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Abstract Self-healing within asphalt pavements is the process whereby road cracks can 15 

be repaired automatically when thermal and mechanical conditions are met. To accelerate 16 

and improve this healing process, metal particles are added to asphalt mixtures. However, 17 

thisapproach is costly  both in economic and environmental terms due to the use of virgin 18 

metallic particles. So, even though the self-healing of asphalt mixtures has been widely 19 

addressed in experimental terms over the years, there is a lack of research aimed at mod-20 

elling this phenomenon, especially with the purpose of optimizing the use of metal parti-21 

cles through the valorization of industrial by-products. As such, the goal of this study was 22 

to develop a statistical methodology to model the healing capacity of asphalt concrete 23 

mixtures (AC-16) from the characteristics of the metal particles added and the time and 24 

intensity used for magnetic induction. Five metal particles were used as heating inductors, 25 

including four types of industrial by-products aimed at transforming waste products into 26 

material for use in the road sector. The proposed approach consisted of a combination of 27 

cluster algorithms, multiple regression analysis and response optimization, which were 28 

applied to model laboratory data obtained after testing asphalt concrete mixtures contain-29 

ing these inductors. The results proved the accuracy of the statistical methods used to 30 

reproduce the experimental behaviour of the asphalt mixtures, which enabled the authors 31 

to determine the optimal amount of industrial by-products and time needed to make the 32 

self-healing process as efficient as possible.  33 

34 

Keywords Asphalt mixtures; Cluster analysis; Industrial by-products; Multiple regres-35 

sion analysis; Response optimization; Self-healing; Waste Valorisation. 36 
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Self-healing technology has revolutionized the design, construction and maintenance of 40 

asphalt pavements, and can have great economic and environmental effects on the con-41 

struction industry. The most efficient self-healing concept for asphalt pavements, is  in-42 

duction healing. Induction healing  allows asphalt pavements to repair within 3 minutes 43 

of exposure to induction heating. However, the main drawback to this induction aided 44 

self-healing approach is the amount of metal particles required in the asphalt mixtures to 45 

enable efficient and effective asphalt repair [1].  46 

To achieve induction healing, the amount of metal particles usually added to asphalt 47 

mixtures is 5-10% of the bitumen [2–4], which translates into 0.28-0.55% of steel parti-48 

cles in the mixture. Currently, steel fibre costs €855-873 per tonne, a value which is ex-49 

pected to increase in the future due to the growing demand for steel from the construction 50 

industry. The average cost of asphalt in the EU is €562 per ton [5]. If steel is added to 51 

asphalt mixtures in a percentage of 0.28-0.55%, the cost of asphalt mixtures per tonne 52 

would increase by between 50-100%. As such, these economic considerations make the 53 

adoption of this technology unaffordable for the road owners in the asphalt industry.  54 

However, in line with previous  studies on the incorporation of waste materials into 55 

asphalt pavements for different purposes [6–8], recent investigations have explored the 56 

use of metal by-products as a means of improving the resource and recycling efficiency 57 

of the self-healing process [4,9–11]. Research on self-healing for asphalt pavements have 58 

primarily focused on the experimental characterization of the healing capacity of asphalt 59 

concrete [12–14], porous asphalt [4,15,16] and stone mastic asphalt [17] mixtures through 60 

the addition of virgin metal particles.  61 

A few studies have addressed the numerical modelling of asphalt self- healing using 62 

either mechanistic or discrete approaches. Qiu et al. [18]  developed a cohesive zone 63 

model based on non-linear fracture mechanics with the support of finite element code to 64 

reproduce a monotonic loading-healing-reloading procedure. Although modelling and ex-65 

perimental results were in acceptable agreement, they differed from each other in terms 66 

of long-term displacement. Magnanimo et al. [19] used a discrete element method to 67 

model the macroscopic self-healing response of asphalt mixtures when subject to uniaxial 68 

compression (tension) tests [20]. Again, the model captured the basic behaviour of asphalt 69 

mixtures; but they recommended further research into their strain-rate dependence. Yang 70 

et al. [21] applied the discrete element method to simulate the fracture strength recovery 71 

ratio of single-edge notched asphalt mixtures after induction healing. Their simulated re-72 

sults  qualitatively matched the experimental tests in terms of peak load and slope of load 73 

increase. 74 

Other authors have approached the healing of asphalt mixtures as their recovery ca-75 

pacity during mechanical tests. Chowdary and Murali Krishnan [22] tested the accuracy 76 

of a constitutive modelling framework to replicate healing experiments carried out 77 

through repeated triaxial tests. Luo et al. [23] used an energy-based mechanistic approach 78 



3   
 

 

to characterize the decrease of damage density during the healing process of asphalt mix-79 

tures based on a step-loading recovery test. Levenberg [24] formulated a non-linear vis-80 

coelastic constitutive model to simulate the healing capacity of asphalt concrete during 81 

recovery intervals of uniaxial compression and standard complex modulus experiments. 82 

