
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

sensor
G.N=40 nodes, G.Ne=167 edges

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Faculty of Electrical Engineering, Mathematics and Computer Science

Circuits and Systems
Mekelweg 4,

2628 CD Delft
The Netherlands

https://cas.tudelft.nl/

CAS-2021-5037751

M.Sc. Thesis

Adaptive Graph Partition Methods for
Structured Graphs

Yanbin He B.Sc.

Adaptive Graph Partition Methods for Structured
Graphs

Thesis

submitted in partial fulfillment of the
requirements for the degree of

Master of Science

in

Electrical Engineering

by

Yanbin He B.Sc.
born in Xian Yang, China

This work was performed in:

Circuits and Systems Group
Department of Microelectronics
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Delft University of Technology

Copyright © 2021 Circuits and Systems Group
All rights reserved.

Delft University of Technology
Department of

Microelectronics

The undersigned hereby certify that they have read and recommend to the Fac-
ulty of Electrical Engineering, Mathematics and Computer Science for accep-
tance a thesis entitled “Adaptive Graph Partition Methods for Structured
Graphs” by Yanbin He B.Sc. in partial fulfillment of the requirements for the
degree of Master of Science.

Dated: October 22 2021

Chairman:
prof.dr.ir. G.J.T. Leus

Advisor:
dr. M.A. Coutino

Committee Members:
prof.dr. Huijuan Wang

iv

Abstract

Graphs can be models for many real-world systems, where nodes indicate the
entities and edges indicate the pairwise connections in between. In various cases, it
is important to detect informative subsets of nodes such that the nodes within the
subsets are ’closer’ to each other. For example, in a cellular network, determining
appropriate node subsets can reduce the operation costs. A subset is usually
called a cluster. This leads to the graph clustering problem. Furthermore, plenty
of systems in the real world are changing over time, and consequently, graphs as
models vary with time as well. It is thus also important to update the clusters
when the graph changes.

In this thesis work, we studied two problems from the cellular network back-
ground. We needed to partition graphs that have certain structures and cluster
their nodes to minimize certain cost functions. In the first problem, we parti-
tioned a bipartite graph by minimizing the so-called MinMaxCut cost function,
while in the second problem, we partitioned a structured graph by minimizing the
so-called Modified-MinMaxCut cost function. The structural property of the graph
is incorporated in defining this new cost function. The solutions we proposed are
under the framework of spectral clustering, where one relies on the eigenvectors of
the graph matrices, e.g., the Laplacian matrix or the adjacency matrix, and any
clustering algorithm, e.g., K-means, to partition nodes into disjoint clusters.

Furthermore, for the time-variant graph, we decomposed the problem into two
steps. First, we transformed the variations in the graph topology into perturba-
tions to the graph matrices. Then we transformed the update of the clusters into
an update of the (generalized) eigenvectors of these graph matrices. We utilized
matrix perturbation theory to update the generalized eigenvectors and then up-
date the clusters. Our simulations showed that on synthetic data, the proposed
method can efficiently track the eigenvectors and the clusters generated by the
updated eigenvectors have almost the same cost function value as that of exact
computation.

v

vi

Acknowledgments

功不唐捐。
All efforts are not made for nothing.

Studying abroad is never an easy thing for me, especially during the pandemic
time. I would like to first pay tribute to all my efforts in the past two years. No
matter what I could achieve, either good or bad, I will cherish this experience for
my entire life.

I would like to express my gratitude to both my beloved and respectful super-
visors. Without their help, this thesis work could not have been done. I would
like to thank Mario Coutino, who is always helpful and is capable of providing me
with precise and insightful comments. Working with him during the whole past
year is definitely memorable. I would like to thank my supervisor Professor Geert
Leus for his supervision and for giving me this thesis work opportunity as well.
He has always been commenting on my work in detail and questions from him are
always inspiring. Both Mario and Geert have been very patient and encouraging
to me, accepting all my mistakes. It is a pity that I do not have opportunities to
work with them afterward. I also want to thank Professor Huijuan Wang for her
time being my thesis committee.

I would also like to express my gratitude to Tian Gan. She has been supporting
me physically and mentally for the past two years. I can always talk to her when I
am depressed and after each talk, I can always recover from any negative emotions.
The past two years is a great journey with her accompany. I would like to thank
my friend, Maosheng, for our great days in Delft, Amsterdam, Den Haag, and
Rotterdam.

People in the CAS group are very kind. I would like to thank Professor Alle-
Jan van der Veen for his valuable discussion on subspace tracking. I also want to
thank Alberto Natali for his comments on my presentation. And I would like to
mention that having Bichi and Xiaoyao as friends made my pandemic boring life
colorful.

Studying at TU Delft was not possible without the scholarship from the Mi-
croelectronics department. I am grateful for the generous financial support.

Finally, I would like to express my gratitude to my parents. They always
support all my decisions without any reservation and hesitation. Without them,
I cannot go this far from that small city.

Yanbin He B.Sc.
Delft, The Netherlands
October 22 2021

vii

viii

Nomenclature

Graph

W Graph adjacency matrix

L Graph Laplacian

G(V , E) Graph G with node set V and edge set E
Gb(B,U ,B) Bipartite graph with node sets B, U and connection status matrix B

G(B,U , E) Graph with node sets B and U and edge set E
Linear algebra

(·)> Transpose

(·)−1 Inverse

(·)† Pseudoinverse

Rn Real vector space of n-dimensional vectors

Rn×n Real matrices space of n by n matrices

1 All-ones vector

I Identity matrix

diag(a) Diagonal matrix with a on the diagonal

Mathematical Objects

a Scalar

a Vector

A Matrix

[a]i The i-th entry of vector a

[A]i,j Entry (i, j) of matrix A

[A]i,: The i-th row of matrix A

[A]:,j The j-th column of matrix A

Sets

∪ Union

∩ Intersection

∈ Belong to

|V| The cardinality of set V
∅ Empty set

ix

x

Contents

Abstract v

Acknowledgments vii

1 Introduction 1
1.1 Research Statement . 2
1.2 Outline . 2
Bibliography . 3

2 Background 5
2.1 Graph . 5
2.2 Graph Clustering . 6

2.2.1 Hierarchical Techniques . 6
2.2.2 Partitional Techniques . 6
2.2.3 Graph Techniques . 8

Bibliography . 11

3 Problem Formulation 15
3.1 Problem 1 . 15
3.2 Problem 2 . 16
Bibliography . 18

4 Analysis of Cost Functions 21
4.1 Bipartite Graph Partitioning defined by MinMaxCut 21

4.1.1 Relaxation of the Cost Function 21
4.1.2 Multiway Partition in Bipartite Graph 22
4.1.3 Fast Bipartite Graph Clustering 24

4.2 Graph Partitioning defined by Modified-MinMaxCut 25
4.2.1 Graph Setting . 25
4.2.2 Graph Bisection . 25
4.2.3 Relaxation: Method 1 . 27
4.2.4 Relaxation: Method 2 . 31
4.2.5 Summary . 33

Bibliography . 34

5 Case Study: Simple Static Graph for Methods Validation and
Comparison for Problem 2 35
5.1 Practicalities . 35
5.2 Simulation: Method 1 . 35
5.3 Simulation: Method 2 . 37
5.4 Discussions . 38
Bibliography . 39

xi

6 Adaptive Solutions 41
6.1 Literature Review . 41

6.1.1 Subspace Updating . 41
6.1.2 Matrix Perturbation . 42
6.1.3 Incremental Spectral Clustering 43

6.2 Update Procedure . 43
6.2.1 Modified-MinMaxCut: Derivation of update 43
6.2.2 MinMaxCut: Derivation of Update 47

6.3 Complexity Analysis . 48
Bibliography . 51

7 Numerical Results 55
7.1 Problem 1: Numerical Simulations 55

7.1.1 Simulation Details . 55
7.1.2 Simulation of users’ movement 57
7.1.3 Simulation of new users . 58
7.1.4 Discussions . 59

7.2 Problem 2: Numerical Simulations 63
7.2.1 Simulation Details . 63
7.2.2 Simulation of users’ movements 65
7.2.3 Simulation of new users . 65
7.2.4 Discussions . 66

Bibliography . 69

8 Conclusion and Future Work 71
8.1 Conclusion . 71
8.2 Future Work . 72
Bibliography . 73

A Conjugate Gradient Descent 75

B Proofs 77
B.1 Proof Proposition 7 and 9 . 77
B.2 Proof of the Upper bound . 77
B.3 Proof of Negative Semidefinite . 78

xii

Introduction 1
Graphs have been gaining more and more attention since they can be used to
model the non-Euclidean data or entities and their complicated relationships and
interdependency [1]. This type of data or entities are ubiquitous and inevitable,
coming from various real network applications, e.g., social media network [2], web-
page and internet [3], sensor network [4], cellular network [5], recommendation
system [6,7] and so on. Furthermore, some network instances have intrinsic struc-
tures. For example, a cellular network with connections between the base stations
and users can be represented as a bipartite graph model. After obtaining the data
or entities and their irregular structures, some preprocessing is required such that
the following processing methods can be applied. Clustering or partitioning is one
of the most important preprocessing methods. By performing clustering, one can
find the potential similarities within the data [8, 9], or group the entities, which
can be beneficial. For example, in long-term evolution (LTE) cellular network,
the capacity can be improved by doing clustering [5]. Another example can be
found in a computer with multiple processors [10], where an appropriate cluster-
ing of the processors can achieve a good load balancing and minimize the ratio of
communication over computation for a given task.

In the literature, various clustering techniques have been proposed so far.
Among them, spectral clustering based on spectral graph theory has become one
of the most popular modern clustering algorithms [11]. Spectral clustering utilizes
the information carried by the eigenvectors of the Laplacian or adjacency matrix
of the graph to partition the nodes of the graph [12]. Spectral clustering has a
variety of advantages. First, it is simple to implement and can be solved efficiently
by linear algebra methods. Second, spectral clustering can often achieve better
results compared with traditional methods. However, there still exist some limi-
tations regarding the implementation of spectral clustering. First, it suffers from
a high computational complexity due to the required eigenvalue decomposition
(EVD). This becomes a severe issue when the size of the graph becomes large.
Second, almost all the spectral clustering algorithms are offline, which means they
cannot be applied to graphs changing over time [13]. Therefore, it is necessary
to design efficient methods to update the graph clusters and avoid computing the
EVD from scratch every time.

Determining the boundaries and generating the clusters are making decisions.
To derive appropriate and meaningful clusters, some criteria should be imple-
mented. This can be achieved by minimizing or maximizing cost functions. Some
well-known cost functions, such as Ratio Cut [14] and Normalized Cut [15], are
NP-hard. It is essential to translate the cost functions into practical and tractable
forms to determine the clusters. Fortunately, relaxations towards these cost func-
tions have been widely discussed and these relaxations can be combined with the
spectral clustering method [11]. The aforementioned cost functions are general

1

and captures metrics of interest for partition typical graphs. However, in many
instances, despite the fact that the graph structure can be used to process the
data defined on the nodes, it can also be used to cluster (or partition) a network
in subgroups that exhibit a certain type of closeness, e.g., when different types of
edges or nodes and consequently different connections in between are taken into
account. But to relax such cost functions and produce clusters accordingly is still
a challenging problem.

1.1 Research Statement

In order to face these challenges, we discuss the following topics in the thesis.

• How can we relax a specific cost function and give feasible solutions to gen-
erate the partition?

• How can we partition a structured graph changing over time adaptively and
efficiently?

1.2 Outline

This thesis work is organized as follows.

• Chapter 2-Background: We give the background for the clustering problem.
We first introduce the traditional clustering methods briefly and then go
into one of the most important clustering methods, K-means. After that, we
define the graph clustering problem and elaborate on the framework of spec-
tral clustering, starting with the recursive spectral bisection. Additionally, a
graph signal processing-based clustering acceleration method is introduced,
which can avoid computing the eigenvalue decomposition of the Laplacian
matrix.

• Chapter 3-Problem Formulation: We define the two problems that are going
to be discussed and motivate these problems. The structures of these two
problems are similar, and the difference is the targeted cost function. There
are two stages in both problems. In the first stage, the first problem fo-
cuses on partitioning a bipartite graph and minimizing the MinMaxCut cost
function, while in the second problem, we focus on partitioning a structured
graph and minimizing the Modified-MinMaxCut cost function. In the second
stage, we would like to design methods efficiently updating the partitions
when the graphs are changing over time. We relate these two problems to
some real-world cases, motivating the investigation of these problems.

• Chapter 4-Analysis of Cost Functions: We give the derivations of the relaxed
cost functions and summarize them in a way similar to spectral clustering
method.

• Chapter 5-Case Study: Simple Static Graph for Methods Validation and
Comparison for Problem 2: In this section, we provide a simple case study
regarding the devised approaches to problem 2.

2

• Chapter 6-Adaptive Solutions: We give the adaptive methods for partitioning
the graph changing over time. Since updating the clusters is related to
the update of eigenvectors, we first review some related works. After that,
we give detailed derivations of efficiently updating the clusters defined by
MinMaxCut and Modified-MinMaxCut.

• Chapter 7-Numerical Results: We implement the previously proposed meth-
ods. This section contains two parts. The first part is about numerical
simulation of the first problem. In this part, we first introduce the way to
generate the synthetic data. Then we test the methods over the synthetic
data. Since in the first problem we mainly focus on updating the clusters, the
simulation results are showing the adaptive clustering process. The second
part includes the simulations of the second problem. We test the proposed
methods on a time-varying graph, illustrating the adaptive clustering pro-
cess.

• Chapter 8-Conclusion and Future Work: We conclude the thesis and propose
the potential future work directions.

Bibliography

[1] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A comprehen-
sive survey on graph neural networks,” IEEE transactions on neural networks
and learning systems, 2020.

[2] M. A. Russell, Mining the social web: Analyzing data from Facebook, Twitter,
LinkedIn, and other social media sites. ” O’Reilly Media, Inc.”, 2011.

[3] P. Desikan, N. Pathak, J. Srivastava, and V. Kumar, “Incremental page rank
computation on evolving graphs,” in Special interest tracks and posters of the
14th International Conference on World Wide Web, 2005, pp. 1094–1095.

[4] I. Jab loński, “Graph signal processing in applications to sensor networks,
smart grids, and smart cities,” IEEE Sensors Journal, vol. 17, no. 23, pp.
7659–7666, 2017.

[5] M. Hajjar, G. Aldabbagh, and N. Dimitriou, “Using clustering techniques to
improve capacity of lte networks,” in 2015 21st Asia-Pacific Conference on
Communications (APCC). IEEE, 2015, pp. 68–73.

[6] Z. Huang, W. Chung, T.-H. Ong, and H. Chen, “A graph-based recommender
system for digital library,” in Proceedings of the 2nd ACM/IEEE-CS joint
conference on Digital libraries, 2002, pp. 65–73.

[7] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec,
“Graph convolutional neural networks for web-scale recommender systems,”
in Proceedings of the 24th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, 2018, pp. 974–983.

3

[8] M. Z. Rodriguez, C. H. Comin, D. Casanova, O. M. Bruno, D. R. Amancio,
L. d. F. Costa, and F. A. Rodrigues, “Clustering algorithms: A comparative
approach,” PloS one, vol. 14, no. 1, p. e0210236, 2019.

[9] D. Xu and Y. Tian, “A comprehensive survey of clustering algorithms,” An-
nals of Data Science, vol. 2, no. 2, pp. 165–193, 2015.

[10] Y. Saad, Iterative methods for sparse linear systems. SIAM, 2003.

[11] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and computing,
vol. 17, no. 4, pp. 395–416, 2007.

[12] A. Ng, M. Jordan, and Y. Weiss, “On spectral clustering: Analysis and an
algorithm,” Advances in neural information processing systems, vol. 14, pp.
849–856, 2001.

[13] H. Ning, W. Xu, Y. Chi, Y. Gong, and T. S. Huang, “Incremental spec-
tral clustering by efficiently updating the eigen-system,” Pattern Recognition,
vol. 43, no. 1, pp. 113–127, 2010.

[14] L. Hagen and A. B. Kahng, “New spectral methods for ratio cut partitioning
and clustering,” IEEE transactions on computer-aided design of integrated
circuits and systems, vol. 11, no. 9, pp. 1074–1085, 1992.

[15] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Trans-
actions on pattern analysis and machine intelligence, vol. 22, no. 8, pp. 888–
905, 2000.

4

Background 2
2.1 Graph

Before going into the topic, we would like to introduce a graph and define the
notations.

A graph, usually denoted as G(V , E), comprises two sets, V and E . V contains
all the vertices or nodes, while E contains all the edges or links that connect the
nodes. In this thesis work, the considered graph is undirected and weighted.
The term undirected means the edges are bidirectional, e.g., shaking hands at
a party instead of transferring money. A weighted graph is a graph in which a
number is assigned to each edge, indicating the property of the edge, such as the
strength of the connection. Furthermore, we do not consider self-loops (edges that
directly connect vertices to themselves) in our graphs.

A graph can be represented by its adjacency matrix W ∈ R|V|×|V| where
[W]i,j = wi,j represents the edge between nodes i and j ∈ V . In this thesis
work, we only consider non-negative weight. For a weighted graph, this value can
be any number other than just 0 or 1. For an undirected graph, the adjacency
matrix is symmetric and [W]i,i is 0. For every node i ∈ V , the degree d(i) of node
i is the sum of the weights of the edges adjacent to i

d(i) =

|V|∑
j=1

wi,j. (2.1.1)

The degree matrix D is the diagonal matrix

D = diag(d(1), d(2), ..., d(|V|)), (2.1.2)

where diag(·) is a function that constructs a diagonal matrix whose diagonal ele-
ments are given by its argument.

Based on the adjacency matrix W and the degree matrix D, the Laplacian
matrix L can be defined as

L = D−W. (2.1.3)

A special case of the graph is the bipartite graph. A bipartite graph is a graph
whose vertices can be divided into two disjoint and independent sets, i.e., two sets
of nodes without edges between them, and such that every edge connects a vertex
in one of the sets to one in the other set. Let us consider a weighted undirected
bipartite graph Gb(B,U , E), where B and U are two different types of vertices. E is
the set of all the edges within the bipartite graph. Besides the adjacency matrix W
and the Laplacian matrix L, a bipartite graph is closely related to another matrix
B as well. Each entry in matrix B ∈ R|B|×|U|, e.g., [B]i,j = bi,j, is the weight of
the edge between vertex i in B and j in U . Therefore, B can represent a bipartite

5

graph uniquely as W and L do, upto nodes relabelling. Then the notation for the
bipartite graph is written as Gb(B,U , E ,B), or usually Gb(B,U ,B).

