equal to or  higher than 1. 

- A maximum of 20% of the cell frequencies may be between 1 and 5. 

To overcome this problem,  not the number or percentage  of pieces below the 5% fractile 

of all samples, but the percentage below the mean value of all pieces will be used to 

compare the samples. 

The following procedure is followed. 

- For all samples, calculate the 5% fractile of the samples with a 75%- confidence 

level based on a normal distribution. 

- Rank the samples according to these values. The sample with the lowest 5% 

fractile is called the weakest sample. 

- Determine the mean value of all samples 

- Determine the percentage of pieces below the mean value for all samples. These 

are the observed (O) percentage values. 

- The expected percentage values (E) for all samples are the sum of the observed 

percentage values divided by the number of samples 

- The test  value Z is calculated according to equation (3.15): 

   
       

 

  

 
                    (3.15) 
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Where 

Oi  is the observed percentage value,  Ei is the expected percentage value, and i is the 

sample number. 

- The significance level sig is then calculated as the critical value of the chi-squared 

distribution for the value of Z with N-1 degrees of freedom. 

In ISO/CD 12122-1, a significance level of 0.01 is proposed, which means that when the 

calculated significance is higher than 0.01, the samples are regarded to be able to be 

combined in the determination of the 5% fractile. 

When then the significance level is lower than 0.01, the strongest sample is removed and 

the procedure is repeated until the significance level is higher than 0.01. The samples 

included in this test are assumed to be homogenous and will be used to determine the 5% 

fractile of the total dataset. When also for the two weakest samples the significance level 

is lower, then only the weakest sample will be used to determine the 5% fractile of all 

samples. 

Determination of the 5% fractile of the combined samples 

This is a further elaboration of the approach with the confidence level factor k for one 

sample assuming a parametric distribution as described in section 2.4.1. The derivation of 

the value for the confidence level factor k for more than one sample it is assumed that the 

samples are drawn from one population that is normally distributed. 

When more than one sample is taken, the precision of the estimate will increase. To 

formulate k-factors for the case with more than one sample, we have an estimate of the 

standard error around the point estimate, and assume that this standard error is normally 

distributed. 

Again, the parametric tolerance limit is defined as: 

       𝑘                    (3.16) 

In this formula, the mean value of      will  tend to μ (the mean of the underlying 

population) and the mean value of s will tend to σ (the standard deviation of the 

underlying population).  The variance of equation (3.16) can then be calculated with the 

formulas for error propagation. The variance of the equation is: var (PTL) = var (  ) + k2 * 

var (s). The variance of    is  σ2/n and the variance of s is σ2/(2(n-1)) (See Sclove, 2005). 

The variance of the PTL becomes: 

          
  

 
 𝑘   

      
         (3.17) 
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This is only true when    and s are independent, which they are not. However, this is not a 

problem for large samples. So equation (3.17) is an approximation valid for larger 

samples (sample size larger than 10). 

 

Then the standard error becomes: 

         𝜎 
 

 
 

  

      
         (3.18) 

 

We have N samples and expect that the mean values of the 5% tolerance limits of these 

samples calculated with   - k s tend to the mean of the 5% PTL of the population and that 

values of the samples are scattered around this value with a standard deviation of SE/√(N). 

In that case, the equation 2.19 becomes 

     
         

 
 

 
 𝑘 

  

  
 𝜇    𝜎  𝛼       (3.19) 

Where 

k1 is the value of the normal distribution for PTL limit of the population (=1.65 for the 5% 

PTL)      

k2  is the value that has to be determined. 

We can define  

    
     

 
  

 
           (3.20) 

And 

    
    

 
  

 
           (3.21) 

In this case k1=zp=1.65 (p=0.05, but now  α=0.5 because we want the variation around the 

mean value of the Tolerance Limit; this gives  k1= 1.65. By taking α=0.5 it is assumed that 

the distribution of SE(PTL) is symmetric, which is not strictly true. However, for sample 

sizes of n>40, this is regarded as acceptable) and the SE can be estimated by    *A, with A 

is 

   
 

 
 

  
 

      
          (3.22) 

Then: 

                𝑘 
 

  
  𝜇    𝜎  𝛼       (3.23) 

 

          𝜇    𝜎         𝑘 
 

  
  𝛼       (3.24) 
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          𝜇    𝜎               𝑘 
 

  
     𝛼     (3.25) 

          𝜇    𝜎   𝜎          𝜎      𝑘 
 

  
     𝛼    (3.26) 

The term 

 
    𝜇    𝜎 

𝜎   
  

is the normal distribution with mean zp√n and standard deviation 1. Then equation 3.26 

becomes: 

     
         

       
     𝑘 

 

  
     𝛼       (3.27) 

The term     𝑘 
 

  
    then can be described by the non-central distribution: 

    𝑘 
 

  
                   𝛼            (3.28) 

k2 can then be calculated for the situation N=1 for a certain n and applied for other N (for 

N=1 k can be calculated with equation 2.20): 

𝑘   𝑘     
  

 
          (3.29) 

Then kN,n can be calculated with: 

𝑘       𝑘 
 

  
    

      

  
        (3.30) 

The 5% PTL with a 75% confidence of the population for N samples is then calculated 

with: 

                  𝑘 
 

  
         𝑘        (3.31) 

For the 5% PTL zp =1,65.  

In table 3.4, values for kN,n are given, based on the number of samples (N) and the number 

(n)  of specimens in the sample (for this value of n the sample with the lowest amount of 

specimens is governing) : 
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Table 3.4 Values for kN,n depending on the number of samples N and the sample size n 

n N 

 1 2 3 4 5 

10 2.08 1.96 1.90 1.87 1.84 

20 1.92 1.84 1.81 1.79 1.77 

30 1.86 1.80 1.77 1.76 1.75 

40 1.83 1.78 1.75 1.74 1.73 

50 1.81 1.76 1.74 1.73 1.72 

100 1.76 1.73 1.71 1.70 1.70 

150 1.73 1.71 1.70 1.69 1.69 

200 1.72 1.70 1.69 1.69 1.68 

250 1.71 1.69 1.69 1.68 1.68 

300 1.71 1.69 1.68 1.68 1.68 

500 1.69 1.68 1.67 1.67 1.67 

1000 1.68 1.67 1.67 1.66 1.66 

Determination of the factor ks,tn that has to be applied on the 5% fractile of the 

homogeneous samples with the lowest strength. 

A number of samples are drawn from an inhomogeneous population. It is unclear however 

whether the weakest possible sample based on the visual grading rules is present in the 

dataset. Therefore the derived 5% fractile based on the tested dataset must be reduced by a 

factor addressing this uncertainty to transfer this value to the population. This factor can 

only be derived from experimental research. Therefore, in this section, the datasets of 

cumaru (CUM1-CUM5) and massaranduba (MAS1-MAS5) as presented in table 3.1 are  

used to investigate this.  An overview of the strength properties of the tested data is given 

in chapter 4. The strength properties of table 4.11 are  used to investigate the ks,tn factor. 

The procedure followed was: 

- For the timber with trade names  massaranduba  and cumaru testing programs were 

simulated.  It could be that instead of 5 samples cumaru only 1,2,3 or 4 sample(s) 

were (was) tested. Those samples could be randomly taken from the 5 possible 

samples. This means that in total there are 25-1 =31 combinations in which the 

samples could be tested. For instance, 5  different combinations are possible for 4 

samples to be tested in a testing  program, 10 different combinations are possible for 3 

samples to be tested, etc.  The same number of combinations is possible for 

massaranduba.  

- For every combination, the weakest homogeneous subsample(s) was (were) 

determined with the method presented in this section. 
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- For every combination, the 5% fractile of this (these) weakest homogeneous 

subsample(s) was determined with the method presented in this section.  The lowest 

5% fractile of all combinations is  assumed to be the most conservative 5%  fractile 

that can be expected from a testing program for timber with that trade name. 

- For all test combinations the 5% fractile of the weakest homogeneous subsample(s) of 

each combinations is divided  by the 5% fractile of the most conservative 5% fractile 

of all combinations.  These  are called ks-ratios. 

 

The calculated ks-ratios are plotted in figure 3.12. 

 

 
Figure 3.12 . ks-ratios plotted against the number of samples for cumaru and 

massaranduba. 

 

A low ks – value indicates that the 5% fractile found for a test sample combination is 

much higher than the possible lowest 5% fractile that may occur and therefore should be 

multiplied by this factor. The lower contour of figure 3.12 should therefore be followed.  

Equation (3.32) for the ks factor is proposed. This factor is called ks,tn because it addresses 

the variation of tree species (s) that might be involved for timber traded under this 

commercial trade name (tn). The constant 0.38 is taken as the lowest value for N-1. A 

regression analysis trough  the lowest points for every gives too high values for N=2 and 

N-3, therefore the value 0.1 is determined by trial and error to get safe values for these 

datapoints. 

 

𝑘                                               (3.32) 

 

Equation (3.32)  is plotted in figure 3.13. 
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Figure 3.13 . ks-ratios for all data of cumaru and massaranduba and ks,tn according to 

equation (3.32)  plotted against the number of samples. 

 

Figures 3.12 and 3.13 show that the factor ks,tn becomes higher when more samples are 

used. However, the fact that the ks,tn differs between the timber with the two trade names 

means that the uncertainty incorporated (different species, different quality) is not the 

same. For the investigated trade names massaranduba is governing.  For equation (3.32) 

ks,tn will give a value of 0.61 for 10 samples.    

One important aspect which will also be addressed in chapter 4 is that visual grading 

based on strict limits for the slope of grain, is almost  impossible to perform in practice.  

To ensure a reliable method for visually graded timber based on the slope of grain, a 

reduction factor ks,tn as presented is required. However, this would mean that for a number 

of trade names for tropical timber much lower strength values have to be used as 

compared with the outcome of presently known tests results on timbers with those trade 

names.  

This means that other methods are necessary to strength grade tropical timber. This could 

be done either by improving the measurement of slope of grain by for instance machines 

that measure this with laser dots. The other option is to use machine grading based on 

density and MOEdyn. This last option will be studied further on in this thesis.   

3.4 Determination of 5% fractiles based on model properties 

3.4.1 Introduction 

The methods described in the previous sections are used for samples that are visually 

graded. The samples are graded according to predefined limits in visual grading rules. 

Then, based on these samples, the strength class of the species is determined. For machine 

grading the working method is the other way around.  The strength classes to which the 
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timber has to be graded to are chosen and limit values for machine measurements have to 

be derived. These limits are called settings. To derive these methods, an extra step is 

necessary, which is the development of a predicting model. By using a predicting model 

more knowledge is available of the nature of the variation and in that way the population 

can be described better. In this section, a method for deriving settings is proposed, which 

is based on the properties of the prediction model. The properties of the prediction model 

are the equation for the prediction line for the model values with the standardised tested 

values and the scatter around this prediction line. 

The mechanical properties of  timber can be predicted by non-destructive measurements, 

which principle is used in machine grading. However, the mechanical properties have a 

certain random error around their predicted  values, which has to be accounted for in the 

derivation of settings for strength grading machines.  

The determination of settings for machine strength graded timber in Europe is 

defined in EN 14081-2. The method is based on the derivation of a prediction model for 

the destructive strength values by using a predicting indicating property (IP) based on 

non-destructive measurements.  The IP can be one single predicting property like the 

MOE, but can also be a value calculated by an equation including several predicting 

properties.  The model is created by combining data of a number of samples originating 

from a growth area for which the settings will be derived. Limit values (called ´settings´) 

for the IP for every strength grade have to be determined. In short, the settings are 

determined by assigning each single piece to a strength class based on the IP of the piece, 

followed by a verification of the characteristic values. When required values are not 

reached, the procedure is repeated by adapting the settings until they do.  

In Ziethen and Bengtsson (2011), a number of weaknesses in the current 

standardized procedures are listed.  Main problem is the sensitivity for small differences 

in the number of pieces in the assigned grades. The reason for this is that settings have to 

be determined based on the existence of data in the assigned strength grades by trial and 

error. This is explained in figure 3.14. 

 
Figure 3.14. Limit values S to be found by trial and error for grade C30. 
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In figure 3.14 the data with bending test values are plotted against the predicted values 

(IPfm) based on mechanical non-destructive  measurements. It is now the objective to find 

a limit S for IPfm whereby a piece that has an IPfm-value higher than S is assigned to 

strength class C30. This limit value S is called a setting. When more than one strength 

class is graded there will more limit values, then called settings. To find the limit value 

according to the current standardized method the value of S  has to be shifted along the 

horizontal axis in such a way that the 5% fractile of the test pieces assigned to the grade 

(the blue datapoints) is at least 30.0 N/mm2. At present,  this has to be done by the non-

parametric  method of ranking without confidence interval, but the next finding is also 

valid for any other method described in section 2.4. It  turns out that when the limit S in  

figure 3.14 is shifted from 41.0 N/mm2 to 47.0 N/mm2 the 5% fractile of the assigned 

pieces stays just under 30.0 N/mm2. When the limit value S is chosen above this value, for 

instance 47.1 N/mm2, then the 5% fractile of the assigned pieces goes up to 36.4 N/mm2. 

This makes the process of deriving settings very sensitive. A major disadvantage is that it 

does not make use of the information regarding the scatter around the model in a direct 

way. The objective of this section is to present a method that takes the properties of the 

prediction model into account.  

 

Statistical distribution of timber strength grades 

The statistical distribution of timber strength grades has been studied by a number of 

authors. Besides the shape of the distribution, also the difference between the target 

characteristic values and the obtained characteristic values was studied. The target 

characteristic value is the value required for the strength class the grade is assigned to (for 

Europe the target characteristic values are given in EN 338). The obtained characteristic 

values are the 5% fractiles calculated from the data assigned to a specific strength class. 

Sørensen and Hoffmeyer (2001) analysed a number of datasets to evaluate which 

distributions fitted best to the bending strength values of the assigned grades of mostly 

Norway spruce. They found that 2-parameter Weibull and normal distributions gave the 

best fit for the data, but that the obtained 5% fractiles varied significantly from the 

required target values. Van de Kuilen and Blass (2005) found that for the tropical 

hardwood species azobé a normal distribution fitted best. These results are in 

contradiction with the lognormal distribution to describe timber properties, which is 

proposed by the JCSS Model code (Anonymous, 2006). 

Chui et al. (1991) studied the influence of sample size on the accuracy of the characteristic 

values of machine strength grades by simulating samples of different sizes from a dataset 

of 972 softwood pieces. The settings were derived for 2 grades. The pieces of the 

simulated samples were graded according to the settings and the 5% fractiles of the 

assigned grades were calculated. They found that for instance for samples sizes of 100 

pieces the 5% fractiles of individual simulated samples could deviate around the mean 5% 

fractiles of the simulated samples up to 20% for a 90% confidence interval, depending on 

the method of determining the 5% fractiles. 
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Pellicane and Bodig (1981) studied the influence of sampling size on the 5% fractiles and 

also on the whole sample distribution by taking random samples from a known large 

population (3000 softwood pieces), containing different visual grades and sizes. The 

graded datasets fitted to a Weibull distribution. They analysed  random samples from both  

ungraded  and  graded datasets.  For a confidence level of 95% they found the following 

relation for the average error E as a function of sample size n over the whole distribution : 

  
 

  
, with for S a value of 110 for the ungraded samples and around 103 for the graded 

samples.  This means that for graded pieces with a sample size of 100 the expected error is 

10.3 percent, for a sample size of 40 pieces 16.3 percent and for 20 pieces 23.0 percent for 

a confidence interval of 95%. A confidence interval of 95% means that for 95% of test 

samples the empirical distribution function will be within the error margin of the entire 

population values. Sample sizes of 40 and even 20 in a strength grade can occur in the 

present procedure of deriving settings.  

Summarizing, it can be concluded from literature (Chui et al, (1991) and Pellicane and 

Bodig (1981)) that the verification of the 5% fractiles of a population on a random sample 

with the required characteristic value is a delicate process.  

 

Principles for machine strength grading based on regression analysis 

The prerequisite for the derivation of settings for machine strength grading is the 

existence of a predicting model between the IP and the destructive test data, which can be 

determined by a regression analysis. A statistical requirement for performing a regression 

analysis is that regression residuals should have equal variance (Box et al.(1978)).  

Eurocode NEN-EN 1990 gives some guidance for the statistical determination of 

resistance models (section D8). However, NEN-EN 1990 gives assumptions that are 

uncertain to be true for structural timber. For example, NEN-EN 1990 assumes that the 

resistance function is a function of a number of independent variables, which is not true 

for timber when the density and MOE are used as prediction parameters. Furthermore the 

method of NEN-EN 1990 gives a value for the resistance for a specific value of the 

resistance function. For timber, this would be very uneconomic because of the larger 

scatter than for instance for steel. Another point is that the shape of the scatter around the 

regression line is assumed to be known in NEN-EN 1990, which is not clear for structural 

timber. However, the work in this thesis can be regarded as an elaboration of the principle 

use of resistance models according to NEN-EN 1990, specifically for structural timber. In 

this thesis prediction models will be formulated based on linear regression and the scatter 

around the regression lines that can be expected will be investigated. This will be done in 

chapter 5.  

In the next section a method to determine limit values for the prediction functions are 

derived based on the principles of linear regression, taking into account the scatter in the 

model properties. An equal variance of the regression residuals is assumed to explain the 

principle of the method. In chapter 6 the presented method will be extended by the shape 

of the regression residuals found in chapter 5.  
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3.4.2 Derivation of the method 

Model basis   

The assumption of the proposed method in this section is that mechanical properties of 

timber can be described by a statistical distribution, whether the population is graded or 

not. The procedure for deriving settings is  based on three principles: 

 the distribution of the non-destructive grading parameter values can be described by a 

known statistical distribution. 

 the regression residuals should be normally distributed around zero. 

 the regression residuals should have an equal variance. 

For further reading about regression analysis reference is made  to for instance (Box et al, 

1978) and (Freund et al., 1998). The principle of linear regression used in this thesis is 

explained in appendix A. 

The proposed method consists of the following elements: 

 a method for the determination of characteristic values and settings 

 a method to construct the expected cumulative distribution of the destructive test 

values of the  assigned grades 

 a method to construct confidence intervals for the theoretical strength grade 

distributions.  

The accuracy of the estimation of the 5% fractiles for strength depends on the assumptions 

made for the modeling. To verify the proposed method with test data from assigned 

grades, an approach has to be chosen that takes the expected variability of the test data 

into account. Comparing the calculated 5% fractiles of the test values of the assigned 

grades according to the present standardized methods of section 2.4  with the required 

values will not take the expected variability into account. It is more useful to verify 

whether the cumulative distribution of the test data assigned to  a strength grade could be 

a realization of the expected  theoretical cumulative distribution. This is the  objective of 

the 3rd element of the proposed method, to construct confidence intervals for the 

theoretical strength grade distributions. With these confidence intervals, the cumulative 

distribution of the graded test data is then compared. 

In this section, only the (bending) strength will be investigated, because this is the most 

important parameter, and mostly governing, but the method can also be applied to the 

Modulus of Elasticity and the density. 

To determine the theoretical 5% fractile, the method presented by Ravenshorst and Van de 

Kuilen (2008, 2010) is extended.  The method contains a p-value and a pchar- value to 

evaluate the 5% fractiles of a strength grade, which will be explained in this section.  A 

regression model is derived between the bending test values obtained in static laboratory 

tests and predicted bending strength values. The predicted bending strength is called the 
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Indicating Property and is denoted by IPfm. The measured bending strength values are 

denoted by fm,stat. The IPfm values can be based on the value of a single property like the 

dynamic modulus of elasticity or a combination of properties. In this section it is assumed 

that IPfm is written as the predicting value of fm,stat,, and that the relationship between 

fm,stat, and IPfm is linear. To achieve this, the definition of IPfm can be a linear equation 

consisting of one or more parameters, but it can also be a non-linear equation consisting of 

one or more parameters. The parameter fm,stat,mod,i, is defined as the parameter for which 

the mean regression line with fm,stat,i, coincides with the line y= x. To achieve this the 

relationship between  fm,stat,mod,i and IPfm,i is described according to equation (3.33). 

Ideally, A is close to one and B is close to zero.   

 

                                             (3.33) 

To be able to meet the assumptions for modeling, the residuals around the regression line 

between fm,stat,i, and  fm,stat,mod,i will have to follow a normal distribution around zero and 

have an equal variance sε
2 over the entire range of fm,stat,mod,i  (and therefore also over the 

entire range of IPfm).  fm,stat,mod,i are the predicted values on the regression line and fm,stat,i 

are the actual observations. The residuals around the regression line can then be  defined 

according to equation (3.34): 

 

                                          (3.34) 

 

Now,  p(i) is the probability that for a certain IPfm,i-value the fm,stat,i –value is lower than 

the required fm,stat-value (the 5% fractile) for that grade. The p(i)-values for a grade are 

therefore different for every IPfm,i-value and they also differ between grades for each 

IPfm,i-value. The derivation of p(i)  is formally written in equations (3.35) to (3.37): 

 

                                                                    (3.35) 

 

           
               

  
   

                        

  
               (3.36) 

 

             
                        

  
                 (3.37) 

 

U in equation (3.37) is distributed by N(0,1). 

Xi  in equation (3.35) is the distribution of the residuals around the regression line for the 

value fm,stat,mod,i, which has an average value of fm,stat,mod,i and a standard deviation of sε. 

The principle is illustrated in figure 3.15. The line y=x represents the case that in equation 

(3.33) A=1 and B=0. In that case  fm,stat,mod,i = IPfm,i . 
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Figure 3.15. Principle of determination of p(i)-values  

 

In figure 3.15, the p(i)-values are illustrated for a strength grade C35 with the following 

properties:  µIP = 40.0 N/mm2 and σIP = 10.0 N/mm2. sε= 9.0 N/mm2.   

For the p(i)-value to be correct over the entire range of IPfm(i)-values implies an equal 

variance of the residuals over the entire range of IPfm. 

In figure 3.16 the p(i)-function for the strength grades C35 from figure 1 is drawn together 

with the pdf(IPfm)–distribution of the example. Finally the term pchar is introduced. The 

value of pchar is the average of the p(i)- values for a certain IPfm-interval. This is formally 

written in equation (3.38): 

 

           
                    
         

         
  

               
         

         
  

                (3.38) 
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pchar can be seen as the ratio of pieces below a characteristic value compared to the total 

amount of pieces for a certain IPfm-interval . 

 

 

Figure 3.16. p(i)-functions for strength grade C35 and pdf-function of IPfm  based on the 

properties used for figure 3.15. 

 

The objective in deriving settings is to find the IP-limits where the 5% fractile coincides 

with the required value, that means for which pchar=0.05. This will be explained for the 

example of C35 in figure 3.16. The required value for the bending strength for C35 is 35 

N/mm2. The low(l) and high(h) IPfm–values that will give pchar=0.05 have to be found. In 

principle, the high IPfm –value is infinity. For the application in this example a value of 

100 N/mm2 for IPfm(high) is sufficient, because the value of pdf(IPfm) is then practically 

zero. Equation (3.38) is valid for continuous functions, but for practical use a 

discretisation can be applied. In this thesis, a discretisation step of 0.1 N/mm2 is applied.   

In figure 3.17 the function of pchar(i,100) is plotted against IPfm(i). Where 

pchar(i,100)=0.05, the value of i is the value of IPfm(low). This value is then called the 

setting value for C35.  

Basically, what is done in the method is the determination of the grading limit (the setting) 

with which a theoretical distribution for the test values can be constructed for which the 

5% fractile coincides with the required value for the grade.  

 

IP fm (N/mm2)
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Figure 3.17. pchar(i)-function  for strength grade C35 based on the properties used in  

figure 3.15. 

 

To get insight in the variation of the observations in the test data, they will be compared 

with  this theoretical distribution of a grade .   

When IPfm(l) and  IPfm(h) are known, the theoretical conditional probability density function 

of fmstat of a strength grade can be calculated. For a certain value of fmstat,j the theoretical 

conditional probability density function becomes: 

 

   
           
         

         
                  

             
         

         
    

                        (3.39) 

 

Xi  is a random variable representing residuals  around the regression line, for which a 

normal distribution is assumed with a standard deviation of sε. By integrating the  

probability density function Yj the theoretical cumulative distribution function Z can be 

constructed. 

A discretisation procedure for steps of 0.1 N/mm2 for di for calculating Y and dj for 

calculating Z gives sufficient accurate results. The cumulative distribution function Zj will 

have a value of 0.05 for the required 5% fractile of that grade for j= fmstat,j. From (3.39) it 

can be concluded that the shape of the distributions of the different grades will differ from 

each other and do not necessarily have to follow a specific (normal or lognormal) 

distribution, but simulations show that these will not deviate much from a normal 

distribution.  Figure 3.18 gives the theoretical calculated cumulative distribution functions 

IP fm (N/mm2)
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of the total sample and strength grade C35 based on the model properties used in figures 

3.15 and 3.16. The 90% confidence limit for the theoretical distribution of strength grade 

C35 will be explained in the next section. 

 

 

 

 

Figure 3.18. Theoretical cumulative distribution functions for the whole range and 

strength grade C35 based on the models properties used in figures 3.15, 3.16 and 3.17. 

 

Although the theoretical cumulative distribution of the strength grade does not have to 

follow an exact  normal distribution,  it can be well estimated by it (see section 3.4.1).  

The mean (μg) and the variance (σg
2) of the theoretical cumulative distribution of the 

grades can be estimated with the following formulas: 
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Method for constructing of confidence intervals of the theoretical strength grade 

distributions. 

 

The theoretical cumulative distributions of the grades will be used to compare them with 

the actual realizations of the cumulative distributions of test data. This is a more 

comprehensive verification of the proposed method than just comparing the 5% fractile 

calculated by standardized methods. To be able to compare the theoretical and actual 

cumulative distributions, there has to be insight in the deviations of the actual realized 

distribution from the theoretical distribution. There are different methods to do this. The 

procedure given by Pellicane and Bodig (1981) is presented below. By performing 

simulations, pieces are randomly drawn from the theoretical distribution of the assigned 

grades. Based on the simulations, the appropriate confidence interval can be constructed 

based on sample size. For further information about this method is referred to Pellicane 

and Bodig (1981).  

The randomizations are done in the following way: 

 The theoretically derived distribution of fm,stat for a strength grade is discretized into 

1000 values, whereby the values were taken at each 0.001 increment of the 

cumulative distribution function. 

 Samples with sizes 10, 20, 40 and 100 pieces are randomly taken from these 1000 

values. This was repeated 100 times for each sample size. 

Based on the randomizations, confidence intervals can be constructed. In this thesis 90% 

confidence intervals was chosen. These are intervals where 90% of the realizations are  be 

expected to be found, depending on the sample size. These confidence intervals are 

calculated over the range of the distribution, from the 5% to the 95% fractiles. 

The objective of this procedure is to be able to determine a 90% confidence level for a 

specific sample size and to get insight where the distribution of  test values from grades is 

expected. For determining the fractiles, the method of ranking and a central t-distribution 

are used. The interval of 90% that was chosen means that with 90% probability within 

these intervals the distribution of the data will occur. In figure 3.18 the low and high limits 

for the 90% confidence interval for C35 are drawn. 

 

Although the theoretical distributions according to equation (3.39) do not have to be 

exactly normally distributed, there will be made only a slight mistake when this is 

assumed. This is also supported by the outcome of literature where normal distributions 

for strength grades are found. In that case, equation (3.19) can be used, presented here 

again as equation (3.42). 

 

         𝜎  
 

 
 

  

      
         (3.42) 
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Where for 𝜎g the standard deviation of the theoretical distribution is used according to 

equation (3.41). 

The factor k in this case is the value of the normal distribution associated with a certain 

probability level. So for different values for the cumulative distribution the standard error 

(SE) of the PTL can be calculated. Then the 90% confidence interval can be calculated for 

every probability level of the cumulative distribution, by using the t-distribution for n-1 

degrees of freedom. n is the number of pieces in the grade. 

3.4.3 Application of the proposed method on simulated data 

To illustrate the proposed method and to evaluate the expected error in the cumulative 

distribution functions, it will be applied on simulated data. The properties of the 

population of which these data are drawn from are exactly known. In this way, the 

influence of the realization from a known population can be studied for the deviations 

from the cumulative distribution functions. The following data were simulated: 

 3 samples of 150 non-destructive IPfm-values were randomly taken from a known 

normal population. Realistic values for the population of non-graded European spruce 

are IPfm, : µIP = 40.0 N/mm2 and σIP = 10.0 N/mm2.  

 A linear regression line between the non-destructive IP-values IPfm and the 

destructively tested bending strength fm,stat is  assumed with the following function: 

fm,stat,sim= IPfm + εreg.  

 εreg is the variation around the regression line with equal variance for all IPfm-values 

and with the following distribution properties (assuming a normal distribution): µε,reg 

= 0.0 N/mm2 and σε,reg = 9.0 N/mm2. To each IPfm-value randomly a εreg –value is 

assigned. 

 Independently of each other, the IP-values and εreg–values are randomly determined 

by the built-in random-generator of the spreadsheet program Excel. The fm,stat,sim 

values can be calculated out of these two values. 

In figure 3.19 the regression results for 3 different simulations are given, to show the 

differences in outcome that can be expected from different randomizations drawn from the 

same population. Figure 4 shows that the coefficient of determination, the r2-value, varies 

between 0.45 and 0.54.  

The settings and cumulative distributions are determined according to the developed 

method for the grade combination C35-C24-C18-reject. In table 4.13, the results are 

shown for the example dataset. The intervals for IPfm for strength classes in the 

combination C35-C24-C18-reject are determined. The IPfm,low values are the settings 

values. Note that for deriving these settings the given descriptive values are necessary, but 

the number of pieces in the sample is not. This does not mean that this number is not 

important; it is important to have enough pieces to derive the correct distribution values 

(regression constants and error properties). The advantage of the proposed procedure is 



95 

 

that the occurrence of only a small amount of  data in certain  specific grades - which 

makes the current standardized method unstable - is not an issue. 

As a maximum value for IPfm 100 N/mm2 is chosen. This is purely for numerical reasons. 

In principle IPfm can go to infinity and p(i)high will then go to zero. Table 3.5 shows that for 

IPfm=100 N/mm2 p(i)high is already practically zero.  

 

 

Figure 3.19. Regression plots for 3 simulations based on the modeling assumptions. 

 

Table 3.5. Settings based on the example data, derived with discretization steps for IPfm  

of 0.1 N/mm2. 

Strength 

class 

fmstat-

required 

(N/mm2) 

IPfm,low  

(N/mm2) 

IPfm,high 

(N/mm2) 
p(i),low p(i),high pchar 

Yield 

(%) 

C35 35 45.4 100 0.1239 3.00E-13 0.0493 29.0 

C24 21.4 29.6 45.3 0.1811 0.0041 0.0498 56.2 

C18 16.1     Not 

possible 

 

 

Table 3.5 gives the low and high p(i)-values for each grade and the connected IPfm-values. 

The expected yields (= the part of the total amount of pieces that can be assigned to that 

specific grade)  on the basis of the distributions can also be automatically calculated. The 

IPfm limit values can be determined from the pchar functions. See figure 3.20. In figure 3.20 

the pchar functions are drawn for C35, C24 and C18.  The low IPfm-value for C35 is 45.4 

N/mm2. A discretization step of 0.1 N/mm2 is applied, so the high IPfm- value for C24 is 

45.3 N/mm2. The figure shows that for C18 no settings are possible, because the value for 

the pchar function is already above 0.05 for the high IPfm-value of 29.4 N/mm2 for C18. 
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Figure 3.20. Determination of IPfm limits by use of pchar functions. 