They all reached a satisfactory graphical fit to their laboratory results. 83 

All of these investigations assess the ‘goodness-of-fit’ of their models qualitatively, 84 

in other words, they lack any numeric measure to guarantee the validity of the simulated 85 

results. Moreover, some of these studies highlighted the complexity of modelling asphalt 86 

mixtures through numerical methods, due to their shape, size, distribution of aggregates 87 

and air voids or chemistry [22], while others highlighted the optimization of the healing 88 

process as an important step to ensure durable asphalt pavements [18]. 89 

As a result of  these considerations, a research gap was identified in relation to the 90 

development of a simpler and more accurate method of optimising the self-healing be-91 

haviour of asphalt mixtures. In comparison with numerical approaches, statistical meth-92 

ods provide a more accessible means of modelling physical phenomena through the math-93 

ematical combination of a set of contributing factors, with the added value of their capac-94 

ity of testing significance hypotheses to verify the validity of the results achieved. Hence, 95 

this study aimed at designing a statistical framework to model the healing capacity of 96 

asphalt concrete mixtures, enabling the prediction of either the amount of metal particles 97 

or the heating time needed for achieving a certain road repair performance, depending on 98 

the preferences of the decision-makers. The underlying objective is the valorisation of 99 

metal waste through the optimization of the self-healing process in asphalt mixtures in 100 

terms of either resource or time efficiency.    101 

 102 

2. Methodology 103 

 104 

The proposed framework was intended to facilitate the modelling of the healing potential 105 

of asphalt mixtures containing metal additives as heating inductors, based on the coupling 106 

of experimental and statistical methods. A series of laboratory tests were designed in the 107 

first instance to enable the characterization of both metal particles and asphalt mixtures 108 

in terms of healing capacity. The experimental results were then modelled using a com-109 

bination of statistical techniques including cluster analysis, regression analysis and re-110 

sponse optimization.  111 

 112 

2.1.  Experimental Setup 113 

 114 

The laboratory work focused on the determination of the Healing Ratio (ܴܪ) of asphalt 115 

mixtures. ܴܪ is a measure that compares the strength of an asphalt mixture before and 116 

after a three point bending test [3]. All of the steps required to calculate	ܴܪ, shown in 117 

Figure 1, are explained in detail below. 118 
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 120 
Figure 1. Flowchart of the experimental steps (a to j) conducted in laboratory to determine the healing 121 

ratio (HR) of asphalt mixtures: (a) mixture dosage, (b) specimen manufacturing, (c) and (h) cooling-down 122 
times, (d) breaking test after healing, (e) and (g) rest period times, (f) specimen joint and magnetic induc-123 

tion, (h) three point bending test before healing and (j) HR calculation.  124 
 125 

The first stage (Figure 1(a)) was the dosage of asphalt mixtures, which consisted of 126 

the following components: ophite stone as coarse aggregate and limestone as fine aggre-127 

gate (from 0.063 mm to 2 mm), conventional bitumen 50/70 and metal particles of dif-128 

ferent nature to enable the healing process under magnetic induction. Up to 5 different 129 

mixtures were studied by only changing this last component and then adjusting the dosage 130 

to fit the particle size distribution of a dense asphalt mixture (AC-16), as depicted in Fig-131 

ure 2. To this end, both the particle size distribution (UNE 933-1) [25] and the specific 132 

weight (kg/m3) of the mixtures were calculated through the pycnometer method following 133 

the UNE 1097-4 [26] standard. 134 

 135 

 136 
Figure 2. Particle size distribution of a dense asphalt concrete mixture (AC-16) 137 

 138 
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The materials used as metal particles, which are shown in Figure 3, included virgin 139 

steel grits (VM), by-products from blasting processes in the form of steel spheres (SBP) 140 

and grits (GBP), dust by-products filtered from blasting processes (FBP) and green slags 141 

from metal manufacturing (GSBP). In all cases, they were waste materials from metal 142 

manufacturing processes. As such, they are potentially a valuable resource that can be 143 

used in the design and production of asphalt mixtures to improve the healing process in 144 

economic and environmental terms.  These by-products were used as heating inductors 145 

and/or supplementary aggregates either in isolation or in combination with each other. 146 

Their heating capacity was measured by testing them under magnetic induction and reg-147 

istering the temperature they achieved, if any, using a thermal camera.  148 

 149 

 150 
Figure 3. Metal Particles used in the study 151 

 152 

The next step, represented in Figure 1(b), was the manufacturing of the mixtures, in 153 

which ferromagnetic particles were added together with the fine aggregates. The distri-154 

bution of these particles into the specimens was assumed to be uniform, since no for-155 

mation of clusters was observed during their mixing. The sample size corresponded to 156 

half-height Marshall specimens, which were compacted by 40 blows each side using an 157 

impact compactor [11]. The reduced dimensions of the specimens were chosen with the 158 

aim of saving resources, in line with the recycling aim of the research. After de-molding 159 

the specimens, they were pre-notched with a saw to produce a straight crack. Then, the 160 

specimens were stored in a freezer for 24 hours, in order to ensure that the straight crack 161 

remained unaltered when breaking (Figure 1(c)). In addition to experimental mixtures 162 

manufactured using the by-products shown in Figure 3, a control asphalt mixture contain-163 

ing fresh steel grits was designed due to the innate ferromagnetic behaviour of these par-164 

ticles. 165 

Once the specimens were frozen, the breaking test (three point bending test as shown 166 

in Figure 1(d)) was conducted using an ad-hoc manufactured cradle with a 7 cm separa-167 

tion between supports, as shown in Figure 4(a). This test yielded the max load resistance 168 

by the mixtures before healing (ܮ௕௛), which was the first parameter to include in the equa-169 

tion to obtain ܴܪ. This load was recorded by a cell inserted into the compression machine. 170 

After the initial test (break), the specimens were left to rest for two hours (Figure 1(e)), 171 

in a temperature controlled room (20ºC) before the sixth and more complex stage, the 172 

healing (Figure 1(f)). The healing was carried out using the magnetic induction using an 173 

EASYHEAT machine (Figure 4(b)). The frequency of the test was set at 329 Hz, whilst 174 
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the values of intensity and time used varied between 200 A and 600 A and 90 s and 300 175 

s, respectively. The temperature achievements during each test were recorded by an Op-176 

tical Pris Thermal camera, as shown in Figure 4(c). 177 

 178 

 

 

(a) 

 
(b) (c) 

