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Abstract

The gap between CPU and memory performance becomes increasingly larger.
Together with a growing memory pressure caused by higher CPU core counts com-
bined with multi-tenant systems, this causes the need for new memory technolo-
gies. Recently, various technologies are becoming available for commercial use.
Examples of these technologies are memory types like non-volatile RAM. These
technologies generally have different characteristics than traditional DRAM. To
be able to fully utilise the potential of these new memory types, a better under-
standing of memory usage in modern systems is required. A way to gain a better
understanding is through memory traces.

Solutions that are currently available either do not support multi-core architec-
tures or cause a severe slowdown. Therefore, this thesis presents a novel approach
to gather full-system after-cache memory access traces. The proposed system is
a hybrid framework which consists of the QEMU emulator combined with a cus-
tom distributed cache and page table simulator. A modified version of QEMU,
called QMEMU, is devised to improve tracing performance and allow tracing in-
struction fetches. By leveraging the existing tracing functionality of QEMU only
a small amount of modifications have to be made to QEMU. The traces produced
by QMEMU contain virtual addresses. However, for accurate cache simulation,
the physical addresses have to be used. Tracing the physical address instead of the
virtual address for each memory access is shown to cause a 70% slowdown when
using QMEMU.

To find these physical addresses for the traced accesses, a novel approach is
employed. This approach simulates the guest page tables outside the critical path
for memory tracing and therefore does not decrease performance. Using QMEMU
traces can be gathered with a speedup of up to 42.6 times over the gem5 simulator
for benchmarks of the PARSEC suite.

In the second part of the framework, which performs memory, cache, and page
table simulation, cache simulation is found the most computationally intensive
task. Therefore in the proposed framework cache simulation is performed in a par-
allel and distributed manner. Most modern systems use set-associative caches, sim-
ulation can be parallelised without reducing accuracy by dividing the memory ac-
cess traces based on these cache sets. Using this approach 10 Million accesses can
be processed per second by the simulator when simulating a single modern cache
hierarchy. When simulating 7 different cache hierarchies concurrently a through-
put of 6 Million accesses per second is reached. The simulated guest page tables
provide additional information like the number of accesses or virtual memory size
for each process of the guest workload. This information can be used to decrease
the size of the semantic gap between memory traces and their meaning. The pro-
posed framework is evaluated by comparing it to CMP$im and gem5 using the
PARSEC benchmark suite.
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Chapter 1

Introduction

The popularity of infrastructure as a service (IaaS) cloud systems has tremend-
ously increased over the last years and is expected to increase even more [2]. One
of the key concepts behind these cloud systems is multi-tenancy. In these multi-
tenant systems multiple applications, often from separate users, run on the same
hardware each in a separate virtual machine (VM) or container. Many of these
show low activity and are only occasionally active [43]. Resources such as CPU
or network bandwidth can be shared using advanced scheduling mechanics like
Multiqueue or Flow Scheduling [32]. These techniques allow more containers to
be scheduled on the same machine. Sharing memory, however, is a more difficult
problem. Techniques like virtual memory allow the system to be over-allocated
by moving unused memory pages to the disk. However, when an inactive VM be-
comes active, its pages stored on the relatively slow disk first have to be moved
into memory before it continues. Paging can thus cause a significant increase in
the latency of these containers or VMs [35].

Changes in how systems use modern multi-core architectures with higher core
count further increase the memory pressure resulting in an increasing need for
systems with larger memory capacity. A well-known law in computer science,
Moore’s law, states that the number of transistors in a CPU doubles roughly every
two years. This law has held up for over more than 40 years. Unfortunately, there
is an extension of this law which states that the access time to memory improves
at less than 10% per year. Because of this difference, the gap between CPU and
memory performance grows with roughly 50% each year [21]. Apart from the gap
in performance the difference in energy usage in modern systems also increases.
Energy-proportionality is a metric used to quantify the energy usage of a system
relative to the amount of useful work that is done; this metric is proposed by Bar-
roso et al. [15]. The increasing gap between memory and CPU causes the energy
usage of memory to be one of the least energy-proportional components of modern
systems.

A recent trend in computer memory is a new type of memory, non-volatile RAM
(NVRAM). This type of memory generally provides higher capacity and band-
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width at a lower cost than traditional DRAM. Moreover, these types of memory
typically provide orders of magnitude better latencies than solid-state drives. DRAM
continuously requires energy to maintain its state, whereas non-volatile counter-
parts can maintain their state without consuming energy. Compared to DRAM,
NVRAM has several disadvantages, it generally requires more energy to read and
write data [30], has a significant difference between read and write speed, and it
has a limited lifetime. Additionally, only complete blocks of memory can be read
or written instead of the byte-level granularity available for DRAM [34]. Together
these properties make NVRAM unsuitable to replace DRAM completely.

Instead of using NVRAM as the main memory of a system, it could be used as
a very high-speed hard disk. This way, it could be used as a high-speed swap disk
which unfortunately does not allow the stored data to be directly read or modified.
In current operating system paging implementations, a page fault occurs when a
program tries to access a page not currently residing in main memory. On a page
fault, the corresponding page is moved entirely into DRAM, which will increase
latency. There is no consensus on the best way to use these new types of memory
within a system yet.

Because of these different properties of arising memory technologies like NV-
RAM, it is essential to gain a better understanding of how modern systems use their
memory. This knowledge can then be used to design, implement and evaluate new
memory allocation techniques to use NVRAM and future memory technologies as
efficiently as possible.

1.1 Problem statement

As the availability of new non-volatile memory technologies increases, new memory
management policies must utilise this potential. Devising new memory manage-
ment strategies requires a thorough understanding of the memory requirements of
different applications and also demands ways to evaluate these new strategies. Be-
cause the operating system kernel performs most of the memory management lo-
gic, full-system memory tracing is preferred over collecting traces for single binary
applications. Currently, full-system memory tracing is only available in systems
like MARSSx86 [41], gem5 [19] and Simutrace [44] at the cost of a substantial in-
crease in runtime. The MARSSx86 simulator is approximately 1000 times slower
than a high-end machine [42]. It reaches a simulation speed of 200.000 instructions
per second [6] for workloads in the PARSEC benchmark suite [17]. A modern CPU
running at 2Ghz like the one simulated by MARSSx86 can execute up to 2 billion
instructions per second per core, assuming one cycle per instruction [5]. Memory
access traces can thus currently only be collected for small, non-realistic, scen-
arios, specific hardware platforms, or single binary applications. Because the main
goal for gathering traces is to gain more insight into the usage of the main memory,
memory accesses which hit the cache are not of interest.

Following from this problem statement the primary goal of this thesis is to pro-
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pose a framework for gathering full-system memory traces for realistic workloads.
This thesis revolves around the following research question:

How can full-system after-cache memory access traces be gathered?

This question naturally lends itself to be divided in four subquestions:

1. How can full-system memory access traces be gathered with minimal per-
formance impact?
One of the problems with available approaches for tracing memory accesses
is the fact that their slowdown makes it infeasible to trace realistic work-
loads. Therefore one of the subquestions in this thesis is how to efficiently
trace all memory accesses performed by a system in a way that has a minimal
performance impact.

2. How can multi-core CPU caches be simulated efficiently to convert before-
cache traces to after-cache traces?
Following the main research question of this thesis, the main goal for which
traces are gathered is evaluating the use of main memory of a system. All
modern CPUs contain caches to reduce the number of memory accesses that
have to be handled by the relatively slow main memory of a computer. How-
ever, when developing a system to gain more insight in memory usage, the
accesses which are handled by the cache are thus not useful. Therefore
the memory accesses performed by the CPU have to be filtered such that
only cache accesses which miss the CPU cache and are handled by the main
memory of a system remain.

3. How can different types of CPU caches be simulated in parallel?
To be able to evaluate the behaviour of different cache hierarchies on a work-
load, multiple caches have to be simulated. Because the simulation of differ-
ent cache hierarchies is independent of each other, they could be simulated in
parallel instead of sequentially, which could decrease the total runtime of the
simulator when simulating complex caches. From this problem the question
arises how this parallelisation can be done, ideally without compromising
accuracy.

4. How can page tables be traced to reduce the semantic gap?
A problem that arises when analysing traces containing only memory ac-
cesses is the lack of semantic information about processes and virtual ad-
dresses of the workload [31]. This gap between memory traces and their
meaning is called the semantic gap. The state of the control registers and
page tables in a system contains valuable information about the memory us-
age of operating systems and the processes running on it. Therefore, tracing
their values could be useful to help close this semantic gap.
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1.2 Research approach and contributions

To answer the main research question and the four sub-questions, different tech-
niques are investigated. This is done by designing and implementing a framework
based on existing techniques and newly devised methods. Where possible, design
decisions are made based on experimental results. Finally, to validate the design,
the framework will be implemented and compared to other state of the art solutions.

By answering the posed research questions, this thesis contributes a novel ap-
proach to full-system memory tracing. The framework can create full-system after-
cache traces for real-world workloads for unmodified hosts, no known available
solution is able to do this. The implementation of the framework focusses on the
x86, but the concept of the framework is independent of operating system or archi-
tecture.
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Chapter 2

Overview

Designing systems that leverage the full potential of NVRAM requires a thorough
understanding of memory access patterns of real-world applications. Therefore,
it is crucial to have information on the memory usage of different configurations
and workloads. Memory access traces can be used to gain more information about
the memory usage of a system and contain information on every memory access
performed by the system. Each traced event in such a trace contains the address ac-
cessed, whether the system read or wrote to the memory location and the clock tick
off the access. Generally, these memory traces can be divided into two categories.
The first category contains access traces of memory accesses performed by a single
program, so-called single-binary traces. The other contains traces of all memory
accesses in the system, including those performed by the operating system ker-
nel. Currently, no traces of multi-core real-world workloads are publicly available.
However, there is a wide variety of tools available for generating multi-core full-
system memory traces. These, however, are not able to generate after-cache traces
or causes a significant performance impact making it inviable to create full-system
traces for real-world workloads. Another advantage of being able to generate these
traces instead of using publicly accessible traces is the fact that these tools can be
used to evaluate and analyse the behaviour of newly devised systems that use new
memory technologies and compare them to traces of conventional systems.

2.1 Related work

2.1.1 Hardware devices

For creating memory access traces hardware tracing devices are available. These
devices are used by placing a physical tap on one of the buses in a system. These
devices attach to a bus and receive all messages which are sent on that bus. Hard-
ware tracing devices do generally not influence the performance of the system.
Devices such as BACH [28] are able to monitor all traffic on a bus. The buses
these devices typically get connected to can have a bandwidth of up to multiple
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Figure 2.1: Hardware device based tracing, the location where the memory
accesses are traced is green

Gigabytes per second for systems with multiple CPUs [14]. Typically hardware
tracing devices have a buffer, but if trace events are produced faster than they can
be processed over a longer period of time, the buffer fills. When the trace buffer is
full, no more trace events can get captured. Therefore, only traces of small, relat-
ively short workloads can be gathered. An alternative is to use complicated storage
setups to handle the stream of accesses created by these devices [14]. Furthermore,
these solutions require physical access to the platforms under investigation. There-
fore they do not allow modifying parameters like CPU core count or cache size as
easily as they can be modified when using simulation-based tracing. Additionally,
most of these approaches use expensive hardware like logic analysers [14].

2.1.2 Sampling

Sampling of memory accesses is tracing a subset of all accesses that occur in a
system. One of the tools that can be used to sample memory accesses is perf [11],
a tool for analysing the performance of the entire system in Linux. Another tool
available is VTune Profiler developed by Intel [8]. Both VTune and perf support
sampling of memory accesses using hardware performance counters. However,
both solutions can only sample a subset of all memory accesses and only support
memory access sampling for modern Intel CPUs [8]. Because ideally memory
tracing should capture all accesses and work independent of the operating system,
CPU vendor or even processor architecture, these and similar solutions are not
suitable.

2.1.3 Binary instrumentation

For gathering traces of a specific workload, a technique called binary instrument-
ation can be used. In binary instrumentation, a program is used which modifies a
binary running in a system by inserting additional instructions. Specific instruc-
tions can be inserted which instrument each memory access. Examples of binary
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Figure 2.2: Binary instrumentation based tracing, the location where the memory
accesses are traced is green

instrumentation tools are Pin by Intel [36] and Valgrind [39]. Binary instrumenta-
tion using tools like these only allow access tracing for single binary applications,
not for complete operating systems.

Another technique to gather memory access traces is to simulate the complete
system under test. There are three main categories of system simulators. Simu-
lators that only simulate the system calls the guest makes, full-system simulators
and cycle-accurate simulators. Full-system simulators purely aim to stimulate or
translate the instructions executed by the guest to host instructions whereas cycle-
accurate simulators aim to simulate the complete hardware as accurately as pos-
sible. User mode emulators, like QEMU [16], translate the instructions in a binary
compiled for the emulated guest to host instructions and emulate the system calls a
guest binary makes. This approach allows binaries compiled for a different archi-
tecture to be executed on a host of a different instruction set architecture. In these
simulators, only instructions executed by the guest binary are emulated, but the
memory accesses performed by the kernel in system calls are not. Therefore the
memory accessed by the kernel in the simulated system calls or kernel processes
can not be traced.
The second type of simulators is full-system simulators which simulate devices
like memory, hard drives and network interface devices. Generally, any operat-
ing system kernel can be configured to run on these types of simulators. Oracle
VirtualBox [40] is an example of a full-system simulator, besides the previously
described user mode, another operating mode of QEMU is the full-system mode.
When QEMU runs in full-system mode, all CPU instructions executed by a guest
operating system are simulated and thus also the instructions executed by all user
processes running on the operating system. Full-system simulators also simulate
the behaviour of peripheral devices instead of using the host peripheral devices.
Generally, these simulators employ a large number of optimisation techniques to
be able to simulate the guest at near-native speed.
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Modern processors even have hardware support for virtualisation in the form of
virtualisation extensions adding various virtualisation specific instructions to the
instruction set. These instructions can be used to enter and exit a virtual execution
mode. When running in this mode, the host operating system is protected, but the
guest is able to run with full privileges. This allows instructions of a guest with
the same instruction set architecture (ISA) as the host to be directly executed on
the host processor. When the guest has a different ISA than the host, guest instruc-
tions have to be translated. Another optimisation found in modern processors is
hardware support for simulating the guest memory management unit (MMU). In-
stead of simulating the MMU hardware which has a significant overhead on every
memory access, the address translation from virtual to physical addresses uses the
hardware of the host machine. This is done using shadow page tables where the
host sets up a page table mapping from guest virtual addresses to host physical
addresses in the host page tables to be used by the guest
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Figure 2.3: Comparison between cycle-accurate simulation and QEMU based
tracing, the location where memory accesses are traced is marked in green

Cycle-accurate simulators are a subset of full-system simulators. An example of
a cycle-accurate simulator is gem5 [19]. Cycle-accurate simulators generally sim-
ulate a machine on hardware level including the CPU and buses. These simulators
are mainly designed for research and design of new architectures. Therefore, these
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simulators aim to be as accurate as possible. However, because of their accuracy,
combined with the fact that they can not leverage underlying hardware virtual-
isation support, they are complex and thus generally have a significantly higher
runtime than user mode or full-system simulators. Because of their complexity
running these simulators can have a significant slowdown. The most widely used
gem5 simulator can simulate multi-core CPUs but is not able to use multiple cores
of the host to do this simulation. Therefore, simulating systems with multiple cores
increases the slowdown even further. An advantage of these simulators is that
sometimes memory tracing is already built-in. Regardless, this advantage does not
outweigh the orders of magnitude slowdown compared to other full-system simu-
lators.