 

This is also explained in figure 3.21. In figure 3.21 the p(i)-values for C35 and C24 for the 

limits according to table 3.5 are plotted. For IPfm- values below the lower limit value for 

C24 the p(i)-values for grade C18 are plotted.  The graph immediately shows that it is not 

possible to determine grade limits for C18, because the p(i)-value for the highest possible 

IPfm- value is above 0.05.  Since the pchar value is an average value of p(i)-values, it is 

clear that a value of 0.05 for pchar cannot be achieved. This means that everything below  

grade C24 has to be assigned as reject in this grade combination. The only way to 

establish pieces in a grade C18 is to set a higher limit level for C24, so that a considerable 

amount of p(i)-values will get a value lower than 0.05 for the  IPfm-values of C18. This 

will result in a lower yield for C24 (or C35 when the lower limit for this grade will also be 

raised), and a lower value for  pchar  for C24 (or C35). This means a higher 5% fractile 

(more safe) for these higher grades.  

IP fm (N/mm2)
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Figure 3.21. p(i)-values for the settings according to table 4.13. 

 

Figure 3.21 also gives an indication how the problems can be solved when settings are 

determined with prediction limits as proposed in Ziethen et al. (2010). The idea behind 

prediction limits is that the magnitude of the normally distributed standard deviation of 

the residuals of the regression line is determined and assumed constant (equal variances). 

The prediction limit is chosen (this can be the 5% lower limit line, but also the 10% lower 

limit line) in such a way that the required 5% fractile for the grade will meet the 

requirements. 

However, when figures 3.20 and 3.21 are studied, it can be seen that a certain prediction 

limit can only give correct results for all grades when the distribution of IPfm would be 

rectangular and the distances between the setting values are at equal distances. Since both 

preconditions practically never exists, the prediction limit method will always 

overestimate and/or underestimate certain grades in a grade combination, which also can 

be concluded from Ranta-Maunus (2012). The proposed method in this thesis can be seen 

as a further elaboration of the principle of the prediction limit method.  

With the settings determined from table 3.5, the pieces are graded based on their 

simulated IPfm. The basic grading results of the 3 randomizations of figure 3.19 are listed 

in table 3.6. 
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Table 3.6.  Basic data for 3 randomizations 

properties 

Simulation number 

theoretical 1 2 3 

 IPfm;sim total sample (N/mm2) 39.4 

(10.0) 

40.1 

(9.4) 

40.8 

(10.0) 

40.0 

(10.0) 

fmstat;sim total sample (N/mm2) 39.7 

(14.0) 

39.7 

(12.9) 

40.3 

(13.1) 

40.0 

(13.4) 

fmstat;sim C35 (N/mm2) 52.0 

(8.1) 

50.2 

(9.6) 

50.1 

(10.0) 

51.7 

(10.4) 

Yield  C35 (%) 29.3 26.0 35.3 29.9 

fmstat;sim C24  (N/mm2) 37.7 

(11.2) 

37.9 

(10.3) 

38.0 

(10.0) 

38.1 

(10.0) 

Yield C24(%) 54.7 60.7 51.3 56.2 

fmstat;sim reject  (N/mm2) 22.5 

(12.6) 

25.1 

(14.5) 

23.3 

(8.1) 

24.2 

(9.7) 

Yield reject (%) 16.0 13.3 13.3 14.5 

Note: Main numbers are mean values, standard deviations in parenthesis. Yields are 

exact values.  

 

The mean and standard deviations for the pieces assigned to grades are calculated.  The 

largest absolute value for the skewness was 0.34 and for the kurtosis 0.67, so the 

assumption of normality of IPfm seems reasonable, when a limit of  an absolute value of 1 

is kept for both properties (De Vocht, 2000).  In table 3.7,  the 5% fractiles of the C35 and 

C24 grades are given, determined with different methods that would normally be used. 

The different methods are:  

 Ranking according to EN 384 

 Using a central student distribution, assuming that the data are normally distributed 

 The method according of EN14358, using a non-central student distribution on the 

lognormal values, assuming that the data are logarithmically normally distributed. In 

this method, a confidence interval of 75% on the 5% fractile is applied. 
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Table 3.7. 5% fractiles of assigned C35 and C24 grades. 

Simulation 

number 

Strength 

grade 

Ranking 

(EN 

384) 

(N/mm2) 

Central t-

distribution 

(N/mm2) 

Non-central 

lognormal t-

distribution 

(EN 14358) 

(N/mm2) 

Mean p(i) 

Required 

value 

(N/mm2) 

1 C35 37.4 38.4 38.1 0.046 35 

1 C24 20.4 19.1 19.0 0.052 21.4 

2 C35 32.7 34.1 34.3 0.052 35 

2 C24 19.5 20.7 21.8 0.042 21.4 

3 C35 32.0 33.4 33.7 0.052 35 

3 C24 20.4 21.3 22.2 0.046 21.4 

 

Also, the mean value of the calculated p(i)-values of the simulations is given for every 

grade. A remarkable finding is that there is a big difference between the C35 –values for 

simulations 1, 2 and 3. The mean p(i)- values are close to 0.05. Since we know that the 

parent distribution is the same for all three simulations, this is apparently the variation that 

can be expected for 5% fractiles of samples from the parent sample. According to the 

current EN 14081-2 procedure (for which the settings are found by trial and error), 

settings for C35 for simulations 2 and 3 would have to be raised, and for simulation 1 

could be lowered. With the developed method in this thesis would not be done, all these 3 

different observations would be accepted. In figure 3.22 the calculated absolute errors for 

a 90% -confidence interval for the 5% fractile of the theoretical distribution of C35 (a 

value of 35 N/mm2) are shown. They are plotted against the sample size.  

As expected, figure  3.22 shows, that for smaller sample sizes the error interval increases. 

This graph is only valid for the error interval at the 5%  fractile of theoretical distribution 

for the grade C35 derived in this example. For other distributions (between other IPfm-

limits) the error intervals may be different. Figure 3.22  shows that for samples of n=300 

an absolute error of approximately 2 N/mm2 can be expected for 90% of the samples. (So 

for 90% of the samples with n=300, a 5% fractile between 33 and 37 can be expected). 

For the number of specimens in the grade C35 in this example - around 45 - an error of at 

least 4.0 N/mm2 can be expected. The 5% fractiles found in table 3.7 are then not illogical.  

Figure 3.22 shows that the approximation of the absolute error according to equation 

(3.42) does not deviate much from the absolute error derived from simulations from the 

theoretical distribution. 
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Figure 3.22. The absolute errors for a 90% -confidence interval for the 5% fractile of the 

theoretical distribution of C35 (35 N/mm2) based on simulations and by applying equation 

(3.42). 

 

To be on the safe side, results for the 5% fractiles of samples with n=300, found with the 

method of ranking,  should be reduced by 2 N/mm2, if a 90% interval is chosen. Mostly, a 

confidence interval of 75% is used. This would give a slightly  lower error. However, on 

the other hand, when the sample is not used to derive the 5% fractiles but to verify a 

sample, and a 5% fractile between 33 and 37 is found, then with 90% probability it cannot 

be stated that the sample does not come from a population with a 5% fractile of 35 

N/mm2. This last observation will be used to verify the settings derived according to the 

example. Not only at the 5% fractile level but the entire distribution will be used to 

evaluate samples.  

The C35-distribution of the 3 simulations is compared with the theoretical distribution of 

C35.  Therefore the 3 simulations are plotted together with the calculated upper and lower 

limit to create a 90% interval for a sample size of 45 pieces. In this case the method of 

determining the 90% interval is the method of ranking. See figure 3.23. Sample sizes are 

44 (simulation 1), 39 (simulation 2) and 54 (simulation 3). When there are more pieces in 

a grade, the 90% confidence limit will be smaller, see also figure 3.22.  

Figure 3.23  shows that these 3 simulations of which we are certain that  they  are random 

samples from the theoretical population, stay within the 90% limit lines over the entire 

distribution, but locally the distribution can show considerable deviations from the 

theoretical one.  
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Figure 3.23. Distributions of C35 for simulations 1, 2 and 3 and the 90% confidence 

interval for the theoretical distribution. 

 

For large numbers of specimens in a sample, the ranking method will eventually coincide 

with the theoretical distribution, but for the numbers that are dealt with in practice, all 

methods for determining the 5% fractiles of a grade are only an indication of the 5% of 

the distribution they are taken from. 

3.4.4 Discussion and conclusions 

A new method for the derivation of settings for grading machines is presented in section 

3.4. 2. The determination of the settings is based on the distribution properties of the non-

destructive Indicating Property and the residuals around the regression lines with the 

bending strength. The method avoids the problem of interpreting the 5% fractiles of 

graded samples with relatively small samples sizes. 

The following can be concluded: 

 Literature review indicates that the distribution of graded and ungraded timber can 

be well described by a statistical distribution. 

 The accuracy of the 5% fractiles of grades very much depends on the number of 

pieces in the grade for the numbers that occur in machine grading. Simulations 

show that this therefore also has a great influence on the determination of settings 

with the current method. 

 The proposed method is based on model properties and is less sensitive for small 

number of pieces in grades. To evaluate the method, the whole distribution of the 

grade can be compared with the theoretical distribution, for which an expected 

confidence level can be calculated. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20 30 40 50 60 70 80

cd
f

fmstat (N/mm2)

C35 theory

C35 low limit 90% c.i.

C35 high limit 90% c.i.

C35 sim1 

C35 sim2

C35 sim3



102 

 

 In this thesis, the proposed method will be used to calculate settings for machine 

grading in combination with the prediction models to be derived. 

Examples of the method described in this section on real data can be found in Ravenshorst 

and Van de Kuilen (2014). 
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4  

Experimental results 

4.1 Basic test results 

In this section,  the basic test results are presented. 

 

Basic test results for the dataset of tropical hardwoods. 

 

In table 4.1, the properties for which quantified measured data for every specimen is 

available are given for every sample according to table 3.1. When the cell is denoted with 

“Y” (for Yes), then quantified data are available for every specimen. When no quantified 

data are present still all pieces are visually assessed according to the methods described in 

chapter 3. An overview of the pieces that did not pass this visual assessment is listed in 

appendix B. They are  removed from the analysis and not included in the given property 

tables. Samples GR4 and MAS5 where split into two where one half was tested dry 

(around 12%-15% moisture content) and the other half was tested above fiber saturation 

point. Sample GR4 was also divided in pieces containing knots and pieces with no knots.  

In table 4.2 the mean and standard deviations for the bending strength, MOElocal , 

MOEglobal and MOEdyn for the tropical hardwood samples are given. Table 4.3 shows the 

mean and standard deviation for the density, the moisture content, the knot ratio and the 

slope of grain for the tropical hardwood samples. In tropical hardwood timber, knots are 

more rare than in temperate hardwoods and softwoods, and when they occur, there is 

usually only one present in the beam. The mean and standard deviation of the knot ratios 

given un in table 4.3 only take into account  the pieces containing knots. 

For all knot ratios listed  in table 4.3, the single knot ratio (SKR) is given. 

All MOE values were rounded to 100 N/mm2, al density values to 10 kg/m3. All bending 

strength values and moisture content values were rounded to 0.1 N/mm2. For the knot 

ratios and slopes of grain the values were rounded to two decimal numbers after the 

decimal point. 
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Table 4.1. Available test data per test specimen for tropical hardwood samples 

Sample 

ID 

Density 

(ρ) 
m.c. MOEdyn MOEloc MOEglob 

Knot ratio 

(SKR) 

Slope of 

grain (SoG) 

AV1 Y Y Y Y    

AV2 Y Y Y  Y   

AV3 Y Y Y  Y   

AV4 Y Y Y Y Y   

AV5 Y Y Y Y Y   

CUM1 Y Y Y Y    

CUM1 Y Y Y Y Y   

CUM3 Y Y Y Y Y   

CUM4 Y Y Y Y Y   

CUM5 Y Y Y Y Y   

MAS1 Y Y Y Y Y   

MAS2 Y Y Y Y Y   

MAS3 Y Y Y Y Y   

MAS4 Y Y Y Y Y Y Y 

MAS5 Y Y Y  Y Y Y 

AZ1 Y Y   Y   

AZ2 Y Y Y Y Y   

AZ3 Y Y Y Y Y   

GR1 Y Y Y  Y   

GR2 Y Y Y Y Y   

GR3 Y Y Y Y Y   

GR4 Y Y Y Y Y Y Y 

OK1 Y Y Y Y Y   

OK2 Y Y Y  Y Y Y 

OK3 Y Y Y  Y Y Y 

KA1 Y Y Y Y    

NA1 Y Y Y Y    

PI1 Y Y Y Y    

VI1 Y Y Y Y    

BAS1 Y Y Y Y    

BAN1 Y Y Y Y    

SV1 Y Y Y Y Y   

CR1 Y Y Y  Y   

LA1 Y Y Y  Y   

LF1 Y Y Y  Y   

PU1 Y Y Y Y    

TV1 Y Y Y Y Y   

FA1 Y Y Y Y Y   

SA1 Y Y Y Y Y   

FP1 Y Y Y Y Y   

BIL1 Y Y Y  Y Y Y 

BIL2 Y Y Y  Y Y Y 

EV1 Y Y Y  Y Y Y 

EV2 Y Y Y  Y Y Y 

TA1 Y Y Y  Y Y Y 

TA2 Y Y Y  Y Y Y 
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Table 4.2. Test data for the bending strength, MOElocal , MOEglobal and MOEdyn for the 

tropical hardwood samples. Mean      and standard deviations (s)  of every property. 

Sample 

ID 
fm (N/mm

2
) MOEloc (N/mm

2
) MOEglob (N/mm

2
) MOEdyn(N/mm

2
) 

 
    s     s     s     s 

AV1 82.8 16.9 1600 1800 - - 18900 1900 

AV2 103.0 16.6 - - 17000 1800 20400 1700 

AV3 97.8 22.8 - - 16600 3100 19700 3200 

AV4 98.9 23.2 20000 3200 16400 2100 21400 2800 

AV5 79.2 15.7 14800 3800 13100 2000 17000 2500 

CUM1 102.8 21.2 18300 2900 - - 21200 3100 

CUM1 107.3 24.1 19500 4500 17400 3400 20900 4100 

CUM3 117.7 15.9 20700 2600 17800 1900 21300 2300 

CUM4 87.1 18.3 18400 3000 15600 2000 20400 3000 

CUM5 79.8 18.4 17500 3300 14500 1700 19500 2500 

MAS1 124.2 17.7 24700 8600 - - 21600 2200 

MAS2 96.5 16.6 19100 2500 20300 2600 20000 2300 

MAS3 64.4 15.3 - - 11200 2000 13600 2300 

MAS4 119.1 23.2 - - 19100 2500 25100 3500 

MAS5 109.5 34.6 - - 21700 3700 24600 3700 

AZ1 93.8 14.7 - - 17000 2200 20700 2700 

AZ2 80.7 12.5 16900 2700 13700 1700 17700 2000 

AZ3 111.6 20.1 21700 3100 18700 2400 21200 2700 

GR1 102.1 12.2 - - 19400 2300 23400 2700 

GR2 91.4 21.0 23400 3900 19600 3000 23500 3700 

GR3 80.7 18.0 27200 3300 19500 2300 26400 2900 

GR4 92.3 26.7 24800 4500 21700 4500 24600 2900 

OK1 75.7 11.8 17000 5100 - - 18000 1700 

OK2 58.2 17.6 - - 13800 2700 18000 3800 

OK3 81.6 18.7 - - 16800 2600 19500 3200 

KA1 65.6 9.2 15800 2300 - - 18900 2200 

NA1 75.3 13.6 18200 3900 - - 17000 2000 

PI1 63.3 14.2 18600 5700 - - 16200 2400 

VI1 58.4 9.7 13100 2100 - - 13700 1600 

BAS1 61.3 17.0 17700 5300 - - 18100 2000 

BAN1 91.4 18.2 20400 3500 - - 21000 2500 

SV1 79.9 16.7 17400 3900 16100 3300 18800 3700 

CR1 87.6 10.3 - - 15400 1300 18100 1600 

LA1 81.8 15.6 - - 15300 2600 17600 3200 

LF1 81.7 13.7 - - 18300 2500 21600 3000 

PU1 84.3 17.0 18600 2200 - - 19400 1700 

TV1 60.0 12.1 13500 4800 14800 3600 15100 2200 

FA1 76.7 19.0 17300 2100 15400 1600 18900 2400 

FP1 89.1 16.1 19300 2300 16900 1800 20900 2500 

SA1 71.9 14.3 15700 3100 14100 2400 17200 2500 

BIL1 36.6 9.3 - - 10500 1400 12900 1100 

BIL2 47.6 17.8 - - 11800 2800 13200 3300 

EV1 128.2 28.5 - - 24700 1900 28000 1500 

EV2 100.6 16.8 - - 18500 1800 23000 2300 

TA1 71.4 14.8 - - 14100 1200 17800 1400 

TA2 63.3 15.9 - - 14300 1700 16800 1800 
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Table 4.3. Test data for the density, the moisture content,  the knot ratio and the slope of 

grain for the tropical hardwood samples. 

Sample  

 
Density ρ (kg/m

3
) m.c. (%) Knot ratio (SKR) Slope of grain (SoG) 

 
    s     s     s     s 

AV1 1070 50 15.0 1.6 - - - - 

AV2 1260 40 35.2 2.6 - - - - 

AV3 1240 40 30.2 4.3 - - - - 

AV4 1220 50 30.0 0.0 - - - - 

AV5 1200 60 30.0 0.0 - - - - 

CUM1 1080 60 20.3 3.6 - - - - 

CUM1 1010 80 15.9 1.1 - - - - 

CUM3 1060 80 16.8 2.7 - - - - 

CUM4 950 70 15.6 1.1 - - - - 

CUM5 970 60 16.5 1.1 - - - - 

MAS1 1100 50 20.7 2.5 - - - - 

MAS2 1070 50 18.8 2.3 - - - - 

MAS3 1030 40 16.9 0.0 - - - - 

MAS4 1110 60 19.8 4.5 0.05 0.04 0.07 0.05 

MAS5 1130 110 23.9 12.2 0.11 0.10 0.05 0.03 

AZ1 1240 50 42.6 4.3 - - - - 

AZ2 1190 40 41.9 5.5 - - - - 

AZ3 1130 30 30.9 2.1 - - - - 

GR1 1160 60 27.9 2.9 - - - - 

GR2 1070 70 25.0 5.3 - - - - 

GR3 1040 50 25.5 5.5 - - - - 

GR4 1030 60 19.6 6.9 0.25 0.13 0.08 0.03 

OK1 990 80 18.4 0.9 - - - - 

OK2 1060 60 15.0 0.0 0.08 0.04 0.34 0.23 

OK3 940 150 16.3 2.3 0.15 0.13 0.21 0.11 

KA1 930 60 50.3 12.9 - - - - 

NA1 740 70 15.7 6.5 - - - - 

PI1 940 50 36.9 15.3 - - - - 

VI1 910 80 41.6 7.7 - - - - 

BAS1 940 110 47.9 12.4 - - - - 

BAN1 940 50 16.2 5.0 - - - - 

SV1 930 60 19.5 3.7 - - - - 

CR1 850 50 17.1 0.0 - - - - 

LA1 810 100 19.3 0.0 - - - - 

LF1 970 50 22.5 0.0 - - - - 

PU1 820 100 16.9 0.8 - - - - 

TV1 740 30 21.0 2.8 - - - - 

FA1 860 70 32.0 5.6 - - - - 

FP1 920 90 19.8 2.8 - - - - 

SA1 720 50 17.6 3.2 - - - - 

BIL1 870 40 33.4 10.2 0.12 0.04 0.38 0.24 

BIL2 740 50 13.9 1.4 0.05 0.03 0.32 0.18 

EV1 1030 40 10.4 1.1 0.14 0.09 0.07 0.04 

EV2 1020 50 16.8 4.6 0.12 0.08 0.13 0.07 

TA1 910 60 15.0 0.0 0.10 0.04 0.24 0.20 

TA2 990 60 23.6 7.4 0.15 0.07 0.23 0.11 
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Basic test results for the dataset of temperate European hardwoods. 

 

In table 4.4.  the properties that quantified data for every specimen is available for, are 

given for every temperate hardwood  sample, as listed in table 3.2. 

In table 4.5. the mean and standard deviations for the bending strength, MOElocal , 

MOEglobal and MOEdyn for the temperate  hardwood samples are given. In table 4.6. the 

mean and standard deviation for the density, the moisture content and the knot ratio for 

the temperate hardwood samples are listed.  For all knot ratios listed the single knot ratio 

(SKR) is given. 

Table 4.4. Available test data per test specimen for temperate hardwood samples. 

Sample ID Density (ρ) 

(ρ) 

m.c. MOEdyn MOEloc MOEglob Knot ratio (SKR) 

((SKR) O1 Y Y Y Y  Y 

O2 Y Y Y Y  Y 

R1 Y Y Y Y  Y 

C1 Y Y Y Y Y  

 

 

Table 4.5. Test data for the bending strength, MOElocal , MOEglobal and MOEdyn for the 

temperate hardwoods samples. Mean      and standard deviations (s) of every property. 

Sample 

ID   
fm (N/mm

2
) MOEloc (N/mm

2
) MOEglob (N/mm

2
) MOEdyn(N/mm

2
) 

 
    s     s     s     s 

O1 42.0 6.8 9300 1600 - - 11200 1800 

O2 38.8 10.4 8600 3500 - - 9000 2400 

R1 66.1 14.8 15400 1900 - - 15800 1700 

C1 55.1 14.1 12800 2200 11600 1600 14100 2000 

 

Table 4.6. Test data for the density, the moisture content and the knot ratio for the 

temperate hardwood samples 

Sample 

ID 
Density ρ (kg/m

3
) m.c. (%) Knot ratio (SKR) 

 
    s        s    

O1 930 60 69.6 8.3 0.14 0.15 

O2 790 70 32.5 9.9 0.37 0.29 

R1 750 50 22.1 4.1 0.10 0.07 

C1 590 50 13.4 1.3 - - 
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Basic test results for the dataset of European softwoods. 

 

In table 4.7, the properties for which quantified data for every specimen is available, are 

given for every European softwood sample. 

In table 4.8, the mean and standard deviations for the bending strength, MOElocal , 

MOEglobal and MOEdyn for the European softwood samples are given. In table 4.9, the 

mean and standard deviation for the density, the moisture content and the knot ratio the 

European softwood samples are given. For all knot ratios the single knot ratio (SKR) is 

given, except for sample D1 where the group knot ratio (GKR) is given. 

Table 4.7. Available test data per test specimen for softwood samples 

Sample ID 

Sample ID 

Density (ρ) 

(ρ) 

m.c. MOEdyn MOEloc MOEglob Knot ratio (SKR or (GKR) 

((SKR) S1 Y Y Y Y  Y (SKR) 

S2 Y Y Y Y   

S3 Y Y Y  Y  

S4 Y Y Y Y   

S5 Y Y Y Y Y  

S6 Y Y Y Y Y  

S7 Y Y Y Y   

S8 Y Y Y Y   

D1 Y Y Y Y  Y (GKR) 

L1 Y Y Y Y  Y (SKR) 

L2 Y Y Y Y  Y (GKR) 

 

Table 4.8. Test data for the bending strength, MOElocal , MOEglobal and MOEdyn for the 

European softwoods samples. Mean      and standard deviations (s) of every property 

Sample 

ID 
fm (N/mm

2
) MOEloc (N/mm

2
) MOEglob (N/mm

2
) MOEdyn(N/mm

2
) 

 
    s     s     s     s 

S1 37.0 10.4 10600 2400 - - 11600 2000 

S2 41.8 14.4 11900 2900 - - 13100 2500 

S3 38.2 12.4 - - 10000 2300 12500 2400 

S4 42.9 13.1 11000 2500 - - 11800 2300 

S5 41.9 8.2 13500 2700 10600 1800 13000 2100 

S6 42.1 10.5 12900 2800 10800 1800 12800 2300 

S7 62.5 9.6 16100 2000 - - 16400 2200 

S8 46.3 10.4 8600 2500 - - 11000 2100 

D1 48.6 17.0 13300 3200 - - 14100 3100 

L1 48.4 10.5 10400 2400 - - 10400 1900 

L2 55.7 14.2 14700 4500 - - 14300 2200 
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Table 4.9. Test data for the density, the moisture content and the knot ratio for the 

European softwood samples 

Sample 

ID 
Density ρ (kg/m

3
) m.c. (%) Knot ratio (SKR) 

 
 s        s    s 

S1 440 40 12.1 2.7 0.29 0.14 

S2 440 50 12.0 1.3 - - 

S3 460 40 15.1 0.9 - - 

S4 430 40 12.0 0.3 - - 

S5 480 50 17.1 0.8 - - 

S6 450 50 14.2 1.6 - - 

S7 520 50 17.0 1.0 - - 

S8 440 50 12.6 1.2 - - 

D1 580 60 13.6 1.8 0.24 0.12 

L1 530 60 13.7 1.6 0.09 0.06 

L2 620 60 14.4 3.7 0.28 0.23 
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4.2 Relationships between unadjusted properties  

In this section, scatterplots with the relationships between the measured material 

properties are given. In general, two plots are given for the relationship between two 

properties. One plot with datapoints from all three datasets (tropical hardwoods, European 

temperate hardwoods and European softwoods) together with the linear regression line 

derived by a least squares regression. In the plots the equation of the linear regression line 

and the coefficient of determination r2 are given. The second plot gives the same data but 

now with the three datasets indicated separately. 

 

 

 

Figure 4.1. Scatterplots of the bending strength fm  against the density ρ. 
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Figure 4.2. Scatterplots of the MOEdyn against the density ρ . 
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Figure 4.3. Scatterplots of the bending strength against the MOEdyn 

 

The regression lines and coefficients of determination r2 that are connected with the 

datasets are: 

- Tropical hardwoods:    y=0.0045x-2.74.  r2=0.50. 

- European temperate hardwoods:   y=0.0031x+11.7.  r2=0.38. 

- European softwoods:    y=0.0036x-2.95.  r2=0.48. 
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Figure 4.4. Scatterplots of the bending strength (above) and the MOEdyn (below) against 

the slope of grain (SoG) for tropical hardwoods only. 
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Figure 4.5. Scatterplots of the bending strength (above) and the MOEdyn(below) against 

the knot ratio for all datasets. 

The regression lines and coefficients of determination r2 that are connected with the 

datasets are: 

Figure 4.5 (above): bending strength against KR. 

- Tropical hardwoods:    y=-86.2x+99.9.  r2=0.08. 

- European temperate hardwoods:   y=-44.6x+56.6.  r2=0.18. 

- European softwoods:    y=-26.1x+51.9.  r2=0.21. 

Figure 4.5 (below): MOEdyn against KR. 

- Tropical hardwoods:    y=-21734x+22442.  r2=0.0024. 

- European temperate hardwoods:   y=-40134x+11882.  r2=0.01. 

- European softwoods:    y=-5297x+14359.  r2=0.08. 

The regression values are in N/mm2. 
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Figure 4.6. Scatterplots of the MOElocalagainst the MOEdyn . 

 

The regression lines and coefficients of determination r2 that are connected with the 

datasets are (the regression lines are forced through the origin): 

- Tropical hardwoods:    y=0.95x.  r2=0.71. 

- European temperate hardwoods:   y=0.92x.  r2=0.65. 

- European softwoods:    y=0.95x.  r2=0.69. 

The regression values are in N/mm2. 
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Figure 4.7. Scatterplots of the MOEglobal against the MOEdyn . 

 

The regression lines and coefficients of determination r2 that are connected with the 

datasets are (the regression lines are forced through the origin): 

- Tropical hardwoods:    y=0.83x.  r2=0.77. 

- European temperate hardwoods:   y=0.82x.  r2=0.60. 

- European softwoods:    y=0.81x.  r2=0.65. 

The regression values are in N/mm2. 
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Figure 4.8. Scatterplots of the MOElocal against the MOEglobal . 

 

The regression lines and coefficients of determination r2 that are connected with the 

datasets are (the regression lines are forced through the origin): 

- Tropical hardwoods:    y=1.14x.  r2=0.70. 

- European temperate hardwoods:   y=1.23x.  r2=0.78. 

- European softwoods:    y=1.11x.  r2=0.78. 

The regression values are in N/mm2. 
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Figure 4.9. Scatterplots of the bending strength fm (above) and the MOEdyn(below) against 

the height of the test specimens for all datasets. 

 

 

 

The scatterplots show that the relationship of the visually measured properties knot ratio 

and slope of grain with the bending strength and MOE give low correlations with a large 

spread. From figure 4.4 (bending strength and MOEdyn against the slope of grain) it is clear 

that increasing slope of grain for tropical hardwoods has a reducing effect on the bending 
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strength and MOEdyn, but that the scatter is too large to be used in (species independent) 

grading. The main reason for this is that the measurement of the exact slope of grain (even 

after the destructive tests) is very difficult.  

This is explained in figures 4.10 and 411. It must be emphasized that the measurements 

shown in figures 4.10 and 4.11 were made in the laboratory, and are not an assessment in 

practice where it is only decided whether the slope of grain of a beam is within accepted 

limits or not. For the grading in practice, all pieces were assessed to meet the requirements 

for the visual grade. 

The slope of grain is measured before (denoted as α2 in figure 3.7.)  and after the bending 

test (denoted as a α1 in figure 3.7.)  Since the fracture line follows the grain direction, the 

slope of grain measured after the bending test is the most accurate one and regarded as the 

real slope of grain. Figure 4.10 shows two things. Firstly that the slope of grain measured 

after the bending test cannot be accurately predicted from measurements before the 

bending test. Secondly that the slope of grain after the bending test can be very large 

compared to the accepted values (maximum measured slope of grain after the bending test 

is 0.45, where 0.1 is the limit).  When this was noticed in practice, the pieces with a slope 

of grain higher than 0.1 before testing should be removed from the analysis. However, 

because of the low predictability, this would not have had affected the outcome of the 

analysis of the strength properties at all. 

 

Figure 4.10  Slope of grain measured before and after the bending test for sample OK3 

(okan) 

 

Figure 4.11 shows pieces of greenheart, sample GR4. These pieces were cut from pieces 

from sample GR3, so already a better indication of the slope of grain could be obtained 

before testing the pieces of sample GR4. This results in a somewhat better prediction 

capability, but still there is a large scatter.   
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Figure 4.11 Slope of grain measured before and after the bending test for sample GR4 

(greenheart) 

 

In figure 4.12, an example of the difficulty of visual grading of tropical hardwoods 

concerning slope of grain in practice is given. Three beams with the commercial name 

eyoum (test results are not included in this thesis)  are shown. Assessment of the slope of 

grain is very difficult; all beams would probably pass the visual grading. By measuring 

the density and the MOEdyn, the slope of grain can be recalculated with the Hankinson 

equation. Although the density-values of the 3 beams are very similar, the MOEdyn varied 

between 16600 N/mm2 and 22700 N/mm2. When  the slopes of grains are recalculated 

with realistic constants in the Hankinson equations this leads to values between 0.08 and 

0.17.  These differences will have a significant influence on the bending strength values 

from a destructive test. For realistic constants in the Hankinson equation for the bending 

strength, for a slope of grain of 0.17, a bending strength value of approximately 65% of 

the bending strength value for a slope of grain of 0.08 is expected. For the tests performed 

on the presented beams, this percentage was 100*(93.5/133.1) = 70%. This shows that a 

wrong assessment of the slope of grain can have a significant effect on the actual strength 

compared with the expected strength. 
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Figure 4.12. Measured density, MOEdyn and estimated slope of grain for three Eyoum 

beams 

 

From evaluation the slope of grain measurements it can be concluded that it is very 

difficult to determine the slope of grain values from visual assessment. This does not 

mean that the slope of grain is not the cause of the reduction in strength and stiffness, only 

that it is not measurable in a way that it can be used in grading. This will be further 

investigated in chapter 5. 