Figure 4. Details of the break-heal-break test (a) Ad-hoc cradle manufactured to support the three-point 179 
bending test (b) Position of the specimens under the coil during magnetic induction (c) Thermographic 180 

images of the specimens when being increasingly heated 181 
 182 

The penultimate phase consisted of letting the specimens rest for 24 hours before re-183 

peating the 24 hours freezing and then breaking them through the three-point bending test 184 

previously described (Figures 1(g) and (h)). The second test (break) shown in Figure 1(i) 185 

involved obtaining the load resisted by the specimens after healing (ܮ௔௛), which allowed 186 

the calculation of ܴܪ using Eq (1). Taking into account that the geometric characteristics 187 

of the specimens were the same before and after healing, it can be assumed that the ratios 188 

among the loads recorded before and after healing were the same that those corresponding 189 

to the values of resistance achieved, as illustrated in Figure 1(j). 190 

 191 

ܴܪ ൌ
௔௛ܮ

௕௛ܮ
ൌ
ܴ௧
௔௛

ܴ௧
௕௛  (1) 

	192 

2.2. Statistical modelling 193 

	194 

2.2.1. Cluster Analysis 195 

 196 
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Cluster analysis is a term coined by Tryon in 1939 [27], who defined it as a set of algo-197 

rithms devoted to group different elements based on their similarity to each other. In terms 198 

of this research, this technique enabled the partition of the initial types of asphalt mixtures 199 

into a series of groups or clusters. According to the main premise of cluster analysis, this 200 

implied that the specimens contained in the same group were alike, whilst they differed 201 

from the mixtures belonging to other clusters. 202 

The particular approach selected for this purpose was bottom-up hierarchical cluster-203 

ing. Unlike k-means clustering, this process does not require an aprioristic notion of the 204 

desired number of clusters and involves fewer assumptions regarding the distribution of 205 

the data. Its working principle consists of allocating a cluster to each item and then start 206 

a repetitive procedure whereby the items are combined in larger and increasingly hetero-207 

geneous clusters according to their similarity, until they all are grouped into a single con-208 

glomerate [28]. 209 

Since hierarchical clustering is based on arranging the data as a distance matrix, the 210 

number of groups to choose is determined by the similarity measure and linkage method 211 

used. In this case, the Euclidean distance was selected as a similarity measure, since it is 212 

one of the most adequate alternatives to deal with interval data [29]. The formulation 213 

corresponding to this measure is provided in Eq. (2). 214 

 215 

݀௜௝ ൌ ඨ෍൫ݔ௜௞ െ ௝௞൯ݔ
ଶ

௞

 (2) 

 216 

where ݀ ௜௝ is the distance between items ݅  and ݆ , such that ݔ௜௞ and ݔ௝௞ represent their values 217 

across the ݇ variables included in the analysis. As for the clustering algorithm, the ap-218 

proach taken was complete linkage, also known as the farthest neighbour method. In com-219 

parison with other hierarchical clustering techniques, this was the method proving to be 220 

less sensitive to identify false clusters [30]. The distance between two clusters is com-221 

puted according to the maximum separation between the members within them, as ex-222 

pressed in Eq. (3).   223 

 224 

௠௞ܦ ൌ max൫ܦ௜௞,  ௝௞൯ (3)ܦ

 225 

where ܦ௖భ௖య is the distance between clusters ܿଵ and ܿଷ, ܦ௖మ௖య is the distance between clus-226 

ters ܿଶ and ܿଷ and ܦ௠௖య is the distance between clusters ݉ and ܿଷ, such that ݉ is the 227 

merged conglomerate containing clusters ܿଵ and ܿଶ. Both distances and clusters are cal-228 

culated based on the values achieved by the items to compare across more than two vari-229 

ables. In this case, asphalt mixtures were clustered according to the density and content 230 

of their metal particles, which represented the intrinsic properties of the heating inductors 231 

used.  232 
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The interpretation of the output yielded by cluster analysis is supported with a den-233 

drogram, which is a tree plot indicating how the items are grouped into larger clusters 234 

progressively. To this end, it measures the similarity level between the clusters at each 235 

step of the process, facilitating the decision on where to cut it and determine the final 236 

grouping. 237 

 238 

2.2.2. Multiple Regression Analysis 239 

 240 

The predictive modelling of the self-healing capacity of asphalt mixtures was approached 241 

using Multiple Regression Analysis (MRA), which enabled exploring the relationships 242 

between ܴܪ, which was the response to fit (ܻ), and a series of variables involved in the 243 

induction heating process, which served as predictors ( ௜ܺ, ௝ܺ).  244 

In particular, the predictors considered included the specific weight ( ଵܺ, kg/m3) and 245 

content (ܺଶ, %) of metal particles, as well as the time (ܺଷ, s) and intensity (ܺସ, A) set for 246 

the application of induction heating. The type of bitumen was not considered as a predic-247 

tor because it was the same in all the mixtures, whilst heating temperature was only rec-248 

orded at the surface of the specimens and, therefore, lacked enough representativeness. 249 

Since the proposed variables were assumed to interact to each other, the MRA model was 250 

expressed as shown in Eq. (4).  251 

 252 

ܻ ൌ ଴ܤ ൅෍෍ܤ௜௝ ∗ ௜ܺ ∗ ௝ܺ ൅ ܧ

௡

௝ୀଵ

௡

௜ୀଵ

 (4) 

 253 

where ܤ଴ is the constant of the regression equation, ܤ௜௝ refers to the coefficients by which 254 

the predictors are multiplied and ܧ represents the residuals derived from the regression. 255 

