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Chapter 1

Introduction

1.1 A gentle introduction to statistics

To understand the thesis, we need to introduce a few basic notions from statistics.
We start with a non-rigorous introduction aimed at a general audience in this sec-
tion. We first introduce the goals of statistics. Next, we introduce the concept of
estimators and how to measure their quality. Then we introduce Bayesian methods
as we study Bayesian methods. Finally, we introduce the general ideas of studying
Bayesian methods from a frequentist point of view.

1.1.1 A first introduction to statistics

We constantly make decisions. What shall we wear today? What job should we
do? What study should we take? In order to make good decisions, we need to be
able to estimate outcomes. Statistics is the science of making accurate estimates. In
order to make the best decisions, we need to have the best statistical tools available.
Ideally, we want to make estimates that are as accurate as possible and quantify the
uncertainty of these estimates.

To clarify our language, let us introduce a few concepts. The thing we want to study
is the estimand. Examples of estimands are the weather tomorrow, the job market in
a year or the effect of eating sugar on blood pressure. To figure out what the estimand
should be, we use estimators. These take the data and produce an outcome. The
estimate is the outcome of the estimator given the data.

1.1.2 Estimators

To give the best possible estimates we need to have the best estimators out there.
So we need to think about quality of estimators. Is every estimator good? To talk

1



2 1. Introduction

about how good an estimator is, we first need to talk about what it means to be
a good estimator. There are various philosophies on what it means to be a good
estimator. We will study estimators from a frequentist point of view. That is, we
assume that there is a true process that we are observing. Moreover, we could have
gotten a different distribution of observations. This allows us to give meaning to the
quality of estimators.

One way of measuring the quality of an estimator is the expected loss. In order to
introduce the expected loss, we need to give a few names to things. We are trying
to find the process f0, our estimand. We do not assume we know the process f0 in
reality. Instead, we use it as a hypothetical object to define other things. To introduce
the expected loss, we need to define some things.

We start with a loss. The loss is a way of measuring how wrong we were, given
our estimate and the truth. This loss can be an arbitrary function. Let’s give this
function a name, L. For example, say we are predicting how warm it will be tomorrow.
Suppose we predict the temperature to be 20 degrees C. The day after, we observed the
temperature, 21 degrees. We would be 1 degree off. However, if we instead predicted
40 C, we would have been 20 degrees off. The 40C answer is usually more wrong than
the 20C answer. However, there might be much more damage if we underestimate
the temperature than if we overestimate. Hence in some cases, the 40C answer might
have led to a lower loss.

To define the expected loss, we need to give a few more things a name. We start with
hypothetical data coming from the process f0. We will evaluate the estimator in the
data. We call the outcome f̂ . Using this, we can compute the loss L(f̂ , f0).

f̂ is a random variable because it depends on the data. Now we can ask for the
expected value of the loss. The expected value of a random variable is the long-
term average of independent instances of this random variable. The formula for the
expected loss is given by

Ef0 [L(f0, f̂)].

This definition gives us one way of measuring the quality of our estimator.

Imagine we are shooting arrows at a target. Each place where we hit our target is
an estimate. In reality, we only get one estimate. However, imagine that we can
conduct our experiment all over again. Due to randomness, we could get slightly
different data and hence different conclusions. This randomness leads to a spread of
our outcomes. The expected value of our estimator can still be wrong. Because of
this, we can have a statistical bias. So in the ideal case, we want to minimise the
bias and spread. In Figure 1.1 we can see an illustration. The ideal situation is a
low bias and a low variance. In certain situations, we can gain accuracy by trading a
small amount of bias for a larger reduction in variance. In these situations, we have
a so-called bias-variance trade-off.



1.1. A gentle introduction to statistics 3

4 2 0 2 4

4

2

0

2

4

lo
w 

bi
as

high variance

4 2 0 2 4

4

2

0

2

4

low variance

4 2 0 2 4

4

2

0

2

4

hi
gh

 b
ia

s

4 2 0 2 4

4

2

0

2

4

Figure 1.1: Illustration of bias, variance and accuracy
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Figure 1.2: Consistency

The main obstacle in statistics is that the truth is usually unknown. Moreover, we
do not repeat the experiment. If we could repeat the experiment, we could collect
all our data into one bigger dataset and get more accurate predictions. Hence we
only get to see one of these points. And without convenient targets to let us know
where the truth is. Because of this, we cannot experimentally verify the quality of our
estimators. Therefore we need to use alternative methods to verify the quality. Two
such alternatives are theory and simulation studies. In this dissertation, we focus on
theory and use simulation studies to illustrate our theoretical findings.

To study the quality of the estimator we need to introduce various concepts. These
concepts are consistency, convergence rates and uncertainty quantification. The idea
behind consistency is as follows: We want our estimators to eventually come close to
the true generating process. In Figure 1.2, you can see a red circle, call its radius ϵ.
Roughly, we say that an estimator is consistent if for a given red circle of a specific
radius, and any error tolerance δ > 0, we can find a minimum data size n such that
if our data has size at least n the probability that our estimator produces an answer
back that is outside our red circle is at most δ. Recall that we call the true process f0
and the outcome of our estimator f̂ . f̂ would be in the circle if the distance between
the centre f0 and f̂ would be less than ϵ. Thus, in formula this would give, where d
is the distance metric:

P(d(f̂ , f0) > ϵ) < δ

Intuitively, no matter how close we demand our estimator to be, we will get there if
we have enough data. To get the formal definition see Section 1.2.2 Definition 1.2.1.

Next is the notion of a contraction rate. Again, imagine the red circle. Now imagine
this circle shrinking at a certain speed. Let’s call the radius ϵn. Roughly, we say
that an estimator has a contraction rate ϵn if for every δ > 0 we can find an M > 0
such that the probability that the distance between the truth and the outcome of our
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estimator is more than Mϵn, is less than δ. In formulas, this would give

P(d(f̂ , f0) > ϵn) < δ.

Intuitively this means that our estimator comes closer to the truth at a speed of ϵn.
For a formal definition, see again Section 1.2.2 Definition 1.2.2.

Next up is the notion of uncertainty quantification. Because we only get to see one
dataset, we only see one realisation of the estimator. This means that we do not know
how accurate the estimator is. Consider in Figure 1.1 the difference between the top
right and the bottom left picture. One is much more accurate than the other. If we
want to know how accurate we are, we have to develop techniques and give theoretical
guarantees for them. One idea to quantify uncertainty is the notion of a confidence
set. A confidence set of level 1−α is a random set Cα, such that the probability that
the truth f0 is contained in this set, f0 ∈ Cα, is at least 1− α. To be as informative
as possible, we want this set to be as small as possible.

How can we make such confidence sets? We can do the same trick as we did for the
contraction rates. We made a circle of a certain radius around the truth, such that
the probability that the estimator would produce an outcome in this circle is at least
our prescribed level α. Such an outcome is in the circle when the distance between
the truth f0 and our estimator f̂ is less than Mϵn. Because the distance d(f0, f̂) is

equal to d(f̂ , f0), we can also make our random set C to be a ball of radius Mϵn. This
construction requires knowing the contraction rate and the constant M . In certain
situations, this is possible. However, sometimes this is impossible.

Another idea to construct confidence sets is to use a technique called bootstrap. In
the bootstrap, you make new artificial datasets which resemble the original dataset.
Then by studying the spread by the variance introduced by bootstrapping, we can
get an idea of the spread of our estimator. Bootstrapping, however, does not always
explain the bias. Therefore we should be careful employing bootstrap in cases where
we use a bias-variance trade-off.

A third idea to construct confidence sets is to study a Bayesian alternative of uncer-
tainty quantification.

1.1.3 A first introduction to Bayes

Bayesian statistics is a way of doing statistics. In Bayesian statistics, you start with
your prior beliefs. These prior beliefs you encode in a probability distribution Π.
This probability distribution is called the prior or prior probability distribution. Then
you model the process as follows. Reality draws the generating process f randomly
following the prior Π, f ∼ Π. Then, condition on f , we draw our dataset from f :
X| f ∼ f .

Because our observation X depends on the generating process f , we can learn about
f by looking at the data. This dependence means that, given our data, our beliefs
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Figure 1.3: Prior, likelihood and posterior

on f can change. To update our beliefs on f , we compute the conditional probability
distribution of f given the data X. In formulas, this is

Π(·|X).

This probability distribution represents the beliefs that you should have as a Bayesian.

In general, there is no direct way of finding the posterior. However, often we can use
Bayes’ formula to compute the posterior. To apply Bayes’ formula, we need to be
able to know something called the likelihood. The likelihood depends on the data and
our hypothetical process f , not f0. Roughly speaking, the likelihood is how likely we
would see this data if the generating process was f . If we denote the likelihood by
Lik(X, f) Bayes formula becomes

Π(A|X) =

∫
A
Lik(X, f)Π(f)∫
Lik(X, f)Π(f)

.

The intuition is that our new belief in some hypothesis f is how likely the data was
if f was the generating process times how likely we think f was a priori.

In Figure 1.3 there is a graphical illustration of how it looks to update your beliefs.
In blue we can see the density of the prior distribution. The likelihood of the data is
drawn in orange. If we multiply these and then normalise the result we the posterior
density in green. As you can see, this is shifted to look more and more like the
likelihood.

This posterior distribution can be a complicated object, so you give summary statistics
instead, for example, the posterior mean and variance. You might lose information,
but they give a quick way of summarising the posterior.

Bayesians also want to quantify uncertainty. They do this by constructing credible
sets. A credible set of level 1−α is a set C such that the posterior assigns probability
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at least 1− α to the event f ∈ C:

Π(f ∈ C|X) > 1− α.

Because your prior beliefs are your personal subjective beliefs, the Bayesian methodol-
ogy is inherently subjective. However, we can study these methods from a Frequentist
point of view.

1.1.4 A first introduction to Frequentist Bayes

We still want to give theoretical guarantees to Bayesian methods, even though they
are inherently subjective. It turns out we can do this. There is just one complication.
The Bayesian posterior distribution is not a point estimate like we represented our
estimators earlier in the chapter. It is a probability distribution.

Thus we have to modify our definitions for consistency and convergence rates. To
illustrate consistency, we can go back to Figure 1.2. Let us pick a circle of radius
ϵ. We can ask: what is the probability Π(d(f0, f) < ϵ|X) that f is in this circle
according to the posterior distribution? Because our data is random, the posterior
distribution will also be. There are several mathematically equivalent ways of giving
this definition, but the cleanest concept is via the expected value. Let us start with
a error tolerance δ > 0. For every such error tolerance δ, we specify a minimum data
size N . This minimum data size N has to guarantee that, if our data size is larger
than N , we have that

Ef0 [Π(d(f0, f) > ϵ|X)] < δ.

Intuitively this means that the posterior will start assigning a higher and higher
probability to each ball around the truth. To see the formal set-up see Section 1.4.1
Definition 1.4.1.

We can do the same for convergence rates. The Bayesian counterpart of convergence
rates is called contraction rates. We say that a posterior contracts at rate ϵn if for
every δ > 0 there exists a datasize n and M > 0 such that

Ef0 [Π(d(f0, f) > Mϵn|X)] < δ.

Intuitively this means that the posterior will concentrate most of its mass within a
circle of radius ϵn. For a more formal set-up, see Section 1.4.1 Definition 1.4.4.

The more complicated question is the one surrounding uncertainty quantification.
Bayesian credible sets give a subjective form of uncertainty quantification. With
enough data, the subjectiveness might become small enough to be essentially objec-
tive. This objectiveness would lead to asymptotically valid confidence sets. Thus we
could use these credible sets for uncertainty quantification. Therefore we must study
when this subjectiveness disappears.

In the beginning, it is not so clear why uncertainty quantification can fail. Suppose
we know the posterior contracts at the best rate possible. We then know that the
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spread of the posterior distribution cannot be too big. Most of the mass has to fit
inside the circle of a radius proportional to the contraction rate. However, the spread
might be too small. One can imagine that the posterior concentrates inside the circle.
Moreover, all its mass concentrates on a small region within this circle. The bulk of
the mass converges fast to the truth. But the truth will not be within the bulk of the
mass. Hence uncertainty quantification can fail even when we have contraction rate
guarantees. Thus we need different techniques for studying uncertainty quantification.

One collection of techniques is the so-called Bernstein-von Mises theorem. They make
precise what happens with the posterior in large data sizes. The Bernstein-von Mises
theorem allows us to study the posterior distribution in great detail. Then we use our
knowledge about the posterior distribution to study the validity of our uncertainty
quantification.

Precisely because the Bernstein-von Mises theorem is a detailed analysis of the poste-
rior, it can be hard to prove. Moreover, even if we can prove them, we cannot always
conclude that credible sets give valid uncertainty quantification. For more details on
the Bernstein-von Mises theorem, see Section 1.4.3.

Another approach to studying the behaviour of the posterior distribution is extending
Schwartz’ theorem. This theorem is simpler than the Bernstein-von Mises theorem,
but this makes it less precise. This lack of precision makes it hard to study the validity
of uncertainty quantification. There is one such extension which gives some knowledge
about the posterior distribution. This extension requires strict assumptions on the
form of the model and the prior. With these assumptions, we can study the frequentist
coverage of credible sets. For more details, see [67].

1.2 Frequentist statistics

There are different philosophies of probability. Because statistics depends on proba-
bility theory, these differences lead to different philosophies of statistics. The main
philosophy of probability theory is frequentism. In Frequentism, you can, in theory,
repeat your experiments arbitrarily often. The probability of an event is the same as
the long-run frequency of this event.

1.2.1 Limit theorems

For frequentism to be an interpretation of probability theory, the claims of frequentism
should be theorems of probability theory. Limit theorems provide that. They verify
the correspondence between frequencies and probabilities.

The strong law of large numbers states that the sample average of independent iden-
tically distributed random variables will converge to the mean, provided it exists. So
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with probability 1

1

n

n∑
i=1

Xi → E[X1].

The strong law of large numbers states how fast this convergence will take place.
This convergence can be arbitrarily slow. Under some additional conditions, namely
the existence of the variance, the central limit theorem makes precise how fast it
converges. It tells us more than just how fast it converges. Suppose that we could
pick many samples. Because they are random, we can study the distribution of this
sample around the expected value. This spread would be approximately a Gaussian
distribution:

√
n

(
1

n

n∑
i=1

Xi − E[X1]

)
⇝ N (0,Var(X1)).

The power of the central limit theorem is that it gives a precise asymptotic distribution
of the sample mean under very weak assumptions. The properties of estimators can be
studied using this convergence. One example of an estimator that can be studied using
the central limit theorem is the maximum likelihood estimator. Another important
example is the bootstrap method. For more details on this, see [77, chapters 5 to 9]
for the maximum likelihood estimator, and [78] for the bootstrap.

1.2.2 Frequentist properties of estimators

Suppose we want to estimate some object θ0 based on observations X1, . . . , Xn. We
will denote an estimator with θ̂. Then θ̂ can depend on our data. With mild abuse
of notation, we suppress this dependence. We will write:

θ̂ = θ̂k = θ̂(X1, . . . , Xk).

Note that θ̂k only depends on the first k observations.

We will call an estimator unbiased for θ if its expected value is θ:

E[θ̂] = θ0.

Ideally, we want to be unbiased whatever the value of θ0 is. Suppose the distribution
depends on θ. We would want that our estimate θ̂ has expected value θ0:

Eθ[θ̂] = θ.

Our estimator θ̂ is called unbiased in this case.

Suppose we could repeat this experiment often. Because of the unbiasedness, the
average of the estimates would be close to θ0. This unbiasedness does not mean that
a given estimate is close to θ0.
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The bias of an estimator θ̂ for estimating θ0 can be given as

Bθ̂ = Eθ[θ̂]− θ

An unbiased estimator θ̂ has Bθ̂ = 0. Having a bias means that the long-term average
of repeating your experiment will not be θ, but if the bias is small, its long-term
average will still be close. In nonparametric statistics, it is often valuable to trade a
small amount of bias for a lot of reduction in the spread to make the final estimator
more accurate.

Consistency
Unbiasedness is not enough to determine the quality of an estimator. As a next step,
we will consider consistency. This consistency is not a property of a single estimator.
It is a property of a sequence of estimators. We call a sequence of estimators θ̂k
consistent if simultaneously with enough data

� The bias can be made arbitrarily small

� The spread can be made arbitrarily small

Consistency means that the predictions will become more and more accurate the more
data you have. If we generalise a bit by allowing general metrics, we get the following
definition for consistency:

Definition 1.2.1. We say an estimator is consistent for some distance metric d if

lim
n→∞

Eθ0 [d(θ̂n, θ0)] = 0.

Rates of convergence
Consistency is the first requirement for being a good estimator. Consistency means
that, eventually, we will be accurate in finding the value we want to estimate. How-
ever, it does not tell us how fast we will be accurate. This speed will be the next step
in the quality of estimators: the rate of convergence. We can measure the speed by
measuring the distance between the estimate and the estimand. Roughly, we want
that this distance is on average small.

Definition 1.2.2. We say a rate ϵn is a rate of convergence if for every sequence
Mn → ∞

lim
n→∞

Pθ0

(
d(θ̂n, θ0) > Mnϵn

)
= 0.

This extra sequence Mn is a technical nuisance. We need this extra sequence Mn for
intuition and the definition to match. Note that we said a rate, since if ϵn is a rate
of convergence, then also any sequence ϵ′n such that ϵ′n ≥ ϵn.

Now one can wonder, how fast can I learn? Is there a limit? The limiting rate depends
on how complex the statistical problem at hand is. The fastest rate you can achieve
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for a specific problem is called the minimax rate. For simple models, the parametric
models (see [80]) the minimax rate is usually 1√

n
.

To understand the name minimax, one has to think about when the best rate possible
makes sense. If all you have to estimate one value θ0, which is fixed but unknown,
the estimator θ̂ = θ0 is always at distance 0, and therefore converges at rate 0 (the
fastest possible). However, this estimator does not depend on the data and requires
knowing θ0. Hence we would want to exclude this somehow. Moreover, this estimator
is only good if we are estimating θ0. If reality had some other value θ′0, we would
never learn. This indicates that our concepts are not matching what we want. What
we actually want is to estimate θ in a class of options Θ. For every estimator θ̂ find
the worst rate for estimating any θ in Θ, and then find the estimator that minimises
this. To make this explicit, let E denote the set of all estimators. Then the minimax
rate is given by

rn = inf
θ̂∈E

sup
θ∈Θ

Eθd(θ̂n, θ)

Example 1.2.3. One important example where rates appear are in nonparamet-
ric regression. In nonparametric regression, the classes we consider are smooth-
ness classes. One such example consist of the classes of β-Sobolev functions. Let
Θβ = Hβ = {f : f is β Sobolev} be the class of all β-Sobolev functions on [0, 1]d. This
roughly means that f has β derivatives. Then the minimax rate of estimation in the
L2-distance is given by

inf
f̂∈E

sup
f0∈Θβ

Ef0∥f̂n − f0∥2 ≍ n
−β

2β+d .

Adaptation
For completeness, we will say a few words about adaptation. The goal in adaptation
is to achieve the minimax rate of estimation as if we knew the correct class. Adapting
to the correct complexity class is one example for which we can do adaptation. So
even though we do not know how smooth the true function is, we want to find a
procedure that can learn as if it knew how smooth it was. It turns out we can do
this. There exists estimators f̂ such that

∀β sup
f0∈Hβ

Ef0 [∥f̂ − f0∥2] ≍ n− β
2β+d .

Given that adaptive estimation is possible, one might hope that adaptive uncertainty
quantification is possible. However, it turns out that this, in general, is not possible
(see [34, Chapter 8.3]). We will not consider adaptive estimation or uncertainty
quantification in this thesis.

Efficient estimators
Often in statistics, it is the goal to find estimators which achieve the minimax rate.
This is not the end of the story. The rate is a crude measure of accuracy. We
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will restrict to parametric models for this discussion. We can extend the theory of
efficiency to semiparametric models with relative ease. For more details, see [77,
Chapter 7, 8 9, and 25].

Suppose we are in a parametric model, which is dominated and has densities pθ. It
turns out that the log-likelihood ℓθ(x) = log pθ(x) plays a central role in the analysis.
We find that Pθ ℓ̇θ = 0 and Pθ ℓ̈θ = Iθ some matrix. We call Iθ the Fisher information
for θ.

By the almost-everywhere Convolution theorem [77, p. 8.9] and Andersons Lemma
[77, Lemma 8.5], we know that, under some conditions,

√
n (Tn − θ)⇝ N(0, I−1

θ )

for almost every θ is the “best” asymptotic distribution that can be achieved. Es-
timators that achieve this will be called efficient estimators. Efficient estimators are
thus, in some sense, the “asymptotic best” estimators. Hence they play an important
role in the theory of asymptotic statistics.

1.2.3 Testing

In statistics, we do not only want to estimate objects of interest. Often we want to
test hypotheses as well. We often use confidence sets to test hypotheses. A confidence
set Cα of level 1− α ∈ (0, 1) is a random set such that P(θ0 ∈ C) ≥ 1− α.

Suppose we want to test a null hypothesis H0: θ0 ∈ Θ0 against an alternative hypoth-
esis H1: θ0 ∈ Θ1. We first need to specify a significance level α. This significance
level is the chance that we reject the null hypothesis while the null hypothesis is true.
To be more precise, for every θ0 ∈ Θ0, we want the probability of rejecting the null
hypothesis to be at most α. Moreover, if the alternative hypothesis is true we want
to reject the null hypothesis with as high probability as possible. This probability is
called the power. Suppose θ0 ∈ Θ1. The power is the chance of rejecting the null
hypothesis under Pθ. We want the power to be as high as possible.

Asymptotic testing theory
To understand what we should aim for when designing and studying tests, we must
know what the best is we can hope to achieve. From an asymptotic point of view, [77,
Theorem 15.1, asymptotic representation theorem] gives us a tool for understanding
the asymptotics. This representation theorem gives us the tools to study testing from
an asymptotic point of view. From an asymptotic point of view it is sufficient to
study the power in the limit experiment.

We often consider experiments that converge to a Gaussian limit experiment X ∼
G, where G is the standard Gaussian distribution. Since Gaussian experiments are
explicit, it is easier to analyze them. In particular, we can understand the quality of
closed convex confidence sets. Let C be a closed, convex set. Suppose we want to
test the null hypothesis H0: θ0 = 0 versus H1: θ0 ̸= 0. Then by [72, Theorem 30.4],
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it follows that the tests that reject the null if our data X ̸∈ C is admissible. We call
a test of level α admissible if we cannot improve the power under a given alternative
without losing power under another alternative hypothesis. Admissibility means that
we cannot strictly improve our test ϕ. Therefore we can use admissibility of tests as an
optimality criterion for designing our tests. While this is not completely satisfactory,
admissibility gives a strong motivation for designing our confidence sets.

Motivating confidence and credible balls
We want to design our credible sets to be as powerful as possible. We have seen that
balls are admissible for testing in the Gaussian experiment. That means that no test
can beat the power of such limiting tests. Thus from an asymptotic point of view, it
suffices to study confidence sets that have power converging to this limiting power.

Fix some level 1− α. If we now look at balls, centred on some efficient estimator θ̂n
and pick radius ρ̂n as small as possible while maintaining level 1 − α. By the weak
convergence and the efficiency of the estimators, these balls achieve the asymptotic
optimal power. For more details of this argument, see Section 1.4.3.1. Hence, we
want our credible sets to be balls.

1.3 Bayesian statistics

1.3.1 Bayes

We aim to give a short overview of the theoretical results of Bayesian statistics.
While we aim to give a broad overview of the techniques, we have to skip extensions
for brevity. We will also skip the proofs and try to aim for the big picture and the
motivation of what the assumptions mean.

1.3.1.1 What is Bayesian inference
Bayesian inference is a methodology of inference. First, we define a model of reality
which depends on some parameters. A Bayesian would start by specifying a prior
distribution on these parameters. This prior distribution encodes all our beliefs and
uncertainty about reality. To learn, a Bayesian collects observations and combines
these with the prior. A Bayesian computes the conditional probability of the param-
eters given the data. The posterior distribution then encodes the beliefs you should
have about reality.

1.3.1.2 Why Bayesian inference
Bayesian inference is based on combining data with your prior beliefs and updating
by creating a new probability distribution that captures your new knowledge about
the parameters. This inherently gives rise to some (subjective) form of uncertainty
quantification and includes prior knowledge. Furthermore, Bayesian inference follows
from various interpretations of probability and rationality. These are all advantages
over frequentist techniques which lack these motivations. However, frequentist point
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estimators are usually faster and easier to compute. They are easier to represent since
they do not require you to specify a probability distribution but a point estimator.

1.3.2 Examples

We introduce two examples: the model based on flipping coins and the regression
model.

Example 1.3.1 (Coin flips). Suppose we observe X1, . . . , Xn independent flips of a
coin whose probability of landing on heads is p, and we want to estimate p. We start
with a prior, the uniform prior p ∼ U [0, 1]. The uniform prior is a beta distribution,
namely Beta(1, 1). There are many other priors you could use. However, we chose this
prior for its simplicity. Another prior you could consider is Jeffreys’ prior. Jeffreys’
prior for this model is the Beta( 12 ,

1
2 ) distribution. Jeffreys’ prior has many properties

that make it a good candidate for a choice of default prior, but this goes beyond the
scope of this thesis.

As our second example, we will consider the regression model. In regression, we
observe independent data pairs of data from a distribution (X,Y ) with Y = f(X)+ϵ,
where X is either in a fixed grid (fixed design regression) or random (random design),
and ϵ is some noise independent of X. We want to estimate f given many pairs
(X,Y ). We will first see the example of parametric regression, but the problem we
are more interested in is nonparametric regression.

Example 1.3.2 (Linear regression). In linear regression, we assume that the function
is linear fβ(X) = fβ(X) = βTX. Our goal is to estimate the unknown vector β. We
then can put a prior on the weights β and use this to infer something on the function
fβ.

In general, this linearity assumption might not hold, and we might want to use broader
classes of functions. One example is smoothness conditions, which state that the
function we want to estimate has to be smooth enough. Under these assumptions,
we can build various estimators. One example of models that one can use to build
estimators is series models. Another method can be Deep Learning. Deep learning is
applied, and Bayesian deep learning can learn these models. While the final purpose
is to give empirical Bayesian estimators which yield valid uncertainty estimation, we
will not do this in these notes, although the approach works along similar lines.

Example 1.3.3 (Nonparametric regression: series estimation). In our setup, we will
use a basis expansion on a suitable basis. We need to be able to control the bias and
variance properly. We can control the bias and variance by choosing the right number
of basis functions and using the right type of basis functions. For various purposes,
it helps if the basis functions are, in some sense, nearly orthogonal. Using that the
basis functions are nearly orthogonal allows for translations of different metrics, in
particular, allows one to do the entropy computations within the model itself using
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Euclidean distances instead of the L2 distance in function space. This equivalence of
metrics allows you to use the tools we will develop later.

If we assume the basis of basis functions B to be nearly orthogonal in the sense that
for all θ

∥θ∥22 ≲ ∥θTB∥22 ≲ ∥θ∥22
Here ≲ means less than or equal to up to some constant factor independent of n on
which our basis functions depend.

We can pick a finite number of basis functions and increase the dimension with the
number of data points. Hence we put a finite-dimensional prior on the coefficients.
Then the previous condition implies that Euclidean balls generated by the metric on
parameters are of comparable size to the balls generated by the L2 metric. Thus we
can do all the entropy conditions with the Euclidean metric instead of the L2 and only
have to change ϵ to ξϵ for some fixed (but possibly unknown) ξ.

1.3.3 The posterior

In Bayesian inference, we compute a posterior distribution. The posterior distribu-
tion is the conditional probability of the parameters given the prior and the data. In
general, these conditional probabilities are not uniquely defined. Hence we cannot
uniquely define the posterior probabilities. However, the different versions of a poste-
rior distribution have to agree almost everywhere. Moreover, we will often work with
a prefered posterior distribution. One way of constructing such a prefered posterior
distribution is Bayes Theorem.

Theorem 1.3.4. Suppose that X|θ ∼ Pθ, where Pθ is a dominated family of measures
with measurable densities pθ with respect to some σ-finite dominated measure, then
one version of the posterior distribution in the model that θ ∼ Π is:

Π(θ ∈ B|X) =

∫
B
pθ(X) dΠ(θ)∫
pθ(X) dΠ(θ)

In general, such dominating measures might not exist. Thus we cannot always apply
Bayes’ theorem but need to use other tools. One example where you need to use other
tools to compute the posterior distribution is distribution estimation with the Dirich-
let or Pitman-Yor process. In distribution estimation, there is no σ-finite dominating
measure. Therefore we cannot apply Bayes’ formula.

An important concept to note is posterior conjugacy. Suppose we pick a prior which
belongs to a family of distributions D. We say the prior distribution is conjugate
if the posterior distribution is also in D. This conjugacy often allows for explicit
computations. These computations can make your life much easier. See, for example,
the coin-flipping example. Here, you can compute everything without using the tools
developed in the coming sections. However, in many examples, no conjugate priors
are known. They might not even exist in any useful sense, so the tools are needed.



16 1. Introduction

Example 1.3.5 (Coin flips continued). In the coin flip example, we used a Beta(1, 1)
prior. This prior is a conjugate prior for this model. Hence the posterior is again a
Beta distribution. If you have h heads and t tails, the posterior distribution of p given
X1, . . . , Xn is given by Beta(1 + h, 1 + t).

1.4 Frequentist analysis of Bayesian methods

We can study Bayesian methods as any other method from a frequentist point of
view. This gives rise to the theory of frequentist Bayes.

1.4.1 Consistency, rates and uncertainty quantification for Bayes

In the Bayesian methodology, there is no reference to the true generating process,
just data and your beliefs. We can now wonder if a Bayesian can find the truth if it
exists. We will start with Freedman’s inconsistency theorem. This result shows that
truth finding is not automatic. Hence you must be careful in selecting your priors to
match the problem.

We begin with Freedman’s inconsistency theorem [29, 33]. This theorem tells us
that most priors have no chance of finding the truth. To illustrate this, consider the
collection of pairings of priors Π and “truths” P0. Call a prior compatible with truth
P0 if, with infinite data from P0, a Bayesian with prior Π would conclude that the
true distribution is P0. Then the collection of compatible pairs is small. As an even
stronger statement, they construct prior and truth combinations such that every non-
empty open set of parameter values will get posterior probability arbitrarily close to
1 infinitely often. This behaviour means that, for these combinations, the posterior
distribution will wander around without converging.

Based on this result, one might conclude that the Bayesian analysis might be hopeless.
However, there are a lot of positive results as well. It shows that one should be more
careful than just permitting any prior: you need a more refined approach. We make
consistent priors for models. Consistency means that, with infinite data, we will find
the true process. To make precise what consistency means for posterior distribution,
we define it and then discuss its meaning.

Definition 1.4.1. The posterior distribution Πn(·|X(n)) is said to be consistent at

θ0 ∈ Θ if Πn(U
c|X(n)) → 0 in P

(n)
θ0

probability, as n → ∞, for every open set U
containing θ0.

Let’s take a closer look at this definition. The purpose of this definition is to state
that all the posterior mass will concentrate on the truth. The posterior probability
of the true parameter θ0 can be zero. For example, this happens when the posterior
distribution admits a Lebesgue density. Since the posterior probability of θ0 can be
zero, we cannot ask that the posterior probability of θ0 has to converge to 1. This
limitation would rule out many models that people want to use. The next best thing
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is to ask if all parameter values θ that are in some sense near θ0 will get a large
posterior mass.

We are analyzing Bayesian inference from a frequentist point of view. Hence we
can wonder if we can use the posterior distribution to create an estimator which is
frequentistically valid and looks more like the usual point estimators typically seen
in frequentist literature. The following result gives such a construction, which works
without any extra assumptions other than consistency. We can replace the mass
bound of 1/2 to any arbitrary value between 0 and 1, see [33, Theorem 6.7].

Theorem 1.4.2. Suppose that the posterior distribution Πn(·|X(n)) is consistent at θ0
relative to the metric d on Θ. Then θ̂n, defined as the centre of a (nearly) smallest ball

that contains posterior mass at least 1/2 satisfies d(θ̂n, θ0) → 0 in P
(n)
θ0

-probability.

This result implies that if frequentist methods cannot solve a problem, Bayesian
methods cannot solve it either. Therefore, Bayesian methods do not solve problems
like the no-free-lunch theorem. A slightly more refined result also shows that the
frequentist minimax theory will apply to Bayesian methods, which we will see in the
next section.

Before we continue, let us study consistency with explicit tools in the coin flip example.

Example 1.4.3 (Consistency for coin flips by explicit computation). In Exam-
ple 1.3.5, we saw the explicit posterior. The posterior allows us to do computations
directly. Using the formulas for the mean and variance of a Beta distribution we can

compute these. The posterior mean is 1+h
2+n and the posterior variance is (1+h)(1+t)

(n+2)2(n+3) .

If 0 < p < 1 then by the strong law of large numbers, 1+h
n → p and 1+t

n → 1 − p.
Therefore the posterior variance converges to zero, while the posterior mean converges
to p. Thus we can apply Markov’s inequality to conclude that the posterior is consis-
tent.

Now we have seen how to find the truth eventually. But we can wonder how quickly
we can learn it as well. Intuitively, it would come down to rejecting all hypotheses
that are far away from the truth. We want to quantify how fast we would zoom in
on the truth. Let’s start with the formal definition first.

Definition 1.4.4. We say that the posterior contracts at a rate ϵn with respect to a
pseudo-metric d if for all Mn → ∞

Π
(
d(θ, θ0) ≥ Mnϵn|X(n)

)
→ 0,

in P
(n)
0 probability.

Note that we talk about “a” rate and not “the” rate. We do that since rates are
not unique: any larger ϵn will again be a valid rate. We want to show ϵn to be as
small as possible. This minimality means we are focussing on the target as fast as
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possible. One way of finding the optimal rate is when you are neither overfitting nor
underfitting.1

One should reduce the bias coming from the models as much as possible, but not at
the cost that the variance starts increasing more than the bias decreases. The precise
balance depends on the underlying complexity of the model. In parametric models,
one can often have zero bias while achieving an optimal rate, while in nonparametric
statistics, a bias variance trade-off is often necessary. In reality, one does not know
the correct complexity and does not know how to tune it before seeing the data.
However, you can extend these results given here. These extensions can make adaptive
rates of concentration possible. You can make adaptive estimators that “learn” the
underlying complexity in the sense that you can use these estimates to get a (near)
optimal contraction rate.

As with the consistency example, contraction rates of the posterior allow us to find a
point estimator with matching convergence rates. This shows that the usual theory
of lower bounds and minimax estimators of the frequentist literature also applies to
Bayesian estimators. We have the following corresponding result of Theorem 1.4.2,
which makes this notion precise. See also [33, Theorem 8.7].

Example 1.4.5 (Rates of contraction by explicit computations). To show that the
posterior concentrates on balls of radius

√
n around p0 we can reason as follows.

First, we know the posterior explicitly by Example 1.3.5. Denote p̂n the posterior
mean. To show a contraction rate 1√

n
we need to show that a ball of radius Mn√

n

contains an arbitrarily high amount of mass. Consider a ball around p̂n with radius
∥p̂n − p0∥+ Mn

3
√
n
. Then p0 is inside this ball. Now we want to show the following two

facts:

� The posterior assigns arbitrary high mass to this ball.

� This ball is contained in the ball around p0 with radius Mn.

To show the second, we use the properties of the Maximum likelihood estimator p̂n.
This states that the convergence rate of p̂n is 1√

n
. Hence it follows that, for every

Mn → ∞, ∥p̂n − p0∥ ≤ Mn

3
√
n
. In particular for our choice of Mn. Hence we are

contained in the ball with arbitrarily high probability. Next is to show that the posterior
assigns arbitrary high mass to this ball. For this, we can use properties of the Beta
distribution and the Markov inequality. This step gives a bound of

Π

(
∥p− p̂n∥ ≥ ∥p̂n − p0∥+

Mn

3
√
n
|X
)

≤
(1+h)(1+n−h)
(2+n)2(3+n)(

Mn

3
√
n
+ ∥p̂n − p0∥

)2 .
1You overfit when you have a too small bias at the cost of too much variance. You underfit when

you have a too-small variance at the cost of too much bias.
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Note that (1+h)(1+n−h)
(2+n)2 converges almost surely to p(1 − p). We have also seen that

with high probability ∥p̂n − p0∥ ≤ Mn

3
√
n
. Hence with high probability, we can bound our

upper bound into

3

2Mn
.

This upper bound converges to zero as Mn → 0. Hence our rate of contraction is
√
n.

1.4.2 Schwartz Theorem

Our goal was to motivate the Bayesian methodology from the frequentist point of view.
One method of doing that is the Schwartz theorem. Compared to the Bernstein-von
Mises theorems we will cover in Section 1.4.3 we tend to have weaker assumptions
and conclusions. However, the conclusions are still very positive. Paraphrasing:

� If the truth can be recovered by any method, it can be recovered by any posterior
given that the prior puts positive mass at every neighbourhood of the truth.

� If the truth can be recovered at minimax rates by any method, it can be recov-
ered by any posterior given that the prior mass put in shrinking neighbourhoods
does not decay too quickly.

1.4.2.1 Kullback-Leibler divergence and variation

In dominated models, the likelihood of the data plays an important role in statistics.
The likelihood shows up in frequentist statistics since the maximum likelihood esti-
mator is one of the core tools that people use. In Bayesian statistics, the likelihood
shows up in Bayes’ rule. Since the logarithm is increasing and maps products to sums,
the average log-likelihood will converge to its expected value if the latter exists. If we
want to apply central limit type arguments we also want to control the variance of
the log-likelihood.

Since the likelihood is driving our decision making, we want to study which models
have a similar (expected) likelihood. Since log-likelihood is better behaved, we in-
troduce a distance based on the expected log-likelihood. This leads to the Kullback-
Leibler divergence and variation as distances. The Kullback-Leibler variation distance
is a bit stronger, so harder to control, while the Kullback-Leibler divergence is weaker,
and harder to use. For our purposes, the Kullback-Leibler divergence will be enough.

Definition 1.4.6. Assume that Pθ is a dominated family with respect to some σ-finite
dominating measure.

� The Kullback-Leibler divergence is

KL(p0, pθ) = P0 log(
p0
pθ

).
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� The Kullback-Leibler variation is

V(p0, pθ) = P0

(
log(

p0
pθ

)− P0 log(
p0
pθ

)

)2

.

We now want to look at models for which there is positive mass in any Kullback-
Leibler neighbourhood of the truth, which will become the Kullback-Leiber property.

Definition 1.4.7. A density p0 is said to possess the Kullback-Leibler property rela-
tive to a prior Π if Π(p:KL(p0, p) < ϵ) > 0 for all ϵ > 0. This is denoted p0 ∈ KL(Π).

This definition states that the prior is putting some mass in any neighbourhood of
the parameter θ0. Let us see how this looks in our two examples.

Example 1.4.8 (KL divergence in coinflips). The KL divergence between two Bernoulli
random variables is given by KL(p, q) = p log p

q + (1− p) log 1−p
1−q .