Another case of a graph that will be considered in this thesis work is quite
similar to the bipartite graph, and it is denoted by G(B,U , E). This type of
graph has two different kinds of nodes, B and U . E contains all the edges in the
graph. However, unlike the bipartite graph where an edge ei,j only exists between
different types of vertices, in G(B,U , E), the edges also exist between the same
type of nodes, thus not necessarily a bipartite graph.

2.2 Graph Clustering

Clustering, or partitioning, is a fundamental technique and has been widely dis-
cussed and implemented in various fields and areas such as data analysis including
image segmentation [1–3], text mining [4] and speech separation [5, 6], unsuper-
vised learning in machine learning [7, 8], some special systems such as document
systems [9], VHDL design [10–12], and so on. The intuition behind clustering is
to explore the similarity of the data as groups or to detect the unknown structure
within the unlabelled data. Varieties of clustering methods have been developed,
among which three categories are quite popular. They are hierarchical techniques,
partitional techniques, and graph techniques [13]. Hierarchical techniques con-
struct hierarchical relationship among data. Partitional techniques regard the
center of data points as the center of the corresponding cluster [13]. Graph tech-
niques consider each data point as a node of a graph, and the edge between them
represents their relationship, e.g., Euclidean distance. In the following sections,
we will review the hierarchical techniques briefly, and review the partitional tech-
niques and graph techniques in detail since this thesis work is strongly related to
the latter two techniques.

2.2.1 Hierarchical Techniques

In the hierarchical techniques, clusters are formed by a top-down or bottom-up
approach [14]. The top-down approach is called divisive and the bottom-up is
called agglomerative. The agglomerative approach builds clusters starting with
single data points. In the beginning, each data point forms an individual cluster
and then the most neighboring two clusters merge into a new cluster until all
the data points are contained in one cluster or certain termination conditions
are satisfied. The divisive hierarchical clustering breaks up a cluster containing
all objects into smaller clusters until each object forms a cluster on its own or
until it satisfies certain termination conditions. To define whether two clusters are
neighboring, a few options can be tuned, such as single linkage, complete linkage,
and average linkage. Different metrics will lead to different clustering results.

2.2.2 Partitional Techniques

K-means is one of the most famous clustering algorithms among the partitional
techniques [15]. It is widely used to explore the potential clusters in the unlabelled
data. K-means requires as the input parameters the number of clusters K and

6

the distance metric. The distance metric measures the distance between each
pair of data points. There are several distance metric options, such as Minkowski
distance, Euclidean distance, or cosine distance [13]. During the clustering process,
initially, each data point is assigned to one of the randomly chosen clusters based
on its distance to the center of each cluster. After assigning all the data points, K
clusters have been formed and new cluster centers can be calculated again using
the mean of all the data points belonging to the same cluster. And all the data
points are reassociated again. These steps are repeated until no significant changes
in the cluster centers can be observed.

The K-means algorithm is summarized in Algorithm 1.

Algorithm 1: K-means

Data: The number of clusters K, a set of data points X
Result: K clusters

1 Randomly generate K initial centroids
2 while NotConverge do
3 Calculate the distance between each node and each centroid
4 Assign node to the cluster with the nearest centroid ; /* Assignment

step ends */

5 Recalculate means (centroids) for nodes assigned to each cluster ;
/* Update step ends */

6 if Centroids don’t change then
7 Converge
8 else
9 NotConverge

10 end
11 end

The main drawback of the K-means is that the results and performance of
the clustering are strongly related to the choice of initial centroids [16]. This
can be alleviated by running K-means several times with different centroid seeds
and choosing the best one as the final result according to some criteria, e.g.,
inertia [17]. Or we can finely tune the initial centroids, e.g., K-means++ [18] in
which one should always pick the most distant node as the next centroid.

Another example of partitional techniques is the Gaussian mixture model
(GMM)-based expectation maximization (EM) algorithm [19,20]. Instead of mak-
ing “hard” assignments as in K-means, GMM guesses “soft” decisions about how
to assign nodes since it takes the likelihood into consideration. This algorithm
assumes that all the data points are drawn from one of K Gaussian random vari-
ables depending on latent random variables [21,22]. It has two main steps. In the
first step, called “E-step”, the algorithm tries to guess the value of latent random
variables given the data points and the current setting of parameters. After that,
in the “M-step”, the algorithm uses the updated value to maximize the likelihood
and update the corresponding setting of parameters which are the means and the
covariance matrices of the involved Gaussians. The algorithm runs until conver-
gence and finally, the desired clusters are obtained. This algorithm has two main
drawbacks. The first one is the same as for K-means. The clustering results are
strongly related to the choice of initial points. The second one is that if K is not

7

appropriate, there will be one or some Gaussians converging to a single data point,
leading to infinity in the inversion of the covariance matrix. This can be alleviated
by introducing regularization, yet the technique then becomes more complicated.

2.2.3 Graph Techniques

In the graph techniques, data points are seen as nodes of a graph and the edge
weights are determined by the similarity measurements between each pair of nodes.
There are many options, such as the Euclidean distance, and the Gaussian simi-
larity function [23]. After constructing the graph G(V , E), partitions are defined
as a set of subsets {Cm}m=1,...,K where

C1 ∪ C2 ∪ ... ∪ CK = V , (2.2.1)

Ci ∩ Cj = ∅, ∀i, j ∈ {1, ..., K}, i 6= j. (2.2.2)

Various types of clustering methods have been proposed, one of the most fa-
mous techniques is based on the minimal spanning tree (MST) [24]. Apart from
MST, another type of graph technique called spectral clustering is widely used and
discussed. In this thesis work, our solutions are strongly related to spectral clus-
tering. Therefore, in the following sections, we will review the spectral clustering
technique starting from the recursive spectral bisection solution to the multiway
partition problem.

2.2.3.1 Recursive spectral bisection

Recursive spectral bisection (RSB) works on the Fiedler vector of the Laplacian
matrix L, which is the eigenvector corresponding to the second smallest eigenvalue.
Let’s consider a K-way clustering problem. In order to partition the graph into
K clusters, RSB first partitions the graph into two subgraphs according to the
entries of the Fiedler vector. This value infers the clustering information of each
node and can be viewed as the coordinate of each node on a 1D number axis. RSB
orders the entries of the Fiedler vector in either ascend or descend order and then
assigns the nodes in the first half to one cluster and the second half to the other
cluster, achieving the bisection, or it simply uses the sign of the entries and assigns
the nodes which correspond to positive values to one cluster and the nodes which
correspond to negative values to the other cluster. Then RSB applies bisection
recursively to both the subgraphs until the number of clusters reaches K [25, 26].
The RSB is summarized in 2.
Algorithm 2: Recursive Spectral Bisection (RSB)

Data: The number of clusters K, the graph G(V , E)
Result: K clusters

1 Calculate the Laplacian matrix L of G
2 Calculate the eigenvalue decomposition of L, sort the Fiedler vector, e.g.,

in decreasing order
3 Assign the first half of nodes to V1, the second half to V2

4 Apply RSB recursively on V1 and V2 until K clusters are obtained

The RSB gives us intuition that the clustering information of nodes is em-
bedded in the eigenvectors of the Laplacian matrix. But to obtain K clusters,

8

recursively applying the RSB is not straightforward. As described in [27], by
including more eigenvectors and applying clustering algorithms, e.g., K-means,
one can obtain K clusters in one go. This represents the framework of spectral
clustering.

2.2.3.2 The Framework of Spectral Clustering

As we have discussed before, with more eigenvectors and other clustering algo-
rithms, K clusters can be obtained directly. This is described as the spectral
clustering method. [10] states that the more eigenvectors we use, the better re-
sults we can have. Usually, in a K-way partition problem, K eigenvectors are
sufficient [23,27].

Spectral clustering has the following steps. First, compute the Laplacian
matrix L of the graph G(V , E). Second, compute the eigenvalue decomposi-
tion of the Laplacian matrix L and pick the first K smallest eigenvectors form-
ing UK ∈ R|V|×K . Third, consider each row of UK as node coordinates or
as spectral embeddings and apply K-means or other clustering algorithms to
UK and obtain the desired clusters. These steps are summarized in Algorithm
3. Usually, we have three options for designing a Laplacian matrix [28]: the
general combinatorial graph Laplacian L = D − W, the normalized Lapla-

cian matrix Ln = D−
1
2 LD−

1
2 = I − D−

1
2 WD−

1
2 , the random walk Laplacian

Lrw = D−1L = I−D−1W. A recommendation on choosing the Laplacian matrix
can be found in [23].

Algorithm 3: Spectral clustering

Data: Graph G(V , E) with Laplacian matrix L/Ln/Lrw, the number of
clusters K

Result: K clusters
1 Calculating the eigenvalue decomposition of Laplacian matrix
2 Choose the first K eigenvectors corresponding to K smallest eigenvalues

and construct UK

3 Embed the i-th vertex to [UK]i,:
4 Run K-means or any clustering algorithm to obtain the desired clusters

An illustration of the framework of spectral clustering is shown in Fig. 2.1.
This is the bisection case, that is, the number of clusters K is 2. And the spectral
embedding of node 1 (in red) is denoted in red as well.

Figure 2.1: The framework of spectral clustering

9

2.2.3.3 Graph signal processing based algorithm

Spectral clustering is based on the eigenvectors of the Laplacian matrix, which
are expensive to compute for large size graphs. Therefore, in [29], Tremblay et al.
introduce an accelerated spectral clustering method by replacing the exact eigen-
value decomposition with graph filtering. The polynomial-approximated low pass
filter reduces the complexity, and only matrix-vector multiplication operations are
required instead of diagonalizing the Laplacian matrix.

Graph filtering is based on the graph Fourier transform. Considering graph
G(V , E) has Laplacian matrix L, the eigenvalue decomposition of L can be written
as

L = UΛU>. (2.2.3)

The U matrix represents the graph Fourier basis of the graph and Λ =
diag(λ1, λ2, ..., λN) is the spectrum of the graph. If there is a signal x defined
on this graph, then its graph Fourier transform is

x̂ = U>x. (2.2.4)

Now if we define a filter h(λ) on [0, λN], the filtered signal in the frequency

domain is Ĥx̂, where Ĥ = diag(h(λ1), h(λ2), ..., h(λN)). And the filtered signal in
the graph domain is

Hx = UĤU>x, (2.2.5)

where the H ∈ R|V|×|V| is the associate filter operator, defined as

H = UĤU>. (2.2.6)

If the filter h(λ) can be approximated by a polynomial using h(λ) '
∑m

l=0 αlλ
l,

Equation 2.2.5 can be rewritten as

Hx = UĤU>x '
m∑
l=0

αlL
lx. (2.2.7)

In such a way, the eigenvalue decomposition is avoided. This fast filtering
method has complexity O(m|E| + |V|) where m is the order of the polynomial of
the filter.

Specifically, if the h(λ) is an ideal low pass filter defined on [0, λK], where K
is the number of clusters, the corresponding graph filter operator HλK is

HλK = U

(
IK 0
0 0

)
U> = UKU>K . (2.2.8)

We can use this filter operator to filter η random signals ri, whose components
are independent random Gaussian variables of zero-mean and variance 1

η
, each row

of the filtered signals HλKR ∈ R|V|×η, where R = [r1, . . . , rη], can be seen as the
spectral embedding of the nodes in the graph as well.

10

Proposition 1. Let ε, β>0 be given. If η is larger than

η0 =
4 + 2β

ε2/2− ε3/3
logN, (2.2.9)

with probability at least 1−N−β, we have: ∀(i, j) ∈ [1, N]2

(1− ε)||fi − fj||2 ≤ ||̃fi − f̃j||2 ≤ (1 + ε)||fi − fj||2, (2.2.10)

where fi is the spectral embedding (row of UK) via eigenvalue decomposition, f̃i
is the approximated one, via the filtered Gaussians, and the row of HλKR.

Proof. See [29]

This proposition means the distance between coordinates of different nodes
introduced in Background is preserved and approximated in the filtered signals,
that is, each row of the filtered signal can be seen as the coordinates or the
spectral embedding of vertices as well. To conclude, the graph signal processing
based spectral clustering method has a total of 4 steps [29,30]. The first step is to
estimate the largest and K-th smallest eigenvalue of the Laplacian matrix. The
K-th smallest eigenvalue estimation is based on the eigencount techniques. In the
second step, one should first define an ideal low pass filter with cut-off frequency
λK . The ideal low pass filter is approximated by a Chebychev polynomial with
specified order m. Then the filtering operator is obtained. As we can imagine,
higher order polynomials can bring higher accuracy but require more computation.
The third step is generating η Gaussian random signals with variance 1

η
. Then

R ∈ R|V|×η is filtered by a graph filtering operator. In the fourth step, one can
apply K-means or any other clustering algorithm on the filtered signals and to
obtain the desired clusters.

Bibliography

[1] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality reduction
and data representation,” Neural computation, vol. 15, no. 6, pp. 1373–1396,
2003.

[2] M. Meila and J. Shi, “Learning segmentation by random walks,” Advances in
neural information processing systems, vol. 13, pp. 873–879, 2000.

[3] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Trans-
actions on pattern analysis and machine intelligence, vol. 22, no. 8, pp. 888–
905, 2000.

[4] C. Ding, X. He, and H. D. Simon, “On the equivalence of nonnegative ma-
trix factorization and spectral clustering,” in Proceedings of the 2005 SIAM
international conference on data mining. SIAM, 2005, pp. 606–610.

[5] F. R. Bach and M. I. Jordan, “Learning spectral clustering, with application
to speech separation,” The Journal of Machine Learning Research, vol. 7, pp.
1963–2001, 2006.

11

[6] S. Furui, “Unsupervised speaker adaptation based on hierarchical spectral
clustering,” IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. 37, no. 12, pp. 1923–1930, 1989.

[7] Z. Ghahramani, “Unsupervised learning,” in Summer School on Machine
Learning. Springer, 2003, pp. 72–112.

[8] M. Caron, P. Bojanowski, A. Joulin, and M. Douze, “Deep clustering for un-
supervised learning of visual features,” in Proceedings of the European Con-
ference on Computer Vision (ECCV), 2018, pp. 132–149.

[9] Y. Zhao, G. Karypis, and U. Fayyad, “Hierarchical clustering algorithms for
document datasets,” Data mining and knowledge discovery, vol. 10, no. 2, pp.
141–168, 2005.

[10] C. J. Alpert and S.-Z. Yao, “Spectral partitioning: The more eigenvectors,
the better,” in Proceedings of the 32nd annual ACM/IEEE design automation
conference, 1995, pp. 195–200.

[11] M. López-Vallejo and J. C. López, “On the hardware-software partitioning
problem: System modeling and partitioning techniques,” ACM Transactions
on Design Automation of Electronic Systems (TODAES), vol. 8, no. 3, pp.
269–297, 2003.

[12] P. Arató, Z. A. Mann, and A. Orbán, “Algorithmic aspects of hardware/soft-
ware partitioning,” ACM Transactions on Design Automation of Electronic
Systems (TODAES), vol. 10, no. 1, pp. 136–156, 2005.

[13] D. Xu and Y. Tian, “A comprehensive survey of clustering algorithms,” An-
nals of Data Science, vol. 2, no. 2, pp. 165–193, 2015.

[14] F. Murtagh and P. Contreras, “Algorithms for hierarchical clustering: an
overview,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Dis-
covery, vol. 2, no. 1, pp. 86–97, 2012.

[15] M. Z. Rodriguez, C. H. Comin, D. Casanova, O. M. Bruno, D. R. Amancio,
L. d. F. Costa, and F. A. Rodrigues, “Clustering algorithms: A comparative
approach,” PloS one, vol. 14, no. 1, p. e0210236, 2019.

[16] J. M. Pena, J. A. Lozano, and P. Larranaga, “An empirical comparison of
four initialization methods for the k-means algorithm,” Pattern recognition
letters, vol. 20, no. 10, pp. 1027–1040, 1999.

[17] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn:
Machine learning in Python,” Journal of Machine Learning Research, vol. 12,
pp. 2825–2830, 2011.

[18] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful seed-
ing,” Stanford, Tech. Rep., 2006.

12

[19] C. Fraley and A. E. Raftery, “How many clusters? which clustering method?
answers via model-based cluster analysis,” The computer journal, vol. 41,
no. 8, pp. 578–588, 1998.

[20] A. Saxena, M. Prasad, A. Gupta, N. Bharill, O. P. Patel, A. Tiwari, M. J.
Er, W. Ding, and C.-T. Lin, “A review of clustering techniques and develop-
ments,” Neurocomputing, vol. 267, pp. 664–681, 2017.

[21] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from in-
complete data via the em algorithm,” Journal of the Royal Statistical Society:
Series B (Methodological), vol. 39, no. 1, pp. 1–22, 1977.

[22] A. Ng, “Cs229 lecture notes,” CS229 Lecture notes, vol. 1, no. 1, pp. 1–3,
2000.

[23] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and computing,
vol. 17, no. 4, pp. 395–416, 2007.

[24] C. T. Zahn, “Graph-theoretical methods for detecting and describing gestalt
clusters,” IEEE Transactions on computers, vol. 100, no. 1, pp. 68–86, 1971.

[25] Y. Saad, Iterative methods for sparse linear systems. SIAM, 2003.

[26] H. Zha, X. He, C. Ding, H. Simon, and M. Gu, “Bipartite graph partitioning
and data clustering,” in Proceedings of the tenth international conference on
Information and knowledge management, 2001, pp. 25–32.

[27] A. Ng, M. Jordan, and Y. Weiss, “On spectral clustering: Analysis and an
algorithm,” Advances in neural information processing systems, vol. 14, pp.
849–856, 2001.

[28] F. R. Chung and F. C. Graham, Spectral graph theory. American Mathe-
matical Soc., 1997, no. 92.