This model was built according to a significance level of 0.05 [31], such that those terms 256 

demonstrating to be above that threshold were discarded for subsequent steps. To ensure 257 

the pertinence of the terms included in MRA, their Variance Inflation Factors (VIF) were 258 

determined to prevent any multicollinearity effect.  259 

The quality of the model was assessed using two main goodness-of-fit measures: the 260 

standard error of the regression (ܵ) and the predicted coefficient of determination (pred. 261 

ܴଶ). ܵ  indicates the distance between the observed and fitted values taken by the response, 262 

whilst pred. ܴଶ involves an evolution of the standard (ܴଶ) and adjusted (adj. ܴଶ) coeffi-263 

cients of determination. It is calculated by systematically removing each observation from 264 

the model and then calculating how well the omitted values are predicted.  265 

In addition to these general verifications, the validity of the regression model was 266 

verified through a residual analysis. This consisted of evaluating the distribution of ܧ in 267 

terms of normality [32], homoscedasticity [33] and independence [34,35], thus preventing 268 
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the existence of type I and type II errors [36]. Table 1 compiles the graphical and analyt-269 

ical tests undertaken to test these assumptions. 270 

 271 

Table 1. Graphical and analytical tests used to check the assumptions related to residual analysis 272 

Assumption 
Verification  

Graphical Analytical 

Normality Quantile-Quantile plot / Histogram Ryan- Joiner test 

Homoscedasticity Standardized residual vs Fitted value plot Levene’s test 

Independence Standardized residual vs Observation order plot Durbin-Watson statistic 

 273 

2.2.3. Response Optimization 274 

 275 

In the context of this investigation, response optimization was used to determine the com-276 

bination of factors leading to achieve a target value of ܴܪ, based on the MRA model built 277 

in the previous step. This was accomplished using the desirability function approach, 278 

which enables evaluating how well a combination of settings satisfies the purpose sought 279 

by the response. In other words, response optimization was provided by the combination 280 

of factors that best fitted the healing ratio desired for the mixtures, with the restriction 281 

that the values obtained must remain within their upper and lower bounds. 282 

Since there was only one response to optimize (ܴܪ), the approach taken was limited 283 

to the individual desirability (ߜ௜) of the settings established to target a fitted response 284 

value ෠ܻ௜. ߜ௜൫ ෠ܻ௜൯ ranges from 0 to 1, such that 1 represents an ideal solution. Eq. (5) formu-285 

lates the desirability function proposed by Derringer and Suich (1980) [37] to calculate 286 

௜൫ߜ ෠ܻ௜൯ when the response is target-based. 287 

 288 

௜൫ߜ ෠ܻ௜൯ ൌ

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ

0, ݂݅	 ෠ܻ௜ ൏ ௜ܮ

ቆ
෠ܻ௜ െ ௜ܮ
௜ܶ െ ௜ܮ

ቇ
௦

, ௜ܮ	݂݅ ൑ ෠ܻ௜ ൑ ௜ܶ

ቆ
෠ܻ௜ െ ௜ܮ
௜ܶ െ ௜ܮ

ቇ
௧

, ݂݅	 ௜ܶ ൑ ෠ܻ௜ ൑ ௜ܷ

0, ݂݅	 ෠ܻ௜ ൐ ௜ܷ

 (5) 

 289 

where ܮ௜, ௜ܷ and ௜ܶ are the lower, upper and target values desired for the response, whilst 290 

௜൫ߜ ,represent how important is to achieve the target value. Hence ݐ and ݏ ෠ܻ௜൯ increases 291 

linearly towards ௜ܶ in case ݏ ൌ ݐ ൌ 1, whereas the function becomes convex and concave 292 

if ݏ ൏ 1, ݐ ൏ 1 and ݏ ൐ 1, ݐ ൐ 1, respectively. 293 

Given the values of specific weight and intensity of the metal particles to be modelled, 294 

the application of response optimization was aimed at fitting the values of ܴܪ targeted 295 

by making variations in the content of inductors and heating time, depending on whether 296 

resource efficiency or quickness are a priority. These variations were restricted by the 297 
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maximum and minimum values of specific weight and intensity in the mixtures consid-298 

ered, which performed as constraints in the optimization problem. Variation were de-299 

tected among the collected data. 300 

 301 

3. Results and discussion 302 

 303 

This section displays and examines the main results obtained through the application of 304 

the experimental and statistical approaches described in the methodology. To ensure the 305 

cohesion between both sections, the results are presented according to the same structure 306 

used above, whereby the experimental outputs lay the foundations required for the statis-307 

tical analyses.  308 

 309 

3.1. Experimental Setup 310 

 311 

Figure 5  illustrates the particle size distribution of the metal particles used. Their specific 312 

weights, as well as the temperature they achieved (peak and average) when situ-313 

ated 2 cm beneath a coil under 100 A magnetic induction, are shown in Table 2. 314 

Since 20 ºC was the room temperature, the values in Table 2 indicated that GSBP 315 

was almost completely insensitive to magnetic induction.derr 316 

 317 

 318 
Figure 5. Particle size distribution of the metal particles tested 319 

  320 
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Table 2. Specific weight and temperature achieved by the metal particles tested 321 

Metal Specific weight Heating test 

particle (Kg/m3) Peak Tª (ºC)  Average Tª (ºC) 