 

The slope of grains addressed in figures 4.10, 4.11 and 4.12 are measured on the large size 

of the specimen (parallel to the load direction in the bending test). So, these are 2D 

measurements. For the sample of GR 4 (figure 4.11) the slope of grain of each piece was 

measured on all sides, so parallel and perpendicular to the loading direction. With these 

measurements the 3D slope of grain could be calculated. However, this calculated 3D 

slope of grain gave worse correlations with the bending strength than the 2D slope of 

grain. The reason for this is the difficulty of performing accurate slope of grain 

measurements, even after failure of the specimen in the test. 
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Figure 4.3 shows that the MOEdyn has a good potential to be used as a species independent 

grading parameter for structural timber, although it must be investigated whether the 

prediction capability and scatter around the regression line is the same for all datasets. The 

relationships and scatter,  however, are different than for small size clear wood (compare 

with figure 2.7). These differences must be investigated. 

Comparing figures 4.1 and 4.2 with figures 2.5 and 2.6 for small size clear wood it 

becomes clear that for structural timber the density as a single parameters is not a good  

predictor for strength and stiffness. There is certainly a trend that the strength and stiffness 

increase with increasing density, but because there is a lot of scatter, density on its own is 

not suitable for (species independent) grading for structural timber.  

Figures 4.6 and 4.7 show that there is a good correlation of the MOEdyn with both the 

MOElocal and MOEglobal, and that these relations can be assumed to be species independent. 

In practice, MOEdyn will be used as a grading parameter.  MOElocal is the parameter the 

value of which has to be evaluated against the strength class values. Where no MOEdyn –

values are available, they will be calculated from the values of MOElocal or MOEglobal. 

When there are no MOElocal values, they will be calculated from MOEglobal. The following 

equations will be applied. These equations can be used in both directions. 

 

                             (4.1) 

 

                              (4.2) 

 

                               (4.3) 

 

Because the influence of moisture content is expected to be the same for all three of these 

MOE measurements, equations (4.1), (4.2) and (4.3) are applicable at every moisture 

content. 

4.3 Adjustments of basic test data to reference moisture content and size. 

For the strength classes defined in EN 338, a reference moisture content of 12% is used 

and a reference height of 150 mm. The test results therefore have to be adjusted to these 

reference values. 

Density 

The equations for the adjustment of the density are given in section 3.2.1 

MOE 

For the MOE, no size effect is expected according to the Weibull theory, because the 

MOE is determined in the elastic range of the test, and not at failure. 
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To determine the influence of moisture content on the MOE, in principle two similar 

samples with different moisture contents could be compared. In practice, however, this is 

not possible, because it is difficult to find two samples that are similar in slope of grain 

and in density. Therefore, from 54 pieces of sample GR4 and 25 pieces of sample MAS5  

the MOEdyn was measured at high moisture content, and also after the pieces were dried. 

The results are given in table 4.10. All values given are mean values. 

 

Table 4.10. Mean values for MOEdyn at two moisture content levels 

Sample ID 
m.c.dry 

(%) 

MOEdyn dry 

(N/mm
2
) 

 

m.c.wet 

(%) 

MOEdyn wet 

(N/mm
2
) 

 

MOEdyn,dry/ 

MOEdyn;wet 

n= 

GR4A 15.0 26800 25.0 23900 1.12 36 

GR4B 15.0 24800 25.0 22300 1.11 18 

MR5 12.0 25800 35.9 22000 1.17 25 

 

Sample GR4 contained specimens without knots, and specimens with knots. They were 

divided in GR4A for the pieces with knots and  GR 4B for the pieces without knots. Table 

4.10 shows that the mean MOEdyn is lower for the pieces with knots, but that the ratio 

between the MOEdyn,dry and MOEdyn,wet is practically the same.    

 

The adjustment equation to be used is: 

                        𝑘  
                  

  
      (4.4) 

For kmc = 0.13 for samples GR4A and GR4B a ratio of 1.11 is found between the 

calculated MOEdyn,12% and MOEdyn,wet and for sample MR5 a ratio of 1.15. The value of 

0.13 is therefore on the safe side and will be used in equation (4.4) to adjust the MOEdyn 

values to 12%. This equation will also be applied to the MOElocal and MOEglobal. 

 

Bending strength. 

Evaluating the top plot of figure 4.9 there seems to be no clear size effect for structural 

timber, at least not for size as a parameter on its own. To investigate the size effect on 

structural timber, similar groups have to be formed and compared. Based on visual 

characteristics, this is very difficult as explained before. Similar groups can be made by 

creating a model with the properties that predict the bending strength well, like the MOE. 

This will be investigated in chapter 5 (section 5.3) where for specific wood species more 

data with different dimensions and moisture contents are prepared, tested and analysed.  

Anticipating on chapter 5, the outcomes will already be presented here, to make it possible 

that these adjustments can already be used to analyse results of visual grading. 

The outcome of the analysis is that there is no significant size effect for structural timber 

of sizes larger than 75 mm. This is valid for both softwoods and hardwoods. 
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As to the moisture content correction, there is not enough data on structural timber with 

high moisture content for softwoods and temperate hardwoods to be included in the 

modelling.  

In Green and Evans (2001) an overview is given of the adjustments for changing moisture 

content for several properties for clear wood and structural softwood  timber. Where for 

small sized clear wood the bending strength increases with decreasing moisture content at 

the 5% fractiles of the distribution, for structural timber it is different. For structural 

timber it is observed that for low values of the 5% fractiles there is almost no difference 

with changing moisture content, whereas for higher values of the 5% fractiles an increase 

is observed for decreasing moisture content.  

An explanation for the fact that the 5% fractiles almost does not change for low values is 

that these pieces contain larger sized knots and the influence of these knots on the failure 

strength is much larger than the influence of the moisture content.  

For that reason in EN 384 no adjustment factor for moisture content is allowed on the 

bending strength. Also in this thesis for the softwood and temperate hardwood species, 

which contain knots, no adjustment is made for the bending strength values. 

For tropical hardwoods, where knots are very rare and the slope of grain is the main 

failure mechanism, the influence of moisture content might have an influence. The 

outcome of the modelling in chapter 5 confirms this. The outcome is the following 

adjustment equation, which is valid for the pieces of tropical hardwoods: 

 

              𝑘    
                  

  
       (4.5) 

For kb,mc a value of 0.15 is found. This value will be used for adjustments for tropical 

hardwoods.  

4.4 Adjustments test data to a reference moisture content of 12% and a height 

of 150 mm. 

In this section, the basic test data is adjusted to a reference moisture content of 12% and a 

height of 150 mm. The adjustment factors presented in section 4.3. have been used. 

 

The mean and standard deviations for the bending strength, the MOEloc, the MOEdyn and 

the density are presented for the datasets of European softwoods,  European temperate 

hardwoods and tropical hardwoods. 
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Table 4.11. Properties of tropical hardwoods adjusted to 12% m.c. Mean      and standard 

deviations (s)  of every property. 

Sample 

ID 
fm (N/mm

2
) MOEloc (N/mm

2
) MOEdyn(N/mm

2
) Density ρ (kg/m

3
) 

 
    s     s     s     s 

AV1 85.8 17.7 16500 1800 19500 1900 1050 50 

AV2 121.2 19.5 22200 1800 23400 1900 1120 40 

AV3 114.7 26.9 21500 3500 22600 3700 1140 50 

AV4 116.4 27.3 23000 3600 24600 3200 1130 50 

AV5 93.2 18.4 17000 4400 19500 2900 1110 50 

CUM1 113.6 24.2 20000 3100 23100 3300 1040 60 

CUM1 112.4 25.3 20300 4600 21700 4200 990 80 

CUM3 124.4 16.2 21800 2800 22300 2500 1040 80 

CUM4 90.9 19.1 19000 3200 21200 3200 930 70 

CUM5 84.2 19.7 18400 3500 20400 2700 940 60 

MAS1 138.0 20.8 26900 9300 23600 2600 1060 40 

MAS2 104.9 18.5 20500 2700 21500 2500 1040 50 

MAS3 68.2 16.2 13500 2300 14300 2500 1000 40 

MAS4 130.6 24.0 25800 3500 27200 3700 1070 60 

MAS5 117.1 30.6 24900 2900 26200 3100 1050 60 

AZ1 110.3 17.3 22300 2900 23500 3100 1030 20 

AZ2 94.9 14.9 19400 3100 20300 2300 1000 60 

AZ3 131.3 23.7 24900 3500 24400 3100 1030 30 

GR1 119.8 14.4 25500 3000 26800 3100 1080 50 

GR2 104.3 22.6 26200 3900 26300 3800 1000 60 

GR3 92.5 20.3 30600 3700 29700 3300 980 50 

GR4 100.2 27.8 26600 4900 26400 2800 1000 50 

OK1 81.7 12.8 18200 5500 19200 1900 960 80 

OK2 60.3 18.3 17600 3700 18600 3900 1040 60 

OK3 85.9 19.5 19300 3100 20300 3300 920 150 

KA1 77.2 10.9 18100 2700 21700 2600 740 60 

NA1 77.9 14.1 18700 4100 17500 2000 730 70 

PI1 74.4 16.4 21400 6500 18600 2700 830 80 

VI1 68.6 11.4 15100 2400 15700 1800 770 60 

BAS1 72.0 19.9 20300 6100 20800 2300 750 50 

BAN1 95.9 20.3 21200 3800 21800 2700 920 60 

SV1 87.5 18.7 18700 5000 19900 4900 890 60 

CR1 93.1 10.9 18100 1600 19100 1700 830 50 

LA1 89.3 17.0 18000 3300 18900 3500 780 90 

LF1 93.0 15.6 22900 3200 24100 3400 920 50 

PU1 89.3 17.7 19600 2300 20400 1800 800 100 

TV1 66.9 13.4 15900 3600 16600 2500 710 30 

FA1 89.8 22.5 19800 2400 21600 2800 770 60 

FP1 98.0 18.5 20900 2600 22700 2800 890 80 

SA1 76.9 16.0 16600 3400 18200 2800 700 50 

BIL1 42.8 10.8 14000 1200 14700 1300 770 30 

BIL2 48.7 18.1 12800 3200 13500 3400 730 50 

EV1 128.3 28.5 26600 1500 28000 1500 1040 40 

EV2 105.8 16.4 22800 2100 24000 2300 990 50 

TA1 73.9 15.3 17500 1400 18400 1500 890 60 

TA2 70.8 18.4 17600 2000 18500 2100 930 50 
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Table 4.12. Properties of temperate European hardwoods adjusted to 12% m.c. 

batch fm (N/mm
2
) MOEloc (N/mm

2
) MOEglob (N/mm

2
) Density ρ (kg/m

3
) 

 
    s     s     s     s 

O1 42.0 6.8 10700 1900 12900 2000 620 30 

O2 38.8 10.4 9800 4000 10300 2800 680 70 

R1 66.1 14.8 17000 2100 17400 2000 700 40 

C1 55.1 14.1 13000 2300 14300 2000 580 50 

 

 

 

Table 4.13. Properties of European softwoods adjusted to 12% m.c. 

batch fm (N/mm
2
) MOEloc (N/mm

2
) MOEdyn(N/mm

2
) Density ρ (kg/m

3
) 

 
    s     s     s     s 

S1 37.0 10.4 10600 2400 11600 2000 440 40 

S2 41.8 14.4 12000 2900 13200 2500 440 50 

S3 38.2 12.4 12300 2400 12900 2500 450 40 

S4 42.9 13.1 11000 2500 11800 2300 430 40 

S5 41.9 8.2 14200 2900 13700 2300 470 50 

S6 42.1 10.5 13200 2800 13100 2300 440 50 

S7 62.5 9.6 16900 2100 17200 2300 500 50 

S8 46.3 10.4 8700 2500 11100 2100 440 40 

D1 48.6 17.0 13500 3300 14300 3100 570 60 

L1 48.4 10.5 10600 2500 10600 2000 520 60 

L2 55.7 14.2 15100 4600 14700 2200 610 60 

 

  

 

In figure 4.13, bending strength values adjusted to 12% m.c. are plotted against the 

density values adjusted to 12% m.c. 

In figure 4.14, MOEdyn values adjusted to 12% m.c. are plotted against the density values 

adjusted to 12% m.c. 

In figure 4.15,  MOEdyn values adjusted to 12% m.c. are plotted against the bending 

strength values adjusted to 12% m.c. 

The prediction capability of the MOEdyn for the bending strength at 12% is comparable 

with that of the basic test results. It is clear that the MOEdyn has the greatest potential as a 

strength predicting parameter. Whether this can be totally species independent will be 

investigated in chapter 5. 
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Figure 4.13. Scatterplots of the bending strength at 12% m.c. against the density at 12% 

m.c. 
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Figure 4.14. Scatterplots of the MOEdyn at 12% m.c. against the density at 12% m.c. 
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Figure 4.15. Scatterplots of the bending strength at 12% m.c. against the MOEdynat 12% 

m.c. 

The regression lines and coefficients of determination r2 that are connected with the 

datasets are: 

- Tropical hardwoods:    y=0.0045x-1.44.  r2=0.49. 

- European temperate hardwoods:   y=0.0030x+10.1.  r2=0.36. 

- European softwoods:    y=0.0036x-2.96.  r2=0.48. 
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4.5 Calculation of characteristic values for visual grading of tropical 

hardwood  timber species 

The objective of this thesis is to investigate species independent grading of structural 

timber. One aspect to be investigated is the method to perform this species independent 

grading. However, in section 4.2 it was concluded that visual grading is not suited to 

perform species independent grading on pieces where grain angle deviation is the 

governing strength reducing characteristic. This is caused by the fact that the grain angle 

deviation cannot be measured unambiguously by means of a visual assessment (for knots 

as governing strength reducing characteristic this is possible). This observation is not only 

valid for species independent visual grading of tropical hardwoods, but for visual grading 

of tropical hardwoods in general (also for a single species). To take into account that the 

grain angle deviation cannot be measured exactly, but also that batches with the same 

trade name might in fact come from trees of  different species, a reduction factor ks,tn was 

introduced in section 3.3, which has to be applied on the characteristic value (the 5% 

fractile) of the bending strength. The idea is that the 5% fractile of the test data available 

is determined and that by applying ks,tn the characteristic value of the timber with that 

trade name can be determined. In section 3.3 it was concluded that with the derived factor 

ks,tn it would not be possible to classify tropical hardwoods in strength classes in an 

economic way to be used by visual grading. It is shown in chapter 5 that with machine 

grading this is possible.  

However, since in practice visual grading of tropical hardwoods is still used, it is of 

interest  to compare the output in terms of yields of the two methods for grading, visual 

and machine grading. Therefore, it is decided to calculate the 5% fractile of the bending 

strength with the statistical methods of section 3.3, based on the available samples for 

each trade name without applying the ks,tn–factor. This is only to be able to make a 

comparison between the yield of the material that is visually graded and machine graded.  

The principle of both the statistical methods of section 3.3 based on visual grading and 

section 3.4 for machine grading is that every batch graded according to either method has 

the strength properties that are assigned to these batches. This seems obvious, but 

according to the current standard EN 384 for determining characteristic values based on 

visual grading this is not the case. There the assigned strength properties are a mean value 

of the strength properties of the batches. 

 

In this section the characteristic values of visual grades for tropical hardwood timber 

species are calculated.  For tropical hardwoods, only one visual grade is defined (in this 

thesis Dutch visual grade C3 STH from NEN 5493 is used), with as most important 

characteristics that have to be limited: 

1. single knot ratio < 0.2 

2. slope of grain < 1:10 

Furthermore, all pieces were assessed on the visual override (see appendix B) 
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All the data that was used in the analysis met the visual grade C3 STH from a visual 

inspection before testing, except for a part of the pieces in sample GR4 which were 

deliberately prepared for research purposes.  These pieces are shown in figure 4.5 (top) 

having a knot ratio larger than 0.2. These pieces were left out of the analysis for 

determining the characteristic values of the visual grade. 

 

In figure 4.4, the measured slope of grain after the destructive tests is shown. This plot 

shows that for a large amount of pieces the slope of grain was much larger than 1:10. 

However, this was for pieces included in the analysis not detected in the visual grading 

process before destructive testing.  The conclusion is that in practice it is not possible to 

apply this requirement on the slope of grain limitation in the grading process. Therefore in 

the analysis, all pieces were included, since the slope of grain of the pieces as shown in 

figure 4.4 was measured after destructive testing.  

The characteristic density will be calculated from the weakest homogeneous  samples 

based on the bending strength, where it is assumed that in this way the variation in the 

density is addressed 

For the modulus of elasticity, the characteristic value is the mean value of the weakest 

homogeneous samples.  

 

The characteristic values are defined as: 

- for the bending strength the 5% fractile at 12% m.c. 

- for the MOE the mean value at 12 % m.c. 

- for the density the 5% fractile at 12 % m.c. 

 

The 5% fractile of the bending strength of a timber species is calculated according to the 

method described in section 3.3. Normal distributions of the samples are assumed.  

 

Determination of characteristic values for samples with trade name cumaru. 

 

To explain the principle of the calculation procedures, this is elaborated for the timber 

with the trade name cumaru. The assignments always relate to a source area. When all 5 

samples are used in the analysis, the source area is Brazil, Peru and Bolivia. 

In table 4.14, the descriptive statistics of the samples and the 5% fractile of the samples 

based on 75% confidence interval are given. 
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Table 4.14. Descripitve statistics for cumaru samples CUM1 to CUM5 

sample 

ID 
    s n= k= fm 0.05  

CUM1 113.6 24.2 40 1.83 69.2 

CUM2 112.4 25.3 44 1.83 66.3 

CUM3 124.4 16.2 47 1.82 94.9 

CUM4 90.9 19.1 40 1.83 55.8 

CUM5 84.2 19.7 49 1.81 48.5 

 

The weakest homogenous samples of which the characteristic values will be calculated  

have to be determined. 

In tables 4.15 to 4.18 the results of the intermediate steps are given. In column O the 

percentage of observed pieces with a value below the overall mean value fmmean is listed 

for every sample included in this analysis step. The expected values in column E are the 

summed observed percentages from column O, divided by the number of samples. In the 

last row, the significance values of the chi-square distribution of value Z with the number 

of samples-1 degrees of freedom is given. In every step, the strongest remaining sample 

(with the highest 5% fractile according to table 4.15) is removed. 

This is repeated until the significance is above 0.01. 

 

Table 4.15. Step 1. fmmean of the samples is  105.0 N/mm2. 

sample 

ID 
O (%) E (%) (O-E)

2
/E 

CUM1 40.0 51.7 2.6 

CUM2 34.1 51.7 6.0 

CUM3 12.8 51.7 29.3 

CUM4 80.0 51.7 15.5 

CUM5 91.7 51.7 30.9 

Z 
  

84.3 

sig 
  

2.09E-17 

 

Table 4.16. Step 2. fmmean of the remaining samples is  99.8 N/mm2. 

sample 

ID 
O (%) E (%) (O-E)

2
/E 

CUM1 25.0 51.6 13.7 

CUM2 31.8 51.6 7.6 

CUM4 72.5 51.6 8.5 

CUM5 77.1 51.6 12.6 

Z 
  

42.3 

sig 
  

3.39E-09 
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Table 4.17. Step 3. fmmean of the remaining samples is  95.6 N/mm2. 

sample 

ID 
O (%) E (%) (O-E)

2
/E 

CUM2 29.5 53.6 10.8 

CUM4 62.5 53.6 1.5 

CUM5 68.8 53.6 4.3 

Z 
  

16.6 

sig 
  

2.5410E-04 

 

Table 4.18. Step 4. fmmean of the remaining samples is  87.2 N/mm2. 

sample 

ID 
O (%) E (%) (O-E)

2
/E 

CUM4 37.5 47.9 2.3 

CUM5 58.3 47.9 2.3 

Z 
  

4.5 

sig 
  

0.033 

 

Now samples CUM4 and CUM 5 are assumed to be the weakest samples that can be 

regarded as homogeneous for the determination of the strength and stiffness properties. 

 

The minimum number of pieces in a sample is CUM4, for which k=1.83. 

Then kN,n = zp+ (k- zp)/√(2) = 1.65+ (1.83-1.65)/√(2) = 1.78 

 

The average  of the means of the bending strength of CUM 4 and CUM 5 is: 

(90.9 + 84.2)/2 = 87.6 N/mm2. 

The average  of the standard deviations  of the bending strength of CUM 4 and CUM 5 is: 

(19.1 + 19.7)/2 = 19.4 N/mm2. 

The 5% fractile of the dataset of cumaru then becomes: 87.6 - 1.78 ∙ 19.4 = 52.9 N/mm2. 

The average  of the means of the MOElocal of CUM 4 and CUM 5 is: 

(19000+18500)/2 = 18700 N/mm2. 

The average  of the means of the density of CUM 4 and CUM 5 is: 

(933+944)/2 = 939kg/m3. 

The average  of the standard deviations  of the density of CUM 4 and CUM 5 is: 

(70+59)/2 =64.5 kg/m3. 

The 5% fractile of the density  of cumaru then becomes: 939 - 1.78 ∙ 64.5 = 823 kg/m3. 
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When only the samples CUM4 and CUM 5 are evaluated, connected to the source area 

Peru and Bolivia, then table 4.18 can immediately be evaluated to conclude that these two  

samples can be assumed to be homogeneous, so the calculated characteristic values 

remain the same. 

 

Another option is to evaluate cumaru with source area Brazil. The 3 samples CUM1, 

CUM 2 and CUM 3 are available for the analysis. In table 4.19 the result for the 

homogeneity test is given. 

 

Table 4.19. Step 1. fmmean of the samples is  117.1 N/mm2. 

sample 

ID 
O (%) E (%) (O-E)

2
/E 

CUM1 52.5 41.1 3.2 

CUM2 40.9 41.1 0.0 

CUM3 29.8 41.1 3.1 

Z 
  

6.3 

sig 
  

0.043 

 

The significance level is 0.043, which is higher than 0.01, so the three samples are 

assumed to be homogeneous. 

 

The minimum number of pieces in a sample is CUM1 for which k = 1.83. 

Then kN,n=zp+ (k- zp)/√(3) = 1.65+ (1.83-1.65)/√(3) = 1.75 

 

The average  of the means of the bending strength of CUM1, CUM2 and CUM3 is: 

(113.6+112.4+124.4)/3 = 116.8 N/mm2. 

The average  of the standard deviations  of the bending strength of CUM 4 and CUM 5 is: 

(24.2+25.3+16.2)/3 = 21.9  N/mm2. 

The 5% fractile of the dataset of cumaru then becomes: 116.8 - 1.75 ∙ 21.9 = 78.5 N/mm2. 

 

The average  of the means of the MOElocal of CUM1, CUM2 and CUM3 is: 

(19971+20314+21758)/3 = 20681 N/mm2. 

The average  of the means of the density of CUM1, CUM2 and CUM3 is: 

(1038+992+1038)/3 = 1023 kg/m3. 

The average  of the standard deviations  of the density of CUM1, CUM2 and CUM3 is: 

(60+82+80)/3 =74 kg/m3. 

The 5% fractile of the density  of cumaru of  CUM1, CUM2 and CUM3 then becomes: 

1032 - 1.75 ∙ 74 = 903 kg/m3. 
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Determination of characteristic values for samples of all trade names. 

In table 4.20, the calculated characteristic values for the trade names listed in table 3.1, 

based on the  samples available as listed in table 3.1 are given. The connected source areas 

are listed in table 3.1. 

Once again, it is mentioned that the characteristic values as given in table 4.20 only apply 

to the tested samples of the trade name and not to the timber from the trade name in 

general, because then a reduction factor ks,tn according to equation (3.32) has to be 

applied. The table can be interpreted as the characteristic values of the tested samples of 

each trade name with 100% yield of the visually graded pieces assigned to the visual 

grade.   

 

 

Table 4.20.  Characteristic values for visual grading for the tested samples of trade names 

of tropical hardwood timber 

Trade name 
homogeneous 

samples 
kN,n 

fm0.05 hom. 

samples 

(N/mm
2
) 

MOEloc,mean, 

hom. samples 

(N/mm
2
) 

density0.05, 

hom, samples 

(kg/m
3
) 

 

angelim vermelho AV1,AV5 1.78 57.3 16700 990 
 

cumaru CUM4,CUM5 1.78 53.0 18700 820 
 

massranduba MAS3 1.81 38.9 13500 930 
 

azobe AZ2 1.78 68.4 19400 900 
 

greenheart GR2,GR3,GR4 1.79 58.3 27800 900 
 

okan OK2 1.83 26.8 17600 940 
 

Karri KA1 1.85 57.1 18100 630 
 

Nargusta NA1 1.84 52.0 18700 600 
 

piquia PI1 1.84 44.2 21400 690 
 

vitex VI1 1.84 47.6 15100 660 
 

basralocus BAS1 1.85 35.2 20300 660 
 

bangkirai BAN1 1.77 60.1 21200 820 
 

Sucupira vermelho SV1 1.81 53.7 18700 790 
 

castanhorosa CR1 1.81 73.4 18100 740 
 

louro amarela LA1 1.81 58.5 18000 610 
 

louro faia LF1 1.82 64.7 22900 830 
 

purpleheart PU1 1.83 57.0 19600 620 
 

tauari vermelho TV1 1.82 42.5 15900 660 
 

favinha FA1 1.81 49.1 19800 660 
 

sapupira FP1 1.82 64.4 20900 740 
 

favinha prunelha SA1 1.81 47.9 16600 610 
 

bilinga BIL2,BIL2 1.78 20.1 13400 680 
 

evuess EV2 1.81 76.1 22800 910 
 

tali TA1,TA2 1.77 42.5 17500 820 
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5  

Strength modelling of 

structural timber 

5.1 Failure mechanisms and failure criterions 

To be able to define strength predicting models, it is essential to know the mechanisms 

that cause failures in timber. When these failure mechanisms are known, strength 

predicting equations  can be formulated. In this thesis, timber is considered as a Bernoulli-

Euler beam: plane sections remain plane and normal to the deflected neutral axis. For the 

relationship between stresses and strains Hooke’s Law is considered in the elastic range. 

For tension, only an elastic range and brittle failure is considered. For compression, a bi-

linear stress-strain relation is assumed, whereby the elastic part follows Hooke’s Law and 

for the plastic part a MOE of zero is assumed.  

The bending strength calculated from a four point bending test according to figure 3.1 is 

given in equation 3.1 and repeated here as equation 5.1 

 

   
    

    
 

 
          (5.1) 

As can be seen from equation (5.1), the full section modulus of the timber is used, despite 

the existence of knots or grain angle deviation. In reality, the stress distribution is much 

more complicated. A closer look at the real stress distribution of timber in clear wood and 

in structural timber can help to formulate strength prediction models on a physical basis. 

The objective is that strength calculated according to equation 5.1. has to be predicted, 

irrespective of the stress distribution at failure.   

In this section, the failure modes for clear wood, timber with grain angle deviations and 

timber with knots will be studied.  Based on investigation of the failure modes, prediction 

models can be formulated. Other failure modes due to compression failures, fissures etc. 

should be avoided for structural timber by removing the material that contains these 

characteristics above a certain level by visual inspection. 

 

5.1.1 Clear wood 

As was explained in chapter 2, there is a great difference in strength properties of (small) 

clear wood and of timber of structural size. Clear wood is defined as wooden elements for 

which the grain angle is parallel to the longitudinal axis, and where disturbing features as 

knots, compression failures, etc. are not present. Clear wood is usually tested in small 
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sizes (cross section 20 mm x 20 mm, span 360 mm in a four-point bending test, or 50 mm 

x 50 mm, span 700 mm in a three-point bending test) because it is difficult to obtain it in 

larger sizes.  

Clear wood is the most homogeneous form of timber that is dealt with in this thesis. This 

is the macroscopic level where no strength reducing characteristics are present that cause 

failure on the gross level.  In this thesis, the scatter in bending strength (and also in MOE) 

that is expected for similar pieces of clear wood is regarded as the natural variability of 

timber that cannot be explained by measurements on the wood (either visual or with a 

machine). In chapter 2 it was defined that similar pieces of clear wood are pieces with  the 

same density, regardless of the species. This will be further elaborated in section 5.2. 

Test results have shown that for clear wood the tension strength is higher than the 

compression strength. This can be explained from the fact that compression failure is a 

stability problem of the cells the fibers are made up, whereby the pure compression 

strength of the cell walls cannot be reached.  

 

This is illustrated by the following tests. 

Ten pieces of clear wood of wood species greenheart with a cross section of 50 x 50 mm2 

were cut into specimens that were tested under tension, compression, bending and shear. 

The test set-ups of ASTM D143-09 were followed: 

- For bending tests, specimens with a cross section of 50 x 50 mm2 were tested in a 

three-point bending test with a span of 710 mm 

- For the compression tests, specimens with a cross section of 50 x 50 mm2 and a 

length of 200 mm were tested 

- For the tension test, specimens were tested with a cross section of 35 x 35 mm2 at 

the grips and a length of 600 mm. The specimens were machined to a ‘dogbone’ 

shape, in such a way that in the middle of the piece over a length of 63 mm a cross 

section of 4.8  by 9.5 mm2 remained to ensure that failure occurs in this section. 

- For shear tests, a cross section of  50 x 50 mm2 was used with a length of partly 50 

mm and partly 65 mm. The part of 50 mm length is sheared off parallel with the 

fiber direction. 

 

In table 5.1 the test results are given. The bending strength can be  calculated with 

equation (5.1), with the bending moment at midspan, where a is half of the span. 

 

Table 5.1. Test results on clear wood of greenheart 

Property Mean  value Coefficient of Variation CoV(%) 

Compression strength  fc,0(N/mm
2
) 75.8 10.4 

Tension strength ft,0 (N/mm
2
) 219.0 23.8 

Bending strength fm,0 (N/mm
2
) 164.0 11.3 

Shear strength fv,0(N/mm
2
) 7.5 15.8 
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Table 5.1 shows the difference in compression and tension strength. In figures 5.1 to 5.3 

the failure patterns and the associated load-displacements diagrams are displayed for a 

compression, tension and bending test. The load-displacement diagram of the compression 

test in figure 5.1 shows a bi-linear relation. The associated plastic failure pattern is shown 

in the photograph. Figure 5.2 shows brittle behaviour in the failure pattern and in the load-

displacement diagram for the tension tests. 

Figure 5.3  shows the failure mechanism for a clear wood specimen under a three point 

bending test. There is a linear behaviour until the maximum compression stress is reached 

at the compression side of the specimen. After that, the stress distribution will change. 

The overall stiffness reduces and an elasto-plastic behaviour can be seen. When the 

maximum tension strength is reached at the tension side, the piece fails. The ultimate 

failure cause is tension failure, which is brittle. 

 

  

Figure 5.1. Failure pattern for a clear wood specimen of greenheart and associated load-

displacement diagram  under a compression test 

 

 

 

Figure 5.2. Failure pattern for a clear wood specimen of greenheart and associated load-

displacement diagram  under a tension test. 
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Figure 5.3. Failure pattern for a clear wood specimen of greenheart and associated load-

displacement diagram  under a three point bending test. 

 

In figure 5.4, the stress distribution at failure for the specimen in figure 5.3 is shown.  

 

 

Figure 5.4. Stress distribution at failure for the piece shown in figure 5.3. On the left the 

real stress distribution and on  the right the calculated bending strength according to 

equation (5.1). 

 

The stress distribution at failure can be schematized according to the left picture in figure 

5.4 with plastic behaviour on the compression side and brittle behaviour on the tension 

side. Based on this figure, the outcome of the bending strength fm,0, assuming a linear 

stress distribution, as in the right picture of figure 5.4 can be calculated from the 

equilibrium of forces in the cross section with equation (5.2) 

 

        
                 

         
           (5.2) 

When the average tension and compression strengths according to table 5.1 are used as 

input in equation (5.2), an equivalent bending strength of 149,4 N/mm2 is found. The 

difference with the mean bending strength value of 164 N/mm2, calculated from tests 

according to equation 5.1 can be explained by size effects, especially on the tension side.  
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Starting with the failure mechanisms of clear wood,  the failure mechanisms of structural 

timber will be explained. In section 5.2, models to predict the strength of timber will be 

developed based on non-destructive measurements. From these non-destructive 

measurements the density and the MOE (the MOEdyn) will be used as strength predicting 

parameters. We can see that in equation (5.2) neither of these two parameters are present. 