[29] N. Tremblay, G. Puy, P. Borgnat, R. Gribonval, and P. Vandergheynst, “Ac-
celerated spectral clustering using graph filtering of random signals,” in 2016
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). Ieee, 2016, pp. 4094–4098.

[30] J. Paratte and L. Martin, “Fast eigenspace approximation using random sig-
nals,” arXiv preprint arXiv:1611.00938, 2016.

13

14

Problem Formulation 3
In this section, we are going to elaborate on the details of the research topics in
this thesis work. First, we define some functions as preliminary knowledge.

Let us consider a graph G(V , E), with the adjacency matrix W and a set of
subsets of nodes {Cm}m=1,...,K where C1∪C2∪ ...∪CK = V and Ci∩Cj = ∅, ∀i, j ∈
{1, ..., K}, i 6= j. An interconnection function between two subsets Cp and Cq is
defined as

W (Cp, Cq) =
∑

i∈Cp,j∈Cq

wi,j, (3.0.1)

where wi,j = [W]i,j.
The cut of a subgraph is defined as

cut(Cm) =
∑

i∈Cm,j∈V\Cm

wi,j, (3.0.2)

where V \ Cm is the complement of Cm.
The vol of a subgraph is defined as

vol(Cm) =
∑

i∈Cm,j∈V

wi,j. (3.0.3)

Based on these quantities, we define later metrics for partition graphs in this
thesis.

3.1 Problem 1

The first problem is the so-called bipartite graph clustering problem and the tar-
geted graph has bipartite structure. A bipartite graph is a graph whose vertices
can be divided into two disjoint and independent sets and such that every edge
connects a vertex in one of the sets to one in the other set. Let us consider a
weighted undirected bipartite graph Gb(B,U ,B), where B and U are two differ-
ent types of vertices. E is the set of all the edges within the bipartite graph. B
contains the weights of all the edges, as we have defined before.

A bipartite graph can be seen as a model for many systems, such as a
documents-terms system [1–3], a communication system [4], etc. In our case,
we consider the bipartite graph is the model for a cellular network. In this setting,
B is the set of base stations and U is the set of users. The reason for investigating
the bipartite graph clustering problem in a cellular network is that appropriate
partitions can achieve a good load balancing [5] or they can minimize the inter-
ference and communication cost among different regional clusters [6]. In the rest
of this report, the word “base station” and “user” will refer to the vertices in B

15

and U , respectively. We assume here that the number of users |U| is much larger
than the number of base stations |B|.

As we have discussed before, the partitions should satisfy certain criteria. In
the first problem, the desired partitions are defined by the following problem
statement:

• Given the number of clusters K, decompose the vertices within the bipartite
graph into K disjoint and non-empty clusters {Cm}m=1,...,K by solving the
following optimization problem

min
{Cm}

J1({Cm}) (3.1.1)

=min
{Cm}

K∑
m=1

cut(Cm)

vol(Cm)− cut(Cm)
(3.1.2)

=min
{Cm}

K∑
m=1

cut(Cm)

W (Cm, Cm)
. (3.1.3)

This cost function is called MinMaxCut. If we look into the cost function, the
numerator of each term is the sum of all the cut edges, which can be seen as the
interference of the connection or the traffic routed between different subgraphs,
because it models the connection starting from the node i ∈ Cm to the node j /∈ Cm.
The denominator of each term contains the sum of the edge weights within each
subgraph, which can be viewed as the within-cluster similarities or the density of
the subgraph, e.g., traffic routed within the clusters. Consequently, minimizing
this cost function can achieve the following aspects. First, it can generate clusters
with a small number of cut edges, minimizing the communications within different
clusters. Second, it enforces the subgraphs to be as dense and similar as possible,
trying to contain as much traffic as possible within the cluster. Additionally,
revealed by [3, 5], it can avoid generating unbalanced partitions compared with
other partition criteria such as Ratio Cut, which is preferable as well.

In a practical scenario, the cellular network is dynamic due to the mobility of
users. Apart from that, new users may come into the network or users may leave
the network, changing the bipartite graph as well. Furthermore, the update of
the network structure, i.e., the installation of new base stations will also change
the graph. When an update of the clusters is required, one can certainly opt
to recompute the eigenvalue decomposition from scratch. However, for a large
cellular network, this is expensive to do so. Therefore, it is necessary to design a
method that is capable of updating the clusters when the graph is changing over
time. This is one of the main aspects we will investigate.

3.2 Problem 2

In the second problem, we focus on a quite similar problem to the first one, but
with slightly different graph settings and cost function.

16

Let us consider a graph G(B,U , E). Remember that there are two types of
vertices B and U in the graph, satisfying

B ∪ U = V and B ∩ U = ∅,

where |V| = N .
Unlike the bipartite graph, an edge ei,j ∈ E in this case can exist between the

same and different types of vertices B and U with edge weight wi,j ≥ 0. Thus,
this graph is not bipartite.

In this problem, the desired partitions are defined by the following problem
statement:

• Given the number of clusters K, the objective is to decompose the vertices
into K disjoint and non-empty clusters {Cm}m=1,...,K by solving the following
optimization problem

min
{Cm}

J2({Cm}) (3.2.1)

= min
{Cm}

K∑
m=1

∑
i∈Cm,j∈V\Cm

wi,j∑
i∈Bm,j∈Um

wi,j
(3.2.2)

= min
{Cm}

K∑
m=1

cut(Cm)

W (Bm,Um)
, (3.2.3)

where Bm = Cm ∩ B(6= ∅) and Um = Cm ∩ U(6= ∅).

As we can see, the cost function (3.2.3) is almost the same as (3.1.3) except
for the denominator. For the sake of convenience, we call it Modified-MinMaxCut.
The denominator of each term in the cost function (3.1.3) implies that the density
or the within-cluster similarity is only defined on the edges between different types
of nodes. As we can see, the main difference between this cost function and the
one in the first problem is that this cost function incorporates the graph structure,
defining clusters only based on one type of edge. Function (3.2.3) enables us to
work on a graph that has not only two different types of nodes but also two different
types of edges, broadening the model of a bipartite graph. One type of the edges
can be the wireless links in the cellular network and the other type can be the wired
links. For example, in a 4G/5G cellular network, when base station cooperation
or the Coordinated Multipoint (CoMP) concept is implemented to provide the
cell edge users with better performance, some information has to be exchanged
between different base stations [7–11]. This type of information, including channel
state information (CSI) or user data, is exchanged through the backhaul network.
However, in the real world, exchanging user data or CSI within the whole network
is infeasible since users are many and data are increasing rapidly, leading to a
signaling overhead. Therefore, in order to resolve this problem, the information
can be exchanged locally [12,13], that is, identifying the clusters and the exchange
is performed within each cluster. We want to minimize the operation cost, as we
have motivated that traffic routed between different clusters produces high cost,
and both traffic in the wired and wireless link should be taken into consideration,

17

while in the denominator, from the perspective of interference between different
clusters, there is no need to consider the wired link since the interference caused
by wired link is ignorable. That is, we want the clusters to be as dense as possible
in the sense of wireless links, but in the meantime, we also want to reduce the cost
of routing traffic over both wired and wireless links between different clusters. As
we can see, in this case, we have to partition a graph in which we have two types
of edges which are wireless links and links from a backhaul network, motivating
the problem. When one cares about the number of cut edges between the different
clusters but doesn’t want to consider the wired links in the density, the cost (3.2.3)
is preferred.

Furthermore, a time-varying solution towards (3.2.3) is essential as well. There-
fore, our research not only focuses on (3.2.3) by giving a tractable solution, but
also on providing a method that can update the clusters adaptively and efficiently.

To conclude, the main drivers of this thesis are:

• Give a tractable solution for the graph partition problems involving the cost
function (3.1.3) over a static bipartite graph and for the cost function (3.2.3)
over a structured static graph

• Derive methods that can adaptively update the partitions defined by (3.1.3)
and (3.2.3), namely, partition time-varying graphs

Bibliography

[1] C. H. Ding, X. He, H. Zha, M. Gu, and H. D. Simon, “A min-max cut
algorithm for graph partitioning and data clustering,” in Proceedings 2001
IEEE international conference on data mining. IEEE, 2001, pp. 107–114.

[2] I. S. Dhillon, “Co-clustering documents and words using bipartite spectral
graph partitioning,” in Proceedings of the seventh ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, 2001, pp. 269–
274.

[3] H. Zha, X. He, C. Ding, H. Simon, and M. Gu, “Bipartite graph partitioning
and data clustering,” in Proceedings of the tenth international conference on
Information and knowledge management, 2001, pp. 25–32.

[4] A. Engels, M. Reyer, A. Steiger, and R. Mathar, “Min-cut based partitioning
for urban lte cell site planning,” in 2013 IEEE 10th Consumer Communica-
tions and Networking Conference (CCNC). IEEE, 2013, pp. 515–520.

[5] Y. Saad, Iterative methods for sparse linear systems. SIAM, 2003.

[6] A. Lisser and F. Rendl, “Graph partitioning using linear and semidefinite
programming,” Mathematical Programming, vol. 95, no. 1, pp. 91–101, 2003.

[7] J. Zhao, T. Q. Quek, and Z. Lei, “Coordinated multipoint transmission with
limited backhaul data transfer,” IEEE Transactions on Wireless Communi-
cations, vol. 12, no. 6, pp. 2762–2775, 2013.

18

[8] T. Biermann, L. Scalia, C. Choi, H. Karl, and W. Kellerer, “Comp cluster-
ing and backhaul limitations in cooperative cellular mobile access networks,”
Pervasive and Mobile Computing, vol. 8, no. 5, pp. 662–681, 2012.

[9] J.-M. Moon and D.-H. Cho, “Inter-cluster interference management based
on cell-clustering in network mimo systems,” in 2011 IEEE 73rd Vehicular
Technology Conference (VTC Spring). IEEE, 2011, pp. 1–6.

[10] C. T. Ng and H. Huang, “Linear precoding in cooperative mimo cellular
networks with limited coordination clusters,” IEEE Journal on Selected Areas
in communications, vol. 28, no. 9, pp. 1446–1454, 2010.

[11] S. Bassoy, M. Jaber, M. A. Imran, and P. Xiao, “Load aware self-organising
user-centric dynamic comp clustering for 5g networks,” IEEE Access, vol. 4,
pp. 2895–2906, 2016.

[12] J. Zhao and Z. Lei, “Clustering methods for base station cooperation,” in
2012 IEEE Wireless Communications and Networking Conference (WCNC).
IEEE, 2012, pp. 946–951.

[13] S. Bassoy, H. Farooq, M. A. Imran, and A. Imran, “Coordinated multi-point
clustering schemes: A survey,” IEEE Communications Surveys & Tutorials,
vol. 19, no. 2, pp. 743–764, 2017.

19

20

Analysis of Cost Functions 4
In this chapter, we provide relaxations of the cost functions introduced in the
previous chapter and devise tractable solutions for the static graph multiway clus-
tering problem.

4.1 Bipartite Graph Partitioning defined by MinMaxCut

4.1.1 Relaxation of the Cost Function

For the sake of recollection, here the cost function for the graph Gb(B,U ,B) is
provided again

min
{Cm}

J1({Cm}) (4.1.1)

=min
{Cm}

K∑
m=1

cut(Cm)

vol(Cm)− cut(Cm)
(4.1.2)

=min
{Cm}

K∑
m=1

cut(Cm)

W (Cm, Cm)
, (4.1.3)

where C1 ∪ C2 ∪ ... ∪ CK = V and Ci ∩ Cj = ∅, ∀i, j ∈ {1, ..., K}, i 6= j.
It is well-known that this cost function can be reformulated as the following

summation of Rayleigh quotients [1–6]

J1({Cm}) =
K∑
m=1

c>mLcm
c>mWcm

, (4.1.4)

where

• cm ∈ {0, 1}|B∪U|: indicator vector for set Cm, and
∑K

m=1 cm = 1,

• W ∈ R|B∪U|×|B∪U|: the weighted adjacency matrix,

• L ∈ R|B∪U|×|B∪U|: the Laplacian matrix.

To provide an illustrative example of the indicator vector, let us consider the
graph bisection in Fig. 2.1. Node 4 and 6 are in the left cluster while the rest are
in the right one. Therefore, by setting corresponding entries to binary values, we
can indicate the relationship between each node and each subgraph, which forms
the indicator vectors for subgraphs.

cl = [0, 0, 0, 1, 0, 1]> (4.1.5)

cr = [1, 1, 1, 0, 1, 0]> (4.1.6)

21

Since the variable is discrete, this optimization problem is NP-hard due to
the combinatoric nature of the problem [4]. However, it can be shown that if
the binary constraint on the indicator vector cm is relaxed to the case where the
entries of cm can take continuous values, then the continuous solutions towards
this problem can be determined by the following generalized eigenvalue problem
(GEVP)

Lcm = λmDcm, (4.1.7)

where D is the degree matrix of the graph.

Proposition 2. The continuous solutions (continuous indicator vectors) related
to minimizing (4.1.4) are the K eigenvectors of (4.1.7) corresponding to the K
smallest eigenvalues.

Proof. See [1, 2]

However, the true solutions should be binary indicator vectors since we still
need to assign nodes to different subgraphs. Therefore, a step to make the eigen-
vectors discrete is required, which is summarized as follows. {cm}m=1,...,K are
the K generalized eigenvectors related to the K largest eigenvalues. In order to
obtain K discrete binary indicator vectors, one can first stack {cm}m=1,...,K into
UK = [c1, c2, ..., cK], then treat each row of UK as the coordinate or the spec-
tral embedding of each node and finally apply any clustering algorithm, such as
K-means.

As we can notice, the solutions are related to the framework of spectral cluster-

ing when we choose the eigenvectors of the normalized Laplacian Ln = D−
1
2 LD−

1
2 .

The continuous solutions can be retrieved by left multiplying D−
1
2 with the eigen-

vectors of the normalized Laplacian Ln.

4.1.2 Multiway Partition in Bipartite Graph

When the graph we are working on is not a general graph but a bipartite graph
Gb(B,U ,B), the GEVP (4.1.7) related to the optimization problem (4.1.4) can be
rewritten. In the following section, we will review the multiway partition for the
bipartite graph. Here, we first recall the definition of the B matrix that indicates
the connection status between the vertices in the set of base stations and users:

• B ∈ R|B|×|U|, [B]i,j = bi,j is the weight of the edge between vertex i in B and
j in U . In a cellular network, this value can be any metric defining the link
strength.

Proposition 3. The adjacency matrix W of a bipartite graph has the following
structure

W = D− L (4.1.8)

=

[
0 B

B> 0

]
. (4.1.9)

If we plug this back into the previous GEVP (4.1.7), we will arrive at the
continuous multiway partitioning solution in the bipartite case, which is defined
on B. And the corresponding B-based solution is summarized in the following
proposition.

22

Proposition 4. Let bm and um represent the continuous indicator vectors for
base stations and users in subgraph Cm, respectively, which are related to the
continuous solutions of (4.1.4) for a bipartite graph..

Bum = µmDbbm (4.1.10)

B>bm = µmDuum (4.1.11)

Proof. If we replace L with D−W and reorganize the GEVP (4.1.7), we obtain
another GEVP

Wcm = (1− λm)Dcm. (4.1.12)

Here we can fully exploit the special structure of the adjacency matrix for a

bipartite graph. Let us define cm =

[
bm
um

]
, D =

[
Db 0
0 Du

]
, Db = diag(B1),

Du = diag(B>1), then we obtain

Bum = µDbbm, (4.1.13)

B>bm = µDuum, (4.1.14)

These vectors bm and um can be computed by the following proposition.

Proposition 5. Define B̃ = D
− 1

2
b BD

− 1
2

u , then if the left and right singular vectors

of B̃ corresponding to the m-th largest singular value are b̃m and ũm, we have

bm = D
− 1

2
b b̃m, (4.1.15)

um = D
− 1

2
u ũm. (4.1.16)

Proof. Define b̃m = D
1
2
b bm, ũm = D

1
2
u um, then from (4.1.13) and (4.1.14), we have

BD
− 1

2
u ũm = µmD

1
2
b b̃m, (4.1.17)

B>D
− 1

2
b b̃m = µmD

1
2
u ũm. (4.1.18)

Left multiplying with D
− 1

2
b and D

− 1
2

u

D
− 1

2
b BD

− 1
2

u ũm = µmb̃m, (4.1.19)

D
− 1

2
u B>D

− 1
2

b b̃m = µmũm, (4.1.20)

which shows that b̃m and ũm are exactly the left and right singular vectors of B̃

with singular value µm. And by left multiplying D
− 1

2
b and D

− 1
2

u to b̃m and ũm, we
can retrieve bm and um.

23

So far, we have given the modified GEVP in the case of a bipartite graph. All
the propositions will lead to the spectral clustering method for a bipartite graph
presented in Algorithm 4 [3].

Algorithm 4: Bipartite Spectral Clustering

Data: The number of clusters K, the graph Gb(B,U ,B)
Result: K clusters

1 Compute B̃ = D
− 1

2
b BD

− 1
2

u

2 Compute the left and right singular vectors of B̃ corresponding to the K

largest singular values, represented by b̃m and ũm, and stack them into
the matrices ŨK and ṼK

3 Treat each row of UK = D
− 1

2
b ŨK and VK = D

− 1
2

u ṼK as coordinates and
jointly apply K-means

4.1.3 Fast Bipartite Graph Clustering

In this section, we will propose a fast bipartite graph partitioning method called
user assignment method. This fast partitioning method follows the idea that we
can partition the whole bipartite graph by first partitioning a subset of the original
graph. In our case, we can first partition the base stations and then assign the
users to the clustered base stations according to the weight of the edge between
a user and a base station. Partitioning only the base stations can rely on the
matrix UK introduced in Algorithm 4, which can be obtained by a singular value
decomposition or power method. The base station clusters are then obtained by
performing K-means on this matrix. The importance of this method will be clearer
after discussing the method for updating UK if the bipartite graph is varying,
namely, the adaptive version of the fast bipartite graph partition method. Here,
we are going to elaborate on the user assignment method.

m∗ = arg max
m

ωBm,j

s.t. ωBm,j =
∑

i∈Bm bi,j
(4.1.21)

Assume that we have already obtained the clusters for base stations
{Bm}m=1,...,K . We would like to assign user j to one of the clusters. Here we
first introduce a term: aggregated edge. The aggregated edge is the edge indicat-
ing the connection between a user j and a base station cluster m and its weight is
the sum of the weights of all the edges between the user j and the base stations
in the cluster m. We can now simply assign the user to the cluster which has the
highest weight of the aggregated edge. In other words, this method assigns user j
in U to cluster Bm∗ if the aggregated weight between u and Bm is maximized for
cluster m∗. This is the same as solving the problem (4.1.21). The fast bipartite

24

graph clustering method is summarized in Algorithm 5.