Example 1.4.9 (KL divergence in fixed design regression). In the fixed design re-
gression model, we get instead the squared empirical ℓ2 distance,

dn(f0, f)
2 =

1

n

n∑
i=1

(f0(Xi)− f(Xi))
2

as the KL divergence.

1.4.2.2 Entropy

Entropy gives us a way of measuring how complex a space is. Roughly speaking, it
tries to capture how many different things you can see at a given resolution. There
are various kinds of entropy, and they each have their uses. For our current purposes,
we introduce the covering numbers. This measures how many metric balls you need
to use to cover the entire space. We say a collection of balls covers a space if the
space is a subset of the union of these balls.

Definition 1.4.10. We say that a space Θ has covering number N(ϵ,Θ, d) with re-
spect to a metric d if you need at least N(ϵ,Θ, d) d-balls of radius ϵ to cover the entire
space.

One useful result is the covering number of euclidean balls:

Lemma 1.4.11. Let ∥x∥pp =
∑

i |xi|p. Then for any M and 0 ≤ ϵ ≤ M ,

N(ϵ, {x ∈ Rd: ∥x∥p ≤ M}, ∥ · ∥p) ≤
(
3M

ϵ

)d

.

Let us use Lemma 1.4.11 to bound the entropy in our two examples.
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Example 1.4.12 (Entropy for coinflips). In the coin flip example, the parameters
live in the interval [0, 1]. By Lemma 1.4.11 we get entropy bound of

N(ϵ, {x ∈ [0, 1]}, ∥ · ∥) = 3

ϵ
.

Example 1.4.13 (Entropy in fixed design regression). In the fixed design model with
series estimators, we have Kn = n1/(2β+d) many variables. Under the near orthogo-
nality assumption, it follows that the Euclidean distance within the model parameters
satisfies, for some C ≥ 1 independent of n 1

C ∥θ∥ ≤ ∥θTϕ∥ ≤ C∥θ∥. So the local
entropy is given by

N(ϵ, {x ∈ RKn , ∥x∥2 ≤ M}) ≤
(
3MC

ϵ

)Kn

.

1.4.2.3 Testing
For the theory of Bayesian nonparametrics, it turns out that testing is a fundamental
concept for understanding consistency and rates. A test is a measurable function
from the space of observables to the interval [0, 1]. We want to construct tests that
are powerful enough to use for the rest of the theory. The current results are adapted
from [33, Appendix D].

We begin with the easier statement that gives consistent testing.

Theorem 1.4.14. Given a distance d that generates convex balls and satisfies d(p0, p) ≤
dH(p0, p) for every p. Suppose that

logN(ϵ,Θ, d) ≤ nϵ2n.

Then there exists tests ϕn such that

Pn
0 ϕn ≤ e−nϵ2 , sup

p:d(p0,p)>4ϵ

Pn(1− ϕn) ≤ e−2nϵ2 .

This theorem gives some conditions for any metric which is dominated by the Hellinger
metric. For stronger results, we need to do a bit more work, but we can go beyond
the Hellinger metric by being a bit more precise in our other assumptions.

Theorem 1.4.15. Suppose that for universal constants ξ,K > 0 and for any ϵ > 0
and any density p1 with d(p0, p1) > ϵ there exist a test ϕn with

Pn
0 ϕn ≤ e−Knϵ2 , sup

p:d(p,p1)<ξϵ

Pn(1− ϕn) ≤ e−Knϵ2 ,

and that for a sequence ϵn

sup
ϵ>ϵn

logN(ξϵ, {p: d(p, p0) ≤ 2ϵ}, d) ≤ nϵ2n.
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Then there exist tests such that, for every j ∈ N,

Pn
0 ϕn → 0, sup

p:jϵn≤d(p,p0)≤(j+1)ϵn

Pn(1− ϕn) ≤ e−Knϵ2nj
2

.

The first condition tells us that we can test locally on balls. The other part where
it differs is that it builds the tests using the local entropy around the truth, and the
global entropy can be higher. The strategy for making the global test is based on
glueing local tests together. This result is precise enough to give the tests we need in
the contraction rates section.

Example 1.4.16 (Testing in coin flips and nonparametric regression). We have seen
the entropy bounds for our examples in Examples 1.4.12 and 1.4.13. They both sat-
isfy the assumptions of Theorem 1.4.15 with rates ϵn = 1√

n
and ϵn = n−β/(2β+d)

respectively. Hence we get tests with these specified rates.

1.4.2.4 Schwartz theorem

With the help of the Kullback-Leibler property and the existence of tests, we can
formulate the result of Schwartz theorem [33, Theorem 6.16].

Theorem 1.4.17. If p0 ∈ KL(Π) and for every neighbourhood U of p0 there exists
tests ϕn such that Pn

0 ϕn → 0 and supθ∈Uc Pn
θ (1− ϕn) → 0, then the posterior distri-

bution Πn(·|X(n)) in the model X1, . . . , Xn|p
i.i.d.∼ p and p ∼ Π is strongly consistent

at p0.

Schwartz’s theorem states that all you need for consistency are two conditions. The
first condition is that there should be some prior mass near the truth. The second
one is a condition that roughly translates to being able to recover the truth in this
model with some method. This condition means that if your prior is flat enough, as
soon as one method can find the truth, Bayesian methods can also find it. It should
not be too big of a surprise that the testing condition is necessary. It talks about the
recovery of the model with any method, and we could, in principle, create tests using
the consistency result and Theorem 1.4.2.

This result shows that if there is something to be learned, Bayesian methods will
also be able to learn. At least if we design our priors to be flat enough. Now we
can wonder if we can find easier tools to take care of the testing part. The following
theorem is as stated in [33, Theorem 6.23]

Theorem 1.4.18. Under the assumptions of Theorem 1.4.14, for any p0 ∈ KL(Π),
the posterior distribution in the model X1, . . . , Xn|θ ∼ Pθ and θ ∼ Π is consistent
relative to d.

Since Schwartz’s theorem is quite important, we can take a peek under the hood at
how it works. Since we are working in dominated models, we can use Bayes’ formula
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to find an expression for the posterior probability of U c:∫
Uc

∏n
i=1 pθ(Xi) dΠ(θ)∫ ∏n

i=1 pθ(Xi) dΠ(θ)
.

We want to show that this goes to zero, so if we can show that the denominator is large
and the numerator is small, we are done. If we multiply and divide by

∏n
i=1 p0(Xi)

we can reorganise this to read ∫
Uc

∏n
i=1

pθ

p0
(Xi) dΠ(θ)∫ ∏n

i=1
pθ

p0
(Xi) dΠ(θ)

.

If we use the almost sure evidence lower bound [33, Theorem 6.16, Lemma 6.26] we
find that for all c > 0 eventually almost surely∫ n∏

i=1

pθ
p0

(Xi) dΠ(θ) ≥ e−cn

Meanwhile, using the tests to make exponentially powerful tests, we can find a C > c
such that eventually almost surely:∫

Uc

n∏
i=1

pθ
p0

(Xi) dΠ(θ) ≤ e−Cn.

Combining this yields Schwartz’s theorem. Now we can apply this to get consistency
in the coin flip model.

Example 1.4.19 (Consistency for coin flips). In the coin flip example, the Kullback-
Leibler balls are open sets. The uniform prior gives positive mass to all non-empty
open sets. Thus every open set containing p gets a positive mass. This means that p
is in the Kullback-Leibler support of the prior. By Example 1.4.16, there exist tests.
Therefore we can apply Schwartz’s theorem and get consistency.

1.4.2.5 Refinements of Schwartz theorem
Schwartz theorem was our tool to show consistency. It requires that the true distribu-
tion satisfies the Kullback-Leibler condition and that consistent tests exist. We will
refine both conditions. We will control how fast the mass of Kullback-Leibler neigh-
hours decays. And we will use a refined argument based on the existence of tests.
Furthermore, we can simplify this by constructing tests using entropy conditions.

Assumption 1.4.20. For the constant K in Theorem 1.4.21, we assume that the
metric balls satisfy this probability bound:

Πn (p: jϵn < d(p, p0) ≤ 2jϵn)

Πn(p:KL(p0, p) ≤ ϵn)
≤ eKnϵ2nj

2/2
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This assumption compares the prior mass of the parameters which are close to the
true parameter p0 according to the metric, and the mass of the true parameters which
are close according to the Kullback-Leibler divergence. It tries to measure how much
the likelihood can distinguish between hypotheses that are close to each other under
our metric. If this assumption is satisfied, and we can use some testing arguments,
we can expect good rates. See also [33, Theorem 8.12].

Theorem 1.4.21. Assume that Assumption 1.4.20 holds for constants ϵ̄n ≤ ϵn with
nϵ̄2n ≥ 1 and every sufficiently large j, and in addition there exist tests ϕn such that,
for some constant K > 0 and all large enough j

Pn
0 ϕn → 0, sup

p:jϵn≤d(p,p0)≤2ϵn

Pn(1− ϕn) ≤ e−Knϵ2nj
2

,

then the posterior rate of contraction at p0 is ϵn.

The proof of this theorem is a slightly refined proof of the Schwartz theorem. The
Kullback-Leibler argument tells us that the prior mass should not decrease too fast in
a neighbourhood of the true parameter, since if we make the prior think parameters
which are near the truth are very unlikely, we shouldn’t expect great rates. The testing
assumption is almost necessary. Under an additional conditional on the exponential
decay of the posterior tail you can prove that, if one has contraction rates, you can
construct tests.

Now we can wonder how we can construct such tests. We can construct test using en-
tropy numbers as in Schwartz’s theorem. This construction requires the assumptions
of the testing theorems. If we combine these assumption we get the following result
(see also [33, Theorem 8.11])

Theorem 1.4.22. Assume that the assumptions in Theorem 1.4.15 hold and that As-
sumption 1.4.20 holds with the K as in Theorem 1.4.15. Then the posterior contracts
at rate ϵn.

We can even go a bit further than these theorems. You can balance the prior proba-
bility and entropy conditions, but this is beyond the scope of this note.

Example 1.4.23 (Contraction rates for coin flips). In the coin-flip model, suppose
that 0 < p0 < 1. By Example 1.4.8 we know how the KL balls look. There exists a
Cp > 0 such that the ball of radius

Cp√
n
around p0 is included in the Kullback-Leibler

ball around p0. As we have seen in Example 1.4.16, there exists tests at 1√
n

rate.

This prior mass result combined with the entropy bounds from Example 1.4.12, allow
us to apply Theorem 1.4.22. This uses the less refined bound for entropy, and this

gives a contraction rate of
√

log(n)
n . If we were to use Lemma 1.4.11 directly to the

set B(p0, Cϵ), we would get a
√

1
n contraction rate instead.
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Example 1.4.24 (Contraction rates for fixed design regression). In the fixed design
regression model, we can again verify the assumptions of Theorem 1.4.22. Though,
the computations become more involved. See for example [67].

1.4.3 Bernstein-von Mises theorems

There are several ways in which you can give theoretical guarantees for the posterior
distribution. In this section we are going to study the so-called Bernstein-von Mises
(BvM) theorem. We first explain the rough idea behind the BvM theorem and then
go into the details. The posterior distribution is a probability distribution. We want
to understand the asymptotic behaviour of this distribution. To understand this, we
want to show that asymptotically the posterior distribution is, in some sense, close
to a limit distribution. Preferably, we want to have that the limiting distribution is
“easy to understand”. This limiting distribution will have to depend on the data. Let
us denote this distribution by Wn(X

(n)). We will denote our measure of closeness by
a function d. So, in the end, we want to prove a statement that looks like

d
(
Π
(
·|X(n)

)
,Wn(X

(n))
)

P0⇝ 0

Typical choices of a distance measure will be the total variation distance and the
bounded Lipschitz distance. The total variation distance can be seen as the L1-
distance between the two densities, while the bounded Lipschitz metric metrises the
weak topology.

To understand the finer details of the posterior distribution, we might want to “rescale”
it. We often have a posterior distribution that starts concentrating near a specific
point, usually the true parameter θ0. We want to study how it starts concentrating
around that point. To do this, we need to be able to see finer details. We can rescale
the posterior. This rescaling will allow us to see finer details. We can do the rescaling
as follows. We pick a centring point θ̂n and a rescaling rate rn. Now, look at the
distribution of

rn(θ − θ̂n),

where θ ∼ Π(·|X(n)). This rescaling makes the differences between θ and θ̂n bigger.
And in turn, this allows us to see more details. We can use this to reformulate our
goal slightly. We again have some target limiting distribution Wn. The limiting
distribution depends on our data X(n). However, we rescale the posterior to allow for
finer details. We want to prove statements of the form:

d
(
Π
(
rn

(
· − θ̂n

)
|X(n)

)
,Wn(X

(n))
)

P0⇝ 0

The centring point θ̂n and the asymptotic distribution Wn(X
(n)) will both be im-

portant in our analysis. Usually, we want to show that the centring point is a good
estimator. However, this is not always the case. Sometimes the centring point has a
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bias. To make this bias clear, we can write θ̂n = θ̃n + Bn where θ̃n would be some
good estimator and Bn some bias term.

Often, we want that the asymptotic distribution does not depend on the data except
for the true data-generating process P0. This independence is often the case. In
that case, we can drop the dependence and simplify our desired statement. This
simplification would lead to a statement of the form

d
(
Π
(
rn

(
· − θ̂

)
|X(n)

)
,W
)

P0⇝ 0.

If the distance is the bounded Lipschitz metric, the statement often gets rephrased.
Since we require the distance to converge weakly to zero, it also converges in proba-
bility to zero. The bounded Lipschitz metric metrises the weak topology. Hence we
have “weak convergence in probability”. Then we say that

rn

(
θ − θ̃n −Bn

)
|X(n) ⇝W

in P0-probability.

We need two conditions to use BvM theorems to motivate Bayesian methods from a
frequentist point of view. First, the limiting distribution should have “good” proper-
ties from a frequentist point of view. Secondly, there needs to be a way to translate
these properties from the limiting distribution to the posterior distribution.

1.4.3.1 Using BvM to give frequentist guarantees
Suppose we have a BvM theorem for the Bounded Lipschitz metric. That is, we know
that:

rn

(
θ − θ̃n −Bn

)
|X(n) ⇝W

in P0-probability. Here θ̃n is a “good” estimator and Bn is a bias term. We assume
that the asymptotic distribution is centred at zero. Our goal is to study consistency,
contraction rates and coverage.

We will start with consistency. Lemma 1.4.25 states that if the posterior distribution
satisfies a BvM in the bounded Lipschitz metric, the posterior distribution will be
consistent.

Lemma 1.4.25. Suppose that either rn → ∞ and W is continuous or rn = O(1) and

W is a point mass at zero. Assume that θ̂n
P0⇝ θ0. Suppose that

rn

(
θ − θ̃n −Bn

)
|X(n) ⇝W

in P0-probability. If, moreover,
θ̃ +Bn ⇝ θ∗

the posterior will concentrate on θ∗.
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We sketch a proof with a few minor details missing for case that rn → ∞. The other
case uses that W = δ0 to give the conclusion almost immediately.

Proof. We want to show that the posterior concentrates on θ∗. That means that we
have to show that for every open neighbourhood U of θ∗ the posterior probability
of U c converges to zero. Because θ̂n + Bn converges weakly to θ∗, we know that
eventually θ̂n + Bn ∈ U . Pick 0 < α < 1. Let Vα be a neighbourhood of 0 such that
W assigns probability at least α to V . Condition on the event that θn + Bn ⇝ θ0.
Then eventually θ̂n +Bn + 1

rn
Vα is a subset of U . Hence the posterior probability of

U is at least

Π

(
θ̂n +Bn +

1

rn
Vα|X(n)

)
.

Moreover, because of the BvM result, we know that the rescaled posterior converges
weakly to W . By the portmanteau Lemma, it follows that the difference between

Π

(
· ∈ θ̂n +Bn +

1

rn
Vα|X(n)

)
and

W (Vα)

converges to zero. Hence Π
(
U |X(n)

)
≥ Π

(
U ∩ Vα|X(n)

)
⇝ α. Hence

Π
(
U c|X(n)

)
⇝ 1.

This is what we wanted to show.

This result can be used to show that a posterior distribution is consistent when the
estimator it starts concentrating on converges to the true parameter θ0:

Corollary 1.4.26. Assume in addition that θn + Bn ⇝ θ0. Then the posterior is
consistent.

This result follows directly because the posterior concentrates on θ∗ = θ0.

In a similar fashion, one can prove the following result for contraction rates. If the
posterior distribution satisfies a BvM theorem at rate rn, the posterior contracts at
rate 1

rn
.

Lemma 1.4.27. Let rn → ∞. Assume that W is a continuous distribution. Assume
that the model is well specified, i.e. there exists a θ0 such that Pθ0 = P0. Suppose that

E[d(θ̂n, θ0)] ≲ 1
Rn

. Suppose that the BvM holds, i.e.

rn

(
θ − θ̂n

)
|X(n) ⇝W

in P0-probability. Then the posterior contracts at rate max( 1
rn
, 1
Rn

).
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In both previous results, the asymptotic distribution W was not very important. This
changes when we want to study the validity of uncertainty quantification. To get the
most information, we split the centring point θ̂n into two, θ̃n and Bn. We will use
another distribution Z. This distribution is the asymptotic distribution of θ̃n. Instead
of focusing on θ0, we will focus on a sequence of centring points θ∗n. This sequence of
centring points preferably will equal θ0. However, in some of our results, we need to
pick a different choice of θ∗n. To give a frequentist interpretation, we allow for these
choices of centring points in our results. That is, we assume that:

rn

(
θ̃n − θ∗n

)
⇝ Z.

Because θ̃n = θ̂n −Bn we also know that

rn

(
θ̂n −Bn − θ∗n

)
⇝ Z.

Thus we can use Bn as a bias correction. We will study the coverage of θ∗n by specific
credible sets. If θ∗n converges fast enough, that is, faster than rate r−1

n , to θ0 this
will also give coverage of θ0. However, the coverage might not be the same as the
credibility level used to construct the credible set.

Lemma 1.4.28. Let rn → ∞. Assume that W possesses a continuous distribution.

Let Z be possesses continuous distribution such that rn

(
θ̃n − θ∗n

)
⇝ Z. Suppose that

the posterior distribution satisfies the BvM theorem, i.e.

rn

(
θ − θ̂n

)
|X(n) ⇝W

in P0-probability. Let 0 < α < 1. Let Cα,n be a ball centred at a point cn and radius
ρn

rn
such that

� rn

(
cn − θ̂n

)
⇝ 0;

� Cα,n is a credible ball of level 1− α: Π
(
Cα,n|X(n)

)
≥ 1− α;

� For all ρ < ρn the credibility level of the ball B(cn, ρ) centered at cn with radius
ρ is less than 1− α:

∀ρ < ρnΠ
(
B(cn, ρ)|X(n)

)
< 1− α.

Then ρn → ρα, the radius of a ball centred at zero such that W (B(0, ρα)) = 1− α,

P(θ∗n ∈ Cα,n −Bn) → Z (B(0, ρα))

If in addition rn(θ
∗
n − θ∗∞)⇝ 0, then also

P(θ∗∞ ∈ Cα,n −Bn) → Z (B(0, ρα)) .
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We give a sketch of a proof. The proof can be made rigorous by taking care of the
conditioning.

Proof. W and Z are continuous distributions. Thus the maps ρ 7→ W (B(0, ρ)) and
ρ 7→ Z(B(0, ρ)) are continuous. We are first going to show that the radius of the
credible ball converges to the right radius. To do that we use a sandwiching argument.
For any level β we will study the credibility of balls Bn(β) centred on cn with radius
ρβ/rn where we pick ρβ such that

W (Bn(β)) = 1− β.

By the BvM theorem, it follows that

Π
(
Bn(β)|X(n)

)
Pn

0→ W (Bn(β)) = 1− β.

Let ρn be the radius of our credible ball Cn,α. If lim sup ρn > ρβ , it follows that
infinitely often Bn ⊂ Cα,n. But then for all n large enough

Π
(
Cα,n|X(n)

)
> 1− β > 1− α.

This result contradicts our assumption on Cα,n. Similarly, we can bound the liminf
and conclude that ρn ⇝ ρα.

Now the probability that θ∗n is contained in the debiased credible set Cn −Bn is

P (θ∗n ∈ Cn −Bn) = P (θ∗n ∈ B(cn −Bn, ρn/rn)

= P (rn(θ
∗
n − cn +Bn) ∈ B(0, ρn))

= P (rn(θ
∗
n − cn +Bn) ∈ B(0, ρα)) + o(1)

= P
(
rn(θ̂n − θ∗n −Bn) ∈ B(0, ρα)

)
+ o(1)

→ Z(B(0, ρα)).

By sandwiching, using Slutsky’s Lemma applied to rn(θ̂n − cn) ⇝ 0 and using the

asymptotic distribution of θ̂n. If in addition rn(θ
∗
n − θ∗∞)⇝ 0, then also, by another

application of Slutsky’s Lemma:

P (θ∗∞ ∈ Cn −Bn) → Z(B(0, ρα)).

This statement tells us the exact coverage level of the credible balls. If Z = W , in
particular, it follows that credible sets of level 1−α are asymptotic confidence sets of
level 1−α. Thus this theorem allows us to conclude that if the BvM theorem holds and
the asymptotic distribution of the posterior W matches the asymptotic distribution
Z of the estimator θ̃n, the Bayesian uncertainty quantification will be asymptotically
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valid frequentist uncertainty quantification. Moreover, in many cases, the estimator
θ̂ will be an efficient estimator, so not only does the Bayesian methodology give valid
uncertainty quantification, it will give efficient estimation as well.

We needed to talk about specific credible sets: balls centred at a good estimator and
with a specific radius. To illustrate that this is needed, we will construct a credible
set which has a specified credibility level 1 − α but has 0 coverage. This example
means that we cannot take any credible set. Extra consideration is needed.

Example 1.4.29. To construct our credible set without coverage, we will first make a
ball centred at the true θ0, and with a maximal radius such that the posterior assigns
less than mass α to it. So we pick ρ such that

Π
(
B(θ0, ρ)|X(n)

)
≤ α

and for any ρ′ > ρ

Π
(
B(θ0, ρ

′)|X(n)
)
≥ α

Our credible set will be the complement of this ball: C = B(θ0, ρ)
c. Hence

Π(C|X(n)) ≥ 1− α

However, by construction, θ0 ̸∈ C. Hence

P(θ0 ̸∈ C) = 1

Thus not every credible ball gives valid uncertainty quantification.

Examples of Bernstein-von Mises theorems
There have been various examples of Bernstein-von Mises theorems. We will present
the BvM theorem for well-specified parametric models, and give references to other
examples. This version of the theorem comes from [77, Theorem 10.1].

Theorem 1.4.30. Let the experiment {Pθ: θ ∈ Θ} be differentiable in quadratic mean
at θ0 with nonsingular Fisher information matrix Iθ0 , and suppose that for every ϵ > 0
there exists a sequence of tests ϕn such that

Pn
θ0ϕn → 0, sup

∥θ−θ0∥>ϵ

Pn
θ (1− ϕn) → 0.

Furthermore, let the prior measure be absolutely continuous in a neighbourhood of θ0
with a continuous positive density at θ0. Then the corresponding posterior distribu-
tions satisfy

∥Π(
√
n (θ −∆n) ∈ ·|X(n))−N(0, I−1

θ0
)∥

Pn
θ0→ 0.

This shows that we have a convergence in the total variation distance between two
objects:
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� The rescaled posterior centred at an efficient estimator;

� The normal distribution with the inverse Fisher information matrix as the co-
variance matrix.

The asymptotic distribution of the efficient estimator is exactly the limiting distribu-
tion of the posterior. Hence we can use the Bernstein-von Mises theorem to give an
asymptotic motivation from a frequentist perspective. We can use this to study the
coin flip example.

Example 1.4.31 (Bernstein-von Mises for the coin flip example). The posterior mean
is an efficient estimator. The Beta prior is smooth, the experiment Pθ is differentiable
in quadratic mean and by Example 1.4.16, there exist tests. Hence we can apply
Theorem 1.4.30. The BvM gives that the posterior is asymptotically normal, with the
variance equal to the inverse Fisher information and centred on the posterior mean.
Then we find that the posterior is consistent by Lemma 1.4.25, and it contracts at
rate 1√

n
by Lemma 1.4.27. Define Cα to be the smallest balls centred on the posterior

mean with posterior mass Π(Cα|X) ≥ 1−α. Then by Lemma 1.4.28 we find that Cα

also gives asymptotically valid uncertainty quantification.

The story becomes more complicated once we go beyond the correctly specified para-
metric models.

The well-specified parametric Bernstein-von Mises theorem is just one of the examples.
Other models have also been studied. Several models have been studied by Bernstein-
von Mises theorems. One such example is the misspecified parametric models [44].
Here we do not assume the true distribution is in the model. In this situation, the
frequentist coverage of the credible set does not need to be equal to its level.

Another example is semiparametric models [9, 11, 66]. Here the Bernstein-von Mises
theorem can be used to study the asymptotic distribution. Depending on the precise
model we might or might not get the correct asymptotic distribution and coverage.

For the last highlighted example, in distribution estimation, we have a Bernstein-von
Mises theorem for certain priors. For the Dirichlet prior [49]; For the Pitman-Yor pro-
cesses when the true distribution is continuous [41]. One of my own contributions has
been to extend the latter result to general true distributions, see Chapter 3 and [27].

1.5 Overview

We have seen how to use the Bernstein-von Mises theorem to prove that specific
credible sets give valid uncertainty quantification in Section 1.4.3. The next step
we need to take is to prove the Bernstein-von Mises theorem for the specific models
we want to study. One prior that Bayesians use is the Pitman-Yor prior. We will
introduce this prior in Chapter 2. Once we have introduced this prior, we prove
Berstein-von Mises theorems for the prior itself and the hyperprior in Chapters 3
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and 4 respectively. Deep learning is a popular tool used by the machine learning
community. Mathematicians have developed tools to study deep learning. We will
introduce these tools in Chapter 5. Finally, we propose a new Bayesian method for
deep learning. We give theoretical guarantees and prove that specific credible sets
provide valid uncertainty quantification in Chapter 6.



Chapter 2

Prerequisite theory for the
Pitman-Yor papers

2.1 The Pitman-Yor processes

Suppose we want to estimate a distribution P0 based on i.i.d. observations. There
are several methods that people use. One such class of methods are species sampling
processes. Proper species sampling processes can be defined as follows. We need to
specify a random weight vector W and an atomless measure G, the centre measure.
A species process prior is the distribution of

∞∑
i=1

Wiδθi ,

where θ1, θ2, . . .
iid∼G. To specify such a prior, we need to specify the distribution of

W . There are many choices possible here.

One key example of the species sampling processes is the Dirichlet process. To de-
fine the Dirichlet process, we need to give the distribution of W . We can give this
distribution in terms of the stick-breaking construction. Let M > 0. Then we define
random variables W as follows

V1, V2, . . .
iid∼ B(1,M), Wi = Vi

i−1∏
j=1

(1− Vj).

The Dirichlet process plays an important role in Bayesian nonparametrics. There
are several reasons for this. Important reasons are the frequentist properties of this

33
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estimator. There is a BvM theorem which shows that the posterior has strong guar-
antees. Not only this, the prior is computationally very easy. These reasons makes it
easy to motivate such a prior.

To make this prior more general, one can try to allow more general distributions on
the W . One can try to keep the relative stick-breaking weights V independent but
allow for different distributions. This generelisation would lead to a much larger class
of priors. If one studies the posterior distribution, it turns out that the size-biased
permutations of W are the important object to understand. If the weights W are
invariant under size-biased permutations, many of the computations turn out to be
easier. However, the only distributions with i.i.d. relative stick-breaking weights are
exactly those in the Dirichlet process. If we allow for independent but no longer
require i.i.d. relative stick-breaking weights, we can allow for a small bit more. By a
result of Pitman [60], the only distributions invariant under size-biased permutations
and with independent relative stick-breaking weights are given by

Vi
ind∼ B(1− σ,M + jσ),Wi = Vi

i−1∏
j=1

(1− Vj),

for σ ∈ [0, 1) and M > −σ, or one of 3 families of finitely discrete distributions.
In particular the Pitman-Yor process is the only one with infinitely many weights
nonzero. The Pitman-Yor process uses the distribution defined in the previous display
to define the random weights W . We will denote this distribution by PY(σ,M,G).

You can either choose the two parameters σ and M or you can try to learn them
from the data. The σ is the type parameter and influences the power-law behaviour
of the data. If σ = 0, the expected number of distinct observations Kn in a sample
X1, . . . , Xn|P ∼ P and P ∼ PY(σ,M,G) satisfies

Kn

M log(n)

a.s.→ 1.

For more details, see [33, Proposition 4.8]. If σ ∈ (0, 1) we get a different behaviour:

Kn

nσ

a.s.
⇝ Zσ.

Here Zσ is an almost sure finite random variable, called the σ-diversity. For more
details, see [33, Theorem 14.50]. This result means that the Pitman-Yor prior gives
rise to random probability measures with specific power-law behaviour. Because this
power-law behaviour is expected in specific applications, people like to use the Pitman-
Yor prior in these settings. Moreover, if you try to learn the σ from the data, you might
hope to learn the power law of the true distribution. This comes up in applications.

To do inference, we need to be able to compute the posterior distribution. We can
compute this due to the structure of the Pitman-Yor process. To write down the
posterior distribution, we first need to introduce notation. Suppose we have Kn
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distinct observations. Let X̃i be the i-th distinct observation. We denote the number
of times we have observed X̃i in the sample by Ni,n. The posterior distribution of
the Pitman-Yor process is the distribution of

Rn

Kn∑
j=1

ŴjδX̃j
+ (1−Rn)Qn,

where Rn ∼ B(n−Knσ,M+Knσ), (Ŵ1, . . . , ŴKn) ∼ Dir(Kn;N1,n−σ, . . . , NKn,n−σ)
and Qn ∼ PY(σ,M + σKn, G). The fact that the explicit posterior distribution is
known is important for the analysis of the posterior distribution. We use explicit
properties of this to derive the BvM theorem.

2.2 BvM for distribution estimation

We will use a BvM theorem to motivate the usage of the PY process from a frequentist
point of view. To do so, we first have to figure out what our precise goal will be.
Recall that in distribution estimation, we wanted to estimate a distribution P0, given
a sample X1, . . . , Xn

iid∼ P0. One of the estimators is the empirical distribution Pn.
This estimator is given by

Pn =
1

n

n∑
i=1

δXi .

This estimator is the distribution you get by putting a point mass of 1/n on each
observation. If f is a function such that P0|f | < ∞, then by the strong law of large
numbers, it follows that

Pn(f) =
1

n

n∑
i=1

f(Xi)
P0 a.s.→ P0f.

Suppose our goal is to compute some estimate of expectation of f(X) under P0. Then
Pn(f) will converge almost surely to P0(f), the right answer. If in addition P0f

2 < ∞,
then also √

n (Pn(f)− P0f)⇝ N(0, P0(f − P0f)
2).

This means we converge at 1√
n

rate. Moreover, we can use this to construct confi-

dence intervals for our estimates. Often we are not interested in just estimating one
functional, but many at the same time. Then we would want that this convergence
holds uniformly over a whole class of functions F . To illustrate that uniform conver-
gence is not automatic, consider the class of indicator functions of finite sets. The set
Sn = {X1, . . . , Xn} is finite. Hence the indicator function 1S of S is contained in our
class. But since Xi ∈ Sn, it follows that 1S(Xi) = 1. Thus Pn(1S) = 1. However,
if the true distribution is continuous, for example, a standard normal distribution,
P0(1Sn) = P0(Sn) = 0. Hence the difference is surely 1. Thus we have no uniform
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convergence. This example implies that not all classes of functions satisfy the uni-
form convergence. We will give a name to two classes of functions that have some
form of uniform convergence. A class of functions F is called Glivenko-Cantelli if
supf∈F ∥Pn(f)−P0(f)∥ converges to zero. A class of functions F is called Donsker if

Gn =
√
n (Pn − P0)⇝ G, in ℓ∞(F).

Here G is a P0 Brownian Bridge. This Brownian Bridge is the counterpart to the
Gaussian distribution for classes of functions. For a discussion on all these concepts,
see [78]. It turns out that the empirical process is asymptotically efficient for estimat-
ing these expectations. See for example [77, Example 25.24].

When we formulated the general BvM results, we wanted to centre on a good estima-
tor. Since, in a certain sense, the efficient estimators are the “best”, we want to centre
on those. Thus for any BvM result in distribution estimation, we want to centre on
the empirical process. The asymptotic distribution of the empirical process is the
Brownian Bridge GP0 . Hence this would also be the ideal asymptotic distribution of
the posterior from a frequentist point of view.

We already knew that the Pitman-Yor processes did satisfy a BvM result in case the
true distribution P0 was atomless. In that case, the BvM result stated that:

√
n
(
P − (1− σ)Pn + σG

)∣∣∣ X1, . . . , Xn ⇝
√
1− σGP0

+
√

σ(1− σ)GG +
√

(1− σ)σ
(
P0 −G

)
Z1.

Hence, in that case, we have a bias term σ(G− Pn). The asymptotic distribution of
the posterior is a mixture of different Gaussians and not the ideal Brownian Bridge.
However, σ(G − Pn) converges almost surely to σ(G − P0). If this was the general
bias term, it would mean that the posterior would always converge to (1− σ)P0 +G.
However, we know that the posterior is consistent for discrete P0, and hence the bias
term, in general, must be more complicated.

As we have seen before, the type σ of the Pitman-Yor process defines the power-law
behaviour. This behaviour makes the parameter σ of independent interest. So we aim
to prove a BvM theorem for this as well. One might hope this gives a BvM centred
at an efficient estimator for the power-law behaviour. However, this is not exactly
the case. It centres on the Marginal maximum likelihood estimator as expected.
However, the estimator does not in general estimate the power law efficiently. Because
σ is a 1-dimensional parameter, we can expect to use the tools from the parametric
misspecified BvM theorem [44]. Indeed, we will find a misspecified BvM result. For
more details, see Chapter 4.



Chapter 3

The BvM for PY

This chapter is an adaptation of a paper published as: S. Franssen, A. van der Vaart,
“Bernstein-von Mises theorem for the Pitman-Yor process of nonnegative type”, [27].

3.1 Introduction

The Pitman-Yor process [59, 54] is a random probability distribution, which can be
used as a prior distribution in a nonparametric Bayesian analysis. It is characterised
by a type parameter σ, which in this paper we take to be positive. The Pitman-Yor
process of type σ = 0 is the Dirichlet process [24], which is well understood, while
negative types correspond to finitely discrete distributions and were considered in
[17]. The Pitman-Yor process is also known as the two-parameter Poisson-Dirichlet
Process, is an example of a Poisson-Kingman process [57], and a species sampling
process of Gibbs type [18].

The easiest definition is through stick-breaking ([54, 40]), as follows. The family of
nonnegative Pitman-Yor processes is given by three parameters: a number σ ∈ [0, 1),
a number M > −σ and an atomless probability distribution G on some measurable
space (X ,A). We say that a random probability measure P on (X ,A) is a Pitman-Yor
process (of nonnegative type), denoted P ∼ PY (σ,M,G), if P can be represented as

P =

∞∑
i=1

Wiδθi ,

where Wi = Vi

∏i−1
j=1(1 − Vj) for Vi

iid∼ B (1− σ,M + iσ), independent of θi
iid∼G, and

B the beta distribution.

It is clear from this definition that the realisations of P are discrete probability mea-
sures, with countably many atoms at random locations, with random weights. If one

37
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first draws P ∼ PY (σ,M,G), and next given P a random sample X1, . . . , Xn from
P , then ties among the latter observations are possible, or even likely. It is known
([57]) that the number Kn of different values among X1, . . . , Xn is almost surely of
the order nσ if σ > 0, whereas it is logarithmic in n if σ = 0. This suggests that the
Pitman-Yor process is a reasonable prior distribution for a dataset in which similar
patterns are expected (or observed). In particular, when a large number of clusters is
expected, a Pitman-Yor process of positive type could be preferred over the standard
Dirichlet prior, which corresponds to σ = 0. Applications in genetics or topic mod-
elling can be found in [83, 76, 35, 3]. The Pitman-Yor process has also been proposed
as a prior for estimating the probability that a next observation is a new species [23],
with applications in e.g. forensic statistics [12, 13]. The papers [8, 7] study hierarchi-
cal versions of Pitman-Yor processes, which are useful to discover structure in data
beyond clustering.

In this paper we consider the properties of the Pitman-Yor posterior distribution to
estimate the distribution of a random sample of observations. By definition this poste-
rior distribution is the conditional distribution of P given X1, . . . , Xn in the Bayesian
hierarchical model P ∼ PY (σ,M,G) and X1, . . . , Xn|P iid∼ P . We assume that in
reality the observations X1, . . . , Xn are an i.i.d. (i.e. independent and identically
distributed) sample from a distribution P0 and investigate the use of the posterior
distribution for inference on P0. It was shown in [41, 18] that in this setting, as
n → ∞,

P |X1, . . . , Xn ⇝ δ(1−λ)Pd
0 +λ(1−σ)P c

0+σλG, (3.1)

where⇝ denotes weak convergence of measures, δQ denotes the Dirac measure at the
probability distribution Q, and P0 = (1−λ)P d

0 +λP c
0 is the decomposition of P0 in its

discrete component (1−λ)P d
0 and the remaining (atomless) part λP c

0 . In the case that
P0 is discrete, we have λ = 0 and the measure (1−λ)P d

0 +λ(1−σ)P c
0+σλG in the right

side reduces to P d
0 = P0, and hence (3.1) expresses that the posterior distribution

collapses asymptotically to the Dirac measure at P0. The posterior distribution is
said to be consistent in this case. However, if P0 is not discrete, then the posterior
distribution recovers P0 asymptotically only if σ = 0 (the case of the Dirichlet prior)
or if G = P c

0 . The last case will typically fail and hence in the case that σ > 0 the
posterior distribution will typically be consistent if and only if P0 is discrete. This
reveals the Pitman-Yor prior of positive type as a reasonable prior only for discrete
distributions.

Besides for recovery, a posterior distribution is used to express remaining uncertainty,
for instance in the form of a credible (or Bayesian confidence) set. To justify such
a procedure from a non-Bayesian point of view, the posterior consistency must be
refined to a distributional result of Bernstein-von Mises type. Such a result was
obtained by [41] in the case that the true distribution P0 is atomless, the case that
the posterior distribution is inconsistent and the Pitman-Yor prior is better avoided.
In the present paper we study the case of general distributions P0, including the case
of most interest that P0 is discrete. It turns out that discreteness per se is not enough
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for valid inference, but it is also needed that the weights of the atoms in P0 decrease
fast enough. In the other case, ordinary Bayesian credible sets are not valid confidence
sets. For the latter case our result suggests a bias correction.

Since the type parameter σ determines the number of distinct values in a sample
from the prior, it might be interpreted as influencing the discreteness of the prior,
smaller σ favouring fewer distinct values and hence a more discrete prior. In the
asymptotic result the type parameter plays only a secondary role. At first thought
counterintuitively, a larger σ, which gives a less discrete prior, increases the bias in
the posterior distribution that arises when the atoms in P0 decrease too slowly.