This means that at macroscopic level (clear wood) the basic relationship between density-

bending strength and density-MOE will be based on experimental results. These 

relationships will be the basis for further physical modelling of gross strength reducing 

characteristics. 

 

5.1.2 Structural timber with grain angle deviations 

The anisotropic behaviour of timber has a major influence on the strength of timber, also 

when the pieces are loaded axially. In most cases, the fiber direction (for tropical 

hardwoods in practical all cases) will not run parallel to the longitudinal axis of the beam. 

The result is that normal stresses will occur, not only parallel to the fiber direction, but 

also perpendicular to the fiber direction and shear stresses. This will have an effect on the 

failure strength, as well on the Modulus of Elasticity. 

Hoffmeyer (1987) states that grain angle deviation is not the governing cause of failure for 

structural timber. However, this observation is based on failure patterns for softwoods, 

and it is certainly not the case for tropical hardwood timber. Structural beams from 

tropical timber are often delivered with almost no knots, and then the grain angle 

deviation will be the governing cause for failure. In figure 5.5,  pictures are shown for 

cumaru beams with a height of 150 mm with failure due to grain angle deviations from the 

longitudinal axis. These tests were performed in a four point bending test according to 

figure 3.1. 

The load-displacement diagrams of figure 5.5  show that at the gross level, elastic-plastic 

behavior and pure elastic behavior can occur. This will depend on the magnitude of the 

slope of grain. 

Since the compression strength of clear wood is lower than the tension strength of clear 

wood, elastic-plastic behavior may be visible in the load displacement diagram. It depends 

on the grain angle deviation which behavior occurs.  
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Figure 5.5. Failure patterns for specimens with different grain angle deviations of structural 

cumaru timber and associated load-displacement diagram from a four point bending test. 

 

In section 2.2 it was explained that the strength under an angle with the grain can be 

described by the equations defined by Hankinson or Norris.  

Using the test results for clear wood from table 5.1, the tension strength under an angle 

with the grain can be described by equations (2.4) to (2.6), assuming that failure is only 

induced by either tension strength parallel to the grain, the tension strength perpendicular 

to the grain or the shear strength. In this case, a mean value of  ft,90 =3 N/mm2 is assumed. 

The tension strength under an angle with the grain described by equations (2.4) to (2.6) , 

the Hankinson equation described by equation (2.9) and the Norris equation (with β =1) 

described by equation (2.15) are plotted in figure 5.6. 
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Figure 5.6. Tension strength of clear wood of greenheart plotted against the grain angle 

deviation, based on different failure prediction equations. 

 

From figure 5.6 it can be seen that the Norris equation seems to be more suitable than the 

Hankinson equation when the shear strength is governing in the interaction of stresses. 

Figure 5.6 suggests that this could be the case when the shear strength, determined by the 

ASTM test, is used in the interaction equation of Norris. However, it can be questioned 

whether this value is the correct shear value in this situation, for instance because size 

effects might occur. Therefore, when the shear strength is not governing in the interaction 

of stresses, the Hankinson equation can be used in the modeling.    . 

 

To evaluate the suitability of the Hankinson equation for bending, a test program with 

specimens under different grain angles was set-up for softwood species spruce and 

tropical hardwood species massaranduba. There were no knots in the test pieces. The 

pieces had a cross section of 50 x 50 mm2 and were tested in a four-point bending test 

according to EN 408 as shown in figure 3.1. Both the bending strength and the MOE (the 

MOElocal) were determined.  

For structural timber the normal range for the grain angle deviation is between 0 and 12 

degrees (at 12 degrees the slope of grain is 1:5). Therefore, test pieces were prepared for a 

four-point bending test with grain angle deviations of 0, 10 and 18 degrees with the beam 

axis in span direction. The given grain angle deviations are in the plane of the loading 

direction. In the plane perpendicular to the loading direction the grain angle deviation was 

practically zero for all pieces. For each grain angle deviation degree, 5 or 6 pieces were 

made for each wood species. See  figure 5.7 for the preparation of specimens with a grain 

angle deviation of 18 degrees. The pieces with grain angles 10 and 18 degrees were 

elongated to be able to perform a four point bending test with the same span for all pieces. 
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All failures occurred in the parts with the investigated grain angle deviation. The MOElocal 

was also measured in this part. 

 

Figure 5.7. Cutting pattern for massaranduba pieces with grain angle deviation of 18 

degrees. 

Figure 5.8. shows the failure patterns and associated load-displacement diagrams for 

pieces of massaranduba with a grain angle deviation of 0, 10 and 18 degrees. 

 
 

 
 

 
 

Figure 5.8. Failure patterns and associated load-displacement diagrams for pieces of 

massaranduba with a grain angle deviation of 0 (top), 10 (middle)  and 18 (below) 

degrees. 

α
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Figure 5.8 shows that at 0 degrees grain angle deviation, elasto-plastic behavior occurs 

and at 10 and 18 degrees grain angle deviation elastic brittle behavior occurs. For the 

spruce specimen equivalent load-displacement diagrams were found at the same grain 

angle deviations. 

The values of fm,0 and kf  were fitted to the Hankinson equation (5.3) for bending by a non-

linear regression analysis. 

     
    

                 
          (5.3) 

With  

𝑘  
    

     
            (5.4) 

The exact grain angles were measured after the test and used in the analysis. 

The results are given in table 5.2.  fm,90 is calculated from fm,0 and kf  and therefore given in 

italics. 

 

Table 5.2. Properties derived by a non-linear regression analysis fitted to equation (5.3) 

property spruce massaranduba 

fm,0 (N/mm2) 68.5 166.4 

fm,90 (N/mm2) 2.0 5.0 

kf 33.4 33.1 

 

In figures 5.9 and 5.10 the Hankinson equation with fm,0 and fm,90 from table 5.2 is shown 

together with the test data. The Hankinson equation is fitted over the range from 0 to 20 

degrees. It can be seen that over this range a linear regression line could be constructed. 

This is the reason that for structural timber with the normal range of grain angle 

deviations, a linear regression fit between the grain angle deviation and the strength can 

be observed.   

The values of fm,0 , fm,90 and fv, determined from a non-linear regression using the Norris 

equation (2.15) with β =1, are given in table 5.3. Two analyses were performed. In the 

first analysis  all three values were determined with a non-linear regression.  In the second 

analysis  fm,0 and fm,90 were taken from table 5.2. To investigate which shear strength 

would be required for these values to fit with the Norris equation, the values of  fm,0 and 

fm,90  of table 5.2 are put into the Norris equation (2.15) with β =1. Then only fv was 

determined through a the non-linear regression. The results are given in table 5.3.  
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Figure 5.9. The Hankinson equation according to equation (5.3) with strength properties 

according to table 5.2 for spruce together with the test results for spruce. 

 

 

 

Figure 5.10. The Hankinson equation according to equation (5.3) with strength 

properties according to table 5.2 for massaranduba together with the test results for 

massaranduba. 
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Table 5.3.  Properties derived by a non-linear regression analysis fitted to equation (2.15) 

properties spruce massaranduba 

fitted 

properties 
fm,0 ,fm,90 and fv fv fm,0 ,fm,90 and fv fv. 

fm,0 (N/mm2) 70.8 68.5 171.4 166.4 

fm,90 (N/mm2) 3.6 2.0 5.8 5.0 

fv (N/mm2) 6.1 7.5 18.5 20.1 

kf 19.5 33.4 29.4 33.1 

 

Equation (2.15) with inserted the results from table 5.3 will give a prediction line between 

bending strength and grain angle deviation that practically coincides with the Hankinson 

line according to equation (5.3). Table 5.3 shows that, when fitted to the Norris equation, 

the shear strength is much higher than retrieved from pure shear tests. The strength profile 

of massaranduba can be compared with that of greenheart (the species are in the same 

density range). Where in table 5.1 a shear strength of 7.5 N/mm2 for greenheart is given, 

Hek (2014) found a mean shear strength value (with the test set-up of ASTM D143-09) of 

11.0 N/mm2 for massaranduba, based on 3 specimens. In the Norris interaction from the 

bending test data a shear strength of 18.5 N/mm2 for massaranduba was found. This is 

probably due to size effects, and a cause could be that for pure shear the strength values 

for timber are much lower than for shear in interaction with tension parallel and 

perpendicular to the grain in bending. For the shear in interaction with tension parallel and 

perpendicular to the grain the maximum stresses only occur in the outer fibers, wherein a 

pure shear test the entire cross section undergoes the same shear stress.  

That the shear strength values found are much higher than the values in EN 338 is in 

agreement with test results in a 5-point bending test performed by Van de Kuilen en 

Leijten (2002). They found much higher shear values than those listed in EN 338. The 

shear strength values for tropical hardwoods currently listed in EN 338 are however not 

based on shear tests according to EN 408, but based on expert judgment. The difference 

between pure shear test values and values found from fitting on the basic Norris equation 

can be taken into account by applying the factor β in equation (2.15).  

 

Figures 5.9 and 5.10 show that in the range of interest of structural timber the influence of 

grain angle deviation can be well described by the Hankinson equation for both softwood 

and hardwood. This is because when the shear strength is above a certain level, the 

influence on the shape of the Norris equation is very low. When the shear strength is very 

low, it cannot be neglected and the Norris equation has to be used.  Based on the 

regression results listed in tables 5.2 and 5.3 it is concluded that for structural timber the 

shear strength in interaction with stresses parallel and perpendicular to the grain is above 

the level that would require the application of the Norris equation. Therefore, in this thesis 

the Hankinson equation will be used for the modeling of the influence of grain angle 
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deviation on the bending strength, with only the bending strength parallel and 

perpendicular to the grain as input properties.   

At zero degrees grain angle deviation elasto-plastic behavior will occur at failure and 

above approximately 12 degrees grain angle deviation (Van de Have, 2013) the failure is 

caused exclusively by the tension strength reduction and pure elastic brittle behavior 

occurs.  Between zero and 12 degrees grain angle deviation some elasto-plastic behavior 

will occur.  Theoretically, a slight deviation of the Hankinson curve according to equation 

(5.3) could be expected below 12 degrees grain angle deviation. This will be in the order 

of 1 or 2 percent and disappears in the scatter in test results. Therefore this will not be 

taken into account. 

The Wood Handbook (Ross et al., 2010) gives different power values for tension, 

compression and bending. Based on the theoretical considerations (equations 2.4, 2.5 and 

2.6) one would expect a power value of 2. In the paper introducing the Hankinson 

formula, a factor 2 was found for the compression strength. In the regression results of 

table 5.2 a power value of 2 fitted well and this will be used in this thesis. 

 

The influence of grain angle deviation on the MOE can be calculated by applying 

geometrical transformations on the compliance tensor S for orthotropic materials.  

The result is given in for instance Leknitskij (1981): 
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      (5.5) 

 

Again, the Modulus of Elasticity could also be approximated with the Hankinson formula. 

See equations (5.6) and (5.7)  

 

     
    

                 
          (5.6) 

With  

𝑘  
    

     
            (5.7) 

For equation (5.6), the shear modulus and the Poisson coefficient do not have to be 

known. Equation (5.5) coincides with equation (5.6) when G12 is estimated by equation 

(5.8), based on  MOE0, MOE90 and ν12: 

 

   
 

 

    
 

 

     
 

    

    
          (5.8) 

 

It is interesting to see the difference with EN 338 in which a ratio for G12 of 1/16 with 

MOE0 is given for both softwoods and hardwoods for all strength classes. The shear 

modulus G12 is not an easy property to determine and is under constant discussion 

(Ravenshorst and De Vries, 2014).  
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With equation (5.8) the shear modulus G12 depends on the ratio between MOE0 and 

MOE90. EN 338 gives a ratio of 30 between MOE0 and MOE90 for softwoods and 15 for 

hardwoods. With a value of ν12 =0.3 this gives a ratio between G12 and MOE0 of 1/32 for 

softwoods 1/17 for hardwoods.  

 
Leknitskij (1981)  emphasizes that the property of the shear Modulus from the theory of 

anisotropic materials is independent of the Moduli of Elasticity parallel and perpendicular 

to the grain. He states that relations between these properties (he gives examples for 

crystalline materials) are purely experimental.  

By using the Hankinson relation, an experimental relation can be found with relations for 

the shear modulus implicitly included. However, as with the equations for strength, this 

approach might give better results when fitted on experimental data than by assuming 

values for the shear modulus and using equation (5.5). 

Fitting the test data for the MOElocal by a non-linear regression to equation (5.6) gives 

values for the MOE as listed in table 5.4. 

 

Table 5.4. Properties derived by a non-linear regression analysis fitted to equation (5.6) 

property spruce massaranduba 

MOE0 (N/mm2) 13700 25000 

MOE90 (N/mm2) 690 2200 

km 19.8 12.4 

 

Table 5.4 shows that the ratio between MOE0 and MOE90 is greater for the softwood 

species than the hardwood species, but different from the ratio of EN 338 (EN 338 gives a 

ratio of 30 for softwoods and 15 for hardwoods). 

In figures 5.11 and 5.12,  the Hankinson equation (5.6) with MOE0 and MOE90 according 

to table 5.4 is  shown, together with the test data.  

Figures 5.11 and 5.12 indicate that the Hankinson formula is also suited to predict the 

MOE under an angle with the grain based on MOE0 and MOE90. Therefore, in this thesis, 

the Hankinson equation will also be used for the prediction of the MOE under an angle 

with the grain. 

Based on tables 5.3 and 5.4, for every grain angle value the bending strength and MOE 

can be calculated with the Hankinson equations. Using the values from tables 5.3 and 5.4, 

the bending strength values calculated with equation (5.3) are plotted against the MOE-

values calculated with equation (5.6) in figure 5.13. For both spruce and massaranduba 

also the test results are plotted. 
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Figure 5.11. The Hankinson equation according to equation (5.6) with stiffness 

properties according to table 5.4 for spruce together with the test results for spruce. 

 

 

 

Figure 5.12. The Hankinson equation according to equation (5.6) with stiffness properties 

according to table 5.4 for spruce together with the test results for massaranduba. 
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Figure 5.13. MOE and bending strength values from test results of spruce and 

massaranduba plotted together with the calculated values with equations (5.3) and (5.6) 

based on property values of tables 5.2. and 5.4. 

 

Figure 5.13 shows that the relationship between the MOE and the bending strength due to 

the occurrence of grain angle deviation is non-linear. The test data is positioned around 

the Hankinsons relationships for both species which confirms the applicability of these 

relationships. Figure 5.13 also shows that for the test data (with grain angle deviations 

between 0 and 20 degrees) a linear regression line might give good results, although the 

“real” behaviour  is non-linear. The difference between the data of the two species is 

caused by the starting values for grain angle 0 and the ratios between the properties 

parallel with the grain and perpendicular to the grain. A linear regression between strength 

and MOE independent of the species might give some trends that have no direct physical 

background. In section 5.2, the Hankinson relations will be adapted in such a way that a 

prediction model with a physical background can be constructed.  

This section shows that the reduction in bending strength and bending stiffness caused by 

grain angle deviation can be described by applying the Hankinson equations. This was 

verified on test pieces where the exact grain angle was known. In structural timber, 

measurement of the grain angle deviation is much more difficult, as was shown in chapter 

4, and then only the grain angle deviation at the surface can be measured. However, 

because grain angle deviation has an influence on both strength and stiffness, the 

assumption in this thesis is that when the MOE is measured, the overall grain angle 

deviation will affect the MOE in such a way that it can be used to predict the bending 

strength.   
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5.1.3 Structural timber with knots 

Besides grain angle deviation, knots are the most important strength reducing 

characteristic. For softwoods, knots are the main characteristic causing failure  

(Hoffmeyer (1987). The presence of knots has a global and local effect on the stress 

distribution of a timber beam in bending. 

The global effect is caused by the fact that the knot can be regarded as a hole in the cross 

section. The axial stresses around the hole will become larger as a result of the reduced 

section modulus of the cross section. The local effect is caused by the fact that around the 

knot locally large grain deviations can occur. In these regions, the forces have to be 

transferred from the full cross section to the reduced cross section. Around the knot, stress 

concentrations with tension stresses perpendicular to the grain and shear stresses may  

occur. 

Due to the presence of knots, the tension zone is normally weaker than the compression 

zones. Therefore, brittle behaviour in the tension zone before plastic behaviour in the 

compression zone has started is the most common failure due to the knots. This is 

illustrated in figure 5.14a for a spruce beam (softwood) and in figure 5.14b for a 

greenheart beam (tropical hardwood). Both were tested in a four-point bending test 

according to figure 3.1. 

 

 

 

Figure 5.14a. Failure pattern for a spruce beam with knots and associated load-displacement 

diagram  under a bending test. 

0

2

4

6

8

10

12

0 5 10 15 20

L
o

a
d

 (
k

N
)

displacement (mm)



153 

 

 

  

Figure 5.14b. Failure pattern for a greenheart beam with a knot and associated load-

displacement diagram  under a bending test. 

 

Figure 5.15 illustrates the stress concentrations for timber with a knot in the compression 

zone and a knot in the tension zone. These figures are based on finite element calculations 

as reported by Bano et al. (2010). These figures are meant as illustrations and show the 

effect of a knot in the 2D-plane. Just like the influence of  grain angle deviations is a 3D -

effect, also the influence of knots is a 3D-effect. This is because knots will change in size 

within  the cross section of the piece, depending on the position of the pith in our outside 

the cross section of the beam. 

 

 

Figure 5.15. Stress distribution due to a knot in the compression zone (top) and in the 

tension zone (bottom). Resketched after Bano et al. (2010).  
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Figure 5.15 illustrates that the stress distribution around knots can be very complicated. 

However, the bending strength of a beam with knots  under a bending test is also in this 

case calculated according to equation (5.1), assuming a linear stress distribution. To 

investigate the effect of the knot ratio KR on the bending strength and MOE, only the 

global effect whereby knots are seen as holes is adopted in this thesis. 

In figure 5.16, for  the case that a knot is positioned in the tensions side of the beam of the 

concept of knots as holes is illustrated.   

 

 

Figure 5.16. Global stress distribution due to a knot in the tension zone and the bending 

strength calculated with equation (5.1). 

 

The effect of the global stress distribution due to the presence of knots on the bending 

strength calculated according to equation (5.1) and the MOElocal according to equation 

(3.2) will be investigated. 

For this purpose, the weak zone model concept which was introduced by Riberholt et al. 

(1979),  is used. See figure 5.17.  The timber beam is regarded as clear wood connected 

by weak zones. The weak zones have an effect on both the strength and stiffness. 

  

Figure 5.17. Weak zone model from Riberholt et al.(1979). Timber with knots is 

regarded as weak zones connected with clear wood.   
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For visual grading, various quantifications of knot measurements can be used, as 

explained in chapter 3. The simplest one, the single knot parameter, will be used here, and 

in this case, only the dimension of the knot d perpendicular to the beam axis divided by 

the depth of the beam h is considered according to equation (5.9) (As mentioned before, 

this is a simplification, ignoring the 3D-effect): 

   
 

 
            (5.9) 

The knot with the highest KR-value is assumed to be positioned in the center of the test 

span over the length of the beam, as this is the most critical position of the beam. In figure 

5.18,  two positions of the knot over the beam depth are shown. The knot size is the same 

and therefore also KR for both positions. The first position is with the knot at the edge of 

the beam in the tension zone, which has the maximum effect on strength and stiffness. 

The second position is with the knot in the middle of the beam, which has a minimum 

effect on strength and stiffness. It is assumed that the knot causes a hole with the same 

height d over the thickness of the beam. 

 

Figure 5.18. Two positions for a knot with the same size. The position at the top has the 

maximum influence on the strength and the position at the bottom the minimum influence 

for the KR-value.   

 

The effect on the stiffness over the length of the beam is shown in figure 5.19.  
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Figure 5.19. Effect of the stiffness of the part of the beam with the knot (EI)B and the clear 

wood part (EI)A on the measured MOElocal (EI)KR. 

 

It is assumed that the knot is placed exactly in the center of the span. The effect on the 

bending strength is directly related to the weak zone. Outside the weak zone, the timber is 

assumed to have the clear wood strength and stiffness. The ratios of the second moment of 

inertia I and the section modulus W can be calculated for the knot positioned with 

maximum and minimum influence. 
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The unreduced section modulus is: 

      
   

 
                     (5.14) 

The bending strength according to equation (5.1) can then be formulated as: 

            
    

     
                            (5.15) 

Where fm,cw is the clear wood strength. The reduction of the strength of the reduced cross 

section compared with the clear wood strength can be defined as: 
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  𝑑   
      

     
 

    

     
                   (5.16) 

These ratios can be calculated for the maximum and minimum influence of the knots: 
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The reduction ratio for the second moment of inertia I becomes: 
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                   (5.22) 

The effect of the knot on the MOElocal has to be determined. The MOElocal is calculated 

from the deflection of the beam over a length 5h between the load heads where a constant 

moment is present. The constant moment is present over 6h but the deflection to calculate 

the MOElocal is measured over 5h.  The influence length of the knot on the zone with 

reduced bending stiffness is called B in figure 5.19. This might be a longer distance than 

the knot itself because the stresses need a certain length to be redistributed from the 

reduced to the clear section. The clear wood sections have a length A. The ratio between 

the bending stiffness of sections A and B is also rd. 

   

   
 

  

  
  𝑑                    (5.23) 

     
   

  
                     (5.24) 

The deflection in the center of the beam over the length of 5h is: 

  
  

 

 
   

    
 

 
 

 
  

   
 

   

    
                   (5.25) 

When for the length of section B  a length of 0.5A  is assumed and EIB is expressed as 

equation (5.24)  then equation (5.25) becomes: 

   
      

    
 

   

   
                    (5.26) 

The deflection in the center of the beam over the length of 5h can also be expressed with 

the equivalent bending stiffness EIkr which is found in a bending test: 

  
 

 

        

    
 

  

  

   

    
                   (5.27) 

Equalizing the deflections according to (5.26) and (5.27) gives: 
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                       (5.28) 

In the calculation of  EIKR, the full second moment of inertia is used and can therefore be 

written as EKRI.  Part A of the beam consists of clear wood and therefore  IA is also the full 

second moment of inertia.  Therefore, equation (5.28) can be written as: 

    
    

      
                      (5.29) 

The part A consists of clear wood and therefore EA is the MOE for clear wood. The 

reduction ratio of the measured MOE compared with the MOE for clear wood then 

becomes: 

  𝑑          
   

  
 

    

      
                  (5.30) 

The minimum and maximum reduction ratio for the same KR-value depending on the 

position of the knot over the depth of the beam can now be formulated by inserting 

equations (5.21) and (5.22) in equation (5.29):  
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                  (5.30) 
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                  (5.31) 

The reduction of the bending strength and MOE as a function of the knot ratio KR is  

visualised in figures 5.20 and 5.21. For comparison with real data, the results for sample 

L2 of Siberian larch are also plotted in the figures. The unreduced values for the bending 

strength and MOElocal for sample L2 were calculated by taking the average values for 

these properties of the 12 pieces for which KR was zero.  The KR-values were calculated 

as the single knot parameter, so in accordance with figure 5.18. Figure 5.21 can also be 

made with Edyn instead of MOElocal which will give the same trend, due to the high 

correlation of the relationship between the two properties.  

Figures 5.20 and 5.21 show that the theoretical and experimental reduction ratios follow 

the same trends. It is expected that the test data is closer to the minimum influence than to 

the maximum influence, because the position of the knot with the maximum influence will 

only occur incidentally. Because of the scatter in the position of the influencing knot in a 

beam, the regression line will be somewhere in between the maximum and minimum 

lines. The figures show that the influence of a knot has more influence on the bending 

strength than on the MOE. 

In machine grading, the non-destructive measured values of the MOE are used. It is 

therefore interesting to show the change in the ratio red,ratioMOE/redfm. In figure 5.22, this 

is plotted for the theoretical maximum and minimum influence with the test data of 

sample L2. 
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Figure 5.20. Reduction ratio of the bending strength plotted against the knot ratio based 

on the theory and based on the  test data of sample L2.  

 

 

Figure 5.21. Reduction ratio of the MOE plotted against the knot ratio based on the 

theory and based on the  test data of sample L2. 
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Figure 5.22. MOEred/fmred  plotted against the knot ratio based on the theory and for the  

test data of sample L2. 

 

It is interesting to see that the maximum and minimum ratios for MOEreduced/fmreduced are 

very close for KR ratios below 0.6. At the intersection point of minimum and maximum 

ratios at KR=0.53, the ratio MOEreduced/fmreduced is increased to 1.1. The regression line of 

the test data from sample L2 in figure 5.22  show an increase of 16% from KR=0 to KR = 

0.53, but the datacloud  also shows that in practice this increase might be difficult to 

detect because of the scatter in test results. This can explain why for bending tests of 

species with knots a rather constant value for the ratio between MOE and bending strength 

is found.  

This is  illustrated with the test data of 100 pieces of sample L2 in figure 5.23, where the 

bending strength is plotted against the MOElocal. This figure shows a linear relationship 

between bending strength and MOE. 

Figures 5.20 to 5.23  show that with simplified mechanical models experimentally found 

relationships between knot ratio and bending strength, between knot ratio and MOE, and 

between MOE and bending strength can be explained. The fact that the MOE is a good 

predictor of the bending strength for timber beams with knots therefore has a physical 

basis. The figures show that the correlation between the non-destructive MOE and the 

bending strength is higher than that between the knot ratio and the bending strength. This 

is caused by the simplifications in the mechanical model and because the detection of 

defects in the timber by measuring the MOE is more direct than by visual observations.  
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Figure 5.23 Bending strength plotted against MOElocal  for sample L2.   

 

In figure 5.23 can be observed that there is a mean prediction line and that there is scatter 

around this line. To be able to safely grade pieces in a strength class,  the magnitude of the 

scatter has to be known. This will be investigated in chapter 6. 

 

The mechanical model in this chapter is based on the definition of KR of figure 5.18. 

Here, it is assumed that the knot size is the same on both adjacent sides of the timber 

beam. In reality, the knots will differ in size because knots are cut of branches that grow 

from the pith of the tree. This can be taken into account by using the knot area ratio KAR 

which is defined as the ratio between the (interpolated) knot area in the cross section and 

the area of the whole cross section. The prediction capability of the KAR is better than the 

KR, because the 3D effect of the influence of knots is better adressed. Denzler (2007) 

found an improvement of  knot ratios based on surface measurements to cross sectional 

measurements from approximately r2 = 0.20 to r2 = 0.36. The principle of KAR 

measurements can be used in X-ray machines, as Schajer (2001) showed. X-ray machines 

can detect differences in density. Because the density of knots is higher than that of clear 

wood, the density of a part of a board with a knot (or knots) divided by the density of the 

knot-free parts of the board gives an equivalent of the KAR-value of that part of the board. 

Schajer assumed a constant relation of  the clear wood strength related to the density. By a 

regression of the estimated strength with the tested strength, he found coefficients of 

determination in the range of  r2=0.45-0.7.  
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These findings support the assumption that the reduction of strength and stiffness due to 

knots can be modelled by the concept of clear wood connected with weak zones. These 

weak zones can be modelled by regarding knots as removed material, causing a reduced 

cross section. Based on mechanical models, it can be explained that the reduction of 

strength and stiffness can be predicted by linear relations with dimensional properties of 

the knots. The accuracy of the measurements of these dimensional properties determine 

the prediction capability. In this thesis, measurements for KR ratios (knot ratio based on 

surface dimensions of knots) are available for some samples in the database. A linear 

reduction of the strength and stiffness due to KR will be assumed as the level at which a 

physical explanation is available. 

 

5.2 Prediction models for the strength of structural timber  

5.2.1 Introduction 

To model the strength of structural timber,  the following approach is followed. Based on 

physical relationships, strength predicting models are formulated. These models contain 

measurable parameters. The  factors determining the influence of these parameters have to 

be found by comparing the model with experiments. This will be done by linear or non-

linear regression. When the predictions are compared with the observations from test 

results, there will be a scatter around the prediction line. The shape and magnitude of this 

scatter has to be known to be able to use the prediction models in the grading process. In 

this section, strength predicting models for clear wood, timber containing grain angle 

deviation (and no knots), timber containing knots (and no grain angle deviation) and 

timber containing both grain angle deviation and knots will be formulated.   

Based on the findings in chapter 2 and section 5.1 the following assumptions are made: 

- The strength and stiffness of clear wood depends on the density. 

- The scatter around the prediction lines of the bending strength based on the density 

for clear wood and the stiffness based on the density for clear wood is considered 

to be the natural variability  of wood. 

- Structural timber is considered as clear wood with strength and stiffness reducing 

characteristics. 

- The reduction of strength and stiffness due to grain angle deviation can be 

described by Hankinsons equations. 

- The reduction of strength and stiffness due to the presence of knots is described by 

regarding the timber as clear wood connected by weak zones. The reduction due to 

knots on strength and stiffness can be explained by regarding knots as holes.  

- The Hankinson reduction equation due to grain angle deviations and the knot ratio 

reduction equations will be regarded as the physical models explaining the strength 

and stiffness of structural timber.  
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In this thesis, it is the objective to develop species independent strength models. For visual 

grading, grain angle deviations and knot ratios are available as strength and stiffness 

predicting parameters. For machine grading, the density and the MOE are available as 

strength and stiffness predicting parameters. The next sections deal with the effect of these 

parameters on the formulation of the  prediction models for strength and stiffness to be 

used in regression analysis. 

5.2.2 Prediction model for the bending strength based on the Modulus of 

Elasticity and density of timber for clear wood. 

The main assumption in this thesis is that structural timber is regarded as clear wood with 

strength and stiffness reducing characteristics. Therefore, the clear wood strength has to 

be quantified. In chapter 2 it was found from literature that for small clear wood the 

density is the basic parameter that determines the strength and stiffness. For timber with 

knots of structural sizes also a relation of the density with strength and stiffness is 

assumed for the clear wood zones (see section 5.1).  The influence of size will be studied 

in 5.3. 

Based on figures 2.5 and 2.6, the clear wood strength and stiffness is formulated as linear 

depending on the density: 

                               (5.32) 

                                     (5.33) 

 

Where: 

fm,0 is the bending strength for clear wood, the zero indication no grain angle deviation. 

ρ is the density of clear wood. 

MOE0 is the modulus of elasticity for clear wood, with no grain angle deviation. 

C1 describes the ratio between the clear wood strength and the density. 

C2 describes the ratio between the clear wood stiffness and the density. 

Equations (5.32) and (5.33) describe the relationship between datapoints of measurements 

of the density (ρ) and the bending strength (fm,0). That means that the distribution of the 

observed bending strength values fm,0, depends on the distribution type of the density (ρ) . 

Ck1 and Ck2 are factors describing effects causing that the regression lines do not go 

through the origin. For instance, the loading configuration (three-point or four-point 

bending tests) will give different values for the same density. This might lead to a change 

of all factor values. Of course there can be a situation that factors Ck1 and Ck2 are zero. 

Equations (5.32) and (5.33) describe the mean regression lines. The scatter around these 

lines will be formulated in equations (5.36) and (5.37). Of course the C-factors can also be 

stochastic, however this scatter will be combined with the overall scatter around the 

regression lines. 

Factors C1 , C2 , Ck1 , Ck2 can be derived from regression analysis on test data.  
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Equation (5.33)  can be reformulated as: 

   
    

  
 

   

  
                    (5.34) 

Inserting (5.34) in equation (5.32) gives: 

     
  

  
     

  

  
                                 (5.35) 

This explains the good relationship between the MOE and the bending  strength that can 

be found from tests. From figures 2.5 and 2.6, values for C1=0.15 and C2=18.17 are found, 

with Ck1 and Ck2 both being zero. This gives an expected coefficient 0.15/18.17= 0.0083 

between bending strength and MOE, which is very close to the coefficient value of 0.0081 

which is found from tests, see figure 2.7.  