Algorithm 5: Fast Bipartite Graph Clustering

Data: The number of clusters K, the graph Gb(B,U ,B)
Result: K clusters

1 Compute B̃ = D
− 1

2
b BD

− 1
2

u

2 Compute the left singular vectors of B̃ corresponding to the K largest

singular values, represented by b̃m, and stack them into the matrices ŨK

3 Treat each row of UK = D
− 1

2
b ŨK as coordinates and apply K-means to

obtain the clusters {Bm}m=1,...,K

4 for each user j in U do
5 Solve the problem (4.1.21)
6 Label the user with the label of the optimal cluster
7 end

4.2 Graph Partitioning defined by Modified-MinMaxCut

4.2.1 Graph Setting

A brief description is made here as recollection. The problem that is considered
here is

min
{Cm}

J2({Cm}) (4.2.1)

= min
{Cm}

K∑
m=1

∑
i∈Cm,j∈V\Cm

wi,j∑
i∈Bm,j∈Um

wi,j
(4.2.2)

= min
{Cm}

K∑
m=1

cut(Cm)

W (Bm,Um)
, (4.2.3)

where Bm = Cm ∩ B(6= ∅), Um = Cm ∩ U(6= ∅), C1 ∪ C2 ∪ ... ∪ CK = V , |V| = N ,
and Ci ∩ Cj = ∅, ∀i, j ∈ {1, ..., K}, i 6= j.

Instead of directly addressing the general clustering problem (4.2.1), we first
focus on a simpler problem, specifically, the graph bisection problem, i.e, K = 2.
We hope that similarly to the traditional graph partition problem relaxation, the
graph bisection problem sheds some light on how to address the multiway partition
problem.

4.2.2 Graph Bisection

To address the graph bisection case, we first introduce some required notation and
express the cost function of the problem in terms of a sum of ratios of quadratic
forms.

25

4.2.2.1 Cost Function as Sum of Quadratic Ratios

First, we define the following notations as before

• cm ∈ {0, 1}N : indicator vector for set Cm, and
∑K

m=1 cm = 1,

• W ∈ RN×N : the weighted adjacency matrix,

• L ∈ RN×N : the Laplacian matrix,

• Bin := diag(b) ∈ {0, 1}N×N : indicator matrix for set B, i.e., [b]i = 1 if
i ∈ B,

• Uin := diag(u) ∈ {0, 1}N×N : indicator matrix for set U , i.e., [u]i = 1 if
i ∈ U .

Using this notation, we can write the expressions related to the cost func-
tion (3.2.3) in matrix-vector form, i.e.,∑

i∈Cm,j∈V\Cm

wi,j = c>mW(1− cm) = c>mLcm (4.2.4)

and ∑
i∈Bm,j∈Um

wi,j = c>mBinWUincm = c>mW̃cm, (4.2.5)

where we have defined W̃ := BinWUin. Thus, the cost function (3.2.3) can be
rewritten using quadratic forms as

J2({cm}) =
K∑
m=1

c>mLcm

c>mW̃cm
. (4.2.6)

4.2.2.2 Two-Clusters Cost Function

We now consider the case of graph bisection and find the explicit expression
for (4.2.6) when K = 2. Note that as there are only two sets, one indicator
vector is the direct complement of the other, i.e.,

c2 = 1− c1.

Hence, it is sufficient to consider a single variable, we keep it as c. Using this
observation, the cost can be given as

J2(c) =
c>Lc

c>W̃c
+

(1− c)>L(1− c)

(1− c)>W̃(1− c)
(4.2.7)

=
c>Lc

c>W̃c
+

c>Lc

κ− q>c + c>W̃c
, (4.2.8)

where κ := 1>W̃1 and q := (W̃
>

+ W̃)1.

26

4.2.3 Relaxation: Method 1

At this stage, in a typical graph partition problem, the second term is disregarded
(there is no restriction on the type of nodes) and only the first term is considered
in the optimization problem. Identifying the first ratio as a Rayleigh quotient, a(n)
(approximate) solution can be found by solving the related GEVP. However, due
to the presence of the linear term, q>c, in (4.2.8), it would be more complicated
to obtain the related GEVP. In the following, we first discuss a slightly different
formulation to develop the tools to find a solution to the graph bisection problem.

4.2.3.1 Sum of Inverse Ratios

Instead of considering the original problem formulation, let us assume that we
want to maximize the following cost

J̃2(c) :=
c>W̃c

c>Lc
+

c>W̃c− q>c + κ

c>Lc
(4.2.9)

=
2c>W̃c− q>c + κ

c>Lc
. (4.2.10)

Here, we have considered the sum of the inverse ratios from (4.2.8). Notice that
by considering this change in the cost function, both terms have the same denom-
inator thus can be directly added. Clearly, this cost function is scale sensitive in c
because of the existence of the linear term. If we scale c with an arbitrarily small
scalar, then this cost function would attain positive infinity for any c. Further-
more, remember that we should avoid the solutions c = 0 or 1. To solve these
issues, as well as to simplify the optimization problem, we adopt the constraint
c>Lc = 1 on c. Notice that this constraint holds for both indicator vectors since
(1− c)>L(1− c) = c>Lc = 1. Similar constraint expressed by the quadratic form
of c can be seen in [1, 6] as well.

Finally, dropping the binary constraints on c, we are going to solve the opti-
mization problem

max
c∈RN ,c>Lc=1

J̃2(c). (4.2.11)

Proposition 6. Consider the function J̃2(c) in (4.2.11). Its critical points corre-
spond to vectors c is given by

c = u + 0.51,

where u vectors are the generalized eigenvectors satisfying

u>WSu = λ,u>Lu = 1,

where WS := 2(W̃
>

+ W̃). λ is the generalized eigenvalue related to the general-
ized eigenvector u.

Proof. Considering the constraint, the Lagrangian is

L(c, ν) = J̃2(c) + ν(c>Lc− 1).

27

The critical points of the function can be found by taking the gradient of the
Lagrangian w.r.t c, and we have the following expression

∂L
∂c

=

[
2(W̃

>
+ W̃)c− q

]
(c>Lc)− 2Lc(2c>W̃c− q>c + κ)

(c>Lc)2
+ 2νLc. (4.2.12)

Equating to zero the above equation, and rearranging its terms, we obtain the
expression

2(W̃
>

+ W̃)c− q =
2c>W̃c− q>c + κ− ν(c>Lc)2

c>Lc
2Lc,

which leads to

WSc = λLc + q, (4.2.13)

where WS is defined as before, q := (W̃
>

+ W̃)1, λ := 2(2c>W̃c − q>c −
ν(c>Lc)2)(c>Lc)−1 and ν ∈ R is the Lagrange multiplier. Taking the structure of
q into consideration, we can further simplify (4.2.13) by first rewriting (4.2.13) as

2(W̃
>

+ W̃)c = λLc + (W̃
>

+ W̃)1,

and then achieving

2(W̃
>

+ W̃)(c− 0.51) = λLc.

Since 1 is in the ker(L), we then have

WS(c− 0.51) = λL(c− 0.51), (4.2.14)

which is a generalized eigenvalue problem (GEVP). And if we denote the general-
ized eigenvector of (4.2.14) as u satisfying

u>WSu = λ,u>Lu = 1,

then we can find that c = u + 0.51.
But in order to show vectors c are valid critical points of (4.2.11), we have to

demonstrate (i) c should satisfy c>Lc = 1, which is guaranteed by u>Lu = 1 as
1 is in the ker(L), and (ii) c should lead to the equality of λ and the generalized
eigenvalue. This can be ensured by having ν = 0.5κ. If we equate

u>WSu

u>Lu
= 2

2c>W̃c− q>c + κ− ν(c>Lc)2

c>Lc
,

and plug in c = u + 0.51, by some manipulations, the fact that ν = 0.5κ can be
obtained.

To conclude, vectors c are critical points.

So far, how to obtain generalized eigenvectors of (4.2.14) has been provided.
But there are a set of vectors that satisfy (4.2.14) and each of them would pro-
duce a critical point c of J̃2. Therefore, a natural question is which one of these

28

generalized eigenvectors should be chosen as the continuous indicator vector. In
order to determine the solution to the sum of inverse ratios, we first look into

λ = 2
2c>W̃c− q>c + κ− ν(c>Lc)2

c>Lc
(4.2.15)

= 2J̃2(c)− κ. (4.2.16)

Given the constraint, λ can be identified as the sum of inverse ratios with an
extra constant term. Consequently, if J̃2 is to be maximized, then the continuous
indicator vector should be the generalized eigenvector corresponding to the largest
eigenvalue, or the leading generalized eigenvector.

Similarly to the spectral bisection method for graph partition, a binary (two-
cluster) solution, c∗ ∈ {0, 1}N , can be retrieved by thresholding c. This thresh-
olding process can be viewed as an 1D K-means and achieved by doing a function
value sweep to find the threshold, τ ∗, that provides the best function evaluation,
i.e.,

[c∗]i := [cτ∗]i =

{
1 [c(λ∗)]i ≥ τ ∗

0 [c(λ∗)]i < τ ∗
: τ ∗ = max

τ∈R+

J̃2(cτ). (4.2.17)

Thus, if (4.2.11) wants to be solved, we need to pick the leading generalized
eigenvector and threshold it using τ ∗ such that it maximizes J̃2(·). Here we would
like to clarify that although the generalized eigenvector is not the same as its
related critical point c due to the constant vector, since we perform a threshold
sweep operation, they will produce the same clusters. Therefore, we do not clearly
differentiate the roles of the generalized eigenvector and the continuous indicator
vector.

After presenting a solution for the alternative cost function, i.e., sum of inverse
ratios, in the following, we go back to the original formulation of the sum of
ratios to study its critical points and therefore characterizing its solution with the
relaxation of abandoning discreteness and change it to a continuous variable.

4.2.3.2 Sum of Ratios

Recall the sum of ratios, for the case K = 2, i.e.,

J2(c) =
c>Lc

c>W̃c
+

c>Lc

κ− q>c + c>W̃c
. (4.2.18)

As we discussed before, we adopt c>Lc = 1. The critical points of (4.2.18)
given all the constraints are provided in the following proposition.

Proposition 7. Consider the function J2(c) as in (4.2.18). Its critical points
correspond to vectors c satisfying the expression

WS(c− 0.5γ′1) = λ′L(c− 0.5γ′1), (4.2.19)

where

λ′ =
4b1b2(b1 + b2 + ν ′b1b2)

a(b2
1 + b2

2)
, γ′ =

2b2
1

b2
1 + b2

2

,

29

and a = c>Lc, b1 = c>W̃c, b2 = κ − q>c + c>W̃c and ν ′ = −κ(b2
1 + b2

2)−1 is
the Lagrange multiplier. WS,L are defined as before. The vector c satisfying the
above expression is the given by

c = u + 0.5γ′1,

where u is the generalized eigenvector satisfying

u>WSu = λ′, u>Lu = 1.

Proof. See Appendix (B.1)

In fact, it is not possible to directly compute the c using (4.2.19). This is
because given the generalized eigenvector u of (4.2.19), to retrieve c we have to
know γ′, but to determine γ′, the c is required. Fortunately, to obtain the clusters
from the continuous indicator vectors the exact c is not required. Since 0.5γ′1 is
sorely an offset, after a parameter search for the optimal threshold, the partitioning
results will not be affected by different values of γ′.

From the bisection results for the sum of inverse ratios, the leading generalized
eigenvector is chosen since the generalized eigenvalue can be identified as the sum
of inverse ratios. Heuristically, the result maximizing the J̃2 would be a surrogate
solution to minimizing the J2. Furthermore, an upper bound of the cost J2 is
given by the following proposition

Proposition 8. The sum of ratios J2 can be upper-bounded by

J2 <
8

λ′
, (4.2.20)

Proof. See Appendix (B.2)

Therefore, by choosing generalized eigenvector corresponding to larger eigen-
value, we tend to reduce the value of the upper bound of J2, leading to lower cost
function value. The leading generalized eigenvector should be thus chosen as the
continuous indicator vector for the bisection problem. Although we approach this
problem with two different directions, i.e., maximizing the sum of inverse ratios
and minimizing the sum of ratios, they lead to the same results. Additionally, to
retrieve the binary indicator vector, a discretize operation is required. One can
follow the same way described before to determine the threshold.

4.2.3.3 Heuristic for Multi-way Partition

Furthermore, regarding the K-way partitioning problem, similar to the framework
of spectral clustering, heuristically K generalized eigenvectors related to the K
largest eigenvalues can be used. One can stack these K vectors into a matrix
UK , then treat each row of UK as coordinates and apply K-means. Finally, the

30

label of each node can be obtained. This process is summarized as the following
algorithm.

Algorithm 6: Modified-MinMaxCut Multiway Partition - Method 1

Data: The graph G(B,U , E), the number of clusters K
Result: Desired K Clusters

1 Construct WS = 2(BinWUin)> + 2(BinWUin)
2 Compute K generalized eigenvectors corresponds to K largest eigenvalues

of WSc = λLc, denoted by UK

3 Apply K-means over UK

4.2.4 Relaxation: Method 2

4.2.4.1 Sum of Inverse Ratios

As we have seen before, there exists a linear term q in the sum of inverse ratios
and ratios. Here, we put forward a relaxation with the same constraint that can
eliminate this linear term in another way and the solution is given by a GEVP as
well.

Remark 1. Since the indicator vector c is defined as a binary vector, it can be
expressed in a quadratic form as in the following equation

q>c = c>diag(q)c. (4.2.21)

The sum of inverse ratios J̃2(c) can be rewritten as

J̃2(c) :=
c>W̃c

c>Lc
+

c>W̃c− c>diag(q)c + κ

c>Lc
(4.2.22)

=
c>(2W̃− diag(q))c + κ

c>Lc
(4.2.23)

with the same definition and constraints as before. So far, we obtain a cost function
without the linear term. We can identify the critical points of J̃2 by taking the
gradient w.r.t c towards the Lagrangian and set it to 0, then we have the following
equation

∂L
∂c

=

[
(W>

D + WD)c
]
(c>Lc)− 2Lc(c>WDc + κ)

(c>Lc)2
+ 2νLc. (4.2.24)

where WD = 2W̃− diag(q).
Equating to zero the above equation, and rearranging its terms, we obtain the

expression

(W>
D + WD)c = 2

c>WDc + κ− ν(c>Lc)2

c>Lc
Lc, (4.2.25)

leading to

WDSc = λLc, (4.2.26)

31

where WDS = (W>
D + WD), and ν = κ. And λ can be identified as J̃2(c) with an

extra constant value. Thus finding the solution for (4.2.11) (without restrictions
on c, i.e., c ∈ RN) is equivalent to finding the maximum λ that satisfies (4.2.26)
and meanwhile is equal to the corresponding J̃2(c) determined by the solution
c, which is naturally satisfied. Notice that the problem itself is a GEVP since
we transform the linear term into a quadratic form. The optimal c is the one
generating the lowest sum of ratios value.

In order to obtain the label for each node, we should make the (continuous)
eigenvector to be binary by setting a threshold. We can thus do a linear search
over the threshold to find the best τ ∗. The solution should be the thresholded
eigenvector generating the lowest sum of ratios value.

4.2.4.2 Sum of Ratios

Recall the sum of ratios, for the case K = 2, i.e.,

J2(c) =
c>Lc

c>W̃c
+

c>Lc

κ− q>c + c>W̃c
(4.2.27)

=
c>Lc

c>W̃c
+

c>Lc

κ− c>diag(q)c + c>W̃c
. (4.2.28)

The critical points for (4.2.28) are given in the following proposition.

Proposition 9. Consider the function J2(c) as in (4.2.28). Its critical points
correspond to vectors c satisfying the expression

Lc = J2(c)WWc, (4.2.29)

where L is defined as in (4.2.13), and

WW = α(W̃
>

+ W̃)− θdiag(q),

α =
b2

1 + b2
2

2(b1 + b2)(b1 + b2 + b1b2ν)
, θ =

ab1

b2(b1 + b2 + b1b2ν)
,

where b1 = c>W̃c, b2 = κ−c>diag(q)c+c>W̃c, and ν is the Lagrange multiplier.

Proof. See Appendix (B.1)

However, it is impossible to solve this problem directly since the matrix WW

itself is entangled with c. If we would like to derive the c, we should determine
WW first but the determination of WW depends on the value of c. But there
exists an iterative way to determine (one of the) critical points of this GEVP. We
notice that:

c = J2(c)L†WWc, (4.2.30)

where L† is the pseudo inverse since the Laplacian matrix is rank deficient. We
can follow the fixed point iteration, shown as follows:

32

c(n+1) = J2(c(n))L†W
(n)
W c(n), (4.2.31)

and finally it will converge to one of the critical points, though the optimality is
not guaranteed.

Based on the discussions in the previous sections, the multiway partition solu-
tion related to this second relaxation method is provided in Algorithm 7.

Algorithm 7: Modified-MinMaxCut Multiway Partition - Method 2

Data: The graph G(B,U , E), the number of clusters K
Result: Desired K Clusters

1 Construct WDS = (2BinWUin − diag(q))> + (2BinWUin − diag(q))
2 Compute K generalized eigenvectors generating K smallest cost function

values, denoted by UK

3 Apply K-means over UK

4.2.5 Summary

Here, we would like to mention again that the continuous indicator vector is not
exactly the same as the generalized eigenvector. But since after discretization
operation the clustering results will not be affected, for the sake of notation sim-
plification, we do not show the complicated relationship between the generalized
eigenvector and the continuous indicator vector but to provide an illustrative con-
clusion. The first method is directly derived from the cost function and the inverse
cost function, and based on the GEVP (4.2.32). In the relaxation, we drop the bi-
nary constraint and adopt the quadratic constraint on the indicator vector c. We
first take the derivative towards the indicator vector c and then set the gradient
to 0. This leads us to

WSc = λLc, (4.2.32)

and consequently, the continuous indicator vector is the generalized eigenvector
of this GEVP. What’s more, we relate the eigenvalue to the cost function value,
indicating that the leading generalized eigenvector should be chosen as the indi-
cator vector for the bisection problem. Following the multi-way partition method
in spectral clustering, we can pick the eigenvectors related to the K largest eigen-
values and stack them into the matrix UK . Considering each row as the spectral
embedding of each node, any clustering algorithm can be applied, e.g., K-means,
to obtain the labels of nodes.