In practice one may prefer to estimate the type parameter from the data. The empir-
ical Bayes method maximizes the marginal likelihood of X1, . . . , Xn in the Bayesian
setup over σ. We show that in the consistent case, substitution of this estimator in the
posterior distribution for given type parameter does not change the asymptotics of
the Pitman-Yor posterior. Alternatively, we may equip σ itself with a prior, resulting
in a mixture of Pitman-Yor processes as a prior for P . We show that this too results
in the same posterior behaviour. Thus estimating the type parameter does not solve
the inconsistency problem.

We can conclude that the Pitman-Yor process is an appropriate prior for estimating
a distribution only if the sizes of the atoms of this distribution decrease sufficiently
rapidly. Our results show that the speed of decay depends on the aspect of interest,
for instance different for the distribution function than for the mean.

Our results depend heavily on the characterisation of the posterior distribution given
in [60] (see Section 3.4).

3.2 Main result

The nonparametric maximum likelihood estimator of the distribution P of a sample
of observations X1, . . . , Xn is the empirical measure Pn = n−1

∑n
i=1 δXi

, the discrete
uniform measure on the observations. Therefore in analogy with the case of clas-
sical parametric models (e.g. Theorem 10.1 and page 144 in [77]), in this setting a
Bernstein-von Mises theorem would give the approximation of the posterior distribu-
tion of

√
n(P −Pn) given X1, . . . , Xn by the normal distribution obtained as the limit

of
√
n(Pn−P0). To give a precise meaning to such a distributional statement, we may

evaluate all the measures involved on a collection of sets, and interpret
√
n(P − Pn)

and
√
n(Pn − P0) as stochastic processes indexed by sets. For instance, in the case

that the sample space is the real line, we could use the sets (−∞, t], for t ∈ R,
corresponding to the distribution functions of the measures P , Pn and P0.

More generally, we may evaluate these measures on measurable functions f :X → R,
as

Pf =

∫
f dP, Pnf =

∫
f dPn =

1

n

n∑
i=1

f(Xi), P0f =

∫
f dP0.
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Given a collection F of such functions, the Bernstein-von Mises can then address the
distributions of the stochastic processes

{√
n(Pf − Pnf): f ∈ F

}
and

{√
n(Pnf −

P0f): f ∈ F
}
, the first one conditionally given the observations X1, . . . , Xn. For

instance, in the case that X = R, we might choose the collection F to consist of all
indicator functions x 7→ 1x≤t, for t ranging over R, but we can also add the identify
function f(x) = x, yielding the means of the measures.

For a set F of finitely many functions, these processes are just vectors in Euclidean
space and their distributions can be evaluated as usual. Furthermore, the limit law
of
{√

n(Pnf − P0f): f ∈ F
}

is a multivariate normal distribution, in view of the
multivariate central limit theorem (provided P0f

2 < ∞, for every f ∈ F). It is
convenient to write the latter as the distribution of a Gaussian process {GP0

f : f ∈ F},
determined by its mean and covariance function

EGP0
f = 0 EGP0

fGP0
g = P0(f − P0f)(g − P0g).

The process GP0
is known as a P0-Brownian bridge (see e.g. [62, 78, 77]).

An appropriate generalisation (and strengthening) of the central limit theorem to
sets F of infinitely many functions is Donsker’s theorem (e.g. [77], Chapter 19). The
Bernstein-von Mises theorem can be strengthened in a similar fashion. For the case
of indicator functions on the real line, Donsker’s theorem was derived by [22], and
the corresponding Bernstein-von Mises theorem for the Dirichlet process by [49, 48].
A precise formulation (in the general case, which is not more involved than the real
case) is as follows.

A class of functions F is called P0-Donsker if the sequence
√
n (Pn − P0) converges

in distribution to a tight, Borel measurable element in the metric space ℓ∞(F) of
bounded functions z:F → R, equipped with the uniform norm ∥z∥F = supf∈F |z(f)|.
The limit is then a version of the Gaussian process GP0

. The Bernstein-von Mises the-
orem involves conditional convergence in distribution given the observationsX1, . . . , Xn,
which is best expressed using a metric. The bounded Lipschitz metric (see for exam-
ple [78], Chapter 1.12) is convenient, and leads to defining conditional convergence in
distribution of the sequence

√
n(P − Pn) in ℓ∞(F) given X1, . . . , Xn to GP0

as

sup
h∈BL1

∣∣∣E(h(√n(P − Pn)
)
|X1, . . . , Xn

)
− Eh(GP0)

∣∣∣→ 0,

where the convergence refers to the i.i.d. sample X1, X2, . . . from P0, and can be
in (outer) probability or almost surely. The supremum is taken over the set BL1

of all functions h: ℓ∞(F) → [0, 1] such that |h(z1) − h(z2)| ≤ ∥z1 − z2∥F , for all
z1, z2 ∈ ℓ∞(F). For simplicity of notation and easy interpretation, we write the
preceding display as √

n(P − Pn)|X1, . . . , Xn ⇝ GP0
.

Conditional convergence in distribution of other processes is defined and denoted
similarly. For finite sets F , the complicated definition using the bounded Lipschitz
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metric reduces to ordinary weak convergence of random vectors. Also, a finite set F
is P0-Donsker if and only if P0f

2 < ∞, for every f ∈ F . There are many examples
of infinite Donsker classes (see e.g. [78]), with the set of indicators of cells (−∞, t] as
the classical example.

We are ready to formulate the main result of the paper. Let X̃1, X̃2, . . . be the
distinct values in X1, X2, . . . in the order of appearance, let Kn be the number of
distinct elements among X1, . . . , Xn, and set

P̃n =
1

Kn

Kn∑
i=1

δX̃i
. (3.2)

All limit results refer to a sample X1, X2, . . . , Xn drawn from a measure P0. This can
always be written as P0 = (1−λ)P d

0 +λP c
0 , where P

d
0 is a discrete and P c

0 an atomless
distribution and λ ∈ [0, 1] is the weight of the discrete part in P0. The decomposition
is unique unless λ = 0 or λ = 1, when P c

0 or P d
0 is arbitrary.

Theorem 3.2.1. Let P0 = (1 − λ)P d
0 + λP c

0 where P d
0 is a discrete and P c

0 an
atomless probability distribution. The posterior distribution of P in the model P ∼
PY (σ,M,G) and X1, . . . , Xn|P iid∼ P satisfies for every finite collection F of functions
with (P0 +G)f2 < ∞, for every f ∈ F , almost surely under P∞

0 ,

√
n
(
P − Pn − σKn

n
(G− P̃n)

)∣∣∣ X1, . . . , Xn

⇝
√
1− λGPd

0
+
√
(1− σ)λGP c

0
+
√
σ(1− σ)λGG

+
√
(1− σλ)σλ

( (1− λ)P d
0 + (1− σ)λP c

0

1− σλ
−G

)
Z1

+

√
(1− σ)λ(1− λ)√

1− σλ
(P c

0 − P d
0 )Z2.

Here GPd
0
, GP c

0
and GG are independent Brownian bridge processes, independent of

the independent standard normal variables Z1 and Z2. More generally this is true,
with convergence in ℓ∞(F) in probability, for every P0-Donsker class of functions F
for which the PY (σ, σ,G) process satisfies the central limit theorem in ℓ∞ (F). If in
addition P ∗

0 ∥f − P0f∥2F < ∞, then the convergence is also P∞
0 -almost surely.

The proof of the theorem is deferred to Section 3.4.1. The condition that the PY (σ, σ,G)
process satisfies the central limit theorem in ℓ∞ (F), is satisfied, for instance, for all
classes F that are suitably measurable with finite uniform entropy integral and for
all classes F with finite G-bracketing integral. This follows from Theorems 2.11.9 or
2.11.1 in [78].

The limit process in the theorem is Gaussian, but it is the P0-Brownian bridge GP0

only if λ = 0, i.e. if P0 = P d
0 is discrete. In addition, the behaviour of the Pitman-Yor

posterior deviates from the “desired” behaviour by the presence on the left side of the
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term
√
nBn(f): =

σKn√
n

(G− P̃n). (3.3)

Given the observations X1, . . . , Xn this term is deterministic, and we can only expect
it to disappear if Kn/

√
n tends to zero. While Kn/n → 0 almost surely for any

discrete distribution P0, the more stringent convergence to zero of Kn/
√
n is valid

only if the sizes of the atoms of P0 decrease fast enough. This relationship was made
precise in [42] (also see the corollary below) in terms of the function

α0(u) = #{x: 1/P0{x} ≤ u}. (3.4)

If α0 is regularly varying at u = ∞ (in the sense of Karamata, see e.g. [6] or the
appendix to [19]) with exponent γ0 ∈ (0, 1), then Kn/α0(n) → Γ(1 − γ0), almost
surely, and α0(n) is nγ0 up to a slowly varying factor. In this case, for Kn/

√
n to

tend to zero, it is necessary that the exponent be smaller than 1/2 and sufficient
that it is strictly smaller than 1/2. For instance, if the ordered atoms P0{xj} of P0

decrease proportionally to 1/jα, then Kn/
√
n → 0 in probability if and only if α > 2.

For bounded functions f , the convergence Kn/
√
n → 0 is also enough to drive the

additional term (3.3) to zero, as the terms (G − P̃n)f will remain bounded in that
case. For unbounded functions f , a still more stringent condition on P0 is needed
to make the term (Kn/

√
n)P̃nf go away. For instance, for the posterior mean of a

distribution on N with atoms P0{j} of the order 1/jα, the next corollary implies that
α > 4 is needed.

We conclude that for a large class of discrete distributions P0, but not all, the
Bernstein-von Mises theorem takes its standard form, and this also depends on which
aspect of the posterior distribution we are interested in.

Corollary 3.2.2. Under the conditions of Theorem 3.2.1, if P0 is a discrete probabil-
ity distribution, then

√
n
(
P − Pn − (σKn/n)(G− P̃n)

)
|X1, . . . , Xn ⇝ GP0

in ℓ∞(F),
in probability or almost surely.

(i) If the class of functions F is uniformly bounded and the atoms {xj} of P0

satisfy P0{xj} ≤ Cj−α, for some constants C and α > 2, then also
√
n(P −

Pn)|X1, . . . , Xn ⇝ GP0
, in probability. If the class of functions F is uniformly

bounded and the function u 7→ α0(u) = #{x: 1/P0{x} ≤ u} is regularly varying
at u = ∞ of exponent strictly smaller than 1/2, then this is also true almost
surely.

(ii) If the atoms {xj} of P0 and the function f satisfy P0{xj} ≤ Cj−α and f(xj) ≍
jp, for some p > 0, then

√
n(P − Pn)f |X1, . . . , Xn ⇝ GP0f , in probability if

α > 2p+ 2.

Proof. The first assertion merely specializes the limit in Theorem 3.2.1 to the case of
a discrete distribution, by setting λ = 0. Assertions (i) and (ii) follow from this if the
term (3.3) tends to zero, in probability or almost surely.
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For bounded functions f , as assumed in (i), the term (3.3) tends to zero provided
Kn/

√
n tends to zero. The almost sure convergence is immediate from [42], Theo-

rems 9 and 1‘, which show that Kn/α0(n) → Γ(1 − γ0), almost surely, for γ0 the
exponent of regular variation. For the convergence in probability, we note that
Kn =

∑∞
j=1 1j∈{X1,...,Xn}, whence EKn =

∑∞
j=1

(
1 − (1 − P0{xj})n

)
. By the in-

equality (1− p)n ≥ 1− np, for p ≥ 0, we find that EKn ≤
∑∞

j=1(nCj−α ∧ 1), which

can be seen to be o(
√
n) if α > 2.

The assertion in (ii) follows provided Kn/
√
n → 0 and (Kn/

√
n)P̃nf → 0, in proba-

bility. Reasoning as before, we find

E
(Kn√

n
P̃nf

)
=

1√
n

∞∑
j=1

f(xj)
(
1− (1− P0{xj})n

)
.

Under the given assumptions on f and the atoms, this is bounded above by

1√
n

∫ ∞

C1/a

up
(
1−

(
1− C

uα

)n)
du =

n(p+1)/α

√
n

∫ ∞

C/n

v(p+1)/α−1
(
1−

(
1− C

nv

)n)
dv.

The integrand is bounded above by Cv(p+1)/α−1 and hence the integral converges near
0. By again the inequality (1− p)n ≥ 1−np, for p ≥ 0, the integrand is also bounded
above by v(p+1)/α−2 and hence the integral converges near infinity if (p + 1)/α < 1.
The middle part of the integral always gives a non-vanishing contribution and hence
the full expression can tend to zero only if the leading factor tends to zero. This is
true under the more stringent condition that (p+ 1)/α < 1/2.

For λ = 1 and P0 = P c
0 , Theorem 3.2.1 was obtained by [41]. In this case all

observations are distinct and the left side of the theorem reduces to
√
n
(
P − (1 −

σ)Pn − σG
)
, since Kn = n. As noted in the introduction, the posterior distribution

is not even consistent, i.e. the asymptotic limit is “wrong” even without the
√
n

multiplier.

The Bernstein-von Mises theorem is important for the validity of credible sets. A
credible interval for Pf , for a given function f , could be formed as the interval
between two quantiles of the marginal posterior distribution of Pf given X1, . . . , Xn.
For instance, for f equal to the indicator of a given set A ∈ A, this gives a credible
interval for a probability P (A), and for f(x) = x, we obtain a credible interval for
the mean. Simultaneous credible sets, for instance a credible band for a distribution
function can be obtained similarly.

By the inconsistency of the posterior distribution in the case that the true distribution
possesses a continuous component (λ > 0), there is no hope that in this case such an
interval for Pf will cover a true value P0f with the desired probability. However, also
in the case of a discrete distribution P0, the coverage may not tend to the nominal
value, due to the presence of the bias term (3.3). We need at least that Kn/

√
n tends

to zero, and more for unbounded functions f .
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Because the bias Bn(f) = (σKn/n)(Gf − P̃nf) is observed (and σ and the center
measure G are fixed by our prior choices), it is possible to correct a credible interval
by shifting it by minus this amount. Thus for Qn,α(f) the α-quantile of the pos-
terior distribution of Pf given X1, . . . , Xn, we consider both the credible intervals[
Qn,α(f), Qn,β(f)

]
and corrected intervals

[
Qn,α(f) − Bn(f), Qn,β(f) − Bn(f)

]
, for

given α < β.

Corollary 3.2.3. Under the conditions of Theorem 3.2.1, if P0 is a discrete proba-
bility distribution, then PP0

(
Qn,α(f) − Bn(f) ≤ P0f ≤ Qn,β(f) − Bn(f)

)
→ β − α,

for every f with (P0 + G)f2 < ∞. If
√
nBn(f) → 0, in probability, then also

PP0

(
Qn,α(f) ≤ P0f ≤ Qn,β(f)

)
→ β − α, for every such f . For bounded functions

f , the latter is true if the atoms of P0 satisfy P0{xj} ≤ Cj−α, for some constants C
and α > 2. For f(x) = x, this is true for α > 4.

Proof. The α-quantileQn,α(f) of the posterior distribution of Pf is equal to n−1/2Q̄n,α(f)+
Pnf + Bn(f), for Q̄n,α(f) the α-quantile of the posterior distribution of

√
n
(
Pf −

Pnf −Bn(f)
)
. By Theorem 3.2.1, the latter posterior distribution tends to a normal

distribution with mean zero and variance τ2(f) = varGP0
f . It follows that

Qn,α(f) = Pnf +Bn(f) +
τ(f)√

n
ξα + oP

( 1√
n

)
,

where ξα is the α-quantile of the standard normal distribution. Thus the event P0f ≥
Qn,α(f) − Bn(f) can be rewritten as P0f ≥ Pnf + τ(f)/

√
n ξα + oP (n

−1/2. The
probability of the latter event tends to tends to 1 − α, by the central limit theorem
applied to

√
n(Pnf − P0f).

If
√
nBn(f) tends to zero in probability, then in the preceding display Bn(f) can be

incorporated into the oP (n
−1/2) remainder term, and the remaining argument works

for the uncorrected interval as well.

The final assertions follow from Corollary 3.2.2.

Example 3.2.4. The following explicit counterexample illustrates that the coverage
can fail. Let G be the normal distribution with both mean and variance 1, let P0 =∑∞

j=1 pjδj, for pj = 6/(πj)2, and consider the function f = 1(1,∞) − 1(−∞,1]. Since

Gf = 0, we get (σKn/
√
n)(G− P̃n)f = (σ/

√
n)
∑Kn

i=1 f(X̃i). Eventually the atom {1}
will be among the observations. Since f(1) = −1 and f(j) = 1 for all atoms j ≥ 2,
(σKn/

√
n)(G − P̃n)f = (σ/

√
n)(−1 + (Kn − 1)) → σ

√
6/π, almost surely, by [42],

Theorem 8, Theorem 1’ and Example 4. The coverage of the uncorrected interval[
Qn,α(f), Qn,β(f)

]
will tend to Φ(−ξα − σ

√
6/π)− Φ(−ξβ − σ

√
6/π).

The joint convergence in collections of functions f allows to study simultaneous credi-
ble sets and credible bands, besides univariate intervals. For instance, in the case that
the sample space is the real line, we can take F equal to the set of all indicators of cells
(−∞, t], and obtain a credible band for the distribution function F0(t) = P0(−∞, t],
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as follows. Let F (t) = P (−∞, t] be the distribution function of the posterior process,
and for mn(t) and sn(t) two functions dependent on X1, . . . , Xn, let ξn,α be the α-
quantile of the posterior distribution of supt∈R

∣∣(F (t) − mn(t))/sn(t)
∣∣. Consider the

credible band of functions

Cn(α): =
{
F :mn(t)− ξn,1−αsn(t) ≤ F (t) ≤ mn(t) + ξn,1−αsn(t),∀t

}
.

Possible choices for the functionsmn and sn are the pointwise posterior meanmn(t) =
E
(
F (t)|X1, . . . , Xn

)
and the pointwise posterior standard deviation sn(t) = sd

(
F (t)|X1, . . . , Xn

)
.

The quantiles ξn,α will typically be computed approximately from an MCMC sample
from the posterior distribution, or approximated using tables for the limiting Brow-
nian bridge process.

Corollary 3.2.5. If P0 is a discrete probability distribution with atoms such that
P0{xj} ≤ Cj−2−ε, for some constants C and ε > 0, then PP0

(
F0 ∈ Cn(α)

)
→ 1−2α.

Proof. Because the class of indicator functions is Donsker, both the classical empir-
ical process {

√
n(Fn − F0)(t): t ∈ R} and the posterior empirical process {

√
n(F −

Fn)(t): t ∈ R}|X1, . . . , Xn tend to the process GU ◦ F0, for GU a standard (classical)
Brownian bridge process, by Theorem 3.2.1. The result follows from this along the
same lines as the proof of Corollary 3.2.3.

The bias term (3.3) vanishes as σ ↓ 0, which is in agreement with the fact that in
this case the Pitman-Yor prior approaches the Dirichlet prior, which is well known to
give asymptotically correct inference for any distribution P0. The bias term increases
with σ, which is counterintuitive, as the bias appears only for heavy-tailed P0 (having
many large atoms), while large σ gives more different atoms in the prior.

One might hope that a data-dependent choice of σ could solve this bias problem. The
empirical Bayes method is to estimate σ by the maximum likelihood estimator based
on observing X1, . . . , Xn in the Bayesian model, i.e. the maximiser of the marginal
likelihood, and plug this into the posterior distribution of P for known σ. The hierar-
chical Bayes method is to put a prior on σ, and given σ, put the Pitman-Yor prior on
P . Disappointingly, these methods do not change the limit behaviour of the posterior
distribution of P . This is explained by the fact that these methods yield a reasonable
estimator of a value of σ connected to the discreteness of the true distribution P0, and
we already noted the counterintuitive fact that a better match of discreteness does
not solve the bias problem, but even makes it worse.

A sample X1, . . . , Xn from a realisation of the Pitman-Yor process induces a (ran-
dom) partition of the set {1, 2, . . . , n} through the equivalence relation i ≡ j if and
only if Xi = Xj . An alternative way to generate the sample is to generate first the
partition and next attach to each set in the partition a value generated independently
from the center measure G (see e.g. [33], Lemma 14.11 for a precise statement), du-
plicating this as many times as there are indices in the set, in order to form the
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observations X1, . . . , Xn. Because the parameter σ enters only in creating the parti-
tion, the partition is a sufficient statistic for σ. Because of exchangeability, the vector
(Nn,1, . . . , Nn,Kn

) of cardinalities of the partitioning sets is already sufficient for σ
and hence the empirical Bayes estimator and posterior distribution of σ based on
observations (X1, . . . , Xn) or on observations (Kn, Nn,1, . . . , Nn,Kn) are the same.

The likelihood function for σ is therefore equal to the probability of a particular
partition, called the exchangeable partition probability function (EPPF). For the
Pitman-Yor process this is given by (see [60], or [33, page 465])

pσ(Nn,1, . . . , Nn,Kn) =

∏Kn−1
i=1 (M + iσ)

(M + 1)[n−1]

Kn∏
j=1

(1− σ)[Nn,j−1]. (3.5)

Here a[n] = a(a+1) · · · (a+n−1) is the ascending factorial, with a[0] = 1 by convention.
For the case that M = 0, it is shown in [23], that provided the partition is nontrivial
(1 < Kn < n), the maximiser σ̂n of this likelihood exists. Moreover, if the true
distribution P0 is discrete, with atoms satisfying, for α0(u) = #{x: 1/P0{x} ≤ u} and
some σ0 ∈ (0, 1),

sup
u>1

|α0(u)− Luσ0 |√
uσ0 log(eu)

< ∞,

then [23] shows that the maximum likelihood estimator satisfies

σ̂n = σ0 +OP (n
−σ0/2

√
log n).

Thus the coefficient of regular variation σ0 may be viewed as a true value of σ,
identified by the maximum likelihood estimator.

For the following theorem we need only the consistency of σ̂n, which we prove in
Section 3.4.3 for general M , under the condition that α0 is regularly varying. We
also consider the full Bayes approach, and show that the posterior distribution of
σ concentrates asymptotically around the empirical likelihood estimator, and hence
contracts to σ0, under the same condition.

Theorem 3.2.6. Let P0 = (1−λ)P d
0 +λP c

0 where P d
0 is a discrete and P c

0 an atomless
probability distribution. If σ̂n are estimators based on X1, . . . , Xn such that σ̂n → σ0

in probability, and P is the posterior Pitman-Yor process of Theorem 3.2.1, then the
process

√
n
(
P − Pn − σ̂nKn

n
(G− P̃n)

)∣∣∣ X1, . . . , Xn

tends to the same limit process as in Theorem 3.2.1 with σ replaced by σ0, in proba-
bility. If P0 is discrete with atoms such that α0 given in (3.4) is regularly varying of
exponent σ0 ∈ (0, 1), then this is true for the maximum likelihood estimator σ̂n. Fur-
thermore, in this case for Πσ a prior distribution on σ with continuous positive density
on [0, 1], the posterior distribution of P in the model σ ∼ Πσ, P |σ ∼ PY (σ,M,G)
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and X1, . . . , Xn|P, σ ∼ P satisfies the assertion of Theorem 3.2.1, with σ in the left
side also interpreted as a random posterior variable and σ in the right side replaced
by σ0. Finally if P0 possesses a nontrivial atomless component (i.e. λ > 0), then
σ̂n → σ0: = 1.

The proof of the theorem is deferred to Section 3.4.2. The final assertion of the
theorem underlines again the deficiency of the Pitman-Yor process for distributions
with a continuous component, which is not solved by estimating the type parameter
. The type estimate tends to type 1 instead of the desired type 0 corresponding to
the Dirichlet prior.

Besides the type parameter, the prior precision parameter M could be replaced by a
data-dependent version. However, unlike the type parameter, this prior precision does
not appear in the asymptotics of the posterior distribution of

√
n(P −Pn). Moreover,

inspection of the proof of Theorems 3.2.1 and 3.2.6 shows that the convergence in
these theorems is uniform in M ≪

√
n. Thus data-dependent M will not lead to new

insights.

In the case of a discrete distribution P0 for which the atoms decrease too slowly
to ensure that Kn/

√
n tends to zero, the bias term (3.3) could still tend to zero if

P̃n → G. However, we show below that P̃n(A) → 0, for any set A that contains only
finitely many atoms of P0, and hence such convergence is false in any reasonable sense.
Furthermore, the (in)consistency result (3.1) shows that in the case that P0 possesses
a continuous component, the center measure G = P c

0 is the only choice for which
the posterior distribution is even consistent. A data-dependent center measure might
achieve this, but in the present context would come down to the original problem of
estimating P0. Hierarchical choices (and hence random) of the center measure are
considered in [8, 7], but with the different aim of finding hierarchical structures in the
data.

Lemma 3.2.7. If P0 is discrete with infinitely many support points, then P̃nf → 0 in
probability for any bounded function f with finite support. Furthermore, P̃nf → f∞
in probability, for any bounded function f for which there exists a number f∞ such
that supx:P0{x}<δ |f(x)− f∞| → 0, as δ ↓ 0.

Proof. Let xj be the atoms of P0, ordered by decreasing size pj : = P0{xj} and set
fj = f(xj). Arguing as in the proof of Corollary 3.2.2, we can obtain (for the variance
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also see [42], formulas (39)–(40))

E(KnP̃nf) =

∞∑
j=1

fj
(
1− (1− pj)

n
)
,

var(KnP̃nf) =

∞∑
j=1

f2
j

[
(1− pj)

n − (1− pj)
2n
]

+
∑∑

i̸=j

fifj
[
(1− pi − pj)

n − (1− pi)
n(1− pj)

n
]
.

For f = 1 these expressions reduce to EKn and varKn. As all terms of the series
in EKn tend to 1, it can be seen that EKn → ∞. Furthermore, it can be seen that
varKn ≤ EKn, as the terms in the second series in varKn are negative and the terms
of the first series are bounded above by the terms in EKn. Because the terms of the
series tend to zero as n → ∞, for fixed i, j, and fj → f∞, as j → ∞, for general f as
in the second assertion of the lemma, the expressions are asymptotically equivalent
to f∞EKn + o(1) and f2

∞ varKn + o(1), as n → ∞. It follows that

var
( KnP̃nf

E(KnP̃nf)
− 1
)
=

var(KnP̃nf)(
E(KnP̃Pnf)

)2 =
f2
∞ varKn + o(1)(
f∞EKn + o(1)

)2 .
Since varKn ≤ EKn → ∞, the right side tends to zero if f∞ ̸= 0. Then it follows that
KnP̃nf/E(KnP̃nf) → 1, in probability. Taking f = 1, we see that Kn/EKn → 1, in
probability. Combining the preceding, we conclude that P̃nf/f∞ → 1, in probability.

If f∞ = 0, then it follows that E(KnP̃nf) → 0. Combination with the fact that
Kn → ∞, almost surely, gives that P̃nf → 0, in probability.

If f has finite support, then the condition on f in the second part holds with f∞ = 0
and hence P̃nf → 0, in probability.

3.3 Numerical illustration

To illustrate that credible sets can be off, we carried out three simulation experiments,
involving three discrete true probability distributions P1, P2, P3 on N. We focused on
a credible interval for the probability of the set [2,∞). The measure P1 is finitely
discrete and given in Table 3.1, while P2 and P3 are given by the formulas

P2{k} ∝ 1

k2
, P3{k} ∝ 1

k1.5
.

By the results of [42], as n → ∞ the number Kn of distinct observations in a sample
of size n from these distributions are asymptotically equal to 6, and proportional to√
n and to n2/3, respectively, for P1, P2 and P3. Thus Kn/

√
n tends to 0, a positive
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Table 3.1: Probability distribution P1

k 1 2 3 4 5 6
P1(X = k) 0.1 0.1 0.2 0.2 0.3 0.1

constant and ∞, respectively, and a bias is expected for P2 and P3, but not for P1,
where P2 is a boundary case.

As prior parameters we used σ = 1/2 and M = 1 and G the normal distribution
with mean and variance 1. The choice M = 1 means that the prior is not biased
exceedingly against the true distribution.

The Pitman-Yor posterior distribution can be simulated using the explicit representa-
tion given by [58] (see Section 3.4). Following Algorithm 1 from [3], we truncated the
infinite series in the representation at a finite value, ensuring that the total weight
of the tail is smaller than n−1/2 so that the approximation is accurate within our
context. We simulated 10000 samples from each of P1, P2 and P3 and for five dif-
ferent sample sizes: n = 10, 102, 103, 104, 105. For each sample we computed a 95%
credible interval for P [2,∞) from its marginal posterior distribution, constructed
using the 0.025 and the 0.975 posterior quantiles. We next computed coverage as
the proportion of the 10000 replications that the true value, P1[2,∞), P2[2,∞) or
P3[2,∞), belonged to the interval. We did the same with the credible interval shifted
by (σKn/

√
n)
(
G[2,∞)− P̃n[2,∞)

)
, derived from (3.3).

Tables 3.2 and 3.3 summarise the results. For P1 both the corrected uncorrected
intervals perform satisfactorily, whereas for P2 and P3 the uncorrected intervals un-
dercover, severely so for P3, while the corrected intervals perform reasonably well,
although not perfectly. The simulation results thus confirm the theoretical findings.

Table 3.2: Coverage of uncorrected posterior 95% credible intervals

n 10 100 1000 10000 100000
P1 0.660 0.940 0.957 0.940 0.947
P2 0.707 0.772 0.790 0.845 0.838
P3 0.559 0.231 0.035 0.0 0.0

Table 3.3: Coverage of corrected posterior 95% credible intervals

n 10 100 1000 10000 100000
P1 0.990 0.967 0.958 0.942 0.945
P2 0.814 0.941 0.958 0.971 0.971
P3 0.884 0.956 0.959 0.985 0.949

To illustrate the asymptotic normality of the posterior distribution, Figure 3.1 shows
density plots of the marginal posterior distribution of P [2,∞), given samples of vari-
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Figure 3.1: Density of the marginal posterior distribution of P [2,∞) based on n
observations from P1, for n = 10, 100, 1000 (top row) and n = 104, 105. The true
value of the parameter is P1[2,∞) = 0.9.
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ous sizes from P1. The plots were computed from the 100000 replicates, using the R

“density” function. The normal approximation is satisfactory for n = 1000, but the
posterior is visibly skewed for n = 100.

3.4 Proofs

Let X̃1, . . . , X̃Kn be the distinct values in X1, . . . , Xn, and let N1,n, . . . , NKn,n be
their multiplicities. By Corollary 20 in [60] (or see [33, Theorem 14.37]), the posterior
distribution of the Pitman-Yor process can be characterised as the distribution of

PYn = RnSn + (1−Rn)Qn, (3.6)

for

Sn =

Kn∑
i=1

Wn,iδX̃i
, (3.7)

and independent variables Rn,Wn, Qn with, conditionally on X1, . . . , Xn, distributed
according to:

� Rn ∼ B(n− σKn,M + σKn),

� Qn ∼ PY(σ,M + σKn, G),

� Wn = (Wn,1, . . . ,Wn,Kn) ∼ Dir(Kn;Nn,1 − σ, . . . , Nn,Kn − σ).
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Here B and Dir refer to the beta and Dirichlet distributions, respectively. The number
Kn will tend almost surely to the total number of atoms of P0 in the case that P0

is finitely discrete, and it will tend to infinity otherwise. In the latter case the rate
of growth can have any order nγ , for 0 < γ ≤ 1. (See Theorem 8 of [42], where it is
shown that Kn/EKn → 1, almost surely, where any rate can occur for EKn.) The
proofs below use that Kn/n tends to the mass λ of the continuous part of P0, and

the limit of the related sequence n−1KnP̃nf = n−1
∑Kn

i=1 f(X̃i).

Lemma 3.4.1. The number Kn of distinct values among X1, . . . , Xn
iid∼ λP c

0 + (1 −
λ)P d

0 satisfies Kn/n → λ, almost surely. The number Kd
n of those values that belong

to the set S of atoms of P d
0 satisfies Kd

n/n → 0, almost surely.

Proof. The number of distinct values not in S is Kc
n: = nPn(S

c) and hence Kc
n/n →

P0(S
c) = λ, almost surely. If S = {x1, x2, . . .}, then the number of distinct values

in S is bounded above by m+ nPn{xm+1, xm+2, . . .}, for any m, and hence Kd
n/n ≤

m/n+ Pn{xm+1, xm+2, . . .} → P0{xm+1, xm+2, . . .}, almost surely, for every m.

A class F of measurable functions f :X → R is P0-Glivenko-Cantelli if the uniform
law of large numbers holds: supf∈F |Pnf − P0f | → 0, outer almost surely (see e.g.
[78], Chapter 2.4; we write “outer” because the supremum may not be measurable;
for standard examples this is superfluous). An envelope function of F is a measurable
function F :X → R such that |f | ≤ F , for every f ∈ F .

Lemma 3.4.2. Suppose F has an envelope function with P0F < ∞. If S is the
set of atoms of P d

0 , then supf∈F
∣∣n−1

∑Kn

i=1 f(X̃i)1X̃i∈S

∣∣ → 0, outer almost surely.
Furthermore, if σn → σ ∈ [0, 1], and F is a P0-Glivenko-Cantelli class, then uniformly
in f ∈ F , outer almost surely,

Pnf +
σnKn

n
P̃nf → Tf : = (1− λ)P d

0 f + (1− σ)λP c
0 f.

Proof. For any M , the supremum is bounded above by n−1Kd
nM + PnF1F>M →

P0F1F>M , almost surely. The first term tends to zero by Lemma 3.4.1, for any M .
The second term can be made arbitrarily small by choosing M large.

For the convergence in the display we write KnP̃nf =
∑

i=1 f(Xi)1Xi /∈S+∑Kn

i=1 f(X̃i)1X̃i∈S . By the first assertion, the second sum divided by n tends to zero,
uniformly in f . The first sum divided by n tends to λP c

0 f , where the convergence
is uniform in f ∈ F if F is a Glivenko-Cantelli class (which implies that the set of
functions x 7→ f(x)1Sc(x) is a Glivenko-Cantelli class, in view of [79]). Thus the left
side of the display tends to P0f + σλP c

0 f , which is equal to Tf .
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3.4.1 Proof of Theorem 3.2.1

The left side
√
n
(
PYn −Pn + (σKn/n)(P̃n −G)

)
of the theorem can be decomposed

as

√
n
(
Rn − 1 +

σKn

n

)
(Sn −Qn) +

√
n

(
Sn

(
1− σKn

n

)
− Pn +

σKn

n
P̃n

)
+ σ

√
Kn(Qn −G)

√
Kn

n
. (3.8)

We derive the limit distributions of these three terms in Lemmas 3.4.3–3.4.5 below.
For later use it will be helpful to allow σ ∈ (0, 1) to depend on n. For this reason we
give precise proofs of the first two lemmas, although they are very similar to results
obtained in [41, 33]. The main novelty is in the third lemma. For simplicity we
assume that σn ∈ (0, 1) converges to a limit, which we allow to be 0 or 1.

Lemma 3.4.3. If σn → σ ∈ [0, 1], then

√
n

(
Rn − 1 +

σnKn

n

)
|X1, . . . , Xn ⇝ N

(
0, (1− σλ)σλ

)
, a.s. (3.9)

Proof. We can represent the beta variable Rn as the quotient Rn = Un/(Un+Vn), for
independent gamma variables Un ∼ Γ(un, 1) and Vn ∼ Γ(vn, 1), for un = n − σnKn

and vn = M + σnKn the means, and also variances, of the latter variables. We can
decompose

(Un + Vn)
(
Rn − un

un + vn

)
=

vn
un + vn

(Un − un)−
un

un + vn
(Vn − vn).

Since σnKn/n → σλ ∈ [0, 1], we have vn/(un+vn) → σλ and un/(un+vn) → 1−σλ.
Furthermore, (Un + Vn)/n → 1, almost surely, by the law of large numbers.

If σλ < 1, then n − σnKn → ∞ and hence (Un − un)/
√
un ⇝ Z1 ∼ N(0, 1), by the

central limit theorem. It follows that (Un − un)/
√
n ⇝ Z1

√
1− σλ. If σλ = 1, then

var(Un/
√
n) = un/n → 0 and hence (Un−un)/

√
n⇝ 0, where the limit 0 is identical

to Z1

√
1− σλ in this case. Thus in all cases (Un − un)/

√
n⇝ Z1

√
1− σλ.

If σλ > 0, then σnKn → ∞ and hence (Vn − vn)/
√
vn ⇝ Z2 ∼ N(0, 1), by the

central limit theorem. It follows that (Vn − vn)/
√
n ⇝ Z2

√
σλ. If σλ = 1, then

var(Vn/
√
n) = vn/n → 0 and hence (Vn − vn)/

√
n⇝ 0, where the limit 0 is identical

to Z2

√
σλ in this case. Thus in all cases (Vn − vn)/

√
n⇝ Z2

√
σλ.

Combining the preceding, we see that the sequence
√
n
(
Rn−un/(un+vn)

)
converges

weakly to σλZ1

√
1− σλ + (1 − σλ)Z2

√
σλ. As the limit variable has variance (1 −

σλ)σλ and un/(un + vn) = (1− σnKn/n)(1 +O(1/n)), this concludes the proof.
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Lemma 3.4.4. If σn → σ ∈ [0, 1] and Kn → ∞ and F is a class of finitely many
G-square-integrable functions, then in RF ,

σn

√
Kn(Qn −G)|X1, . . . , Xn ⇝

√
σ(1− σ)GG. a.s. (3.10)

The convergence is also true in ℓ∞(F) if F possesses a G-square integrable envelope
function and the Pitman-Yor process PY(σ, σ,G) satisfies the central limit theorem in
this space.

Proof. The process Qn ∼ PY(σn,M + σnKn, G) centered at mean zero can be repre-
sented as

Qn −G ∼
Kn∑
i=0

Wn,i(Pi −G),

where (Wn,0, . . . ,Wn,Kn) ∼ Dir(Kn+1;M,σn, . . . , σn) is independent of the indepen-

dent processes P0 ∼ PY(σn,M,G) and Pi
iid∼ PY(σn, σn, G), for i = 1, . . .Kn (see e.g.