VM 7.850 79.8 59.4 
SBP 7.465 87.4 45.4 
GBP 7.639 73.8 39.2 
FBP 3.585 53.2 32.0 
GSBP 2.875 20.0 20.0 

 322 

After this initial characterization, the metal particles were incorporated into the man-323 

ufacture of 5 different mixtures. The first two mixtures consisted of the addition of a 324 

single heating inductor to the aggregates and the bitumen: VM and GBP. The third and 325 

fifth mixtures combined GBP with two by-products having a limited or almost inexistent 326 

reaction to magnetic induction, such as FBP and GSBP, whilst the fourth mixture emerged 327 

from the coupling of SBP and FBP. To ease the nomenclature of these mixtures they were 328 

named as VM, SB1, SB2, JB1 and JB2, such that SBx means that a single metal inductor 329 

was added and JBx indicates that two by-products were jointly included. The dosage of 330 

the five experimental mixtures is shown in Table 3 as the difference between each sieve 331 

passing value and the spindle centre of the dosage of an AC-16 mixture, which was taken 332 

as a reference as explained in Figure 2. 333 

 334 

Table 3. Dosage of the experimental mixtures in comparison with the spindle center of that correspond-335 
ing to dense asphalt concrete (AC-16) 336 

Mixture 
Sieve size (mm) 

22.0 16  8 4 2 1 0.5 0.25 0.13 0.063 

AC-16* 100.0 95.0 67.5 42.5 31.0 23.5 16.0 11.0 8.0 5.0 

VM 0 +5.0 +2.8 +1.8 +3.1 -2.1 -1.7 -0.6  +1.6 

SB 0 +5.0 +2.9 +1.9 +1.3 +1.3 +0.7 +0.3 +0.4 +1.0 

JB1 0 +5.0 +2.4 +1.5 +1.1 +1.1 +0.6 +0.3 +0.3 +0.5 

JB2 0 +5.0 +1.7 +1.1 +0.0 -1.2 -1.0 +0.3 +0.7 +1.1 

JB3 0 +5.0 +3.4 +2.1 +1.3 +1.4 +0.8 -0.4 +0.4 +1.9 

* Values corresponding to the spindle cente 

 337 

All the experimental mixtures were subjected to the break-heal-break test as described 338 

in the methodology. Hence, the loads resisted before and after healing by each mixture 339 

under different pairs of induction intensity and time were recorded, in order to facilitate 340 

their comparison. The VM specimens were initially tested with intensities of between 400 341 

A and 600 A and times above 120 s. For instance, the specimens tested for 240 s at 500 342 

A reached a peak ܴܪ of 73%; nevertheless, they achieved temperatures (above 150 ºC), 343 

which is not admissible to ensure the absence of changes in the bitumen. Thus, intensities 344 

were lowered to 400 A and 300 A, leading to healing ratios of up to 45 % and 47 % when 345 

heated during 120 s and 240 s, respectively. 346 
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Intensities between 300 A and 400 A were not sufficient to achieve good healing ratios 347 

in the SB mixture, to the extent that the specimens tested during 240 s at 300 A only 348 

reached values of ܴܪ of 7 %. Higher ܴܪ values started when applying 500 A during 240 349 

s (about 47 %). In this case, the surface temperature of the specimens was about 90 ºC, 350 

which was considered a suitable value to soften the bitumen and let it flow to close any 351 

crack within the specimens. Two more groups of SB specimens were tested by increasing 352 

the intensity to 600 A with times of 240 s and 300 s. These two groups provided healing 353 

ratios of 47 % and 55 %, respectively, without exceeding a surface temperature of 130 354 

ºC. 355 

Again, currents of 300 A and 400 A were not enough to sufficiently heat and, there-356 

fore, heal the JB1 mixtures. The coupling of a current of 500 A with healing times be-357 

tween 180 s and 300 s yielded higher healing ratios, whilst the highest (%31) ܴܪ corre-358 

sponded to a combination of 240 s and 600 A. Still, the results were not as good as those 359 

achieved in other mixtures. The lower amount of GBP by-products in JB1 in relation to 360 

SB explained why it resulted in an inferior healing performance. Furthermore, JB1 also 361 

contained FBP, which was found to be insensitive to magnetic induction (Figure 5). 362 

To reduce the risk of overheating the JB2 specimens, the asphalt mixtures containing 363 

SBP and FBP were tested at currents of 400 A and 500 A and healing times between 120 364 

s and 180 s. The best performance was obtained by combining 180 s and 400 A, whereby 365 

the values of ܴܪ reached a maximum of 65 %. In general, the results of JB2 showed 366 

higher variability than other mixtures. This is probably due to the SBP particle size, which 367 

is substantially bigger that those of the other by-products tested and can result in either 368 

less homogeneous mixtures or boost the loss of aggregates when breaking the specimens.  369 

The final mixture, JB3, contained two by-products: GBP and GSBP. Taking into ac-370 

count that GSBP barely contributed to the heating of the mixture when applying magnetic 371 

induction, these specimens were tested using the maximum current intensity of 600 A and 372 

varying healing times between 240 s and 300 s. The highest values of ܴܪ reached were 373 

about 60%, suggesting that the longer the test, the higher the healing ratio when  intensity 374 

remained steady. 375 

 376 

3.2. Statistical modelling 377 

 378 

3.2.1. Cluster Analysis 379 

 380 

The characterization and dosages conducted in laboratory enabled the determination of 381 

the specific weight and content of the additives included in the mixtures as heating induc-382 

tors. These were the variables used for the cluster analysis, as representatives of the in-383 

trinsic properties of the particles used. In mixtures with more than one single additive, 384 

specific weight was calculated as the weighted average of the individual values corre-385 

sponding to each particle type, whilst content was computed as their sum. 386 
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As a result, the following pairs of values [specific weight (kg/m3), content (%)] were 387 

obtained for the inductors included in the 5 asphalt mixtures under evaluation: [7.850, 388 

5.0] (VM), [7.639, 4.4] (SB), [6.312, 5.5] (JB1), [6.041, 7.9] (JB2) and [5.405, 11.3] 389 

(JB3). The application of Eqs. (2) and (3) according to these values yielded the dendro-390 

gram depicted in Figure 6. Although the density and amount of the metal particles added 391 

to the mixtures were different in all cases, their dosage was adjusted to be coincident and 392 

fit the gradation of an AC-16 specimen, thus making them comparable to each other. 393 