WDSc = λLc (4.2.33)

The second method is based on the GEVP (4.2.33). In order to relax the
original problem and obtain this GEVP, here we adopt a transformation. Given
that the final solution is binary, the linear term can be rewritten as a quadratic
term and be absorbed. Then we can get rid of this linear term and turn the
equation to a GEVP. All the critical points are given by the eigenvectors of this
GEVP and the one which minimizes the cost function is the optimal (continuous)
indicator vector for the bisection. As before, the multiway partition solution can
be extended by taking more eigenvectors in to consideration.

33

Bibliography

[1] F. Nie, C. Ding, D. Luo, and H. Huang, “Improved minmax cut graph cluster-
ing with nonnegative relaxation,” in Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. Springer, 2010, pp. 451–466.

[2] M. Gu, H. Zha, C. Ding, X. He, H. Simon, and J. Xia, “Spectral relaxation
models and structure analysis for k-way graph clustering and bi-clustering,”
2001.

[3] I. S. Dhillon, “Co-clustering documents and words using bipartite spectral
graph partitioning,” in Proceedings of the seventh ACM SIGKDD international
conference on Knowledge discovery and data mining, 2001, pp. 269–274.

[4] C. H. Ding, X. He, H. Zha, M. Gu, and H. D. Simon, “A min-max cut algo-
rithm for graph partitioning and data clustering,” in Proceedings 2001 IEEE
international conference on data mining. IEEE, 2001, pp. 107–114.

[5] H. Zha, X. He, C. Ding, H. Simon, and M. Gu, “Bipartite graph partitioning
and data clustering,” in Proceedings of the tenth international conference on
Information and knowledge management, 2001, pp. 25–32.

[6] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and computing,
vol. 17, no. 4, pp. 395–416, 2007.

34

Case Study: Simple Static
Graph for Methods Validation
and Comparison for Problem 2 5
In this Chapter, we simulate the bisection approaches and multiway heuristic
methods introduced in Chapter 4 for the second problem on a randomly gener-
ated small-size graph. We compare different relaxation ways and discuss their
performance.

5.1 Practicalities

To obtain the (continuous) indicator vectors, we have to solve GEVPs and com-
puting generalized eigenvectors as

U = ULΣ
− 1

2
L UÃ (5.1.1)

where we have

Ã = (ULΣ
− 1

2
L)>WS(ULΣ

− 1
2

L). (5.1.2)

However, in practice, the matrices L and WS (or WDS) cannot be expected
to be full-rank. In fact, by mere definition, L is not, i.e., it has (at least) the
constant vectors in its null space. And usually in practice, WS (or WDS) is rank
deficient as well. Thus, computing generalized eigenvectors as (5.1.1) and (5.1.2)
is not possible. Notice that in this case ΣL is not invertible, i.e., L is not full-rank.
Hence, instead of using ΣL, we can reshape it to an (N − 1)× (N − 1) matrix by
eliminating the zero eigenvalue. After that, we can follow the same procedure to
construct U. But note that in this case, the U is an tall, N × (N − 1) matrix.

In the following sections, we will consider an instance of a community graph
with N = 40 nodes [1], shown in Fig. 5.1. We will partition this graph using the
proposed relaxation methods of the Modified-MinMaxCut and explain the imple-
mentation of relaxation methods using this example. Finally, we will discuss the
performance of these methods.

In this example, we consider a binary adjacency matrix W, and L as its related
combinatorial Laplacian. The set B is defined as a realization of a Bernoulli process
with success probability p = 0.5, that is, we randomly define the type of each node.
The set U is defined as its complement, i.e., B∪U = V . As L is rank-deficient, we
first construct U by computing the eigenvectors of L and Ã related to eigenvalues
larger than eps = 10−6.

5.2 Simulation: Method 1

The solution to the bisection problem can be obtained by solving the
GEVP (4.2.32) and the continuous indicator vector is simply the generalized eigen-
vector corresponding to the largest eigenvalue. Furthermore, the bisection solution

35

Figure 5.1: Graph example with two types of nodes, denoted by circles and stars.

Figure 5.2: Comparison of function value for different generalized eigenvectors in method
1. Left: Sum of Inverse Ratios. Right: Sum of Ratios. (eigenvalues from small to large)

can be extended to multiway partition problem based on spectral clustering frame-
work. We will first illustrate graph bisection results and then go to the multiway
simulation results.

We show the results by comparing the function value obtained by the dis-
cretized columns of U, for both sums of ratios and inverse ratios. The results
are shown in Fig. 5.2. In these plots, it is seen that indeed, the leading general-
ized eigenvector achieving the highest function evaluation in the inverse ratio cost
function achieves the minimum in the sum of ratios.

Now, we illustrate the partitioning results, including the bisection and the 3-
way partition in Fig. 5.3. The left one is obtained by thresholding the leading
generalized eigenvectors while the right one is generated by the leading K eigen-
vectors and K-means, where K = 3. And these partitions generate the following

36

Figure 5.3: Method 1 solutions. Left: Bisection. Right: 3-way partition.

cost values, which validate the performance of the spectral clustering-wise method.

Bisection Cost: 0.16333

Multiway partition Cost: 0.98000

5.3 Simulation: Method 2

Method 2 is related to the GEVP (4.2.26), which is derived from the inverse cost
function. The bisection solution is obtained by the generalized eigenvector which
minimizes the cost function. In order to show that, the J̃2 and J2 value regarding
each eigenvector is given in Fig. 5.4.

Figure 5.4: Comparison of function value for different generalized eigenvectors in method
2. Left: Sum of Inverse Ratios. Right: Sum of Ratios. (eigenvalues from small to large)

In Fig. 5.5, we give the results for bisection and multiway partition. One
can observe that even for such a simple small size graph, the bisection solution
has a minor difference compared with the results in the previous section. For the
multiway partition, this method behaves even worse, especially on the boundary
of the second cluster and the third cluster. The cost function values are given as
follows, where large degenerations can be observed.

37

Bisection Cost: 0.32667

Multiway partition Cost: 2.34520

Figure 5.5: Method 2 solutions. Left: Bisection. Right: 3-way partition.

5.4 Discussions

So far, we have implemented all the bisection and multiway partition solutions
over a small-size static graph. In the following part, we are going to discuss the
advantages and drawbacks of each method, and compare these solutions according
to their graph partitioning performances.

Let’s look into the first method. In the first method, we directly relax the cost
function of the bisection problem, then extend the approach to multiway partition
using the framework of spectral clustering, where the (continuous) indicator vector
is based on the generalized eigenvector of the GEVP (4.2.32). According to the
simulation results, this method performs quite well not only in bisection problem,
but also in the multiway case. Then let’s go to the second method. In the second
method, we use a trick to eliminate the linear term in the cost function. However,
the generated clusters are worse than the clusters generated by the first problem.
This can be attributed to the fact that the transformation is unsatisfactory. Al-
though for a binary vector the transformation in the Remark 1 always holds, yet in
the relaxation, we first go to the continuous indicator vectors and then discretize
them and the transformation no longer holds for the continuous indicator vectors.
Therefore, the error is introduced when we relax the binary constraint. Further-
more, the solution is given by the sum of inverse ratios instead of the original
cost function. For the bisection problem, we might obtain good clusters. But for
the multiway partition problem, the solution could be worse. This is the main
reason for the poor performance in terms of the cost function value. And one
may notice that we don’t relate the continuous indicator vectors to the leading
K generalized eigenvectors of the GEVP (4.2.26) since we found the matrix WDS

is negative semidefinite, meaning that all the eigenvalues of the GEVP (4.2.26)
is not positive and cannot be identified as the value of the sum of inverse ratios.
It would be meaningless to select the eigenvector corresponding to the largest
eigenvalue as the continuous indicator vector. The proof of negative semidefinite

38

can be found in Appendix B.3. To sum up, the second relaxation method is not
as satisfying as the first relaxation method. Therefore, in the adaptive part, the
adaptive solutions are generated only using the first method.

Both solutions suffer from the computational inefficiency since the EVD is
required to obtain the spectral embeddings of nodes. This could be a severe issue
when the graph size becomes larger and adaptively cluster update is needed. To
tackle this issue, in the next Chapter, we are going to discuss how to efficiently
update the clusters of a graph changing over time and avoid computing EVD every
time.

Bibliography

[1] N. Perraudin, J. Paratte, D. Shuman, L. Martin, V. Kalofolias, P. Van-
dergheynst, and D. K. Hammond, “GSPBOX: A toolbox for signal processing
on graphs,” ArXiv e-prints, Aug. 2014.

39

40

Adaptive Solutions 6
As we have discussed in Chapter 3, another aspect of this thesis pertains to derive
solutions that can partition graphs changing over time. Minimization strategies for
the time-invariant cost functions introduced in Chapter 3 have been introduced
in the Chapter 4, in this Chapter, we discuss adaptive strategies for the graph
clustering problem.

6.1 Literature Review

When the graph that needs to be partitioned changes over time, a natural question
is whether there is a way to update the clusters. For a large graph, the size of
its adjacency or Laplacian matrix is large as well. As we have already discussed
in Chapter 4, all the continuous indicator vectors towards the graph clustering
problem defined by (3.1.3) and (3.2.3) can be computed using GEVPs. Therefore
for large graphs, it might be infeasible to compute the generalized eigenvectors
from scratch every time an update of the clusters is required. As a consequence,
we should derive a computation-efficient way to update the clusters.

In the previous chapter, we derived several solutions to partition graphs under
certain cost functions. The solutions include performing recursive bisection and
methods that are similar to spectral clustering. For a graph changing over time,
it is difficult to update the clusters when using the recursive bisection, since in
each update, we have to start the recursive bisection from the beginning, which
is expensive. Therefore, we have to turn to other solutions. For example, since
the clusters are derived by applying clustering algorithms, e.g., K-means, to a
subset of computed eigenvectors, one way to update the clusters is to update the
eigenvectors and then updating the previous K-means centroids using the updated
eigenvectors. Eigenvectors updating is related to many topics, such as subspace
tracking or subspace updating, eigensystem updating, and matrix perturbation
theory. This tells us the adaptive clusters updating problem can be translated into
an (generalized) eigenvectors updating problem. Based on this idea, we review
several works on this topic. The following three topics are parallel and all related
to the update of clusters.

6.1.1 Subspace Updating

Subspace tracking or subspace updating is strongly related to subspace-based ap-
plications, such as Direction-Of-Arrival (DOA) estimation using ESPRIT or MU-
SIC [1]. The basic idea is that the eigenvectors of the (sample) data covariance
matrix should be updated when a new signal snapshot is received, such that the
information which is potentially slowly varying and carried by the signal snapshots
can be extracted. In these applications, one usually works on the sample covari-

41

ance matrix estimated from noisy signal snapshots. Among all the techniques, one
of the most famous is the Projection Approximation Subspace Tracking (PAST)
technique [1]. In this technique, the desired subspace is treated as the optimum of
an unconstrained optimization problem. In order to reach the optimal point, the
gradient descent and recursive least squares techniques are combined and imple-
mented. The PAST-like algorithm is related to the power method as well. In [2],
some mathematical proofs are given to clarify their relationship. Apart from the
PAST, there are many other methods to track the subspace. To complete the
review, many variants of the PAST method to update the subspace are described
in [3, 4]. Finally, besides PAST, other ways to translate a desired subspace into
the optimum of the unconstrained/constrained optimization problem can be found
in [5–9].

Apart from these iterative tracking methods, the incremental SVD update
[10–12], which is based on the SVD of a smaller size matrix, is designed to update
the SVD of a big fat matrix. There are a few works related to tracking the
minor subspace [13–16], or the noise subspace. Additionally, the Kalman filter is
implemented as well to track the principal subspace [17].

Despite the fact that these methods have been applied successfully, in other
applications, all of them require a gap between the principle subspace (the sig-
nal subspace) and the minor subspace components (the noise subspace), or the
knowledge of the noise level. Unfortunately, in our case, we do not have such
information. Therefore, it is not advisable to directly turn to these methods.

6.1.2 Matrix Perturbation

As we have shown before, generating the partitions is equivalent to solving a
GEVP. The variations of the graph can be seen as perturbations on the adja-
cency matrix or Laplacian matrix. Therefore, updating the eigenvectors (singular
vectors) is equal to updating the solutions when the matrices in the GEVP vary.
When the variations are small, they can be seen as perturbations of these matrices,
leading us to methods based on matrix perturbation theory.

The first approach based on matrix perturbation theory is introduced in [18],
and applied to the DOA estimation problem in [19]. In this approach, the update
of the eigenvalues is based on the Geršgorin theorem [20]. In order to update the
eigenvectors, the perturbations on the eigenvectors are decomposed as the linear
combination of all the eigenvectors. Using the orthogonality of the eigencompo-
nents, one can derive the contribution of each eigencomponent to the perturba-
tions of the generalized eigenvector. However, this approach apparently requires
all the eigencomponents, which is infeasible when the size of the graph is large.
In order to circumvent this problem, Chen et al. [21] propose two methods called
Trip-basic and Trip to simplify the update procedure. In these two methods,
not all the components but the first K components are taken into consideration,
which, however, makes us lose a lot of information when K � N . An extension
of this method to the GEVP can be found in [22]. Another alternative is intro-
duced in [23]. This approach updates the eigencomponents not by computing the
linear combination of eigenvectors, but by a heuristic update. Since the method
presented in this thesis is based on this method, we provide details of this method

42

together with the introduction of ours later in this chapter.
The second approach relying on matrix perturbation theory is based on the

invariant subspace. The invariant subspace theory is widely discussed in [24] and
applied to the DOA estimation problem in [25]. However, this method requires
the information of all the eigencomponents as well, which is infeasible.

6.1.3 Incremental Spectral Clustering

The spectral clustering-based adaptive partition update is called incremental spec-
tral clustering [26], or online spectral clustering. In [27], Christoffer et al. give
a general framework for the incremental spectral clustering and discuss its appli-
cation in topological mapping. Similarly, in [28], the authors derive an algorithm
based on incremental spectral clustering for the localization in outdoor environ-
ments. In [29], Kong et al. derive an algorithm based on the Ng-Jordan-Weiss
(NJW) incremental spectral clustering method [30], which is able to partition a
large data set efficiently by compressing the original data set while maintaining
the representative points and performing a continuous update of the eigensystem.
However, these methods do not address partitioning the graph when edge weights
change [31–33]. To deal with this, by incorporating the idea of Laplacian matrix
decomposition, Ning et al. [23] represent the similarity variation as new columns
to the incidence matrix and then proceed to update the clusters.

6.2 Update Procedure

In this part, we proceed to derive the update procedure for the clusters. We formu-
late the variations in the graph topology as perturbations to the graph matrices,
such as the Laplacian matrix or adjacency matrix. Since in spectral clustering,
the partitioning nodes are related to the eigenvectors or the singular vectors of
such matrices, the main idea of the introduced update method is that based on
the current information of the eigenpairs, we approximate the eigenpairs for the
perturbed graph and update accordingly the clusters. Thus, it is necessary to
initialize the method with exactly computed eigenpairs, but during the update,
there is no need to compute the EVD or SVD from scratch every time.

The derivation of the update procedure is based on the notation of the second
graph partitioning problem. But the procedure is exactly the same regarding
the first research problem of this thesis work, which will be summarized in the
second part. Additionally, we would like to mention that although the generalized
eigenvectors are not the critical points of the cost function, due to the discussion
that they will lead to the same clustering results, for the sake of notation and to
simplify the discussion, we will equate the role of continuous indicator vector and
the generalized eigenvector.

6.2.1 Modified-MinMaxCut: Derivation of update

The m-th continuous indicator vectors can be derived from the following GEVP

Wrcm = λmLcm (6.2.1)

43

and its perturbed eigensystem:

(Wr + ∆Wr)(cm + ∆cm) = (λm + ∆λm)(L + ∆L)(cm + ∆cm). (6.2.2)

Here, we define matrices Wr, where subscript r is a place holder, to represent
WS, or WDS, for the sake of convenience. We would like to clarify that Wr and L
do not have to be full rank in this case. Note thereby that the Laplacian matrix
is not full rank. cm is the (continuous) indicator vector for subgraph Cm.

Proposition 10. The ∆λm defined in (6.2.2) can be determined by the following
equation

∆λm =
c>m(∆Wr − λm∆L)(cm + ∆cm)

c>m(L + ∆L)(cm + ∆cm)
. (6.2.3)

Proof. We expand (6.2.2) and obtain

∆Wrcm + Wr∆cm + ∆Wr∆cm (6.2.4)

=∆λmLcm + λm∆Lcm + λmL∆cm + ∆λm∆Lcm (6.2.5)

+λm∆L∆cm + ∆λmL∆cm + ∆λm∆L∆cm. (6.2.6)

Then we can left multiply (6.2.6) with c>m, using the fact that c>mWr = λmc>mL,
we obtain

c>m∆Wrcm + c>m∆Wr∆cm (6.2.7)

=c>m∆λmLcm + c>mλm∆Lcm + c>m∆λm∆Lcm (6.2.8)

+c>mλm∆L∆cm + c>m∆λmL∆cm + c>m∆λm∆L∆cm. (6.2.9)

With some manipulations, we can obtain the update equation.