Proposition 14.35 in [33]). The variable Wn,0 is B(M,Knσn)-distributed, whence

σn

√
KnE

∣∣Wn,0(P0 −G)f
∣∣ = σn

√
KnM

M +Knσn
E|(P0 −G)f | ≤ M√

Kn

√
Gf2,

where the moment of (P0−G)f can be obtained from Proposition 14.34 in [33]. Next
by the gamma representation of the Dirichlet distribution (e.g. Propositions G.2 and
G.3 in [33]), we can represent

σn

√
Kn

Kn∑
i=1

Wn,i(Pi −G) ∼ (1−Wn,0)
K

−1/2
n

∑Kn

i=1 Vn,i(Pi −G)

K−1
n
∑Kn

i=1 Vn,i/σn

,

where the variables Vi,n
iid∼ Γ(σn, 1) are independent ofWn,0 and the Pi. The triangular

array of variables Vn,i(Pi −G) are i.i.d. for every n with

EV 2
n,1

(
(P1 −G)f

)2
= σn(1 + σn)G(f −Gf)2

1− σn

1 + σn
,

EV 2
n,1

(
(P1 −G)f

)2
1|Vn,1(P1−G)f |≥Mn

→ 0,

for anyMn → ∞. The second claim is implied by the uniform integrability of the set of
variables Wσ: = V 2

σ ((Pσ −G)f)
2
, for σ ∈ [0, 1], where Vσ ∼ Γ(σ, 1) is independent of

Pσ ∼ PY(σ, σ,G), andW0 andW1 are defined to be degenerate at 0, in agreement with
the first line of the preceding display. This itself is a consequence of the continuity of
the map σ 7→ Wσ from [0, 1] to L2(Ω) and the Dunford-Pettis theorem. The continuity
follows from the norm continuity, EW 2

σn
→ EW 2

σ , if σn → σ, by the first assertion in
the display, combined with the continuity in distribution of σ 7→ Wσ. Therefore, the

sequence K
−1/2
n

∑Kn

i=1 Vn,i(Pi−G) tends to a normal distribution with mean zero and
variance σ(1− σ)G(f −Gf)2, by the Lindeberg central limit theorem. The linearity
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of the process in f shows that as a process it tends marginally in distribution to
the process

√
σ(1− σ)GG. Because var

(
K−1

n

∑Kn

i=1 Vn,i/σn

)
= 1/(Knσn), we have

K−1
n

∑Kn

i=1 Vn,i/σn → 1, in probability, if Knσn → ∞. Since also 1 −Wn,0 → 1, the
proof is complete in the case that Knσn → ∞.

If Knσn remains bounded, then necessarily σn → 0, as Kn → ∞, by assumption.
Then

σ2
nKnE

(Kn∑
i=0

Wn,i(Pi −G)f
)2

= σ2
nKn

Kn∑
i=0

Kn∑
j=0

EWn,iWn,j(Pi −G)f(Pj −G)f

≤ σ2
nKnE

(Kn∑
i=0

Wn,i

)2
Gf2 ≤ σ2

nKnGf2.

Since this tends to zero, the lemma holds also in this case, with a limit process equal
to 0, which is equal to

√
σ(1− σ)GG.

For the final assertion we note that the preceding argument gives the convergence of
supf∈F σn

√
KnWn,0(P0−G)f to zero for any class F with square-integrable envelope

function. The convergence of K
−1/2
n

∑Kn

i=1 Vn,i(Pi − G) in ∞(F) follows from the

convergence of K
−1/2
n

∑Kn

i=1(Pi − G) by the multiplier central limit theorem (e.g.
Lemma 2.9.1 and Theorem 2.9.2 in [78]).

Lemma 3.4.5. If σn → σ ∈ [0, 1], where σλ < 1, then for any P0-Donsker class with
square-integrable envelope function

√
n

(
Sn

(
1− σnKn

n

)
− Pn +

σKn

n
P̃n

)
⇝W− 1

1− σλ
W1T, a.s., (3.11)

in ℓ∞(F), where W =
√
λ(1− σ)GP c

0
+
√
1− λGPd

0
, for independent Brownian bridge

processes GP c
0
and GPd

0
, and T is the (deterministic) process defined in Lemma 3.4.2.

The convergence is true in probability for any P0-Donsker class. If σn → σ ∈ [0, 1],
where σλ = 1, then the sequence of processes tends to the zero proces.

Proof. A gamma representation for the multinomial vector Wn in the definition of Sn

is

Wn,i =
Ui,0 +

∑Nn,i−1
j=1 Ui,j∑Kn

i=1

(
Ui,0 +

∑Nn,i−1
j=1 Ui,j

) ,
for all Ui,j independent, Ui,0 ∼ Γ(1− σ, 1) and Ui,j ∼ Γ(1, 1), for j ≥ 1. Relabel the
n variables Ui,j as ξn,1, . . . , ξn,n, as follows. Let S be the set of all atoms of P0. An
observationXi that is not contained in S appears exactly once in the set {X1, . . . , Xn}
of observations; set the variable ξn,i with the corresponding i equal to Ui,0. Every Xi
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that is contained in S appears Nn,i ≥ 1 times among X1, . . . , Xn; set the ξn,j with
indices corresponding to these appearances equal to Ui,0, Ui,1, . . . , Ui,Nn,i−1. Then

Sn =

Kn∑
i=1

Wn,if(X̃i) =
n−1

∑n
i=1 ξn,if(Xi)

n−1
∑n

i=1 ξn,i
=:

Snf

Sn1
, (3.12)

and the left side of the lemma can be decomposed as

Snf
√
n
(
1− σnKn

n
− Sn1

)
+
√
n
(
Snf − Pnf +

σnKn

n
P̃nf

)
= −Snf

√
n(Sn1− Tn1) +

√
n(Snf − Tnf),

where Tnf = Pnf − (σnKn/n)P̃nf tends to Tf , by Lemma 3.4.2. We shall show that√
n(Sn − Tn)|X1, . . . , Xn ⇝W. Then Snf → Tf/T1 = Tf/(1− σλ), and the result

follows in the case that σλ < 1.

The variables ξn,1, . . . , ξn,n are independent. The Kn variables corresponding to the
distinct values are Γ(1−σ, 1)-distributed; the others are Γ(1, 1)-distributed. Thus the
conditional mean and variance of Snf are given by

n∑
i=1

(Eξn,i)f(Xi) =

n∑
i=1

f(Xi)− σ

Kn∑
i=1

f(X̃i) = Tnf,

1

n

n∑
i=1

(var ξn,i)f
2(Xi) =

1

n

n∑
i=1

f2(Xi)−
σ

n

Kn∑
i=1

f2(X̃i) → Tf2, a.s.,

by Lemma 3.4.2. The limit variance is equal to varWf . To complete the proof of the
convergence

√
n(Sn−Tn)f |X1, . . . , Xn ⇝W, it suffices to verify the Lindeberg-Feller

condition. We have, for ξn ∼ Γ(1− σn, 1) and ξ̄n ∼ Γ(1, 1),

1

n

n∑
i=1

E
(
ξ2n,if

2(Xi)1|ξn,if(Xi)|>ε
√
n|X1, . . . , Xn

)
≤ max

(
Eξ2n1|ξn| max1≤i≤n |f(Xi)|>ε

√
n,Eξ̄2n1|ξ̄n| max1≤i≤n |f(Xi)|>ε

√
n

)
Pnf

2.

This tends to zero for every sequence X1, X2, . . . such that both Pnf
2 = O(1) and

max1≤i≤n |f(Xi)|/
√
n → 0, which is almost every sequence if P0f

2 < ∞.

By the Cramér-Wold device and linearity in f , the convergence is then implied for
finite sets of f .

For convergence as processes in ℓ∞(F) for a general Donsker class, it suffices to prove
asymptotic tightness (see e.g. Theorem 1.5.4 in [78]). The processes n−1/2

∑n
i=1(ξn,i−

Eξn,i)f(Xi) are multiplier processes with mean zero, independent multipliers. Because
the multipliers are not i.i.d., a direct application of the conditional multiplier central
limit theorem (see Theorem 2.9.7 in [78]) is not possible. However, the multipliers
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have two forms Γ(1− σ, 1) and Γ(1, 1). By Jensen’s inequality, for any collection G of
functions,

Eξ

∥∥∥∥∥
n∑

i=1

(ξn,i − Eξn,i)f(Xi)

∥∥∥∥∥
∗

G

≤ Eξ,ξ′

∥∥∥∥∥
n∑

i=1

(
ξn,i − Eξn,i + ξ′n,i − Eξ′n,i

)
f(Xi)

∥∥∥∥∥
∗

G

,

for any random variables ξ′n,i independent of the ξn,i. We can choose these variables

so that all ξn,i + ξn,i
iid∼ Γ(1, 1). The process in the right side then does have i.i.d.

multipliers, and the asymptotic tightness follows from the i.i.d. case (as in [78]),
Theorems 3.6.13, 2.9.6 and 2.9.7; also see Corollary 2.9.9; we apply the preceding
inequality with G equal to the set of differences f − g of functions f, g ∈ F with
L2(P0)-norm of f − P0f − g + P0g smaller than δ).

Finally if σλ = 1, then both σ = 1 and λ = 1. The second implies that P0 = P c
0 ,

Kn = n and P̃n = Pn. Thus in this case Sn(1− σnKn/n) =
∑n

i=1Wn,if(Xi)(1− σn),
for (Wn,1, . . . ,Wn,n) ∼ Dir(n, 1 − σn, . . . , 1 − σn), and Tnf = Pnf(1 − σn).. We can
now compute

E
( n∑
i=1

Wn,if(Xi)|X1, . . . , Xn

)
= Pnf,

var
( n∑
i=1

Wn,if(Xi)|X1, . . . , Xn

)
=

n∑
i=1

n∑
j=1

cov(Wn,i,Wn,j)f(Xi)f(Xj)

≤
n∑

i=1

(n− 1)f2(Xi)

n2(n(1− σn) + 1)
≤ Pnf

2

n(1− σn)
,

as the covariances between the Wn,i are negative. This implies that the conditional
mean and variance of

√
n(Sn(1− σn)− Tnf) tend to zero, as σn → 1.

We are ready to complete the proof of Theorem 3.2.1. IfKn → ∞, then Lemmas 3.4.5–
3.4.4 together with the convergence Kn/n → λ immediately give the convergence of
the second and third terms in the decomposition (3.8). Furthermore, these lemmas
give that Sn − Qn → Tf/(1 − σλ), which combined with Lemma 3.4.3 gives the
convergence of the first term in (3.8).

If Kn remains bounded, then Lemma 3.4.4 does not apply. However, since the process
Qn will run through finitely many different Pitman-Yor processes, we have Qn−G =
OP (1) and hence the third term in (3.8) is OP (1/

√
n), still under the assumption

that Kn is bounded. Lemma 3.4.5 is still valid, and hence the second term in (3.8)
converges to a Gaussian process as before. We can divide this term by 1− σKn/n →
1, to see that Sn → T , in view of Lemma 3.4.2. The sequence Kn can remain
bounded only if λ = 0 and then the normal limit in Lemma 3.4.3 is degenerate,
whence

√
n(Rn − 1) = −σKn/

√
n + oP (1) = oP (1), almost surely, again under the

assumption that Kn is bounded. Combined this shows that the first term in (3.8)
tends to zero.
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3.4.2 Proof of Theorem 3.2.6

Make the dependence on σ of the Pitman-Yor posterior process and its limit explicit
by writing PYn(σ) and G(σ) for the process PYn in (3.6) and the right side in
Theorem 3.2.1, and set

CPYn(σ) =
√
n
(
PYn(σ)− Pn − σKn

n
(G− P̃n)

)
.

Lemmas 3.4.3–3.4.5 give

sup
σ∈(0,1)

sup
h∈BL1

∣∣∣E(h(CPYn(σ)
)
|X1, . . . , Xn

)
− Eh

(
G(σ)

)∣∣∣→ 0, (3.13)

in probability. This immediately gives that for every data-dependent σ̂n that take
their values in the interval (0, 1),

sup
h∈BL1

∣∣∣E(h(CPYn(σ̂n)
)
|X1, . . . , Xn

)
− Eh

(
G(σ̂n)

)∣∣∣→ 0,

in probability, where the second expectation is on the limit process G(σ̂n) for given,
fixed σ̂n. The continuity of the limit process in σ shows that, for σ̂n → σ0 in proba-
bility,

sup
h∈BL1

∣∣∣Eh(G(σ̂n)
)
− Eh

(
G(σ0)

)∣∣∣→ 0,

in probability. Combined the two preceding displays give the first assertion of Theo-
rem 3.2.6.

For discrete P0 with regularly varying atoms, the convergence of the maximum like-
lihood estimator σ̂n to its coefficient of regular variation σ0 ∈ (0, 1) is shown in
Theorem 3.4.7, and hence the preceding argument applies.

In a hierarchical Bayesian setup with a prior on σ and given σ the Pitman-Yor prior
on P , the posterior distribution of P can be decomposed as

E
(
h
(
CPYn(σ)|X1, . . . , Xn

)
=

∫
E
(
h
(
CPYn(σ)

)
|σ,X1, . . . , Xn

)
Πn(dσ|X1, . . . , Xn),

where Πn(dσ|X1, . . . , Xn) refers to the posterior distribution of σ given the observa-
tions X1, . . . , Xn, and CPYn(σ)|σ,X1, . . . , Xn is the standardised Pitman-Yor pos-
terior distribution for given σ, considered in Theorem 3.2.1. The uniformity (3.13)
shows that the expectation in the integral on the right side can be replaced asymptot-
ically by Eh

(
G(σ)

)
, uniformly in h ∈ BL1, whenever the posterior distribution of σ

concentrates with probability tending to one on the interval (0, 1). In particular, this
is true if the posterior distribution of σ is consistent for some value σ0 ∈ (0, 1), i.e. if it
concentrates asymptotically within the interval (σ0 − ε, σ0 + ε), for every ε > 0. This
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consistency is shown in the proposition below. Given posterior consistency, by the
continuity of the limit process in σ, the expectation Eh

(
G(σ)

)
can in turn in the limit

be replaced by Eh
(
G(σ0)

)
, uniformly in h ∈ BL1. This gives the second assertion of

Theorem 3.2.6.

3.4.3 Estimating the type parameter

A measurable function α: [1,∞) → R+ is said to be regularly varying (at ∞) of order
γ if, for all u > 0, as n → ∞,

α(nu)

α(n)
→ uγ . (3.14)

It is known (see e.g. [6] or the appendix to [19]) that if the limit of the sequence of
quotients on the left exists for every u, then it necessarily has the form uγ , for some
γ, as in (3.14). If we write α(u) = uγL(u), then L will be slowly varying : a function
that is regularly varying of order 0. Then α(n) = nγL(n), and it can be shown that
nγ−δ ≪ α(n) ≪ αn+δ, for every δ > 0, so that the rate of growth of α is nγ to “first
order”. (See Potter’s theorem, [6], Theorem 1.5.6, or [19], Proposition B.1.9-5).

Example 3.4.6. For the probability distribution (pj)j∈N with pj = C/jα, for some
α > 1, the function α(u): = #(j: 1/pj ≤ u) = ⌊(Cu)1/α⌋ is regularly varying of order
γ = 1/α.

We consider the empirical Bayes estimator σ̂n, the maximum likelihood estimator
in the model P |σ ∼ PY (σ,M,G) and X1, . . . , Xn|P, σ ∼ P given observations
X1, . . . , Xn. We also consider the posterior distribution of σ given X1, . . . , Xn in
the model σ ∼ Πσ, P |σ ∼ PY (σ,M,G) and X1, . . . , Xn|P, σ ∼ P , for a given prior
distribution Πσ on (0, 1). In both cases the likelihood for observing X1, . . . , Xn is
proportional to (3.5). Hence σ̂n is the point of maximum of this function and, by
Bayes theorem, the posterior distribution has density relative to Πσ proportional to
(3.5).

In the following theorem we consider these objects under the assumption thatX1, . . . , Xn

are an i.i.d. sample from a distribution P0. Consistency of σ̂n for σ0 means that
σ̂n → σ0 in probability. Contraction of the posterior distribution to σ0 means that
Πn(σ: |σ − σ0| > ε|X1, . . . , Xn) tends to zero in probability, for every ε > 0.

Theorem 3.4.7. If P0 is discrete with atoms such that α0(u): = #{x: 1/P0{x} ≤ u}
is regularly varying of exponent σ0 ∈ (0, 1), then the empirical Bayes estimator σ̂n is
consistent for σ0. Furthermore, for a prior distribution Πσ on σ with a density that
is bounded away from zero and infinity, the posterior distribution of σ contracts to
σ0.
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Proof. Up to an additive constant the log likelihood can be written

Λn(σ) =

Kn−1∑
l=1

log(M + lσ) +

Kn∑
j=1:Nn,j≥2

Nn,j−2∑
l=0

log(1− σ + l)

=

Kn−1∑
l=1

log(M + lσ) +

n−1∑
l=1

log(l − σ)Zn,l+1,

where Zn,l = #(1 ≤ j ≤ Kn:Nn,j ≥ l) is the number of distinct values of multiplicity
at least l in the sample X1, . . . , Xn. (In the case that all observations are distinct
and hence Nn,j = 1 for every j, the second term of the likelihood is equal to 0.) The
concavity of the logarithm shows that the log likelihood is a strictly concave function
of σ. For σ ↓ 0, it tends to a finite value, while for σ ↑ 1 it tends to −∞ if the term
with l = 1 is present in the second sum, i.e. if there is at least one tied observation.
This happens with probability tending to 1 as n → ∞. The derivative of the log
likelihood is equal to

Λ′
n(σ) =

Kn−1∑
l=1

l

M + lσ
−

n−1∑
l=1

1

l − σ
Zn,l+1. (3.15)

The left limit at σ = 0 is Λ′
n(0) = 1

2Kn(Kn − 1) −
∑n−1

l=1 l−1Zn,l+1. Since Zn,l ≤
Zn,1 = Kn, a crude bound on the sum is Kn log n, which shows that the derivative
at σ = 0 tends to infinity if Kn ≫ log n. In that case the unique maximum of the
log likelihood in [0, 1] is taken in the interior of the interval, and hence σ̂n satisfies
Λ′
n(σ̂n) = 0.

Under the condition that α0 is regularly varying of exponent σ0 ∈ (0, 1), the sequence
αn: = α0(n) is of the order nσ0 up to slowly varying terms. By Theorems 9 and 1‘
of [42], the sequence Kn/αn tends almost surely to Γ(1− σ0) and hence in particular
Kn ≫ log n.

We show below that Λ′
n(σ)/αn → λ(σ) in probability, for every σ, and a strictly

decreasing function λ with λ(σ0) = 0. It follows that Λ′
n(σ0−ε) > 0 and Λ′

n(σ0+ε) < 0
with probability tending to one, for every fixed ε > 0. Then σ0 − ε < σ̂n < σ0 + ε
with probability tending to one, by the monotonicity of σ 7→ Λ′

n(σ), and hence the
consistency of σ̂n follows.

The monotonicity of Λ′
n and the fact that Λ′

n(σ̂n) = 0, give that on the event σ0+ε >
σ̂n,

Λn(σ) ≥ Λn(σ0 + ε), if σ̂n < σ < σ0 + ε,

Λn(σ) ≤ Λn(σ0 + ε) + Λ′
n(σ0 + ε)(σ − σ0 − ε), if σ > σ0 + ε.
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It follows that on the event σ0 + ε > σ̂n,

Πn

(
σ > σ0 + ε|X1, . . . , Xn

)
=

∫ 1

σ0+ε
eΛn(σ) dΠσ(σ)∫ 1

0
eΛn(σ) dΠσ(σ)

≤
∫ 1

σ0+ε
eΛn(σ0+ε)+Λ′

n(σ0+ε)(σ−σ0−ε) dΠσ(σ)∫ σ0+ε

σ̂n
eΛn(σ0+ε) dΠσ(σ)

≲

∫∞
0

eΛ
′
n(σ0+ε)u du

σ0 + ε− σ̂n
=

1

−Λ′
n(σ0 + ε)(σ0 + ε− σ̂n)

,

where the proportionality constant depends on the density of Πσ only. Since −Λ′
n(σ0+

ε)/αn → −λ(σ0 + ε) > 0 and σ0 + ε− σ̂n → ε in probability, the right side tends to
zero in probability. Combined with a similar argument on the left tail of the posterior
distribution, this shows that the posterior distribution contracts to σ0.

It remains to be shown that Λ′
n(σ)/αn → λ(σ), in probability for a strictly decreasing

function λ with a unique zero at σ0. The variables Zn,l can be written as Zn,l =∑∞
j=1 1Mn,j≥l, for Mn,j the number of observations equal to xj . As Kn = Zn,1, the

function Λ′
n can be written in the form

Λ′
n(σ) =

Kn−1∑
l=1

l

M + lσ
−

∞∑
l=1

∞∑
j=1

1Mn,j≥l+1

l − σ
=

∞∑
j=1

[1Mn,j≥1

σ
− gσ(Mn,j)

]
− hσ(Kn)

σ
,

where gσ(0) = gσ(1) = 0 and gσ(m) =
∑m−1

l=1
1

l−σ , for m ≥ 2, and hσ(k) = 1 +∑k−1
l=1 M/(M+lσ) ≤ 1+(M/σ) log(1+kσ/M). It is shown in [42] (and repeated below)

that EKn/αn → Γ(1 − σ0) and hence Ehσ(Kn) ≤ 1 + (M/σ) log(1 + EKnσ/M) =
O(log n) = o(αn), so that the term on the far right is asymptotically negligible.

It is shown in Lemma 3.4.8 that

E
1

αn

∞∑
j=1

[1Mn,j≥1

σ
− gσ(Mn,j)

]
→ Γ(1− σ0)

σ
−

∞∑
m=1

Γ(m+ 1− σ0)

m!(m− σ)
=:λ(σ).

The limit function λ is strictly decreasing. The value of the series at σ = σ0 is equal
to

∞∑
m=1

Γ(m− σ0)

m!
=

∫ ∞

0

(ex − 1)x−σ0−1e−x dx =

∫ ∞

0

(1− e−x)x−σ0−1 dx.

By partial integration, this can be further rewritten as
∫∞
0

x−σ0/σ0 e
−x dx = Γ(1 −

σ0)/σ0. We conclude that λ(σ0) = 0.

To complete the proof it suffices to show that the variance of the variables in the left
side of the second last display tend to zero. For i ̸= j, the conditional distribution
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of Mn,i given Mn,j = m is binomial with parameters (n−m, pi), which is stochasti-
cally smaller than the marginal binomial (n, pi) distribution of Mn,i. It follows that
E(h(Mn,i)|Mn,j) ≤ Eh(Mn,i), for every nondecreasing function h, whence h(Mn,i)
and h(Mn,j) are negatively correlated for every nonnegative, nondecreasing function
h. Applying this with h(m) = 1m≥1 and h = gσ, we find that

var
1

αn

∞∑
j=1

1Mn,j≥1 ≤ 1

α2
n

∞∑
j=1

var 1Mn,j≥1 ≤ 1

α2
n

∞∑
j=1

E1Mn,j≥1,

var
1

αn

∞∑
j=1

gσ(Mn,j) ≤
1

α2
n

∞∑
j=1

var gσ(Mn,j) ≤
1

α2
n

∞∑
j=1

Eg2σ(Mn,j).

By Lemma 3.4.8, both right sides are of the order O(1/αn). This concludes the proof
that Λ′

n(σ)/αn → λ(σ), in probability.

Lemma 3.4.8. Suppose that α(u): = #{j: 1/pj ≤ u} is regularly varying at ∞ of

order γ ∈ (0, 1). For any σ ∈ (0, 1), and gσ(m) =
∑m−1

l=1
1

l−σ , for m ≥ 2, and
Mn,j ∼ Binomial(n, pj),

(i) 1
α(n)

∑∞
j=1 E1Mn,j≥1 → Γ(1− γ),

(ii) 1
α(n)

∑∞
j=1 Egσ(Mn,j) →

∑∞
m=1

Γ(m+1−γ)
m!(m−σ) ,

(iii) 1
α(n)

∑∞
j=1 Eg

2
σ(Mn,j) →

∑∞
k=1

∑∞
l=1

Γ(k∨l+1−γ)
(k−σ)(l−σ)(k∨l)! .

Proof. Because P(Mn,j = 0) = (1− pj)
n, the series in the left side of (i) is equal to

∞∑
j=1

(
1− (1− pj)

n
)
=

∫ ∞

1

(
1−

(
1− 1

u

)n)
dα(u) = n

∫ 1

0

α
(1
s

)
(1− s)n−1 ds,

by Fubini’s theorem, since 1 − (1 − 1/u)n =
∫ 1/u

0
n(1 − s)n−1 ds. It follows that the

left side of (i) can be written∫ n

0

α(n/s)

α(n)

(
1− s

n

)n−1

ds.

By regular variation of α, the integrand tends pointwise to s−γe−s, as n → ∞.
By Potter’s theorem, the quotient α(n/s)/α(n) is bounded above by a multiple of
(1/s)γ−δ ∨ (1/s)γ+δ, for any given δ > 0, while (1 − s/n)n−1 ≤ e−s(1−δ), by the
inequality 1− x ≤ e−x, for x ∈ R. Therefore, by the dominated convergence theorem
the integral converges to

∫∞
0

s−γe−s ds = Γ(1− γ).

The series in the left side of (ii) is equal to

∞∑
j=1

n∑
m=2

gσ(m)

(
n

m

)
pmj (1− pj)

n−m =

n∑
m=2

gσ(m)

(
n

m

)∫ ∞

1

( 1
u

)m(
1− 1

u

)n−m

dα(u).
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Writing (1/u)m(1− 1/u)n−m =
∫ 1/u

0
sm−1(1− s)n−m−1(m− ns) ds (for m ≥ 1) and

applying Fubini’s theorem, we can rewrite this as

n∑
m=2

gσ(m)

(
n

m

)∫ 1

0

α
(1
s

)
sm−1(1− s)n−m−1(m− ns) ds

=

∫ 1

0

n−1∑
l=1

1

l − σ

n∑
m=l+1

(
n

m

)
sm−1(1− s)n−m−1(m− ns)α

(1
s

)
ds

=

∫ 1

0

n−1∑
l=1

n− l

l − σ

(
n

l

)
sl(1− s)n−l−1 α

(1
s

)
ds =

n−1∑
l=1

1

l − σ
Eα
( 1

Sl,n

)
,

for Sl,n ∼ Beta(l+1, n− l), where the second last equality follows from Lemma 3.4.9.
Representing Sl,n as Γl/(Γl + Γn−l), for independent variables Γl ∼ Γ(l + 1, 1) and
Γn−l ∼ Γ(n− l, 1), we see that the left side of (ii) is equal to

n−1∑
l=1

1

l − σ
E
α
(
1 + Γn−l/Γl

)
α(n)

=

n−1∑
l=1

1

l − σ
E
α
(
(n−1 + n−1Γn−l/Γl)n

)
α(n)

.

The sequence Ul,n: = (n−1 + n−1Γn−l/Γl) tends almost surely to 1/Γl, by the law of
large numbers, as n → ∞, for fixed l. Since the convergence in (3.14) is automat-
ically uniform in compacta contained in (0,∞) (see [19], Theorem B.1.4), it follows
that α(Ul,nn)/α(n) → (1/Γl)

γ , almost surely. Furthermore, by Potter’s theorem

α(Ul,nn)/α(n) ≲ Uγ+δ
l,n ∨ Uγ−δ

l,n , where Uβ
l,n ≤ 1 + (n−1Γn−l)

β(1/Γl)
β is uniformly

integrable for every β < 1, since n−1Γn−l → 1 in L1 and E(1/Γl)
β < ∞, so that

n−1Γn−l/Γl → 1/Γl in L1, in view of the independence of Γn−l and Γl. By dominated
convergence we conclude that Eα(Ul,nn)/α(n) → E(1/Γl)

γ = Γ(l + 1 − γ)/l!. Since

EUγ+δ
l,n ∨Uγ−δ

l,n ≲ E(1/Γl)
−γ+δ ≲ l−γ+δ, a second application of the dominated conver-

gence theorem shows that the preceding display tends to
∑∞

l=1(l−σ)−1Γ(l+1−γ)/l!.

For the proof of (iii) we write g2σ(m) =
∑m−1

k=1

∑m−1
l=1 (k − σ)−1(l − σ)−1 and follow

the same steps as in (ii) to write the left side of (iii) as

n−1∑
k=1

n−1∑
l=1

1

k − σ

1

l − σ
E
α(1/Sk∨l,n)

α(n)
.

This is seen to converge to the limit as claimed by the same arguments as under (ii).

Lemma 3.4.9. For every p ∈ [0, 1] and l ∈ N ∪ {0} and n ∈ N,

n∑
m=l+1

(
n

m

)
pm−1(1− p)n−m−1(m− np) = (n− l)

(
n

l

)
pl(1− p)n−l−1.
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Proof. For Xn−1 and Xn the numbers of successes in the first n−1 and n independent
Bernoulli trials with success probability p, we have {Xn ≥ l + 1} ⊂ {Xn−1 ≥ l} and
{Xn−1 ≥ l} − {Xn ≥ l + 1} = {Xn−1 = l, Bn = 0}, for Bn the outcome of the nth
trial. This gives the identity P(Xn−1 ≥ l)−P(Xn ≥ l+1) = P(Xn−1 = l)(1−p). We
multiply this by n/(1− p) to obtain the identity given by the lemma, which we first
rewrite using that m

(
n
m

)
= n

(
n−1
m−1

)
and (n− l)

(
n
l

)
= n

(
n−1
l

)
.

Finally consider the situation that P0 possesses a nontrivial continuous component.
In this case the empirical Bayes estimator tends to 1.

Theorem 3.4.10. If P0 = (1−λ)P d
0 +λP c

0 where P d
0 is a discrete and P c

0 an atomless
probability distribution with λ > 0 and such that α0(u): = #{x: 1/P0{x} ≤ u} is
regularly varying of exponent σ0 ∈ (0, 1), then σ̂n → 1 in probability.

Proof. By Lemma 3.4.1 the sequenceKn/n tends to λ in probability. The second term
in the derivative of the log likelihood (3.15) depends on tied observations only (through
the variables Zn,l with l ≥ 2), and the arguments from the proof of Theorem 3.4.7
show that this term retains the order OP (α0(n)). Thus it follows that Λ

′
n(σ)/n → λ/σ

in probability, whence it is positive with probability tending to one and the likelihood
increasing in σ.
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3.6 Mean and variance of posterior distribution

In this appendix we derive explicit formulas for the mean and variance of the posterior
distribution. The limit of the variances can be seen to be equal to variance of the
limit variable in Theorem 3.2.1.

Lemma 3.6.1. Let P ∼ PY(σ,M,G) where σ ≥ 0. Then the mean and variance

of the posterior distribution of P based on observations X1, . . . , Xn|P
iid∼ P are as
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follows

E[Pf |X1, . . . , Xn] =

Kn∑
j=1

Nj,n − σ

n+M
f(X̃j) +

M + σKn

n+M
Gf,

var (Pf |X1, . . . , Xn) =
[Kn∑
j=1

Nj,n − σ

n−Knσ
f(X̃j)−Gf

]2 (n− σKn)(M + σKn)

(n+M)2(n+M + 1)

−

(∑Kn

j=1(Nj,n − σ)f(X̃j)
)2

(n− σKn)(n+M)(n+M + 1)
+

∑Kn

j=1(Nj,n − σ)f(X̃j)
2

(n+M)(n+M + 1)

+
(1− σ)(M + σKn + 1)

(n+M)(n+M + 1)
VarG(f).

Lemma 3.6.2. Suppose X1, . . . , Xn
iid∼ P0, where P0 = (1−λ)P d

0 +λP c
0 . If P follows a

PY (σ,M,G) process, then the posterior distribution in the model X1, . . . , Xn|P ∼ P ,
P0 almost surely

E[Pf |X1, . . . , Xn] → (1− λ)P d
0 + (1− σ)λP c

0 + λσG

n var (Pf |X1, . . . , Xn) → (1− λ)VarPd
0
(f) + (1− σ)λVarP c

0
(f)

+ (1− σ)σλVarG(f)

+
(1− σ)λ(1− λ)

1− σλ

(
P d
0 (f)− P c

0 (f)
)2

+ (1− σλ)σλ

(
(1− λ)P d

0 (f) + (1− σ)λP c
0 (f)

1− σλ
−Gf

)2

.

Proof of Lemma 3.6.1. We begin by recalling the posterior distribution from Sec-
tion 3.4. Note that we have the following results:

� E[Rn] =
n−Knσ
n+M and Var(Rn) =

(n−Knσ)(M+Knσ)
(n+M)2(n+M+1) .

� E[Qn(f)] = G(f), Var(Qn(f)) =
1−σ

M+σKn
VarG(f).

The first two results are standard results for Beta distributed random variables, and
the last two results are because Qn is a Pitman-Yor process. Now we just need to
compute the moments for the weights Wj . We use the following results from the

Dirichlet distribution. If X̃ ∼ Dir (Kn, α1, . . . , αKn), then

E[X̃i] =
αi∑Kn

k=1 αk

,

var(X̃i) =
αi(
∑Kn

k=1 αk − αi)

(
∑Kn

k=1 αk)2(1 +
∑Kn

k=1 αk)
,
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and

Cov(X̃i, X̃j) =
−αiαj

(
∑Kn

k=1 αk)2(1 +
∑Kn

k=1 αk)
.

In our case αi = Ni,n − σ, K = Kn and
∑Kn

k=1 αk = n − σKn. Then a direct
computation shows that

E[
Kn∑
j=1

Wjf(X̃j)] =

Kn∑
j=1

Nj,n − σ

n−Knσ
f(X̃j).

For the variance we use that, for independent random variables, the variance of the
sum is the sum of the covariances.

var(

Kn∑
i=1

Wjf(X̃j)|X1, . . . , Xn) =
∑
i ̸=j

Cov(Wi,Wj)f(X̃i)f(X̃j) +

Kn∑
i=1

Var(Wi)f(X̃i)
2

=
∑
i̸=j

−(Ni,n − σ)(Nj,n − σ)

(n− σKn)2(n− σKn + 1)
f(X̃i)f(X̃j)

+

Kn∑
i=1

(Ni,n − σ)(n− σKn −Ni,n + σ)

(n− σKn)2(n− σKn + 1)
f(X̃i)

2

= −

(∑Kn

j=1(Nj,n − σ)f(X̃j)
)2

(n− σKn)2(n− σKn + 1)
+

∑Kn

j=1(Nj,n − σ)f(X̃j)
2

(n− σKn)(n− σKn + 1)
.

Now we can compute the mean and variance. Using independence between Rn,W
and Qn and linearity we see that

E[P (f)|X1, . . . , Xn] =

Kn∑
j=1

Nj,n − σ

n+M
f(X̃j) +

M + σKn

n+M
G(f).

In order to compute the variance we apply the law of total variance. For any two
random variables X,Y with finite second moment we have that

Var(X) = E[Var (X|Y )] + Var (E[X|Y ]) .

We split into conditioning on Rn and the rest, so we can use the independence between
W and Qn. We compute these piece by piece. First consider

First consider

E

Var
Rn

Kn∑
j=1

Wjf(X̃j) + (1−Rn)Qn(f)|Rn

 .
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Due to the independence of W and Qn given Rn

= E

R2
nVar

Kn∑
j=1

Wjf(X̃j)

+ (1−Rn)
2Var (Qn(f))

 .

Simplifying the expression yields

= E[R2
n]Var

Kn∑
j=1

Wjf(X̃j)

+ E[(1−Rn)
2]Var (Qn(f))].

Filling in the known moments results in

=
(n− σKn)(n+ 1− σKn)

(n+M)(n+M + 1)
Var

Kn∑
j=1

Wjf(X̃j)


+

(M + σKn)(M + σKn + 1)

(n+M)(n+M + 1)
Var (Qn(f)) .

Expanding the variance terms and simplifying gives

= −

(∑Kn

j=1(Nj,n − σ)f(X̃j)
)2

(n− σKn)(n+M)(n+M + 1)
+

∑Kn

j=1(Nj,n − σ)f(X̃j)
2

(n+M)(n+M + 1)

+
(1− σ)(M + σKn + 1)

(n+M)(n+M + 1)
VarG(f).

Next wel deal with

Var

E[Rn

Kn∑
j=1

Wjf(X̃j) + (1−Rn)Qn(f)|Rn]

 .

Computing the expected value gives

= Var

Rn

Kn∑
j=1

Nj,n − σ

n−Knσ
f(X̃j) + (1−Rn)G(f)

 .

Reorganising terms

= Var

G(f) +Rn(

Kn∑
j=1

Nj,n − σ

n−Knσ
f(X̃j)−G(f))

 .

The constant term does not contribute to the variance so can be , and then taking
the square of the constant in front of Rn results in

= (

Kn∑
j=1

Nj,n − σ

n−Knσ
f(X̃j)−G(f))2Var (Rn) .
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Computing the variance of Rn gives

= (

Kn∑
j=1

Nj,n − σ

n−Knσ
f(X̃j)−G(f))2

(n− σKn)(M + σKn)

(n+M)2(n+M + 1)
.

Therefore by the law of total variance we find the result.

Proof of Lemma 3.6.2. We begin with some basic results which we will apply in sev-
eral places. We note the following two almost sure limits: Kn

n → λ P0-almost surely
and ∑Kn

j=1(Nj,n − σ)f(X̃j)

n
→ (1− λ)P d

0 (f) + (1− σ)λP c
0 (f) P0-a.s.

For the posterior mean we know the exact formula by Lemma 3.6.1 and therefore the
following limit can be computed:

E[P (f)|X1, . . . , Xn] =

Kn∑
j=1

Nj,n − σ

n+M
f(X̃j) +

M + σKn

n+M
G(f)

→ (1− λ)P d
0 (f) + (1− σ)λP c

0 (f) + λσG(f)P0-a.s.

Recall from Lemma 3.6.1 the formula for the posterior variance. We analyse this term
by term. They all follow directly from the remarks at the beginning of the the proof,
and the limits hold P0-almost surely.

First we find that

Kn∑
j=1

Nj,n − σ

n−Knσ
f(X̃j) →

(1− λ)P d
0 (f) + (1− σ)λP c

0 (f)

1− σλ
.

Secondly,

n
(n− σKn)(M + σKn)

(n+M)2(n+M + 1)
→ (1− σλ)σλ.

Next,

−n

(∑Kn

j=1(Nj,n − σ)f(X̃j)
)2

(n− σKn)(n+M)(n+M + 1)
→ −

(
(1− λ)P d

0 (f) + (1− σ)λP c
0 (f)

)2
1− σλ

.

Also,

n

∑Kn

j=1(Nj,n − σ)f(X̃j)
2

(n+M)(n+M + 1)
→ (1− λ)P d

0 (f
2) + (1− σ)λP c

0 (f
2).
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And finally,

n
(1− σ)(M + σKn + 1)

(n+M)(n+M + 1)
VarG(f) → (1− σ)σλVarG(f).

This means we now have computed the limit of the posterior variance. We will now
add all the terms together, and by the continuous mapping theorem we find that,

nVar (P (f)|X1, . . . , Xn) → (1− σλ)σλ(
(1− λ)P d

0 (f) + (1− σ)λP c
0 (f)

1− σλ
−G(f)

)2

−
(
(1− λ)P d

0 (f) + (1− σ)λP c
0 (f)

)2
1− σλ

+ (1− λ)P d
0 (f

2) + (1− σ)λP c
0 (f

2)

+ (1− σ)σλVarG(f) a.s. P0.

Note that

−
(
(1− λ)P d

0 (f) + (1− σ)λP c
0 (f)

)2
1− σλ

+ (1− λ)P d
0 (f

2) + (1− σ)λP c
0 (f

2)

= (1− λ)VarPd
0
(f) + (1− σ)λVarP c

0
(f)

+
(1− σ)λ(1− λ)

1− σλ

(
P d
0 (f)− P c

0 (f)
)2

.

Combining everything yields the Lemma.



Chapter 4

Estimating species diversity

This chapter is an adaptation of a paper submitted as: S. Franssen, A. van der Vaart,
“Empirical and Full Bayes estimation of the type of a Pitman-Yor process”.