Moreover, having a variety of combinations of specific weight and content was a require-394 

ment for building prediction models to optimize the valorization of by-products included 395 

in asphalt mixtures with self-healing purposes, which was the ultimate objective of this 396 

research. 397 

 398 

 399 
Figure 6. Dendrogram indicating the clustering options to group the experimental mixtures according to 400 

their similarity  401 
 402 

The clustering algorithm began by yielding 5 groups, one per mixture, and then con-403 

tinued by producing increasingly heterogeneous conglomerates. Hence, the second pos-404 

sible cut involved 4 groups, whereby the only cluster formed included VM and SB con-405 

stituents, whose content and specific weight are similar. The next step corresponded to 406 

the grouping of JB1 and JB2, leaving JB3 in isolation. Finally, the last meaningful level 407 

clustered all the mixtures except JB3. Since grouping definition is affected by the step 408 

where the values change more abruptly, the cutting line was drawn to result in 2 clusters, 409 

as represented in Figure 6.  410 

Due to the low representativeness of the second cluster, JB3 was removed from sub-411 

sequent steps. This line of action was consistent with the magnetic and thermal response 412 

observed in the particles used as inductors in this mixture, since GSBP was found to be 413 

very limited in those terms and made the application of high values of time and intensity 414 

necessary. Still, the low resistance of this by-product led to misleading results of ܴܪ. An 415 
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alternative path consisting of considering only GBP in JB3 for modelling would not pro-416 

vide added value to the final outcome of the study, reaffirming the decision to exclude 417 

this mixture for prediction purposes. 418 

The values of ܴܪ obtained for the remaining mixtures were arranged according to the 419 

time and current intensity used. As the same combinations of values were applied to the 420 

same specimens repeatedly until the results converged using Eq. (1), the data used from 421 

this point were the mean values of ܴܪ obtained from such replicates, as specified in Table 422 

4. To ensure the validity of subsequent prediction models, one randomly chosen sample 423 

of each mixture was excluded from regression analysis for testing purposes. Under the 424 

premise of using different values of heating time and intensity depending on the purity of 425 

the metal particles, the healing ratios obtained were in the same order of magnitude in 426 

most cases. The main exception to this line was found in SB_3, which only recovered 427 

6.9% of its initial resistance after the process due to its reduced content of metal particles 428 

and the low intensity applied. 429 

 430 

Table 4. Training and testing combinations of predictors used to model the healing ratio (ࡾࡴ) of asphalt 431 
mixtures through multiple regression analysis 432 

Purpose Mixture 
 Metal particles 

Time (s) Intensity (A) ࡾࡴ (%)  Specific weight 
(kg/m3) 

Content (%) 

Training VM_1  7.850 5.0 120 400 28.331 

Training VM_2  7.850 5.0 240 500 67.039 

Training VM_3  7.850 5.0 240 300 45.850 

Testing VM_4  7.850 5.0 120 500 40.984 

Training SB_1  7.639 4.4 240 600 47.709 

Training SB_2  7.639 4.4 300 600 57.822 

Training SB_3  7.639 4.4 240 300 6.914 

Testing SB_4  7.639 4.4 240 500 42.041 

Training JB1_1  6.312 5.5 180 500 15.846 

Training JB1_2  6.312 5.5 120 600 14.976 

Training JB1_3  6.312 5.5 300 500 38.423 

Testing JB1_4  6.312 5.5 240 500 27.243 

Training JB2_1  6.041 7.9 240 300 38.556 

Training JB2_2  6.041 7.9 180 400 57.548 

Training JB2_3  6.041 7.9 120 400 36.300 

Testing JB2_4  6.041 7.9 120 500 40.789 

 433 

3.2.2. Multiple Regression Analysis 434 

 435 

The values of specific weight, content, time and intensity compiled in Table 4 were 436 

used as predictors to model ܴܪ, which performed as response, through multiple regres-437 

sion analysis. The use of Eq. (4) led to obtain the model summarized in Table 5, which 438 
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demonstrated that the interactive effect of specific weight ( ଵܺ) with the remaining pre-439 

dictors (ܺଶ, ܺଷ and ܺସ) was statistically significant (p-values < 0.05 in all cases) and ex-440 

plained 90 % (ܴଶ) of the variability of the ܴܪ values around its mean. The model was 441 

determined using the stepwise method, whose working principle consists of systemati-442 

cally adding the most significant term or removing the least significant term during each 443 

step. The results of this procedure indicated that the most efficient model to fit ܴܪ was 444 

based on the three interactions referred above, such that adding, replacing or removing 445 

any term, either single variables or interactions, did not improve its quality. 446 

All the coefficients associated with these terms were positive, which was logical ac-447 

cording to the physical relationships between the predictors and the response. Hence, the 448 

percentage of resistance recovered after healing was proportional to the purity of the metal 449 

particles and their content in the mixture, which favoured the fluency of the bitumen 450 

through the rapid heating of the mixtures. The healing ratios also increased as long as the 451 

values of time and the intensity applied during the process were higher, boosting the heat-452 

ing of the inductors. Furthermore, the p-value of the F-tests for the regression term was 453 

also below the significance level, indicating that the model built provided a better fit than 454 

the intercept-only model. 455 

 456 

Table 5. Summary of the multiple regression model built for estimating the healing ratio (ࡾࡴ) of asphalt 457 
mixtures 458 