Out the three types of simulators which where discussed, both cycle-accurate
and full-system simulators can be used for full-system memory tracing but full-
system simulators are preferred because of lower performance penalty.

QEMU

One of the most widely used full-system simulators is the open-source simulator
QEMU. QEMU has multiple different operating modes. When simulating an x86
guest on an x86 system, QEMU can use the kernel-based virtual machine (KVM)
to simulate the host target. KVM turns Linux into a hypervisor that allows a host
machine to simulate multiple guests. These virtual machines run directly on the
hardware and are managed using the virtual machine manager. Guests running
on KVM can reach near-native performance. The host CPU can be configured to
generate an interrupt for each memory access performed when guest instructions
are being executed. Unfortunately, this will have a significant performance impact.

Apart from using KVM, QEMU can also be configured to use the Tiny Code
Generator (TCG). In this mode guest operations are translated into TCG oper-
ations by the frontend. The backend translates these TCG operations into host
instructions. With this intermediate step of TCG instructions QEMU decouples
frontends from backends, this allows any combination of frontend and backend to
be made. Instructions can be divided into basic blocks which are separated by jump
instructions. Instead of translating each instruction individually, translation can be
performed block by block. Translated blocks can be cached to prevent translating
the same sequence of instruction many times.

This approach taken by QEMU makes it suitable for memory tracing since the
backend can be modified to execute a specific sequence of instructions for every
guest memory access. Instructions can be instrumented to keep track of which
memory addresses are accessed. The additional instructions that have to be ex-
ecuted by the host system to trace memory access will inevitably cause a perform-
ance penalty. QEMU and other full-system simulators do not aim to simulate actual
hardware as accurately as possible. Therefore CPU caches of the guest are not sim-
ulated. Thus when using QEMU, only memory access traces from before the CPU
caches can be gathered. However, to answer the primary research question traces
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of the memory accesses which missed the cache and are redirected to main memory
are needed. Therefore a separate cache simulator can be used to make after-cache
traces from the before cache traces QEMU outputs similar to the approach taken in
the MARSSx86 simulator [41].
In the MARSSx86 simulator, a hybrid approach is used which combines QEMU
and PTLsim [47]. QEMU is used to simulate peripheral devices like hard disks and
network interface devices. A custom simulation engine using the cycle-accurate
PTLsim to simulate an x86 CPU is used to simulate the CPU and memory devices.
Because active development of MARSSx86 has stopped it uses an outdated version
of QEMU extended and therefore out of the box it only runs versions 3.2 and lower
of the Linux kernel [7]. In addition to this, it does not have support playing back
captured traces and is only able to simulate x86 CPUs.

2.1.4 Cache simulation

To translate before-cache memory traces to after-cache traces a cache simulator is
used. Various cache simulators are available. Dinero IV [1] is a widely used cache
simulator, which can simulate multi-level caches. Dinero IV has relatively high
performance; however, it does not support multi-core workloads and cache coher-
ency protocols. Another widely used cache simulator is CMP$im [33] based on the
Intel pin framework [36]. Because of its dependence on the binary instrumentation
tool Pin, it is only able to simulate single binary userspace workloads instead of a
full-system as required. The FM-SIM [37] is also based on Pin and thus has the
same problem. A very high-performance multi-core simulator is Sniper [29]. How-
ever, it is meant to analyse the performance of the system and is therefore based
on an interval simulation model. Interval simulation simulates only certain inter-
vals of the execution and using the prediction of miss events like TLB misses and
branch miss predictions, and therefore it does not simulate all memory accesses,
but only samples a specific subset of the accesses.

An approach for a distributed cache simulator is Shaman [38]. The proposed
simulator divides the simulation process into two parts. The simulator consists of
multiple frontend nodes and a single backend node. Each frontend node simu-
lates the instructions executed on a single processor and generates shared memory
references. These memory accesses are filtered using reference filtering, where
only memory references that may result in a cache miss are passed to the backend.
Based on these references, the backend simulates the physical accesses and creates
an after-cache memory access trace. Unfortunately, using this reference filtering
technique, write-trough and write-back caches cannot be filtered effectively and
cause the performance of the overall system to decline significantly. A similar
approach is taken in the PriME simulator [26] where instruction simulation is dis-
tributed over multiple nodes in a cluster, an average speed of 20 MIPS is achieved
at an average simulated running time error of 12% compared to a real machine. It
can simulate arbitrary cache configurations. However, it uses Pin to capture the in-
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structions executed by the workload and thus does currently not support full-system
emulation [36].

Another way to speed up full-system or cache simulation is by using field-
programmable gate arrays (FPGAs), which can be used to simulate many cores
simultaneously. The applicability of this is explored in the ProtoFlex [22] sys-
tem proposed by Van Chu [46]. Approaches using FPGAs are shown to give a
high-performance increase, which unfortunately comes at the cost of significantly
reduced configurability compared to a software-based approach.

2.2 System design

Workload
Guest operating

system

QEMU

Host operating
system

Optional
intermediate
disk storage

Cache and pagetable simulator

Cache
simulator

Memory
simulator

Pagetable
simulator

Cache
simulator

Cache
simulator

After
cache
trace

After
cache
trace

After
cache
trace

Figure 2.4: High level overview of the proposed framework

Because no simulator is available which fulfils all the requirements for full sys-
tem after-cache memory tracing, a hybrid approach is proposed. The hybrid ap-
proach can combine the performance and flexibility of full-system simulators with
the accuracy of simulating caches in a dedicated cache simulator. An overview of
the hybrid approach can be seen in Figure 2.4. Cache traces of all accesses before
the cache will be gathered using QEMU, shown in green, and the output of QEMU
will be used as input for a custom developed cache simulator. Using this approach,
the existing implementation of QEMU can be leveraged, which is able to simulate
a wide variety of CPU architectures. Furthermore, if the modifications made to
QEMU are kept to a minimum, the simulator can use future improvements made
by the active QEMU community.

The cache simulator, shown in yellow in Figure 2.4, can be used to convert the
traces to after-cache traces after QEMU has finished. Using a simulator independ-
ent format for trace files to allow both the modified QEMU and cache simulator
to be used stand-alone, for example in a case where QEMU is replaced by gem5
or traces are generated by binary instrumentation tools like Pin. Furthermore, this
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modular approach allows evaluation of the system as a whole and both components
in isolation to compare them to existing solutions. Another mode of operation is
implemented where QEMU and the cache simulator run in parallel and the traces
generated by QEMU are directly used as input for the cache simulator without writ-
ing the traces to a disk. To obtain minimum slowdown, as described by research
question 1, the cache simulator should, in this case, be fast enough to handle the
traces generated by QEMU to ensure it does not cause a bottleneck. To answer re-
search question 3 multiple cache simulators with different configurations must be
able to run in parallel. To be able to perform correct cache simulation, the physical
address for each traced memory access has to be known. The translation from vir-
tual to physical addresses is done by simulating the guest memory and page tables
in the page table and cache simulator. To be able to perform this translation in
the cache simulator, the data written for memory write accesses is included in the
access trace. This data, together with the updates to the control register values of
the guest allows the cache simulator to generate traces regarding the page tables.

2.3 Benchmarks

To evaluate system performance and compare it to other solutions benchmark work-
loads can be used. In this thesis, the Princeton Application Repository for Shared-
Memory Computers (PARSEC) [17] is used. This is a widely used benchmark
suite which consists of real-world multi-threaded workloads of which several will
be used to validate the correctness and measure the performance of the system. The
benchmarks are executed on a guest system running Ubuntu 18.04.03LTS and ver-
sion 5.0.0 of the Linux kernel. The official precompiled binaries available on the
PARSEC website are used [10]. Another advantage of using the PARSEC bench-
mark is that information like the total amount of instructions, memory reads, and
memory writes per benchmark is known [18]. Three main workloads with different
memory characteristics are chosen from PARSEC suite to perform benchmarks of
the performance of the system during implementation. These three are chosen to
represent workloads with different memory characteristics regarding read to write
ratio and working set size:

1. Blackscholes is the smallest benchmark of the PARSEC suite regarding the
number of memory accesses. It has lower memory traffic than the other
benchmarks and a small working set of 2MiB for the simlarge input size
which potentially fits completely in the simulated cache [18].

2. Streamcluster has a high read to write ratio, on average more than 4 bytes
of memory traffic per instruction, only less than 1% of all memory accesses
are writes [18].

3. Freqmine has approximately 4 bytes of memory traffic per instruction and
one-third of all memory traffic is write traffic [18]. Furthermore, it has sig-
nificantly more synchronisation primitives between threads than the other
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benchmarks. These primitives will result in context switches. Therefore this
will be an interesting test for page table simulation.

Apart from the experiments executed on the DAS-5, all experiments are performed
on a host system with an Intel 4790k processor, 16GiB memory and a high speed
1TB M.2 PCIe solid-state drive for trace storage. This system runs Manjaro Linux
version 19.0.0.
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Chapter 3

Trace gathering

The first part of the hybrid approach for tracing after-cache traces is gathering all
memory accesses in QEMU. To answer research question 1 an approach for tracing
all memory accesses in QEMU is proposed in this chapter This approach aims for
a minimum performance decrease of tracing memory accesses. The memory of the
guest simulated in QEMU can be accessed in different ways. These are described
in detail. To be able to accurately trace all cache accesses QEMU needs to be
modified, this modified version of QEMU will be called QMEMU. By default,
QEMU supports two implementations to keep track of events happening in the
system, plugins and tracing. Both of these approaches will be explored. For cache
simulation, the physical address of each access has to be known. Therefore the
feasibility of tracing physical addresses in QEMU is reviewed. Furthermore, a
way to trace the page tables of a system should also be devised to answer research
question 4.

3.1 Memory accesses in QEMU

QEMU uses a tiny code generator (TCG) to translate guest instructions to host
instructions. The guest instructions are first translated by the frontend to a universal
intermediate language consisting of TCG operations. These TCG operations can
then be translated to host operations by one of the backends. An example of this
translation is shown in Table 3.1. To speed up simulation QEMU does not translate
the code instruction by instruction but divides the guest code into basic blocks. This
can also be seen in Table 3.1.a where the last instruction of the block is ret. These
basic blocks of guest instructions are translated to blocks of host instructions by the
backend. QEMU maintains a cache of these translated blocks to prevent translating
the same basic block many times in a short period.

When no direct equivalent frontend operation exists for one of the guest instruc-
tions, it can be simulated by translating it to multiple frontend operations. A single
guest swap instruction can be translated into multiple load and store instructions,
for example. Another option is to use a helper function. Helper functions can be
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RISC-V instructions QEMU intermediate ops x86 64 instructions

0 x0000000000010458 : 4781 mv a5 , z e r o

0 x000000000001045a : 853 e mv a0 , a5

0 x000000000001045c : 6462 l d s0 , 2 4 ( sp )

0 x000000000001045e : 6105 a d d i sp , sp , 3 2

0 x0000000000010460 : 8082 r e t

l d i 3 2 tmp0 , env , $ 0 x f f f f f f f f f f f f f f f 8
mov i i32 tmp1 , $0x0
b r c o n d i 3 2 tmp0 , tmp1 , l t , $L0

−−−− 0000000000010458
mov i i64 tmp2 , $0x0
mov i64 x15 / a5 , tmp2

−−−− 000000000001045 a
mov i64 tmp2 , x15 / a5
mov i64 x10 / a0 , tmp2

−−−− 000000000001045 c
mov i64 tmp2 , x2 / sp
mov i i64 tmp4 , $0x18
a d d i 6 4 tmp2 , tmp2 , tmp4
q e m u l d i 6 4 tmp3 , tmp2 , leq , 0
mov i64 x8 / s0 , tmp3

−−−− 000000000001045 e
mov i64 tmp2 , x2 / sp
mov i i64 tmp3 , $0x20
a d d i 6 4 tmp2 , tmp2 , tmp3
mov i64 x2 / sp , tmp2

−−−− 0000000000010460
mov i64 pc , x1 / r a
mov i i64 tmp3 , $ 0 x f f f f f f f f f f f f f f f e
a n d i 6 4 pc , pc , tmp3
c a l l l o o k u p t b p t r , $0x6 , $1 , tmp3 , env
g o t o p t r tmp3
s e t l a b e l $L0
e x i t t b $0x55a64ae58283

0 x55a64ae58340 : movl −8(%rbp ) , %ebx
0 x55a64ae58343 : t e s t l %ebx , %ebx
0 x55a64ae58345 : j l 0 x55a64ae58386
0 x55a64ae5834b : x o r l %ebx , %ebx
0 x55a64ae5834d : movq %rbx , 0 x78(% rbp )
0 x55a64ae58351 : movq %rbx , 0 x50(% rbp )
0 x55a64ae58355 : movq 0 x10(% rbp ) , %rbx
0 x55a64ae58359 : l e a q 0 x18(% rbx ) , %r12
0 x55a64ae5835d : movq 0(% r12 ) , %r12

0 x55a64ae58361 : movq %r12 , 0 x40(% rbp )
0 x55a64ae58365 : addq $0x20 , %rbx
0 x55a64ae58369 : movq %rbx , 0 x10(% rbp )

0 x55a64ae5836d : movq 8(% rbp ) , %rbx
0 x55a64ae58371 : andq $ 0 x f f f f f f f f f f f f f f f e , %rbx
0 x55a64ae58375 : movq %rbx , 0 x200(% rbp )
0 x55a64ae5837c : movq %rbp , %r d i
0 x55a64ae5837f : c a l l q 0 x55a64acd81c0
0 x55a64ae58384 : jmpq ∗%r a x
0 x55a64ae58386 : l e a q −0x10a(% r i p ) , %r a x
0 x55a64ae5838d : jmp 0 x55a64ae28018

a. b. c.