4.1 Introduction

The Pitman-Yor process [59, 54] is a random discrete probability distribution, which
can be used as a model for the relative abundance of species. It is characterised by a
type parameter σ. Our main aim is statistical inference on this type parameter.

The Pitman-Yor process of type σ = 0 is the Dirichlet process [24], which is well
understood, while negative types correspond to finitely discrete distributions and were
considered in [17]. In this paper we concentrate on Pitman-Yor processes of positive
type. The Pitman-Yor process is also known as the two-parameter Poisson-Dirichlet
Process, is an example of a Poisson-Kingman process [57], and a species sampling
process of Gibbs type [18].

The easiest definition is through stick-breaking ([54, 40]), as follows. The family of
nonnegative Pitman-Yor processes is given by three parameters: a number σ ∈ [0, 1),
a number M > −σ and an atomless probability distribution G on some measurable
space (X ,A). We say that a random probability measure P on (X ,A) is a Pitman-Yor
process (of nonnegative type), denoted P ∼ PY (σ,M,G), if P can be represented as

P =

∞∑
i=1

Wiδθi ,

where Wi = Vi

∏i−1
j=1(1−Vj) for Vi independent variables with Vi ∼ B(1−σ,M + iσ),

independent of θi
iid∼G.

69
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It is clear from this definition that the realisations of P are discrete probability mea-
sures, with countably many atoms at random locations, with random weights. If one
first draws P ∼ PY (σ,M,G), and next given P a random sample X1, . . . , Xn from
P , then ties among the latter observations are likely. Each tie represents an observed
species. Each species is identified by a label θi, but this does not play an important
role in the present paper, except that labels are unique by the assumption that G
is atomless. If the weights (Wi) correctly model the relative abundance of distinct
species, then the (conditional) probability that a next observation Xn+1 will be dis-
tinct from X1, . . . , Xn is indicative of the likelihood of finding a new species given the
past observations.

In a forensic setup one may consider two instances not present in a “database”
X1, . . . , Xn and compare the hypotheses that these two values are two independent
draws Xn+1, Xn+2 from the population or copies of a single draw Xn+1. If one of
the new instances is a characteristic (e.g. DNA profile) found at a crime scene and
the other a characteristic of a suspect, one can so derive the ratio of the probabilities
that the characteristic at the crime scene originates from the perpetrator (two copies
of a single draw Xn+1) or that the match is by chance (two draws Xn+1, Xn+2 that
happen to be the same). See [12, 13] (and Section 4.2.3) for further discussion.

As shown in [13] such probabilities are readily calculable under the Pitman-Yor model,
but depend strongly on the type parameter σ. Thus it is desirable to estimate this
parameter from the observed data. In this paper we consider both the empirical
Bayes estimator (which is the maximum likelihood estimator in the Bayesian setup
with the Pitman-Yor process viewed as a prior) and the full Bayes posterior of σ. We
prove that the empirical Bayes estimator is asymptotically normal, and show that
the posterior distribution satisfies a corresponding Bernstein-von Mises theorem. We
apply these results to the forensic problem.

The Pitman-Yor process is characterised by a second parameter M , called the prior
precision. As its name suggests, this is a prior modelling parameter, and perhaps
is better not estimated. We show that the asymptotics of the type parameter are
almost independent of the prior precision, and that the problem of estimating the
prior precision degenerates as n → ∞.

Other applications of the Pitman-Yor process, in genetics or topic modelling, can
be found in [83, 76, 35, 3, 23]. The limiting case of the Pitman-Yor process with
M ↓ 0 is a (particular) Poisson-Kingman process (see [59], or Example 14.47 in [33]).
Estimation of the type parameter for this process was considered in [23], who give
conditions so that the maximum likelihood estimator converges to a limit at a certain
rate. The present paper generalizes and refines these results in the case of a general
M (by providing a sharp rate and a limit distribution), and adds a full Bayes analysis.

The posterior distribution when the Pitman-Yor process is used as a nonparametric
prior on the distribution of the observations was studied in [41] for known type pa-
rameter and continuous observations, and for unknown type and general observations
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in [27]. In the latter paper it is shown that the posterior distribution is not very sen-
sitive to the type parameter, and its asymptotics could be established knowing just
consistency for this parameter, and hence without interception of the precise results
of the present paper.

4.2 Main results

We consider statistical procedures derived from the Bayesian model in which a prob-
ability distribution P is drawn from the Pitman-Yor process, viewed as a prior over
the set of probability measures, and next given P the observations X1, . . . , Xn are
an i.i.d. sample from P . To estimate the parameters σ (or (σ,M)) of the Pitman-
Yor process, we consider the maximum likelihood estimator, based on the marginal
distribution of (X1, . . . , Xn) in this setup, and a full Bayes approach. Because the
maximum likelihood estimator estimates a parameter of the prior, in this setup this
estimator is also called an empirical Bayes estimator. The full Bayes approach adds
a prior distribution over σ (or (σ,M)) to the Bayesian hierarchy and then uses the
conditional distribution of σ given X1, . . . , Xn, the posterior distribution, for further
inference.

While these two procedures are defined by the Bayesian setup, our theoretical results
obtained below are frequentist Bayes: we study these two procedures, both functions
of the observations X1, . . . , Xn, under the assumption that these observations are a
random sample from a given distribution P0.

Both statistical procedures are based on the Bayesian likelihood for X1, . . . , Xn. This
can be conveniently obtained by considering the exchangeable random partition of
the set {1, 2, . . . , n} generated by the sample through the equivalence relation

i ≡ j if and only if Xi = Xj .

An alternative way to generate X1, . . . , Xn is to generate first the partition and
next attach to each set in the partition a value generated independently from the
center measure G (see e.g. [33], Lemma 14.11 for a precise statement), duplicating
this as many times as there are indices in the set, in order to form the observa-
tions X1, . . . , Xn. Because the parameter σ enters only in creating the partition,
the partition is a sufficient statistic for σ. Because of exchangeability, the vector
(Kn, Nn,1, . . . , Nn,Kn

) of the number Kn of sets in the partition and the cardinalities
Nn,i of the partitioning sets (i.e. the multiplicity of Xi in X1, . . . , Xn) is already suffi-
cient for (M,σ) and hence the empirical Bayes estimator and posterior distribution of
(M,σ) are the same, whether based on observations (X1, . . . , Xn) or on observations
(Kn, Nn,1, . . . , Nn,Kn

).

The likelihood function for (M,σ) is therefore equal to the probability of a particu-
lar partition, called the exchangeable partition probability function (EPPF). For the
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Pitman-Yor process this is given by (see [58], or [33, page 465])

pσ(Nn,1, . . . , Nn,Kn
) =

∏Kn−1
i=1 (M + iσ)

(M + 1)[n−1]

Kn∏
j=1

(1− σ)[Nn,j−1]. (4.1)

Here a[n] = a(a+1) · · · (a+n−1) is the ascending factorial, with a[0] = 1 by convention.

Although we adopt the Pitman-Yor process as a prior for the distribution P of the ob-
servations, and then arrive at the likelihood (4.1), we shall investigate the maximum
likelihood estimator and posterior distribution under the frequentist-Bayes assump-
tion that in reality the observations X1, . . . , Xn are an i.i.d. sample from a given
distribution P0. It turns out that the asymptotic properties of the maximizer of (4.1)
are then determined by the function α0: (1,∞) → N given by

α0(u): = #
{
x:

1

P0{x}
≤ u

}
. (4.2)

The function α0 is nondecreasing and increases by jumps of size 1. Following [42],
we shall assume that this function is regularly varying. The paper [42] derived (dis-
tributional) limits of characteristics such as Kn. In the present paper we use similar
methods to analyse the likelihood function (4.1).

Recall that a measurable function α: (0,∞) → R+ is said to be regularly varying (at
∞) of order γ if, for all u > 0, as n → ∞,

α(nu)

α(n)
→ uγ .

It is known (see e.g. [6] or the appendix to [19]) that if the limit of the sequence
of quotients on the left exists for every u, then it necessarily has the form uγ , for
some γ. If we write α(u) = uγL(u), then L will be slowly varying : a function that
is regularly varying of order 0. Then α(n) = nγL(n), and it can be shown that
nγ−δ ≪ α(n) ≪ nγ+δ, for every δ > 0, so that the rate of growth of α is nγ to “first
order”.

Since the function α0 in (4.2) increases by steps, it is discontinuous and so is the
associated slowly varying function. We assume that there exists σ0 ∈ (0, 1) and a
continuously differentiable slowly varying function L0 such that, for every u > 1,∣∣α0(u)− uσ0L0(u)

∣∣ ≤ Cuβ0 , for some β0 < σ0 and C > 0, (4.3)∣∣L′
0(u)

∣∣ ≤ Cδ u
−1+δ, for any δ > 0, for some Cδ. (4.4)

If (4.3) holds for a slowly varying function L0, then α0 is regularly varying of order
σ0 (see Lemma 4.3.10). The rationale for (4.4) is that a slowly varying function
u 7→ L(u) will always grow slower than any power uδ. It may not be differentiable,
but if it is, then it is reasonable that the derivative grows slower than any power
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of u−1+δ. Condition (4.4) is satisfied, for instance, by powers L0(u) = (log u)r of
the logarithmic function, for r ∈ R, and the functions L0(u) = e(log u)r , for r < 1.
Although we assume (4.3)-(4.4) for u > 1, the bounds are asymptotic in the sense that
if they hold for u > U and some U , then they are valid for u > 1 and possibly larger
constants C and Cδ (and some extension of L0), since the right sides are bounded
away from zero on intervals (1, U ].

Example 4.2.1. For the probability distribution (pj)j∈N with pj = c/jα, for some
α > 1, we have α0(u): = #(j: 1/pj ≤ u) = ⌊(cu)1/α⌋. Then |α0(u) − (cu1/α)| ≤ 1
and hence (4.3)-(4.4) are satisfied with σ0 = 1/α, L0(u) = c1/α, C = 1, β0 = 0, and
Cδ = 0.

Example 4.2.2. In [23] it is assumed that |α0(u) − Luσ0 | ≤ Cuσ0/2
√
log(eu), for

every u > 1 and some constant C. This implies (4.3)-(4.4) with L0 constant and any
β0 slightly bigger than σ0/2 (and hence easily satisfying the restriction in (4.3)).

4.2.1 Estimating the type parameter

The following theorem shows that the empirical likelihood estimator is asymptotically
normal, after scaling by the rate

√
α0(n) and centering at the zero σ0,n of the function

E0,n(σ) =

∫ n

0

α0

(n
s

)
e−s
( 1
σ
−

∞∑
m=1

sm

m!(m− σ)

)
ds. (4.5)

In Lemma 4.3.4 these zeros are shown to converge to the exponent σ0 of regular
variation of α0, at a rate depending on the function α0.

For the moment we keep M fixed and let σ̂n be the maximizer of the likelihood (4.1)
with respect to σ, for given M . The following theorem shows that the asymptotic
behaviour of σ̂n is the same for every M .

Theorem 4.2.3. Assume that P0 is discrete with atoms such that α0(u): = #{x: 1/P0{x} ≤
u} satisfies (4.3)-(4.4) with exponent σ0 ∈ (0, 1). Then the empirical Bayes estima-
tor σ̂n, the point of maximum of (4.1), satisfies

√
α0(n)(σ̂n − σ0,n) ⇝ N(0, τ21 /τ

4
2 ),

where σ0,n are the roots of the functions E0,n in (4.5) and τ1 is given in (4.12) and
τ22 = −E′

0(σ0), for E0 given in (4.9).

The proof of the theorem is deferred to Section 4.3.1.

The theorem centers the estimators at the zeros σ0,n of the functions E0,n in (4.5). It
is shown in Lemma 4.3.4 that these zeros tend to the coefficient of regular variation σ0

of α0, and hence σ̂n → σ0, in probability. However, the rate of this convergence may
be too slow to replace σ0,n by σ0 in the centering of σ̂n. For the case that the function
L0 in (4.3) can be taken constant, Lemma 4.3.4 shows that σ0,n − σ0 = O(n−(σ0−β)),

for β0 as in (4.3), and hence if β0 < σ0/2, then
√

α0(n)(σ0,n − σ0) → 0, and hence

also
√
α0(n)(σ̂n − σ0)⇝ N(0, τ21 /τ

4
2 ). If α0 contains nontrivial slowly varying terms,

then the rate of convergence σ0,n → σ0 will typically be much slower than α0(n)
−1/2
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and the latter result will fail. (Lemma 4.3.4 gives the rate L′
0(n)n/L0(n), and its

proof shows that this is sharp, for instance: 1/ log n if L0(s) = log s.)

In general, we could say that the estimators σ̂n roughly, but possibly not quite,
estimate the degree of regular variation of α0. If one believes in the likelihood, then
this is an indication that the type parameter has a more subtle interpretation than the
degree of regular variation, rendering it extra worth while to use principled methods
for its estimation. (If interest were in the coefficient of regular variation σ0, then
direct approaches may be preferable.)

In the special case considered in Example 4.2.2, the rate of the estimator is
√

αn(n) =
nσ0/2. This is a faster rate than obtained (in the case that M = 0) in [23], who
showed that σ̂n = σ0+OP (n

−σ0/2
√
log n) under the condition in Example 4.2.2. (Our

improved rate centers at σ0,n; for centering at σ0, the condition of Example 4.2.2 must
be slightly strengthened to have an exponent strictly smaller than σ0/2 rather than
σ0/2.)

The asymptotic variance of the sequence
√
α0(n)(σ̂n−σ0,n) is a one-dimensional form

of the sandwich formula, which is clear if it is written as τ−2
2 τ21 τ

−2
2 . It appears that in

general τ1 ̸= τ2, which is explainable by the fact that the likelihood used to define σ̂n

is the Bayesian marginal likelihood, which is misspecified relative to the frequentist
distribution of X1, . . . , Xn: the likelihood behaves like a general contrast function
rather than a likelihood.

Next consider the posterior distribution of σ given X1, . . . , Xn in the model σ ∼ Πσ,
P |σ ∼ PY (σ,M,G) and X1, . . . , Xn|P, σ ∼ P , for a given prior distribution Πσ on
(0, 1). Since the likelihood for observing X1, . . . , Xn is proportional to (4.1), by Bayes
rule the posterior distribution has density relative to Πσ proportional to (4.1). We
study the posterior distribution under the assumption that X1, . . . , Xn are an i.i.d.
sample from a distribution P0.

Theorem 4.2.4. Assume that P0 is a discrete distribution with atoms such that
α0(u): = #{x: 1/P0{x} ≤ u} satisfies (4.3)-(4.4) with exponent σ0 ∈ (0, 1). For
a prior distribution Πσ on σ ∈ (0, 1) with a bounded density that is positive and
continuous at σ0, the posterior distribution of σ satisfies

sup
B

∣∣∣Πn(σ ∈ B|X1, . . . , Xn)−N
(
σ̂n,

1

α0(n)τ22

)
(B)

∣∣∣→ 0,

where the supremum is taken over all Borel sets B in (0, 1), and τ22 = −E′
0(σ0),

for E0 given in (4.9). In particular, the posterior distribution for σ contracts to σ0.
Furthermore, the posterior mean σ̃n = E(σ|X1, . . . , Xn) satisfies

√
α0(n)(σ̃n− σ̂n) →

0, in probability.

The proof Theorem 4.2.4 is deferred to Section 4.3.2.

Apart from the unusual scaling rate α0(n), Theorem 4.2.4 is of the Bernstein-von
Mises type, for a misspecified model (see [44]). Misspecification arises, because the
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likelihood corresponds to the Bayesian model, but the observations are sampled from
P0.

4.2.2 Estimating the precision

The parameter M is commonly referred to as the prior precision. This name suggests
that this is truly a prior modelling parameter and estimating it from the data may
be illogical. Theorem 4.2.3 shows that the maximum likelihood estimator σ̂n,M of σ,

for a given M , satisfies that the sequence
√
α0(n)(σ̂n,M − σn,0) tends to a centered

normal distribution, for every M , where the limit is independent of M . Inspection
of the proof shows that σ̂n,Mn

, for a sequence Mn, has the same behaviour, as long

as Mn ≪
√

α0(n)/ log n. Furthermore, if M is equipped with a prior over a compact
(or slowly increasing) interval, then the posterior distribution of σ still satisfies the
assertion of Theorem 4.2.4, where the limit does not involve M . Thus for a very wide
range of prior precisions, the estimators for the type parameter are asymptotically
equivalent. This may again suggest that the parameter M plays a different role than
the type parameter.

Nevertheless, we might use the likelihood function to obtain also a maximum likeli-
hood or Bayes estimator for M . In the following theorem we consider the maximum
likelihood estimator, where the parameter M is restricted to a compact set [0, M̄ ].
(The proof extends to M̄ = M̄n that increase not too fast to infinity.)

The limiting value M0 of the maximum likelihood estimator M̂n depends on the fine
details of the regular variation of the function α0 in (4.3)-(4.4), through the limit
(assumed to exist)

K0: = lim
n→∞

[c0L′
0(n)n log n

L0(n)
+ logL0(n)

]
,

where c0 = Γ(1 − σ0)(1 + σ0)/(σ0τ
2
2 ). Define M0 = 0 or M0 = M̄ if the limit is

K0 = ∞ or K0 = −∞, respectively, and otherwise, set it equal to the maximizer in
[0, M̄ ] of the function

M 7→ M

σ0

(
K0 + log Γ(1− σ0)

)
+ log Γ(1 +M)− log Γ

(
1 +

M

σ0

)
.

Theorem 4.2.5. Assume that P0 is a discrete distribution with atoms such that
α0(u): = #{x: 1/P0{x} ≤ u} satisfies (4.3)-(4.4) with exponent σ0 ∈ (0, 1) and a
function L0 such that u 7→ L′

0(u)u is slowly varying. Then the joint maximum like-
lihood estimator (M̂n, σ̂n) satisfies M̂n → M0 in probability and σ̂n has identical
behaviour as in Theorem 4.2.3.

The proof of the theorem is deferred to Section 4.3.3.

Example 4.2.6. If L0 is constant, then K0 = logL0 is finite, and it can be arbitrary
large or small, depending on the nonasymptotic properties of the sequence P0{xj}. For
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instance, the choices pj = c/jα for every j > J , and pj = η, for j ≤ J , are possible
for every constants c > 0, α > 1, J ∈ N, and η ∈ (0, 1) such that Jη+

∑
j>J c/jα = 1.

Then α0(u) = J + ⌊(cu)1/α − J⌋ = ⌊(cu)1/α⌋, for u > 1/η, and hence L0 = c1/α, as
(4.3) is determined by u → ∞. Depending on the constants c and α, the constant M0

can be any value in [0, M̄ ].

Example 4.2.7. If L0(u) = log u, then K0 = ∞, and hence M0 = M̄ . If L0(u) =
1/ log u, then K0 = −∞, and hence M0 = 0.

4.2.3 Forensic application

Consider again the Bayesian model in which X1, . . . , Xn are drawn independently
from a distribution P generated from the Pitman-Yor process. A next observation
Xn+1 will either be equal to one of the current observations X1, . . . , Xn or constitute
a new type. If X̃1, . . . , X̃KN

are the distinct values in X1, . . . , Xn and Nn,1, . . . , Nn,Kn

are the multiplicities of these values in the sample, then it is known that (see [56, 57],
or [33], page 465)

P(Xn+1 = X̃i|X1, . . . , Xn, σ,M) =
Nn,i − σ

M + n
, i = 1, . . . ,Kn. (4.6)

The remaining mass (M+Knσ)/(M+n) is the probability of obtaining a new species,
distinct from X̃1, . . . , X̃KN

. The probability distribution defined by these numbers is
known as the prediction probability function.

In the forensic setup discussed in [12, 13], the sampleX1, . . . , Xn represents a database
of characteristics of individuals (say DNA profiles), and given is a new profile, not
present in the database, that has been found both at the crime scene and on a defen-
dant who has been charged with the crime. The prosecution argues that the defendant
is the perpetrator who left her profile on the crime scene and hence only a single new
observation Xn+1 is involved. The defence argues that the perpetrator and the de-
fendant are two different individuals, who happen to have the same profile, and hence
two independent observations Xn+1, Xn+2 are involved, which were observed to take
the same value. The two hypotheses can be made precise in a Bayesian hierarchy
describing a generative model for the database X1, . . . , Xn, the profile Xn+1 found at
the crime scene and the profile Y found on the suspect. According to the prosecution
the generative model is:

(i) (σ,M) ∼ Πσ,M .

(ii) P | (σ,M) ∼ Pitman-Yor (σ,M).

(iii) X1, . . . , Xn+1|P, σ,M iid∼ P .

(p) Y |X1, . . . , Xn+1, P, σ,M ∼ δXn+1 .

The fourth step (p) expresses that the profile Y found on the defendant is identical to
the profile found on the crime scene, because it results from the same individual Xn+1
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chosen from the population. The defence agrees with steps (i)-(iii) of the hierarchy,
but replaces (p) by:

(d) Y |X1, . . . , Xn+1, P, σ,M ∼ P .

This expresses that the defendant’s profile is just another draw Xn+2 from the pop-
ulation. In the observed data the value of this draw happens to be the same as the
profile Xn+1 at the crime scene.

To decide on the case we might evaluate the ratio of the likelihoods of the full ev-
idence X1, . . . , Xn+1, Y under the two hypotheses. Since the (marginal) likelihood
of X1, . . . , Xn+1 is determined by (i)–(iii), it is the same under both hypotheses.
Hence the relative likelihood is the ratio of the conditional likelihoods of Y given
X1, . . . , Xn+1. For the prosecution Y depends deterministically on X1, . . . , Xn+1 (it
must be equal to Xn+1) and hence the conditional probability of the observed value is
equal to 1. For the defence the conditional likelihood of Y is the probability that an
(n+2)th observationXn+2 happens to be of the same species asXn+1. SinceXn+1 has
multiplicity Nn+1,Kn+1

= 1 among X1, . . . , Xn+1 (by our assumption on the observed
data), given (σ,M) this probability is (1−σ)/(M+n+1), as determined by the predic-
tion probability function (4.6). The unconditional probability is the integral of this rel-
ative to the posterior distribution of (σ,M), i.e. E

(
(1−σ)/(M+n+1)|X1, . . . , Xn+1

)
.

The likelihood ratio of prosecution versus defence is therefore

1
/

E
( 1− σ

n+ 1 +M
|X1, . . . , Xn+1

)
.

Theorem 4.2.8. Under the assumptions of Theorem 4.2.4, the posterior distribution
of ϕ = (1− σ)/(M + n+ 1) satisfies

sup
B

∣∣∣Πn(ϕ ∈ B|X1, . . . , Xn)−N
( 1− σ̂n

n+M + 1
,

1

(n+M + 1)2α0(n)τ22

)
(B)

∣∣∣→ 0.

Moreover, the posterior mean ϕ̃n = E
(
ϕ|X1, . . . , Xn+1

)
satisfies√

αn(n)
( 1

nϕ̃n

− 1

1− σn,0

)
⇝ N

(
0,

τ21
(1− σ0)4τ42

)
.

These assertions remain true if M is equipped with a prior supported on a compact
interval in [0,∞).

Proof. The first assertion is immediate from Theorem 4.2.4 and the definition of ϕ.
For the second assertion we note that

1

nϕ̃n

− 1

1− σ0,n
==

σ̃n − σ0,n + (1− σ̃n)(M + 1)/(M + n+ 1)

(1− σ̃n)/(M + n+ 1)
.

By Theorem 4.2.4 the sequence
√

α0(n)(σ̃n − σn,0) is asymptotically equivalent to

the sequence
√

α0(n)(σ̂n − σ0,n), which tends to the N(0, τ21 /τ
4
2 )-distribution, by

Theorem 4.2.3. The second assertion follows by Slutzky’s lemma.
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4.3 Proofs

The logarithm of the likelihood (4.1) can be written

Λn(σ,M) =

Kn−1∑
l=1

log(M + lσ) +

Kn∑
j=1:Nn,j≥2

Nn,j−1∑
l=1

log(l − σ)−
n−1∑
i=1

log(M + i)

=

Kn−1∑
l=1

log(M + lσ) +

n−1∑
l=1

log(l − σ)Zn,l+1 −
n−1∑
i=1

log(M + i), (4.7)

where Zn,l = #(1 ≤ j ≤ Kn:Nn,j ≥ l) is the number of distinct values of multiplicity
at least l in the sample X1, . . . , Xn. (In the case that all observations are distinct and
hence Nn,j = 1 for every j, the second term of the likelihood is equal to 0.)

For the proofs of Theorems 4.2.3 and 4.2.4, we fix the argument M and drop it from
the notation. The concavity of the logarithm shows that the log likelihood is a strictly
concave function of σ. For σ ↓ 0, it tends to a finite value if M > 0 and to −∞ if
M = 0, while for σ ↑ 1 it tends to −∞ if the term with l = 1 is present in the second
sum, i.e. if there is at least one tied observation. This happens with probability
tending to 1 as n → ∞. The derivative of the log likelihood with respect to σ is equal
to

Λ′
n(σ) =

Kn−1∑
l=1

l

M + lσ
−

n−1∑
l=1

Zn,l+1

l − σ
. (4.8)

The left limit at σ = 0 is Λ′
n(0) =

1
2Kn(Kn − 1)/M −

∑n−1
l=1 l−1Zn,l+1. Since Zn,l ≤

Zn,1 = Kn, a crude bound on the sum is Kn log n, which shows that the derivative
at σ = 0 tends to infinity if Kn ≫ log n. In that case the unique maximum of the
log likelihood in [0, 1] is taken in the interior of the interval, and hence σ̂n satisfies
Λ′
n(σ̂n) = 0.

Set αn = α0(n). Under the condition that α0 is regularly varying of exponent σ0 ∈
(0, 1), the sequence αn is of the order nσ0 up to slowly varying terms. By Theorems 9
and 1‘ of [42], the sequence Kn/αn tends almost surely to Γ(1 − σ0) and hence in
particularKn ≫ log n, and the conclusion of the preceding paragraph that Λ′

n(σ̂n) = 0
pertains.

By Lemma 4.3.4, the functions E0,n/αn, for E0,n defined in (4.5), converge to the
function E0 defined by

E0(σ) =
Γ(1− σ0)

σ
−

∞∑
m=1

Γ(m+ 1− σ0)

m!(m− σ)
, (4.9)

and this function vanishes at σ = σ0. By monotonicity of these functions, the zeros
σ0,n of the functions E0,n tend to the zero σ0 ∈ (0, 1) of the limit function.



4.3. Proofs 79

4.3.1 Proof of Theorem 4.2.3

The monotonicity of Λ′
n, the definition of σ̂n and the fact that −E0,n(σ0,n) = 0 give

that

P
(√

αn(σ̂n − σ0,n) ≤ x
)
= P

(
Λ′
n

(
σ0,n +

x
√
αn

)
≤ 0
)

= P

(
1

√
αn

[
Λ′
n

(
σ0,n +

x
√
αn

)
− E0,n

(
σ0,n +

x
√
αn

)]
≤ − 1

√
αn

[
E0,n

(
σ0,n +

x
√
αn

)
− E0,n(σ0,n)

])
.

The variables in the left side of the last probability are asymptotically normal by
Lemma 4.3.1, while by the mean value theorem the numbers on the right side of the
inequality are equal to −xE′

0,n(σn)/αn for numbers σn between σ0,n and σ0,n+x/
√
αn

and hence σn → σ0. Thus −xE′
0,n(σn)/αn → xτ22 , by Lemma 4.3.4. The asymptotic

normality of σ̂n follows.

4.3.2 Proof of Theorem 4.2.4

We first prove that the posterior distribution is
√
αn-consistent: Πn

(√
αn|σ−σ0,n| >

mn|X1, . . . , Xn

)
→ 0 in probability for any mn → ∞. By the monotonicity of Λ′

n

and the fact that Λ′
n(σ̂n) = 0, for given σn > σ̂n,

Λn(σ) ≥ Λn(σn), if σ̂n < σ < σn,

Λn(σ) ≤ Λn(σn) + Λ′
n(σn)(σ − σn), if σ > σn.

It follows that

Πn

(
σ > σn|X1, . . . , Xn

)
=

∫ 1

σn
eΛn(σ) dΠσ(σ)∫ 1

0
eΛn(σ) dΠσ(σ)

≤
∫ 1

σn
eΛn(σn)+Λ′

n(σn)(σ−σn) dΠσ(σ)∫ σn

σ̂n
eΛn(σn) dΠσ(σ)

≲

∫∞
0

eΛ
′
n(σn)u du

σn − σ̂n
=

1

−Λ′
n(σn)(σn − σ̂n)

,

where the proportionality constant depends on the density of Πσ only. If we choose
σn = σ0,n + x/

√
αn, then, by Lemmas 4.3.1 and 4.3.3, since E0,n(σ0,n) = 0,

Λ′
n(σn)√
αn

= OP (1) +
E0,n(σn)√

αn
= OP (1) +

E′
0,n(σ̃n)

αn
x = OP (1)− τ22x.

Theorem 4.2.3 gives that
√
αn(σn − σ̂n) = x+Op(1), and hence the probability that

−Λ′
n(σn)(σn − σ̂n) is bigger than some fixed constant can be made arbitrarily large
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by choosing large enough x. This shows that the preceding display tends to zero in
probability for σn = σ0,n+mn/

√
αn and any mn → ∞. The probability of the events

σn > σ̂n, on which the preceding displays are valid, then also tends to one. Combined
with a similar argument on the left tail of the posterior distribution, this shows that
the posterior contracts to σ0,n at rate 1/

√
αn.

Since
√
αn(σ̂n − σ0,n) = Op(1), by Theorem 4.2.3, there exists mn → ∞ so that the

sets Cn: = {σ:√αn|σ − σ̂n| ≤ mn} have posterior probability tending to one. The
total variation measure between the posterior measure Πn(σ ∈ ·|X1, . . . , Xn) and the
conditioned posterior measure Πn(σ ∈ ·|X1, . . . , Xn, σ ∈ Cn) is bounded above by
2Πn(σ /∈ Cn|X1, . . . , Xn) and hence tends to zero in probability. Thus it suffices to
prove the Gaussian approximation to the conditioned posterior measure.

By Lemma 4.3.2 and the fact that Λ′
n(σ̂n) = 0, a second order Taylor expansion gives

sup
σ∈Cn

∣∣∣Λn(σ)− Λn(σ̂n)

αn(σ − σ̂n)2
+

1

2
τ22

∣∣∣ P→ 0.

We conclude that there exist random variables εn that tend to zero in probability
with, for every σ ∈ Cn,

−1

2
(σ − σ̂n)

2αn(τ
2
2 + εn) ≤ Λn(σ)− Λn(σ̂n) ≤ −1

2
(σ − σ̂n)

2αn(τ
2
2 − εn).

Then, for πσ a density of the prior measure Πσ,

Πn

(
σ ∈ B|X1, . . . , Xn, σ ∈ Cn

)
≤
∫
B∩Cn

e−(σ−σ̂n)
2αn(τ

2
2−εn)/2 dσ∫

Cn
e−(σ−σ̂n)2αn(τ2

2+εn)/2 dσ

sup
σ∈Cn

πσ(σ)

inf
σ∈Cn

πσ(σ)

By changing variables we see that Πn

(√
αn(σ − σ̂n) ∈ B|X1, . . . , Xn, σ ∈ Cn) can be

bounded above by∫mn

−mn
1B(s)e

−s2(τ2
2−εn)/2 ds∫mn

−mn
e−s2(τ2

2+εn)/2 ds
(1 + oP (1))

=
P
(
Z/
√

τ22 − εn ∈ B ∩ (−mn,mn)
)

P
(
Z/
√

τ22 + εn ∈ (−mn,mn)
) (1 + oP (1)),

for Z a standard normal variable and the probabilities understood to refer to Z only.
This tends in probability to P(Z/τ2 ∈ B), uniformly in B.

By the same method, switching + and − signs and sup and inf, we can derive the
same expression as an asymptotic lower bound. This concludes the proof of the first
assertion of Theorem 4.2.4.

Because convergence in total variation norm implies convergence of the expectations
of bounded, measurable functions, to prove the convergence of the posterior mean, it
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suffices to show that∫
√
αn(σ−σ̂n)>mn

√
αn|σ − σ̂n| dΠn(σ|X1, . . . , Xn) → 0,

in probability, for every mn → ∞, combined with a similar estimate on the left tail.
By the argument at the beginning of the proof this expectation is bounded above by,
for σn = σ̂n + x/

√
αn with x > 0,∫

√
αn(σ−σ̂n)>mn

√
αn(σ − σ̂n)e

Λ′
n(σn)(σ−σn) dΠσ(σ)

σn − σ̂n

=

∫∞
mn−x

(u+ x)eΛ
′
n(σn)u/

√
αn du

x

Because Λ′
n(σn)/

√
αn =

√
αn(σn − σ0,n)Λ

′′
n(σ̃n)/αn = (x+OP (1))(−τ22 + oP (1)), the

exponential in the integrand is with probability arbitrarily close to 1 bounded above
by e−cu, for some c > 0, if x is chosen large enough. On the event where this is the
case the integral is bounded above by a multiple of

∫∞
mn−x

(u + x)e−cu du → 0, as
n → ∞. It follows that the right side tends to zero in probability.

4.3.3 Proof of Theorem 4.2.5

The maximum likelihood estimator of M can be obtained in two steps: first we
maximize the log likelihood (4.7) over σ for fixed M , yielding σ̂n,M , and next we
maximize the “profile log likelihood” M 7→ Λn(σ̂n,M ,M). From Theorem 4.2.3 we
know that σ̂n,M will be contained in a neighbourhood of σ0, with probability tending
to 1. To proceed further, we first obtain a stochastic expansion of σ̂n,M that refines
this result.

The estimator σ̂n,M solves Λ′
n(σ,M) = 0, where the prime means the partial derivative

with respect to σ. The derivative can be written

Λ′
n(σ,M) =

Kn−1∑
i=1

i

M + iσ
−

n−1∑
l=1

1

l − σ
Zn,l+1 =

Kn

σ
−Gn(σ)−

hσ,M (Kn)

σ
,

for Gn(σ) =
∑n−1

l=1
1

l−σZn,l+1, and

hσ,M (k) = 1 +

k−1∑
l=1

M

M + lσ
≤ 1 +

M

σ
log
(
1 +

kσ

M

)
. (4.10)

Expansion of the equation Λ′
n(σ̂n,M ,M) = 0 around the zero σ0,n of the function E0,n

in (4.5) gives

σ̂n,M − σ0,n = − Λ′
n(σ0,n,M)

Λ′′
n(σ0,n,M) + Λ′′′

n (σ̃n,M ,M)(σ̂n,M − σ0,n)/2
.
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It is shown in Lemma 4.3.1 that Vn: =
(
Kn/σn,0 − Gn(σn,0)

)
/
√
αn, which is free of

M , tends to a centered normal distribution, and it is shown in Lemma 4.3.2 that
the sequence

(
−Kn/σ

2
0,n − G′

n(σ0,n)
)
/αn tends in probability to −τ22 : = E′

0(σ0). It

can similarly be seen that Zn: =
(
2Kn/σ

3
0,n −G′′

n(σ0,n)
)
/αn tends in probability to a

constant z. Furthermore, it follows from the bound in (4.10) and the fact that Kn/αn

converges almost surely, that hσ0,n,M (Kn) = OP (log n), uniformly in M belonging
to compacta, and from the definition of hσ,M (Kn) that its first and second partial
derivatives relative to σ are of the same order. Therefore, uniformly in M ,

Λ′
n(σ0,n,M) =

Kn

σ0,n
−Gn(σ0,n)−

hσ0,n,M (Kn)

σ0,n
= α1/2

n Vn −
hσ0,n,M (Kn)

σ0,n
,

Λ′′
n(σ0,n,M) =

−Kn

σ2
0,n

−G′
n(σ0,n)−

d

dσ

[hσ,M (Kn)

σ

]
σ=σ0,n

=−αnτ
2
2 +OP (log n),

Λ′′′
n (σ̃n,M ,M) =

2Kn

σ3
0,n

−G′′
n(σ0,n)−

d2

dσ2

[hσ,M (Kn)

σ

]
σ=σ0,n

=αnZn +OP (log n).

Substituting these expansions in the preceding display gives that

σ̂n,M − σ0,n =
α
−1/2
n Vn − α−1

n hσ0,n,M (Kn)/σ0,n

τ22 − Zn(σ̂n,M − σ0,n) +OP (log n/αn)

=
( Vn

α
1/2
n τ22

−
hσ0,n,M (Kn)

αnσ0,nτ22

)(
1 +

Zn(σ̂n,M − σ0,n)

τ22
+OP

( log n
αn

))
.

We can solve σ̂n,M − σ0,n from this as

(σ̂n,M − σ0,n)
(
1− VnZn

α
1/2
n τ42

)
=

Vn

α
1/2
n τ22

−
hσ0,n,M (Kn)

αnσ0,nτ22
+OP

( log n
α
3/2
n

)
.

Hence, for Wn,M = hσ0,n,M (Kn)/(σ0,nτ
2
2 log n),

σ̂n,M = σ0,n +
Vn

α
1/2
n τ22

+
V 2
nZn

αnτ62
− Wn,M log n

αn
+OP

( log n
α
3/2
n

)
=: σ̃n −Wn,M log n/αn +OP (log n/α

3/2
n ).

The variables Vn, Zn and Wn,M are all bounded in probability. The quantity σ̃n is
defined as the sum of the first three terms on the right in the preceding line, and does
not depend on M .

We are now ready to expand the profile likelihood Λn(σ̂n,M ,M). The first and third
terms on the far right side of (4.7) can be expanded with the help of Lemma 4.3.12
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as, uniformly in M in compacta,

Kn−1∑
l=1

log(M + lσ̂n,M ) = Kn logKn +Kn log(σ̂n,M/e) +
( M

σ̂n,M
− 1

2

)
logKn

+ log

√
2π

σ̂n,M
− log Γ

(
1 +

M

σ̂n,M

)
+OP

( 1

Kn

)
,

n−1∑
i=1

log(M + i) = n log n− n+
(
M − 1

2

)
log n+

+ log
√
2π − log Γ(1 +M) +O

( 1
n

)
.

To find the point of maximum M , we can drop terms that depend on Kn and n only,
and add terms that do not depend on M . Thus finding the maximizer of the profile
likelihood is equivalent to finding the maximizer of

(Kn − 1) log
σ̂n,M

σ̃n
+

n−1∑
l=1

log
l − σ̂n,M

l − σ̃n
Zn,l+1 +

M logKn

σ̂n,M
−M log n

+ log Γ(1 +M)− log Γ
(
1 +

M

σ̂n,M

)
+OP

( 1

Kn

)
. (4.11)

The sum of the first two terms can be expanded as

(Kn − 1) log
(
1− Wn,M log n

αnσ̃n
+OP

( log n
α
3/2
n

))
−

n−1∑
l=1

log
(
1− σ̂n,M − σ̃n

l − σ̃n

)
Zn,l+1

= −KnWn,M log n

αnσ̃n
−

n−1∑
l=1

( σ̂n,M − σ̃n

l − σ̃n

)
Zn,l+1 +OP

( log n√
αn

)
= −Wn,M log n

αn

(Kn

σ̃n
−

n−1∑
l=1

Zn,l+1

l − σ̃n

)
+OP

( log n√
αn

)
= −Wn,M log n

αn

(√
αnṼn + E0,n(σ̃n)

)
+OP

( log n
√
αn

)
,

where Ṽn tends to a centered normal distribution by Lemma 4.3.1. The right side is
of the order OP (log n/

√
αn).