To be able to use correlation lines for grading purposes, not only the coefficients 

predicting the mean regression line are required, but also information about the scatter 

around this line.  To get insight in the scatter for clear wood, the test results of 5 different 

tropical hardwood species tested in the Netherlands in the 1960s are evaluated, reported in 

Houtinstituut TNO (1961,1961,1961,1962,1962). It concerns samples of approximately 50 

clear wood pieces for every wood species with a  cross section of 50 x 50 mm2. They were 

tested in a three-point bending test with a span of 700 mm. In table 5.5, the mean density 

for each wood species is listed together with the coefficients of variation for the density, 

the bending strength and the MOE. The low c.o.v. of the densities is in line with values 

given in the Wood Handbook  (Ross et al., 2010) for clear wood.   

 

Table 5.5. Coefficients of variation of clear wood samples of 5 wood species. 

Wood species 

Mean density at 

12% m.c. 

(kg/m
3
) 

c.o.v. density 
c.o.v. bending 

strength 
c.o.v. MOE 

tola branca 682 0.10 0.16 0.20 

peros de campos 770 0.10 0.16 0.15 

yang 836 0.07 0.16 0.17 

iroko 873 0.07 0.14 0.15 

basralocus 892 0.10 0.15 0.16 

 

Something that can be observed is that the coefficient of variation (= standard deviation 

divided by the mean value) of the bending strength and the MOE are rather constant for 

increasing density. This means that the scatter for the bending strength and MOE will 

increase for increasing density. This can be observed in figures 2.5 and 2.6 where for both 

bending strength and MOE an increasing scatter with increasing density can be seen. This 

scatter is assumed to be the natural variation on clear wood level.  This natural variation is 

the basis to eventually predict the scatter in prediction models on the level of structural 

timber with defects. For comparison, the Wood Handbook  (Ross et al., 2010) gives for 

clear wood average   coefficients of variation of 0.16 for the bending strength and of 0.20 

for the MOE. 
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The natural variation of the bending strength for pieces with the same density is denoted 

as an error εf. The natural variation of the MOE for pieces with the same density is 

denoted as an error εM . 

In the following derivation, factors Ck1 and Ck2 are assumed to be zero. When they are not 

zero, they will be included in a constant in the equations for structural timber.  

The natural variation for the bending strength εf  for a certain density value is introduced 

in equation (5.32) and the  natural variation εM for the MOE for a certain density value is 

introduced in equation (5.33). Then these equations become: 

                               (5.36) 

                                (5.37) 

The errors εf and εM are considered to be normally distributed with a mean value of zero. 

As mentioned before, they increase with increasing density. This will be elaborated 

further. The objective of this section is to investigate how these errors propagate through 

the equations for structural timber with strength reducing characteristics. The factors C 

might not be an exact constant either. These may also be a stochastic, however, the errors 

in the factors C are neglected because they are expected to be included in εf and εM. 

 

Equation (5.37) can be written as: 

                               (5.38) 

  
       

  
                     (5.39) 

Inserting (5.39) in (5.36) gives: 

     
       

  
                        (5.40) 

     
  

  
     

  

  
                       (5.41) 

To predict the bending strength of clear wood from MOE-measurements,  the model line 

becomes: 

         
  

  
                                (5.42) 

And the scatter around this line is 

     
  

  

  
                                  (5.43) 

The overall mean value of εfm,0 is zero, but when the individual values of εfm,0 are plotted 

against the model values according to equation (5.42), the mean value of εfm,0 for a 

specific model value does not have to be zero. This depends on whether εf and εM are 

correlated or not. When they are two totally independent variables (the coefficient of 

determination r2 between the two is then zero, no correlation) then the mean value of εfm,0 

for each model value will be zero. When they are correlated, this will not be the case. In 

that case the ratio C1/C2 is not the factor found in a least squares regression. This will be 

addressed further on in this section. 
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To formulate the effect of the correlation between εf and εM the correlation between two 

normal distributions will be considered as a starting point. 

According to Agnew and Constable (2008), for two correlated normal distributions X1 and 

X2 the conditional probability density function (pdf)  for X2 with x1 given is: 

 
  ￨     

  
 

     
       

  
 

        
  
  

        
 

   
       

 
                (5.44) 

Where  r2 is the coefficient of determination between X1 and X2. 

From (5.44), it can be seen that the expected value of X2 is: 

    ￨        𝜇   
  

  
    𝜇                    (5.45) 

This is the regression line for X2 based on X1. From (5.44) it can be seen that the standard 

deviation around this regression line is  

𝜎
  ￨     

 𝜎                            (5.46) 

This means that when two normal distributions are correlated, there is a constant variance 

around the regression line when one of them is expressed in the other. 

In the case of clear wood εf and εM  are  normal distributions that might be correlated.  

εf and εM  are expected to be normally distributed around zero with standard deviations σεf 

and σεM. 

εM  and εf can be modeled as  

     𝜎  
                              (5.47) 

     𝜎  
                                (5.48) 

With X1 and X2 as standard normal distributions N(0,1). 

Then εf can be modeled for a given value of εM as: 

    
   

   

  𝜎  
   𝜎  

                                 (5.49) 

    𝜎  
     𝜎  

                                  (5.50) 

The model line for εf  is: 

        𝜎  
                               (5.51) 

And the residual around this line is 

             𝜎  
                         (5.52) 

By applying the formulas of propagation of error it shows that the residuals have a 

constant variance with a value of  

           𝜎  
                         (5.53) 

And the standard deviation of the  residuals is: 

𝜎        𝜎  
                          (5.54) 
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The magnitudes of the standard deviations εM and εf  depend on the coefficient of variation 

of the MOE and bending strength. It was observed that for clear wood the coefficients of 

variation for the MOE and bending strength are almost constant for every density value 

(see also table 5.5). This is formulated in equations (5.55) and (5.56): 

𝜎  
                            (5.55) 

 𝜎  
                            (5.56) 

Where vf  is the coefficient of variation for the bending strength and  vM the coefficient of 

variation for the MOE. 

Then equations (5.47) and  (5.48) become: 

                                         (5.57) 

                                           (5.58) 

Equation (5.50) then becomes: 

                                                      (5.59) 

The model line for εf is: 

                                             (5.60) 

And the residual around this line is 

                                           (5.61) 

By applying the formulas of error propagation, the residuals have a constant variance with 

a value of  

                   
                                 (5.62) 

And the standard deviation of the error around the model line is: 

                                           (5.63) 

This constant variance for the residuals (and the constant standard deviation for the 

standard error) is the case only when the observed data are pieces with the same density. 

When a range of densities is regarded, the errors might overlap.   

 

To investigate whether a correlation between εM  and εf  exists, the underlying data of 

figures 2.5 and 2.6 from the Houtvademecum (Wiselius, 2010) are studied. From (5.57) 

and (5.58) it appears that the correlation between εM  and εf  can only be studied for pieces 

with the same density. For the data from the Houtvademecum there is a whole range of 

densities. In that case, the correlation between X1 and X2 can be studied. This can be done 

by calculating individual values for X1∙vF and X2∙vM by modifying equations (5.36) and 

(5.37), with equations (5.57) and (5.58) inserted: 

        
            

     
                                (5.64a) 

        
            

     
                               (5.64b) 

The (X1 vF)i  values are plotted against the (X2 vM )i values in figure 5.24. 
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Figure 5.24.  (X1 vF)i  values plotted against the (X2 vM )i values for the dataset of small 

clear wood sample, data from the Houtvadamecum (Wiselius,2010). 

 

Figure 5.24 shows that X1∙vF and X2∙vM are correlated. The coefficient of determination 

that is found is r2 = 0.27.  Because vF and vM are constants X1 and X2 are also correlated 

with the same value for the coefficient of determination. The correlation is positive, which 

means that for a specific density when εM increases, also εf  increases. Figure 5.24 gives 

the correlation of the mean values of 192 species that are evaluated. It is expected that this 

correlation will also show up when individual test piece values are evaluated. Because X1 

and X2 are standard normal distributions, the values of vF and vM  are simply the standard 

deviations of  X1∙vF and X2∙vM . The mean values of X1∙vF and X2∙vM  are both 0.  The 

standard deviation of X1∙vF = 0.13, so vF =0.13. The standard deviation of X2∙vM =0.18, so 

vM =0.18.  The expected constant standard deviation around the regression line according 

to equation (5.46) is 0.13√(1-0.27) = 0.11. When the standard error is calculated from the 

test data also a value of 0.11 is found. 

Figure 5.24 shows that X1∙vF can be predicted from X2∙vM by multiplying it by 0.39. 

Calculated with equation (5.45) a slope of 0.52*0.13/0.18 = 0.38 is found, very close to 

0.39.  According to (5.45) the relationship between X1 and X2 is X2 = r ∙ X1 (because the 

standard deviations of both  X1 and X2 are 1). With r2 = 0.27 found in figure 5.24 this 

becomes X2 = 0.52∙X1.  Figure 5.25, where X2 is plotted against X1 confirms this. X1 and X2 

are both random variables following a standard normal distribution. 
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Figure 5.25. (X1)I values are plotted against the (X2)i values for the dataset of small clear 

wood samples, data from the Houtvadamecum (Wiselius,2010). 

 

To illustrate the influence of the positive correlation between X1 and X2 values for X1 and 

X2 are randomly generated from the standard normal distribution with different 

coefficients of determination. The mean densities from the database of Houtvadamecum 

(Wiselius, 2010) are used, together with vF = 0.13 and vM = 0.18, to calculate the bending 

strength and the MOE with subsequently r2 = 0.0, r2 = 0.27 and r2 = 1.0 as coefficients of 

determination between X1 and X2. The simulated bending strengths are plotted against the 

simulated MOEs in figure 5.26 (the regression lines are forced through the origin). Figure 

5.26 shows that the slope of the regression line stays practically the same for the three 

situations, but that the value of r2 between X1 and X2 has a significant influence on the 

coefficient of determination between the modeled bending strength and the modeled 

MOE, and by that on the scatter around the regression line. The middle plot of figure 5.26 

gives practically the same coefficient of determination as the original data in figure 2.7, 

which confirms the theoretical considerations in this section. 
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Figure 5.26. Regression plots of simulations of the bending strength and MOE with 

correlated randomly generated X1- and X2-values with the densities from the 

Houtvadamecum (Wiselius, 2010). Coefficients of determination between X1 and X2  are 

r2=0 (top), r2=0.27(middle) and r2=1.0 (bottom).   
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Modeling the relationship between the bending strength and MOE for clear wood for 

fixed densities. 

It has been shown that the relationship between MOE and bending strength for clear wood 

is influenced by the fact that both properties are linearly related to the density and that the 

errors for both properties in these relations are correlated. To perform species independent 

grading, a wide range of densities will be included and as a consequence the errors will 

overlap. The effect on the mean regression line and the scatter around this line has to be 

investigated and quantified. To do this, first the relationship between bending strength and 

MOE for clear wood for a fixed density will be studied and after that this will be extended 

to a density distribution. 

 

Including the correlation between X1*vF and X2*vM in equations (5.41 to 5.43) gives: 

 

     
  

  
     

  

  
                                                                (5.65) 

         
  

  
                               (5.66) 

     
                                                        (5.67) 

Equation (5.37) can be rewritten to: 

                                             (5.68) 

Then (5.65) becomes: 

                                                             (5.69) 

And (5.66) becomes: 

                                                  (5.70) 

 

When a fixed density is assumed, MOE0 and fm,0 will be normally distributed. The 

equation for the model line between observed and modelled data can be calculated based 

on equations (5.66) and (5.65).  

A plot is considered where the observations of  fm,0  (5.65) are plotted on the y-axis against   

the model values fm,0,mod (5.66) on the x-axis. The datapoints with (X1=0, X2=0) and (X1=1, 

X2=0) are on the model line. 

For (X1=0, X2=0) it follows that: 

        

         

For (X1=1, X2=0) it follows that: 

                

                



172 

 

The slope A can be calculated with: 

  
     

     
  

        

      
   

  

  
 

Now equation y= Ax + B can be formulated as 

      𝜇  
  𝜇    

This becomes in this  case: 

    
  

  
 
  

  
     

  

  
           

  

  

  

  
           

  

  
    

Inserting equation (5.66) gives: 

     
  

  
                

  

  
     

The residuals around the model line will be according to equation (5.63). 

 

As an example, two datasets are simulated with fixed densities for all pieces. One dataset 

with a fixed density of ρ = 400 kg/m3 and one density of ρ = 800 kg/m3. 

For C1 = 0.15 and for C2 =18 is taken. For vF = 0.13 and vM = 0.18. The correlation 

coefficient between X1 and X2 is assumed to be r = 0.5. For both densities, 1000 values for 

X1 and X2 are simulated by taken them randomly from a standardized normal distribution, 

taking into account that they are correlated. With these generated values and the defined 

constants, the model values  fm,0,mod  according to equation (5.66) and the observations fm,0 

according to equation (5.65) are calculated. So both the model values fm,0,mod as the 

observed data fm,0 are simulated ! 

The results are plotted in figure 5.27. 

 

Figure 5.27.  Simulated observed data plotted against simulated model data for 2 density 

values. 

The expected regression equation for ρ = 400 kg/m3 becomes: 
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y = 0.5 (0.13/0.18) fm,0,mod +(400∙0.15)-0.5(0.13/0.18) (400∙0.15)=0.36 fm,0,mod +38.3 

The expected regression equation for ρ = 800 kg/m3 becomes: 

y = 0.5 (0.13/0.18) fm,0,mod +(800∙0.15)-0.5(0.13/0.18)(800∙0.15)=0.36 fm,0,mod +76.7 

The regression lines through the simulated data practically coincide with the expected 

equations for the regression lines. 

The coefficient of determination r2 for pieces with the same density between the model 

values and the observed values will never be bigger than r2-value between X1 and X2. This 

explains that for a sample of a hardwood species with very little variation in density 

within the sample, the lower the correlation is, the more homogeneous (little variation in 

grain angle deviation) the pieces of the sample are.  

 

Modeling of the relationship between the bending strength and MOE for clear wood for 

distributed densities. 

 

Now, supposing that the two generated samples of figure 5.27 are analyzed together to 

model the relationship between fm,0  and  fm,0,mod. A least squares regression is performed 

using all these datapoints of these two samples. This will result in figure 5.28.  

  

 

Figure 5.28.  Simulated observed data plotted against simulated model when the 2 

density values are considered as one data group. 

 

The coefficient of determination r2 increases significantly to r2=0.82.  The mean standard 

error around the regression line will be zero for all data, but not for individual model 

values. This can be explained by looking at the regression lines of the individual samples. 

The mean (x,y)–values for both samples will be on the overall least squares regression 

line, but all other (x,y)–pairs that are on the sample-regression line will not be on the 
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overall regression line. That also means that the residuals will not have a constant 

variance with the overall regression line.  The situation of figure 5.28 is an extreme case. 

Normally the density will not be fixed to exactly two values, but will follow a distribution. 

This means that the dataclouds for different density values will overlap. 

 

The effect of a least squares estimation will be that the mean of the standard error for 

every model value is as close to zero as possible. To calculate the slope of the mean 

regression line from a least squares estimation, the difference of      -         has to be 

calculated in every model point. Although one of the assumptions in linear regression is 

that the variance of the standard error is equal over the range of model values, figures 2.5 

to 2.7 show that this is not the case for clear wood when the density increases. Therefore, 

also in every model point, the standard deviation of the standard error has to be calculated.  

When the regression line is transformed to coincide with y=x, the model value has to be 

multiplied by the intercept of the regression line and increased by the intercept. So in 

figure 5.28, the model value has to be multiplied by 0.85 and increased by 13.43 to 

achieve this. The shape of the scatter around the line y=x, however, will be the same as 

that of the original line. This can be used in the calculation of the errors for every model 

point. 

 

For a certain density, the mean model value and the mean observed value will be on y=x 

because both  X1 and X2 are 0. The deviation from mean model values with the line y=x 

for a value of X1  for a certain density can easily be calculated with equation (5.67) 

without the error term due to X2 around this mean: 

𝑑                                                      (5.71) 

For a certain model value fmod,A the value of X1 can be calculated with  

   
                  

  
  

       

 
       

  
  

          

  
  

       

                 (5.72) 

MOEmean,ρ   can be replaced with  ρC2 and σε,M can be replaced with vM  ρ C2. Then for a 

model value fmod,A (5.71) becomes: 

𝑑         
            

         
  

  

  
                                          (5.73) 

𝑑         
            

   
                                   (5.74) 

With the index  j in ρ it is indicated that this is valid for a specific value of the density. 

For every value  of A, the  difference of the mean model value with the line y=x can be 

calculated with (5.74).  

However, when there is a spread in densities, the mean differences and standard errors 

will overlap. For a certain model value fmod,A these overlaps have to be summed to find the 

difference with the model in that model point for the whole data. This has to be a 

weighted summation, depending on the amount of data in a specific model point due to a 
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certain density.  The amount of data for a model value A for a certain density depends on 

the value of X1. So the probability of a certain model A value to occur for a certain density 

ρj  is          , being the standard normal distribution. 

              
           

       
                    (5.75) 

In equation (5.75) the probability of data for model value A for a certain density ρj is 

expressed. To calculate the mean difference value with the line y=x  in model value A, we 

have to calculate the weighted mean difference R due to data in model value A caused by 

all densities. 

The weighted mean difference R is calculated with: 

        
                             
 
      

                    
 
      

                (5.76) 

Pdf(ρj) is introduced in equation (5.76) to calculate the amount of data for model value A 

due to the amount of data present for every density value. When the density is normally 

distributed with mean µρ and standard deviation σρ, then  the probability density function 

of the property the density  becomes: 

        
     

  
                     (5.77) 

And (5.76) becomes: 

        
                            
 
      

                  
 
      

                (5.78) 

An analytical solution of (5.78) could not be found in literature. Therefore, in calculations  

a discretization is performed.  The minimum and maximum values for j that are applied 

are –4 and +4 with increment steps of 0.1 N/mm2. These give sufficiently accurate results. 

Then equation (5.78) becomes; 

        
                             

      

                  
 
      

                (5.79) 

Secondly, the standard deviation in model point A due to overlapping densities has to be 

calculated. The standard deviation of the standard error in model point A due to data from 

a certain density ρj is 

                                                 (5.80) 

In this case, the value of X1 does not have to be known, because the magnitude of the 

standard error is the same for each X1 value. 

For 2 populations following  normal distributions with different amounts of data, the 

resulting standard deviation can be calculated in the following way: 
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                        (5.81) 

Where n1 and n2 are the number of datapoints for populations 1 and 2,     and     are the 

mean of population 1 and     population 2, sy,1 and sy,2 are the standard deviations of 

population 1 and 2, and         is the mean of all data of populations 1 and 2. 

Applying this principle for the “mean” standard deviation in model point A, this becomes: 

           
      

 
         

                     
 
   

      
 
      

               (5.82) 

 

To compare the theoretical trend of the magnitude of the standard error of (5.82) with the 

observed trend of test data (either real test data or simulated test data), it has to be 

formulated how this observed trend is determined. Theoretically, for every model point, 

the mean standard error could be calculated from the residuals in that model point. 

However, this will only work when in every (discretized) model point a large number of 

test data is available. It is more likely that in a certain chosen interval there might be 

different amounts of pieces over this interval size over the range of model values, which 

makes the calculations unstable. 

Therefore, the sliding standard deviation of the error is introduced, which calculates the 

standard deviation of the error over a fixed number of model values. The following 

procedure was followed: 

- all pairs of model values-residuals are ranked, based on the model value, from low 

to high 

- the standard deviation  of k consecutive residuals is calculated. This means that the 

standard deviation is calculated for ranked model values 1 to k, then for 2 to k+1 

etc. This is called the sliding standard deviation of the error: 

                                                     (5.83) 

- For all ranked model values from i = k to n  the values of sres,sliding,i is calculated. 

- Plotting the values of sres,sliding,i against the model values gives the trend line for the 

standard error. 

- The number of k can be varied. In this thesis k = 50 will be used, unless indicated 

otherwise. 

The theory of this section will be demonstrated by two examples of simulated data with 

different spread in density. Again, in these examples the model values as well as the 

observations are simulated. 
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Simulation 1. 

The input for the simulations is: 

A normally distributed density, with  µρ = 700 kg/m3 and σρ = 50 kg/m3. 

The following constants: C1 =0.15; C2 =18 ; vF =0.13 ; vM =0,18 , correlation between X1 

and X2 : r = 0.5. Number of simulated datapoints: 2500. 

Figure 5.29  shows the regression plot between the simulated model values and the 

simulated observed values.  Figure 5.30  shows the residuals  around the regression line of 

figure 5.29, together with the theoretical mean regression line, calculated in every model 

point according to (5.79).  Figure 5.31  shows the residuals when the model values are 

adjusted to the equation of figure 5.29, together with the theoretical standard deviation of 

the error calculated with (5.81) in every model point, and the sliding standard deviation of 

the error calculated with (5.83).      

 

Figure 5.29.  Simulated observed data (n=2500) plotted against simulated model data for 

simulation 1. 

 

Figure 5.30.  Simulated observed residuals (n=2500) plotted against simulated model 

data with the theoretical mean residual line for simulation 1.  
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Figure 5.31.  Simulated adjusted observed residuals(n=2500) plotted against simulated 

model data with theoretically calculated standard deviation in every point and the sliding 

standard deviationl line for simulation 1.  

Simulation 2. 

The input for the simulations is: 

A normally distributed density, with  µρ = 700 kg/m3 and σρ = 150 kg/m3. 

The following constants: C1 = 0.15; C2 =18 ; vF = 0.25 ; vM = 0.18 , correlation between X1 

and X2 :r = 0.5. Number of simulated datapoints: 2500. 

Figure 5.32  shows the regression plot between the simulated model values and the 

simulated observed values.  Figure 5.33  shows the residuals  around the regression line of 

figure 5.32, together with the theoretical mean regression line, calculated in every model 

point according to (5.79).  Figure 5.34  shows the residuals when the model values are 

adjusted to the equation of figure 5.32, together with the theoretical standard deviation of 

the error calculated with (5.81) in every model point, and the sliding standard deviation of 

the error calculated with (5.83).      
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Figure 5.32.  Simulated observed data (n=2500) plotted against simulated model data for 

simuation 2. 

 

 

Figure 5.33.  Simulated observed residuals (n=2500) plotted against simulated model 

data with the theoretical mean residual line for simulation 2.  
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Figure 5.34.  Simulated adjusted observed residuals(n=2500) plotted against simulated 

model data with theoretically calculated standard deviation in every point and the sliding 

standard deviationl line for simulation 2.  

 

From the simulations, the following conclusions can be drawn: 

- The trend of the standard deviation of the standard error around the model line 

very much depends on the input distribution of the density and the magnitudes of 

the constants. 

- The theoretical trend of the standard deviations very well coincides with the sliding 

standard deviation. Because for timber with grain angle deviation and knots the 

theoretical equations become more complex, they will not be derived for these 

situations, but the sliding standard deviation will be used to evaluate the trend of 

the standard deviation of the error. 

 

5.2.3 Prediction model for the bending strength  based on the  MOE and density 

for timber with grain angle deviation 

In section 5.2.2 it was investigated how the observed scatter between model values based 

on the MOE could be explained for clear wood. Moving to structural timber at gross level, 

strength and stiffness reducing characteristics such as grain angle deviation and knots 

occur.  

Since these characteristics have the effect of reducing the strength and stiffness, this will 

also have an effect on the observed scatter between model values and observed values.  

Because the equations to describe the failure strengths are different for timber containing 

knots and containing grain angle deviation, this will be investigated for both situations. 
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From the test results in chapter 4 it was already found that visual grading is not suited for 

species independent grading. Therefore, the focus will be on models for machine grading.  

In this section, the following aspects will be investigated: 

- What is the correct model to predict the bending strength based on the density and 

the MOE for structural timber with grain angle deviation? 

- What scatter can be expected around this prediction model due to the natural 

variability for the bending strength and the MOE for a certain density and the 

occurrence of grain angle deviation? 

In this section, structural timber is considered with grain angle but without the presence of 

knots. This frequently appears in structural timber from tropical hardwoods. It is assumed 

that no knots are present. 

 

The grain angle deviation or slope of grain was defined in chapter 3. In figure 5.35 the 

typical failure mode of a piece of timber with grain angle deviation α for a piece of timber 

of wood species cumaru is given. In section 5.1.2 the influence of the grain angle 

deviation on the bending strength and MOE was shown. The influence described by the 

Hankinsons equations is the 3D grain angle deviation. In chapter 4 it was concluded that 

this was very difficult to measure visually. However, in the MOE measurements this 3D -

effect will be integrated. 

 

 

 

Figure 5.35.  (above) Schematizing of grain angle deviation. (below) Example of grain 

angle deviation α and failure mode in a cumaru beam tested in a four-point bending test. 
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Reference is made to equations (5.32) and (5.33) for the relationship between the density 

with the bending strength of clear wood and the relationship between the density and the 

MOE of clear wood. The constants Ck1 and Ck2 are assumed to be zero: 

 

                                       (5.84) 

                            (5.85) 

 

To make use of the Hankinson relation, the ratios for strength and MOE between parallel 

(with grain angle 0) and perpendicular to the grain (with grain angle 90) are defined as: 

   
    

     
                     (5.86) 

   
    

     
                     (5.87) 

 

For the relation between fm,0 and fm,90 and the relation between MOE0 and MOE90 the 

Hankinson relation with a value of n=2 is assumed. The bending strength for timber with a 

grain angle deviation α then becomes: 

     
    

     
            

                   (5.88) 

This can be rewritten as: 

     
    

               
                   (5.89) 

The formula of fm,α is given for a certain dimension  href (depth). The influence of depth 

will be studied in the next section.  

For the Modulus of Elasticity the formula becomes: 

     
    

               
                    (5.90) 

 

When equation (5.84) is inserted in equation (5.88) and equation (5.85) is inserted in 

equation (5.90) then equations (5.85) and (5.90) become: 

     
   

               
                               (5.91) 

     
   

               
                   (5.92) 

The factor C5 brings effects into account caused by for instance load configurations. 

Evaluating formulas (5.91) and (5.92) it can be concluded  that for timber without knots 

both the bending strength and the modulus of elasticity depend on the density, the grain 

angle, and the ratios of the bending strength and modulus of elasticity between parallel 

and perpendicular to the grain. The density and grain angle deviation can be regarded as 

two  independent uncorrelated variables. 



183 

 

In chapter 4 it was already observed that grain angle deviation is difficult to measure, but 

it was shown in section 5.1 that grain angle deviation has an effect on both the MOE and 

the bending strength. Because in practice the MOE can be measured accurately by means 

of the MOEdyn,, by measuring the MOE indirect information about the grain angle 

deviation is gathered, which can be used to predict the bending strength.  

 

In practice, the measured MOE is in fact MOEα, because the value of the MOE is 

influenced by the (possible) varying value of α.  Based on a non-destructive measurement 

of MOEα an average of the grain deviation α can be estimated. When MOEα is measured, 

equation (5.92) can be rewritten to (5.93) to express the square of sine α in the measured 

density ρ and MOEα:    

     𝛼   
    

    
   

 

    
                  (5.93) 

Now the formula for sin2(α) according to equation (5.93)  can be inserted in equation 

(5.91): 

     
   

       
   

    
   

 

    
  

                               (5.94) 

After rewriting this gives: 

     
             

                     
                     (5.95) 

 

Based on the measured density and MOE, the bending strength can be predicted without 

measuring the grain angle. In practice, this prediction will be more accurate than the 

equation with grain angle, since the grain angle has to be measured visually and is 

therefore more sensitive to measuring errors. This will show in the correlation coefficient 

and the magnitude of the error term of the model. 

(5.94) can be rewritten as: 

         
     

          
                     (5.96) 

With  

   
        

        
                                       (5.97) 

   
       

        
                    (5.98) 

                           (5.99)  

 

D1 and D2 can be calculated from the constants Ci when they are known. The constants Ci 

can be determined based on measurements of the grain angle and density and test results 

for the bending strength and MOE. If only density and MOE measurements are available, 

D1 ,  D2 and D3 can directly be obtained by a regression analysis. 
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fm,α could also be obtained by a regression of the form fm,α = A*MOE + B, which can be 

described as a pure curve fitting regression model. Equation (5.96) can be regarded as a 

(simplified) physical based model, where the values of the constants are derived by a 

regression analysis based on relevant physical parameters as input. Equation (5.96) is 

therefore the “correct” model, although this does not mean that the pure curve fitting 

regression model will automatically give worse predictions within certain limits.  With the 

“correct” model, however, the shape of the scatter around the prediction can be estimated 

and the model is less sensitive. 

 

Estimation of the scatter of the prediction model for the bending strength based on MOE 

and density of structural timber with grain angle deviation. 

 

The next step is to include the errors due to the natural variation of the errors for the MOE 

and the bending strength based on the density and the correlation between them.  

Equations (5.90) and (5.93) can be rewritten as: 

     
      

               
                 (5.100) 

     𝛼   
      

    
   

 

    
                (5.101) 

Inserting (5.101) in equation (5.91) and including the error εf:  

     
      

       
      
    

   
 

    
  

                 (5.102) 

Equation (5.102) can be rewritten as: 

     
                   

                               
                      (5.103) 

 

Inserting (5.57) and (5.58) in (5.103) gives: 

     
                                         

                                     
                       (5.104) 

 

In  section 5.2.2 it was found that the error term X1 is responsible for the deviation of the 

model value with the mean least squares estimation line and the error term X2 is 

responsible for the scatter around this line. 

The error terms including X2 from (5.104) are: 

   
 

                           

                                     
                      (5.105) 

 

MOEα can be written as: 

     
            

               
                  (5.106) 
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Inserting  (5.106) in (5.105): 

   
 

                 
            
               

      

           
            
               

                          
                   (5.107) 

 

Ignoring the parts with X1 (5.107) becomes: 

 

   
 

               

               
                 (5.108) 

 

And with the formulas for error propagation the standard error sy becomes: 

   
             

               
                          (5.109) 

 

Equation (5.109) shows that the error around the model line increases with increasing 

density, but decreases with increasing grain angle deviation.  It can be seen that with grain 

angle deviation of zero, the standard error is the same as for clear wood, as expected.  For 

a range of densities the errors will overlap.  

 

The deviation from the model line (5.96) with the theoretical constants Ci compared with 

the mean least squares estimation model line is caused by the distribution of the densities 

in the dataset.  This deviation for every model value from the model line and the standard 

deviation of the model standard error in every model value can also theoretically be 

derived as was done for clear wood in section 5.2.2. The principle is the same as for clear 

wood, however, the formulas for timber with grain angle deviation are more complicated.  

 

The objective of this section is to find out the shape of the scatter that will be found in a 

least squares estimation on real data. In this thesis, the finding of section 5.2.2 will be 

used, namely that the sliding standard deviation of the residuals is a good estimation of the 

trend of the scatter. With equation (5.108) this trend can be compared. 

 

The effect of the deviation of the theoretical  model line (5.96) with a least squares 

estimation will be a transformation of the model line with the shape y= A fmod,α + B 

The adjusted model values then will be: 

                                        (5.110) 

Or, when  equation  (5.96) is adapted: 

 



186 

 

             
     

            
                   (5.111) 

With  

 

    
  

 
                   (5.112) 

    
  

 
                   (5.113) 

                             (5.114) 

 

 

5.2.4  Prediction model for the bending strength based on the MOE and density 

for timber with knots 

To model the influence of knots again it is assumed that for clear wood there is  linear 

relationship of  the bending strength and stiffness of clear wood with the density. See 

equations (5.84) and (5.85). As for timber with grain angle deviation also for timber with 

knots the density and MOE are the measurement parameters for machine grading. It is 

now assumed that the grain angle deviation is zero. 