Table 3.1: QEMU translation from RISC-V to x86 64

defined in the QEMU source code and can be called using the TCG instruction call.
In the QEMU frontend operations, there is no instruction equivalent to the RISC-
V ret instruction defined. In Table 3.1.b it can be seen that the helper function
lookup tb ptr function is called to simulate the RISC-V ret instruction.

Because of how memory is simulated internally in QEMU, the simulated guest
memory can be accessed in three different ways. Each of these will be described
in detail in one of the subsections below.

3.1.1 Load and store instructions

The most straightforward way in which the guest memory is accessed is by simu-
lated guest instructions which access the memory such as load and store TCG in-
structions. These will be translated to instructions for loading and storing memory:
ld[x]s i[n] and st[x] i[n] here x indicates the amount of bytes to be read and n
is the size of the guest registers. The TCG operations for these instructions can
be generated by calling the functions tcg gen ld... or tcg gen st.... To trace the
memory accesses, these functions can be modified to insert additional instructions
which call a helper function that registers the memory access.
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3.1.2 Memory accesses in helper functions

The second way in which guest memory can be accessed is from helper functions
which are called from the generated code in the translated blocks. To access guest
memory from these helper functions QEMU has multiple memory accessor func-
tions of which cpu ld[x] data and cpu st[x] data are examples. By simply instru-
menting all accessor functions, all memory accesses performed by helper functions
can be traced.

3.1.3 Instruction fetches

The final way in which guest memory can be accessed in QEMU is by instruction
fetching. In an actual system, this done by the CPU itself based on the value
of the program counter. The program counter indicates the memory location of
the instruction to be executed by the processor and will be increased after every
execution. Jump instructions explicitly modify the program counter to jump to
different parts of a program. Modern CPUs will prefetch the upcoming instructions
to ensure the processor does not have to wait for the next instruction to be loaded
from memory after the previous one was executed.

In QEMU, when executing translated blocks, keeping track of the guest program
counter and fetching instructions is done by the host. QEMU caches the translated
blocks. On a cache miss, QEMU will load the required instructions from the guest
memory and translate them to the corresponding host instructions. To trace instruc-
tion fetches the function used when a cache miss occurs could be instrumented. Be-
cause of the size of the translated block cache, most of the translated blocks can be
fetched from this cache instead of the guest memory. Therefore potentially many
instruction fetches will not be traced. Another optimisation which QEMU employs
is block chaining. Chaining blocks is done by extending each block with instruc-
tions to jump to the following block. Therefore the host executing the instructions
in the translated block will jump to the start of the next block by itself. As a result,
the translated block cache does not have to be explicitly searched by QEMU for the
next block after the execution of a block. This option can be disabled by using the
QEMU ‘nochain‘ option, but this slows down simulation significantly by almost
four times.

Instruction fetches can be traced by instrumenting each guest instruction to trace
the value of the program counter when the instruction is executed. Instrumenting
each instruction will cause a significant overhead because a call to a helper function
has to be performed for each instruction.

Because the guest code is divided into blocks delimited by jump instructions,
it is guaranteed that all instructions of a block will be executed and thus fetched.
Therefore it suffices to trace the start of each translated block. By default, QEMU
has a trace event exec tb that does exactly this. However, this event is only traced
when explicitly starting execution of a translated block and will not be traced when
a block is executed because it was chained to the end of another block. Thus not
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Figure 3.1: Difference between the exec tb and guest start exec tb trace events,
traced events are shown in green

all translated blocks will be traced; this is illustrated in Figure 3.1a. When blocks
are chained only the start of the first block will be traced unless the nochain option
is enabled.

To be able to trace all instruction fetches while minimising the performance
decrease caused by this QEMU is modified. To ensure that the start of execu-
tion of each chained block is traced a call to a helper function is inserted at the
start of each translated block. This is illustrated in Figure 3.1, in this figure the
difference between the default exec tb trace event and the newly implemented
tb guest start exec tb trace event can be seen. With the new implementation re-
gardless if blocks are chained, the helper function which traces the instruction
fetches will be called using the tb guest start exec tb trace event. In this helper
function, the memory address of the first instruction and the size of the block can be
traced. This helper function in turn will call a trace event called guest start exec tb.

To be able to determine which memory addresses were accessed for each ex-
ecuted translated block, the program counter and size of the guest instructions of
the block have to be traced. For each translated block the size of the basic block
could be stored along with the translated block in the cache. Unfortunately, of
how block translation is implemented in QEMU, the size of the basic block not
known when the prefix instructions for the block are generated. Inserting the call
to the helper function at the start of the block after the rest of the instructions of
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the block have been translated would require a modification of the code for all
supported QEMU guest platforms which is not desirable. If the call to the helper
function is inserted at the end of each block, it will not get called when the final
jump instruction jumps to another block. However, as opposed to when the block
is being translated, when the inserted helper call is performed, the complete block
has been translated. Thus at this moment, the size is available in the cache entry
for the block. Therefore by adding a pointer referencing the translated block as a
parameter to the helper function, the size of the block can be found when the helper
function is called instead of providing it as a hard-coded parameter to the helper
function when a block is translated.

By comparing the debug output of QEMU to the output obtained using the helper
function call, it can be validated that this method of instruction fetch tracing works
correctly. The required debug output can be enabled running QEMU with the exec
and nochain options. The exec prints debug information before each translated
block and nochain prevents chaining translated blocks. Together these options
make QEMU print every guest code block before it is executed. A snippet con-
taining the implemented trace output using the log tracing backend and the debug
output can be seen in Table 3.2. For the first block that is executed a program
counter value of 400000114 is logged together with a size of 63 bytes. The same
value is found by counting the number of instruction bytes in the first block of the
debug output results in the same 63 bytes. It can also be seen that the logged value
of the program counter is correct.

Accesses of instructions performed by the CPU are always memory reads and
have a dedicated L1 cache. Therefore if one is purely interested in tracing write
accesses or accesses which happen because of guest load and store instructions,
these instruction fetches do not have to be changed. Leveraging the configurability
of QEMU, the additional trace event can be enabled and disabled when compiling
QEMU. Like all other trace events, when disabled at compile-time, there will be
no impact on system performance.

3.2 QEMU plugins

Besides the tracing functionality, QEMU also provides a plugin functionality. When
plugins are enabled, dynamic libraries can be provided to QEMU at runtime. These
libraries can register callback functions using the provided QEMU plugins API.
Multiple callback functions can be registered for certain events that occur in the
QEMU system. One of the events to which a plugin can register its callback func-
tions is to the memory access event. The provided callback function will then be
called each time QEMU executes a load or store backend TCG instruction. The
implementation of plugins is quite similar to how trace events are implemented in
QEMU. For each translated memory instruction, an additional TCG helper function
call is inserted. The plugin will call all registered callbacks for the event Because of
the overhead of QEMU plugins, the performance of tracing all memory accesses
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. . . .
I n s t r u c t i o n f e t c h f o r pc :4000001149 of s i z e : 63 f o r cpu : 0
I n s t r u c t i o n f e t c h f o r pc :4000001188 of s i z e : 2 f o r cpu : 0
I n s t r u c t i o n f e t c h f o r pc :40000011 ab of s i z e : 12 f o r cpu : 0
I n s t r u c t i o n f e t c h f o r pc :400000118 a of s i z e : 45 f o r cpu : 0
. . .

a.
. . .
−−−
0 x4000001149 : 55 pushq %rbp
0 x400000114a : 48 89 e5 movq %rsp , %rbp
0 x400000114d : 48 81 ec 20 08 00 00 subq $0x820 , %r s p
0 x4000001154 : 64 48 8b 04 25 28 00 00 movq %f s : 0 x28 , %r a x
0 x400000115c : 00
0 x400000115d : 48 89 45 f8 movq %rax , −8(%rbp )
0 x4000001161 : 31 c0 x o r l %eax , %eax
0 x4000001163 : c7 85 ec f7 f f f f 00 00 movl $0 , −0x814(% rbp )
0 x400000116b : 00 00
0 x400000116d : 48 8d 85 f0 f7 f f f f l e a q −0x810(% rbp ) , %r a x
0 x4000001174 : 48 89 c6 movq %rax , %r s i
0 x4000001177 : 48 8d 3d 86 0 e 00 00 l e a q 0 xe86(% r i p ) , %r d i
0 x400000117e : b8 00 00 00 00 movl $0 , %eax
0 x4000001183 : e8 b8 f e f f f f c a l l q 0 x4000001040
−−−
0 x4000001188 : eb 21 jmp 0 x40000011ab
−−−
0 x40000011ab : 81 bd ec f7 f f f f f f 01 cmpl $0x1f f , −0x814(% rbp )
0 x40000011b3 : 00 00
0 x40000011b5 : 76 d3 j b e 0 x400000118a
−−−
0 x400000118a : 83 85 ec f7 f f f f 01 a d d l $1 , −0x814(% rbp )
0 x4000001191 : b8 00 02 00 00 movl $0x200 , %eax
0 x4000001196 : 2b 85 ec f7 f f f f s u b l −0x814(% rbp ) , %eax
0 x400000119c : 89 c2 movl %eax , %edx
0 x400000119e : 8b 85 ec f7 f f f f movl −0x814(% rbp ) , %eax
0 x40000011a4 : 89 94 85 f0 f7 f f f f movl
%edx , −0x810(%rbp , %rax , 4 )
0 x40000011ab : 81 bd ec f7 f f f f f f 01 cmpl $0x1f f , −0x814(% rbp )
0 x40000011b3 : 00 00
0 x40000011b5 : 76 d3 j b e 0 x400000118a
−−−
. . . .

b.

Figure 3.2: Instruction trace information obtained (a) by the instruction tracing
implementation and (b) using QEMU debugging
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Name Output Advantages Disadvantages

Log stderr Human readable output Large overhead
Usage of slow stderr

Simpletrace File Output format easily modifiable Discards events when buffer is full
High throughput

Ftrace Ftrace Large overhead, unsuitable for high frequency events

Syslog syslog Able to compress events Ratelimits high frequency events by discarding them

UST LTTng Supports a blocking mode Unable to trace TCG trace events
Plain text or LTTng specific output format

Figure 3.3: Comparison of different QEMU trace backends

is lower compared to using QEMU tracing. It takes a simple implementation of
memory tracing using plugins where each time a memory access occurs the only
virtual address is written to a file 1221 seconds to execute the blackscholes sim-
large benchmark for two simulated CPU cores. This is more than the 1049 seconds
it takes to trace all required information instead of just the virtual address using
the same benchmark with the not optimised version of the QEMU simple tracing
backend. This is a difference of 20%. Note that here the implementation using tra-
cing records more information than the plugin implementation which records only
the virtual address for each access. Furthermore, this is a not optimised version of
tracing. This increased runtime together with the advantage of being able to use
the already existing infrastructure for tracing, which allows also tracing different,
tracing events using QEMU tracing is preferred over using QEMU plugins.

3.3 QEMU Trace backends

As described in the previous chapter, QEMU can be used in two different modes.
The one most suitable to be used for memory tracing is TCG mode. Apart from
tracing events that happen in the QEMU host code, which can be added by inserting
function calls in the host source code using the TCG tracing functionality translated
guest code can be instrumented with additional instructions. In QEMU tracing
implementation, different trace events can be enabled or disabled at runtime. When
an enabled trace event occurs in the system, it will be forwarded to a trace backend
which handles the events. Out of the box, QEMU supports various backends, a
comparison of these is shown in 3.3.

Apart from these backends, custom backends can be implemented if the user
wishes. The log backend is mainly meant to be used for debugging purposes and
apart from the fact that the output is human-readable, has no advantage over the
simple trace backend. The simple trace backend writes the output as binary data
and has a significantly higher performance than the log backend which writes to
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the relatively slow stderr descriptor. The output of Ftrace is more verbose than
the log or simple trace backends; this causes significant overhead, thus for events
that happen very frequently in the system, like memory accesses, this backend
is unsuitable. Syslog can compress and rate limit certain events and is therefore
unsuitable when all events have to be captured. Similar to Syslog, LTTng can
compress but also discards trace events since by default it prefers performance
over completeness. However, LTTng can be configured to run in blocking mode
in which no events will be lost. Unfortunately, it was discovered that TCG type
trace events could not be traced when using LLTng. These are trace events which
can be inserted in generated guest code. The guest mem before event is one of
those events. Therefore for memory access tracing the simple trace backend most
suitable however it requires a minor modification that allows it to run in a blocking
mode,

3.4 QEMU Simple trace backend

ProdXcer

ProdXcer

ProdXcer

ProdXcer

BXffer ConsXmer
OXWpXW Àle

Figure 3.4: The simple trace backend producer consumer model

To make the QEMU trace backend fully suitable for memory tracing several
modifications are made. The simple trace backend implements a producer-consumer
model, a diagram of this can be seen in Figure 3.4. Different producer threads can
put trace events in a trace buffer. A single consumer thread reads the trace events
from this buffer and writes them to a file. If the consumer cannot keep up with
the producer threads, the buffer fills up. When the buffer is completely full, the
producers will discard any trace events they receive. One of the main requirements
for the captured traces is that they should be complete. Traces are complete when
every memory access is captured. Furthermore, to reduce the slowdown caused by
tracing memory accesses the size of the trace events is reduced.

3.4.1 Dropped trace events

By default, the QEMU trace backends are not designed to handle a high amount
of trace events. The simple trace backend uses a buffer for the trace events to
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which different threads can write events. A single consumer thread reads events
from the buffer one by one and outputs them to the specified file. The simple trace
backend is modified to prevent discarding trace events. By this modification, the
producer threads block when the buffer is full until space in the buffer becomes
available. This blocking implementation will ensure the gathered traces contain
all memory accesses made by the guest system. When the consumer thread can
not keep up with the threads filling the buffer, it will eventually fill completely.
Then completely full events will be dropped by the producers. To allow page
table simulation and provide accurate cache simulation, it is required that complete
cache traces of every guest memory access are gathered.