Since Ln =
√
αn

(
Kn/αn−Γ(1−σ0)

)
tends to a centered normal distribution, we have

Kn = αnΓ(1−σ0)+OP (
√
αn), so that logKn = logαn+log Γ(1−σ0)+OP (1/

√
αn).

Therefore, if αn = nσ0L̄0(n), then the sum of the third and fourth terms on the right
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of (4.11) are

M
[σ0 log n+log L̄0(n)+log Γ(1− σ0)+OP (1/

√
αn)

σ0,n

][
1+OP

( 1
√
αn

)]
−M log n

= M
( σ0

σ0,n
− 1
)
log n+

M

σ0,n

(
log L̄0(n) + log Γ(1− σ0)

)
+OP

( log n
√
αn

)
.

By Lemma 4.3.4, σ0,n −σ0 = O(n−δ)+O
(
L′
0(n)n/L0(n)

)
, whence the right side is of

the order (log n)L′
0(n)n/L0(n) + logL0(n) + log Γ(1− σ0).

We conclude that up to terms that do not depend on M , the profile log likelihood
(4.11) is equal to, for a constant c > 0,

M

σ0

[L′
0(n)nc log n

L0(n)
+ logL0(n) + log Γ(1− σ0)

]
+ log Γ(1 +M)− log Γ

(
1 +

M

σ0

)
+ oP (1).

If the term within square brackets tends to infinity, then asymptotically this term
dominates and the maximizing value M̂n will tend to the end point of the interval.
If this term tends to minus infinity, then it also dominates and the maximum value
will tend to 0. If the term converges to a limit, then the whole expression tends to
a function of the form M 7→ aM + log Γ(1 + M) − log Γ(1 + M/σ0). This function
is concave and tends to −∞ as M → ∞. Its derivative at zero may be both positive
or negative, depending on a and σ0, and the point of maximum of the function may
be at zero or at some positive location, possibly the upper limit M̄ of the parameter.
The sequence M̂n will tend to this point of maximum.

4.3.4 Lemmas

For gσ(m) =
∑m−1

l=1
1

l−σ , set

τ21 =
(2σ0 − 1)Γ(1− σ0)

σ2
0

+

∞∑
m=1

Γ(m− σ0)(gσ0
(m+ 1) + gσ0

(m))

m!
(4.12)

−
∞∑
k=2

∞∑
m=1

gσ0(k)Γ(k +m+ 1− σ0)

k!m!2k+m−σ0(m− σ0)
−

∞∑
m=2

gσ0(m)Γ(m− σ0)

m! 2m−σ0−1
.

Lemma 4.3.1. For any σn
P→ σ0 ∈ (0, 1) and Mn = o

(√
α0(n)/ log n

)
, we have

α0(n)
−1/2

(
Λ′
n(σn,Mn)− E0,n(σn)

)
⇝ N(0, τ21 ).

Proof. We denote the true distribution by P0 =
∑∞

i=1 piδxi
. The variables Zn,l can

be written as Zn,l =
∑∞

j=1 1Mn,j≥l, for Mn,j the number of observations equal to xj .
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As Kn = Zn,1, the function Λ′
n can be written in the form

Λ′
n(σ,M) =

∞∑
j=1

[1Mn,j≥1

σ
− gσ(Mn,j)

]
− hσ,M (Kn)

σ
,

where gσ(0) = gσ(1) = 0 and gσ(m) =
∑m−1

l=1
1

l−σ , for m ≥ 2. It is shown in [42] (and
repeated below) that EKn/α0(n) → Γ(1−σ0) and hence Jensen’s inequality and (4.10)
give Ehσn,M (Kn) ≤ 1 + (M/σn) log(1 + EKnσn/M) = O(M log n) = o(α0(n)

1/2), so
that the term on the far right is asymptotically negligible.

To prove the asymptotic normality of the infinite sum, after centering and scaling,
we first consider the case that the sample size n is taken to be a random vari-
able Nn with the Poisson distribution with mean n, independent of the original
variables. The resulting variables MNn,j are then Poisson distributed with means
npj and independent across j, and the asymptotic normality can be proved us-
ing the Lindeberg central limit theorem. (For reference, an appropriate infinite
series version is formulated in Lemma 4.3.7.) As shown in the proof of (i) and
(iii) of Lemma 4.3.3, the function E0,n(σ) defined in (4.5) is equal to the expec-
tation of Vk,n =

∑∞
j=1

[
1Mn,j≥1/σ − gσ(Mn,j)

]
. Because (1Mn,j=0)gσ(Mn,j) = 0, by

Lemma 4.3.3 (ii), (v), (iv) and (viii), the variance of Vk,n is given by

∞∑
j=1

var
(1MNn,j≥1

σ
− gσ(MNn,j)

)
=

∞∑
j=1

[e−npj (1− e−npj )

σ2

+ var gσ(MNn,j)− 2
e−npj

σ
Egσ(MNn,j)

]
∼ α0(n)τ

2
1 , (4.13)

where τ21 is equal to (ii)/σ2 + (v) − (vi) − (2/σ)(vii), for (ii), (v), (vi) and (vii)
shorthand for the expressions on the right sides in Lemma 4.3.3 (ii), (v), (vi) and
(vii). Furthermore, the variables 1MNn,j≥1 are bounded and hence trivially satisfy
the Lindeberg condition, while the Lindeberg condition on the variables gσ(MNn,j)
follows from the boundedness of α0(n)

−1
∑

j Egσ(MNn,j)
3, by Lemma 4.3.3 (viii).

Thus the Poissonized sums are asymptotically normal, by Lemma 4.3.7.

The proof can be completed by applying Lemma 4.3.6 to the variables
Vk,n =

∑∞
j=1

(
1Mk,j≥1/σn − gσn

(Mk,j)
)
, with an = α0(n)

−1/2 and E0,n as given. To
show that an(Vkn,n−Vn,n) tends to zero in probability, we split Vk,n in

∑
j 1Mk,j≥1/σn

and
∑

j gσn
(Mk,j) and handle the two parts separately. Because akn

/an → 1, it is
not a loss of generality to assume that kn ≥ n. Because the binomial distributions
binomial(n, pj) are stochastically ordered in n and the functions m 7→ 1m≥1 and m 7→
gσ(m) are increasing, the variables an

∑
j(1Mk,j≥1−1Mn,j≥1)/σ and an

∑
j(gσn

(Mk,j)−
gσn

(Mn,j)) are nonnegative, and hence it suffices to show that their expectations tend
to zero. This is shown in Lemma 4.3.5.

Lemma 4.3.2. For any σ̃n
P→ σ0 ∈ (0, 1) and Mn = o

(
α0(n)/ log n

)
, we have

α0(n)
−1Λ′′

n(σ̃n,Mn) → E′
0(σ0), in probability.
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Proof. The second derivative is given by

Λ′′
n(σ) = −

Kn−1∑
l=1

l2

(M + lσ)2
−

n−1∑
l=1

1

(l − σ)2
Zn,l+1

= −Kn − 1

σ2
+

1

σ2

Kn−1∑
l=1

[ 2M

M + σl
− M2

(M + σl)2

]
−

n−1∑
l=1

1

(l − σ)2
Zn,l+1.

It is shown in [42] (see his formula (66), or see the proof of Lemma 4.3.1), that
Kn/α0(n) → Γ(1 − σ0) and Zn,l/α0(n) → Γ(l − σ0)/(l − 1)!, for every l ≥ 1, in
probability and in mean. We use this to infer the convergence of the first and last
terms on the right divided by α0(n). That the limit is equal to E′

0(σ0) follows by
inspection of its form and Lemma 4.3.4. The second term is bounded above in absolute
value by a multiple of M logKn and divided by α0(n) tends to zero.

4.3.5 Technical lemmas

In the next lemmas (pj)
∞
j=1 is a given infinite probability vector and α is the cumu-

lative distribution function of the counting measure on the points 1/pj , for j ∈ N+.
Furthermore, the function gσ:N → N is given by gσ(1) = gσ(2) = 0 and

gσ(m) =

m−1∑
l=1

1

l − σ
, m ≥ 2.

Lemma 4.3.3. Suppose that α(u): = #{j: 1/pj ≤ u} is regularly varying at ∞ of or-
der γ ∈ (0, 1). Then, for any σn → σ ∈ (0, 1), and independent Mn,j ∼ Poisson(npj),

(i) 1
α(n)

∑∞
j=1 E1Mn,j≥1 → Γ(1− γ),

(ii) 1
α(n)

∑∞
j=1 var 1Mn,j≥1 → (2γ − 1)Γ(1− γ),

(iii) 1
α(n)

∑∞
j=1 Egσn

(Mn,j) →
∑∞

m=1
Γ(m+1−γ)
m!(m−σ) ,

(iv) 1
α(n)

∑∞
j=1 E

∂gσn

∂σ (Mn,j) →
∑∞

m=1
Γ(m+1−γ)
m!(m−σ)2 ,

(v) 1
α(n)

∑∞
j=1 Eg

2
σn

(Mn,j) →
∑∞

m=1
Γ(m+1−γ)(gσ(m+1)+gσ(m))

m!(m−σ) ,

(vi) 1
α(n)

∑∞
j=1

(
Egσn

(Mn,j)
)2 →

∑∞
k=2

∑∞
m=1

gσ(k)Γ(k+m+1−γ)
k!m!2k+m−γ(m−σ)

.

(vii) 1
α(n)

∑∞
j=1 e

−npjEgσn(Mn,j) →
∑∞

m=2
gσ(m)γΓ(m−γ)

m! 2m−γ .

(viii) 1
α(n)

∑∞
j=1 Eg

3
σn

(Mn,j) →
∑∞

m=1
Γ(m+1−γ)(g2

σ(m+1)+gσ(m+1)gσ(m)+g2
σ(m))

m!(m−σ) ,

All limits on the right sides are finite.
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Proof. Assertions (i) and (ii) were stated in [42]; we include proofs for completeness.

The series in the left side of (i) is

∞∑
j=1

P(Mn,j ≥ 1) =

∞∑
j=1

(1− e−npj ) =

∫ ∞

1

(1− e−n/u) dα(u) =

∫ n

0

α
(n
s

)
e−s ds,

by Fubini’s theorem (or partial integration), since 1 − e−n/u =
∫ n/u

0
e−s ds. By the

definition of regular variation α(n/s)/α(n) → s−γ , for every s, as n → ∞. By
Potter’s theorem ([6], Theorem 1.5.6), for every δ > 0 there exists M > 1 such that
α(n/s)/α(n) ≤ s−γ−δ∨s−γ+δ, for every s < n/M . We can choose δ so that γ+δ < 1,
and then

∫∞
0

(s−γ−δ ∨ s−γ+δ)e−s ds < ∞. For the corresponding M , we then have∫ n/M

0
α(n/s)/α(n) e−s ds →

∫∞
0

s−γe−s ds = Γ(1−γ), by the dominated convergence

theorem. For s ≥ n/M , we have α(n/s) ≤ α(M) and hence
∫ n

n/M
α(n/s)e−s ds ≤

α(M)e−n/M = o(α(n)), as n → ∞.

The series in (ii) is
∑∞

j=1 e
−npj (1−e−npj ) =

∑∞
j=1(1−e−2npj )−

∑∞
j=1(1−e−npj ). By

the first paragraph this is asymptotic to
(
α(2n)−α(n)

)
Γ(1−γ) ∼ (2γ−1)α(n)Γ(1−γ),

by regular variation of α.

For (iii) we write

∞∑
j=1

Egσ(Mn,j) =

∞∑
j=1

∞∑
m=2

gσ(m)
e−npj (npj)

m

m!
=

∞∑
m=2

gσ(m)

m!

∫ ∞

1

e−n/u
(n
u

)m
dα(u).

Substituting e−n/u(n/u)m =
∫ n/u

0
e−ssm−1(m − s) ds (valid for m > 0) and using

Fubini’s theorem, we can rewrite the right side as

∞∑
m=2

gσ(m)

m!

∫ n

0

α
(n
s

)
e−ssm−1(m− s) ds

= gσ(2)

∫ n

0

α
(n
s

)
e−ss ds+

∞∑
m=2

gσ(m+ 1)− gσ(m)

m!

∫ n

0

α
(n
s

)
e−ssm ds

=

∫ n

0

α
(n
s

)
e−s
( ∞∑
m=1

sm

m!(m− σ)

)
ds.

As before, regular variation and Potter’s theorem give for s ≤ n/M the bound
α(n/s)/α(n) ≲ s−γ−δ ∨ s−γ+δ, and then

α(n/s)

α(n)

( ∞∑
m=1

sm

m!(m− σ)

)
≲ (s−γ−δ ∨ 1)(es − 1− s)

1

s
, s ≤ n/M.
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Furthermore, the left side tends pointwise to s−γ
∑∞

m=1 s
m/(m!(m − σ)). By the

dominated convergence theorem,∫ n/M

0

α(n/s)

α(n)
e−s
( ∞∑
m=1

sm

m!(m− σ)

)
ds →

∫ ∞

0

s−γe−s
∞∑

m=1

sm

m!(m− σ)
ds.

The right side is the limit as given. Since
∑

j pj = 1, we have that α(u) = #(pj ≥
1/u) ≤ u. Therefore∫ n

n/M

α
(n
s

)
e−s
( ∞∑
m=1

sm

m!(m− σ)

)
ds ≤

∫ ∞

n/M

n

s

1

s
ds ≤ M.

This is of lower order than α(n) and hence the proof of the third assertion is complete.

For (iv) we follow the same approach as in (iii), replacing gσ by ġσ = ∂/∂σgs, and
then at the end substitute ġs(m+ 1)− ġσ(m) = 1/(m− σ)2.

For (v) again we follow the same approach as under (iii), now replacing gσ by g2σ. At
the end we write the difference g2σ(m+1)− g2σ(m) as (m− σ)−1

(
gσ(m+1)+ gσ(m)

)
and complete the argument as before, where we can bound gσ(m + 1) + gσ(m) by a
multiple of logm, for large m, and use that

∑
m sm logm/m! ≲ es(sδ ∨ 1), for every

s, by Lemma 4.3.11, with a sufficiently small δ > 0.

The series in (vi) is equal to

∞∑
j=1

∞∑
k=2

∞∑
m=2

gσ(k)gσ(m)
e−2npj (npj)

k+m

k!m!

=

∞∑
k=2

∞∑
m=2

gσ(k)gσ(m)

k!m!

∫ ∞

1

e−2n/u
(n
u

)k+m

dα(u).

Substituting e−2n/u(2n/u)k+m =
∫ 2n/u

0
e−ssk+m−1(k +m− s) ds and using Fubini’s

theorem, we can rewrite the right side as

∞∑
k=2

∞∑
m=2

gσ(k)gσ(m)

k!m! 2k+m

∫ 2n

0

α
(2n

s

)
e−ssk+m−1(k +m− s) ds

=

∫ 2n

0

α
(2n

s

) d

ds

[( ∞∑
k=2

gσ(k)s
k

k! 2k

)2
e−s
]
ds

=

∫ 2n

0

α
(2n

s

)( ∞∑
k=2

gσ(k)s
k

k! 2k

)
e−s
[ ∞∑
k=1

(
gσ(k + 1)− gσ(k)

)
sk

k! 2k

]
ds.

In view of Lemma 4.3.11 and because gσ(k + 1) − gσ(k) = 1/(k − σ), the integrand
is bounded above by a multiple of α(2n/s)(es/2 − 1)e−ss−1(es/2 − 1). Using the
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dominated convergence theorem and arguments as before, we see that the right side
divided by α(n) is asymptotic to the right side of (vi).

The extra factor e−npj in (vii) relative to (iii) leads to the same expression as in (iii),
except that e−n/u must be replaced by e−2n/u. Following the same argument, we find
that the series in (vii) is equal to

∞∑
m=2

gσ(m)

m! 2m

∫ 2n

0

α
(2n

s

)
e−ssm−1(m− s) ds.

The functions
∑∞

m=2
gσ(m)
m!2m e−ssm−1|m − s| are uniformly integrable (thanks to the

factors 2m that are extra relative to (iii)) . Therefore, by arguments as before the
display is asymptotically equivalent to the expression obtained by replacing α(2n/s)
by α(n)(2/s)γ . Finally we can use that mΓ(m− γ)− Γ(m+ 1− γ) = γΓ(m− γ).

For (viii) we follow the same approach as under (iii), replacing gσ by g3σ, where at
the end we write the difference g3σ(m+1)− g3σ(m) as (m− σ)−1(g2σ(m+1)+ gσ(m+
1)gσ(m) + g2σ(m)).

The finiteness of the limitss can be proved with the help of Lemma 4.3.9 by comparison
with standard series.

For α(u): = #{j: 1/pj ≤ u} as in the preceding, define a function En by

En(σ) =

∫ n

0

α
(n
s

)
e−s
( 1
σ
−

∞∑
m=1

sm

m!(m− σ)

)
ds. (4.14)

Lemma 4.3.4. If the function α is regularly varying at ∞ of order γ ∈ (0, 1), then
the functions En in (4.14) satisfy, as n → ∞, for σn → σ ∈ (0, 1),

En(σn)

α(n)
→ E(σ): =

Γ(1− γ)

σ
−

∞∑
m=1

Γ(m+ 1− γ)

m!(m− σ)
, (4.15)

E′
n(σn)

α(n)
→ E′(σ).

The limit function E vanishes at σ = γ and the zeros σ0,n of En satisfy σ0,n → γ.
Furthermore, if there exists a continuously differentiable function L: [1,∞) → R such
that |α(u)− uγL(u)| ≤ Cuβ, for every u > 1, and some C > 0 and β < γ, and such
that s 7→ L′(s)s is slowly varying at ∞, then, as n → ∞,

σ0,n − γ = O
(nβ−γ

L(n)

)
− Γ(1− γ)(1 + γ)

γ2E′(γ)

(L′(n)n

L(n)

)(
1 + o(1)

)
.

In particular, if L can be taken constant, then σ0,n − γ = O(nβ−γ).
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Proof. As shown in the proof of Lemma 4.3.3 (i) and (iii), the function En(σ) is equal
to
∑∞

j=1

(
E1Mn,j≥1/σ − Egσ(Mn,j)

)
, with the notation as in the lemma. Therefore,

by the lemma the limit function E is equal to the limit in (i) divided by σ minus the
limit in (iii), i.e. the right side of (4.15). The limit in (iii) at σ = γ can be written

∞∑
m=1

Γ(m− γ)

m!
=

∞∑
m=1

∫ ∞

0

sm−γ−1

m!
e−s ds =

∫ ∞

0

(1− e−s)s−γ−1 ds.

By partial integration, this can be further rewritten as
∫∞
0

x−γ/γ e−x dx = Γ(1−γ)/γ.
Thus E(γ) = Γ(1− γ)/γ − Γ(1− γ)/γ = 0.

The limit of E′
n(σn)/α(n) is obtained similarly from (i) and (iv) of Lemma 4.3.3, and

it is seen to be equal to the derivative E′(σ).

The functions En and E are monotonely decreasing and En(γ−ε)/α(n) → E(γ−ε) >
0 and En(γ + ε)/α(n) → E(γ + ε) < 0, for every ε > 0, by (4.15). This shows that
σ0,n ∈ (γ − ε, γ + ε) eventually and hence σ0,n → γ.

By the mean value theorem, En(σ0,n)−En(γ) = E′
n(σ̃n)(σ0,n − γ), for some σ̃n → γ.

Since En(σ0,n) = 0 and E′
n(σ̃n)/α(n) → E′(γ) < 0, it follows that σ0,n − γ =

−
(
En(γ)/α(n)

)
/
(
E′(γ) + o(1)

)
. This shows that σ0,n → γ at the same rate of con-

vergence as En(γ)/α(n) → E(γ) = 0.

To investigate the latter rate, define functions Hn by

Hn(σ) =

∫ n

0

L
(n
s

)
s−γe−s

( 1
σ
−

∞∑
m=1

sm

m!(m− σ)

)
ds.

The functions Hn are monotonely decreasing, with, by the assumption on α,

∣∣En(σ)− nγHn(σ)
∣∣ ≤ ∫ n

0

(n
s

)β
e−s
∣∣∣ 1
σ
−

∞∑
m=1

sm

m!(m− σ)

∣∣∣ ds
≲ nβ

( 1
σ
+

1

1− σ

∫ n

0

1

s1+β
e−s(es − 1− s) ds

)
.

The right side is O(nβ), if σ is bounded away from 0 and 1.

Let H̄n be defined as Hn, but with the integral extended from (0, n) to the full half
line (0,∞). The assumption on α does not specify L(u) for u ≤ 1, and hence does
not specify L(n/s) for s ≥ n, but we can extend the function L to a continuously
differentiable function on (0,∞) in such a way that it vanishes on a neighbourhood of
0 and hence is uniformly bounded on [0, 1]. Then |Hn(σ)− H̄n(σ)| ≲

∫∞
n

s−γe−s(1 +
s−1(es − 1)) ds = O(n−γ), if σ is bounded away from 0 and 1.
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Splitting the two parts of the integrand in H̄n and performing partial integration on
the second part we find

H̄n(γ) =

∫ ∞

0

L
(n
s

)s−γ

γ
e−s ds−

∫ ∞

0

L
(n
s

) ∞∑
m=1

sm−γ−1

m!
e−s ds

+

∫ ∞

0

L′
(n
s

) n

s2

∞∑
m=1

sm−γ

m!(m− γ)
e−s ds

=

∫ ∞

0

L
(n
s

)s−γ

γ
e−s ds+

∫ ∞

0

L
(n
s

)
(1− e−s) d

(s−γ

γ

)
+

∫ ∞

0

L′
(n
s

) n

s2

∞∑
m=1

sm−γ

m!(m− γ)
e−s ds

= 0 +

∫ ∞

0

L′
(n
s

) n

s2

[
(1− e−s)

s−γ

γ
+

∞∑
m=1

sm−γe−s

m!(m− γ)

]
ds

∼ L′(n)n

∫ ∞

0

1

s

[
(1− e−s)

s−γ

γ
+

∞∑
m=1

sm−γe−s

m!(m− γ)

]
ds,

since the function s 7→ L′(s)s is slowly varying at infinity, so that L′(n/s)n/s ∼ L′(n)n
as n → ∞, for every s > 0. To justify the last step we can use Potter’s theorem ([6],
Theorem 1.5.6) as before, to infer for every δ > 0 the existence of a constant M > 1
such that L′(n/s)n/s/(L′(n)n) ≲ sδ ∨ s−δ, for s < n/M and n ≥ M , so that on
this interval the integrand is dominated by a multiple of (sδ ∨s−δ)

[
s−1(1−e−s)s−γ +∑

m=1 s
m−γe−s/(m+1)!

]
≲ s−γ−δ∧s−1−γ+δ, which is integrable for sufficiently small

δ > 0. Furthermore, for s > n/M , the function |L′(n/s)n/s| is uniformly bounded,
whence the integral over the interval [n/M,∞) is bounded above by a multiple of∫∞
n/M

s−1−γ ds ≲ n−γ ≪ L′(n)n.

By the identities obtained in the beginning of the proof, the integral in the right of
the preceding display is identical to Γ(1− γ)/γ2 + Γ(1− γ)/γ = Γ(1− γ)(1 + γ)/γ2.

Combining the preceding, we find that En(γ) = nγ
(
H̄n(γ) + O(n−γ)

)
+ O(nβ) =

nγL′(n)n+O(nβ) and hence En(γ)/α(n) = O(nγL′(n)n/α(n)) +O(nβ/α(n)).

Lemma 4.3.5. Suppose that α(u): = #{j: 1/pj ≤ u} is regularly varying at ∞
of order γ ∈ (0, 1). Then for any σn → σ ∈ (0, 1), and independent Mn,j ∼
Binomial(n, pj), and kn ≥ n with kn − n = O(

√
n),

∞∑
j=1

E(1Mkn,j≥1 − 1Mn,j≥1) = o
(
α(n)1/2

)
,

Furthermore, if there exists a continuously differentiable function L: [1,∞) → R such
that |α(u) − uγL(u)| ≤ Cuβ, for every u > 1, and some C > 0 and β < γ, and
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|L′(u)| ≤ Cδu
−1+δ, for every u > 1 and δ > 0 and some Cδ > 0, then

∞∑
j=1

E
(
gσn

(Mkn,j)− gσn
(Mn,j)

)
= o
(
α(n)1/2

)
.

Proof. Because P(Mn,j = 0) = (1− pj)
n, the left side of the first assertion is equal to

∞∑
j=1

(
(1− pj)

n − (1− pj)
kn
)
=

∫ ∞

1

(
1− 1

u

)n(
1−

(
1− 1

u

)kn−n)
dα(u).

By the inequalities 1 − x ≤ e−x, for x ∈ R, and 1 − (1 − x)r ≤ rx, for x ∈ [0, 1] and
r ∈ N, this is bounded above by∫ ∞

1

e−n/u(kn − n)
1

u
dα(u) =

kn − n

n

∫ n

0

α
(n
s

)
e−s(1− s) ds,

by Fubini’s theorem, since e−n/u(n/u) =
∫ n/u

0
e−s(1 − s) ds. As in the proof of

Lemma 4.3.3, the integral is α(n)
(
Γ(1 − γ) − Γ(2 − γ)

)
(1 + o(1)). Therefore, the

preceding display divided by α(n)1/2 is of the order α(n)1/2(kn−n)/n ∼ α(n)1/2n−1/2.
This tends to zero, as for every δ > 0 we have that α(n) ≤ nγ+δ eventually, by Potter’s
theorem, where γ < 1 by assumption.

To prove the second assertion we first write

∞∑
j=1

Egσn
(Mn,j) =

∞∑
j=1

n∑
m=2

gσ(m)

(
n

m

)
pmj (1− pj)

n−m

=

n∑
m=2

gσ(m)

(
n

m

)∫ ∞

1

( 1
u

)m(
1− 1

u

)n−m

dα(u).

Writing (1/u)m(1− 1/u)n−m =
∫ 1/u

0
sm−1(1− s)n−m−1(m− ns) ds (for m > 0) and

applying Fubini’s theorem, we can rewrite this as

n∑
m=2

gσ(m)

(
n

m

)∫ 1

0

α
(1
s

)
sm−1(1− s)n−m−1(m− ns) ds

=

∫ 1

0

n−1∑
l=1

1

l − σ

n∑
m=l+1

(
n

m

)
sm−1(1− s)n−m−1(m− ns)α

(1
s

)
ds

=

∫ 1

0

n−1∑
l=1

n− l

l − σ

(
n

l

)
sl(1− s)n−l−1 α

(1
s

)
ds,
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by Lemma 4.3.8. Thus the left side of the second assertion can be written in the form,
with k = kn,

∫ 1

0

n−1∑
l=1

sl(1− s)n−l−1

l − σ

[
(k − l)

(
k

l

)
(1− s)k−n − (n− l)

(
n

l

)]
α
(1
s

)
ds

+

∫ 1

0

k∑
l=n+1

k − l

l − σ

(
k

l

)
sl(1− s)k−l−1 α

(1
s

)
ds. (4.16)

Because α(1/s) ≤ 1/s, the second term is bounded above by
∑

l>n(k − l)/(l −
σ)
(
k
l

)
B(l, k − l), for B the beta function. This is further bounded by k

∑
l>n 1/((l −

σ)l) ≲ k/n ≲ 1.

By the assumption that |α(u)−uγL(u)| ≤ Cuβ , if in the first term, we replace α(1/s)
by s−γL(1/s), the error is bounded above by a multiple of

∫ 1

0

n−1∑
l=1

sl(1− s)n−l−1

l − σ

∣∣∣(k − l)

(
k

l

)
(1− s)k−n − (n− l)

(
n

l

)∣∣∣ s−β ds.

The sum of the terms with l >
√
n is bounded above by ak,n + an,n, for

ak,n =
∑
l>

√
n

k − l

l − σ

(
k

l

)
B(l − β + 1, k − l) ≲

∑
l>

√
n

Γ(l − β + 1)

(l − σ)l!

k!

Γ(k − β + 1)
.

In view of Lemma 4.3.9, ak,n is bounded above by a multiple of
√
n
−β

kβ = O(nβ/2) =
o
(
α(n)1/2

)
. In the sum of the terms with l ≤

√
n, we decompose k−l = (k−n)+(n−l)

and
(
k
l

)
=
∑

i

(
n
l−i

)(
k−n
i

)
, and bound

∣∣∣(k − l)

(
k

l

)
(1− s)k−n − (n− l)

(
n

l

)∣∣∣ ≤ (k − n)

(
k

l

)
(1− s)k−n

+ (n− l)
[(n

l

)(
1− (1− s)k−n

)
+
∑
i≥1

(
n

l − i

)(
k − n

i

)]
.

The middle term in the right is bounded above by (n− l)
(
n
l

)
(k − n)s. Thus the sum



94 4. Estimating species diversity

of the terms with l ≤
√
n is bounded above by the sum of the three integrals∫ 1

0

∑
l≤

√
n

sl(1− s)n−l−1

l − σ
(k − n)

(
k

l

)
(1− s)k−ns−βds

=
∑
l≤

√
n

B(l + 1− β, k − l)

l − σ
(k − n)

(
k

l

)
=
∑
l≤

√
n

Γ(l + 1− β)

(l − σ)l!

Γ(k − l)

(k − l)!

(k − n)k!

Γ(k + 1− β)

≲
∑
l≤

√
n

1

l1+β

k − n

k − l
kβ ≲ nβ−1/2 ≤ nβ/2,

∫ s

0

∑
l≤

√
n

sl(1− s)n−l−1

l − σ
(n− l)

(
n

l

)
(k − n)ss−βds

=
∑
l≤

√
n

B(l + 2− β, n− l)

l − σ
(k − n)(n− l)

(
n

l

)
=
∑
l≤

√
n

Γ(l + 2− β)

(l − σ)l!

(k − n)n!

Γ(n+ 2− β)

≲
√
n
1−β

(k − n)nβ−1 ≲ nβ/2,∫ 1

0

∑
l≤

√
n

sl(1− s)n−l−1

l − σ
(n− l)

∑
i

(
n

l − i

)(
k − n

i

)
s−βds

=
∑
l≤

√
n

∑
i≥1

B(l + 1− β, n− l)

l − σ
(n− l)

(
n

l − i

)(
k − n

i

)

=
∑
l≤

√
n

∑
i≥1

Γ(l + 1− β)

(l − σ)(l − i)!

(n− l)!

(n− l + i)!

n!

Γ(n+ 1− β)

(
k − n

i

)

≲
∑
l≤

√
n

∑
i≥1

li−1−β 1

(n/2)i
nβ

(
k − n

i

)
≤
∑
i≥1

√
n
i−β

(n/2)i
nβ

(
k − n

i

)

≤
(
1 +

2√
n

)k−n

nβ/2 ≲ nβ/2.

We conclude that replacing α(1/s) by s−γL(1/s) in the first part of (4.16) makes
a difference of at most of the order nβ/2 = o

(
α(n)1/2

)
. Finally, we consider the

expression∫ 1

0

n−1∑
l=1

sl(1− s)n−l−1

l − σ

[
(k − l)

(
k

l

)
(1− s)k−n − (n− l)

(
n

l

)]
s−γL

(1
s

)
ds

=

n−1∑
l=1

Γ(l + 1− γ)

(l − σ)l!

[ k!

Γ(k + 1− γ)
EL(1/Sl,k)−

n!

Γ(n+ 1− γ)
EL(1/Sl,n)

]
,

where Sl,k is a random variable with the beta distribution with parameters l+1−γ and
k − l. The bound |L′(u)| ≤ Cδu

−1+δ gives that L(u) ≲ uδ, and hence |EL(1/Sl,k)| ≲
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ES−δ
l,k = B(l+1− γ− δ, k− l)/B(l+1− γ, k− l) ≲ kδ. Therefore, after bounding the

difference with the help of the triangle inequality, the sum of the terms with l > m,
can be bounded by bk,m + bn,m, for

bk,m =
∑
l>m

Γ(l + 1− γ)

(l − σ)l!

k!

Γ(k + 1− γ)
kδ ≲

( k

m

)γ
kδ.

For m = n1/2+δ/γ+η, the right side is of the order nγ/2−ηγ = o
(
α(n)1/2

)
, for any

η > 0. The sum of the terms with l ≤ m is bounded above by

m∑
l=1

Γ(l + 1− γ)

(l − σ)l!

[ k!

Γ(k + 1− γ)
− n!

Γ(n+ 1− γ)

]
EL(1/Sl,k)

+
n!

Γ(n+ 1− γ)

[
EL(1/Sl,k)− EL(1/Sl,n)

]
≲

m∑
l=1

1

l1+γ

[
kγ − nγ +O

( 1
n

)]
kδ +

m∑
l=1

nγ

l1+γ

∣∣∣EL(1/Sl,k)− EL(1/Sl,n)
∣∣∣.

Here kγ − nγ = nγ
(
(1 + (k − n)/n)γ − 1

)
≲ nγ−1/2, so that the first term is of the

order nγ−1/2kδ = o
(
α(n)1/2

)
, for sufficiently small δ > 0, and hence is asymptotically

negligible. For the second term we represent Sl,k and Sl,n using independent, gamma
variables Γ̄l, Γn−l and Γk−n with shape parameters l + 1 − γ, n − l and k − n, and
write |EL(1/Sl,k)− EL(1/Sl,n)| as∣∣∣EL( Γ̄l + Γn−l + Γk−n

Γ̄l

)
− EL

( Γ̄l + Γn−l

Γ̄l

)∣∣∣
=
∣∣∣E∫ Γk−n

0

L′
( Γ̄l + Γn−l + u

Γ̄l

) 1

Γ̄l
du
∣∣∣

≲
∫ ∞

0

P(Γk−n > u)E
1

(Γ̄l + Γn−l + u)1−δ

1

Γ̄δ
l

du ≤ EΓk−nE
1

Γ1−δ
n−l

E
1

Γ̄δ
l

.

The three expecations can be computed explicitly in terms of the gamma function.
Substituting the resulting expressions in the second sum of the second last display,
we see that this is bounded above by

m∑
l=1

nγ(k − n)

l1+γ

Γ(n− l − 1 + δ)

Γ(n− l)

Γ(l + 1− γ − δ)

Γ(l + 1− γ)
≲ nγ(k − n)

m∑
l=1

1

l1+γ+δ(n− l)1−δ
.

Since the summation indices satisfy l ≤ m ≪ n, so that n − l ≳ n/2, this is of the
order n−1/2+γ+δ = o

(
α(n)1/2

)
, for sufficiently small δ.

4.3.6 Supporting lemmas

Lemma 4.3.6. Suppose that Vk,n, for k, n ∈ N, are random variables independently of
random variables Nn ∼ Poisson(n) so that an(VNn,n−En)⇝ N(0, τ2) and an(Vkn,n−
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Vn,n) → 0 in probability for every kn with |kn − n| = O(
√
n), for n → ∞ and given

numbers an and En. Then an(Vn,n − En)⇝ N(0, τ2).

Proof. For any Lipschitz function h:R → [0, 1] and kn as given, as n → ∞,∣∣∣Eh(an(Vkn,n − En)
)
− Eh

(
an(Vn,n − En)

)∣∣∣ ≤ Ean|Vkn,n − Vn,n| ∧ 1 → 0.

By the central limit theorem the probability P
(
|Nn − n| >

√
nM

)
can be made

arbitrarily small uniformly in n by choosing sufficiently large M . Then Eh
(
an(Vn,n−

En)
)
is arbitrarily close to

Eh
(
an(Vn,n − En)

) ∑
k:|k−n|≤

√
nM

P(Nn = k)

=
∑

k:|k−n|≤
√
nM

Eh
(
an(Vk,n − En)

)
P(Nn = k) + o(1),

by the preceding display, as n → ∞, for every fixed M . The sum in the right side
is arbitrarily close to Eh

(
an(VNn,n − En)

)
uniformly in n, if M is chosen sufficiently

large, which tends to Eh(τZ), for Z ∼ N(0, 1) as n → ∞, by assumption. We
conclude that Eh

(
an(Vn,n − En)

)
is arbitrarily close to Eh(τZ), as n → ∞.

Lemma 4.3.7. If Xn,1, Xn,2, . . . are independent random variables with
s2n: =

∑∞
j=1 varXn,j < ∞ and s−2

n

∑∞
j=1 EX

2
n,j1|Xn,j |>εsn → 0, for every ε > 0, then∑∞

j=1(Xn,j − EXn,j)/sn ⇝ N(0, 1).

Proof. The variables Yn,j = (Xn,j − EXn,j)/sn have mean zero and
∑

j EY
2
n,j = 1.

Choose integers kn ↑ ∞ such that
∑

j≤kn
EY 2

n,j ↑ 1. Then the sequence
∑

j>kn
Yn,j

tends to zero in second mean and hence it suffices to show that
∑

j≤kn
Yn,j ⇝

N(0, 1). The latter follows from the Lindeberg central limit theorem provided that∑
j≤kn

EY 2
n,j1|Yn,j |>ε → 0, for every ε > 0. To see that this is satisfied, first

note that the Lindeberg condition implies that maxj EX
2
n,j/s

2
n → 0 and hence both

s−2
n E

∑
j |EXn,j |21|Xn,j |>εsn ≤ o(1)

∑
j P(|Xn,j | > εsn) → 0 and |EXn,j | ≤ εsn, for

every j eventually, for every fixed ε > 0. This shows that the variables Xn,j also
satisfy the centered “infinite Lindeberg condition”

∑
j EY

2
n,j1|Yn,j |>ε → 0, for every

ε > 0, which implies the Lindeberg condition for the finite array Yn,1, . . . , Yn,kn
.

Lemma 4.3.8. For every p ∈ [0, 1] and l ∈ N ∪ {0} and n ∈ N,

n∑
m=l+1

(
n

m

)
pm−1(1− p)n−m−1(m− np) = (n− l)

(
n

l

)
pl(1− p)n−l−1.
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Proof. For Xn−1 and Xn the numbers of successes in the first n−1 and n independent
Bernoulli trials with success probability p, we have {Xn ≥ l + 1} ⊂ {Xn−1 ≥ l} and
{Xn−1 ≥ l} − {Xn ≥ l + 1} = {Xn−1 = l, Bn = 0}, for Bn the outcome of the nth
trial. This gives the identity P(Xn−1 ≥ l)−P(Xn ≥ l+1) = P(Xn−1 = l)(1−p). We
multiply this by n/(1− p) to obtain the identity given by the lemma, which we first
rewrite using that m

(
n
m

)
= n

(
n−1
m−1

)
and (n− l)

(
n
l

)
= n

(
n−1
l

)
.

Lemma 4.3.9. For every γ ∈ (0, 1), as n → ∞,

Γ(n− γ)nγ

Γ(n)
= 1 +O

( 1
n

)
.

Proof. By Stirling’s approximation, the quotient is√
2π/(n− γ)

(
n−γ
e

)n−γ (
1 +O(1/n)

)
nγ√

2π/n
(
n
e

)n (
1 +O(1/n)

) =
(n− γ

n

)n
eγ
(
1 +O

( 1
n

))
=
(
e−γ +O

( 1
n

))
eγ
(
1 +O

( 1
n

))
.