The determination of ∆cm can be derived from the expansion of (6.2.2) as well.
We move all the terms that are related to ∆cm to the left hand side and the rest
to the right hand side. This way, we obtain

(Wr + ∆Wr − (λm + ∆λm)(L + ∆L))∆cm (6.2.10)

=(∆λmL + λm∆L + ∆λm∆L−∆Wr)cm (6.2.11)

which can be written as K̃∆cm = h̃.
Since K̃ is a singular matrix, a unique ∆cm cannot be determined. Two meth-

ods to circumvent this obstacle were proposed in [23,34]. Both of them can solve
the problem, though they are not desirable. The first method is based on the
assumption that if the weight between i and j changes, only the entries of the
eigenvectors that correspond to i, j and their neighbours change. This assump-
tion means ∆cm only has a few non-zero entries. Using this assumption, the
authors define Nij = {k|wik > 0 or wjk > 0}. For k /∈ Nij, [∆cm]k = 0, and thus

the corresponding columns in K̃ can be eliminated. Under these circumstances,
∆cm can be computed as:

[∆cm]Nij
= (K̃

T

Nij
K̃Nij

)−1K̃Nij
h̃ (6.2.12)

44

The computation cost can be reduced if i and j only have a few neighbours. The
drawback of this method is that it only approximates the ∆cm. Issues of the
approximation related to the leaf nodes of the graph are discussed in [23].

The second solution proposed in [34] is using (Wr + ∆Wr − λmL) as K̃ and
then inverts the matrix. Although their simulation shows better performance, it
is still infeasible to compute the inversion of such a large matrix.

Here, we propose a novel way to determine ∆cm. In the methods we discussed,
we should ensure that the perturbations of the matrices are small enough such that
the approximation of the generalized eigenvectors and eigenvalues hold. However,
even if the perturbation is large, one can slice the perturbation such that the
perturbation at each update is small enough [22]. This provides us with the
intuition that the ∆cm must be small in the l2-norm sense as well since we don’t
perturb the system too much. Therefore, we can add the norm of the perturbation
as a regularization term when solving the related least squares problem.

First, we have K̃∆cm = h̃, which each candidate of ∆cm must satisfy. Fur-
thermore, the ∆cm should be small since the perturbation is small. This tells us
that a term controlling the norm of ∆cm should be made. As a result, ∆cm can
be retrieved by solving the following optimization problem:

min
∆cm
||K̃∆cm − h̃||22 + ε||∆cm||22, (6.2.13)

where ε is a regularization parameter.
This is the well-known Tikhonov regularization, which has the closed form

solution:

∆cm = (K̃
>
K̃ + εI)−1K̃

>
h̃ (6.2.14)

However, to solve (6.2.13) efficiently, we first rephrase it into a linear system:

(K̃
>
K̃ + εI)∆cm = K̃

>
h̃ (6.2.15)

which can then be solved efficiently using the conjugate gradient descent method
[35]. The conjugate gradient descent approach is summarized in Algorithm 10 of
Appendix A.

So far, we have derived the matrix perturbation-based eigenvector tracking
and updating method. To track the first K eigenvectors, we first initialize the
method with the eigenpairs computed by the EVD and then apply the method
on each of the components and update eigenvectors one by one when the graph
changes. However, as we have described in the beginning, our method is incapable
of ensuring that the tracked K eigenvectors are the ones related to the K largest
eigenvalues. For example, as the perturbations accumulate, the (K + 1)-th eigen-
value may be larger than the K-th eigenvalue, thus the (K+1)-th eigenvector falls
into the first K principal components. To address this issue, one can choose to
track a few more eigenvectors. And after each update, one reorders the eigenvalues
and the eigenvectors.

To summarize, the overall method to partition the graph is given as follows.
Consider a graph G(B,U , E), where B ∪ U = V and B ∩ U = ∅, to be partitioned,
which has the adjacency matrix W and combinatorial Laplacian matrix L. A

45

series of perturbations {∆Wt}t=1,2,... are defined towards the graph brought by
variations of the users’ connection status. The partitions {Cm}m=1,...,K defined by
J2 and the related indicator vectors {cm}m=1,...,K of the graph can then be updated
by Algorithm 8 below when the graph is changing. Value I can be tuned as a
trade off between accuracy and time consumption. The variable M in Algorithm
8 should be slightly chosen larger than the number of clusters K.

Algorithm 8: Fast Graph Clusters Update

Data: Graph G(B,U , E), the number of clusters K, M , a series of
perturbations {∆Wt}t=1,2,..., ε for Tikhonov regularization

Result: {cm}m=1,...,K and K updated clusters for t = 1, 2, ...
1 Initialization: Compute Wr and L at time instant t = 0 and solve the related

GEVP, obtaining {cm}m=1,...,M and {λm}m=1,...,M

2 for t = 1,2,... do
3 Compute Wr and L at time instant t.
4 Compute ∆Wr and ∆L using Wr and L at time instants t and t− 1
5 for m = 1,2,...,M do
6 set ∆cm = 0
7 for i = 1,2,...,I do
8 Compute ∆λm by Proposition 10
9 Determine ∆cm using the current value of ∆λm by solving (6.2.15)

10 end
11 λm = λm + ∆λm
12 cm = cm + ∆cm
13 end
14 Sort {λm}m=1,...,M in descending order
15 Sort {cm}m=1,...,M by the order of {λm}m=1,...,M , choose the first K vectors

and stack them into the matrix U′

16 Treat each row of U′ as coordinates and apply K-means to obtain the
clusters

17 When a large degeneration in cost function value is observed or the number
of iteration reaches a threshold, go to the first step and reinitialize the
update by solving a GEVP as discussed in Section 4.2.5

18 end

6.2.1.1 Dimension-varying Update

For the case where the dimension of the graph is varying, i.e., new base stations
or users, we can extend the matrices and vectors with zeros and then follow the
update procedure as introduced before. For example, when the original equation
for the general eigenvalues is

Wrcm = λmLcm (6.2.16)

we can define a new system

W∗
rc
∗
m = λ∗mL∗c∗m, (6.2.17)

46

where the new matrix W∗
r is larger than Wr in size. The above system can be

updated by updating [
Wr 0
0 0

] [
cm
0

]
= λm

[
L 0
0 0

] [
cm
0

]
(6.2.18)

where

∆Wr = W∗
r −

[
Wr 0
0 0

]
(6.2.19)

∆L = L∗ −
[
L 0
0 0

]
(6.2.20)

using the algorithm proposed before.

6.2.2 MinMaxCut: Derivation of Update

In the bipartite graph case, we have

Bum = µmDbbm, (6.2.21)

B>bm = µmDuum. (6.2.22)

Considering the B matrix is perturbed by ∆B, which denotes the change
brought by its time-varying property, we would like to find the generalized eigen-
vectors and eigenvalues of the perturbated eigensystem

(B + ∆B)(um + ∆um) = (µm + ∆µm)(Db + ∆Db)(bm + ∆bm), (6.2.23)

(B + ∆B)>(bm + ∆bm) = (µm + ∆µm)(Du + ∆Du)(um + ∆um). (6.2.24)

As we have discussed before, in the bipartite graph case we can partition the
base stations and then assign the users, which only requires updating bm. In order
to do so, we transform (6.2.22) such that we can get rid of um.

We left multiply B>bm with BD−1
u , where Du is ensured to be invertible as all

nodes have at least one neighbour, and we will obtain

BD−1
u B>bm = BD−1

u µmDuum (6.2.25)

= µmBum (6.2.26)

= µ2
mDbbm, (6.2.27)

which is a GEVP w.r.t the eigenpair (µ2
m,bm), denoted as

B̂bm = σmDbbm. (6.2.28)

Its perturbed eigensystem is

(B̂ + ∆̂B)(bm + ∆bm) = (σm + ∆σm)(Db + ∆Db)(bm + ∆bm). (6.2.29)

The update method for a GEVP has already been introduced in the adaptive
solution for the second problem. Here, the update for (6.2.28) follows the same
procedure. Therefore, we are not going to give all the details but just mention
some important points.

47

Proposition 11. The ∆σm defined as the perturbation of the generalized eigen-
value of (6.2.28) can be determined by the following equation:

∆σm =
b>m(∆̂B− σm∆Db)(bm + ∆bm)

b>m(Db + ∆Db)(bm + ∆bm)
(6.2.30)

Similarly, the following proposition can be implemented to determine the per-
turbation ∆bm of bm.

Proposition 12. Tikhonov regularization. The ∆bm brought by the time-varying
property of the graph can be determined by solving the following optimization
problem:

min
∆bm

||K∆bm − h||22 + ε||∆bm||22, (6.2.31)

where K = (B̂ + ∆̂B− (σm + ∆σm)(Db + ∆Db)) and h = (∆σmDb + σm∆Db +

∆σm∆Db− ∆̂B)bm. The ∆̂B can be obtained by the subtraction between the B̂

at the new time instant and the previous B̂.
The closed-form solution towards (6.2.31) is given by:

(K>K + εI)∆bm = K>h (6.2.32)

which can be solved efficiently by conjugate gradient descent as shown in Algo-
rithm 10 of Appendix A.

This concludes the update procedure for the generalized eigenvectors. And sim-
ilarly, when there are new base stations and the dimension of the matrix changes,
we can follow the update method described in Section 6.2.1.1. Regarding the case
where the number of users changes, since the dimension of B̂ will not change, we
can follow the regular update way introduced in Proposition 12.

We can now summarize the whole procedure as follows. Consider we have
a bipartite graph Gb(B,U ,B) to be partitioned and a series of perturbations
{∆Bt}t=1,2,... towards the bipartite graph brought by either new users, base sta-
tions or variations of the users’ connection status. {bm}t are the first K eigenvec-
tors at each time instant which are defined by (6.2.28). Then the {bm}t can be
updated by Algorithm 9 and correspondingly the clusters of the bipartite graph.
Value I can be tuned as a trade-off between accuracy and time consumption. As
we have discussed before, the variable M in Algorithm 9 should be chosen slightly
larger than the number of clusters K.

6.3 Complexity Analysis

In this section, we will analyze and compare the time complexity of our proposed
algorithms, especially for the devised update method. We consider that we have
matrices B̂ and Db, or Wr and L for the new time instant at hand, meaning that
we don’t consider computing them but only compute the update steps.

First, let’s consider the user assignment method. In this case, we avoid the
spectral embedding-based users partitioning. In the regular spectral clustering,

48

Algorithm 9: Fast Bipartite Graph Clusters Update

Data: Bipartite Graph Gb(B,U ,B), the number of clusters K, M , a series of
perturbations {∆Bt}t=1,2,..., ε for Tikhonov regularization

Result: {bm}m=1,...,K and K updated clusters for t = 1, 2, ...
1 Initialization: Compute {bm}m=1,...,M and {σm}m=1,...,M towards (6.2.28)
2 for t = 1,2,... do

3 Compute ∆̂B and ∆Db using B̂ at the current and the previous time
instants

4 for m = 1,2,...,M do
5 set ∆bm = 0
6 for i = 1,2,...,I do
7 Compute ∆σm by Proposition 10
8 Determine ∆bm using the current value of ∆σm by solving (6.2.32)

9 end
10 σm = σm + ∆σm
11 bm = bm + ∆bm
12 end
13 Sort {σm}m=1,...,M in the descending order
14 Sort {bm}m=1,...,M by the order of {σm}m=1,...,M , choose the first K vectors

and stack them into the matrix U′

15 Treat each row of U′ as coordinates and apply K-means to obtain the
clusters for base stations

16 Apply user assignment method by solving (4.1.21) for each user
17 Combine the labels for users and base stations to obtain the clusters for the

bipartite graph
18 When the accumulated error cannot be ignored or a large degeneration in

cost function value is observed, go to the first step and reinitialize the
update by solving (6.2.28)

19 end

one should compute the EVD of the Laplacian matrix of the bipartite graph and
then perform the K-means. In the proposed method, in order to partition the
bipartite graph, we first partition the graph composed of base stations and then
assign users to each cluster. Partitioning base stations first allows us to work on a
graph with a smaller size, giving a speedup. The complexity of the user assignment
method is linear in the number of users |U|, which is preferable as well.

Then let’s consider the proposed update method and take Algorithm 8 as an
example. The update steps start from line 5 to line 13, which can be roughly
divided into two parts, that is, computing ∆λm and computing ∆cm by conjugate
gradient descent. Computing ∆λm uses Proposition 10. We would like to mention
that in our case both Wr and L are sparse. We denote the number of non-zero
elements of matrices Wr and L as O(|E|) and O(|V|+ |E|), respectively.

For better illustration of determining ∆λ, we mention the update equation
here again:

∆λ =
c>(∆Wr − λ∆L)(c + ∆c)

c>(L + ∆L)(c + ∆c)
. (6.3.1)

49

The number of computations required for the numerator is upper bounded by
O(|V| + |E|). First, computing (∆Wr − λ∆L) requires at most O(|V| + |E|)
operations. This is because the matrix ∆L is usually sparser than L since ∆L
only preserves the terms related to the changing edges and their terminal nodes. If
the dynamic property of the graph is brought by a movement of all the users, the
number of non-zero elements is upper bounded by O(|V| + |E|) where every user
moves. Then the multiplication between the dense vector c and the sparse matrix
(∆Wr−λ∆L) requires at most O(|V|+ |E|) operations. After that, computing the
inner product between c>(∆Wr− λ∆L) and (c + ∆c) requires O(|V|) operations
where the length of the c or ∆c is |V|. To sum up, computing the numerator
requires O(|V| + |E|) operations. Similarly, computing the denominator requires
O(|V|+ |E|) operations as well.

What about the complexity of determining ∆c? We first have to compute ma-
trix K̃. It can be seen that this step requires O(|V|+ |E|) operations. Computing
vector h requires O(|V|+ |E|) as well since matrix (∆λL +λ∆L + ∆λ∆L−∆Wr)
has O(|V| + |E|) non-zero elements. After that, we have to solve the Tikhonov

regularization problem as described in (6.2.15). Computing K̃
>
K̃ requires

O(|V|×(|V|+|E|)) operations. As we can see, we introduce a quadratic complexity
here. However, in the conjugate gradient, only the matrix-vector multiplication

is required. Therefore, instead of computing K̃
>
K̃ first, we can change the or-

der of multiplication by performing the product of K̃ and the vector first and

then multiplied with K̃
>

. The product of a sparse K̃ and a dense h asks for
O(|V|+ |E|) operations. Finally, the complexity of the conjugate gradient descent
is O(T × (|V| + |E|)) where T is the number of iteration [35]. To sum up, the
complexity of this step is O(|V|+ |E|).

To perform one update, O(|V| + |E|) operations are required. If we take the
number of components M and the number of iterations I into consideration, to
update the generalized eigenvectors, O(M×I× (|V|+ |E|)) operations are needed.
When these two numbers are small (which is the case in practical implementation),
we can say that the complexity is linear in the number of non-zero entries of the
Laplacian, which is much smaller compared with the cubic complexity of the naive
exact EVD implementation. In the simulation results, we can observe that time is
saved if we only update several components instead of computing the EVD every
time from scratch.

Regarding the update procedure for the first problem in Algorithm 9, since we
partition base stations first, the matrices used for spectral clustering have smaller
size. Although the bipartite graph itself is sparse, these matrices, e.g., K, usually
are not sparse enough. Sparse methods can be slower when applied to a non-
sparse matrix. Therefore, computing K and vector multiplication in the conjugate
gradient descent method should be based on the full matrix, having quadratic
complexity O(|B|2). And this update method will bring less gain. However, when
the size of the network becomes larger, one can expect more gain.

50

Bibliography

[1] B. Yang, “Projection approximation subspace tracking,” IEEE Transactions
on Signal processing, vol. 43, no. 1, pp. 95–107, 1995.

[2] Y. Hua, Y. Xiang, T. Chen, K. Abed-Meraim, and Y. Miao, “A new look
at the power method for fast subspace tracking,” Digital Signal Processing,
vol. 9, no. 4, pp. 297–314, 1999.

[3] K. Abed-Meraim, A. Chkeif, and Y. Hua, “Fast orthonormal past algorithm,”
IEEE Signal processing letters, vol. 7, no. 3, pp. 60–62, 2000.

[4] N. Lassami, K. Abed-Meraim, and A. Aı̈ssa-El-Bey, “Low cost subspace track-
ing algorithms for sparse systems,” in 2017 25th European Signal Processing
Conference (EUSIPCO). IEEE, 2017, pp. 1400–1404.

[5] S. Attallah and K. Abed-Meraim, “A fast adaptive algorithm for the general-
ized symmetric eigenvalue problem,” IEEE Signal Processing Letters, vol. 15,
pp. 797–800, 2008.

[6] J. Yang, X. Chen, and H. Xi, “Fast adaptive extraction algorithm for mul-
tiple principal generalized eigenvectors,” International journal of intelligent
systems, vol. 28, no. 3, pp. 289–306, 2013.

[7] M. Baumann, U. Helmke, and J. H. Manton, “Reliable tracking algorithms
for principal and minor eigenvector computations,” in Proceedings of the 44th
IEEE Conference on Decision and Control. IEEE, 2005, pp. 7258–7263.

[8] Z. Wen, C. Yang, X. Liu, and Y. Zhang, “Trace-penalty minimization for
large-scale eigenspace computation,” Journal of Scientific Computing, vol. 66,
no. 3, pp. 1175–1203, 2016.

[9] Y. Miao and Y. Hua, “Fast subspace tracking and neural network learning
by a novel information criterion,” IEEE Transactions on Signal Processing,
vol. 46, no. 7, pp. 1967–1979, 1998.

[10] M. Gu and S. C. Eisenstat, “A stable and fast algorithm for updating the
singular value decomposition,” 1993.

[11] M. Brand, “Fast low-rank modifications of the thin singular value decompo-
sition,” Linear algebra and its applications, vol. 415, no. 1, pp. 20–30, 2006.

[12] ——, “Fast online svd revisions for lightweight recommender systems,” in
Proceedings of the 2003 SIAM international conference on data mining.
SIAM, 2003, pp. 37–46.

[13] S. Bartelmaos and K. Abed-Meraim, “Fast adaptive algorithms for minor
component analysis using householder transformation,” Digital Signal Pro-
cessing, vol. 21, no. 6, pp. 667–678, 2011.

[14] H. Sakai and K. Shimizu, “A new adaptive algorithm for minor component
analysis,” Signal Processing, vol. 71, no. 3, pp. 301–308, 1998.

51

[15] M. Thameri, K. Abed-Meraim, and A. Belouchrani, “Low complexity adap-
tive algorithms for principal and minor component analysis,” Digital Signal
Processing, vol. 23, no. 1, pp. 19–29, 2013.

[16] L. Yang, “Design and analysis of adaptive noise subspace estimation algo-
rithms,” 2009.