Runtime (seconds)
Mode Output location Average Standard dev.

Non-blocking /dev/null 475 6.2
Non-blocking file 255 21.8
Blocking /dev/null 515 5.0
Blocking file 1049 25.2

Table 3.2: The average runtime of 5 executions of the PARSEC blackscholes
simlarge benchmark with the guest mem before exec trace event enabled

The simple trace backend has been modified such that events are not dropped
when the buffer is full. Instead, the producer threads waits until space in the buffer
becomes available instead of simply discarding the event. Table 3.2 shows the per-
formance overhead of the blocking implementation for the PARSEC blackscholes
benchmark. These are the results for a QEMU configuration with 8GiB of simu-
lated memory and two simulated CPU cores. The average runtime of 5 executions
of the benchmark is taken. The simlarge input was used with the guest mem before exec
trace event was enabled. When tracing to a file, the benchmark takes 4 times longer
to complete when the simple trace backend blocks compared the mode where the
tracing backend drops traces. The runtime stays approximately the same when the
output is /dev/null. This can be explained by the fact that when using /dev/null
as output, the consumer thread is fast enough and can keep up with the producer
threads filling the buffer. It might seem counter-intuitive that for the non-blocking
implementation, output to a file is faster than when using /dev/null as the output
location. However, when using the non-blocking implementation with /dev/null as
output, which is faster than using a file, the trace consumer can write more trace
events to the output. This means that the producer threads drop fewer traces, and
thus have to acquire locks to the trace buffer more often. Thus instead of the con-
sumer, the producers will be the bottleneck. This causes a faster output location to
become slower. Thus a minimal amount of trace events will be dropped, and the
speed of the consumer mainly limits the runtime. Conversely, when a trace event is
dropped before writing it to the buffering thread can continue instead of waiting for
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space in the buffer to become available. Therefore when the trace output location
is a file the bottleneck is the consumer thread, it cannot keep up with the producer
threads filling the buffer and thus trace events will be dropped by the other threads.

Benchmark Blackscholes Streamcluster Freqmine

Runtime (seconds)

No tracing 4.6 5.8 9.3
Tracing to /dev/null 301.3 624.7 1199.0

Tracing to file 1032.8 1718,2 3114.8

Accesses per second (millions)

No tracing 339.8 480.7 575.6
Tracing to /dev/null 5.21 4.5 4.46

Tracing to file 1.5 1.6 1.7
Slowdown

No tracing 1 1 1
Tracing to /dev/null 65 107 128

Tracing to file 225 296 335

Table 3.3: The performance impact of enabling the guest mem before exec trace
event in QMEMU with the blocking simple trace implementation for the
simmedium benchmark size (average runtimes of 3 executions is shown)

The impact of having a blocking trace buffer for different benchmarks can be
found in Table 3.3. The slowdown when tracing to /dev/null compared to no tracing
ranges from 65 to 128 times, this difference is caused by the differences in accesses
per second that QEMU can simulate when not tracing. It can be seen that the
number of accesses per second that QEMU can handle for different benchmarks
stabilises when tracing is enabled. The runtime can be seen to increase roughly
two orders of magnitude when using /dev/null as output compared to no tracing.
The runtime increases approximately three times when tracing to a file instead of
to outputting the trace to the /dev/null pipe.

One of the main bottlenecks could be the size of the buffer for the consumer
thread. A solution for this would be to increase the size of the buffer. This way, the
consumer thread has more time to handle bursts of memory accesses; this will po-
tentially decrease the amount of time the producing threads have to wait for space
in the buffer to become available. By default, the buffer is 256KiB the influence of
the buffer size on the runtime of different benchmarks with the simmedium input
can be seen in Table 3.4. For the tested benchmarks, no significant difference in
runtime can be seen for larger buffer sizes. Therefore the default buffer size of
256KiB will be used for the experiments in the remainder of this thesis. However,
the number of simulated cores and memory access frequency of the benchmark
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Buffer size Runtime (seconds)
Blackscholes Streamcluster Freqmine
(simedium) (simsmall) (simdev)

4KiB 297.4 213.3 191.5
16KiB 297.3 205.6 198.2
64KiB 304.1 207.1 195.7

256KiB 301.1 206.3 184.8
1MiB 305.4 208.2 182.8
4MiB 297.8 200.7 187.0

16MiB 290.7 207.2 183.3
64MiB 294.7 208.9 181.1

Table 3.4: Runtime for different trace buffer sizes for the blackscholes
simmedium benchmark in QMEMU with the guest mem before exec trace event
enabled when using /dev/null as output for a simulated guest system with 4 cores

can potentially influence the needed buffer size; therefore this buffer size should
be configured to suit the workload and amount of simulated cores.

3.4.2 Shared memory

The simple trace backend was modified to allow the usage of POSIX shared memory
for the output to achieve higher throughput. This shared memory can be read by
another process to be processed. The shared memory region is protected by two
semaphores to avoid concurrency problems. When QEMU has filled the complete
buffer, it lowers the write semaphore and raises the read semaphore. The other pro-
cess reading the trace events is then allowed to read the buffer, when it has finished
reading it lowers the read semaphore and raises the write semaphore. To ensure
QEMU is not unnecessarily waiting for the buffer to be filled, the buffer is split
into two parts, each protected by a separate pair of semaphores.

3.4.3 Trace size reduction

Because of the large number of memory accesses, the size of each event must be as
small as possible. A breakdown of the different parts of a memory trace event can
be found in Table 3.5. The trace size can be reduced by modifying the following
fields in the binary format:

• Record type: The trace contains two types of entries, actual trace events and
a mapping from IDs of these trace events to their names. The record type
field specifies if the next bytes represent a trace event mapping or an actual
tracing type. If the simple trace backend is modified to write the mapping
and actual events to two different files, the actual trace only contains a single
type of records, and therefore this field can be omitted.
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Item Size Reduced size
(bytes) (bytes)

Record type 8 0
Event ID 8 1

Timestamp 8 2 or 8 1

Length 4 0
PID 4 0
CPU 8 1

Address 8 8
Info 8 1
Data 8 0 or 8 2

Total 64 14-28

[1] depending on the difference with the pre-
vious timestamp
[2] 0 bytes for read accesses 8 bytes for write
accesses

Table 3.5: Output size of a memory write trace event

• Event ID: This field is used to indicate which type of trace event follows it.
Because only a couple types of trace events are used for memory tracing this
field can be reduced to a single byte, a single byte will still allow 256 distinct
memory trace events to be enabled at the same time.

• Length: The length field is used to specify the total length of the current
trace event. Since the length is constant and known for all types of trace
events used, this field can be omitted.

• Timestamp: The timestamp is specified as a 64-bit integer relative to the
start of the simulator. However, it can be changed to the difference between
the timestamp of the previous event that was traced and the timestamp of
the new event. A more detailed description of this optimisation is given in
Subsection 3.4.3.

• PID: The process ID (PID) field is set to host the process ID of QEMU. This
field is the same for all trace events and can thus be omitted.

• CPU: The CPU field indicates in which of the cores of the simulated system
the event occurred. In QEMU each simulated core is stored in a memory
structure. The host memory address of this structure is stored for each trace
item. This address is stored using 8 bytes. The structure contains a CPU
index which has the number of the core counting from 0 to n. This index is
used instead of the value. When stored using a single byte a maximum of
256 cores can be simulated by QEMU.
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• Info: The info field contains various pieces of information about the memory
access for example whether the access is a read or a write, in QEMU these
values are already packed into a 2-byte struct using bit fields but written to
the trace as a 64-bit integer. One of these two bytes contains the QEMU
MMU index. This value is not needed for cache simulation. Therefore this
field can be stored using a single byte.

Timestamp size compression

Size Percentage of timestamp differences which
(bits) fits in the amount of bits

8 62.24%
16 99.99%
32 99.99%
64 100.00%

Table 3.6: Size of the difference between timestamps in bytes for the blackscholes
simlarge benchmark

The timestamp field in the trace events specifies the time in nanoseconds at
which the trace event occurred since the start of the simulator. This field is stored
in the trace output using 8 bytes. However, the difference between the timestamp
and the previous timestamp is often relatively small. Therefore a similar approach
to the one described by Bao et al. [14] is implemented. The number of bytes re-
quired to store this difference was determined using a memory access trace of the
blackscholes benchmark with the simlarge input size. In Table 3.6 the difference
in timestamps can be found. This table shows many of the time differences can
be represented using various amounts of bits. Precisely, this is the percentage of
time differences which is less than 2n where n is the number of bits. From this
data, it can be seen that using two bytes to store the timestamp difference is most
suitable. Unfortunately, the larger differences between timestamps cannot be trun-
cated or omitted because these have a larger influence on the overall accuracy of
the simulator output. Therefore a solution where the most significant bit (MSB)
of the event id field of a trace event is used to indicate the size of the timestamp
difference. When the MSB of this field is set the timestamp field has a size of 8
bytes when it is not set the delta timestamp field is stored in 2 bytes. When mul-
tiple CPUs are simulated, a trace event with an earlier timestamp may arrive at the
trace consumer thread later than an event that happened in another CPU with a later
timestamp. The second MSB of the event id field is used to indicate whether the
timestamp difference is positive or negative.

Assuming 99.99% of the timestamp differences can be stored in a 2-byte value,
this approach will reduce the trace size of each item significantly by approximately
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Figure 3.5: The runtime of 5 executions of the QMEMU tracing for the
blackscholes simlarge benchmark with the guest mem before trace event enabled,

the black bars indicate the standard deviation values

21%. This compression adds some additional logic to the trace write out function-
ality in QEMU to determine if a 2 or 8-byte time delta should be written. From
Table 3.6 it can also be seen that approximately 62% of the timestamp differences
will fit in a single byte value. A distinction between 1 and 2-byte delta timestamps
will only reduce the trace size by another 2.8% while adding even more complexity
to the logic of writing and reading the trace events. Therefore only a distinction
between 2 and 8-byte values is made.

In Figure 3.5, the runtime for the blackscholes benchmark with the simlarge in-
put can be seen with various optimisations enabled. The average runtime of 5 exe-
cutions in seconds together with the minimum and maximum runtime is expressed
on the y-axis. Various optimisations are shown on the x-axis beginning with the
runtime with tracing disabled, the runtime without any of the described optim-
isations, the runtime with the reduced trace size but without the delta timestamp
size compression and finally the runtime with the timestamp size compression en-
abled. From this graph, it can be seen that with the modifications to the simple
trace backend, there is a reduction in the runtime of approximately 2.5 times when
tracing to a file. Because the optimisations reduce the trace size, the speedup is
lower when /dev/null or shared memory is used for the output since these are not
limited by the bandwidth of the storage device. However, a comparison of the av-
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erage runtime of the benchmark when using a file to store the trace output shows
a decrease from 485 to 388 seconds this is a reduction of 20%. When /dev/null
or shared memory was used as the output location, the average runtime does not
change significantly when using delta timestamps. Indicating that the benefit of the
smaller trace file still outweighs the slightly increased complexity in the consumer
thread when the bandwidth of the output medium is not the bottleneck.

3.5 Physical address tracing

To be able to simulate CPU caches correctly together with the virtual address, the
physical address of each memory access has to be traced. In a physical CPU,
the address translation is done by the memory management unit (MMU). QEMU
simulates the guest MMU and maintains a cache of translated virtual to physical
addresses. This cache is called the translation lookaside buffer (TLB). When a
memory location is accessed, the virtual address is looked up in the TLB, if it con-
tains the physical address it can be used directly. When the corresponding physical
address is not found in the TLB the page table has to be searched by the QEMU
MMU, the result will then be placed in the TLB. The trace events currently used
only record the guest virtual address for memory access. When using TCG the
physical address is not known at the location the code where memory accesses are
traced. However, for a virtual address, the TLB can be used to look up the cor-
responding physical address. The trace events used to trace memory accesses are
usually called before the access is simulated, to ensure the TLB contains an entry
for the virtual address tracing is moved to after performing the memory access.
When performing a TLB lookup directly after the access, will always contain the
virtual address. Because it will be filled by a page table walk if the TLB did not
contain an entry before the access was simulated.

To do this lookup a function lookup tlb informational was implemented which
looks up a physical address in the TLB but will not do a page table walk upon a
miss. For the memory accesses performed by helper functions, this function can
simply be called and the output can be used for the trace event. For the tracing
function calls inserted in the translated blocks at translation time, an additional call
to this function has to be inserted in the translated block. An example of this can
be seen in Table 3.7. During translation, a call to the helper function will be in-
serted in the translated instructions. This helper function takes several QEMU vir-
tual registers as inputs and outputs the physical address in another virtual register.
The virtual register is used as input to the tracing function helper call. Therefore,
the translation will add additional overhead in the slowest path of tracing. These
changes increase the average runtime for tracing the blackscholes simlarge bench-
mark from 228 to 391 seconds, this is an increase in runtime of 1.7 times. Because
of this slowdown, this method of gathering physical addresses will not be used.
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Without physical address tracing With physical address tracing

t r a c e g u e s t m e m s t o r e b e f o r e t c g (
t c g c t x −>cpu , cpu env , addr , i n f o , v a l ) ;

TCGv p h y s a d d r = tcg t emp new ( ) ;
TCGv i32 mmu idx i32 = t c g c o n s t i 3 2 ( i n f o >> 8 ) ;
TCGv i32 w r i t e i 3 2 = t c g c o n s t i 3 2 ( 1 ) ;
g e n h e l p e r l o o k u p t l b i n f o r m a t i o n a l ( physaddr ,

cpu env , mmu idx i32 , w r i t e i 3 2 , add r ) ;
t r a c e g u e s t m e m s t o r e b e f o r e t c g ( t c g c t x −>cpu ,

cpu env , addr , physaddr , i n f o , v a l ) ;
t c g t e m p f r e e ( p h y s a d d r ) ;
t c g t e m p f r e e i 3 2 ( mmu idx i32 ) ;
t c g t e m p f r e e i 3 2 ( w r i t e i 3 2 ) ;

a. b.