Lemma 4.3.10. If α: (1,∞) → R satisfies |α(u) − uγL(u)| ≤ Cuβ, for u > 1 and
β < γ and a slowly varying function L, then α is regularly varying of order γ.

Proof. Since L is slowly varying, we have L(n) ≳ n−δ, for every δ > 0, and hence
nγL(n) ≳ nγ−δ ≫ nβ , for sufficiently small δ > 0. Since |α(n) − nγL(n)| ≲ nβ

by assumption, it follows that α(n) ≫ nβ and nγL(n)/α(n) → 1, as n → ∞. By
the assumption we have α(nu) = (nu)γL(nu) + O(nβ) = (nu)γL(n)(1 + o(1)) +
O(nβ), for every u as n → ∞, since L is slowly varying, and hence α(nu)/α(n) =
uγ
(
nγL(n)/α(n)

)
(1 + o(1)) +O(nβ/α(n)) → uγ .

Lemma 4.3.11. For every s ≥ 0 and δ ∈ (0, 1]:

(i)
∑∞

m=1 s
mmδ/m! ≤ sδes,

(ii)
∑∞

m=2 s
mmδ/m! ≤ sδ(es − 1).

Proof. Since smmδ/m! = (smm/m!)δ(sm/m!)1−δ, Hölder’s inequality with p = 1/δ
and q = 1/(1− δ) gives that the sums on the left are bounded above by(∑

m(smm/m!)
)δ(∑

m(sm/m!)
)1−δ

, where the summation starts at m = 1 for (i) and
at m = 2 for (ii). In the case of (i) the first series is bounded above by ses and the
second by es − 1, while in the case of (ii) the bounds s(es − 1) and es − 1− s pertain.
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Lemma 4.3.12. For K → ∞, we have
∑K−1

i=1 log(M + iσ) = K logK+K log(σ/e)+

(M/σ − 1/2) logK + log(
√
2π/σ) − log Γ(1 +M/σ) + O(1/K), where the remainder

is bounded above by a universal multiple of (M/σ + 1)2/K, for all M ≥ 0, σ > 0.

Proof. The sum is equal to (K− 1) log σ+ log Γ(K+M/σ)− log Γ(1+M/σ). By the
expansion for the log Gamma function, the middle term can be expanded as

log Γ
(
K +

M

σ

)
=
(
K +

M

σ
− 1

2

)
log
(
K +

M

σ

)
−
(
K +

M

σ

)
+ log

√
2π +O

( 1

K

)
,

where the remainder term is uniform in M and σ. Next expand log(K + M/σ) as
logK +M/(σK) +O((M/σ)2/K2). Finally we collect terms.



Chapter 5

Prerequisite theory for the
Deep learning paper

In this chapter, we quickly introduce some of the relevant theory we use surrounding
Deep Neural networks.

5.1 Deep neural networks

Deep neural networks are inspired by the brain. The brain has many layers of neu-
rons. Each of these takes some input, usually collected from other neurons. They
combine these inputs to get a certain response, this is a nonlinear function from the
inputs. This function we will call the activation function. In a simplified schematic
representation, it looks like Figure 5.1.

To transform this into a mathematical set-up we work as follows. We start with the
input X. These will be the covariates in our regression. Our goal is to estimate a
function f , which takes as an input X and outputs the object we try to predict. If our
activation function is denoted by σ we can build a deep neural network as follows. X is
assumed to live in Rd (or some subspace thereoff). We will define H0(X) = X. Next,
we extend the definition inductively. Then we can apply a linear map W i to Hi−1,
this gives a new vector W iHi−1(X). We add some bias term bi. Then we take our
activation function σ and apply it to each component of our vector W iHi−1(X) + bi.
This producesHi(X) = σ(W iHi−1(X)+bi). We produce a function fW,b(X). Adding
in the bias term b can be circumvented by modelling the data with a vector (1, X)
instead, so it is not strictly necessary.

This defines a deep neural network (DNN). Fitting a DNN is finding the best param-
eters W, b. Because finding the best parameters is a nonconvex optimisation problem

99
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Figure 5.1: Neural Network with L− 1 hidden layer.

we usually do not solve for the global optimum. Instead, we try to grudually improve
our solution. This optimisation is usually done with the backpropagation algorithm.
This algorithm is implemented in various software packages. We used Keras [14] and
TensorFlow [1] to fit our neural networks. Because all these algorithms solve a lot of
linear algebra these networks can be fit very fast on graphical processing units (GPU).

Our goal is to give theoretical guarantees for uncertainty quantification coming from
DNN. We do this by using results found in [70, 73] for estimation using neural net-
works. Their approach is split into 2 parts that then come together. In the first part,
they construct a small, sparse neural network that can approximate smooth functions
well. In the second part, they show that small, sparse neural networks have small
entropy. By putting these stepts together they can show that small, sparse neural
networks have good statistical performance. We will give a brief overview of what
they have done. For precise statements see the referenced papers.

5.2 Statistical properties of DNN

Step 1 As a first step, we approximate arbitrary smooth functions using deep neural
networks. We want to show that DNN can approximate arbitrary smooth functions.
To do that, we first construct small neural networks that will be useful later. We use
these neural networks to construct products of terms.

We will pick as an activation function the ReLU function σ(x) = max(0, x). Then we
can define functions T k as follows:

T k(x): = σ(x/2)− σ(x− 21−2k).
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Next we define Rk by setting R1 = T 1 and

Rk = T k ◦Rk−1.

Finally, we define

Sm =

m∑
k=1

Rk(x).

Note that we can build this neural network with just 6m neurons.

The next step is to show that Sm and the function g given by g(x) = x(1 − x) are
close together.

Lemma 5.2.1 (Lemma A.1, [70]).

∥g(x)− Sm(X)∥ ≤ 2−m

Next, observe that

g(
x− y + 1

2
)− g(

x+ y

2
) +

x+ y

2
− 1

4
= xy.

We can compute all these terms exactly using deep neural networks except g. And we
can approximate g very precisely. Hence the function (x, y) 7→ xy can be appropriately
well approximated using Neural networks. The next lemma is Lemma A.2 from [70].

Lemma 5.2.2. For any positive integer m, there exists a sparse neural network
Multm, such that Multm(x, y) ∈ [0, 1] and

∥Multm(x, y)− xy∥ ≤ 2−m, for all x, y ∈ [0, 1].

Moreover, Multm(0, x) = Multm(x, 0) = 0.

By using these products, one can build local Taylor polynomials. This construction is
what is considered in [70]. However, we will follow [73] by using a spline basis instead.
This spline basis has nice properties for the proofs we want to do later in our work.
In [73, Lemma 1], they approximate the cardinal B spline basis using DNN. If we work
in dimension d we can form the d-dimensional cardinal B-spline by tensoring the 1
dimensional cardinal B-splines. Denote Md

0,0 the d dimensional cardinal B spline of
degree m. They show that a small sparse neural network can approximate this spline.
For full details, see [73, Lemma 1].

Lemma 5.2.3. For all ϵ > 0 there exists a small sparse neural network Spline that
satisfies

∥Md
0,0(x)− Spline(x)∥ ≤ ϵ ∀x ∈ [0,m+ 1]d

and M̃(x) = 0 for all x ̸∈ [0,m+ 1]d.

We can then use this to give approximation guarantees for all functions in a Sobolev
space W β([0, 1]d).
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Theorem 5.2.4. For all ϵ > 0 and all β-Sobolev smooth functions f there exists a
small sparse neural network f̂DNN that satisfies

∥f̂DNN(x)− f(x)∥ < ϵ ∀x ∈ [0, 1]d.

For the precise details on uniform sparse bounds see [73, Theorem 1].

Step 2 Controlling the Metric entropy.

The other ingredient that we need is the metric entropy of the class of sparse DNN.
This is [70, Lemma 5]. This Lemma states that small and sparse deep neural networks
have a small metric entropy.

Step 3 Putting it all together.

We can put everything together by using [70, Lemma 4]. This Lemma gives precise
generalisation error bounds in terms of approximation error and metric entropy.

In the end, we can collect our results as in [70, Theorem 1] or [73, Theorem 2] for
Hölder and Sobolev smooth functions respectively.



Chapter 6

Deep learning

This chapter is an adaption of a paper submitted as: S. Franssen, B. Szabó, “Uncer-
tainty Quantification for nonparametric regression using Empirical Bayesian neural
networks”.

6.1 Introduction

Deep learning has received a lot of attention over the recent years due to its excellent
performance in various applications, including personalized medicine [15], self driving
cars [69, 64], financial institutions [39] and estimating power usage in the electrical
grid [47, 43], just to mention a few. By now it is considered the state-of-the-art
technique for image classification [45] or speech recognition [38].

Despite the huge popularity of deep learning, its theoretical underpinning is still
limited, see for instance the monograph [2] for an overview. In our work we focus
on the mathematical statistical aspects of how well feed-forward, multilayer artificial
neural networks can recover the underlying signal in the noisy data. When fitting
a neural network an activation function has to be selected. The most commonly
used activation functions include the sigmoid, hyperbolic tangent, rectified linear unit
(ReLU) and their variants. Due to computational advantages and available theoretical
guarantees we consider the ReLU activation function in our work. The approximation
properties of neural network with ReLU activation function has been investigated by
several authors recently. In [50, 61] it was shown that deep networks with a smoothed
version of ReLU can reduce sample complexity and the number of training parameters
compared to shallow networks while reaching the same approximation accuracy. In
the discussion paper [70] oracle risk bounds were derived for sparse neural networks
in context of the multivariate nonparametric regression model. This in turn implies
for Hölder regular classes (up to a logarithmic factor) rate optimal concentration
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rates and under additional structural assumptions (e.g. generalized additive models,
sparse tensor decomposition) faster rates preventing the curse of dimensionality. The
results of [70] were extended in different aspects by several authors. In [73] the more
general Besov regularity classes were considered and adaptive estimation rates to
these smoothness classes were derived. In [63] Bayesian sparse neural networks were
proposed, where sparsity was induced by a spike-and-slab prior, and rate adaptive
posterior contraction rates were derived. Finally, in [51] it was shown that the sparsity
assumption on the neural network is not essential for the theoretical guarantees and
similar results to [70] were derived for dense deep neural networks as well.

Most of the theoretical results focus on the recovery of the underlying signal of in-
terest. However, it is at least as important to quantify how much we can rely on
the procedure by providing reliable uncertainty statements. In statistics confidence
regions are used to quantify the accuracy and remaining uncertainty of the method
in a noisy model. Several approaches have already been proposed for statistical un-
certainty quantification for neural networks, including bootstrap methods [53] or en-
semble methods [46]. These methods are typically computationally very demanding
especially for large neural networks. Bayesian methods are becoming also increasingly
popular, since beside providing a natural way for incorporating expert information
into the model via the prior they also provide built-in uncertainty quantification. The
Bayesian counterpart of confidence regions are called credible regions which are the
sets accumulating a prescribed, large fraction of the posterior mass. For neural net-
works various fully Bayesian methods were proposed, see for example [63, 81], however
they quickly become computationally infeasible as the model size increases. To speed
up the computations variational alternatives were proposed, see for instance [4]. An
extended overview of machine learning methods for uncertainty quantification can be
found in the survey [31].

Bayesian credible sets substantially depend on the choice of the prior and it is not
guaranteed that they have confidence guarantees in the classical, frequentist sense. In
fact it is known that credible sets do not always give valid uncertainty quantification
in context of high-dimensional and nonparametric models, see for instance [21, 16]
and hence their use for universally acceptable uncertainty quantification is not sup-
ported in general. In recent years frequentist coverage properties of Bayesian credible
sets were investigated in a range of high-dimensional and nonparametric models and
theoretical guarantees were derived on their reliability under (from various aspects)
mild assumptions, see for instance [74, 10, 84, 65, 5, 67, 52] and references therein.
However, we have only very limited understanding of the reliability of Bayesian uncer-
tainty quantification in context of deep neural networks. To the best of our knowledge
only (semi-)parametric aspects of the problem were studied so far [81], but these re-
sults do not provide uncertainty quantification on the whole functional parameter of
interest.

In our work we propose a novel, empirical Bayesian approach with (relatively) fast
computational time and derive theoretical, confidence guarantees for the resulting
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uncertainty statements. As a first step, we split the data into two parts and use
the first part to train a deep neural network. We then use this empirical (i.e. data
dependent) network to define the prior distribution used in our Bayesian procedure.
We cut of the last layer of this neural network and take the linear combinations of
the output of the previous layer with weights endowed by prior distributions, see the
schematic representation of the prior in Section 6.2.1 below. The second part of the
data is used to compute the corresponding posterior distribution, which will be used
for inference. We study the performance of this method in the nonparametric random
design regression model, but in principle our approach is applicable more widely. We
derive optimal, minimax L2-convergence rates for recovering the underlying functional
parameter of interest and frequentist coverage guarantees for the slightly inflated
credible sets. We also demonstrate the practical applicability of our method in a
simulation study and verify empirically the asymptotic theoretical guarantees.

The rest of the paper is organized as follows. We present our main results in Section
6.2. After formally introducing the regression model we describe our Empirical Bayes
Deep Neural Network (EBDNN) procedure in Section 6.2.1, list the set of assumptions
under which our theoretical results hold in Section 6.2.2 and provide the guarantees
for the uncertainty quantification in Section 6.2.3. In Section 6.3 we present a nu-
merical analysis underlining our theoretical findings and providing a fast and easily
implementable algorithm. The proofs are deferred to the Appendix. The proofs for
the optimal posterior contraction rates and the frequentist coverage of the credible
sets are given in Section 6.4. The approximation of the last layer of the neural network
with B-splines is discussed in Section 6.5 and some relevant properties of B-splines
are collected and verified in Section 6.6. Finally, general contraction and coverage
results, on which we base the proofs in Section 6.4, are given in Section 6.7.

6.2 Main results

We consider in our analysis the multivariate random design regression model, where
we observe pairs of random variables (X1, Y1),..., (Xn, Yn) satisfying

Yi = f0(Xi) + Zi, Zi
iid∼ N(0, σ2), Xi

iid∼ U([0, 1]d), i = 1, ..., n,

for some unknown function f0 ∈ L2([0, 1]d). We assume that the underlying func-

tion f0 belongs to a β-smooth Sobolev ball f0 ∈ Sβ
d (M) with known model hyper-

parameters β,M, σ2 > 0. It is well known that the corresponding minimax L2-
estimation rate of f0 is of order εn = n−β/(d+2β).

We will investigate the behaviour of multilayer neural networks in context of this non-
parametric regression model. We propose an empirical Bayes type of approach, which
recovers the underlying functional parameter with the (up to a logarithmic factor)
minimax rate and provides reliable uncertainty quantification for the procedure.
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6.2.1 Empirical Bayes Deep Neural Network (EBDNN)

We start by formally describing deep neural networks and then present our two-
step Empirical Bayes approach. A deep neural network of depth L > 0 and width
p = (p0, . . . , pL) is a collection of weights W = {W i|W i ∈ Rpi×pi−1 , i = 1, . . . , L},
shifts (or biases) b = {bi|bi ∈ Rpi , i = 1, . . . L−1} and an activation function σ. There
is a natural correspondence between deep neural networks with this architecture and
functions fW,b(x): Rp0 → RpL , with recursive formulation fW,b(x) = WLHL−1(x),
where H0

j (x) = xj and Hi
j(x) = σ

(
(W iHi−1(x))j + bij

)
, for j = 1, . . . , pi, i = 1, ..., L.

Note that the activation function σ is not applied in the final iteration. Different types
of activation functions are considered in the literature, including sigmoid, hyperbolic
tangent, ReLU, ReLU square. In this work we focus on ReLU activation functions,
i.e. we take σ(x) = max(x, 0).

Neural networks are very-high dimensional objects, with total number of parameters
given by

∑L
i=1(pi−1 + 1)pi. Therefore, from a statistical perspective it is natural to

introduce some additional structure in the form of sparsity by setting most of the
model parameters W i

jk i = 1, ..., L, j = 1, ..., pi, k = 1, ..., pi−1 and bij , i = 1, ..., L,
j = 1, ..., pi to zero. Such networks are called sparse, see the formal definition below.

Definition 6.2.1. We call a deep neural network s-sparse if the weights W i
jk and the

biases bij take values in [−1, 1], and at most s of them are nonzero.

Neural networks without sparsity assumptions are called dense networks and are more
commonly used in practice. In our analysis we focus mainly on sparse networks but
our method is flexible and can be easily extended to dense networks as well, which
direction we briefly discuss in a subsequent section. Furthermore, we introduce bound-
edness on the neural network mainly for analytical, but also for practical reasons. We
assume that ∥fW,b∥∞ < F for a fixed constant F > 0.

Next, note that in the last iteration of the recursive formulation fW,b(x) = WLHL−1(x)
we take the linear combination of the functions HL−1

j (x), j = 1, ..., pL−1. These func-
tions take the role of data generated basis functions of the neural network and will
play a crucial role in our method.

Definition 6.2.2. We call the collection of functions ϕ̂j = HL−1
j , j = 1, ..., pL−1 the

DNN basis functions generated by the neural network.

We propose a two stage, Empirical Bayes type of procedure. We start by splitting the
dataset Dn =

(
(X1, Y1), ...(Xn, Yn)

)
into two (not necessarily equal) partition Dn,1

and Dn,2. We use the first dataset Dn,1 to train the deep neural network. Then we
build a prior distribution on the so constructed neural network and use the second
dataset Dn,2 to derive the corresponding posterior. More concretely, we cut-off the
last layer of the neural network and take the (data driven) DNN basis functions

ϕ̂j(x) = HL−1
j (x), j = 1, ..., pL−1 defined by the nodes in the (L − 1)th layer. For

convenience we use the notation k = pL−1 for the number of DNN basis functions.
We construct our prior distribution on the regression function by taking the linear
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combination of the so constructed basis functions and endowing the corresponding
coefficients with prior distributions, i.e.

Π̂k(·) =
k∑

j=1

wj ϕ̂j(·), wj
iid∼ g, j = 1, ..., k, (6.1)

for some distribution g. Then the corresponding posterior is derived as the condi-
tional distribution of the functional parameter given the second part of the data set
Dn,2. Please find below the schematic representation of our Empirical Bayes DNN
prior and the corresponding posterior.

Data Dn

First
part of
Dn: Dn,1

Second
part of
Dn: Dn,2

DNN

Prior :
wj

iid∼ g,
j = 1, . . . , k

{ϕ̂j}kj=1

Π̂k(·) =∑k
j=1 wj ϕ̂j(·)

Posterior
Π̂k (·|Dn,2)

We note, that often a pre-trained deep neural network is available corresponding to
the regression problem of interest. In this case one can simply use that in stage one
and compute the posterior based on the whole data set Dn.

6.2.2 Assumptions on the EBDNN prior

We start by discussing the deep neural network produced in step one using the first
dataset Dn,1. As mentioned earlier we consider sparse neural networks following
[70], but our results can be naturally extended to dense network as well. In [70,
73] optimal minimax concentration rates were derived for sparse neural networks
under the assumptions that the networks are s = k log(n) sparse and have width
p = (d, 6k, . . . , 6k, k, 1), with k = kn = nd/(d+2β). We also apply these assumptions
in our approach. However, since uncertainty quantification is a more complex task
than estimation we need to introduce some additional structural requirements to our
neural network framework.

One of the big advantage of deep neural networks is that they can learn the best
fitting basis functions to the underlying structure of the functional parameter f0 of
interest, often resulting sharper recovery rates than using standard, fixed bases, see
for instance [70, 73]. However, neural networks in general are highly flexible due to
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Figure 6.1: Neural Network with L− 1 hidden layer.

the high-dimensional structure and do not provide a unique, for our goals appropriate
representation. For instance, let us consider a neural network with ReLU activation
function, see Figure 6.1 for schematic representation. Then let us include an additional
layer in the network before the output layer consisting only one node, see Figure 6.2.
This node takes the place of the output layer in the original network and since there
is only one node in the so constructed last layer the output of the new network is the
same as the original one (given that the output function is non-negative). Using the
second neural network for our empirical Bayes prior is clearly sub-optimal as we end
up with a one dimensional parametric prior for a nonparametric problem, resulting in
overly confident uncertainty quantification. Therefore to avoid such pathological cases
we introduce some additional structure to our neural network. We assume that the
neural network produces nearly orthogonal basis functions, see the precise definition
below.

Definition 6.2.3. We say a neural network produces near orthogonal basis if the
Gram matrix Σk given by (Σk)i,j = ⟨ϕ̂i, ϕ̂j⟩2 satisfies that c11k ≤ Σk ≤ c21k for
some 0 < c1 < c2 < ∞ and for all 1 ≤ i, j ≤ k.

The requirement of near orthogonality is essential for our analysis to appropriately
control the small ball probabilities of the prior distribution which is of key importance
in Bayesian nonparametrics. Nevertheless, in view of the simulation study, given in
Section 6.3 it seems that this assumption can be relaxed. In the numerical analysis
section we do not impose this requirement on the algorithm and still get in our
examples accurate recovery and reliable uncertainty quantification. We summarize
the above assumptions below.

Assumption 6.2.4. Let us take k = kn = nd/(d+2β) and assume that the neural
network f̂n constructed in step 1 is
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Figure 6.2: The modified Neural Network of Figure 6.1 by adding an additional layer
before the output layer. This deep neural network provides the same output (given
that the output function is non-negative), but in the last hidden layer it has only one
node hence provides only one basis function.

� bounded in supnorm ∥f̂n∥∞ ≤ F ,

� s = k log(n) sparse,

� has depth L = log(n) ⌈log2(max(4β, 4d))⌉

� has width p = (n, 6k, . . . , 6k, k, 1),

� there exists a C > 0 independent of n such that the DNN basis functions ϕ̂ =
(ϕ̂1, ..., ϕ̂k) satisfy ∥θT ϕ̂∥∞ ≤ C

√
k∥θ∥∞,

� and the corresponding Gram matrix Σk, given by (Σk)i,j = ⟨ϕ̂i, ϕ̂j⟩2, is nearly
orthogonal for some 0 < c1 < c2 < ∞.

The class of deep neural networks satisfying Assumption 6.2.4 is denoted by
F(L, p, s, F, C, c1, c2). In Appendix 6.5 we show that such kind of DNN basis ϕ̂1, ..., ϕ̂k

can be constructed. Next assume, similarly to [70, 73], that a near minimizer of the
neural network can be obtained. This assumption is required to derive guarantees on
the generalisation error of the network produced in step 1.

Assumption 6.2.5. We assume that the network trained in step 1 is a near min-
imizer in expectation. Let f0 ∈ Sβ

d (M) ∩ L∞(M) and ϵn = n−β/(2β+d), then the

estimator f̂n resulting from the neural network satisfies that

Ef0

[
1

n

n∑
i=1

(
yi − f̂n(Xi)

)2
− inf

f∈F

1

n

n∑
i=1

(Yi − f(Xi))
2

]
≤ ϵn log(n)

3,
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where F = F(L, p, s, F, C, c1, c2).

It remained to discuss the choice of the prior distribution g on the coefficients of the
DNN basis functions. In general we have a lot of flexibility in choosing g, but for
analytical convenience we assume to work with continuous positive densities.

Assumption 6.2.6. Assume that the density g in the prior (6.1) is continuous and
positive.

Remark 6.2.7. We note that our proof requires only that the density is bounded away
from zero and infinity on a small neighborhood of (the projection of) the true function
f0, hence it is sufficient to require that the density g is bounded away from zero and
infinity on a large enough compact interval. Since one can construct a neural network
with weights between -1 and 1, approximating the true function well enough, we can
further relax our assumption and consider densities g supported on on [−1, 1].

6.2.3 Uncertainty quantification with EBDNN

Our main goal is to provide reliable uncertainty quantification for the outcome of the
neural network. Our two-step Empirical Bayes approach gives a probabilistic solution
to the problem which in turn can be automatically used to quantify the remaining
uncertainty of the procedure. First we show that the corresponding posterior distri-
bution recovers the underlying functional parameter of interest f0 with the minimax
contraction rate ϵn = n−β/(2β+d) up to a logarithmic factor.

Theorem 6.2.8. Let β,M > 0 and assume that the EBDNN prior Π̂k, given in
(6.1), satisfies Assumptions 6.2.4, 6.2.5 and 6.2.6. Then the corresponding posterior

distribution contracts around the true function f0 ∈ Sβ
d (M) at the near minimax rate,

i.e.

lim sup
n→∞

sup
f0∈Sβ

d (M)∩L∞(M)

Ef0

(
Π̂k

(
f : ∥f − f0∥2 ≥ Mn log

3(n)ϵn
∣∣Dn,2

))
= 0,

for all Mn → ∞.

The proof of the theorem is given in Section 6.4.1. We note that one can easily
construct estimators from the posterior inheriting the same concentration rate as the
posterior contraction rate. For instance one can take the center of the smallest ball
accumulating at least half of the posterior mass, see Theorem 2.5 of [32]. Furthermore,
under not too restrictive conditions, it can be proved that the posterior mean achieves
the same near optimal concentration rate as the whole posterior, see for instance page
507 of [32] or Theorem 2.3. of [36].

Our main focus is, however, on uncertainty quantification. The posterior is typically
visualized and summarized by plotting the credible region Cα accumulating 1 − α
fraction (typically one takes α = 0.05) of the posterior mass. In our analysis we

consider L2-balls centered around an estimator f̂ (typically the posterior mean or
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maximum a posteriori estimator), i.e.

Cα = {f : ∥f − f̂∥2 ≤ rα} satisfying Π̂k(f ∈ Cα|Dn,2) = 1− α.

More precisely, in case the posterior distribution is not continuous, then the radius
rα is taken to be the smallest such that Π̂k(f ∈ Cα|Dn,2) ≥ 1− α holds.

However, Bayesian credible sets are not automatically confidence sets. To use them
from a frequentist perspective reliable uncertainty quantification we have to show that
they have good frequentist coverage, i.e.

inf
f0∈Sβ

d (M)
Pf0(f0 ∈ Cα) ≥ 1− α.

In our analysis we introduce some additional flexibility by allowing the credible sets
to be blown up by a factor Ln, i.e. we consider sets of the form

Cα(Ln) = {f : ∥f − f̂∥2 ≤ Lnrα} with Π̂k(f ∈ Cα(1)|Dn,2) = 1− α. (6.2)

This additional blow up factor Ln is required as the available theoretical results in
the literature on the concentration properties of the neural network are sharp only up
to a logarithmic multiplicative term and we compensate for this lack of sharpness by
introducing this additional flexibility. Furthermore, in view of our simulation study,
it seems that a logarithmic blow up is indeed necessary to provide from a frequentist
perspective reliable uncertainty statements, see Section 6.3.

The centering point of the credible sets can be chosen flexibly, depending on the
problem of interest. In practice usually the posterior mean or mode is considered for
computational and practical simplicity. Our results hold for general centering points
under some mild conditions. We only require that the centering point attains nearly
the optimal concentration rate. We formalize this requirement below.

Let us denote by f∗ = fθ∗ = (θ∗)T Φ̂k, with Φ̂k =
(
ϕ̂1, ..., ϕ̂k(x)

)
the DNN basis, the

Kullback-Leibler (KL) projection of f0 onto our model Θk = {
∑k

j=1 θj ϕ̂j : θ ∈ Rk},
i.e. let θ∗ ∈ Rk denote the minimizer of the function θ 7→ KL(f0, θ

T Φ̂k). We note that
the KL projection is equivalent with the L2-projection of f0 to Θk in the regression
model with Gaussian noise. We assume that the centering point of the credible set is
close to f∗.

Assumption 6.2.9. The centering point θ̂ (i.e. f̂ = fθ̂ = θ̂T Φ̂k) satisfies that for all
δ > 0 there exists Mδ > 0 such that

sup
f0∈Sβ

d (M)∩L∞(M)

Pf0

(
dn(f

∗, f̂) ≤ Mδn
−β/(2β+d)

)
≥ 1− δ. (6.3)

This assumption on the centering point is mild. For instance considering the centering
point of the smallest ball accumulating a large fraction (e.g. half) of the posterior
mass as the center of the credible ball satisfies this assumption. The posterior mean
is another good candidate for appropriately chosen priors.
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Theorem 6.2.10. Let β > d
2 , M > 0 and assume that the EBDNN prior Π̂k, given in

(6.1), satisfies Assumptions 6.2.4, 6.2.5 and 6.2.6, and the centering point f̂ satisfies
Assumption 6.2.9. Then the EBDNN credible balls with inflating factor Lδ,α log3(n)
have uniform frequentist coverage and near optimal size, i.e. for arbitrary δ, α > 0
there exists Lδ,α > 0 such that

lim inf
n

inf
f0∈Sβ

d (M)∩L∞(M)
Pf0(f0 ∈ Cα(Lδ,α log3 n)) ≥ 1− δ, (6.4)

lim inf
n

inf
f0∈Sβ

d (M)∩L∞(M)
Pf0(rα ≤ Cn−β/(2β+d)) ≥ 1− δ, (6.5)

for some large enough C > 0.

We defer the proof of the theorem to Section 6.4.2.

6.3 Numerical Analysis

So far we have studied the EBDNN methodology from a theoretical, asymptotic per-
spective. In this section we investigate the finite sample behaviour of the procedure.
First note that the theoretical bounds in [70, 73] are not known to be tight. Sharper
bounds would result in more accurate procedure with smaller adjustments for the
credible sets. For these reasons we study the performance of the EBDNN method-
ology in synthetic data sets, where the estimation and coverage properties can be
empirically evaluated.

In our implementation we deviate for practical reasons in three points from the the-
oretical assumptions considered in the previous sections. First, in practice sparse
deep neural networks are rarely used, as they are typically computationally too in-
volved to train. Instead, dense deep neural networks are applied routinely which we
will also adopt in our simulation study. Moreover, the global optima typically can
not be retrieved when training a neural network. The common practice is to use
gradient descent and aim for attaining good local minimizer. Finally, the softwares
used to train deep neural networks do not necessarily return a near orthogonal deep
neural network. Even worse, some of the produced basis functions can be collinear
or even constantly zero. To guarantee that the produced basis functions are nearly
orthogonal one can either apply the Gram-Schmidt procedure or introduce a penalty
for collinearity. We do not pursue this direction in our numerical analysis, but use
standard softwares and investigate the robustness of our procedure with respect to
these aspects. So instead of studying our EBDNN methodology under our restrictive
assumptions we investigate its performance in more realistic scenarios. We fit a dense
deep neural network using standard gradient descent and do not induce sparsity or
near orthogonality to our network.
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6.3.1 Implementation details

We have implemented our EBDNN method in Python. We use Keras [14] and tensor-
flow [1] to fit a deep neural network using the first half of the data. We use gradient
decent to fit a dense neural network with L = ⌈log2(β) log2(n)⌉ layers. Each of the
first L− 1 hidden layers has width 6kn, with kn = nd/(2β+d), and we apply the ReLU
activation function on them. The last layer has width kn and the identify map is
taken as activation function on it, that is, we take the weighted linear combination
of these basis functions. Then we extract the basis functions by removing the last
layer and endow the corresponding weights by independent and identically distributed
standard normal random variables, to exploit conjugacy and speed up the computa-
tions. We derive credible regions by sampling from the posterior using Numpy [37]
and empirically computing the quantiles and the posterior mean used as the centering
point. The corresponding code is available at [25].

6.3.2 Results of the numerical simulations

We consider two different regression functions in our analysis.

f1 =

∞∑
i=1

sin(i) cos(π(i− 0.5)x)

i1.5
, f2 =

∞∑
i=1

sin(i2) cos(π(i− 0.5)x)

i1.5
.

Note that both of them belong to a Sobolev class with regularity 1. In the implemen-
tation we have considered a sufficiently large cut-off of their Fourier series expansion.

In our simulation study we investigate beyond the L2-credible balls also L∞ credible
balls as well. In our theoretical studies we have derived good frequentist coverage
after inflating the credible balls by a log3(n) factor. In our numerical analysis we
observe that (at least on a range of examples) a log(n) blow-up factor is sufficient,
while a

√
log(n) blow-up is not enough.

We considered sample sizes n = 1000, 5000, 10000, and 50000, and repeated each of
the experiments 1000 times. We report in Table 6.1 the average L2-distance and the
corresponding standard deviation between the posterior mean and the true functional
parameter of interest.

n 1000 5000 10000 50000
f1 213.33± 116.06 120.36± 29.29 96.84± 18.58 48.94± 9.19
f2 221.20± 113.48 140.04± 46.69 108.82± 9.73 75.74± 3.60

Table 6.1: Average L2-distance between the posterior mean and the true function
based on 1000 repetitions. The sample sizes range from 1000 to 50000.

Furthermore, we investigate the frequentist coverage properties of the EBDNN credi-
ble sets by reporting the fraction of times the (inflated) credible balls contain the true
function out of the 1000 runs in Table 6.2. One can observe that in case of function
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f2 a
√
log n blow up factor is not sufficient and the more conservative log n inflation

has to be applied, which provides reliable uncertainty quantification in both cases.

function blow-up 1000 5000 10000 50000

f1

none 0.0 0.0 0.0 0.0√
log(n) 0.893 0.896 0.848 0.928
log(n) 0.951 0.997 1.0 1.0

f2

none 0.0 0.0 0.0 0.0√
log(n) 0.834 0.693 0.736 0.003
log(n) 0.934 0.986 1.0 1.0

Table 6.2: Frequentist coverage of the inflated L2-credible balls based on 1000 runs
of the algorithm. Sample size is ranging between 1000 and 50000 and we considered
multiplicative inflation factors between 1 and log n.

We also report the size of the L2 credible balls in Table 6.3. One can observe that
the radius of the credible balls are substantially smaller than the average Euclidean
distance between the posterior mean the true functions f1 and f2 of interest, respec-
tively. This explains the necessity of the inflation factor applied to derive reliable
uncertainty quantification from the Bayesian procedures. We illustrate the method in
Figure 6.3. Note that the true function is inside of the region defined by the convex
hull of the 95% closest posterior draws to the posterior mean.

n 1000 5000 10000 50000
f1 101.91± 15.69 52.27± 3.60 38.45± 2.33 19.47± 1.03
f2 91.26± 16.50 49.61± 3.76 37.46± 2.03 19.69± 0.85

Table 6.3: L2 The average diameter and the corresponding standard deviation of the
(non-inflated) credible balls based on 1000 runs of the algorithm.

Next we investigate the point wise and L∞ credible regions. Compared to the L2-
credible balls we note that the L∞ credible bands are roughly a factor 2 wider, see
Table 6.4.

n 1000 5000 10000 50000
f1 175.93± 28.33 101.10± 10.66 77.08± 6.50 46.38± 3.83
f2 145.60± 30.59 94.65± 9.93 78.41± 5.91 51.26± 3.84

Table 6.4: The average supremum diameters and the corresponding standard devia-
tion of the (non-inflated) credible balls based on 1000 runs of the algorithm.

At the same time, the distance between the posterior mean and the true regression
function is roughly a factor 6 larger compared to the situation in the L2 norm, see
Table 6.5.
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Figure 6.3: EBDNN L2-credible balls illustrated by the region covered by the 95%
closest draw from the posterior to the posterior mean in L2-distance. Sample size
increases from 1000 to 100000. The original credible sets are plotted by light blue
and the inflated credible sets by green.
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Figure 6.4: EBDNN L∞-credible regions. The bands are formed by keeping the 95%
closest draws from the posterior to the posterior mean in L∞-distance. Sample size
increases from 1000 to 100000. The original credible bands are plotted by light blue
and the inflated credible bands by green.

n 1000 5000 10000 50000
f1 442.45± 181.02 355.40± 55.67 325.34± 42.26 199.95± 31.32
f2 569.47± 119.33 360.34± 81.54 255.59± 36.78 169.60± 11.41

Table 6.5: Average supremum norm-distances between the posterior mean and the
true function based on 1000 repetitions.

This results in worse coverage results than in the L2 case, although inflating the
credible bands by a log(n) factor still results in reliable uncertainty quantification on
our simulated data, see Table 6.6 and Figure 6.4.
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function blow-up 1000 5000 10000 50000

f1

none 0.0 0.0 0.0 0.0√
log(n) 0.779 0.12 0.015 0.081
log(n) 0.957 0.997 1.0 1.0

f2

none 0.0 0.0 0.0 0.0√
log(n) 0.101 0.181 0.384 0.503
log(n) 0.946 0.986 1.0 1.0

Table 6.6: Frequentist coverage of the inflated L∞-credible balls based on 1000 runs
of the algorithm. Sample size is ranging between 1000 and 50000 and we considered
multiplicative inflation factors between 1 and log n.

6.4 Proof of the main results

Before providing the proof of our main theorems we recall a few notations used
throughout the section. We denote by Dn,1 and Dn,2 the first and second half of
the data respectively, i.e.

Dn,1 = ((X1, Y1), . . . , (X⌊n
2 ⌋, Y⌊n

2 ⌋)),

Dn,2 = ((X⌊n
2 ⌋+1, Y⌊n

2 ⌋+1), . . . , (Xn, Yn)).

Furthermore, we denote by f∗ the L2-projection of f0 into the linear space spanned
by the DNN basis based on the first data set Dn,1, as it was defined above Assumption
6.2.9. Next we give the proofs for our main theorems.

6.4.1 Proof of Theorem 6.2.8

First note that by triangle inequality ∥f − f0∥2 ≤ ∥f − f∗∥2 + ∥f∗ − f0∥2. We deal
with the two terms on the right hand side separately.

In view of Lemma 6.7.3 (with Dn: = Dn,2, k = nd/(2β+d), Σk defined by the DNN

basis functions ϕ̂1,..., ϕ̂k, Πk = Π̂k and with respect to the conditional distribution

given the first data set P|Dn,1

f0
) we get that for every δ > 0 there exists Mδ < ∞,

sup
f0∈Sβ

d (M)

E|Dn,1

f0
Π̂k

(
f : ∥f − f∗∥2 ≥ Mδn

−β/(2β+d)|Dn,2

)
≤ δ, (6.6)

with Pf0 -probability tending to one. Hence, it remained to deal with the term ∥f∗ −
f0∥2. We introduce the event

An = {∥f∗ − f0∥2 ≤ (Mn/2)n
−β/(2β+d) log3(n)},

which is independent from the second half of the data Dn,2, hence
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Ef0Π̂k

(
θ: ∥fθ − f0∥2 ≥ Mnn

− β
2β+d log3(n)

∣∣∣Dn,2

)
≤ Ef0

(
1An

E|Dn,1

f0
Π̂k(θ: ∥fθ − f∗∥2 ≥ Mnn

− β
2β+d |Dn,2)

)
+ Ef01Ac

n
.

The first term is bounded by δ in view of assertion (6.6), while the second term tends
to zero in view of Theorem 4 of [73] combined with Markov inequality.