 

In this section will be investigated: 

- What is the correct model to predict the bending strength based on the density and 

the MOE for structural timber with knots ? 

- What scatter can be expected around this prediction model due to the natural 

variability of the bending strength and MOE for a certain density and the 

occurrence of knots ? 

 

 

The influence of the knots is characterized by a parameter, which in this thesis called  KR, 

the knot ratio as defined in chapter 3. In figure 5.36 an example is given for the failure due 

to the presence of a knot in structural timber: 
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Figure 5.36 Schematizing of a knot (above). Example of a knot in a timber beam and the 

associated failure pattern it causes in a bending test (below) according to figure 3.1. 

 

In  section 5.1.3 it was described that the observed linear reduction of strength and 

stiffness (see figures 5.20 and 5.21) can be explained from theoretical considerations. 

 

The bending strength due to the reduction of knots can then be described by equation 

(5.115): 

                                    (5.115) 

Factor C7 brings the systematic effects into account that can be caused by for instance the 

load configuration or size effects. The term          indicates a linear reduction of the 

bending strength with increasing KR-value. The parameter KR gives a 2D- representation 

of an actual 3D-effect. However, in the measurements of the MOE the 3D-effect will be 

influencing the results. The purpose of the 2D-parameter KR is in this section only to give 

a physical basis for the prediction formulas based on machine measurements. However, 

research has shown that also the 3D-parameter KAR shows a linear relationship with the 

bending strength and the MOE.  

Inserting  equation (5.84) in  equation (5.115) gives: 

                                         (5.116) 

The density and KR are two independent uncorrelated variables. 

The MOE due to the reduction of knots can be described by equation (5.117): 

                                  (5.117) 

By inserting equation (5.85) in equation (5.117) gives: 

h

b

d1

d2

d3

α
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                                           (5.118) 

KR can be expressed in MOEKR: 

   
         

     
                  (5.119) 

Inserting  (5.119) into (5.116) for the bending strength gives: 

            
         

     
                          (5.120) 

This can be rewritten as: 

          
  

  
  

    

    
                                   (5.121) 

 

(5.121) can be rewritten as: 

 

                                                (5.122) 

With 

        
  

  
                    (5.123) 

   
    

    
                   (5.124) 

                         (5.125) 

 

The factors Di  can be estimated from the Ci factors when KR values and density values 

are available, but can also be derived directly from a least squares regression with density 

and MOE as predicting parameters. 

 

Equation (5.122)  describes a linear relation for fKR,mod with the density and the MOE, 

whereas fm,α,mod in equation (5.96), describes a non-linear relation with the density and 

MOE. The “correct” prediction models for timber with grain deviation or timber with 

knots describe a different relation with the density and MOE.   

In the next section, the scatter around the model line is investigated for timber with  knots. 

 

 

Modelling the variation in the model for the bending strength based on the presence of 

knots with density and MOE as predicting parameters. 

 

Introducing εf and εM in equations (5.116) and (5.118) 

                                                (5.126) 

                                              (5.127) 
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KR can be expressed in MOEKR: 

   
              

          
                 (5.128) 

Inserting (5.127) in (5.125): 

                  
              

          
                       (5.129) 

or 

                
  

  
   

     

         
                        (5.130) 

 

By applying equations (5.57) and (5.58) equation (5.130) becomes: 

 

                                     

   
  

  
   

     

              
                    (5.131) 

 

In section 5.2.2 it was found that the error term X1 is responsible for the deviation of the 

model value with the least squares estimation line and the error term X2 is responsible for 

the scatter around this line. 

The error terms including X2 from (5.130) are: 

      
                     

  

  
   

     

              
                      (5.132) 

MOEKR can be written as: 

                                                  (5.133) 

The equation (5.132) becomes: 

      
                                              (5.134) 

 

With the formulas for error propagation, the standard error of the model line for a certain 

model value can be calculated: 

 

                                                  (5.135) 

 

Equation (5.135) shows that the standard deviation of the error around the model line 

increases with increasing density and reduces with increasing knot ratio.  

 

Comparing the equations for the prediction models for structural timber containing grain 

angle deviation with those for structural timber containing knots, it can be concluded that 

different prediction models are derived from the physical failure models. Also the 
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standard deviation of the error around the model line differs. From this it can be 

concluded that species independent grading models based on MOE and density are 

possible, when structural timber is divided in two groups: timber containing grain angle 

deviation and no knots and timber with knots containing no grain angle deviation. 

 

5.2.5 Prediction model for the bending strength based on the presence of both 

grain angle deviation and knots 

For softwoods and temperate hardwoods a grain angle deviation of zero can normally be 

assumed. At present in tropical hardwoods the presence of knots is very rare. However, in 

some cases, batches with timber with knots come on the market. The expectation is that 

this will happen more often in the future. The difference with the presence of knots in 

softwoods is that in tropical hardwoods the knots appear in combination with grain angle 

deviation. Another aspect is that the knots in tropical hardwoods are less systematically 

distributed. 

To model this for strength, equations (5.91) and (5.116) can be combined, since they are 

both reduction formulas: 

        
           

               
                    (5.136) 

 

To model the stiffness, equations (5.92) and (5.117) can be combined since they are also 

both reduction formulas: 

         
           

               
                (5.137) 

 

Since both fm,α,KAR and MOEm,α,KAR depend on both knot ratio and grain angle deviation it is 

not possible to express fm,α,KAR as a function of only density and measured MOE.  This 

means that it is not possible to make a prediction model with only measured density and 

measured MOE that can predict both the influence of knots and of grain angle deviation. 

Therefore, separate strength models have to be made for timber with knots and timber 

with grain angle deviation. In practice, for tropical hardwood where knots are very limited  

present, a maximum knot ratio is given in the visual grading standards. In NEN 5493 this 

maximum knot ratio is limited to 0.2. To investigate the influence of knots on the model 

for grain angle deviations simulations can be performed. The strength can then be 

modeled by introducing the scatter for the strength and stiffness.   

 

Equation (5.136) then becomes 

        
                

               
                          (5.138) 

 

Including equation (5.59) : 



191 

 

        
                                      

               
                     (5.139) 

 

Equation (5.137) becomes: 

        
                 

                
                (5.140) 

 

Including equation (5.57): 

        
                      

               
                (5.141) 

 

5.3 Adjustment factors for depth and moisture content on the bending 

strength of structural timber.  

In chapter 2, the influence of size and moisture content on the bending strength of timber 

is described. It was noticed that the grading method could influence the outcome of the 

size effect. Another aspect is the influence of moisture content on the bending strength, 

especially for tropical hardwoods, since they are usually tested at a higher moisture 

content than the reference value of 12%. In section 5.2, the prediction models for machine 

grading are defined. With these models, the influence of size and moisture content on the 

bending strength can be investigated. The adjustments for density and the MOE are 

already determined in chapter 3.  

To determine the adjustment factors for size and moisture content a testing program was 

performed with a tropical hardwood species (greenheart) and a softwood species (spruce). 

Because for spruce not enough data for high moisture contents was available, only the 

influence of size is studied for spruce.  

 

Adjustment factor for size and moisture content on the bending strength of greenheart 

In table 5.6, the test material used in this investigation is listed. To provide extra data, 

additional specimens were prepared, cut from the remaining test pieces of sample GR2. 

 

All specimens were tested in a four-point bending test with a span of 18 times the depth.  

The MOElocal and MOEglobal were not measured for all specimens. Because the MOEdyn 

was measured for all specimens, the MOEdyn is used in the model.  

In table 5.7, the test results are listed. Because the focus is on the influence of the depth, 

samples GRA+GRB, and samples GRI + GRJ are combined. At testing, the values for the 

bending strength, MOEdyn and density are given for the measured values with the moisture 

content. 

 



192 

 

Table 5.6. Moisture contents, sizes and number of specimens of the greenheart samples. 

Sample ID 
Mean 

m.c.(%) 

Relation with samples of 

table 3.1. 

thickness 

(mm) 

Depth 

(mm) 
n 

GRA 15 Cut from GR2 20 20 30 

GRB 15 Cut from GR2 40 20 14 

GRC 15 Cut from GR2 20 40 14 

GRD 15 GR2 50 110 24 

GRE 13 GR4 30 75 54 

GRF 25 GR2 50 110 43 

GRG 25 GR3 70 160 29 

GRH 25 GR4 30 75 54 

GRI 42 Cut from GR2 20 20 60 

GRJ 42 Cut from GR2 40 20 28 

GRK 42 Cut from GR2 20 40 14 

 

 

Table 5.7. Test results for the  greenheart samples from table 5.6. 

Sample ID 
Mean 

m.c.(%) 
n 

Depth 

(mm) 

Bending strength 

(N/mm
2
) 

Edyn 

(N/mm
2
) 

density (kg/m
3
) 

    mean cov mean cov mean cov 

GRA +GRB 15 44 20 179.2 0.14 28100 0.11 1070 0.05 

GRC 15 14 40 142.6 0.12 27600 0.08 1050 0.04 

GRD 15 24 110 97.6 0.30 25700 0.11 1010 0.06 

GRE 13 54 75 100.1 0.34 26100 0.20 1000 0.05 

GRI+GRJ 42 88 20 126.1 0.18 25500 0.10 1210 0.03 

GRK 42 14 40 103.1 0.27 26000 0.09 1220 0.02 

GRH 25 54 75 85.6 0.27 23400 0.11 1060 0.05 

GRG 25 29 110 91.4 0.23 23500 0.16 1070 0.07 

GR F 25 43 160 77.6 0.27 26200 0.11 1040 0.04 

 

 

To investigate the influence of size and moisture content, the model according to equation 

(5.96)  is used with the adjustment factors for size and moisture content included in the 

model: 

                
            

                 
       𝑘   

     

  
  

   

 
 
  

                 (5.142) 

For moisture contents above 25% m.c. a value of 25 is applied.  

The input values for density and MOEdyn  are adjusted to 12% moisture content according 

to equation (3.11) for density and equation (4.4) for the MOEdyn  

 

The following factors are found by performing a non-linear  regression analysis: 
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- D1 = 144.8 

- D2 = 3.63 

- D3 = -22.4 

- kh=0.26 

- kbmc=0.15 

 

In figure 5.37, the regression plot between the measured bending test values for all 

specimens of greenheart against the model values calculated with equation (5.141) and the 

factor values as listed above are given. 

 

 

Figure 5.37. The measured bending test values for all greenheart specimens plotted 

against the model values calculated with equation (5.142) 

 

Equation (5.142) describes how the model values, calculated with as input  the density-

values and MOEdyn-values at 12% moisture content, have to be modified for size and 

moisture content to predict the bending strength values at the moisture content of the test. 

The factors found can also be used the other way around, to adjust the test values for  the 

influence of size and moisture content, to obtain the bending strength at the reference 

moisture content of 12% and the reference height of 150 mm: 

             
     

        
     

  
  

   

 
 
  

 
                     (5.143) 

These values can be directly compared with the model values of equation (5.95), with the 

input parameters density and MOEdyn also adjusted to 12% m.c. 
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A significant kh- factor of 0.26 is found for the influence of depth. However, to investigate 

whether the size effect also appears for structural sizes the plots in figures 5.38 and 5.39 

are constructed in the following way: 

The test results for the bending strength were adjusted only for the influence of moisture 

content according to equation (5.144): 

        
     

         
     

  
  

                                (5.144) 

For moisture contents above 25%, for the m.c., a value of 25 is applied.  

The model values were calculated with: 

             
            

                      
                        (5.145) 

The input values for density and MOEdyn  are the values adjusted to 12% moisture content. 

In figure 5.38, the mean adjusted bending strength for moisture content according to 

(5.144) for every depth is  plotted  against the depth. This graph  shows that there is an  

influence of size and the power value of 0.28 is very close the found value of kh=0.26, but 

that it dampens out for larger sizes. Sizes for structural use normally start at a depth of 70 

mm, and when the datapoints for sizes from 75 mm and above are evaluated, also a 

horizontal regression line could be found. 

In figure 5.39, the model values adjusted for moisture content according to equation 

(5.144) are plotted against the model values calculated with (5.145). The datapoints are 

clustered in sizes with depths of 20 mm, 40 mm and above 40 mm. The data clouds for 

depths of 20 mm and 40 mm can be clearly identified. Above 40 mm the datacloud is 

homogeneous. 

Since in the database of table 3.1 the minimum depth is 75 mm the conclusion is that for 

temperate hardwoods in this thesis no depth effect will be applied to adjust the test data of 

the bending strength for size and only a moisture content correction will be applied. 

 

Figure 5.38. Mean bending strength adjusted for moisture content for every depth 

according to (5.144) plotted against the depth of the greenheart dataset 
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Figure 5.39. Bending strength values adjusted for moisture content according to (5.144) 

plotted against the model values according to (5.145) for  greenheart clustered for depths 

of 20mm, 40 mm and above 40 mm.  

 

Adjustment factor for size on the bending strength of spruce 

Most softwoods species are tested and used at the reference moisture content of 12%. In 

chapter 2 it was found from literature that the influence of moisture content on the 

bending strength decreases for timber with increasing knot ratios, and that therefore in test 

standards no adjustment of the bending strength test values is applied. In this thesis, there 

is not sufficient data to investigate this in depth, so this principle will be applied for wood 

species for which the main failure mode for  structural timber is due to the presence of 

knots. This means that for the temperate hardwoods species from table 3.3 and the  

softwood species from table 3.5 no adjustment for moisture content on the bending 

strength was applied. 

In table 5.8, the test material used to investigate the influence of size on the bending 

strength for spruce is listed. To provide extra data, additional specimens were prepared, 

cut from remaining test pieces of sample S2. 

All specimens were tested in a four-point bending test with a span of 18 times the depth.  

The MOElocal and MOEglobal were not measured for all specimens. Because  the MOEdyn 

was measured for all specimen, the MOEdyn is used in the model.  

In table 5.9  the test results are listed. Because the focus is on the influence of the depth, 

samples SPA+SPB are combined. At testing the values for the bending strength, MOEdyn 

and density are given for the measured values with the moisture content. 
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Table 5.8. Moisture contents, sizes and number of specimens of the spruce samples. 

Sample ID 
Mean 

m.c.(%) 

Relation with samples of 

table 3.1. 

thickness 

(mm) 

Depth 

(mm) 
n 

SPA 12.4 Cut from SPD 20 20 40 

SPB 12.4 Cut from SPD 40 20 40 

SPC 12.4 Cut from SPD 20 40 40 

SPD 11.3 From S2 60 150 30 

SPE 12.4 From S2 50 100 24 

SPF 15.3 From S2 145 285 50 

SPG 12.6 From S3 50 150 77 

SPH 13.7 From S3 70 173 80 

SPI 19.8 From S3 95 245 37 

 

Table 5.9. Test results for the  spruce samples from table 5.8. 

Sample ID 
Mean 

m.c.(%) 
n 

Depth 

(mm) 

Bending strength 

(N/mm
2
) 

Edyn 

(N/mm
2
) 

density (kg/m
3
) 

    mean cov mean cov mean cov 

SPA+SPB 12.4 80 20 69.1 0.19 11300 0.18 450 0.09 

SPC 12.4 40 40 48.7 0.28 11300 0.20 450 0.09 

SPD 11.3 30 150 50.8 0.21 15100 0.10 490 0.08 

SPE 12.4 24 100 50.8 0.16 15400 0.07 510 0.08 

SPF 15.3 50 285 35.0 0.28 11800 0.15 450 0.08 

SPG 12.6 77 150 43.4 0.34 13500 0.19 470 0.09 

SPH 13.7 80 173 35.2 0.32 11700 0.21 440 0.11 

SPI 19.8 37 245 38.4 0.20 13000 0.15 490 0.07 

 

To investigate the influence of size, the model according to equation  (5.122) is used with 

the adjustment factor for size in the model: 

                               
   

 
 
  

                     (5.146) 

The input values for density and MOEdyn  are adjusted to 12% moisture content, the 

bending test is unadjusted for moisture content. 

The following values for the factors are found in a linear least squares  regression: 

- D4 = -0.0071 

- D5 = 0.00304 

- D6 = 4.94 

- kh    =0.30 

In figure 5.40, the regression plot between the measured bending test values for all 

specimens of spruce against the model values calculated with equation (5.146) and the 

factor values as listed above are given. 
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Figure 5.40. The measured bending test values for all spruce specimens plotted against 

the model values calculated with equation (5.146) 

 

As for greenheart, a significant depth factor of kh=0.3 is found for spruce . 

To investigate whether this depth factor also exists for structural sizes, the unadjusted 

bending strength values will be plotted against the model values without including the 

effect of size. 

The model values are  calculated with: 

                                                             (5.147) 

 

The input values for density and MOEdyn  are adjusted to 12% moisture content. 

In figure 5.41, the mean unadjusted bending strength for every depth is  plotted  against 

the depth. This graph  shows that there is an  influence of size and the power value of 0.22 

is slightly lower than the value found of kh=0.30, and that it dampens out for larger sizes. 

When the smallest depth of 20 mm is removed, then the regression line gives a power of 

0.18 (dashed regression line in figure 5.41). 

It could be argued whether there is a slight reduction trend for the larger sizes, but from 

table 5.9  it can be seen that the sizes h= 173 mm and h= 285 mm with the lowest mean 

bending strength, also have the lowest MOEdyn. Therefore, this is probably not a size effect 

but a quality effect. This is confirmed by the plot in figure 5.42, where the unadjusted 

bending strength values for every piece are plotted against the model values without 

influence of size according to (5.146).  The data clouds for h= 20 mm and h=40 mm can 

be clearly  distinguished; above h=40 mm a homogeneous cloud can be observed.  
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Since in the database of tables 3.3 and  3.5 the minimum depth is 75 mm, the conclusion 

is that in this thesis no depth effect will be taken into account to adjust the test data of the 

bending strength for size for temperate hardwoods and softwoods. 

 

 

 

Figure 5.41. Mean unadjusted bending strength values plotted against the depth of the 

spruce dataset. Solid regression line for depths from 20 mm to 284 mm. Dashed 

regression line for depths of 40 mm to 284 mm.   

 

Figure 5.42.  Unadjusted bending strength values) plotted against the model values 

acording to (5.147) for  spruce clustered for depths of 20 mm, 40 mm and above 40 mm.  
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5.4 Verification of the developed models for tropical hardwood and 

softwood.  

5.4.1 Introduction 

In sections 5.4.2 and 5.4.3 the theory applied in this chapter will be verified on a dataset 

of tropical hardwood and a dataset of softwood. Because for these datasets both quantified 

data for every piece for the strength reducing characteristics (grain angle deviation and 

knot ratio) as well as machine measurements (density and MOEdyn) are available, the 

expected scatter around the regression line can be verified by direct least squares 

regression on the test data. 

 

5.4.2 Verification for a dataset of tropical hardwood 

For the verification of the theory for tropical hardwoods, a dataset of greenheart and 

massaranduba was used. The pieces from greenheart were from sample GR 4 and from 

massaranduba from sample MAS5. The prepared pieces used in section 5.1.2 with a cross 

section of 50 x 50 mm2 were cut from remaining parts after testing from sample MAS5. 

They were included to cover a wider range of grain angle deviations and are called sample 

MAS5-C. 

 

In table 5.10, the property values of the datasets are given. The bending strength was 

adjusted to 12% moisture content according to section 5.3. The density and MOEdyn  were 

adjusted to 12% m.c. according to chapter 3. Because the depth of the pieces in sample 

MAS5-C was below 75 mm, they were adjusted for size according to section 5.3. For the 

other two samples no adjustment for size was made. 

 

Table 5.10. Material properties for the verification samples of tropical hardwoods 

Sample ID Slope of grain 
Bending strength 

(N/mm
2
) 

MOEdyn 

(N/mm
2
) 

Density (kg/m
3
) n 

 
mean stdev mean stdev mean stdev mean stdev 

 
MAS5 0.05 0.02 128.9 23.8 27200 3700 1050 60 55 

GR4 0.08 0.03 98.5 27.8 26400 2800 980 50 104 

MAS5-C 0.21 0.10 61.7 34.0 18500 4800 1040 60 19 

 

With a non-linear regression analysis using equations (5.91) and (5.92), the constants Ci 

(i=1-5) can be determined. Because the data of table 5.10 is unbalanced with respect to the 

distribution of the slope of grain data, only sample MAS5-C is used for this analysis. This 

dataset is balanced with respect to slope and grain, and also contains the most accurate 

measurements. 
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The results from the non-linear regression equations with equation (5.91) as model for the 

bending  and equation (5.92) as model for MOEdyn  are: 

- C1 =0.13 

- C2 =24.1 

- C3 =28.2 

- C4 =9.3 

- C5 =8.5 

In analogy with equations (5.64a) and (5.64b), the values for (X1vF) and (X2 vM) can now 

be calculated. The equations for timber with grain angle deviation become: 

        
                                

     
                       (5.148) 

        
                           

     
                             (5.149) 

In these equations fm,i and MOEi are the measured bending strength and MOEdyn. 

 

The (X1vF)i  values for sample MAS5-C are plotted against the (X2vM )i values in figure 

5.43. 

 

 

Figure 5.43.  (X1 vF)i  values are plotted against the (X2 vM )i values for the sample MAS5-

C. 

 

Figure 5.41  shows that X1∙vF and X2∙vM are correlated, the found coefficient of 

determination r2=0.18.  The mean values are close to zero. The values of vF and vM can be 

directly calculated from the standard deviation of X1∙vF and X2∙vM. This gives  vF=0.15 and 

vM = 0.09.  
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With the derived C-values the theoretical D-factors can be calculated according to 

equations (5.97), (5.98) and (5.99): 

   
            

           
                            

   
          

           
                           

                     

Now the model according to equation (5.96) is used with one adjustment: 

As was noticed, the factor C2 might not be constant but also stochastic. Simulations 

performed by the author show that this might have a significant influence on the stability 

of the model. This can be overcome by applying a maximum value for MOEα. A 

maximum value of the density multiplied by 25 seems to be a safe factor and is kept in the 

equation.  Applying the factor 25 multiplied by the density makes sure that the model 

gives safe predictions. Equation (5.96) is therefore adjusted to  

 

         
               

                          
                  (5.150) 

 

In figure 5.44, the tested bending strengths are plotted against the  model values of the all 

samples  calculated with equation (5.150). In figure 5.45, the residuals are plotted against 

the model values. 

 

Figure 5.44.  Bending test values plotted against model values calculated with (5.150) 
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Figure 5.45.  Residuals of the theoretical  model plotted against theoretical model values. 

(5.150) 

 

As expected, the regression line in figure 5.44 is not coinciding with y=x and the residuals 

are not distributed around zero for all model values (figure 5.45). 

 

The model values are now adjusted with the equation of figure 5.44.  

That gives: 

D1a=719.2 

D2a= -20.7 

D3a=3.1 

The regression plot with the adjusted model values can now be directly compared with a 

direct least squares regression on the data. In the least squares regression, the sum of the 

residuals is minimized and the D-factors are derived directly. The factor 25 times the 

density as a maximum for the MOEdyn, is also applied. 

The D-factors found from a least squares regression are: 

D1=376 

D2= -7.6 

D3=-18.3 

The factors found in the direct least squares equation are different from the adjusted 

theoretical factors. This is probably due to the fact that the least squares regression is very 

sensitive to the input distributions.  

The regression plots, however, are very similar. See figures 5.46 and 5.47. For both 

models the regression lines coincide with y=x and figure 5.47 shows that the theoretical 
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scatter pattern of the residuals  is similar to the  scatter pattern of the residuals from a least 

squares equation. 

 

Figure 5.46.  Bending test values plotted against theoretical and least squares model 

values.  

 

Figure 5.47.  Residuals of the theoretical and least squares model plotted against 

theoretical and least squares model values. 

 

Figure 5.47 shows that the standard deviation of the errors increases very strongly with 

increasing model values. This can be explained from equation (5.109). For this dataset, 
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there is not much variation in density, so the standard deviation of the error can be 

explained by the grain angle deviation. 

Because of the small amount of data, the sliding standard deviation cannot be calculated. 

However, the shape of the trend of the residuals can be studied by performing simulations. 

A dataset of 2500 pieces is simulated with the input for the properties and factors 

according to tables 5.11 and 5.12. In table 5.11, the distributions of the density, the slope 

of grain, and X1 and X2 are listed. The properties for every piece are randomly drawn from 

these distributions. Only  X1 and X2 are correlated. In table 5.12 the values of the constants 

are listed. 

 

Table 5.11. Input distributions for the simulations  

Property mean Standard deviation Distribution type 

Density 1010 67 normal 

Grain angle deviation α=0.12 β=1.5 weibull 

X1 0 1 normal 

X2 0 1 normal 

 

Table 5.12.  Values for constants used in the simulations 

Property  

C1 0.13 

C2 24.1 

C3 28.2 

C4 9.3 

C5 -8.5 

vF 0.15 

vM 0.09 

r
2 
between X1 and X2 0.18 

 

Tables 5.11 and 5.12 are used as input for the simulations. However, it was found that 

especially for the greenheart sample, the constant C2 was higher. Therefore, in the 

simulations, a value of 26 was used for C2. To calculate the D-values in the equations the 

value in table 5.12 was used. 

 

In figures 5.48 to 5.52, the results of the simulations are given together with the test 

results. In figure 5.48, the bending strength is plotted against the slope of grain and in 

figure 5.49 the MOEdyn against the slope of grain. 

In figure 5.50 the bending strength is plotted against the MOEdyn, which clearly shows that 

the relation between these properties is non-linear when pieces with large slope of grains 

are included. Figure 5.51 shows the bending strength plotted against the adjusted model 

values for the simulations and for the test data the bending strength plotted against model 

values obtained by a direct least squares regression on the data. Figure 5.52 shows the 
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residuals against the model values. Figure 5.52 shows that the residuals of the simulations 

have the same shape as the residuals of the test data. The sliding standard deviation of the 

residuals of the simulated data shows an increasing trend with increasing model values. 

This is in agreement with the developed theory.   

It can be concluded that the trend and shape of the test data for the samples of greenheart 

and massaraduba are in line with what is expected according to the developed theory. The 

sliding standard deviation gives a good estimation of the trend of the standard error with 

increasing model values. 

 

 

Figure 5.48.  Bending strength plotted against the slope of grain for the test samples and 

the simulations.  
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Figure 5.49.  MOEdyn  plotted against the slope of grain for the test samples and the 

residuals. 

 

 

Figure 5.50.  Bending strength plotted against MOEdyn  for the test samples and the 

residuals. 

 

 

 

Figure 5.51.  Bending strength plotted against the model values  for the least squares 

estimation on the test samples and for the adjusted model on the simulated data. 
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Figure 5.52.  Residuals plotted against the model values  for the least squares estimation 

on the test samples and for the adjusted model on the simulated data + the sliding 

standard deviation for the simulated data. 

 

 

5.4.3 Verification for  a dataset of softwood 

For the verification of the theory for softwoods sample D1 of species douglas is used. In 

table 5.13, the property values of the dataset are given. According to section 5.3 no 

adjustment for size and moisture content for the bending strength was applied. The density 

and MOEdyn  were adjusted to 12% m.c. according to chapter 3. Only slight adjustments 

were necessary since the mean moisture content of the  sample was 13.6 %.  To describe 

the influence of knots, the group knot ratio was used according chapter 3. 

 

Table 5.13. Material properties for the verification sample of douglas 

Sample ID 
Group knot 

ratio 

Bending strength 

(N/mm
2
) 

MOEdyn 

(N/mm
2
) 

Density (kg/m
3
) n 

 
mean stdev mean stdev mean stdev mean stdev 

 
D1 0.24 0.12 48.6 17.0 14300 3100 570 60 356 
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With a non-linear regression analysis using equations (5.116) and (5.118),  the constants 

Ci (i=1,2,6,7,8) are determined.  

 

The results of the non-linear regression equations with equation (5.116) as model for the 

bending  and equation (5.118) as model for MOEdyn  are: 

- C1 =0.11 

- C2 =26.9 

- C6 =1.03 

- C7 =-0.03 

- C8 =0.37 

In analogy with equations (5.64a) and (5.64b), the values for (X1 vF) and (X2 vM) can now 

be calculated. The equations for timber with knots deviation become: 

        
       

              
                  (5.151) 

        
    

              
                        (5.152) 

In these equations fm,i is the measured bending strength and MOEi  is the measured 

MOEdyn. 

 

The (X1vF)i  values for sample D1 are plotted against the (X2vM )i values in figure 5.53. 

 

Figure 5.53.  (X1∙vF)i  values are plotted against the (X2∙vM )i values for the sample D1. 

 

Figure 5.53  shows that X1vF and X2vM are correlated; the found coefficient of 

determination r2=0.27.  The mean values are practically zero. The values of vF and vM can 

be directly calculated from the standard deviation of X1∙vF and X2∙vM. This gives  vF=0.29 

and vM = 0.16.  
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The values for vF and vM are higher than for dataset MAS5-C of tropical hardwoods. That 

is because in the values found for sample D2, also the measuring error for GKR is 

included, where the grain angle deviations of MAS5-C were specifically prepared to a 

target value. 

 

With the derived C-values, the theoretical D-factors can be calculated according to 

equations (5.123), (5.124) and (5.125): 

          
    

    
                         

   
         

         
                        

            

Now, the model according to equation (5.122) becomes: 

                                            (5.153) 

In figure 5.54, the tested bending strengths are plotted against the  model values of all 

samples  calculated with equation (5.153) . In figure 5.55, the residuals are plotted against 

the model values. 

 

Figure 5.54.  Bending test values plotted against model values calculated with (5.153) 
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Figure 5.55.  Residuals of the theoretical model values plotted against the theoretical 

model values. (5.153) 

 

As expected, the regression line in figure 5.54 is not coinciding with y=x and the residuals 

are not distributed around zero for all model values (figure 5.55). 

 

The model values are now adjusted with the equation of figure 5.54.  

This gives: 

D4a=-0.07 

D5a= 0.0042 

D6a=31.0 

The regression plot with the adjusted model values can now be directly compared with a 

direct least squares regression on the data. In the least squares regression, the sum of the 

residuals is minimized and the D-factors are derived directly.  

The D-factors found from a least squares regression are: 

D4=0.0015 

D5= 0.0037 

D6=-3.7 

The factors found in the direct least squares equation are different from the adjusted 

theoretical factors. The regression plots, however, just as for the tropical hardwood 

example,  are very similar. See figures 5.56 and 5.57. For both models, the regression 

lines coincide with y=x and figure 5.57 shows that the theoretical scatter pattern of the 

residuals  is similar to the  scatter pattern of the residuals from a least squares equation. 
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Figure 5.56.  Bending test values plotted against theoretical and least squares model 

values.  

 

Figure 5.57.  Residuals of the theoretical and least squares model plotted against 

theoretical and least squares model values. The theoretical and least squares sliding 

standard deviations are also plotted. 

 

Figure 5.57 shows that the standard deviation of the errors very slightly increases with 

increasing model values. This can be explained from equation (5.135). When the knot 

ratio is evenly distributed for all densities, the increase of the standard deviation of the 

standard error mainly depends on the density. When a rather homogeneous sample is 
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investigated, only a slight increase is expected. This is the reason that in practice for 

datasets of softwood this slight increase is difficult to detect and a constant standard 

deviation of the error can be assumed.  When the standard deviation is calculated with 

equation (5.135) and a mean value for the density and the group knot ratio value is used, a 

value of 13.0 N/mm2 is found. The sliding standard deviation from the least squares 

regression at the mean model value is 12.7 N/mm2. 

It can be concluded, as with the dataset for tropical hardwood, that the sliding standard 

deviation from a least squares regression analysis is a in line with the expected theoretical 

trend.  