Table 3.7: Insertion of physical address tracing helper function

3.6 Page table tracing

To be able to acquire the physical addresses memory accesses, the page tables of
the guest will be simulated outside QMEMU. Furthermore, as described in the pre-
vious chapter, the page table can provide useful information for analysing memory
traces. Therefore the framework should be able to trace contents of the page map-
ping per process as stored in the page tables. In the cache simulator, the virtual
addresses will be translated to physical addresses, to do this the MMU of the guest
system has to be simulated. Since the implementation of the page tables is guest
architecture-dependent, an implementation will be proposed for the x86 platform.
Regardless of this dependency, the general idea of tracing page table modifications
is similar for various other architectures such as ARM.

3.6.1 Page table pointer tracing

The x86 platform has multiple control registers which determine the paging be-
haviour of the system. If the ”paging enabled” bit of the first control register
(CR0) is 0, the MMU will use physical addressing. The operating system uses this
mode during boot for setting up the initial page table, for example. Conversely if
the ”paging enabled” bit is 1 the CPU uses the page table to translate addresses.
The MMU will use the value of the fourth control register (CR3) to determine the
memory address of the first level of the page table it should use. The fifth control
register (CR4) contains additional information about the paging scheme used like
the size of physical addresses and whether the page table has 4 or 5 levels.

On a context switch, the value of CR3 is updated to point to the page table of
the newly assigned process. This value of CR3 could be stored in the access stored
for each memory access. The value of CR3 is updated infrequently compared to
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the number of memory addresses. Therefore, it will be more efficient to trace
only modifications of this register by the guest. A minor downside of this is that
the current value of CR3 has to maintained in the cache simulator. To be able to
simulate paging correctly modifications to the values of CR0 and CR4 also have to
be traced.

Tracing modifications to these registers can be achieved by adding a new trace
event to QEMU, the guest update cr event which contains the id of the CPU, the in-
dex of the updated control register and the updated value. As described previously
QEMU translates guest instructions in sequences of backend operations which can
be executed on the host. It keeps a cache of these translated blocks for reuse in the
future. Some complex operations can not easily be translated to backend instruc-
tions. In these cases, a helper function can be called to simulate these instructions.
For the x86 target updating the CR values is one of these operations for which the
backend inserts a call to a helper function. This makes tracing this event trivial,
only this helper function has to be modified to call the trace function. Because the
guest update cr event is called very infrequently, there is no noticeable increase in
runtime caused by enabling this trace event.

3.6.2 Data tracing

As described previously, when a memory write is traced, the data of write re-
quest has to be included in the trace event. The data that is read for a read ac-
cess performed by the guest is not needed. By default the data is not included in
the QEMU guest mem before event, therefore this event is split in two new trace
events, guest mem read before and guest mem write before. Apart from the addi-
tional written data which is stored for guest mem write before these trace events
are similar to the guest mem before event. These new trace events are inserted in
all locations where the guest mem before event is traced. Together these two new
events provide all trace information which is also provided by the guest mem before.
The guest mem before event can be disabled at compile-time to reduce its perform-
ance penalty. Apart from the slight increase in trace event size, tracing perform-
ance is not significantly impacted by this change. These new events cause the
average runtime for the blackscholes simlarge benchmark to increase from 158 to
161 seconds when using shared memory for the output.

3.7 Discussion

In this chapter, different ways to trace all memory accesses and the state of the
page tables of a system are shown while keeping the number of changes required to
QEMU to a minimum. To answer research question 1 it is shown that memory tra-
cing using the simple trace backend modified to output traces to a shared memory
buffer is the most efficient method to trace all accesses. In total, an average slow-
down of 44 times is achieved when tracing all accesses. Experiments show a
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runtime increase of 70% when tracing physical addresses compared to tracing vir-
tual addresses. Therefore to answer research question 1 physical access translation
should happen outside the critical path for simulation. Thus virtual to physical
address translation should be done in the other part of the hybrid framework, the
cache simulator. To be able to do this translation, the state of the page tables has
to be known in the cache simulator. The state of the guest page tables is traced
by keeping track of modifications to the control register values as well as the data
for all memory write operations. This approach also answers research question 4
about how page tables can be traced to reduce the semantic gap. The page tables
can be traced by reconstructing the guest memory in which these tables reside in
the cache simulator.
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Chapter 4

Cache and page table simulation

Page table
simulator

Simulated
memor\

Memor\
writes

Uses

Memor\ accesses
Including the 

ph\sical address

Simulated
control registers

Trace input,
File or QMEMU

Control register 
value modiÀcations

Memor\ accesses

Cache set simulator

Output
Cache set simulator
Cache set simulator

Output
collector

Cache set simulator

Output
Cache set simulator
Cache set simulator

Output
collector

Cache set simulator

Output
Cache set simulator
Cache set simulator

Output
¬collector

Figure 4.1: High level overview of the cache and page table simulator

The second part of the framework consists of a cache and page table simulator.
The primary purpose of this simulator is to provide a solution to the problem posed
by research question 2 about how caches can efficiently be simulated. Various
systems to simulate CPU caches are available. These approaches are dependent
on a specific trace source, like CMP$im [33], do not support simulating multi-core
CPUs with coherency protocols, like Dinero IV [1], or are hard to configure like
FPGA based approaches like the one proposed by Schneider et al. [45]. Cycle-
accurate full system simulators like gem5 can also be used, but their complexity
significantly increases simulation time [20]. Their complexity is needed to provide
a higher output accuracy with regards to, for example, timing and energy usage.
However, when simulating large real-world benchmarks because of the scale of
the traces, which can contain tens of billions of accesses, there is little advantage
to this increased accuracy. No existing simulator was found which meets all the
requirements.

To be able to simulate the caches correctly, the physical address of each cache
access has to be known. As described in Section 3.5 QEMU slows down signific-
antly when tracing the physical addresses instead of the virtual addresses. There-
fore this translation should be done outside the critical path. Tracing the guest page
tables allows this translation to be done in the cache and page table simulator. This
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approach also helps answer research question 4 about closing the semantic gap.
Furthermore, this allows simulating caches with mixed indexing which no publicly
available simulator can do [20].

Because no such system is available, a new system is designed which can do this
translation. This system should have minimal impact on the performance of the
full-system simulator as required by research question 1. To answer research ques-
tion 3 the designed simulator should be able to simulate multiple caches in parallel.
The designed system parallelises cache simulation for a single cache hierarchy and
allows the simulation of multiple hierarchies to be distributed among different ma-
chines to increase performance. An overview of the system can be seen in Figure
4.1.

4.1 Background

4.1.1 Caches

Computer caches generally consist of multiple levels of increasing size and de-
creasing speed. Various policies and techniques are used in caches on different
systems.

Replacement policy

Because the cache has a limited size, there needs to be a policy to determine which
items to keep and which to evict when the cache is full. Usually, the least recently
used (LRU), least frequently used (LFU), or first in first out (FIFO) policies or a
hybrid of these is used.

Write policies

Compared to read-only caches writable caches are harder to implement. The most
straightforward way is to have a cache where on each memory write, the value in
the main memory is directly updated as well. This type of cache is called a write-
through cache and generally has a high latency for writes. Another type of cache
is the write-back cache where the state of the cache is not directly mirrored in the
main memory. A write-back cache marks entries in the cache as dirty when they
are modified. Upon eviction of a dirty cache line, the cache writes the modified
value back to memory. Hence the name write-back cache. This increases the im-
plementation complexity of the cache but reduces the write latency compared to a
write-through cache.

Placement policies

To reduce the hardware implementation complexity, and thus the physical amount
of space on the CPU, caches use a so-called placement policy. This policy limits
the number of places in the cache where a memory block can be stored.
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Figure 4.2: Different cache placement policies

These policies are implemented by splitting the memory address in an index, tag
and offset. Cache lines typically have a size of 8 to 64 bytes. The offset identifies
the byte offset within the cache line. The tag is stored along with the contents of
the cache line in the cache. The tag is used to identify which memory block is
currently present in the cache line. The index is used to identify the cache lines
in which a memory block could be stored. The most intuitive way to implement a
cache is to have a policy which maps each memory address to exactly one cache
line, a so-called direct-mapped cache. An example of a direct-mapped cache can be
seen in Figure 4.2c. This approach is easy to implement, fast and energy-efficient.
Unfortunately, it is also the worst-performing placement policy. Since there is only
one location in which each memory line can be stored, the choice is to either evict
the already resident block with the same index or not to store the memory block
that was just accessed.

The opposite of a direct-mapped cache is a to make it possible for each memory
block to be stored in any location of the cache, called a fully-associative cache.
In Figure 4.2a an example of a fully associative cache can be seen. This policy
has the highest cache hit ratio and provides better utilisation of the available cache
memory. The disadvantage is that when the CPU wants to do a lookup of an entry
in the cache, all cache lines have to be searched since the memory block can be
stored in any of the cache lines. This significantly increases the implementation
complexity of such cache.

Most modern systems take a hybrid approach between the direct-mapped cache
and a fully-associative cache, a set-associative cache. Examples of this are the
recent AMD [24], ARM [12], and Intel [23] CPUS. In this type of cache, each
memory block can be stored one of n different locations. An illustration of a set-
associative cache is provided in Figure 4.2b. A set-associative cache consists of m
sets which each contain n cache lines. The index of the memory block determines
in which set the memory block is stored. When looking up a memory block in
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the cache, only the lines contained in the set which corresponds to the index of
the block have to be searched. Eviction policies are applied within a set when a
cache miss occurs, which increases the hit ratio. A 1-way set-associative cache is
the same as a direct-mapped cache. Contrarily, for a cache with k lines a k-way
set-associative cache is a fully-associative cache.

Inclusion policy

For multi-level caches, multiple different inclusion policies can be used. An in-
clusion policy specifies whether blocks contained in a level of the cache are also
stored in the cache a level higher. Three different policies exist. The first is the
inclusive policy in which each block stored in a level of the cache is also stored in
the higher level. In this type of cache when a block is retrieved from main memory,
it gets stored in all cache levels. When a block is evicted from one of the levels
it is also evicted from all other levels. Second is the exclusive policy where each
block stored in the cache is not stored in the higher level. Upon an access for a line
which is not stored in any of the caches, it is placed in the L1 cache. If this inser-
tion causes an eviction from the L1 cache the evicted item gets placed in the L2
cache. The third policy is non-exclusive non-inclusive; in this policy, each block
may or may not be stored in a cache level higher. For modern CPUs, the highest
level cache generally is inclusive of the lower level caches [23].

Cache coherence protocols

In multi-core processors, each core can have their separate caches but caches can
also be shared between multiple or all cores. When all levels of caches are shared
a value written by one of the cores can directly be read by another. In modern
processors, only the last level cache (LLC) is shared among all cores. A shared, in-
clusive last level cache improves memory sharing between cores. If a core accesses
a memory address which was modified by another core the updated value must
reside in the last level cache. This reduces the amount of (slower) main memory
accesses required for sharing memory between CPU cores. For lines that are stored
in the lower level, non-shared caches coherency problems between caches of dif-
ferent cores can occur. When a block resides in multiple caches, and one of the
cores modifies its cached value it must be ensured that the values in the caches of
other cores are updated to prevent outdated values from being used. To accomplish
this, coherence protocols are used. These protocols ensure all cores see the most
recent values of data when accessing it, usually by using a bus to which all caches
are connected. The most widely used protocol is the MSI snooping based protocol
or one of its extensions. The MSI protocol works by maintaining a state for each
block in the cache. This state can either be modified (M), shared (S) or invalid
(I). When a block is in the modified state, it is not consistent with the value of the
block in the higher levels and must be written back upon eviction. If a block is
in the shared state, it is unmodified, and the value can be used by multiple cores.
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A block in the invalid state is considered not in the cache anymore. This protocol
ensures that a block is only in the modified state in one cache at a time by using
bus requests. For example, when a block is in the shared state and the processor
issues a write request it changes to the modified state and issues a bus request to
invalidate the copies of the block in other caches. To improve the cache hit ratio,
several extensions to the MSI protocol have been made which add additional states
such as forward and exclusive. Simulating this protocol makes cache simulation
significantly more complicated. Instead of just modifying the values in the cache
of the core accessing the memory, possibly the entries in all other cores have to be
checked.

Instruction caches

Some processors contain dedicated caches for instruction fetches, these caches are
only read memory and thus are simpler than data caches. They do not require
coherency protocols and write policies, this makes their implementation easier,
and therefore, they consume less physical space on the CPU.

Virtual and physical indexing

The location of a block in the cache can be based on its virtual or physical address.
Because multiple virtual addresses can be mapped to the same physical address,
coherency problems can occur when using a cache based on virtual addresses.
However, when using a cache based on physical addresses, the address first has
to be translated before the cache lookup can start. Therefore a hybrid approach can
be taken. As described in Section 4.1.1, each cache entry can be identified by its
tag, index and offset each of these can be based on either the physical or the virtual
address. In a system with pages of size, 2n the last n bits of the virtual address
are used to determine the offset within the page. The offset is the same for the
virtual and translated physical address. Thus, if the size of the cache is equal to or
smaller than the size of a page, the cache index and offset will be based entirely
on the page offset. In this case, there will be no difference between a physically or
virtually indexed cache.

For larger caches, the tag and index can be both virtual and physical. To reduce
the performance decrease caused by this translation when using virtually indexed
and tagged caches the lookup in the smaller lower level caches can already be
performed before the address translation has finished. To be able to support both
kinds of systems the simulator should support virtual, physical and mixed indexing
schemes.

4.1.2 Page tables

The page tables in a system are used to translate virtual addresses to physical ad-
dresses. Each process has its own page table, and these page tables are generally
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Figure 4.3: A 3-level page table for 52-bit virtual addresses with 4KiB pages

stored in the main memory of a system. If the page table containing a mapping for
all possible 64-bit addresses were used, the page table alone would consume more
memory than available in the system. Therefore, modern architectures like x86
and ARM use multi-level page tables. A diagram of a multi-level page table can
be seen in Figure 4.3. In one of the control registers, the address of the first level
of the page table can be found. The virtual address is split into multiple parts, each
used as the index for one of the levels of page tables. In the first level table, the
address of the second level table can be found. The entry in the second level points
to the third table et cetera. Finally, the entry in the last table contains the physical
address of the page together with multiple status bits. Generally up to 5-level page
tables are used. To speed up the translation of virtual addresses CPUs contain a
translation lookaside buffer (TLB) which maintains a cache of recently translated
addresses.