 ૛ࡾ .૛ PRESS Predࡾ .૛ Adjࡾ ࡿ

7.025 0.90 0.86 962.164 0.75 

Term Coef F-Value p-value VIF 

Regression - 23.40 0.000 - 

Constant -195.6 - 0.000 - 

ଵܺ ∗ ܺଶ 3.739 53.65 0.000 1.95 

ଵܺ ∗ ܺଷ 0.025 29.43 0.001 1.28 

ଵܺ ∗ ܺସ 0.017 30.25 0.001 1.73 

 459 

The value of Adj. ܴଶ reached (0.86) suggested that the accuracy of the model was not 460 

compromised by the number of predictors used, since it did not differ much from the 461 

standard ܴଶ. This was corroborated by the Variance Inflation Factors (VIF), which were 462 

very close to the lower bound of this measure (1) for all predictors, suggesting that mul-463 

ticollinearity was not an issue. Although the Pred. ܴଶ slightly decreased in comparison 464 

with these two coefficients, it was high enough to validate it for making new predictions. 465 

The standard error of the regression (ܵ) was strongly affected by JB2, which was respon-466 

sible for almost half of the distance between the values measured in laboratory and the 467 

regression line. This was mainly attributable to the size of SBP and its combination FBP 468 

in large quantities (Table 4), which hindered the modelling of this mixture and led it to 469 

reach the highest values of ܴܪ under all the combinations of time and intensity, as demon-470 

strated in the contour plots in Figure 7. On the contrary, the limited purity and amounts 471 
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of by-products contained in JB1 explained its poor healing performance in comparison 472 

with the remaining mixtures (Figure 7(c)). 473 

 474 
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(a) (b) 

  
(c) (d) 

Figure 7. Contour maps representing the relationship between the values time (s) and intensity (A) with 475 
the healing ratio (ࡾࡴ) achieved by asphalt mixtures (a) VM (b) SB (c) JB1 (d) JB2 476 

 477 

The reliability of the regression model built was first checked in analytical terms, as 478 

shown in Table 6. The Shapiro-Wilk and Levene’s tests yielded p-values above the sig-479 

nificance level (0.05), guaranteeing the normality and homoscedasticity of residuals. 480 

Their independence was checked through the comparison of the Durbin-Watson statistic 481 

 bounds established by Savin and White (1977) 482 (௎ܦ) and upper (௅ܦ) with the lower (ܦ)

[38], such that ሺ4 െ ሻܦ ൐ ܦ ,௎ indicates an absence of serial correlationܦ ൏  ௅ suggests 483ܦ

a positive correlation and ܦ௅ ൏ ܦ ൏  ௎ involves that the test is inconclusive. For a sam-484ܦ

ple size of 12 (Table 4) and a number of terms equal to 3 (Table 5),	ܦ௅ and	ܦ௎ are 0.812 485 

and 1.579, respectively. Since ሺ4 െ ሻܦ ൌ 1.467, the test was found to be inconclusive. 486 

 487 

Table 6. Analytical verification of the assumptions involving the residuals of multiple regression analysis 488 

Normality Homoscedasticity Independence 

Shapiro-Wilk p-value Levene p-value Durbin-Watson 

0.970 0.915 0140 0.931 2.533 

 489 

To further ensure the robustness of the model summarized in Table 5, the assumptions 490 

concerning its residuals were also verified graphically, as illustrated in Figure 8. The re-491 

semblance of the residuals to the reference line of the quantile-quantile (Q-Q) plot, as 492 
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well as the approximate bell-shape of the histogram, confirmed that the assumption of 493 

normality was met. The unbiased distribution of the residuals in the versus fits plot also 494 

ensured the homoscedasticity of the model. Finally, the lack of clear patterns and the 495 

random location of the residuals around the reference line in the versus order graph indi-496 

cated that they were not correlated to each other, which enabled assuming their independ-497 

ence too. 498 

 499 

 500 

 501 
Figure 8. Residual plots used to test the assumptions of multiple regression analysis graphically 502 

 503 

As a final step to prove the validity of the regression analysis conducted, the model 504 

summarized in Table 5 was used to estimate the healing capacity corresponding to the 505 

specimens reserved for testing, as indicated in Table 4. Figure 9 illustrates the fit between 506 

the values of ܴܪ measured in laboratory and the regression model. The results proved to 507 

be very accurate for the VM, SB and JB1 mixtures, to the extent that the errors between 508 

measured and predicted values were less than half ܵ in all cases (Table 5). However, the 509 

estimate for the JB2 mixture resulted in an error of 10.016, which ratified the singularity 510 

of this mixture, as a result of its uneven combination of low specific weight and high 511 

content of by-products. 512 

 513 
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 514 
Figure 9. Fit between the values of healing ratio (ࡾࡴ) measured in laboratory and predicted through mul-515 

tiple regression analysis for the specimens reserved for testing 516 
 517 

3.2.3. Response Optimization 518 

 519 

Based on the multiple regression model built in Table 5, the application of the re-520 

sponse optimization framework enabled the calculation of the minimum amount of time 521 

and resources required to achieve ܴܪ targeted values. Figure 10 depicts the working prin-522 

ciple of this approach, indicating the extent to which changes in the variables used as 523 

predictors produced variations in the healing ratio. Hence, the variations derived from the 524 

displacement of the vertical lines associated with the predictors with respect to the hori-525 

zontal axis can be combined to reach desired healing ratios. This is exemplified for a 526 

mixture containing 5.5 % of GBP and subject to induction during 200 s at 600 A, which 527 

resulted in a value of ܴܪ of 49.8 %.  528 

 529 

 530 
Figure 10. Optimization plot produced to target a healing ratio (ࡾࡴ) of 66.667 % by changing the values 531 

taken by the predictors 532 
 533 

In this case, a healing ratio of 66.7 % was set as a target, representing a recovery of 534 

two thirds of the original resistance of asphalt mixtures after breaking. This value was 535 

considered to be representative for a reasonable degree of healing capacity under real 536 

conditions. Since the underlying objectives sought were saving resources and be as time-537 
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efficient as possible, intensity was a restricted parameter established according to the 538 

heating susceptibility of the metal particles. Therefore, this parameter was set at 500 A in 539 