 

In figures 5.58 to 5.62, the results of simulations are shown. The input distributions of 

table 5.14 for density and group knot ratio are derived from the actual measured data of 

softwood sample D2.  

 

Table 5.14. Input distributions for the simulations  

Property mean Standard deviation Distribution type 

Density 575 62 normal 

GKR α=0.27 β=2.2 weibull 

X1 0 1 normal 

X2 0 1 normal 

 

Table 5.15.  Values for constants used in the simulations 

Property  

C1 0.11 

C2 26.9 

C6 28.2 

C8 9.3 

C7 0.03 

vF 0.29 

vM 0.16 

r
2 
between X1 and X2 0.27 

 

 

In figures 5.58 to 5.62, the results of the simulations are given together with the test 

results. The figures show that the actual observations are well described by the 

simulations. The trend of the standard sliding deviations of the residuals in figure 5.62 fit 

very well with the trend of the sliding standard deviation from the test data of douglas.    

It can be concluded that the trend and shape of the test data for the sample of douglas is  in 

line with what is expected from the developed theory. The sliding standard deviation gives 

a good estimation of the trend of the standard error with increasing model values. It can be 
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concluded that the strength of structural timber can be described when it is simulated with 

stochastic parameters.  

 

 

 

 

Figure 5.58.  Bending strength plotted against the group knot ratio for the test samples 

and the simulations.  

 

Figure 5.59.  MOEdyn  plotted against the group knot ratio for the test samples and the 

residuals. 
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Figure 5.60.  Bending strength plotted against MOEdyn  for the test samples and the 

residuals. 

 

 

Figure 5.61.  Bending strength plotted against the model values  for the least squares 

estimation on the test samples and for the adjusted model on the simulated data. 
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Figure 5.62.  Residuals plotted against the model values  for the least squares estimation 

of the bending strength  on the test samples and for the adjusted model on the simulated 

data + the sliding standard deviation for the simulated data. 
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6  

Implementation of the 

developed theory on 

experimental data  

6.1 Introduction 

In chapter 5, theoretical models were derived to predict the strength of clear wood, the 

strength of structural timber with knots and the strength of structural timber with grain 

angle deviation. These models were verified on real test data where detailed information 

on the strength reducing characteristics was available. It was shown that with the derived 

models the scatter around the prediction lines could be well predicted by the developed 

theory.  It has been shown that the effect of the strength reducing characteristics on the 

predicting parameters for machine grading (density and MOE) is species independent, 

when a division is made between timber containing knots and timber containing grain 

angle deviation. 

The outcome of a least squares estimation depends on the input distribution of the density 

and the strength reducing characteristics. For the datasets listed in chapter 3, the 

coefficients for the predicting models and the scatter around these models will be derived 

in this chapter.  

From the analysis of the test results in chapter 4, it was concluded that species 

independent grading is not possible when the method of visual grading is applied. The 

reasons for that are: 

- The density is a necessary parameter for species independent grading, but it is not 

possible to determine quantified values for the density for all wood species based 

on a visual examination of the timber. 

- For tropical hardwoods, the slope of grain is the main influencing parameter on the 

strength and stiffness of the timber. However, it has been shown that this 

parameter cannot be determined with the required accuracy by visual inspection.  

In contrast to visual grading, with machine grading the density and the slope of grain (the 

density directly by measuring the weight and dimensions, the slope of grain indirectly by 

measuring the Modulus of Elasticity) can be quantified for all species. Therefore, this 

chapter will discuss species independent grading for machine grading. The input 

parameters to predict the bending strength are the density and the MOEdyn, the dimensions 

and the moisture content.  
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The density is measured directly from weight measurements and the dimensions. 

Adjustment of the density to the reference moisture content of 12% is performed in 

accordance with chapter 3.  

The MOEdyn is calculated from frequency measurements, density and length. Adjustment 

of the MOEdyn to the reference moisture content of 12% is performed in accordance with 

chapter 3. To evaluate the reference MOE, which is the MOElocal, an adjustment factor has 

to be applied in accordance with chapter 4. 

In section 6.2, the factors for the model equations for the bending strength for the datasets 

listed in chapter 3 will be  determined based on the test data. With the quantified model, 

species independent grading will be performed in section 6.3.  

6.2 Species independent strength modelling 

Modelling the bending strength of the dataset of tropical hardwoods 

 

The datasets of tropical hardwood of table 3.1 are classified as timber containing grain 

angle, but only limited knots. Some pieces were removed from the analysis based on 

visual override criteria. These pieces are  listed in annex B.  Machine strength grading for 

timber always has to be performed in combination with a visual override.  

Equation (5.96) is used to model the bending strength for the dataset of table 3.1. Equation 

(5.96) is repeated here as equation (6.1) 

 

         
                 

                      
                    (6.1) 

 

The term MOE,α is used in equation (6.1) to point out that the measured MOE takes into 

account the slope of grain (Therefore, only limited knots are allowed in the timber when 

this equation is used). The measured MOEdyn values are used as input in this equation. 

Compared to equation (5.96) an extra factor C10 is introduced to address the scatter in the 

factor C2 in equation (5.33). This factor, like all C-factors, is in this thesis handled as an 

absolute value, but in reality this factor can also be stochastic. The factor C10 ensures that 

the model values of equation (6.1) are not overestimated. The result of equation (6.1) is a 

value in N/mm2. This means that the D-factors will have different units to give the result 

of (6.1) in N/mm2. However, because the D-values are determined by regression analyses, 

these units have no specific physical meaning and the D-values will be listed without 

units. To determine the values of the D-factors in the model equations, a least squares 

regression will be performed on the data. There are two aspects of the dataset that have to 

be addressed in the regression: 

- The distribution of the model values is not uniform (rectangular), but close to  

normally distributed. This means that the data clustered around the mean will have 

the largest influence on the regression output. 
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- The scatter around the regression line increases with increasing model values. This 

means no equal variance of the residuals. The data with residuals with the largest 

variance will have the largest influence on the regression analysis. 

To overcome these two problems the following approach has been followed: 

- An ordinary non-linear least squares regression is performed. The procedure to 

perform the non-linear least squares regression is explained in appendix A.With 

the D-values found the data can be ranked from low to high, based on the model 

values calculated with equation (6.1). 

- Then, all data is divided in groups, based on the  model values, calculated with 

equation (6.1)  in the following way: 

o Group 1: model values from 45 N/mm2 to 50 N/mm2 

o Group 2: model values from 50 N/mm2 to 55N/mm2 

o Group x: etc 

o Group:18: model values from 130 N/mm2 to 135N/mm2 

- From every group, 10 datapoints are randomly drawn. This gives 180 datapoints 

for which the model values have a uniform rectangular distribution, giving every 

model value group equal influence. 

- Then a non-linear ordinary least squares regression is performed on the dataset of 

180 datapoints. The procedure how this was performed is described in appendix A. 

The model values of the 180 datapoints were ranked from low to high and the 

sliding standard deviations (with n= 20) are calculated. Slope w of these sliding 

standard deviations against the model values is calculated by performing a linear 

least squares regression, assuming that this line goes through the origin. Because 

no transformations are made yet on the residuals this is called an ordinary least 

squares equation (OLS). See equation (6.2) :  

   𝑑        𝑑  𝑑 𝑑                               (6.2) 

- After that the weighted residuals are calculated according to equation (6.3) 

              
        

               
            (6.3) 

- Then a non-linear least squares estimation was performed where the sum of 

squares of the weighted residuals is minimized. The weighted residuals will have 

equal variance over the range of model values. 

 

Figure 6.1 shows the residuals of a run from the ordinary least squares regression. The 

sliding standard deviation of the residuals shows an increasing trend and a value for w of 

0.18 is found. In figure 6.2 the residuals from the weighted least squares regression is 

shown on the same dataset. Now the residuals show an equal standard deviation of the 

error over the whole range of model values. 
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Figure 6.1.  Residuals plotted against the model values for a run with 180 pieces from an 

ordinary least squares regression together with the sliding standard deviation.   

 

 

 

Figure 6.2.  Residuals plotted against the model values for the same run as in figure 6.1, 

but now from a weighted least squares regression together with the sliding standard 

deviation.   
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In table 6.1, the results of the obtained D-values of equation (6.1) are given. The means 

and standard deviations are based on 100 runs. In every run, 10 datapoints for every 

model group were randomly drawn.  

Table 6.1. Factor values obtained by ordinary and weighted least squares analysis based 

on 100 runs. 

 Factor values 

Regression method D1 D2 D3 

 mean stdev mean stdev mean stdev 

Ordinary Least Squares regression 166.0 33.1 0.65 1.0 -20.7 7.5 

Weighted Least Squares regression 183.8 32.0 0.15 0.98 -12.9 5.9 

 

Table 6.1 shows that a weighted least squares regression gives different factor-values than 

an ordinary least squares regression. The mean D-factors from the weighted least squares 

regressions will be used in the grading model. Figure 6.3 shows for the total sample the 

bending strength plotted against the model values calculated according to equation (6.4): 

 

         
                

                          
                       (6.4) 

 

 

 

Figure 6.3.  Bending strength values for the entire dataset of tropical hardwoods plotted 

against the model values with the factors obtained from a weighted least squares 

regression.   
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Figure 6.4.  Residuals for the entire dataset of tropical hardwoods   plotted against the 

model values with the factors obtained from a weighted least squares regression.   

 

Figure 6.4 shows the residuals of the model of equation (6.4). 

Figure 6.3 shows that, as a result of the WLS-analysis, the prediction line for the entire set 

does not coincide with y=x, but slightly deviates. The slope and intercept have to be 

entered as the values for A and B in equation (3.33) to  apply the theory of section 3.4. 

Therefore the values for A and B are determined for each 100 runs every time on 180 

sampled pieces. These values are listed in table 6.2. 

 

Table 6.2 Mean and standard deviation for the factors A and B from 100 runs 

 Factor  values 

property     

Mean 1.01 -4.63 

Standard deviation 0.02 2.18 

 

The mean values for A and B will be used to derive the settings. 

To determine settings with the theory of section 3.4, the ratios of the residuals with the 

model value has to be known.  These are calculated for every run. The procedure is  

followed: The D-factor values obtained by a weighted least squares regression was used to 

calculate the model values. The residuals are plotted against the model values and the 

sliding standard deviation as calculated for every model point. Then a linear regression 

line is fitted through the sliding standard deviation point. Once by assuming the intercept 

was zero (equation 6.5) and once with an intercept included (equation 6.6).    
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   𝑑        𝑑  𝑑 𝑑                                   (6.5) 

   𝑑        𝑑  𝑑 𝑑                                         (6.6) 

 

The values obtained for the factors from equations (6.5) and (6.6) are listed in table 6.3. 

Table 6.3. Mean and standard deviations for the factors according to (6.5) and (6.6). 

 Factor values 

property                      

Mean 0.16 0.18 2.41 

Standard deviation 0.04 0.01 3.55 

 

Now, the question is which equation for the standard error should be used. If the used 

standard error is too large for a certain range of model values, the grading will be less 

efficient in that range, if the used standard error is too small for a certain range of model 

values, the grading will be unsafe.  

 

When only one parameter        is used, the 95% fractile would be 0.22, but this might 

be unsafe for lower model values. When the 95% fractiles for both        and  

         would be used, this would be very conservative. Therefore, is was decided to use 

the mean value of 0.18  for         and the 95% fractile of 8.0 for       . In that case the 

ratio of the standard error for higher model values becomes very close to 0.22. In this 

way, safe and economic values are ensured for both low and high model values. 

 

Modeling the bending strength of the dataset of temperate hardwoods and softwoods 

Because both softwoods and temperate hardwoods contain knots, which are the major 

cause of failure they are combined for species independent grading. For the analysis, the 

datasets of tables 3.2 and 3.3 were merged. 

 

For softwoods and temperate hardwoods it was found that the standard error slightly 

increases with increasing model values, due to increasing density. For the datasets of 

softwoods and temperate hardwoods a least squares regression is performed and the 

sliding standard error is calculated. The D-factors according to model (5.122) are obtained 

by an ordinary least squares regression. Equation (5.122) is repeated  here as equation 

(6.7): 

                                                      (6.7) 

 

The term MOE,KR is used in equation (6.7) to point out that the measured MOE takes into 

account the knots present in the timber (Therefore, only limited slope of grain is allowed 

in the timber when this equation is used). As for timber for which equation (6.1) is used, 

the measured MOEdyn values are used as input in this equation. 
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In table 6.4 the values obtained for the D-factors are listed. 

 

Table 6.4. Values for the D-factors of model (6.7) obtained by linear regression. 

Factor value 

D4 0.025 

D5 0.0031 

D6 -7.3 

 

In figure 6.5, the measured bending strength values are plotted against the model values. 

The data for softwoods and temperate hardwoods are separately marked. It can be seen 

that they both fit in the same model. The assumption was that for both species groups the 

presence of knots cause the same failure mechanisms and therefore the “knot model” can 

be used for both species groups.  In figure 6.6, the sliding standard error of the model is 

presented. The sliding standard error is slightly increasing with increasing model value 

with the formula: y= 0.11+ 5.6. 

 

Figure 6.5.  Bending strength values plotted against the model values  according to (6.7) 
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Figure 6.6.  residuals plotted against the model values  according to (6.7) together with 

the sliding standard deviation. 

 

6.3 Species independent strength grading 

6.3.1 Species independent strength grading of the dataset of tropical 

hardwoods 

With the method derived in section 3.4, settings for machine grading for tropical timber 

can be derived based on the model parameters derived in section 6.2. The model and 

constants are given in equation (6.4): 

           
                  

                             
       

For the standard deviation of the error: 

𝜎                             

 

The distribution properties are: 

- fm,α,model :  μ = 97.2 N/mm2, 𝜎 =20.4 N/mm2 

- fm,measured : μ = 92.7 N/mm2, 𝜎 =28.4 N/mm2 

- Relation between fm,α,model and fm,measured : 

fm,measured = A  fm,α,model + B, where A=1.01 and B= -4.6. 

(in this case fm,α,model = IPfm as defined in section 3.4). 

Grading of the entire dataset of tropical hardwoods  

The  settings for the grade combination D70-D50-D30 in accordance with the method 

described in section 3.4. 
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In table 6.5 the found settings are listed. The values for p(i)-high are limited to 0.15. This 

is because the mean value of p(i) should be 0.05, and allowing too high p(i)-values makes 

the method more sensitive to anomalies in the data distributions. The yield is the 

percentage of the total amount of pieces, assigned to a certain strength class or reject. 

 

Table 6.5. Settings for grade combination D70-D50-D30-reject for the whole sample  

Strength 

class 

fm stat-

required 

(N/mm
2
) 

IPfm, low 

(N/mm
2
) 

Expected 

Yield (%) 
p(i),low p(i),high pchar 

D70 70.0 112.0 23.3 0.00 0.081 0.049 

D50 50.0 80.0 56.7 0.017 0.11 0.049 

D30 30.0 52.0 18.7 0.02 0.14 0.040 

reject   1.0    

 

In figure 6.7. the p(i)-values for the intervals of the IPfm-values of the strength classes 

D70, D50 and D30 are given together with the distribution of the model values. 

 

 

 

Figure 6.7.  p-values plotted against the model values for the settings of table 6.5. 

 

The whole sample is now graded with the settings (=IPfm, low) from table 6.5.The results 

are presented in table 6.6.A for the bending strength and in table 6.6.B for the MOE and 

density. In section 3.4 it was stated that it made no sense to calculate the 5% fractiles 

according to standardised methods to verify the settings. The purpose of the listing of 5% 

fractiles is only to get a feeling what results the standardised methods give.  



227 

 

The mean p(i)-values gives valuable information because when this is close to 0.05 then it 

means that the assumptions for the distribution of IPfm (in this case a normal distibution is 

assumed) is correct. 

 

Table 6.6.A Descriptive statistics of graded data with settings from table 6.5. 

Strength 

grade 
n= 

Yield 

(%) 

Mean 

p(i) 

5% fractiles of the bending strength 

ranking 

(N/mm
2
)  

Central t- 

(N/mm
2
) 

Required 

value 

(N/mm
2
) 

D70 590 26.6 0.055 75.0 
 

75.3 70 

D50 1175 52.9 0.054 60.9 
 

57.7 50 

D30 421 19.0 0.045 52.1  36.6 30 

reject 35 1.5     - 

 

 

Table 6.6.B Descriptive statistics of graded data with settings from table 6.5. 

Streng

th 

grade 

n= 
Yield 

(%) 

Mean 

MOE 

Required 

value 

(N/mm
2
) 

5% fractiles of the density 

Central t- 

(kg/m
3
) 

Required value 

(kg/m
3
) 

D70 590 26.6 24500 20000 950 900 

D50 1175 52.9 19300 14000 740 620 

D30 421 19.0 - 11000 580 530 

reject 35 1.5    - 

 

It can be seen that the predicted yields are very well in line with the real yields. The mean 

p(i)-values  are very close to the expected 0.05. The 5% fractiles are higher than the 

required values. In figure 6.8, the theoretical cumulative distributions, calculated with the 

theory of section 3.4, are plotted with the distributions of the destructive measurements.  

Figure 6.9 zooms in at the lower tail of figure 6.8. 

 
Figure 6.8.  Cumulative distributions of bending strength of graded specimens. Observed 

distributions and theoretical distributions. 
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Figure 6.9.  Plot 6.8 zoomed in to the lower tail. 

 

 

It can be observed that both the distribution from the destructive tests and the theoretical 

distributions can be very well approximated by normal distributions, and that the 

distributions of the destructive tests and the theoretical distributions are very similar. 

Slight differences might be caused by the chosen standard deviation of the error or the fact 

that the model value distribution is not as smooth as a normal distribution. The graph of 

the lower tail shows that the observed destructive distributions are safe compared with the 

theoretical ones.  

The previous example shows that when tropical hardwood is regarded as one population, 

species independent strength grading can be safely applied. To ensure extra safety the 

ratio of the standard error with the model value could be increased. 

 

To make a comparison in terms of yield between visual and machine strength grading the 

trade name timber samples are assigned to the visual grades D70-D50-D30-reject based 

on the calculated characteristic values of table 4.20. Again, it is mentioned that this is only 

based on the samples tested and not yet applies to the trade name, since then the factor ks,tn 

should be applied, which could not be determined for application to all species yet. When 

this would be done, the assigned strength classes for visual grading would even turn out 

lower. The assignments based on visual grading given in table 4.20 are the highest 

strength classes possible on the current available data. This is done the make a comparison 

between the yield of visual grading and machine grading. The results with the comparison 

of yields are given in table 6.7. 
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Table 6.7. Comparison of yields between visual grading and species independent machine 

grading. 

Grading method 

Yields strength grades (%)  

D70 D50 D30 reject 

Visual grading 4.5 52.0 33.2 10.3 

Species independent machine grading 26.6 52.9 19.0 1.5 

 

 

Table 6.7 shows that species independent machine grading is not only a more reliable 

method, but also that the output in terms of yield is much higher than with visual grading. 

 

Verification of the dataset of massaranduba. 

In chapter 4.4 it was explained that by visual grading only a characteristic value of 38.9 

N/mm2 could be assigned to massaranduba, with the factor ks,tn not yet applied. This 

means that for the tested samples (not yet the timber from the trade name massaranduba)  

by visual grading all pieces would be assigned to D30, when only strength classes D70-

D50-D30 are evaluated. Remark: this is only done to compare the yield of the visual 

grading of the tested samples of massaranduba. 

Now the samples MAS1- MAS5 of massaranduba will be evaluated by machine grading. 

The settings from table 6.5 are used. In tables 6.8.A and 6.8.B the results are presented. 

 

Table 6.8.A. Descriptive statistics of graded massaranduba with settings from table 6.5. 

Strength 

grade 
n= 

Yield 

(%) 

Mean 

p(i) 

5% fractiles of the bending strength 

ranking 

(N/mm
2
)  

Central t- 

(N/mm
2
) 

Required 

value 

(N/mm
2
) 

D70 122 49.0 0.048 87.5 
 

86.7 70 

D50 79 31.7 0.043 70.4 
 

71.4 50 

D30 40 16.1 0.072 54.3  50.4 30 

reject 8 3.2     - 

 

 

Table 6.8.B. Descriptive statistics of graded massaranduba with settings from table 6.5 

Strength 

grade 
n= 

Yield 

(%) 

Mean 

MOE 

Required 

value 

(N/mm
2
) 

5% fractiles of the 

density 

Central t- 

(kg/m
3
) 

Required 

value 

(kg/m
3
) 

D70 122 49.0 24600 20000 1000 900 

D50 79 31.7 19700 14000 940 620 

D30 40 16.1 13100 11000 930 530 

reject 8 3.2    - 
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In figure 6.10, the bending strength values are plotted against the model values for the 

dataset of massaranduba. In figure 6.11, the observed and theoretical distributions for the 

graded pieces are shown. 

 
Figure 6.10.  Bending strength values plotted against the model values for the dataset of 

massaranduba 

 

 
Figure 6.11.  Cumulative distributions of bending strength of graded specimens of 

massaranduba. Observed distributions and theoretical distributions. 

 

The figures and the tables 6.8.A. and 6.8.B.  indicate  that when massaranduba is machine 

graded, almost 50% can be graded to strength class D70. The reason for this is that the 

weak pieces can be distinguished from the strong pieces by machine grading (where this is 

not possible with visual grading). Figure 6.11 suggests that further optimisation for 
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massaranduba is possible when the input distribution of the model values of massaranduba 

would be used to derive the settings, instead of the input of the whole population of 

tropical hardwoods. 

 

Verification of the dataset of cumaru 

In chapter 4.4 it was explained that by visual grading the cumaru samples could be 

assigned to a characteristic value of 53.0 N/mm2, with the factor ks,tn not yet applied. This 

means that for the tested samples (not yet the timber from the trade name cumaru) by 

visual grading all pieces would be assigned to D50, when only strength classes D70-D50-

D30 are evaluated. 

 

Samples CUM1-CUM5 of cumaru will be evaluated by machine grading. The settings 

from table 6.5  are used. In tables 6.9.A and 6.9.B the results are presented. 

 

Table 6.9.A. Descriptive statistics of graded cumaru with settings from table 6.5. 

Strength 

grade 
n= 

Yield 

(%) 

Mean 

p(i) 

5% fractiles of the bending strength 

ranking 

(N/mm
2
)  

Central t- 

(N/mm
2
) 

Required 

value 

(N/mm
2
) 

D70 60 27,3 0.057 81.3 
 

89.1 70 

D50 139 63.2 0.046 55.9 
 

61.2 50 

D30 21 9.5 0.038 54.1  39.1 30 

reject 1 0,0     - 

 

Table 6.9.B. Descriptive statistics of graded cumaru with settings from table 6.5 

Streng

th 

grade 

n= 
Yield 

(%) 

Mean 

MOE 

Required 

value 

(N/mm
2
) 

5% fractiles of the density 

Central t- 

(kg/m
3
) 

Required value 

(kg/m
3
) 

D70 60 27,3 23700 20000 950 900 

D50 139 63.2 19200 14000 850 620 

D30 21 9.5 14600 11000 790 530 

reject 1 0,0    - 

 

In figure 6.12, the bending strength values are plotted against the model values for the 

dataset of cumaru. In figure 6.13, the observed and theoretical distributions for the graded 

pieces are shown. 
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Figure 6.12.  Bending strength values plotted against the model values for the dataset of 

cumaru 

 

 
Figure 6.13.  Cumulative distributions of bending strength of graded specimens of 

cumaru. Observed distributions and theoretical distributions. 

 

Table 6.9 shows  that when cumaru  is machine graded, more than 25 % can be graded in 

D70, and that the specimens of weak samples are detected, in contrast with the method of 

visual grading.  
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Verification of the dataset of bilinga, okan, tali and evuess 

 

The samples of the four wood species  Bilinga, Tali, Okan and Eveuss, for which large 

grain angle deviations were measured after destructive tests, are now evaluated to 

investigate the prediction capability of the model for low strengths. 

Samples BIL1, BIL2, TA1, TA2, OK2, OK3,EV1 and EV2 will be evaluated by machine 

grading. The settings from table 6.5  are used. In tables 6.10.A and 6.10. B the results are 

presented. 

 

 

Table 6.10.A. Descriptive statistics of graded bilinga, okan, tali and evuess with settings 

from table 6.5. 

Strength 

grade 
n= 

Yield 

(%) 

Mean 

p(i) 

5% fractiles of the bending strength 

ranking 

(N/mm
2
)  

Central t- 

(N/mm
2
) 

Required 

value 

(N/mm
2
) 

D70 102 26.9 0.054 77.3 
 

74.3 70 

D50 136 35.9 0.065 45.4 
 

51.2 50 

D30 121 31.9 0.051 27.5  25.6 30 

reject 20 5.3     - 

 

 

Table 6.10.B. Descriptive statistics of graded bilinga, okan, tali and evuess with settings 

from table 6.5 

Streng

th 

grade 

n= 
Yield 

(%) 

Mean 

MOE 

Required 

value 

(N/mm
2
) 

5% fractiles of the density 

Central t- 

(kg/m
3
) 

Required value 

(kg/m
3
) 

D70 102 26.9 24400 20000 970 900 

D50 136 35.9 18100 14000 800 620 

D30 121 31.9 14000 11000 620 530 

reject 20 5.3    - 

 

In figure 6.14, the bending strength values are plotted against the model values for the 

dataset of bilinga, okan, tali and evuess. In figure 6.15 the observed and theoretical 

distributions for the graded pieces are shown. 
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Figure 6.14.  Bending strength values plotted against the model values for the dataset of 

bilinga, okan, tali and evuess 

 

 
Figure 6.15.  Cumulative distributions of bending strength of graded specimens of 

bilinga, okan, tali and evuess. Observed distributions and theoretical distributions. 

 

Table 6.10.A suggests that the 5% fractiles of the strength grade D30 might not comply 

with the required values. The distributions for D30 and D50 also do not match with the 

theoretical distributions of the strength classes, because the input distribution of the model 

values for all data of tropical hardwood (on which the theoretical distributions are based) 

is different from that of the investigated samples. However, as explained in section 3.4, 

the used method is developed to stay away from trial and error on a limited amount of 

data. To evaluate the grading results at the 5%-level, figure 6.16 zooms in on the lower 
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tail of D50 of figure 6.15 and figure 6.17 zooms in on the lower tail of D30 of figure 6.15. 

In figures 6.16 and 6.17 the 90% confidence intervals of the theoretical distributions are 

also plotted. Figures 6.16 and 6.17 show that the 5% fractile of  the observed distributions 

are within the theoretically expected 90% confidence interval. Another thing that can be 

observed from figure 6.15 is that the standard deviation of the distribution is much lower 

than that of the theoretical distribution. This means that in terms of reliability this will 

have a positive effect.  

It can be concluded that machine grading also works for weaker samples where the yield 

is much higher than for visual grading. 

 
Figure 6.16.  Cumulative observed distribution of the bending strength of grade D50 for 

bilinga, okan, tali and evuess and the 90% confidence interval for the theoretical 

distribution. 

 

 
Figure 6.17.  Cumulative observed distributions of bending strength of grade D30 for 

bilinga, okan, tali and evuess and the 90% confidence interval for the theoretical 

distribution. 
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Verification of the dataset of azobé 

The 3 samples AZ1, AZ2 and AZ3 are analysed and graded with the species independent 

settings according to table 6.5. 

The results are presented in tables 6.11.A and 6.11.B. 

 

Table 6.11.A. Descriptive statistics of graded azobé with settings from table 6.5. 

Strength 

grade 
n= 

Yield 

(%) 

Mean 

p(i) 

5% fractiles of the bending strength 

ranking 

(N/mm
2
)  

Central t- 

(N/mm
2
) 

Required 

value 

(N/mm
2
) 

D70 52 33.5 0.02 95.7 
 

90.2 70 

D50 97 62.6 0.02 68.5 
 

67.7 50 

D30 6 3.9 0.003 -  65.0 30 

reject 0 0.0     - 

 

Table 6.11.B. Descriptive statistics of graded azobé with settings from table 6.5 

Streng

th 

grade 

n= 
Yield 

(%) 

Mean 

MOE 

Required 

value 

(N/mm
2
) 

5% fractiles of the density 

Central t- 

(kg/m
3
) 

Required value 

(kg/m
3
) 

D70 52 33.5 23900 20000 990 900 

D50 97 62.6 18800 14000 930 620 

D30 6 3.9 15500 11000 810 530 

reject 0 0.0    - 

 

The tables show that when the species independent settings are used, 33% of azobé can be 

graded in D70.  It is remarkable that also the observed 5% fractile of strength grade D50 

also almost complies with D70, and the 5% fractile of D70 is even 95.7 N/mm2, where 

70.0 N/mm2 is required.   The explanation for his is that the variation in the distribution 

for the model values is much lower for azobé than for the entire dataset, but also for 

species such as cumaru and massaranduba. The reason for this could be that cumaru and 

massaranduba consist of a number of botanical tree species, where azobé consists of only 

one species.  

Optimisation for one species can be done by using the distribution of the model values 

specifically for that species. In that case one must be sure that the available data is 

representative for the species (sufficient low strength pieces), which is not necessary for 

the species independent settings. 

 

The distribution properties for batches AZ1, AZ2 and AZ3 are: 

- fm,α,model :  μ = 104.1 N/mm2, 𝜎 =14.7 N/mm2 

- fm,measured : μ = 104.1 N/mm2, 𝜎 =21.8 N/mm2 

 

However, with the assumed standard error, with these distribution properties it is not 

possible to lower the limit value for D70. The mean standard error of the azobé batches is 
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15.6  N/mm2, where the calculated mean standard error for the whole dataset at the mean 

model value for azobé is 26.2 N/mm2. 

Optimisation for azobé is therefore possible when enough data for azobé is available to 

define a model with a lower standard error over the model line. 

The fact that for azobé the standard error around the model line is lower can be explained 

from the fact that in the natural errors εf and εM also the errors in the factor C1 and C2 are 

included for the species independent strength models. When the model is optimized for 

one species, the errors in factors C1 and C2 will not be in the model and the standard error 

might decrease for a homogenous species. 

 

For azobé, the standard deviation of the error found is: 

𝜎                         

In table 6.12, the settings derived with the optimized parameters are listed. 

Table 6.12. Settings for grade combination D70-D50-D30-reject optimized for azobé. 

Strength 

class 

fm stat-

required 

(N/mm
2
) 

IPfm, low 

(N/mm
2
) 

Expected 

Yield (%) 
p (i),low p(i),high pchar 

D70 70.0 85.0 90.0 0.00 0.18 0.034 

D50 50.0 63.0 10.0 0.005 0.15 0.020 

D30 30.0 - - - - - 

reject   0.0    

 

In table 6.13.A and 6.13.B, the grading results are listed. With the optimized settings more 

than 90% of the azobé pieces can be graded in D70 and further optimisation seems 

possible. 

 

Table 6.13.A. Descriptive statistics of graded azobé with settings from table 6.12. 

Strength 

grade 
n= 

Yield 

(%) 

Mean 

p(i) 

5% fractiles of the bending strength 

ranking 

(N/mm
2
)  

Central t- 

(N/mm
2
) 

Required 

value 

(N/mm
2
) 

D70 139 90.0 0.04 75.6 
 

71.7 70 

D50 16 10.0 0.014 - 
 

59.1 50 

D30 - - - -  - - 

reject 0 0.0     - 

 

Table 6.13.B. Descriptive statistics of graded azobé with settings from table 6.12. 

Streng

th 

grade 

n= 
Yield 

(%) 

Mean 

MOE 

Required 

value 

(N/mm
2
) 

5% fractiles of the density 

Central t- 

(kg/m
3
) 

Required value 

(kg/m
3
) 

D70 139 90.0 20900 20000 950 900 

D50 16 10.0 16100 14000 860 620 

D30 - - - - - - 

reject 0 0.0    - 
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Further optimisation to D80 is possible. In table 6.14, the settings for grade combination 

D80-D60-D40 is given. 