[17] S. Chan, Z. Zhang, and Y. Zhou, “A new adaptive kalman filter-based sub-
space tracking algorithm and its application to doa estimation,” in 2006 IEEE
International Symposium on Circuits and Systems. IEEE, 2006, pp. 4–pp.

[18] J. H. Wilkinson, The algebraic eigenvalue problem. Clarendon press Oxford,
1965, vol. 87.

[19] B. Champagne, “Adaptive eigendecomposition of data covariance matrices
based on first-order perturbations,” IEEE Transactions on Signal Processing,
vol. 42, no. 10, pp. 2758–2770, 1994.

[20] R. S. Varga, Geršgorin and his circles. Springer Science & Business Media,
2010, vol. 36.

[21] C. Chen and H. Tong, “Fast eigen-functions tracking on dynamic graphs,”
in Proceedings of the 2015 SIAM international conference on data mining.
SIAM, 2015, pp. 559–567.

[22] P. D. Cha and A. Shin, “Perturbation methods for the eigencharacteristics of
symmetric and asymmetric systems,” Shock and Vibration, vol. 2018, 2018.

[23] H. Ning, W. Xu, Y. Chi, Y. Gong, and T. S. Huang, “Incremental spec-
tral clustering by efficiently updating the eigen-system,” Pattern Recognition,
vol. 43, no. 1, pp. 113–127, 2010.

[24] G. W. Stewart, “Matrix perturbation theory,” 1990.

[25] C. S. MacInnes and R. J. Vaccaro, “Tracking directions-of-arrival with in-
variant subspace updating,” Signal processing, vol. 50, no. 1-2, pp. 137–150,
1996.

[26] A. Bouchachia and M. Prossegger, “Incremental spectral clustering,” in
Learning in Non-Stationary Environments. Springer, 2012, pp. 77–99.

[27] C. Valgren, T. Duckett, and A. Lilienthal, “Incremental spectral clustering
and its application to topological mapping,” in Proceedings 2007 IEEE In-
ternational Conference on Robotics and Automation. IEEE, 2007, pp. 4283–
4288.

[28] C. Valgren and A. Lilienthal, “Incremental spectral clustering and seasons:
Appearance-based localization in outdoor environments,” in 2008 IEEE In-
ternational Conference on Robotics and Automation. IEEE, 2008, pp. 1856–
1861.

52

[29] T. Kong, Y. Tian, and H. Shen, “A fast incremental spectral clustering for
large data sets,” in 2011 12th International Conference on Parallel and Dis-
tributed Computing, Applications and Technologies. IEEE, 2011, pp. 1–5.

[30] A. Ng, M. Jordan, and Y. Weiss, “On spectral clustering: Analysis and an
algorithm,” Advances in neural information processing systems, vol. 14, pp.
849–856, 2001.

[31] C. Gupta and R. Grossman, “Genic: A single pass generalized incremen-
tal algorithm for clustering,” in Proceedings of the 2004 SIAM International
Conference on Data Mining. SIAM, 2004, pp. 147–153.

[32] S. Guha and N. Mishra, “Clustering data streams,” in Data stream manage-
ment. Springer, 2016, pp. 169–187.

[33] M. Charikar, C. Chekuri, T. Feder, and R. Motwani, “Incremental clustering
and dynamic information retrieval,” SIAM Journal on Computing, vol. 33,
no. 6, pp. 1417–1440, 2004.

[34] Y. Jia, “Online spectral clustering on network streams,” Ph.D. dissertation,
University of Kansas, 2012.

[35] J. R. Shewchuk et al., “An introduction to the conjugate gradient method
without the agonizing pain,” 1994.

53

54

Numerical Results 7
7.1 Problem 1: Numerical Simulations

In this section, we will first introduce the way to generate the synthetic data. And
then the values chosen in the update algorithms will be provided. Finally, the
simulation results containing tracking performance and partitioning results will
be provided.

7.1.1 Simulation Details

The bipartite graph and its B matrix are generated from the data of a simulated
cellular network. This cellular network has 37 base stations and 3 hotspots with a
Gaussian shape, located at cell 9, 13, and 17, as shown in Fig. 7.1. The shape of
each hotspot is determined by a Gaussian probability distribution. Each hotspot
has 400 users. In total, the 1200 users yield the initial graph. A red circle is a
base station and a blue dot is a user. The inter-site distance (ISD) which is the
distance between two base stations is 1 kilometer. Here we assume that there are
enough resources to maintain the connection to every user such that there will be
no issues in resources allocation/Physical Resource Blocks (PRBs) distribution.
In Fig. 7.1, we give the initial clusters as well. The initial clusters are generated
by partitioning base stations first and then applying user assignment method.
Partitioning base stations is based on the generalized eigenvectors of B̂ computed
by EVD or the vector transformed by the left singular vector of B̃ left-multiplied

with D
− 1

2
b .

The B matrix is constructed as follows. First, a path-loss/gain model is used
to compute the received power of each user:

PL(dB) = 100 + 30 log (distance) (7.1.1)

Figure 7.1: Cellular Network and Initial Clusters

55

where the distance is in kilometer.
The transmitting power is 30 dBm. Here we make the assumption that all

the antennas are omnidirectional and each user receives interference from the
tier 1 sites, e.g., users in the center cell will be interfered by power from the
surrounding 6 cells. After obtaining the down-link received power, we can derive
the co-channel signal-to-interference-ratio (SIR) of each down-link connection for
each user. Finally, as defined in the LTE system specification [1], the spectral
efficiency of each link can be determined, which serves as the weight of each link,
that is, the value of the corresponding entry in B.

In order to show the performance of the considered updating methods, we
define the following metrics including Direction-Cosine, Subspace Distance, and
Absolute Error between estimated and the true eigenvectors and eigenvalues. Be-
fore defining such metrics, we first give the notations of the estimated and true
values.

The estimated subspace is U′ = [b′1,b
′
2, ...,b

′
M] containing the estimated eigen-

vectors on its columns. The true subspace is U = [b1,b2, ...,bM] containing the
true eigenvectors on its columns. The estimated eigenvalues are {σ′m}m=1,...,M

while the true ones are {σm}m=1,...,M . As we have introduced, we track M eigen-
vectors and eigenvalues but only use the first K to compute errors and perform
clustering. || · ||F means the Frobenius norm. We would like to clarify that in
the figures we don’t exactly show the Direction-Cosine but (1−Direction-Cosine)
such that all the three metrics start from 0 which gives better illustration.

• Direction-Cosine (DC): ξ(U′,U) = 1
K

∑K
m=1

|b>mb′m|
||bm||||b′m||

• Subspace Distance (SD): ξ(U′1:K ,U1:K) = || U′1:KU
′>
1:K

tr(U
′>
1:KU′1:K)

− U1:KU>1:K
tr(U>1:KU1:K)

||F

• Absolute Error (AE): ξ({σm}, {σ′m}) =
∑K

m=1 |σm − σ′m|

In order to show the error-reduction performance of the proposed updating
method, we compare the DC, SD and AE w.r.t with update case and without update
case. For both cases, the ways to implement Algorithm 9 are almost the same.
First, we have a initial graph with B matrix at t = 0 and we can correspondingly
obtain B̃ and B̂. Then we compute their exact SVD or EVD to obtain the initial
singular vectors or eigenvectors and then form Ut=0, and correspondingly the
initial clusters by K-means. At t = 1, some variations ∆Bt=1 are generated,
which can be users’ movement or the appearances of new users. We can obtain
the U′t=1 as described in Algorithm 9, which is related to with update case, or
do nothing and obtain U′t=1 = Ut=0, which is without update case. And the true
Ut=1 is also computed. After obtaining with update U′t=1, without update U′t=1 and
Ut=1, the difference between with update U′t=1 and Ut=1, without update U′t=1 and
Ut=1 can be derived. Since we track the generalized eigenvectors, we can expect
the with update difference is smaller than without update difference. Finally, the
aforementioned steps are implemented for t = 2, 3, And the same logic is used
for the eigenvalues.

Furthermore, since our goal is to adaptively update the clusters, we should
perform clustering algorithm using the estimated and the true vectors at each

56

time instant. There are several options. First, we can rely on Algorithm 4 and
do spectral clustering, called BSC. Second, we can rely on the Exact generalized
eigenvectors U of B̂ and then follow the User Assignment method. Partitioning
base stations is based on K-means. This option is called EUAK. Third, we can rely
on the with Update U′ and the User Assignment method, called UUAK. The last
option is we can rely on Without update U′ and the User Assignment method,
called WUAK. The comparison between the first and the second option can demon-
strate the benefit of using user assignment method. The comparison between the
second and the third option tells us how well this updating Algorithm 9 performs.
And the comparison between the third and the last illustrates how much error we
can reduce by Algorithm 9. And you can see these comparisons in the simulation
results.

In the simulations, ε is 10−3 and I is 2. The imax is set to be the length of
h̃. As described before, we have 3 hotspots. Then we have to track the first 3
eigenvectors corresponding to the largest eigenvalues. However, the eigenvector
corresponding to the largest eigenvalue is always an all-one vector, the tracking is
unnecessary. Therefore, in the implementation, we don’t track this eigenvector to
reduce the computation. Furthermore, we set M to 5, that is, we track two more
eigenvectors to address the minor-to-principal issue of the eigenvector.

7.1.2 Simulation of users’ movement

In this section, we simulate two scenarios. In the first scenario, all of 1200 users
change their positions, which is achieved by randomly moving the user to another
position within a square centered at the origin position. The side length of the
square is 200 meters. This would change the bipartite graph. Since the status
variation of a single user won’t change the column subspace of B greatly, when
the graph is perturbed by the movements of 20 users, we update the eigenvectors
and eigenvalues. And this forms 60 time instants and a series of {∆Bt}t=1,2,...,60.
At t = m for m = 1, 2, ..., 60, according to {∆Bt}t=m, we update the generalized

eigenvectors of B̂ and perform clustering. In a word, we gradually update the U′

using a series of perturbations and finally obtain the U′ for the graph after users’
movement.

The cellular network after users’ movement and the final clusters at t = 60 are
shown in Fig. 7.2. And the tracking results are shown in Fig. 7.3 and 7.4. In Fig.
7.3, we provide the DC, SD and AE at each time instance. All the red curves
are the results involving update procedure while the blue curves are not with the
update procedure. In Fig. 7.4, we give the cost function values changing over time
and the time consumption to obtain the clusters at each time instance.

The second scenario is that all the three hotspots rotate taking the center cell as
the center. In the simulation, the perturbation brought by rotation is divided into
60 small perturbations, and updating is performed for each perturbation, following
the same logic as before. The cellular network after hotspots’ rotation and the
final clusters at t = 60 are shown in Fig. 7.5. The tracking results are shown in
Fig. 7.6 and 7.7. We illustrate the cost function values and time consumption
here as well.

57

Figure 7.2: Left: Cellular network after randomly moving. Right: Clusters generated
by updating the perturbed original network adaptively and user assignment method.

Figure 7.3: Tracking error when the graph is perturbed by users’ movements.

7.1.3 Simulation of new users

In this section, we simulate the addition of a new hotspot. This hotspot contains
400 users and is located at cell 25 with a Gaussian shape as well. In the simulation,
the perturbation brought by new users is divided into 80 small perturbations, and
each perturbation is caused by the appearance of 5 new users. The cellular network
after adding a hotspot and the final clusters at t = 80 are shown in Fig. 7.8. The
tracking results are shown in Fig. 7.9 and 7.10. As we can see, in Fig. 7.9, there

58

Figure 7.4: Left: MinMaxCut value varying with the graph perturbations by users’
movements. Right: Time consumption of deriving the clusters after each perturbation.

Figure 7.5: Left: Cellular network after rotating. Right: Clusters generated by updating
the perturbed original network adaptively and user assignment method.

is a time when we cannot reduce error. This will be discussed in the next section.

7.1.4 Discussions

In this section, we will discuss the efficacy of the updating Algorithm 9 and the
user assignment method.

Generally speaking, the updating algorithm can track the generalized eigenvec-
tors and eigenvalues with less error compared with without update case, and with
less time compared with computing EVD or SVD from scratch. As shown in Fig.
7.3 and 7.6, all the with update (red) curves are much lower than the corresponding
without update (blue) ones, showing that the estimation error is reduced a lot and
the tracking of eigenvectors and eigenvalues is accurate. Furthermore, as shown in
the right part of Fig. 7.4, 7.7 and 7.10, compared with exact computation using
BSC, the updating method is capable of saving time when the new subspace is
required. But the update method saves little time when compared with EUAK. As
we have already discussed in Section 6.3, in this case we implement full matrix
instead of sparse matrix, therefore, we have quadratic complexity here. Although
the complexity is lower than the EVD, since the matrix has small size (|B| = 37),

59

Figure 7.6: Tracking error when the graph is perturbed by hotspots’ rotation.

Figure 7.7: Left: MinMaxCut value varying with graph perturbations by hotspots’
rotation. Right: Time consumption of deriving the clusters after each perturbation.

the amount of saved time is not obvious. But if the number of base stations be-
comes larger, due to the fact that the connection is local, we can expect a sparser
B̂, where more time consumption can be reduced.

We can notice a special case in Fig. 7.9. The estimation error is low at
the beginning. As the graph undergoes more perturbations, the estimation error
becomes larger and at around 33rd perturbations, we cannot gain anything from
the updating algorithm. But after this time instant, the error starts to reduce

60

Figure 7.8: Left: Cellular network with a new hotspot. Right: Clusters generated by
updating the perturbed original network adaptively and user assignment method.

Figure 7.9: Tracking error when the graph is perturbed by a new hotspot.

rapidly and stays at a low level. This is because when the bipartite graph is
evolving, the order of the eigenvalues changes. For example, the 3rd eigenvalue
become larger than the 2nd one. But since we introduce a re-order process in
Algorithm 9, we can correct this error. This is why the error reduces rapidly.
And how the eigenvalues evolve is plotted in the Fig. 7.11, where we can see
the order of eigenvalues changes and without the re-order process, we will lose
track. Furthermore, although we assume that the number of clusters is known,

61

Figure 7.10: Left: MinMaxCut value varying with graph perturbations by a new
hotspot. Right: Time consumption of deriving the clusters after each perturbation.

the appearance of a new cluster in the real world can be identified as well due
to the high accuracy of the estimated eigenvalues, as shown in Fig. 7.11. In this
figure, we show the leading 5 eigenvalues except for the largest one. A large gap
appearing between the 4th and 5th can be observed, indicating the appearance of
a new cluster.

Figure 7.11: The distribution of eigenvalues in the new-user case. Left: No re-order
process. Right: Re-order process

Now let’s focus on the left parts of Fig. 7.4, 7.7 and 7.10. The compari-
son between BSC and EUAK illustrates that the proposed user assignment method
can achieve lower cost function values than the Algorithm 4 does, which proves
this method performs better than the Algorithm 4 does w.r.t minimizing the
MinMaxCut. The comparison between EUAK and UUAK demonstrates that by using
the estimated eigenvectors to partition the graph, we can obtain almost the same
performance as using the exact eigenvactors. By comparing UUAK with WUAK, it is
clear that it is necessary to perform the updating algorithm otherwise a degrada-
tion will appear w.r.t the MinMaxCut value.

To conclude, in the numerical simulations, we test the performance of our pro-
posed user assignment method and update method. The user assignment method
can achieve lower cost function value and less computation time, while in this case,

62

the update method is less preferable. But it can be expected that when the graph
becomes larger and the sparsity can be fully exploited, more time consumption
can be reduced.

7.2 Problem 2: Numerical Simulations

7.2.1 Simulation Details

The graph G(B,U , E) is generated from the data of a simulated cellular network
as well. The cellular network has the same layout and parameters as the ones
in the first problem simulation except for the location of each base station. In
this case, since we have to define the edges between the same type of nodes, i.e.,
between a pair of base stations, we prefer heterogeneity in the distribution of the
base stations. This heterogeneity is generated by adding uniformly distributed
random variables to the coordinates of base stations. The heterogeneity in the
layout of the base stations is achieved by randomly moving the node to another
position within a square centered at the origin position. The side length of the
square for the base station is 400 meters. The ISD before moving is 1 kilometer
as well. The layout of the cellular network is shown in Fig. 7.12.

As we have motivated before, we can find such a model in the 4G or 5G
cellular network. However, generating synthetic data is complicated. One has to
make assumptions on the activities of users or consider the operations of handling
users. Therefore, for the sake of demonstrating the proposed method, we take the
following simple definition:

wi,j =
1

Euclidean distance between i and j
(7.2.1)

which means that the weight of the edge will reduce and the connection will
become weaker as the distance becomes larger.

Furthermore, the fact that the connection is local has to be considered. Here,
we focus on the ε-ball neighborhood method. With a predefined threshold ε, this
method only preserves edges having weights larger than ε, and the edges having
weights smaller than ε are considered to be weak and eliminated. Regarding our
case, this implies that if the distance is larger than the threshold, we will think of
this link as a disconnection. However, since we have two types of edges, we should
set two thresholds.

• For the edge between different base stations:

ε =
1

1.1× ISD
(7.2.2)

By taking this threshold, each base station only holds the connection to
its neighboring base stations. The distance is multiplied by 1.1 due to the
heterogeneity, guaranteeing the connection between each pair of neighboring
base stations and in the meantime eliminating the connection between non-
neighboring base stations.

63

• For the edge between user and base station:

ε =
1

1.1× the radius of the cell
(7.2.3)

By defining so, we can ensure that the cell center user only has a connection to
the serving base station and the cell edge user only experiences interference
from the neighboring cells. The distance is multiplied by 1.1 due to the
heterogeneity as well.

Following the definitions, the adjacency matrix and the Laplacian matrix can
be certainly produced. The initial layout of the test example graph and its clusters
are illustrated in Fig. 7.12. The clusters are generated by the multiway partition
method introduced in Algorithm 6.

Figure 7.12: Left: Initial cellular network. Right: Generated clusters.