4.2 Page table simulation

To simulate page tables which are stored in the guest memory, the state of the
guest memory is simulated in the cache and page table simulator. The memory
of the simulated system can be mirrored in the simulator by using the data traced
for memory write events. When processing a traced write accesses the value at
the corresponding address in the simulated memory is updated with the new value.
When an address has to be translated, the page tables contained in the simulated
memory can be used to find the physical address.

To be able to translate virtual to physical addresses, the values of the control
registers of the CPU have to be known. The values of the control registers of the
simulated CPU can be maintained in the simulator using the guest update cr event
Based on these, it can be determined if paging is enabled and where the page tables
to be used are located in memory.
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Bit(s) Name Meaning

0 Present If set the entry is valid
1 Read/Write If not set the page is read-only
2 User/Supervisor If set the page is a user
3 Write through If set accesses to this page are write through
4 Cache disable If set accesses to this page do not use the cache
5 Accessed If set the page has been accessed
6 Dirty If set the page has been written to
7 PSE If set the this is a large page
8 Global TLB entries for addresses with this bit set do

not get flushed if the CR3 value is modified
9-11 Unused

12-63 Address

Table 4.1: An x86 page table entry

Based on the current control register values paging is enabled or disabled if
paging is enabled, the simulator will use the multiple levels of the page table to
find the entry in the last level. The information bits for the x86 architecture are
shown in Table 4.1. These bits indicate whether the cache is disabled for the page
and if the cached entries for the page are write-through. When the cache disabled
bit is set for page the cache access is directly recorded in the output trace and the
cache state is not updated. For a write to a page with the write-through bit set, the
write should be recorded as a cache miss. The page table entry also contains a bit
indicating whether the page belongs to a user process or a kernel process.

The implemented the simulator simulates an x86 style page table. However, the
page table logic is decoupled from the other logic in the simulator and can thus be
changed to allow simulating page table implementations of other architectures.

As previously described the guest virtual addresses have to be translated to phys-
ical addresses. This can be done using the guest page tables. Because the guest
page tables reside in the main memory of the guest to be able to simulate guest
page tables, the contents of the guest memory have to be known. This could be
done by allocating continuous a block of memory equal to the size of the guest
memory in the simulator, which is updated by traced write accesses. However,
this would not allow the simulated guest memory to be larger than the amount of
memory available on the machine where the cache simulation is performed. To be
able to simulate page tables of the guest, only the contents of kernel owned page
tables have to be known. If the kernel owns a page table can be determined using
the user/supervisor bit in the page table entry. Considerable effort is put into redu-
cing the size of the memory used by the kernel, therefore only allocating an array
of the size of complete memory, user and kernel memory, would thus be waste-
ful. Instead, the simulated memory will be divided into blocks the same size as the
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Figure 4.4: Multi level memory simulation

page size of the simulated system. These blocks are stored using a structure similar
to the approach taken in multi-level page tables. For a system with a page size of
4KiB, the default page size on Linux, the address is divided into three parts, the
last part has a size of 12 bits and indicates the offset within a memory block. The
other 28 bits of the 40 least significant bits are divided in two 14 bit indices used
search a two-level structure containing a pointer to the simulated memory block. A
diagram of this approach can be seen in Figure 4.4. In total this will allow a guest
memory of size 240bytes to be simulated. When an address is accessed which has
not yet been allocated a new block will be allocated and a pointer added to the table
structure.

Because of the added complexity, a slight decrease in performance can be ex-
pected when using the multi-level table memory simulation approach. The impact
can be seen in Figure 4.5, the time it takes to simulate the first 1 billion memory
accesses of three different benchmarks of the PARSEC suite using the simmedium
input size is shown on the y-axis. The runtime for two different simulated memory
sizes and the two different approaches taken is shown on the x-axis. Both the table
based approach where a multi-level table is used and the complete approach where
the complete guest memory is allocated in the simulator are compared. In Figure
4.6, the amount of memory used for each benchmark is shown. When the com-
plete memory simulation approach is used the amount of memory used is equal to
the amount of memory simulated. For the table based approach, the total memory
usage is shown in this figure on the y-axis, on the x-axis, the amount of simulated
events is shown. Notable is the fact that after approximately 1 billion simulated
accesses for all three benchmarks, there is an increase in memory usage. After ap-
proximately 1 billion accesses, the setup of the benchmark by PARSEC is finished
and the actual work performed in the benchmark starts. Furthermore, the influence
of the working set size for each benchmark can be seen. It can be seen that fre-
qmine has a significantly larger working set of approximately 128MiB compared
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Figure 4.5: The average runtime of three executions for two different methods of
simulating guest memory for the first one billion memory accesses for three

benchmarks of the PARSEC suite on a host with 16GiB of RAM, the black bars
indicate the standard deviation

to 16MiB for streamcluster and 2MiB for blackscholes, these values are similar to
the ones described by Bienia et al. [17]. Notable is the fact that for all benchmarks
amount of memory which is simulated eventually flatlines regardless of the simu-
lated memory size. When combining the data shown in Figures 4.6 and 4.5 it can
be concluded that the memory usage decreases significantly when using the table
based memory at the cost of a slight increase in runtime. Therefore, the approach
which is used in the page table simulator is made configurable at compile time.
The user of the simulator should choose which approach to use, depending on the
workload and host machine the increase in runtime might outweigh the reduced
memory usage.

4.2.1 Starting page table simulation during execution

The implementation of the page table simulator described in the previous section
relies on maintaining the current state of the memory of the guest from the start
of the execution. Therefore tracing has to be enabled from the start of QEMU.
In Table 4.2 the time to boot the operating system with tracing is enabled with
/dev/null as output together with the time it takes without tracing enabled. Because
of this significant 35× slowdown, it would be beneficial to start the simulator right
before the benchmark is executed after the setup has been performed. This slow-
down can become even larger depending on the complexity of the setup of the
benchmark.
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Initial page table state

To be able to start page table simulation at any moment during execution, the state
of the guest page tables at that moment needs to be known. The simplest approach
would be to export all the page tables currently in use by the guest to a file. This file
could then be read by the page table simulator to initialise contents of the memory
required for page table simulation. However, to be able to export all page tables in
the guest system, the memory locations of the first levels of all page tables alloc-
ated by the kernel have to be known. Preferably these values should be retrieved
without modifications to the guest. This could be done by tracing all modifications
to the control register containing the page table pointer (CR3 on the x86 architec-
ture) from the start of the simulation. This way, before starting the benchmark,
the simulator could be paused and the memory found at all the page table pointer
values that have previously been used can be exported to a file. Unfortunately, this
approach has the disadvantage that when QEMU is paused exactly when the kernel
is in the process of initialising a new process, the page table for this process will
not be exported. An approach which exports the complete guest memory and thus,
all page tables does not have these problems.
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Runtime (seconds)
Average Standard deviation

Tracing disabled 18.45 0.49
Tracing enabled 632.32 2.98

Slowdown 35×

Table 4.2: The average runtime of 5 operating system boots for a simulated
system with 4 cores and 8GiB of memory

Physical memory

In modern systems the available physical memory is not a continuous region, in-
stead, several chunks are made available to the operating system. On the x86 plat-
form, these are provided in an E820 map by the BIOS of a system, which is also
simulated in QEMU. This map indicates which memory regions are usable by the
operating system. To be able to determine which guest physical memory regions
should be simulated by the memory simulator, this map can be used. Memory
accesses to memory addresses outside these regions can also occur, like accesses
to PCIe devices, for example. For memory simulation these accesses can be dis-
carded, whether the cache should be simulated for these accesses can be determined
using the caching disabled bit in their page table entry. By default, the E820 map
is printed by the Linux kernel when it boots. The memory map can be extracted
from this and used as input for the page table simulator.

If the all the exported guest memory regions would be loaded from the disk in
their entirety when starting the memory simulator, depending on the size of the
guest memory and the disk speed, this could take a significant amount of time.
Furthermore, a lot of these pages might never be used. This can be solved by only
loading exported guest pages from disk when they are accessed by a traced memory
access.

Initial control register values

To also simulate virtual to physical address translation correctly, the initial state of
the guest control registers has to be known before tracing is enabled. To interact
with QEMU, two interfaces are exposed. The monitor interface is focussed on
human interaction with the simulator and the QEMU machine protocol (QMP)
designed to be used by machines. The QMP does not support exporting register
values. However, these values can be obtained using the QEMU Monitor interface
using the info registers command. By default, this command will print information
about the values of the registers of the guest CPU. However, by default for x86,
the control register values are not included. Therefore QEMU was modified to also
output these control registers for the x86 host. The resulting values can be used as
input for the page table simulator as the initial control register values.
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Figure 4.7: Flow for starting memory tracing for a running simulator

The complete process to start tracing can be seen in Figure 4.7. Executing the
steps of this process manually each time is cumbersome. Therefore a program is
developed to automate this process. This program uses a go implementation of
expect [4] to interact with the guest operating system. Expect is a tool for auto-
mating interactive terminal applications; it allows waiting for particular terminal
output and sending arbitrary terminal input to the guest through a pseudoterminal.
These functionalities will be used to determine when the guest has booted and after
it has for interacting with the host to prepare and execute the benchmark. By using
expect benchmark execution on the guest can be automated without the need to
modify the guest operating system.

An example of a simple expect program used to execute a benchmark can be
seen in Figure 4.8. Some code to setup the pseudoterminal has been omitted for
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. . .
g u e s t := . . . / / p s e u d o t e r m i n a l s e t u p
benchmark := ‘ parsecmgmt −a run −p b l a c k s c h o l e s −n 4 − i simmedium ‘

g u e s t . E x p e c t S t r i n g ( ” ubun tu l o g i n : ” )
g u e s t . E x p e c t S t r i n g . SendLine ( ” ubun tu ” )
g u e s t . E x p e c t S t r i n g . E x p e c t S t r i n g ( ” Password : ” )
g u e s t . E x p e c t S t r i n g . S e n d l i n e ( ” Password123 ” )

/ / Se tup benchmark
g u e s t . E x p e c t S t r i n g . E x p e c t S t r i n g ( ” $ ” )
g u e s t . E x p e c t S t r i n g . SendLine ( ” cd p a r s e c −3 . 0 / ” )
g u e s t . E x p e c t S t r i n g . E x p e c t S t r i n g ( ” $ ” )
g u e s t . E x p e c t S t r i n g . SendLine ( ” s o u r c e env . sh ” )
g u e s t . E x p e c t S t r i n g . E x p e c t S t r i n g ( ” $ ” )

/ / S t a r t benchmark
l o g . P r i n t l n ( ” S t a r t i n g benchmark ” )
s t a r t T i m e := t ime . Now ( )
g u e s t . E x p e c t S t r i n g . SendLine ( benchmark )
g u e s t . E x p e c t S t r i n g . E x p e c t S t r i n g ( ” $ ” )

/ / P r i n t t ime used by benchmark ( t h i s i n c l u d e s t h e s e t u p done by PARSEC)
l o g . P r i n t l n ( ” Benchmark took : ” , t ime . Now ( ) . Sub ( s t a r t T i m e ) , ” s e c o n d s ” )
. . .

Figure 4.8: An example program for running guest benchmarks using go-expect

clarity. For exporting the physical memory map, QMP is extended with an addi-
tional memory-info command which outputs a list of the start address and size of
all available memory regions. These regions are similar to the regions provided to
the guest operating system by QEMU via the E820 map. The QMP the stop and
cont commands can be used to stop and start the simulator and the pmemsave com-
mand is used to output the contents of a guest physical memory region to a file.
Because QMP has no way to inspect CPU register values the monitor command
info registers is used, and the human-readable output parsed.

Performance

When enabling tracing while a guest is running the time before a benchmark can be
started increases from 18.45 to 40.1 seconds for a guest with 8GiB memory. This
is still 16 times improvement over starting tracing at the start of QEMU compared
to the 632.22 seconds (as shown in Table 4.2) before the benchmark can be started.
When using this approach, the start time is independent of the complexity of the
cache that is simulated. Therefore when tracing has to be started from the begin-
ning the runtime simulating realistic, more complex, caches the improvement will
become even larger.
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4.3 Cache simulation

To produce a trace of memory accesses which miss the cache and are handled by
the main memory of the system a cache simulator is built. This simulator can read
a trace produced by QEMU from a file or shared memory. It can be configured to
simulate any amount of cache levels of arbitrary size. Parameters like replacement
policy used, the associativity, inclusion policy and coherency protocol can all be
configured at compile time. This allows the user to evaluate the performance of a
memory system for a wide range of cache configurations.

Multi-level caches can be implemented by storing a pointer to the higher level
cache. When a cache is queried, but the requested line is not currently stored in
the cache the higher-level cache is searched. If a cache does not have a pointer
to a higher level cache and an access occurs which misses the cache the access is
registered as a cache miss. Furthermore, the simulator supports separating instruc-
tion and data caches for each level. When a memory access is simulated, the correct
cache will be selected based on the CPU index and whether it is an instruction fetch
or data access.

4.3.1 Coherency protocols

To simulate various snooping based coherency protocols each cache also maintains
a pointer to the bus it is connected to. This gives support for simulating snooping
bus protocols which use a bus for message passing. These messages are seen by all
other caches on the same level, which must update their state based on them. If the
simulated cache is inclusive, the line should also be invalidated in all higher-level
caches. If a cache miss occurs in a cache, it issues a bus request to retrieve the
cache value from one of the other caches in the same level. This requires checking
for each of the simulated caches on that level if it contains the entry.

1 2 3 5

/2 CDFKH

1 2

/1 CDFKH 1

1 3

/1 CDFKH 2

D: 1 E: 3 F: 6

Figure 4.9: Cache inclusion for a two level inclusive cache, 3 different cache
accesses are shown

When simulating an inclusive cache, this can be optimised. A visualisation of an
inclusive 2 level cache hierarchy is shown in Figure 4.9. Three different accesses
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are shown in this Figure:

a accesses cache line 1 in L1 Cache 1, which results in a cache hit.

b accesses cache line 3 in L1 Cache 1, which results in a miss. The line can be
found in cache L2 however. This causes the cache line to be inserted in L1
cache 1, therefore, a bus request is issued to notify the other L1 caches.

c accesses cache line 6 in L1 Cache 2 which results in a miss, because the L2
cache is inclusive this cache must contain line 6 if it is stored in one of the
other L1 caches. By checking the L2 cache, it can be concluded that line 6
is not stored in the other L1 cache thus no bus request has to be issued and
searching the other L1 caches can be omitted.