 

Table 6.14. Settings for grade combination D80-D60-D40-reject optimized for azobé  

Strength 

class 

fm stat-

required 

(N/mm
2
) 

IPfm, low 

(N/mm
2
) 

Expected 

Yield (%) 
p(i),low p(i),high pchar 

D80 80.0 100.0 61.1 0.00 0.12 0.049 

D60 60.0 74.0 37.1 0.006 0.17 0.029 

D40 40.0 52.0 2.2 0.002 0.14 0.009 

reject   0.0    

 

In table 6.15.A and 6.15.B the grading results are listed. With the optimised settings, more 

than 50% of the azobé pieces can be graded in D80. 

 

Table 6.15.A. Descriptive statistics of graded azobé with settings from table 6.13. 

Strength 

grade 
n= 

Yield 

(%) 

Mean 

p(i) 

5% fractiles of the bending strength 

ranking 

(N/mm
2
)  

Central t- 

(N/mm
2
) 

Required 

value 

(N/mm
2
) 

D80 83 53.5 0.044 86.6 
 

84.6 80 

D60 71 45.8 0.031 66.8 
 

65.4 60 

D40 1 0.7 0.0034 -  - 40 

reject 0 0.0     - 

 

Table 6.15.B. Descriptive statistics of graded azobé with settings from table 6.12 

Streng

th 

grade 

n= 
Yield 

(%) 

Mean 

MOE 

Required 

value 

(N/mm
2
) 

5% fractiles of the density 

Central t- 

(kg/m
3
) 

Required value 

(kg/m
3
) 

D80 83 53.5 22600 22000 990 900 

D60 71 45.8 17800 17000 910 700 

D40 1 0.7 14800 13000 - 550 

reject 0 0.0    - 

 

In figure 6.18, the bending strength values are plotted against the model values for the 

dataset azobé. In figure 6.19, the observed and theoretical distributions for the graded 

pieces for grades D80 and D60 are shown. 
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Figure 6.18.  Bending strength values plotted against the model values for the dataset of 

azobé. 

 

 
Figure 6.19.  Cumulative distributions of bending strength of graded specimens of azobé. 

Observed distributions and theoretical distributions. 
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6.3.2 Species independent strength grading of the dataset of temperate 

hardwoods and softwoods 

With the method derived in section 3.4, settings for machine grading for temperate 

hardwoods and softwoods can now be derived based on the model parameters derived in 

chapter 6.2: 

                                

For the standard deviation of the error: 

𝜎                               

The intercept is rounded to 6.0. 

 

The distribution properties are: 

- fKR,mod :  μ = 45.3 N/mm2, 𝜎 =10.1 N/mm2 

- fm,measured : μ = 45.3 N/mm2, 𝜎 =14.9 N/mm2 

- Relation between fm,α,model and fm,measured : 

fm,measured = A  fKR,mod + B, where A = 1.0 and B = 0.0. 

(in this case fKR,mod = IPfm as defined in section 3.4). 

 

The settings for the grade combination C40-C30-C18 according to the method, described 

in section 3.4, are determined. In table 6.16 the derived settings are listed. 

 

Table 6.16. Settings for grade combination C40-C30-C18-reject for the whole sample of 

softwoods and temperate hardwoods 

Strength 

class 

fm stat-

required 

(N/mm
2
) 

IPfm, low 

(N/mm
2
) 

Expected 

Yield (%) 
p (i),low p(i),high pchar 

C40 40.0 59.0 8.8 0.00 0.073 0.046 

C30 30.0 45.0 42.6 0.014 0.094 0.047 

C18 18.0 27.0 37.3 0.03 0.165 0.045 

reject   3.5    

 

In  figure 6.20 the p(i)-values for the range of the strength class ranges are given together 

with the distribution of the model values. 
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Figure 6.20. p(i)-values for the settings from table 6.15. 

 

In tables 6.17.A and 6.17.B the grading results are listed. 

 

Table 6.17.A. Descriptive statistics of the graded dataset of temperate hardwoods and 

softwoods with settings from table 6.15. 

Strength 

grade 
n= 

Yield 

(%) 

Mean 

p(i) 

5% fractiles of the bending strength 

ranking 

(N/mm
2
)  

Central t- 

(N/mm
2
) 

Required 

value 

(N/mm
2
) 

C40 262 11.5 0.043 38.0 
 

41.8 40 

C30 883 38.9 0.047 31.0 
 

30.6 30 

C18 1104 48.6 0.038 19.4  19.3 18 

reject 22 1,0     - 

 

Table 6.17.B. Descriptive statistics of the graded dataset of temperate hardwoods and 

softwoods with settings from table 6.15. 

Strength 

grade 
n= 

Yield 

(%) 

Mean 

MOE 

Required 

value 

(N/mm
2
) 

5% fractiles of the density 

Central t- 

(kg/m
3
) 

Required value 

(kg/m
3
) 

C40 262 11.5 16700 14000 500 420 

C30 883 38.9 13300 12000 410 380 

C18 1104 48.6 10000 9000 330 320 

reject 22 1,0    - 

 

The mean p(i)-values are below 0.05.  The 5% fractiles for the bending strength are higher 

than the required values, except for the 5% fractile of C40 with the method of ranking. In 

figure 6.21, the theoretical distributions, calculated with the theory of section 3.4, are 

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0

10 20 30 40 50 60 70 80 90

10
0

p
d

f 

p-
va

;u
e

fm;IP (N/mm2)

C40

C30

C18

pdf model values



242 

 

plotted with the distributions of the destructive measurements. Figure 6.22 zooms in to the 

lower tail of figure 6.21. 

 

 
Figure 6.21.  Cumulative distributions of bending strength of graded specimens of the 

datasets of softwoods and temperate hardwoods. Observed distributions and theoretical 

distributions. 

 

 

 
Figure 6.22.  Cumulative distributions of bending strength of bending strength of graded 

specimens of the datasets of softwoods and temperate hardwoods. Observed distributions 

and theoretical distributions. The figure zooms in on the lower tail of figure 6.21.   
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Both the destructive and the theoretical distributions can be very well approximated by 

normal distributions, and they practically overlap. For C40, slight differences with the 

theoretical distribution can be observed.  

For C40, the 90% expected confidence interval is calculated and plotted in figure 6.23. 

This figure shows that the destructive data practically falls into a 90% confidence interval, 

but the 5% fractile just outside this confidence interval. This can be explained  by figure 

6.24. In figure 6.24, the regression plot between the test values and the model values is 

given. From this plot the difference with the theoretical distribution can be explained by a 

“hole” in the data for C40. If this data would be present the observed distribution would 

shift to the right at the 5% fractile.  It is exactly this influence of individual datapoints on 

the general trend that is intended to be avoided by the proposed method of section 3.4.   

 
Figure 6.23.  Cumulative distributions of bending strength of grade C40 for softwoods 

and temperate hardwoods. Observed distribution and 90% confidence interval for the 

theoretical distribution. 

 
Figure 6.24.  Regression plot of bending strength against model values for softwoods and 

temperate hardwoods. Less data is available in the circle.   
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The results from this section show that species independent grading is possible when the 

failure mode is similar for the pieces to be graded with the same prediction model. For 

temperate hardwoods and softwoods knots are the main failure inducing characteristics. 

Therefore, these can be graded with the same model in a species independent way. 
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7  

Discussion and 

conclusions 

 

Discussion 

To be able to model the influence of strength reducing features, an assumption of the 

strength without these features (so called clear wood) has to be made. From literature the 

density was found to be the basic influencing parameter for the strength and stiffness of 

clear wood. This can be explained by the fact that the density is determined by the amount 

of cell wall material, which is related to the amount of fibers in the cell wall. The 

assumption is made that the strength and stiffness of a single fiber is the same for all wood 

species. This has not been verified by testing single fibers in this thesis, but by 

investigating the relationships between density with strength and with stiffness for clear 

wood from literature. A linear relationship was found between the density and strength 

and also between the density and the stiffness. The scatter around the mean regression line 

of strength against density is assumed to be the natural variation that  cannot be explained 

at the clear wood level. The scatter (and the standard deviation around the mean model 

line) increased with increasing density, the coefficient of variation being constant. The 

same phenomenon was observed for the stiffness and the density. Because both the 

strength and the stiffness are linearly correlated with the density, the strength and stiffness 

for clear wood are also correlated to each other. The natural variation for the strength was 

found to be related to the natural variation of the stiffness, which  has a positive effect on 

the correlation between strength and stiffness for clear wood. 

Clear wood gives the maximum strength and stiffness for a piece of timber with a certain 

density. However, in structural timber, strength reducing features are present. These 

features can be divided into two groups: features that influence the reduction in strength 

and stiffness in such a way that the reduction can be predicted and features that reduce the 

strength and stiffness in an unpredictable way. The first group of features contains knots 

and grain angle deviation (slope of grain). The second group of  features contains 

compression failures and large fissures. The first group of features can be used for grading 

structural timber depending on the level of their existence in a piece of timber. The second 

group of features must be limited or excluded in the timber to be graded. To be able to use 

the strength reducing features of the first group for visual grading, they must be 



246 

 

objectively measurable and repeated measurements must give the same output. It has been 

shown that for knots this is possible at an acceptable level, but that the visual 

measurement of grain angle deviation for tropical hardwoods cannot be performed 

accurately. To implement the fact that larger grain angle deviation might be present than 

can be visually determined, a very conservative factor ks,tn based on the number of 

subsamples for visual grading should be applied, which would give much lower strength 

values than has been experienced.  Therefore, species independent strength grading is not 

possible for visual grading when grain angle deviation is governing. Investigating species 

independent grading for visual grading where knots are governing was not the objective of 

this thesis.  Therefore, in this thesis species independent grading based only on machine 

grading of tropical hardwoods was investigated. For structural sizes (h>75 mm) no 

influence of the height of the pieces on the bending strength is found. For the modulus of 

elasticity the influence of moisture content was quantified to be applied for both 

softwoods and hardwoods. For the bending strength of tropical hardwoods only the 

influence of  moisture content was determined and quantified. The influence of the 

reduction on the strength and on the stiffness of the strength reducing features knots and 

grain angle deviation could be formulated with the use of structural mechanics. The 

equations to describe the reduction of the strength and of the stiffness when grain angle 

deviation is present are different from the equations to describe the reduction of the 

strength and of the stiffness reduction when knots are present. The basic reduction of 

strength and stiffness can be described by equations that are independent on the input 

distribution. These have to be determined experimentally. When machine strength grading 

is performed, the density and modulus of elasticity can be used as parameters to predict 

the bending strength of structural timber. The density and MOE take into account the 

influence of knots and grain angle deviation. For species independent grading prediction 

equations can be formulated. These equations include constants that are dependent on the 

input distribution of the material. These constants have been determined by performing a 

(non)-linear regression analysis. The prediction models for timber containing knots and 

for timber containing grain angle deviation are different, and also the scatter around the 

prediction lines differ. Thus, different prediction models are necessary for timber 

containing knots and for timber containing grain angle deviation. Species independent 

strength grading is therefore possible when a distinction is made between the occurrence 

of knots or of grain angle deviation as strength reducing characteristic.  

To evaluate the result of the grading process the 5% fractile of the bending strength of the 

pieces to the assigned grades have to be determined. The problem with the current 

standardized methods is that they are very sensitive for the number of pieces in the 

assigned grades, and that they are very sensitive for the studied observation. To overcome 

this problem a statistical method was derived to determine the settings based on the model 

properties and the distribution of the prediction model values.  

In practice the outcome of the research means that a division has to be made between 

softwood and temperate hardwoods (which normally contain knots and little grain angle 
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deviation) and tropical hardwoods (which normally contain grain angle deviation and only 

a very limited amount of knots). A visual override is therefore necessary to perform 

species independent machine strength grading. In cases where both knots and grain angle 

deviation is present a limit to the presence of knots has to be made to be able to use the 

prediction model based on the presence of grain angle deviation. 

 

Conclusions: 

- The influencing parameters for species independent grading are density, knot ratio 

and grain angle deviation from the beam axis. 

- The knot ratio and the grain angle deviation from the beam axis are taken into 

account by machine measurements of the density and the modulus of elasticity. 

- For tropical hardwoods only machine strength grading is suitable for species 

independent strength grading, because visual grain angle deviation measurements 

cannot be made accurately on timber not destructively tested. 

- The basic constants in the equations describing the reduction of  strength and 

stiffness of the characteristics knot ratio and grain angle deviation can be 

determined experimentally on samples with the same density and the magnitude of 

the characteristics evenly distributed. 

- The species independent strength reducing equations can be derived from 

structural mechanics 

- The constants in the species independent strength predicting models depend on the 

input distribution and can be determined by (non)-linear regression analysis. 

- To be able to determine the settings (limit values) of the model values in the 

grading process, the scatter around the species independent strength predicting 

models can be estimated by determining the sliding standard deviation of the error 

over the range of the model values. 

- The shape of the scatter of the species independent strength models for timber with 

knots as failure initiation characteristic and for timber with grain angle deviation as 

failure initiation characteristic differ. Therefore a distinction has to be made in 

species independent grading for  timber with knots as prevalent failure initiating 

characteristic (normally softwoods and temperate hardwoods) and in species 

independent grading for timber with grain angle deviation as prevalent failure 

initiating characteristic (normally tropical hardwoods). 

- To determine the settings a statistical method has been developed with the 

distribution of the model values, the strength predicting equation and the scatter 

predicting equation as input.  

- Based on the characteristic values of the investigated samples of tropical hardwood 

species independent machine grading gives higher yields in the highest class than 

with visual grading.  
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- Whether visual assessment of grain angle deviation is possible, is questionable. In 

this research it has not been possible to predict by a visual assessment the grain 

angle deviation after the destructive test at an acceptable level. For machine 

strength grading the grain angle deviation is accurately incorporated by the 

modulus of elasticity. 

- (species independent) machine strength grading takes into account the influence of 

knots and grain angle deviation, but not the influence of compression failures, 

fissures and other anomalies. Therefore a visual override is always necessary in 

combination with (species independent) machine strength grading. 

 

The research question formulated in section 1.3 can be answered in short in the following 

way: 

The influencing parameters for species independent grading models are the density,  knots 

and grain angle deviation. They can be quantified by machine measurements of the 

density and the modulus of elasticity. To ensure safe and economical use of tropical 

hardwoods only machine grading is suited for species independent grading, but a visual 

override for strength reducing features that are not detected by the density and modulus of 

elasticity is necessary. Species independent machine strength grading of tropical 

hardwoods makes it possible to grade timber from different species coming in small 

amounts on the market in a safe and economical way. 

 

Recommendations 

The outcome of this research opens the possibility for  species independent strength 

grading of structural timber. This has been verified for datasets of tropical hardwoods, 

temperate hardwoods and softwoods. It is recommended that the developed models are 

verified on other datasets by other researchers. 

It should be made explicit in the standards for deriving settings for machine strength 

grading that species independent strength grading is allowed.  

The input distribution of the strength prediction parameters determines the outcome of a 

regression analysis. The requirements for the input distributions for deriving settings for 

machine strength grading should be incorporated in the relevant standards. 

The basic constants in the equations describing the reduction of  strength and stiffness of 

the characteristics knot ratio and grain angle deviation can be investigated for species with 

different densities. In this case more insight in the scatter of  this constants can be gained. 

That would provide more theoretical background for the developed theories.   
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A method was developed to determine the 5% fractiles of strength grades based on model 

properties. This method can replace the standardized methods for deriving the 5% fractiles 

based on pieces in a single grade, because these are very sensitive for the number of 

pieces in this grade and are the result of only one observation. 

It is recommended to use species independent machine strength grading for tropical 

hardwoods in practice instead of visual grading because it gives higher yields in higher 

strength grades and it enlarges the reliability of the structures in which the timber is 

applied.   
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Appendix A.  

Regression analysis 

 

There is a basic difference between physical prediction models and prediction models 

based on regression analysis. The main difference is the causal relationship between 

model parameters and measured data. In physical models, relationships are built based on 

theoretical relationships for which it is clear which causes changes in another property. 

For instance, the presence of knots reduces the section modulus and therefore the strength. 

In regression models, an empirical relationship is found between the predicting parameters 

where there does not have to be a causal relation. An example is the moisture content that 

could be used as predicting parameter. We could find a reduction of strength between 

12% m.c. and 30 % m.c. So we could conclude that more water in the timber causes a 

reduction of strength. However, the presence of the amount of water in the timber  does 

not cause the reduction, but the water absorption of the fibers does. We know that above 

30% m.c. no further reduction of strength takes place. This is because the fibers are then 

fully saturated. The cause of the strength reduction is the amount of water taken up by the 

fibers, not by the wooden piece. For the fibers, there is an ongoing reduction of strength 

from dry to saturated. Of course one could go a step further and ask what the cause of 

strength reduction of the fibers by water absorption is. That means that there is a level 

where a basic empirical relationship between properties is assumed as the start for the 

physical modelling. 

In this thesis, the start for the physical model is the basic empirical relationship that the 

cell wall thickness, and related to that the density at macroscopic level, is the basis of the 

strength and stiffness of timber. Based on literature and own experiments, a linearly 

increasing relationship between the density and strength and stiffness is assumed with an 

increasing standard error over the range of the density. The value of the factor describing 

this relationship can then be determined with a regression analysis.  

The approach in this thesis is to describe the strength and stiffness properties based on 

physical models and determine the factors in the relationships by regression analysis. To 

perform the regression analysis, the method of ordinary least squares (OLS) and weighted 

least squares will be used (WLS). 

 

Ordinary Least Squares (OLS) 

 

Consider a linear regression between x and y: 

y = β0 + β1 x + ε 
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This line predicts a mean value    = β0 + β1 x with a normally distributed error term N (0, 

𝜎ε). There are n observations for x and y. y is the dependent parameter and x the 

independent parameter 

𝜎ε is calculated as 

𝜎   
         

 

   
 

When an ordinary least squares analysis is performed, the coefficient values are found in 

the following way: 

Matrices X , Y , B and E can be written as: 

   

   

   

   

        

  

  

  

        𝛽 𝛽        
  
  
  

  

Where: 

- Y is the response variable (matrix 1 x n) 

- X is the matrix with independent variables  (matrix n x m), XT is the transposed 

matrix of X and (XXT)-1 is the inverse matrix of XXT 

- B is the matrix with the coefficients (matrix  m x 1) 

- E is the matrix with error terms (matrix 1 x n). E is assumed to be normally 

distributed with equal variance over the range of Y. 

The linear regression can be written in matrix notation: Y=BX+E and the error term as 

E=Y-BX 

A closed form solution for matrix B is found under the condition that the sum of EET is 

minimized: 

             
  

 

The closed form solution for B in matrix notation is: 

            

The solution for the variances of B is: 

              𝜎  

Which can be written as: 

    𝛽   
𝜎 

     
 

         
  𝜎  

  

    𝛽   
𝜎 

 

        
  𝜎  

  

The regression coefficients β0 and β1 are randomly normally distributed variables 

N(β0, 𝜎  
) and N(β1, 𝜎  

). These values for β and 𝜎β are given by programs like SPSS. 
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When in this thesis correlation graphs are shown, without further comment, they are made 

with the spreadsheet program Microsoft Excel. The trendlines and coefficients of 

determination (r2-values) are determined by Excel by using the least squares technique.  

For non-linear models there is no closed form solution for matrix B under the condition 

that EET is minimized.  An iterative approach is necessary where the optimization target 

can also be the least squares estimate. In that case, the matrix B is iteratively updated until 

it has converged to a solution. In Excel the built-in solver is equipped for this purpose. In 

Fylstra et al. (1998) the backgrounds for Excel solver are described. With Excels’ solver, 

constraints can be formulated that are integrated in the optimization process. In optimizing 

non-linear models the variances of B cannot be estimated as with linear models. A 

solution for this is for instance bootstrapping, where the variance can be estimated. This is 

integrated in the statistical program SPSS. The formulas for error propagation can also be 

used for non-linear models. 

 

 

Weighted Least Squares (WLS) 

When the error terms are uncorrelated as in the OLS, but there is no equal variance of the 

error, then a weighted regression might be suitable to estimate the variances of the matrix 

B. This is useful when the error shows a linearly increasing variance over the range of the 

prediction values. In that case, the matrix V is used, which is the variance-covariance 

matrix: 

  𝜎 
    

When the errors are independent with equal variance In is an n x n identity matrix. When 

the errors are independent but have unequal variance then the off diagonal elements of In 

will still be zero, but the diagonal elements will not have the same value. The solution for 

matrix B then becomes: 

                  

 

The inverse of V contains the reciprocal of the variances 1/𝜎 
 . This means that the 

products of the other matrices are weighted by the reciprocals of the variances of the 

individual observations, that is why the method is described as weighted regression. 

 

The variances for B are then  

                 𝜎    

Where 𝜎ε,w is the error term (now with equal variance) of the weighted regression. Of 

course the variances in the error terms are not known before the weighted regression takes 

place.  

 



264 

 

 

   

  



265 

 

Appendix B.  

Visual examination of 

tropical hardwoods 

Visual grading according to standard NEN 5493. 

For visual grading of tropical hardwoods the Dutch standard NEN 5493 gives 

requirements. Other countries have their own standards like the BS 5756 in the United 

Kingdom. The requirements however are very similar. In this thesis the visual grade C3 

STH according to NEN 5493 is used to visually grade the pieces of tropical hardwoods.  

In contrary to softwoods and temperate hardwoods, there is only one visual grade defined 

for tropical hardwoods. This is caused by the fact that for softwoods and temperate 

hardwoods knots are an important grading parameter, which is very suited to be quantified 

in such a way that different limits can be defined. Because for tropical hardwood coming 

presently on the market knots are very rare this feature cannot be used to distinguish 

different classes, there is only a requirement formulated to limit the occurrence of this 

feature.  

In principle it would be possible to define different classes for the grain angle deviation  

(slope of grain) but as explained in chapter 4, the measurement of this feature is that 

difficult that this is not possible. As a result only one visual grade can be defined for 

tropical hardwoods.  For timber with a certain trade name that meets the requirements for 

the visual grade the characteristic values have to be determined.  Based on these 

characteristic values the strength class can be determined to which the pieces with that 

trade name that are visually graded may be assigned to. 

The visual grade C3 STH gives requirements that are not only strength related but also 

application related. In this thesis only the requirements related to strength will be 

discussed. 

The requirements according to visual grade C3 STH of NEN 5493 related to strength are: 

 

- The knot ratio must  be lower than 0.2. 

- The grain angle deviation (defined as slope of grain)  must lower than 1:10. 

- No compression failures are allowed. 

- Fissures: surface checks are allowed. Only small (100 mm long) face shakes and 

end shakes are allowed  (no fissure through the thickness, see EN 14081-1) 

- No wane is allowed 

- No holes in the pieces. 

- No big other anomalies. 
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In section 3.2.2. the methods for measuring the visual characteristics are explained. 

 

 

Pieces rejected because of visual override in combination with species independent 

machine grading. 

In this thesis species independent strength grading is developed. Grain angle deviation 

(slope of grain) was identified as the main strength reducing parameter for tropical 

hardwoods, and it was found that this parameter could be integrated in machine strength 

grading by measuring the MOE. In combination with species independent strength 

grading grain angle deviation (slope of grain) does not have to be examined visually.  

Because it was found that when knots are the feature that causes failure a different 

predicting model has to be used for machine strength grading, this feature has to be 

limited in combination with machine strength grading. When the knot ratio is lower than 

0.2 the influence of knots is lower than the influence of grain angle deviation, therefore 

this limit is kept as a requirement in the visual override. 

A visual override means that every piece that is machine graded has to be examined 

visually on certain characteristic that cannot be detected by the machine measurements.  

 

The requirements for the visual override in combination with machine grading for tropical 

hardwoods are: 

- The knot ratio must  be lower than 0.2. 

- No compression failures are allowed. 

- No large fissures are allowed: The requirements according to EN 14081-1 for the 

visual override are used. Fissures not going through the thickness may be not 

greater than 1 m or ¼ the length of the piece, whichever is lesser. Fissures going 

through the thickness are only permitted ate the ends with a length not greater than 

the width of the piece.  

- No wane is allowed 

- No holes in the pieces. 

- No big other anomalies. 

Pieces that do not meet the requirements for these visual examinations should be removed 

from the grading process.  

43 pieces from the entire dataset of 2218 + 43 = 2261 pieces of the database of tropical 

hardwoods (1.9 %) had to be removed from the grading process because of the visual 

override. In table B1 a number of these pieces are listed for which photographs are 

available. The reason for removal because of the visual override is given. Compression 

failures, fissures going through the thickness and large knots are the main reasons for 

removal. 

 

The pieces removed from the grading process were still tested to obtain insight in their 

influence. In figures B.1 and B.2 the effect of the influence of the visual override is given 
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for the model according to equation (6.4). The figures show that when the pieces would 

not have been removed the scatter from the model line would increase considerable due to 

these pieces. The developed models cannot accurately predict the scatter from the model 

line for this pieces. Figures B.1 and B.2 show that with the current used machine 

measuring techniques a visual override is necessary. 

 

 

Table B1. Selection of pieces removed from the grading process due to the visual 

override. 

Nr. Trade name 
Reason for removal based 

on visual override 
Photograph 

1 angelim vermelho Compression failure 

 

2 angelim vermelho Knot ratio >0.2 

 

 3 angelim vermelho 

Knot ratio >0.2 in 

combination with 

compression failure 

                                                                              

 

4 greenheart Big hole in the piece 
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5 greenheart Compression failure 

 

6 cumaru Compression failure 

 

7 

 
cumaru Compression failure 

 

8 cumaru 
Fissures going through the 

thickness. 

 

9 

 
cumaru Compression failure 

 

10 tauro vermelho Compression failure 
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11 tauro vermelho Compression failure 

 

12 tauro vermelho Resin pockets and fissures 

 

13 tauro vermelho Compression failure 

 

14 tauro vermelho Compression failure 

 

15 bangkirai Knot ratio >0.2 

 

16 bangkirai 
Fissure through the 

thickness at the beam end 
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17 karri Knot ratio >0.2 

 

18 karri Knot ratio >0.2 

 

19 basralocus KR >0.2 

 

20 basralocus Compression failure 

 

21 basralocus 
fissures through the 

thickness 

 

22 basralocus Knot ratio >0.2 
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23 nargusta Compression failures 

 

24 tali Knot ratio >0.2 

 

25 tali Knot ratio >0.2 

 

26 tali Knot ratio >0.2 

 

27 bilinga Knot ratio >0.2 

 

28 bilinga Knot ratio >0.2 
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26 bilinga Knot ratio >0.2 

 

 

 

Figure B.1.  Regression plot of bending strength against model values for tropical 

hardwoods without visual override pieces and for the tropical hardwood visual override 

pieces.   

 

Figure B.2.  Regression plot of residuals against model values for tropical hardwoods 

without visual override pieces and for the tropical hardwood visual override pieces.   
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Appendix C.  

Strength class profiles 

according to prEN 338 

(2013) 

Table C.1. Characteristic values for softwood strength classes at 12 % m.c. according to 

prEN 338. 

C-class fm,k MOEmean densityk 

16 16 8000 370 

18 18 9000 320 

24 24 11000 350 

30 30 12000 380 

35 35 13000 390 

40 40 14000 400 

45 45 15000 410 

50 50 16000 430 

 

Table C.2. Characteristic values for hardwood strength classes at 12 % m.c. according to 

prEN 338. 

D-class fm,k MOEmean densityk 

18 18 9500 475 

24 24 10000 485 

27 27 10500 510 

30 30 11000 530 

35 35 12000 540 

40 40 13000 550 

45 45 13500 580 

50 50 14000 620 

55 55 15500 660 

60 60 17000 700 

65 65 18500 800 

70 70 20000 900 

75 75 22000 900 

80 80 24000 900 
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Appendix D.  

Test programs 

The properties of the datasets listed in tables 3.1, 3.2 and 3.3 were determined in several 

test programs. The commissioners and the laboratories where the samples were tested are: 

The tropical hardwood species were tested under the commission of: 

- The Netherlands Timber Trade Organisation (VVNH)/ Rijkswaterstaat (part of the 

Dutch Ministry of Infrastructure and the Environment): CUM1, MAS1, AZ1,AZ2, 

AZ3, GR1, GR2, GR3, GR4, OK1, OK2, OK3, KA1, NA1, PI1, BAS1, BAN1, 

BIL1, BIL2, EV1, EV2, TA1, TA2.  

- Precious Woods Europe:AV2, AV3, AV4, AV5, CUM2, CUM3, CUM4, CUM5, 

MAS2, MAS3, MAS4, MAS5, SV1, CR1, LA1, LF1, PU1, TV1, FA1, SA1, FP1.  

The tropical hardwood species were tested at the laboratories of: 

- Delft University of Technology: 

MAS2,MAS3,MAS4,MAS5,CUM2,CUM3,CUM4,CUM5,GR2,GR3,GR4,OK2,O

K3,BIL1,BIL2,EV1,EV2,TA1,TA2. 

- TNO: CUM1, MAS1, AZ1, GR1, OK1, KA1, PI1, VI1, BAS1, BAN1, AV2, AV3, 

FA1, SA1, FP1. 

- CNR Ivalsa, Italy:MAS3, CR1, LF1, LA1. 

 

The temperate hardwood species were tested under the commission of: 

- The Netherlands Timber Trade Organisation (VVNH)/ Rijkswaterstaat (part of the 

Dutch Ministry of Infrastructure and the Environment): O1, O2, R1. 

- Brookhuis Micro Electronics:C1. 

 The temperate hardwood species were tested at the laboratories of: 

- TNO: O1,O2,O3.  

- CNR Ivalsa, Italy:C1. 

 

The softwood species were tested under the commission of: 

- The Netherlands Timber Trade Organisation (VVNH)/ Rijkswaterstaat (part of the 

Dutch Ministry of Infrastructure and the Environment): D1, L1, L2. 

- Brookhuis Micro Electronics: S1,S2,S3,S4,S5,S6,S8. 

 The softwood species were tested at the laboratories of: 

- Delft University of Technology: S1, S2, S3, S7, S8.  

- CNR Ivalsa, Italy:S4. 

- MeKa, Latvia: S5, S6. 
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A number of students at the Delft University have cooperated in performing  a part of the 

experiments and analysing them as part of their Bachelor thesis. These experiments 

focused on answering sub questions concerning the influence of size, moisture content, 

grain angle deviation and knots. The results of their work are incorporated in this thesis. 

The individual researches are reported in Van Otterloo (2010), Flink (2012), Van der Poel 

(2012), Rey (2012), Van den Have (2013) and Hek (2014).   

  



277 

 

Curriculum Vitae 

Gerard Johannes Pieter Ravenshorst was born on 23 March 1966 in Stad Delden.  

He followed his secondary education at the Christelijk Lyceum in Almelo where he obtained 

his diploma for Atheneum B. 

He studied building engineering at the Technical University in Eindhoven and retrieved his 

diploma as structural engineer in 1995. 

After that he worked as a structural engineer in practice for different engineering firms. In that 

period he worked as an all-round structural engineer in the design and verification of load-

bearing structures of houses, offices and public buildings. 

From 2000 he worked as a researcher for TNO Building and Construction Research in 

Rijswijk and Delft, where he focused on timber structures. 

In 2007 he started working at the section Structural and Building Engineering of the Delft 

University of Technology. He works as a lecturer and researcher. In addition to that he has 

been working on this PhD-thesis. 

He is a member of national and international standardization committees in the field of timber 

engineering and timber material properties. Since 2013 he is chairman of the Dutch 

standardisation committee for timber structures.  

He is member of the committee of the Timber Centre from the Netherlands Timber Trade 

Organization that gives information about the application of timber in for instance buildings 

and  hydraulic  applications  

 