In order to show the error-reduction performance of the proposed update
method, here we follow the same metrics as we have defined before. The way
to implement Algorithm 8 is described. First, at t = 0, we have the initial graph
layout with adjacency matrix W and the Laplacian matrix L. We can correspond-
ingly compute the matrices Wr and L and solve the GEVP to obtain the initial
Ut=0. Then we can obtain the clusters by applying K-means. At t = 1, some
perturbations ∆Wt=1 are brought to the graph and correspondingly the matrices
Wr and L, denoted by ∆Wr and ∆L. We can turn to the Algorithm 8 to obtain
the updated approximated U′t=1, which is called with update case and denoted as
UMP (Updated Multi-way Partition) while not turning to the Algorithm 8 is called
as without update case and denoted as WMP (Without update Multi-way Partition).
The true Ut=1 is also computed by solving the GEVP for the sake of error com-
putation, denoted as EMP (Exact computation Multi-way Partition). Then we can
obtain the clusters generated by U′t=1 and Ut=1 and the cost function is evaluated.
Finally, we repeat the steps at t = 2, 3, ... and obtain the approximated generalized
eigenvectors, the updated clusters, and the clusters by exact solving the GEVP
and Recursive Bisection.

By comparing the UMP and WMP, the error reduction performance can be shown.
And the comparison between cost function value derived by UMP and WMP demon-
strates the necessity of performing the update procedure. How good the UMP

behaves can be illustrated by comparing the cost function value derived by UMP

64

and WMP. And the efficiency of the proposed updating method can be demonstrated
by recording the time consumption to derive the clusters of each method. All of
the comparisons will be given in the numerical results.

In the simulations, ε is 10−4 and I is 2. Within the conjugate gradient descent,
the imax is set to be 6

√
N . During the updating, apart from the leading K = 3

components, one more generalized eigenvector is tracked as well.

7.2.2 Simulation of users’ movements

The random movement of the user is achieved by randomly moving the node to
another position within a square centered at the origin position. The side length
of the square is 200 meters, identified as the high mobility case. In this sce-
nario, within each variation, 20 users change their positions. Given that there
are 1200 users in the network, a series of perturbations of the adjacency matrix
{∆Wt}t=1,2,...,60 can be determined. We gradually update the U′ and correspond-
ingly the clusters.

The cellular network after users’ movement and the final clusters at t = 60 are
given in Fig. 7.13. The tracking results are illustrated in Fig. 7.14 and 7.15. We
illustrate the tracking error and cost function value at each time instance, where
we can see how the update procedure performs when the network changes over
time.

Figure 7.13: Left: Cellular network after users randomly move. Right: Clusters gener-
ated by updating the perturbed original network.

7.2.3 Simulation of new users

In this scenario, we add 100 users to each hotspot, drawn from the same distri-
bution which is used to generate the initial graph, shown in Fig. 7.16. Therefore,
we have 300 new users in total. Furthermore, each perturbation is defined as the
appearances of 10 new users such that we have a series of perturbations of the
adjacency matrix {∆Wt}t=1,2,...,30. We would like to clarify that in this case, the
perturbed adjacency matrix will be larger than the unperturbed one in size since
the number of nodes increases. One should turn to the dimension-varying update
explained in Section 6.2.1.1. The tracking results are illustrated in Fig. 7.17 and
7.18.

65

Figure 7.14: Tracking error when the graph is perturbed by users’ movements.

Figure 7.15: Left: Modified-MinMaxCut value varying with the graph perturbations by
users’ movement. Right: Time consumption of deriving the clusters after each pertur-
bation.

7.2.4 Discussions

By simulating our proposed methods on the dynamic cellular network-based graph,
we can observe that errors are indeed reduced compared with without update case.
As we have shown in Fig. 7.14 and 7.17, after performing the update procedure,
most of the time we can track the eigencomponents with better accuracy and less
error. Even though sometimes we cannot obtain too much gain, e.g., in the final
part of Fig. 7.14, it is still necessary to do so., since the cost function value is re-
duced compared with the without update case and this gain in the error-reduction

66

Figure 7.16: Left: Cellular network after adding new users. Right: Clusters generated
by updating the perturbed original network.

Figure 7.17: Tracking error when the graph is perturbed by new users.

enables us to have the same clusters and cost generated by exact computing the
generalized eigenvectors. In terms of the cost function and time consumption, we
can see that in both scenarios, performing clustering using the estimated gener-
alized eigenvectors achieves almost the same cost values as performing clustering
using the true ones, yet with less time consumption. The large cost function value
in Fig. 7.18 is because we randomly assign the new users to different clusters
since in this case (without update), without no extra effort, we have no infor-
mation about to which cluster the new user should belong. And to make a fair
comparison, we should not introduce extra efforts to determine the cluster, since
we do not have this step in with update case. To sum up, the simulations illustrate

67

Figure 7.18: Left: Modified-MinMaxCut value varying with the graph perturbations by
new users. Right: Time consumption of deriving the clusters after each perturbation.

the efficacy of the proposed tracking method on efficiently updating the clusters
of a dynamic graph.

68

Bibliography

[1] A. Ghosh and R. Ratasuk, Essentials of lte and lte-a. Cambridge University
Press, 2011.

69

70

Conclusion and Future Work 8
8.1 Conclusion

We studied two problems from the cellular network background. We needed to
partition graphs that have certain structures, and to cluster their nodes to mini-
mize certain cost functions. Furthermore, when the graph is changing over time,
the clusters should be updated as well. In the first problem, we partitioned a bi-
partite graph by minimizing the so-called MinMaxCut cost function, while in the
second problem, we partitioned a general graph minimizing the so-called Modified-
MinMaxCut cost function. The solutions we proposed are under the framework
of spectral clustering, where one relies on the eigenvectors of the graph matrices,
e.g., the Laplacian matrix or the adjacency matrix, to partition nodes into disjoint
clusters.

The spectral clustering-based relaxation of the first cost function has been
widely discussed. Therefore, we mainly focused on how to partition a bipartite
graph changing over time efficiently. We assumed that the number of nodes in B
is much smaller than the number of nodes in U . To perform the partition, one can
rely on the SVD of the normalized B̃ matrix to derive the continuous indicator
for the clusters. Based on this idea, the spectral embedding of the nodes in B can
be constructed by the left singular vectors while the spectral embedding of the
nodes in U can be constructed by the right singular vectors, which suggest that
they can be partitioned separately. Therefore, we first partitioned the nodes in B.
To partition nodes in U , we proposed a heuristic method called user assignment
method. In this heuristic, a node in U belongs to the cluster which the sum of the
weight of all the edges between this node and the nodes in the cluster is the largest.
Regarding the dynamic bipartite graph partition problem, we first transformed the
variations in the graph structure to the perturbations of the graph matrices. Then
this problem is solved by updating the left singular vectors to update the clusters
of B and then assign users. The update of the left singular vectors can be done by
the update algorithm we proposed, which is based on matrix perturbation. This
method can be applied when only a few singular vectors or eigenvectors require
to be updated. Our simulations show that we can partition the bipartite graph
effectively.

In the second problem, we considered a new cost function, called Modified-
MinMaxCut. Before going into the multi-way partition problem, we first consid-
ered the bisection problem. Since the problem is NP hard, it is difficult to solve
the original problem directly, thus we first relaxed the binary indicator vector and
allowed the entries take continuous values, called continuous indicator vectors.
After that, we considered the inverse cost function, which is to be maximized. In
total, we proposed two ways to relax the cost. In the first way, in order to relax
the problem in a meaningful way and to simplify the optimization, we adopted

71

a constraint on the indicator vector. Then by dropping the binary constraint,
the optimal continuous indicator can be identified by setting the derivative of the
Lagrangian to 0. This leads us to a GEVP. We explained the relationship between
the generalized eigenvector of the GEVP and the continuous indicator vector for
bisection problem and it turned out to be the leading generalized eigenvector.
Finally, to retrieve the binary indicator vector, one should set a threshold to dis-
cretize the continuous vector. The optimal way to do this is to perform line search
over the threshold. The proposed methods can be extended to multi-way partition
easily, by taking more eigenvectors and then performing K-means.

The second relaxation is based on rewriting the linear term into a quadratic
term which can be absorbed by other quadratic terms. By doing so, we can get
rid of the linear term. Then similarly, we adopted the same constraint and set the
derivative of the Lagrangian to 0 and the continuous indicator can be obtained
by solving another GEVP. However, for the original cost, we were not able to
derive the similar conclusion. Therefore, in the second relaxation, turning to the
inverse cost is the only feasible way. The multi-way partition can be achieved
by taking more eigenvectors. Usually, K eigenvectors are sufficient for a K-way
partition problem. Regarding partitioning graphs changing over time, we can
follow the update algorithm implemented in the first problem, because in this
problem, updating the clusters is equal to updating the eigencomponents. Our
simulations showed that the second relaxation is less satisfactory than the first one
and we can partition the graph effectively (lower cost function value) and efficiently
(lower time consumption) using the first method and the update method. This
concludes parts in the thesis in terms of the second problem.

8.2 Future Work

• As in the works dealing with other cost functions, the bisection problem is
the first to be considered, since both the indicator vectors and the cost func-
tion can be simplified and easy to tackle. The multiway partition problem
tends to be tackled later. For the cost functions, such as MinMaxCut [1], and
Normalized Cut [2], the solutions towards multiway partition problem have
been directly derived [3–7]. However, in this thesis work, the solution towards
the multiway partition is based on the heuristic from the bisection. There-
fore, the potential future work is to work on the multiway partition problem
directly and approaching the multilway partition problem from other per-
spectives.

• The background of this thesis work is partitioning cellular networks. Al-
though our testing graphs are generated from cellular network models, it
would be better to implement the methods on the data from the real world.

• One of the assumptions in this thesis work is the number of clusters is known.
However, determining the number of clusters in a graph is not a trivial prob-
lem. Therefore, another potential future work is to design algorithms that
can automatically monitor the number of clusters of a dynamic cellular net-
work such that meaningful clusters can be generated.

72

Bibliography

[1] C. H. Ding, X. He, H. Zha, M. Gu, and H. D. Simon, “A min-max cut algo-
rithm for graph partitioning and data clustering,” in Proceedings 2001 IEEE
international conference on data mining. IEEE, 2001, pp. 107–114.

[2] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Trans-
actions on pattern analysis and machine intelligence, vol. 22, no. 8, pp. 888–
905, 2000.

[3] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and computing,
vol. 17, no. 4, pp. 395–416, 2007.

[4] F. Nie, C. Ding, D. Luo, and H. Huang, “Improved minmax cut graph cluster-
ing with nonnegative relaxation,” in Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. Springer, 2010, pp. 451–466.

[5] M. Gu, H. Zha, C. Ding, X. He, H. Simon, and J. Xia, “Spectral relaxation
models and structure analysis for k-way graph clustering and bi-clustering,”
2001.

[6] E. P. Xing and M. I. Jordan, “On semidefinite relaxations for normalized k-cut
and connections to spectral clustering,” 2003.

[7] T. Li and C. Ding, “The relationships among various nonnegative matrix fac-
torization methods for clustering,” in Sixth International Conference on Data
Mining (ICDM’06). IEEE, 2006, pp. 362–371.

73

74

Conjugate Gradient Descent A
The conjugate gradient descent algorithm solving Equation (A.0.1) is summarized
in Algorithm 10.

(K̃
>
K̃ + εI)∆cm = K̃

>
h̃ (A.0.1)

Algorithm 10: Conjugate Gradient Descent

Data: K̃, h̃, ε
Result: ∆cm

1 A = K̃
>
K̃ + εI

2 b = K̃
>
h̃

3 i = 0
4 ∆cm = 0
5 r = b−A∆cm
6 d = r

7 δnew = r>r
8 δ0 = δnew
9 while i < imax and δnew > ε2δ0 do

10 q = Ad

11 α = δnew

d>q

12 ∆cm = ∆cm + αd
13 r = r− αq
14 δold = δnew
15 δnew = r>r

16 β = δnew
δold

17 d = r + βd
18 i = i + 1

19 end

75

76

Proofs B
B.1 Proof Proposition 7 and 9

Let us rewrite the expression (4.2.18) using the introduced variables, i.e.,

J2(c) =
a

b1

+
a

b2

=
a(b1 + b2)

b1b2

, (B.1.1)

where the dependency on c has been dropped for sake of notation.
Now, defining

l1 = ∂a/∂c; l2 = ∂b1/∂c; l3 = ∂b2/∂c; l4 = ∂(q>c)/∂c

we can write
∂J2

∂c
=

l1b1 − l2a

b2
1

+
l1b2 − l3a

b2
2

, (B.1.2)

which when setting ∂f/∂c = 0 leads to

l1 =
a(b2

1 + b2
2)

b1b2(b1 + b2)
l2 +

ab2
1

b1b2(b1 + b2)
l4, (B.1.3)

where we have used the fact that l3 = l2 + l4. Using the above expression, and
substituting the corresponding values, we retrieve the expression of the result for
Proposition 7. Regarding the value of ν ′, we can follow the way by equating two
definitions of λ′.

Follow the same procedure, we can obtain

l4 = − ab2
1

b1b2(b1 + b2)
2diag(q)cm, (B.1.4)

consider that

J2(c) =
a

b1

+
a

b2

=
a(b1 + b2)

b1b2

, (B.1.5)

we can multiply one more (b1+b2) on both numerator and denominator, construct-
ing a J2(c) term. Rewriting the equation and finally we can obtain the result for
Proposition 9.

B.2 Proof of the Upper bound

We have

λ′ =
4b1b2(b1 + b2 + ν ′b1b2)

a(b2
1 + b2

2)
=

4(b1 + b2)2

J(b2
1 + b2

2)
+

4ν ′b2
1b

2
2

b2
1 + b2

2

.

77

Let’s look into the first term. With the Cauchy–Schwarz inequality

(u1v1 + u2v2)2 ≤ (u2
1 + u2

2)(v2
1 + v2

2),

and setting u1 = b1, u2 = b2, and v1 = v2 = 1, we obtain

(b1 + b2)2 ≤ 2(b2
1 + b2

2).

Regarding the second term, we plug ν ′ = −κ(b2
1 + b2

2)−1 in where κ =∑
i∈B,j∈U

wi,j = 1>W̃1 is a positive constant value for a certain graph, we can then

obtain

λ′ ≤ 8

J2

− 4κ
(b1b2

b2
1 + b2

2

)2
<

8

J2

,

since the second term is a positive value. By exchanging positions of λ′ and J2, the
upper bound (4.2.20) can be obtained. Here since either b1 or b2 is non-negative,
the equality cannot thus be obtained.

B.3 Proof of Negative Semidefinite

In the relaxation method 2, we introduce a matrix WDS defined as follows

WDS = W>
D + WD, (B.3.1)

= W̄
>

+ W̄− 2diag(q), (B.3.2)

= 2(W̃
>

+ W̃− diag(q)). (B.3.3)

Recall the definition of q = (W̃
>

+ W̃)1, we have

WDS = 2(W̃
>

+ W̃− diag((W̃
>

+ W̃)1)). (B.3.4)

For the sake of convenience, we denote W̃
>

+ W̃ as A and ignore the constant
coefficient. Then we would like to prove the matrix A− diag(A1) to be negative
semidefinite.

Consider the following symmetric matrix A ∈ RN×N , whose entries are non-
negative

A =

a11 a12 . . . a1N

a21 a22 . . . a2N
...

...
. . .

...
aN1 aN2 . . . aNN

 , (B.3.5)

the matrix diag(A1) can be rewritten as

diag(A1) =

∑N

i=1 a1i 0 . . . 0

0
∑N

i=1 a2i . . . 0
...

...
. . .

...

0 0 . . .
∑N

i=1 aNi

 . (B.3.6)

78

Then we have

A− diag(A1) (B.3.7)

=

a11 a12 . . . a1N

a21 a22 . . . a2N
...

...
. . .

...
aN1 aN2 . . . aNN

−

∑N

i=1 a1i 0 . . . 0

0
∑N

i=1 a2i . . . 0
...

...
. . .

...

0 0 . . .
∑N

i=1 aNi

 (B.3.8)

=

−
∑N

i=2 a1i a12 . . . a1N

a21 −
∑N

i=1,i 6=2 a2i . . . a2N

...
...

. . .
...

aN1 aN2 . . . −
∑N−1

i=1 aNi

 . (B.3.9)

Theorem 1. Gershgorin circle theorem. Let A be an N ×N matrix, with entries
aij. For i ∈ {1, ..., N} let Ri be the sum of the absolute values of the non-diagonal
entries in the i-th row

Ri =
∑
j 6=i

|aij|. (B.3.10)

Let D(aii, Ri) be a closed disc centered at aii with radius Ri. Such a disc is
called a Gershgorin disc. Then every eigenvalue of A lies within at least one of
the Gershgorin discs D(aii, Ri).

By directly applying the Gershgorin circle theorem, we can find that all the
eigenvalues of our A−diag(A1) matrix should be less than or equal to 0, meaning
that the matrix is negative semidefinite.

79

	Abstract
	Acknowledgments
	Introduction
	Research Statement
	Outline
	Bibliography

	Background
	Graph
	Graph Clustering
	Hierarchical Techniques
	Partitional Techniques
	Graph Techniques

	Bibliography

	Problem Formulation
	Problem 1
	Problem 2
	Bibliography

	Analysis of Cost Functions
	Bipartite Graph Partitioning defined by MinMaxCut
	Relaxation of the Cost Function
	Multiway Partition in Bipartite Graph
	Fast Bipartite Graph Clustering

	Graph Partitioning defined by Modified-MinMaxCut
	Graph Setting
	Graph Bisection
	Relaxation: Method 1
	Relaxation: Method 2
	Summary

	Bibliography

	Case Study: Simple Static Graph for Methods Validation and Comparison for Problem 2
	Practicalities
	Simulation: Method 1
	Simulation: Method 2
	Discussions
	Bibliography

	Adaptive Solutions
	Literature Review
	Subspace Updating
	Matrix Perturbation
	Incremental Spectral Clustering

	Update Procedure
	Modified-MinMaxCut: Derivation of update
	MinMaxCut: Derivation of Update

	Complexity Analysis
	Bibliography

	Numerical Results
	Problem 1: Numerical Simulations
	Simulation Details
	Simulation of users' movement
	Simulation of new users
	Discussions

	Problem 2: Numerical Simulations
	Simulation Details
	Simulation of users' movements
	Simulation of new users
	Discussions

	Bibliography

	Conclusion and Future Work
	Conclusion
	Future Work
	Bibliography

	Conjugate Gradient Descent
	Proofs
	Proof Proposition 7 and 9
	Proof of the Upper bound
	Proof of Negative Semidefinite