This example illustrates an optimisation which is applied for inclusive caches. This
optimisation is especially useful when simulating a cache hierarchy with a large
number of caches per level or a cache with large cache sets. Depending on the
coherency protocol and inclusion policy used various other optimisations similar
to this one can be applied. Therefore the cache simulator is designed in a way
that isolates the logic of a coherency protocol from the rest of the simulator. This
allows the user to easily modify the implementation based on the inclusion policy
and coherency protocol the user wishes to simulate. For evaluation of the cache
simulator, the MSI and MOESI protocols are implemented.

4.4 Distributed cache simulation
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The runtime of the single-threaded cache and page table simulator described in
the previous section can be seen in Figure 4.10. In this figure, the amount of sim-
ulated cores is shown on the x-axis and the average amount of events processed
per second by the simulator on the y-axis. The numbers shown were gathered for
multiple benchmarks using shared memory and the complete memory simulation
technique. In the configuration where none of the components of the cache and
page table simulator is enabled the events are simply discarded by the simulator.
This can thus be regarded as the fastest QEMU can produce the events. To ensure
the cache and page table simulator does not bottleneck QEMU it should be able to
simulate at least as many accesses per second as QEMU produces. As can be seen
from the figure when cache simulation is enabled, the performance of the simu-
lator greatly reduces, especially for higher core counts. However, when only page
table simulation is enabled, there is a significantly smaller drop in performance.
Thus it can be concluded that the cache simulator is the bottleneck of the complete
simulator.

The runtimes are shown in Figure 4.10, these are the runtimes when simulating
a single level shared cache. When running the PARSEC blackscholes simmedium
benchmark for a guest system with 4 cores and 8GiB of simulated memory the
average runtime when simulating a cache hierarchy with a single level shared cache
of 4MiB is 408 seconds. The runtime increases to 1256 seconds when simulating
a realistic 3 level cache hierarchy where the L3 cache is shared, and the other two
levels use the MSI coherence protocol.

Furthermore, research question 3 poses a question of how multiple different
cache hierarchies can be simulated in parallel. By creating a cache simulator which
can run distributed over multiple machines, the slowdown can potentially be lim-
ited, and an answer to this research question can be found. In this section, a dis-
tributed approach to a cache simulation will be proposed, since the performance
impact of page table simulation is much smaller, it will not be parallelised.
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Figure 4.11: Overview of the different components in the distributed simulator

The distributed cache simulator consists of four components:

1. Input reader: reads the input from QEMU and sends it in batches to the
coordinator
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2. Coordinator: does memory and page table simulation and distributes trans-
lated accesses to workers

3. Worker: simulates one or more cache sets of a distributed cache simulator

4. Output collector: collects the output from the workers for each cache hier-
archy

4.4.1 Input reader

When running the cache and page table simulator in a distributed manner the pro-
cess reading the input, running on the same machine as QMEMU, should be as
lightweight as possible. This process is called the input reader. To optimally
use bandwidth, the input reader does not send each trace event individually, but
it groups events in batches of trace events. These batches have the same size the
two shared memory regions. The only purpose of this input reader is reading the
trace output of QEMU from a shared memory region and sending this to the co-
ordinator process. Data is sent to the coordinator using MPI [25]. For evaluation
of the simulator, the OpenMPI [27] implementation is used. OpenMPI was chosen
because it is widely used and is available for a wide range of platforms. The DAS-5
cluster [13] which will be used in the evaluation of the distributed simulator also
supports OpenMPI.

4.4.2 Coordinator

The coordinator performs the parts of the simulator that are done sequentially for
each memory access; these are:

• Control register simulation

• Memory simulation

• Page table simulation

For each memory access, the coordinator translates the virtual address and dis-
tributes cache accesses containing both addresses to different workers. To reduce
communication overhead these cache accesses are buffered by the coordinator. The
coordinator maintains two outbound buffers per worker. When of the outbound
buffers is full, the complete buffer is asynchronously sent to the worker. Because
of this asynchronous communication, when a full outbound buffer is being sent to
the coordinator, it can keep processing incoming accesses by putting them in the
other buffer for the worker.

4.4.3 Workers

The workers perform the actual simulation of the cache. Each worker can sim-
ulate (a part of) a different cache hierarchy. Because address translation, which
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is not easily parallelizable, is independent of the cache hierarchy multiple cache
hierarchies can still be simulated in parallel. This way, the after-cache trace can
be gathered for many different cache types at the same time without substantially
reducing the performance of the overall system. However, as seen in Figure 4.10
cache simulation is the slowest component of the simulator even when simulating a
very simple cache hierarchy. Thus when cache hierarchies with high levels of asso-
ciativity or complicated coherency protocols are simulated the speed of the whole
system will be bottlenecked by the speed of the worker for this cache hierarchy.
Therefore it should be possible to distribute simulation of a single cache hierarchy
over multiple workers.

Level Size Associativity Cache sets Index bits

First level Data 32KiB 8 64 6
First level Instruction 32KiB 8 64 6

Second level 256KiB 4 1024 10
Third level 8MiB 1 up to 16 8192 1 up to 13 1

[1] For a 4 core processor

Table 4.3: Cache specifications of an Intel Skylake microarchitecture processor
[23]

Cache simulation inherently is a sequential problem. Each cache access depends
on the state of the cache after the previous access has been simulated. However,
when simulating a cache that is not fully associative, each cache access only de-
pends on the previous cache accesses in the same set or equivalently: with the same
index. This allows cache simulation to be parallelised, each cache set simulator can
simulate one or multiple cache sets. When simulating different cache hierarchies
in parallel the cache sets of more complex caches can be divided among more
cache-set simulators than for simple cache hierarchies. Because cache sets can be
simulated independently of each other, this will not influence the accuracy of the
output trace. When simulating a multi-level cache, two addresses may be placed in
separate sets of the L1 cache but get mapped to the same set of the L2 cache.

The overlapping cache sets are illustrated in Figure 4.12. Two variables influ-
ence this behaviour, the ratio between the size of a cache and the size of a higher
level cache and the associativity of the two levels. When the size of a cache in-
creases but the associativity stays the same the cache gets divided into more sets.
Thus the number of index bits needed increases. When the associativity increases
but the size stays the same, the cache gets divided into fewer cache sets. Thus the
amount of index bits needed is less. Generally cache sizes and associativities scale
with a power of 2. The amount of index bits is directly proportional to both these
parameters. Therefore, if the increase in size is larger than the increase in associ-
ativity, the amount of index bits increases [23, 24]. Thus when assigning sets to
workers the amount the smallest amount of cache index bits of any of the caches
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Figure 4.12: Two addresses that get mapped to the same cache set in the L1 cache
but to different cache sets in the L2 cache

should be used to determine on which worker the access to the set should be simu-
lated. As an example, the specifications with the required amount of index bits for
a modern Intel Skylake processor are shown in Table 4.3.

4.4.4 Output collector

When a single cache hierarchy is simulated by multiple workers, the output is
scattered. For each simulated cache hierarchy, an output collector is used to solve
this problem When a cache miss occurs, this is recorded in a buffer in one of the
workers. Using the same two buffer approach as used in the coordinator, these
buffers are sent to the output collector. The output collector will order the cache
misses from different workers and write the result to a single ordered cache miss
trace file. Furthermore, the collector can be used to calculate various statistics of
the cache such as read to write ratio, misses per page or the total amount of cache
misses.

The output collector is implemented using a linked list of buffers for each worker.
This is illustrated in Figure 4.13. It will iteratively search the first buffer in the
linked list of all workers for the cache miss with the smallest timestamp. When
found, the cache miss is removed from the buffer and written to the output. If the
entry was the last in a buffer, the buffer is freed, and the next buffer for the worker
is used. This approach can handle imbalances between the amount of cache misses
in different workers and can sort the output in O(nm) time where n is the number
of trace events and m the number of workers.

4.5 Discussion

In this chapter, the design of the cache and page table simulator was described. The
design of this simulator aims to provide an answer to the sub research question 4
about closing the semantic gap. Together with the requirement posed by the tracing
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Figure 4.13: The output collector

implementation in QEMU, a way to simulate the guest page tables outside QEMU
was chosen. For this, all modifications to the guest kernel address space have
to be traced, and the state of the memory has to be maintained in the simulator.
Two approaches for memory simulation are devised, one which is more memory
efficient whereas the other is designed to have a faster runtime.

Furthermore, a method is proposed to start tracing during guest execution in-
stead of requiring tracing to be started from the guest boot. This method is shown
to improve significantly the tracing time when one is only interested in tracing a
specific workload.

A solution to research question 2 about how cache can efficiently be simulated
is proposed. By showing how to cache simulation can be parallelised when simu-
lating set-associative caches without influencing the accuracy of the simulator By
doing this trace can be divided over multiple workers and the outputs merged to a
single after-cache memory trace.

Finally, the design of a distributed system with multiple cache hierarchies simu-
lated in parallel is presented, serving as an answer to sub research question 3.
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Chapter 5

Evaluation

The design of the framework lends itself to be evaluated two parts, evaluating tra-
cing all memory accesses and the cache simulator separately.

5.1 Experimental setup

5.1.1 Benchmarks

Traces are gathered using PARSEC which is a benchmark suite representative of
real-world multithreaded workloads the [17]. The PARSEC suite provides 13 real-
world programs that can be used to evaluate the performance of a system.

Besides the PARSEC suite another benchmark is used, this benchmark com-
presses and decompresses a file using gzip [3]. Because of the main focus on sim-
ulating multi-core systems in this thesis, a parallel implementation of gzip, called
pigz [9], is used for the decompression step. The compression benchmark used
in experiments compresses an 8MB generic Linux kernel using the tar -czvf com-
mand and unpacks it using pigz with the tar -I pigz -xvf command.

The benchmarks are executed using a guest system using the Ubuntu operating
system version 18.04.3 LTS and version 5.0.0 of the Linux kernel. The host system
used for the benchmarks has an Intel i7-4790k 4 core processor and 16GiB of
memory and uses the Manjaro Linux version 19.0.0 operating system

5.1.2 DAS-5

Experiments on the performance and correctness of the distributed cache simulator
are conducted on the DAS-5 cluster [13]. The DAS-5 is a compute cluster distrib-
uted over different locations, it has Intel Xeon E5-2630 v3 processors and in total
has 3252 cores. Nodes are interconnected using high-speed InfiniBand links and
run CentOS version 7.2.
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5.1.3 gem5

To evaluate the correctness and performance of the proposed framework it is com-
pared to the cycle-accurate simulator gem5 [19]. Gem5 is a state of the art cycle-
accurate full-system simulator which is widely used to validate simulators against
[20]. Memory traces from gem5 can be gathered in various places of the memory
hierarchy, for example, directly between the CPU and cache or between the cache
and main memory. The system simulated on gem5 uses the same operating system
and Linux kernel as for the system simulated on QMEMU.

5.1.4 Metrics

The most natural metrics to compare memory access traces are the total amount of
reads, writes and fetches for a given benchmark. For workloads in the PARSEC
benchmark suite, some of these values are known [17] and can be used to analyse
the accuracy of the simulator.

To evaluate the accuracy of cache simulators the metric misses per thousand
instructions (MPKI) can be used [20]. The traces used in this thesis contain up
to tens of billions of accesses. Therefore, a modified version of this metric is
proposed: misses per ten million instructions (MPTMI).

5.2 QMEMU tracing

5.2.1 User mode tracing

To evaluate the accuracy of traces gathered using QMEMU, these can be compared
traces obtained using CMP$im and gem5. For the PARSEC benchmarks with the
simlarge input the amount of read and write accesses and the cache miss ratio are
known, measured using CMP$im [17]. These numbers only include the accesses
performed by the benchmark, not those performed by the operating system. When
QMEMU is configured to run in user mode using the TCG traces for of memory
accesses performed by only the benchmark can be obtained. This comparison can
be used to verify the correctness of the TCG memory tracing implementation.

Setup

To obtain these numbers, QMEMU is configured to run in user mode using TCG.
The guest mem load before exec and guest mem store before exec trace events are
enabled. The benchmarks are executed using 8 threads. Equal to the number of
threads used to obtain the numbers presented by Bienia et al. [17]. For the bench-
marks, the simlarge input set is used. The precompiled binaries available from the
PARSEC website [10] are used.
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Figure 5.1: Analysis of traces produced using QMEMU user mode tracing and
gathered using CMP$im for the simlarge benchmark inputs [17]

Results

The results of running the benchmarks in QMEMU user mode can be seen in Fig-
ure 5.1. In this figure, the amount of read and write memory accesses obtained
using QMEMU and CMP$im for 3 benchmarks of the PARSEC suite are shown.
CMP$im can reach a simulation speed approximately 4-10 million instructions per
second (MIPS) [33]. Whereas the average instructions reached by QMEMU for
user-mode tracing range from 47 to 61 MIPS for the used benchmarks. These
values were calculated based on the measured runtime and the instruction counts
for used benchmarks as described by Biena et al. [18]. The average difference
in the amount of traced accesses for the different benchmarks between QMEMU
and CMP$im is 7.1%. Keeping the significant increase in MIPS in mind that can
be handled by QMEMU 7.1% can this increase in accuracy could be considered a
worthwhile tradeoff.

5.2.2 Full system

To evaluate the accuracy and performance of full system tracing the traces will be
compared against traces gathered using the cycle-accurate gem5 simulator.

Setup

Gem5 provides an example full system configuration which can be used for the
benchmarks. Multiple benchmarks are executed using this example system, during
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Figure 5.2: The amount of memory accesses traced when tracing a full system for
gem5 and QMEMU and various workloads

which memory access traces gathered using MemTraceProbes that store traces to
the disk. In gem5 multiple different CPU models with different accuracies can
be used to collect these traces, the AtomicSimpleCPU is used, this is the fastest,
but regarding timing the least accurate CPU model available. The example script
is modified by placing a CommMonitor between the CPU and memory to collect
traces of all memory accesses performed by the simulated CPU.

Traces are also collected using QMEMU. The traces collected using gem5 con-
tain physical addresses, whereas the traces collected using QMEMU contain virtual
addresses. Therefore, the virtual addresses in the traces collected using QMEMU
will be translated to physical addresses using the page table simulator. Traces from
both sources are analysed and compared based on various metrics. Because of the
significant runtime of the gem5 simulator the simmedium input size is used for the
PARSEC benchmarks instead of the simlarge input.