VM and JBP1, which proved to be more likely to produce alterations in the bitumen, and 540 

was increased to 600 A for SBP1 and SBP2. The implementation of the desirability func-541 

tion synthetized in Eq. (5) according to these conditions yielded the results compiled in 542 

Table 7. 543 

 544 

Table 7. Optimized values of content (%) and time (s) obtained for the resource efficiency and quickness 545 
scenarios using the desirability function approach 546 

Mixture Objective Content (%) Time (s) Intensity (A) Healing Ratio (%) ࢏ࢾ൫ࢅ෡࢏൯ 

VM Resource efficiency 4.760 297.119 500.000 66.667 1.000 

 Quickness 5.926 120.000 500.000 66.667 1.000 

SBP1 Resource efficiency 4.563 297.006 600.000 66.667 1.000 

 Quickness 5.728 120.000 600.000 66.667 1.000 

SBP2 Resource efficiency 6.474 300.000 600.000 66.667 1.000 

 Quickness 7.658 120.000 600.000 66.667 1.000 

JBP1 Resource efficiency 7.418 300.000 500.000 66.667 1.000 

 Quickness 7.900 120.001 500.000 50.805 0.735 

 547 

Overall, all the mixtures were found to be capable of achieving the target established 548 

௜൫ߜ) ෠ܻ௜൯ ൌ 1), except JBP1 for the quickness scenario, which resulted in a desirability of 549 

0.735. This low value of ߜ௜൫ ෠ܻ௜൯ was due to the content of the metal particles used to man-550 

ufacture this mixture, which was the upper bound taken by the optimization problem for 551 

this variable. Reaching a value of ߜ௜൫ ෠ܻ௜൯ ൌ 1 in this scenario would involve increasing 552 

the by-products to approx. 10 % ; however, this course of action may result in an exces-553 

sively dense asphalt mixture, which would cause  transportation and installation prob-554 

lems. 555 

Otherwise, the remaining mixtures reached the value of ܴܪ sought under both sce-556 

narios. Beyond the limitations of the regression model ( Table 5), the values of content 557 

and time ( Table 7) show how the self-healing of asphalt mixtures can be optimized in 558 

terms of either resource or time efficiency. In particular, the first course of action would 559 

be to maximize the valorization of metal wastes in the road industry, where the construc-560 

tion and maintenance of pavements traditionally involve large amounts of raw material. 561 

However, since the metal particle contents yielded by the optimization process differed 562 

from those used to manufacture the specimens in laboratory to resemble an AC-16 dense 563 

asphalt mixture (Figure 2), the practical application of these values would require rede-564 

signing their dosage, in order to ensure that they meet the mechanical and technical pa-565 

rameters required for their implementation. 566 

 567 

4. Conclusions 568 

 569 
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This study was concerned with the statistical modelling of the self-healing capacity of 570 

asphalt mixtures containing different combinations of metal particles, focusing on the use 571 

of industrial metal by-products to reduce economic cost and environmental impacts of 572 

road materials. A methodology integrating cluster algorithms, multiple regression analy-573 

sis and response optimization was designed, applied and validated using the results ob-574 

tained in laboratory regarding the healing potential of five experimental asphalt mixtures 575 

heated through magnetic induction. The analysis of these results led to the following con-576 

clusions: 577 

 The experimental tests highlighted the suitability of the metallic by-products used as 578 

heating inductors in the self-healing process of asphalt mixtures. The only exception 579 

to this trend were the green foundry slags, whose thermal and magnetic response was 580 

almost null. In general, the values of heating time and intensity required by the exper-581 

imental mixtures were higher due to the lower purity of the by-products, although the 582 

steel shot wastes from sandblasting resulted in healing ratios similar to those of the 583 

control specimens with virgin metal particles. 584 

 In line with the inferences extracted from the laboratory results, cluster analysis led 585 

to discard the mixture type containing green slags, due to its almost null heating po-586 

tential and high fragility. The regression model built to replicate the laboratory results 587 

for the four remaining mixtures reached high coefficients of determination and met 588 

all the assumptions regarding its residuals, guaranteeing its reliability to make new 589 

predictions. In fact, the application of the model to the specimens excluded from the 590 

analysis for testing purposes yielded estimates in the order of magnitude of the stand-591 

ard error of the regression, which further corroborated its validity.  592 

 The desirability function approach used for response optimization showed that the 593 

amount of metal particles to include in the mixtures and the time of magnetic induc-594 

tion required to achieve targeted healing ratios. This step was intended to increase the 595 

viability of the self-healing of asphalt mixtures. On the one hand, it can help to max-596 

imize the recycling of industrial by-products as a valuable resource in asphalt design 597 

and road conservation. On the other hand, it can also limit the traffic disruptions as-598 

sociated with conventional road maintenance practices by designing asphalt mixtures 599 

that minimize the time required to apply magnetic induction. 600 

Although the results produced in this study proved to be valid and meaningful, further 601 

work is needed. Future work should focus on  testing the proposed framework using more 602 

specimens with different values of specific weight and content of metal particles, as well 603 

as new asphalt mixture dosages to verify how generalizable the optimized results are. In 604 

this vein, another area of research to develop in the future  concerns the incorporation of 605 

additional mechanical tests conducted in laboratory into the statistical modelling, in order 606 

to provide a more comprehensive characterization of the experimental behaviour of self-607 

healing asphalt mixtures.  608 

 609 
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