5.2.3 Results

In Table 5.1, a comparison between the output gathered using QMEMU, and the
output gathered using gem5 can be seen. Because of the high runtime when run-
ning large multithreaded benchmarks on gem5, it is only feasible to simulate a
single core system running the PARSEC simmedium benchmark size. A difference
in read/write ratio between QMEMU and the gem5 tracing solutions, QMEMU
consistently has a lower read/write ratio than gem5. Apart from the streamcluster
benchmark, the amount of write accesses traced using QMEMU is less than when
gem5 is used. Contrarily, the difference in the total amount of similar. This could
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Benchmark Simulator Read/write ratio Runtime (seconds) Speedup

Blackscholes gem5 2.23 2913
(simmedium) QMEMU 2.06 110 26.5

Streamcluster gem5 9.20 9489
(simmedium) QMEMU 6.44 223 42.6

Freqmine gem5 2.00 17915
(simmedium) QMEMU 1.16 1083 16.5

Gzip gem5 2.64 2392
QMEMU 1.66 194 12.3

Table 5.1: Analysis of traces produced using QMEMU tracing and gem5 for a
simulated guest with 1 core and 8 GiB memory

be caused by some memory accesses which are classified as an instruction fetch by
QMEMU but classified as read by gem5.

A significant difference in runtime can be seen, the largest runtime difference
is measured for the streamcluster benchmark where gem5 is 43 times slower than
QMEMU.

5.3 Page table simulation

To verify the correctness of the page table simulation approach, QMEMU was
modified to trace both the virtual and physical address for each memory address.
This was done using the approach described in Section 3.5. Using the virtual ad-
dresses of these traces page tables where simulated. By utilising these simulated
page tables the virtual address of each access was translated to the correspond-
ing physical address. This was done for the PARSEC blackscholes and freqmine
simlarge benchmarks. Each benchmark was executed twice, once when tracing
was started from the start of QMEMU and a second time where tracing is enabled
during execution just before the benchmark was started. Using a simple program
to analyse the traces it was verified that all physical addresses acquired using the
page table simulator are equal to the ones traced by QMEMU. Thus when assum-
ing the correctness of the QMEMU MMU, it can be concluded that the page table
simulation approach works correctly.

5.4 Cache simulation

5.4.1 Accuracy

The cache simulator can be compared to gem5 to evaluate its accuracy. Gem5
is a widely used tool to compare cache simulators against [20]. As previously
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Level Size Associativity Shared Coherence Inclusive

L1 Data 32KiB 8 no MOESI -
L1 Instruction 32KiB 8 no MOESI -

L2 256KiB 4 yes - Mostly

Table 5.2: Cache specifications of the simulated cache

described, memory probes can be placed in arbitrary places in a cache hierarchy
in gem5. For the evaluation of the cache simulator, these probes are placed in two
different places in the cache simulated by gem5. First of all, probes are placed
between the simulated CPU and L1 caches. Furthermore, a probe is also placed
between the L2 cache and memory bus. Each memory trace probe generates a
separate trace file. These files are merged into a single trace file using a memory
trace analyser program developed especially for this purpose. This program also
converts the merged traces from the gem5 protobuf format to the format used by
the cache simulator. A trace probe will also be placed between the L2 cache and
main memory to produce after-cache traces. To verify correct behaviour a realistic
cache hierarchy will be simulated, and the results for gem5 and the proposed cache
simulator can be compared using a plot of the MPTMI for both simulators. The
properties of this cache are similar to those of an Intel Skylake processor. The exact
values can be found in Table 5.2.

By default the gem5 memory system simulates the MOESI protocol and has
mostly inclusive caches, therefore the proposed cache simulator will also use the
MOESI protocol but it will simulate fully inclusive caches. The trace used is a
trace of the boot of the operating system followed by the setup and execution of
the blackscholes benchmark with the simmedium input size for a 4 core system.

The amount of MPTMI for both simulators for the first 5 billion events of the
execution of the blackscholes simlarge benchmark is shown in Figure 5.3. In this
graph, the total amount of simulated accesses is shown on the x-axis, the MPTMI
are shown on the y-axis. It can be seen that the amount of cache misses found when
using the custom cache simulator closely follows the amount of cache misses found
by gem5. A small difference between gem5 and the proposed cache simulator can
be expected because gem5 simulates a ”mostly” inclusive inclusion policy which
is not implemented for the proposed simulator. The cache simulator is configured
to maintain a strict inclusion policy for this experiment.

5.4.2 Parallel cache set simulation

The DAS-5 system is used to measure the speedup gained by running the cache
simulator in a parallel manner. For this experiment, the parallel cache simulator
runs on a single node. On this single node, multiple cache set simulators run in
parallel, each simulates a subset of all cache sets. A trace file of the PARSEC
blackscholes simlarge benchmark containing the first five billion memory accesses
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Figure 5.3: Misses per ten million accesses for the first 5 billion trace events of a
trace of a the execution of blackscholes on gem5

is used as input. The cache simulates has 3 levels of which the last level is shared,
the sizes of these levels are respectively 32KiB, 256KiB and 8MiB. In Figure 5.4,
the average number of memory accesses that are processed per second can be seen
on the y-axis for a range of 1 to 7 cache set simulators running in parallel. It can
be seen that there is a slight superlinear speedup. The simulated cache uses more
memory to simulate the guest cache than available in the cache of the host system.
This is an explanation for the slight superlinear speedup when divided into more
sets a larger portion of the simulated cache can fit entirely in the cache of the host
which improves performance.

5.4.3 Distributed cache hierarchy simulation

To evaluate the distributed simulator, a setup similar to the one used for evaluat-
ing the parallel cache set simulator is used. However, for this experiment, mul-
tiple cache hierarchies are simulated at the same time. The same realistic cache
hierarchy, as described in Table 4.3 is simulated multiple times in parallel. Each
hierarchy is simulated on a separate node and uses 8 parallel cache set simulators,
from Figure it can be seen that this should be sufficient to reach the maximum
simulation speed. The throughput is shown when OpenMPI is configured to use
conventional ethernet and when the high-performance InfiniBand interface is used.
These interfaces have respectively, a maximum throughput of 1GiB/s and 48Gbit/s.
In the leftmost graph, the throughput of the single-threaded cache simulator can be
seen. The performance of this simulator is similar to the performance of the distrib-
uted implementation when using ethernet. When InfiniBand is used, the distributed
simulator is approximately 8 times as fast as the single-threaded simulator. This
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the blackscholes simlarge benchmark

is a significant improvement. It can be seen that when using InfiniBand, the per-
formance reduces slightly for each additional cache added. However, when using
the slower ethernet, the performance halves when simulating changing from 1 to
2 or from 2 to 3 simulated caches. Thus the performance decrease in the distrib-
uted simulator can mainly be attributed be to the communication overhead in the
coordinator.
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5.5 Discussion

From the results of the experiments in this subsection, it can be concluded that the
accuracy of the traces generated using QMEMU approaches the accuracy of those
generated using gem5. There is a difference in accuracy between the read/write
ratios traced using QMEMU and gem5, however. Furthermore, it is shown that
collecting traces using QMEMU is more than an order of magnitude faster than
collecting traces using gem5.

From the experiments, it can be concluded that the page table simulator produces
a correct translation from virtual physical addresses. Furthermore, from Figure 5.3,
it can be seen that the misses recorded by the cache simulator closely resemble
those found by gem5 for the same workload. Therefore the proposed cache and
page table simulator serves as an answer to sub research question 2 on how before-
cache traces can be converted to after-cache traces. Being able to simulate the
guest page tables outside QMEMU correctly allows the user to calculate various
statistics using these, thereby providing an answer to research question 4.
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Chapter 6

Conclusions and
recommendations

6.1 Conclusions

This thesis is centred around the research question:

How can full-system after-cache memory access traces be gathered?

This question was divided into four sub-questions. By designing a framework
and implementing it for the x86 architecture these questions have been answered.

1. How can full-system memory access traces be gathered with minimal per-
formance impact?
Using the proposed implementation it is shown that it is feasible to gather
full-system before cache memory access traces using a modified version of
the widely used QEMU full system simulator. This can be done by lever-
aging the tracing functionality of QEMU and extending the TCG generator
to allow tracing instruction fetches. The approach of using QEMU is shown
to have a significant performance improvement over other full system tracing
solutions like gem5 without a large difference in accuracy. For the PAR-
SEC benchmark suite, a speedup up to 42.6 times is achieved over gem5.
It was found that collecting memory traces containing physical addresses is
not possible using any known simulator without a significant performance
penalty.

2. How can multi-core CPU caches be simulated efficiently to convert before-
cache traces to after-cache traces?
To be able to simulate caches in an efficient manner a design for a parallel
functional cache simulator is proposed and implemented. This simulator re-
ceives a trace of memory accesses with their virtual address from QMEMU.
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To translate these to the physical addresses which are required for accurate
cache simulation the page table simulator maintains the state of the guest
memory and control registers. This allows simulating the guest page tables
from the traces. These physical addresses can then be used in a configurable
cache simulator to simulate the caches of the guest and generate after-cache
traces. Cache simulation is shown to be compute-intensive when simulat-
ing multi-level caches with advanced coherency protocols. Therefore a way
to parallelise it is proposed, this parallelisation is achieved by dividing the
memory access trace by the cache set to which each memory accesses be-
longs. This parallelisation does not influence the accuracy of the simulator.
It is shown that this results in a significant speedup which allows the cache
simulator to process 10 Million accesses per seconds. This speedup allows
the cache simulator to keep up with the speed at which QMEMU generates
traces.

3. How can different types of CPU caches be simulated in parallel?
The proposed and implemented system is able to simulate different cache
hierarchies in parallel using OpenMPI. A single coordinator performs the
control register and page table simulation to translate the virtual to physical
addresses and distributes the memory accesses over multiple workers. These
workers each simulate a different cache hierarchy which allows the user to
investigate the influence of different cache hierarchies on memory usage.
It is shown that the performance penalty of simulating the multiple caches
in parallel this way is significantly lower than when using a sequential ap-
proach. The approach allows 7 caches to be simulated concurrently at the
cost of only a two-fold increase in simulator runtime.

4. How can page tables be traced to reduce the semantic gap?
Because the answer to subquestion 1 already dictates that the page tables are
simulated outside QEMU they can easily be traced. Simulating the guest
tables outside QEMU allows the user of the framework to collect various
metrics on the guest page tables. Furthermore, the taken approach allows the
after cache traces to contain both the virtual and physical address for each
memory access, no other known simulator is able to produce these kinds of
traces. These metrics can be collected without requiring additional modific-
ations to QEMU or the guest operating system and without having an impact
on the performance of the system. These collected metrics can be used to
help close the semantic gap. For example, by knowing from which pro-
cess each memory access originated, the number of page tables each process
used or whether an access was caused by the operating system kernel or a
user process.

By combining the different parts of the framework used to answer the sub re-
search questions an answer to the main research question of this thesis can be
formulated in the form of the complete framework. It is shown that the proposed
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framework is able to gather full-system after-cache traces with an accuracy similar
to state of the art cycle-accurate gem5 simulator. This proposed simulator can col-
lect these traces up to 42.6 times faster than state of the art solutions like CMP$im
and gem5. This performance increase makes it possible to generate traces for real-
world benchmarks whereas previously traces could only be collected for artificial
workloads. Furthermore, the proposed framework is able to provide additional in-
formation about the guest. This information can help close the semantic gap and
allows simulating cache hierarchies with complex coherency protocols. Because
the page table simulation is performed in the stand-alone cache and page table
simulator it is able to simulate caches with a mixed virtual and physical indexing
scheme. No other publicly available cache simulator is able to do mixed addressing
according to Brais et al. [20]

The source code of the systems developed for this thesis is publicly available 1.
Because of the size of memory traces used during experimentation is in the order
of hundreds of gigabytes traces are not distributed. The traces can be re-generated
using the tools used which are publicly available.

6.2 Discussion and future work

In this thesis, a solution for full-system after-cache memory tracing is searched.
The purpose of being able to collect these kinds of traces is to gain a better under-
standing of memory usage in modern systems. The design of a framework that can
collect these traces is devised in this work. The framework consists of two parts,
a before-cache memory tracing solution QMEMU and a distributed page table and
cache simulator.

It was shown that QMEMU is significantly faster than widely used tools like
CMP$im and gem5. Unfortunately, this improvement in speed comes at the cost of
a reduced accuracy when gathered traces are compared to those collected by gem5.
Because of the loosely coupled design of the proposed framework, QEMU could
easily be replaced by another source of before cache traces if the user requires
a higher accuracy. QMEMU is implemented in an instruction set architecture-
independent manner but the implemented page table simulator is focussed on the
x86 platform. However, regardless of this dependency many of the techniques ap-
plied to build this simulator can be applied to other architectures. The page table
simulator allows the cache simulator to simulate mixed indexed caches and helps
close the semantic gap between raw memory access traces and their meaning. Fur-
thermore, a way to simulate direct-mapped or set-associative caches was proposed.
This simulator allows exploration of different cache hierarchies in parallel at an
accuracy coming close to the accuracy provided by cycle-accurate simulators.

Like all other research, there is always room for extension. As described the
improved performance of QMEMU comes at the cost of reduced accuracy of the

1https://github.com/doriandekoning/full-system-memory-tracing-
overview
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collected traces. This work primarily focused on being able to correctly produce
complete memory access traces of the simulated guest. In the future, more work
could be done to improve the accuracy of these traces. To achieve a higher accuracy
the powerful QEMU TCG could be modified further to improve accuracy.

Currently, the QEMU guest MMU is used to trace memory accesses made by
the guest for translating virtual to physical addresses. Unfortunately, the TLB im-
plemented in QEMU is purely functional and does not resemble an actual TLB. By
simulating a more accurate TLB the overall accuracy of the traces could also be
improved.

Besides improving QEMU trace accuracy future work could instead also explore
the abilities to reduce the runtime of gem5 and allow it to work with the cache and
page table simulator proposed in this paper. There has already been an attempt to
parallelise gem5 in the past, unfortunately, this attempt was unsuccessful.

Because the proposed framework allows tracing realistic workloads, it paves a
way for research into new metrics and methodologies to analyse memory behaviour
of modern systems with new memory topologies.
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