6.4.2 Proof of Theorem 6.2.10

Let Ln = Lϵ,α log(n)3, εn = n−β/(2β+d) and k = nd/(2β+d). Then by triangle inequal-
ity we get

Pf0 (f0 ∈ Cα(Ln)) = Pf0

(
∥f0 − f̂∥2 ≤ Lnrα

)
≥ Pf0

(
Π̂k(θ: ∥fθ − f̂∥2 ≤ ∥f̂ − f0∥2/Ln|Dn,2) < 1− α

)
. (6.7)

Furthermore, let us introduce the event An = {∥f̂ − f0∥2 ≤ Mε log
3(n)ϵn}. Note that

by triangle inequality and in view of Assumption 6.2.9 (for large enough choice of Mε)
and Theorem 4 of [73] (with f∗ denoting the L2-projection of f0 to the linear space
spanned by the DNN basis) combined with Markov’s inequality,

Pf0(A
c
n) ≤ Pf0

(
∥f̂ − f∗∥2 ≥ Mεϵn/2

)
+ Pf0

(
∥f0 − f∗∥2 ≥ Mε log

3(n)ϵn/2
)

≤ ε/3 + ε/3 = (2/3)ε.

Hence, the probability on the right hand side of (6.7) is lower bounded by

Pf0

(
Π̂k(θ: ∥fθ − f̂∥2 ≤ Mεϵn

Lϵ,α
|Dn,2) < 1− α

)
− (2/3)ε.

We finish the proof by showing that the first term in the preceding display is bounded
from below by 1− ε/3. Since by assumption the DNN basis is nearly orthogonal with
Pf0-probability tending to one, we get in view of Lemma 6.7.2 below (applied with

probability measure P|Dn,1

f0
, k = nd/(2β+d) and Πk = Π̂k) that for all ε > 0 there exists

δε,α > 0 such that

sup
f0∈Sβ

d (M)

E|Dn,1

f0
Π̂k

(
fθ: ∥fθ − f̂∥2 ≤ δε,α

√
k/n|Dn,2

)
≤ ε(1− α)/3,
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with Pf0 -probability tending to one. Let us take Lϵ,α ≥ Mϵ/δϵ,α and combine the
preceding display with Markov’s inequality,

Pf0

(
Π̂k

(
θ: ∥fθ − f̂∥2 ≤ Mϵϵn

Lε,α
|Dn,2

)
≥ 1− α

)

≤
Ef0

(
Π̂k

(
θ: ∥fθ − f̂∥2 ≤ δϵ,αϵn|Dn,2

))
1− α

≤ ε/3 + o(1),

concluding the proof.

Remark 6.4.1. We point out that the extra multiplicative term log3(n) is the result
of the lack of sharpness in the convergence rate of deep neural network estimator f∗

n.
Sharper bounds for this estimation would result in smaller blow up factor.

6.5 Approximation of Splines using Deep neural net-
works

This section considers the construction of orthonormal basis ϕ1, . . . , ϕk in d-dimension
using neural networks. We first show that splines can be approximated well with
neural networks and then we achieve near orthonormality by rescaling. In this and
the following section we use results from different sources. Notably we combine the
results from [73] and [33, 71]. In the former they define the splines using the divided
differences definition. In the latter books they use the convolution definition and
rescaling. By [71, theorem 4.23] these definitions are equivalent. We summarize the
main results in the following lemma.

Lemma 6.5.1. There exist DNN basisfunctions ϕ1, . . . , ϕk with k = nd/(d+2β) such
that

� For every f0 ∈ Sβ
d (M) ∩ L∞(M), with β > d/2, there exists θ = (θ1, ..., θk) ∈

ℓ∞(1) such that ∥f0 −
∑k

j=1 θjϕj∥2 < ϵn with εn = n−β/(d+2β).

� The rescaled DNN basis functions
√
kϕ1, . . . ,

√
kϕk are nearly orthonormal in

the sense of Definition 6.2.3.

� The basis functions are bounded in supremum norm, i.e. ∥ϕj∥∞ ≤ 2, j =
1, ..., k.

Proof. In view of Lemma 6.6.2 there exists θ = (θ1, ..., θk) ∈ Rk such that ∥f0 −∑k
j=1 θjBj∥2 ≤ n−β/(d+2β), where Bj , j = 1, ..., k denote the cardinal B-splines of

order q ≥ β, see (6.9) and teh remark below it about the single index representa-
tion. Moreover, if ∥f0∥∞ < M , then one can choose θ ∈ Rk such that ∥θ∥∞ < M .
Furthermore, in view of Proposition 1 of [73] one can construct a DNN basis

ϕ1, . . . , ϕk, such that ∥Bj − ϕj∥∞ ≤ C/n, j = 1, ..., k, (6.8)
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for some universal constant C > 0. Therefore, by triangle inequality

∥f0 −
k∑

j=1

θjϕj∥2 ≤ ∥f0 −
k∑

j=1

θjBj∥2 + ∥
k∑

j=1

θj(Bj − ϕj)∥2

≲ n−β/(d+2β) +M
√
k/n ≲ n−β/(d+2β).

Then in Lemma 6.5.2 below we show that the above DNN basis (ϕj)j=1,..,k inherits
the near orthogonality of B-splines, which is verified for dimension d in Lemma 6.6.3.
The boundedness of the B-splines, will be also inherited by the above DNN basis
(ϕj)j=1,..,k in view of Lemma 6.5.3. Moreover, basis can be rescaled in such a way
that the coefficients are in the interval [−1, 1].

We provide below the two lemmas used in the proof of the previous statement.

Lemma 6.5.2. The rescaled DNN basis
√
kϕ =

(√
kϕ1, . . . ,

√
kϕk

)
given in (6.8) is

nearly orthonormal in the sense of Definition 6.2.3.

Proof. In view of Lemma 1 of [73] the above DNN basis has the same support as the
B-splines of order q = ⌈β⌉. Let us define the matrices Qk, Rk ∈ Rk×k as

(Qk)i,j =
〈√

kBi,
√
kBj

〉
= k

∫ 1

0

Bi(x)Bj(x) dx,

(Rk)i,j =
〈√

kϕi,
√
kϕj

〉
−
〈√

kBi,
√
kBj

〉
= k

∫ 1

0

ϕi(x)ϕj(x)−Bi(x)Bj(x)dx,

for i, j ∈ {1, . . . , k}. Then Qk + Rk is the matrix consisting of the innerproducts in
the constructed basis. Note that in view of (6.8) there exists a constant C ′ > 0 such
that |(Rk)i,j | < C ′k/n. Furthermore, we note that a B-spline basis function of order
q has intersecting support with at most (2q)d other B-spline basis functions. In view
of Lemma 1 of [73], the same holds for the ϕj , j = 1, ..., k basis. This means that
there are at most (2q)d non-zero terms in every row or column and hence in total we
have at most (2q)dk nonzero cells in the matrix.

Define (Mk)i,j = |(Rk)i,j |. Then the spectral radius of Mk is an upper bound of the
spectral radius of Rk by Wielandt’s theorem [82]. SinceMk is a nonnegative matrix, in
view of the Perron-Frobenius theorem [55, 30], the largest eigenvalue in absolute value
is bounded by constant times k2/n. Next note that both Qk and Rk are symmetric
real matrices. Therefore, in view of the Weyl inequalities (see equation (1.54) of [75]),
the eigenvalues of Qk + Rk can differ at most by constant times k2/n = o(1) from
the eigenvalues of Qk. We conclude the proof by noting that in view of Lemma 6.6.3
the eigenvalues of Qk are bounded from below by c and from above by C for n large
enough, hence the Gram matrix Qk +Rk also satisfies

1

2
c1k ≤ (Qk +Rk) ≤ 2C1k.
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This means that the rescaled basis
√
kϕ satisfies the near orthogonality requirement,

see Assumption 6.2.3.

Lemma 6.5.3. The DNN basis given in (6.8) satisfies that ∥ϕj∥∞ ≤ 2.

Proof. In view of Lemma 6.6.3 the cardinal B-splines are bounded in supnorm by 1.
This implies our statement by (6.8) and applying the triangle inequality.

6.6 Cardinal B-splines

One of the key steps in the proof of Lemma 6.5.1 is to use approximation of B-splines
with deep neural networks, derived in [73]. In this chapter we collect properties of
the cardinal B-splines used in our analysis. More specifically we show that they can
be used to approximate functions in Besov spaces and we verify that they form a
bounded, near orthogonal basis.

We start by defining cardinal B-splines of order q in [0, 1] and then extend the def-
inition with tensors to the d-dimensional unit cube. Given J + 1 knots 0 = t0 <
t1 < ... < tJ = 1, the function f : [0, 1] 7→ R is a spline of order q if its restriction
to the interval [ti, ti+1], i = 0, ..., J − 1 is a polynomial of degree at most q − 1 and
f ∈ Cq−2[0, 1] (provided that q ≥ 2). For simplicity we will consider equidistant
knots, i.e. ti = i/J , i ∈ {0, ..., J}, but our results can be extended to a more general
knot structure as well.

Splines form a linear space and a convenient basis for this space are given by B-
splines B1,q, ..., BJ,q. B-splines are defined recursively in the following way. First
let us introduce additional knots at the boundary t−q+1 = ... = t−1 = t0 = 0 and
tJ = tJ+1 = ... = tJ+q−1. Then we define the first order B-spline basis as Bj,1(x) =
1tj≤x<tj+1

, j = 0, ..., J − 1. For higher order basis we use the recursive formula

Bj,q(x) =
x− tj

tj+q−1 − tj
Bj,q−1(x) +

tj+q − x

tj+q − tj+1
Bj+1,q−1(x), j = −q + 1, ..., J − 1.

From now on for simplicity we omit the order q of the B-splines from the notation,
writing B1, ..., BJ . We extend B-splines to dimension d by tensorisation. For x ∈
[0, 1]d the d-dimensional cardinal B-splines are formed by taking the product of one
dimensional B-splines, i.e. for j ∈ {1, ..., J}d and x ∈ [0, 1]d we define

Bj(x) =

d∏
ℓ=1

Bjℓ(xℓ). (6.9)

Remark 6.6.1. We note that the d-dimensional index j ∈ {1, ..., J}d can be replaced
by a single index running from 1 to Jd =: k. In this section for convenience we work
with the multi-index formulation, but in the rest of the paper we consider the single
index formulation.
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Next we list a few key properties of d-dimensional cardinal B-splines used in our
proofs. In view of Chapter 12 of [71] (see Definition 12.3 and Theorems 12.4-12.8)
and Lemma E.7 of [33], the cardinal B-splines have optimal approximation properties
in the following sense.

Lemma 6.6.2. Let S be the space spanned by the cardinal B-splines of order q ≥ β.
Then there exists a constant C > 0 such that for all f ∈ Sβ

d (M) and all integers
α ≤ β

d(f, S) = inf
s∈S

∥f − s∥2 ≤ Ck−β/d
d∑

l=1

∥∥∥∥∂αf

∂xα
l

∥∥∥∥
2

,

with k = Jd. Moreover, if ∥f∥∞ < F , then one can pick s such that ∥s∥∞ < F .

Next we show that cardinal B-splines are near orthogonal. The one dimensional case
was considered in Lemma E.6 of [33]. Here we extend these results to dimension d.
Note that by tensorisation we will have k = Jd spline basis functions.

Lemma 6.6.3. Let us denote by B = (Bj)j∈{1,...,J}d the collection of B-splines and

by θ = (θj)j∈{1,...,J}d the corresponding coefficients. Let k = Jd. Then there exists
constant c ∈ (0, 1) such that

c∥θ∥∞ ≤ ∥θTB∥∞ ≤ ∥θ∥∞,

c∥θ∥2 ≤
√
k∥θTB∥2 ≤ ∥θ∥2.

Proof. The bounds for the supremum norm follow from Lemma 2.2 of [20], hence it
remained to deal with the bounds for the L2-norm.

Let Ii, i ∈ {1, ..., J}d, denote the hypercube
∏d

ℓ=1[(iℓ − 1)/J, iℓ/J ] and Ci, i ∈
{1, ..., J}d the collection of B-splines Bj , j ∈ {1, ..., J}d which attain a nonzero value
on the corresponding hypercube Ii. Then

∥θTB∥22 =

∫
[0,1]d

(θTB(x))2 dx =
∑

i∈{1,...,J}d

∫
Ii

∑
j∈Ci

θjBj(x)

2

dx.

Note that for a one-dimensional cardinal B-spline of degree q we can distinguish
(2q − 1) different cases, i.e. if q ≤ iℓ ≤ J − q, the 1 dimensional splines are just
translations of each other. Since the d-dimensional B-splines are defined as a tensor
product of d one-dimensional B-splines the number of distinct cases is (2q − 1)d.

Define the translation map Ti:Rd 7→ Rd, i ∈ {1, ..., J}d, to be the map given by
Ti(x) = (x1−i1+1

J , . . . , xd−id+1
J ), then detTi = J−d. This maps into the same space of

polynomials regardless of i. This means∫
Ii

∑
j∈Ci

θjBj(x)

2

dx = J−d

∫
[0,1]d

∑
j∈Ci

θjBj(Ti(x))

2

dx.
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We argue per case now. On each of these hypercubes Ii, i ∈ {1, ..., J}d, the splines
are locally polynomials. Then the inverse of Ti defines a linear map between the
polynomials spanned by the splines and the space of polynomials P of order q. The
splines define qd basis functions on our cubes Ii. Observe that each of the linear
maps Ti map the B-spline basis functions Bj , j ∈ {1, ..., J}d to the same space
of polynomials. Note that by [71, Theorem 4.5] and the rescaling property the 1
dimensional splines restricted to the interval [ ij ,

i+1
J ] are linearly-independent. By

tensorisation it follows that the B-spline basis restricted to the hypercube Ii provides
a linearly indepedent polynomial basis, hence

∑
j∈Ci

θ2j defines a squared norm of the
functions x 7→

∑
j∈Ci

θjBj(x), x ∈ Ii. Since in finite dimensional real vector spaces
all norms are equivalent this results in

∑
j∈Ci

θ2j ≍
∫
[0,1]d

∑
j∈Ci

θjBj(Ti(x))

2

dx

= Jd

∫
Ii

∑
j∈Ci

θjBj(x)

2

dx.

In view of the argument above, there are at most (2q − 1)d different groups of hy-
percubes, hence the above result can be extended to the whole interval [0, 1]d as well
(by taking the worst case scenario constants in the above inequality out of the finitely
many one), i.e.

∑
i∈{1,....,J}d

∑
j∈Ci

θ2j ≍ Jd
∑

i∈{1,....,J}d

∫
Ii

∑
j∈Ci

θjBj(x)

2

dx

= Jd

∫
[0,1]d

 ∑
j∈{1,....,J}d

θjBj(x)

2

dx.

Since every j on the left hand side occurs at most (2q − 1)d many times in the sum,
this leads us to

∥θ∥22 ≍ Jd∥θTB∥22,
for some universal constants, concluding the proof of our statement.

6.7 Concentration rates and uncertainty quantifica-
tion of the posterior distribution

In this section we provide posterior contraction rates and lower bounds for the radius
of the credible balls under general conditions. These results are then applied for the
Empirical Bayes Deep Neural Network method in Section 6.4.
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6.7.1 Coverage theorem - general form

In this section we first provide a general theorem on the size of credible sets based
on sieve type of priors. This result can be used beyond the nonparametric regression
model and is basically the adaptation of Lemma 4 of [67] to the non-adaptive setting
with fixed sieve dimension k, not chosen by the empirical Bayes method as in [67].
This theorem is of separate interest, as it can be used for instance for extending our
results to other models, including nonparametric classification.

We start by introducing the framework under which our results hold. We consider
a general statistical model, i.e. we assume that our data Dn is generated from a
distribution Pf0 indexed by an unknown functional parameter of interest f0 belonging
to some class of functions F . Let us consider k = kn (not necessarily orthogonal) basis

functions ϕ1, ..., ϕk ∈ F and use the notation fθ(x) =
∑k

i=1 θiϕi(x). Then we define

the class Θk = {
∑k

i=1 θiϕi, θi ∈ R, i = 1, ..., k} ⊂ F and equivalently we also refer to
the elements of this class using the coefficients (θ1, ...., θk). We note that f0 doesn’t
necessarily belong to the sub-class Θk.

Furthermore, let us consider a pseudometric dn:F × F 7→ R and take
θo = arg infθ∈Θk

dn(fθ, f0), i.e. the projection of f0 to the space Θk is fθo with
θo = (θo1, ..., θ

o
k)

T ∈ Θk denoting the corresponding coefficient vector. Let us also
consider a metric d: Θk×Θk 7→ R on the k-dimensional parameter space Θk. Finally,
we introduce the notation Bk(θ̄, ε, d) = {θ ∈ Θk: d(θ, θ̄) ≤ ε} for the ε-radius d-ball
in Θk centered at θ̄ ∈ Θk and B(f̃ , ε, dn) = {f ∈ F : dn(f̃ , f) ≤ ε} for the ε-radius
dn-ball centered at f̃ ∈ F .

The next theorem provides lower bound for the radius rn,α of the credible balls

B(fθ̂, δεεn, dn) = {f ∈ F : dn(fθ, fθ̂) ≤ rn,α}

centered around an estimator fθ̂. The radius rn,α is defined as

Πk

(
θ ∈ Θk: fθ ∈ B(fθ̂, rn,α, dn)|Dn

)
= 1− α.

Before stating the theorem we introduce some assumptions.

A1 The centering point fθ̂ ∈ F satisfies that for all ϵ > 0 there exists Mϵ > 0

sup
f0∈F

Pf0

(
dn(fθo , fθ̂) ≤ Mϵ

√
k/n

)
≥ 1− ε.

A2 Assume that there exists Cm > 0 such that for all θ, θ′ ∈ Θk

C−1
m d(θ, θ′) ≤ dn(fθ, fθ′) ≤ Cmd(θ, θ′).

A3 Assume that for all M, ϵ > 0 there exist constants c1, c2, c3, c4, δ0, Bϵ > 0 and
r ≥ 2 such that the following conditions hold
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A3.i

Bk(θ
o,
√
k/n, d) ⊂ Sn(k, c1, c2, r),

where Sn(k, c1, c2, r) ={
θ ∈ Θk: Ef0 log

pθo

pθ
≤ c1k,Ef0

(
log

pθo

pθ
− Ef0 log

pθo

pθ

)r
≤ c2k

r/2
}
.

A3.ii Let B̄k = Θk ∩B(fθo ,Mϵ

√
k/n, dn). Then for every f0 ∈ F

Pf0

(
sup

fθ∈B̄k

ℓn(θ)− ℓn(θ
o) ≤ Bεk

)
≥ 1− ε,

where ℓn(θ) denotes the log-likelihood corresponding to the functional pa-
rameter fθ ∈ Θk.

A3.iii For every δ0 small enough

supθ∈B̄k
Πk

(
Bk(θ, δ0

√
k/n, d)

)
Πk

(
Bk(θo,

√
k/n, d)

) ≤ c4e
c3k log(δ0).

Theorem 6.7.1. Assume that conditions A1- A3 hold. Then for every ε > 0 there
exists a small enough δε > 0 such that

sup
f0∈F

Ef0Πk

(
θ ∈ Θk: dn(fθ, fθ̂) ≤ δε

√
k/n|Dn

)
≤ ε.

Proof. First note that since Πk is supported on Θk,

Πk

(
θ: dn(fθ, fθ̂) ≤ δε

√
k/n|Dn

)
=

∫
B(fθ̂,δε

√
k/n,dn)∩Θk

eℓn(θ)−ℓn(θ
o)dΠk(θ)∫

Θk
eℓn(θ)−ℓn(θo)dΠk(θ)

. (6.10)

Next let us introduce the notations

Ωn(C) =

{
eCk

∫
Θk

eℓn(θ)−ℓn(θ
o)dΠk(θ)

Πk

(
Bk(θo,

√
k/n, d)

) ≥ 1

}
, (6.11)

Γn(B) = sup
B(fθ̂,δε

√
k/n,dn)∩Θk

ℓn(θ)− ℓn(θ
o) < Bk. (6.12)

Note that in view of Assumptions A3.ii and A1 we have that inff0 Pf0(Γn(Bε)) ≥
1 − 2ϵ for some large enough constant Bε > 0 and in view of Assumption A3.i by
using the standard technique for lower bound for the likelihood ratio ([33, Lemma
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8.37]) we have with Pf0-probability bounded from below by 1 − ε that there exists
c0 > 0 such that∫

Θk

eℓn(θ)−ℓn(θ
o)dΠk(θ) ≥ e−(c0+1/

√
ϵ)kΠk

(
Sn(k, c1, c2, r)

)
≥ e−(c0+1/

√
ϵ)knΠk

(
Bk(θ

o,
√
k/n, d)

)
,

hence Pf0(Ωn(c0 + 1/
√
ϵ)) ≥ 1− ε.

Therefore, in view of assumption A2, the right hand side of (6.10) is bounded from
above on An = Ωn(c0 + 1/

√
ϵ) ∩ Γn(Bε) ∩ {dn(fθo , fθ̂) ≤ Mϵ

√
k/n} by

e(Bε+c0+1/
√
ϵ)k

Πk

(
Θk ∩B(fθ̂, δε

√
k/n, dn)

)
Πk

(
Bk(θo,

√
k/n, d)

)
≤ e(c0+Bε+1/

√
ϵ)kΠk

(
Bk(θ̂, Cmδε

√
k/n, d)

)
Πk

(
Bk(θo,

√
k/n, d)

)
≤ Ce

(
c0+Bε+1/

√
ϵ+c3 log(Cmδε)

)
k ≤ ε,

for small enough choice of δε > 0, where the last line follows from assumption A3.iii
(with δ0 = Cmδε). Furthermore, note that

Pf0(A
c
n) ≤ Pf0

(
Ωn(c0 + 1/

√
ϵ)
)
+ Pf0

(
Γn(Bε)

)
+ Pf0

(
dn(fθo , fθ̂) ≥ Mϵ

√
k/n

)
≤ 4ε,

where for the last term we used Assumption A1. Hence the Ef0-expected value of
the first term on the right hand side of (6.10) is bounded from above by 5ε.

6.7.2 Coverage in nonparametric regression

We apply Theorem 6.7.1 in context of the uniform random design nonparametric re-
gression model, i.e. we observe pairs of random variables Dn = {(X1, Y1), ..., (Xn, Yn)}
satisfying that

Yi = f0(Xi) + εi, Xi
iid∼ Unif([0, 1]d), εi

iid∼ N(0, 1), i = 1, ..., n, (6.13)

for some unknown functional parameter f0 ∈ F = L2([0, 1]
d,M). Let us denote by X

the collection of design points, i.e. X = (X1, ..., Xn).

Let us consider k = kn (not necessarily orthogonal) basis functions ϕ1, ..., ϕk ∈ F and

use the notation fθ(x) =
∑k

i=1 θiϕi(x). We denote by Φn,k the empirical basis matrix
consisting the basis functions ϕ1, ..., ϕk evaluated at the design points X1, ..., Xn, i.e.

Φn,k =


ϕ1(X1) ϕ2(X1) · · · ϕk(X1)
ϕ1(X2) ϕ2(X2) · · · ϕk(X2)

...
...

. . .
...

ϕ1(Xn) ϕ2(Xn) · · · ϕk(Xn)

 .
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Furthermore, let us denote the Gram matrix of the basis functions ϕ1, ..., ϕk with
respect to the L2 inner product ⟨f, g⟩ =

∫
[0,1]d

f(x)g(x)dx by

Σk =


⟨ϕ1, ϕ1⟩ ⟨ϕ1, ϕ2⟩ · · · ⟨ϕ1, ϕk⟩
⟨ϕ2, ϕ1⟩ ⟨ϕ2, ϕ2⟩ · · · ⟨ϕ2, ϕk⟩

...
...

. . .
...

⟨ϕk, ϕ1⟩ ⟨ϕk, ϕ2⟩ · · · ⟨ϕk, ϕk⟩

 . (6.14)

Finally, we need to impose the following near orthogonality assumption on the basis
functions ϕ1, ..., ϕk.

B1 Assume that there exists a constant cm ≥ 1 such that

c−1
m Ik ≤ Σk ≤ cmIk.

In our analysis we consider a prior Πk supported on functions of the form fθ =∑k
j=1 θjϕj . We take priors of the product form, i.e.

dΠk(θ) =

k∏
j=1

g(θj)dθ,

for a one dimensional density g, satisfying for every M ′ > 0 that there exists constants
c, c > 0 such that

c ≤ g(x) ≤ c, x ∈ [−M ′,M ′] (6.15)

Lemma 6.7.2. Consider the nonparametric regression model (6.13) and a prior Πk

satisfying assumption (6.15). Let β > d
2 and let F ⊂ Sβ

d (M). Denote the basis
functions by ϕj, j = 1, . . . , k. Assume that the basis functions are bounded in supnorm
by Ck. We assume that the Gram matrix Σk given in (6.14), for the basis functions

ϕj, satisfies B1 and that
∑k

j=1 ϕj(x)
2 ≤ Ck2, for all x ∈ [0, 1]d. Furthermore, assume

that the centering point of the credible set satisfies assumption A1. Then for every
ε > 0 there exists a small enough δε > 0 such that

sup
f0∈F

Ef0Πk

(
θ ∈ Rk: ∥fθ − fθ̂∥2 ≤ δε

√
k/n|Dn

)
≤ ε.

Proof. We show below that the conditions of Theorem 6.7.1 hold in this model for

the conditional probability given the design points P|X
f0
(·) = Pf0(·|X), on an event

An ⊂ Xn, where X = [0, 1]d, satisfying Pf0(A
c
n) ≤ ε, taking dn to be the empirical L2

semi-metric, i.e. dn(f, g)
2 = ∥f − g∥2n =

∑n
i=1

(
f(Xi)− g(Xi)

)2
and d the ℓ2-metric

in Θk = Rk i.e. d(θ, θ′) = ∥θ − θ′∥2. Hence in view of Theorem 6.7.1, on the event
An for every ε > 0 there exists a small enough δε > 0 such that

sup
f0∈F

E|X
f0
Πk

(
θ ∈ Rk: ∥fθ − fθ̂∥n ≤ 2δε

√
k/n|Dn

)
≤ ε.
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Next note that in view of assertion (6.16), see below, we get on an event Bn, with
Pf0(B

c
n) ≤ ε, that

∥fθ − fθ̂∥n/2 ≤ ∥fθ − fθ̂∥2,

resulting in

sup
f0∈F

Ef0Πk

(
θ: ∥fθ − fθ̂∥2 ≤ δε

√
k/n|Dn

)
≤ sup

f0∈F
Ef0E

|X
f0

(
Πk

(
θ: ∥fθ − fθ̂∥n ≤ 2δε

√
k/n|Dn

))
≤ sup

f0∈F
Pf0(A

c
n) + Pf0(B

c
n) + ε ≤ 3ε.

It remained to prove that the conditions of Theorem 6.7.1 hold.

Condition A1. Follows by the choice of the centering point.

Condition A2. First note that Σn,k = n−1ΦT
n,kΦn,k has mean Σk. Then by the

modified version of Rudelson’s inequality [68] we get that

Ef0∥Σn,k − Σk∥2 ≤ C

√
log k

n
Ef0(∥ϕ(X1)∥logn

2 )1/ logn,

with ϕ(X1) =
(
ϕ1(X1), ..., ϕk(X1)

)T
. Note that by the boundedness assumption∑k

j=1 ϕj(x)
2 ≤ Ck2, x ∈ [0, 1]d, the right hand side of the preceding display is

bounded from above by constant times
√
k2 log(k)/n on an event Bn with Pf0(Bn)

tending to one. This upperbound is o(1) if β > d
2 . Therefore,∣∣∣∥fθ∥22 − ∥fθ∥2n

∣∣∣ = ∣∣∣θT (Σk − Σn,k)θ
∣∣∣ ≤ ∥Σk − Σn,k∥2∥θ∥22 = oPf0

(∥θ∥22).

Furthermore, in view of Assumption B1

c−1
m ∥θ∥22 ≤ ∥fθ∥22 = θTΣkθ ≤ cm∥θ∥22, for all θ ∈ Rk,

which in turn implies that on Bn

(2cm)−1∥θ∥22 ≤ ∥fθ∥22/2 ≤ ∥fθ∥2n ≤ 2∥fθ∥22 ≤ 2cm∥θ∥22, (6.16)

holds for all θ ∈ Rk.
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Condition A3.i. First note that for arbitrary θ ∈ Rk

ℓn(θ)− ℓn(θ
o) =

1

2

n∑
i=1

(Yi − fθo(Xi))
2 − 1

2

n∑
i=1

(Yi − fθ(Xi))
2

= −
n∑

i=1

(
(fθ(Xi)− fθo(Xi))

2/2− (Yi − fθo(Xi))(fθ(Xi)− fθo(Xi))
)

= −
n∑

i=1

(
fθ(Xi)− fθo(Xi)

)2
/2−

n∑
i=1

εi(fθ(Xi)− fθo(Xi))

−
n∑

i=1

(f0(Xi)− fθo(Xi))(fθ(Xi)− fθo(Xi))

= −
n∑

i=1

(
fθ(Xi)− fθo(Xi)

)2
/2−

n∑
i=1

εi
(
fθ(Xi)− fθo(Xi)

)
, (6.17)

where in the last line we used that fθo is the orthogonal projection of f0 to Θk =
{
∑k

i=1 θiϕi: θ ∈ Rk} with respect to the empirical Euclidean norm dn. Then by taking

E|X
f0
-expectation on both sides of (6.17) we get that

E|X
f0

(
ℓn(θ)− ℓn(θ

o)
)
= n∥fθ − fθo∥2n/2 ≤ cmn∥θ − θo∥22.

Similarly E|X
f0

[
ℓn(θ) − ℓn(θ

o) − E|X
f0
(ℓn(θ) − ℓn(θ

o))
]2 ≤ 2cmn∥fθ − fθo∥22, hence

Bk(θ
o,
√

k/n, ∥ · ∥2) ⊂ Sn(k, cm, 2cm, 2).

Condition A3.ii. In view of assertion (6.17) and using Cauchy-Schwarz inequality
(as in inequality (A.3) of the supplementary material of [67] we arrive at

ℓn(θ)− ℓn(θ
o) = −n∥fθ − fθo∥2n/2− εTΦn,k(θ − θo)

≤ −n∥fθ − fθo∥2n/2 + ∥εTΦn,k∥2∥θo − θ∥2.

We show below that with P|X
f0
-probability tending to one

∥εTΦn,k∥22 ≤ Ckn. (6.18)

Hence on the same event we get that

ℓn(θ)− ℓn(θ
o) ≤

√
n∥fθ − fθo∥n

(
C
√
cmMε

√
k −

√
n∥fθ − fθo∥n/2

)
≤ 2cmC2M2

ε k.

It remained to prove that (6.18) holds with probability tending to one. Note that in
view of assertion (6.16) on an event Bn, with Pf0(Bn) → 1 we get for ε ∼ Nk(0, Ik)

∥εTΦn,k∥22 = nεTΣn,kε ≤ 2cmn∥ε∥22.
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Then by the properties of the χ2
k distribution the right hand side of the preceding

display is bounded from above by 4c2mnk with probability tending to one as k tends
to infinity.

Condition A3.iii In view of assertion (6.16) on the event Bn we get that

B(fθ, δ0
√

k/n, ∥ · ∥n) ⊂ Bk(θ,
√
2cmδ0

√
k/n, ∥ · ∥2),

B(fθo ,
√
k/n, ∥ · ∥n) ⊃ Bk(θ

o,
√
k/n/

√
2cm, ∥ · ∥2).

Next note that in view of (6.16) on an event Bn with Pf0(Bn) → 1 we have

(2cm)−1∥θo∥22 ≤ ∥fθo∥2n ≤ ∥f0∥2n ≤ M, (6.19)

resulting in |θoj | ≤
√
2cmM < M ′. Therefore the density of the prior is bounded away

from zero and infinity on a neighbourhood of θo which in turn implies that

sup
θ∈B(fθo ,M,∥·∥n)

Πk

(
B(fθ, δ0

√
k/n, ∥ · ∥n)

)
Πk

(
B(fθo ,

√
k/n, ∥ · ∥n)

) ≲ Vol
(
Bk(θ,

√
2cmδ0

√
k/n, ∥ · ∥2)

)
Vol
(
Bk(θo,

√
k/n/

√
2cm, ∥ · ∥2)

)
≲ eck log(2cmδ0).

6.7.3 Misspecified contraction rates

Finally, we derive a contraction rate result for the posterior in our misspecified setting.
We assume that our true model parameter is f0, which however, does not necessarily
belong to our model Θk = {fθ =

∑k
i=1 θiϕi: θ ∈ Rk}. Let us denote by f∗ = fθ∗ the

L2-projection of f0 into the subspace Θk. We show below that the posterior contracts
with the L2-rate

√
k/n around f∗ in the regression model.

Theorem 6.7.3. Consider the random design nonparametric regression model with
observations Dn =

(
(X1, Y1), ..., (Xn, Yn)

)
and assume that the Gram matrix Σk given

in (6.14) satisfies Assumption B1 and that the prior Πk satisfies (6.15). Then

lim sup
n→∞

sup
f0∈Sβ

d (M)∩L∞(M)

Ef0Πk

(
θ ∈ Rk: ∥fθ − f∗∥2 ≥ Mn

√
k/n|Dn

)
= 0

for all Mn → ∞.

Proof. For ease of notation we set εn =
√
k/n. Then we show below that the following

two inequalities hold for some constant J > 0,

Πk (θ: jεn ≤ ∥fθ − f∗∥2 ≤ 2jεn)

Πk (B(f∗, εn, ∥ · ∥2))
≤ ej

2k/8, for all j ≥ J, (6.20)

logN(ϵ, {fθ: ϵ < ∥f∗ − fθ∥2 ≤ 2ϵ}, ∥ · ∥2) ≤ k, for all ϵ > 0. (6.21)
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The function class F = Sβ
d (M) ∩ L∞(M) is closed, convex, and uniformly bounded.

Furthermore, since the Gaussian noise satisfies Ef0e
M |εi| < ∞ for all M > 0, in view

of Lemma 8.41 of [33] condition (8.52) of [33] holds. Therefore, in view of Lemma
8.38 of [33] the logarithm of the covering number for testing under misspecification
is bounded from above by logN(ϵ, {fθ: ϵ < ∥f∗ − fθ∥2 ≤ 2ϵ}, ∥ · ∥2), which in turn is
bounded by k following from (6.21). Then our statement follows by applying Theorem
8.36 of [33] (with εn = ε̄n = k/n, d = ∥ · ∥2, Pn,1 = F , Pn,2 = ∅).

It remained to verify conditions (6.20) and (6.21).

Proof of (6.20). First note that in view of condition B1

Πk

(
θ: jεn ≤ ∥fθ − f∗∥2 ≤ 2jεn

)
Πk

(
B(f∗, εn, ∥ · ∥2)

) ≤
Πk

(
Bk(θ

∗, 2j
√
cmεn, ∥ · ∥2)

)
Πk

(
Bk(θ∗, εn/

√
cm, ∥ · ∥2)

) .
Furthermore, note that the prior density is bounded from above and below by ck and
ck, respectively, in a neigbourhood of fθ∗ following from assumption (6.15) and by
similar argument as in (6.19). Therefore the prior probability of a given set A can be
upper and lower bounded by the Euclidean volume of A times ck and ck, respectively.
This implies that the preceding display can be further bounded from above by

(c
c

)kVol(Bk(θ
∗, 2j

√
cmεn, ∥ · ∥2)

)
Vol
(
Bk(θ∗, εn/

√
cm, ∥ · ∥2)

) ≤
(2cmjc

c

)k
≤ ej

2k/8,

for all j ≥ J , for J large enough.

Proof of (6.21). First note that by Assumption B1

logN(ϵ, {fθ: ϵ < ∥fθ − f∗∥2 ≤ 2ϵ}, ∥ · ∥2)
≤ logN(ϵc−1/2

m , {θ: ϵc−1/2
m < ∥θ − θ∗∥2 ≤ 2ϵc1/2m }, ∥ · ∥2).

Then in view of the standard bound on the local entropies of k-dimensional Euclidean
balls the right hand side is further bounded by constant times k, finishing the proof
of our statement.
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Summary

In this thesis, we investigate the properties of Bayesian methods. In particular, we
want to give frequentist guarantees for Bayesian methods. A Bayesian starts with
specifying their apriori belief as a probability distribution, the prior distribution.
The prior is their inherently subjective beliefs. After a Bayesian has specified their
prior, they collect data and compute the posterior distribution. For a Bayesian, this
posterior distribution encodes their new beliefs on the world. However, this prior was
subjective. Thus the posterior is also subjective. So we can wonder, will this posterior
distribution give a better representation of reality? Will it be more accurate? The
posterior distribution quantifies a subjective belief of uncertainty. How reliable is this
quantification of uncertainty?

These questions lie at the foundation of this thesis. They have been answered for
certain classes of prior distributions. However, they have not been fully answered
for all distributions in use. In this thesis, in the introduction, we explain the foun-
dational statistical theory to study these questions. In particular, we show how to
apply Schwartz theorem and the Bernstein-von Mises theorems to study posterior
distributions. We then turn to novel research.

In our research, we investigated the Pitman-Yor prior and the behaviour of hyper-
priors on its parameters. To do this, we formulated and proved the Bernstein-von
Mises theorems in this context. Together with the tools introduced in the introduc-
tion, we can provide frequentist guarantees for these methods. In these works, we
show that the Pitman-Yor process induces a bias in the posterior. This bias means
that when you use the Pitman-Yor process for distribution estimation you must use a
bias correction. We identify the explicit bias and derive the asymptotic distribution.
However, the asymptotic distribution shows that the credible sets will be unreliable if
the true distribution has a continuous component. This result shows that we cannot
trust the uncertainty quantification in this case. It was already known that the pos-
terior distribution is inconsistent in this case. Hence, the Pitman-Yor process should
be avoided in this situation.

For the hyperprior, we studied the estimation of the type of the true distribution.
This hyperprior comes up in various scenarios, for example, when trying to estimate
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the number of distinct species in a group. It also appears in various applications, for
example, in interpreting DNA evidence in case of a rare genotype. We again derive a
Bernstein-von Mises theorem to investigate the posterior distribution. Moreover, we
study frequentist estimators for the hyperpriors and give frequentist guarantees.

Moreover, we proposed a novel Bayesian methodology for uncertainty quantification
in deep learning. Using a variant of Schwartz’s theorem, we can directly provide fre-
quentist guarantees for our method. Our proposed method has two advantages. First,
it is much faster than competing methods for quantifying uncertainty. Moreover, it
has theoretical guarantees, which competing methods often lack.



Samenvatting

In dit proefschrift bestuderen we the eigenschappen van Bayesiaanse methoden. In
het bijzonder willen we frequentistische garanties geven voor Bayesiaanse methoden.
Een Bayesiaan begint met het geven van hun a priori geloof in de vorm van een
kansverdeling, de prior verdeling. De prior verdeling is hun, inherent subjectieve,
geloof. Nadat de Bayesiaan hun prior verdeling heeft bepaald, verzamelen ze data
en berekenen ze de posteriori verdeling. Voor de Bayesiaan geeft deze posteriori
verdeling hun nieuwe geloof over de werkelijkheid. Hun prior was echter subjectief.
Hierdoor is hun posteroor ook subjectief. Dus kunnen we ons afvragen hoe goed deze
posteriori verdeling is. Geeft deze posteriori verdeling een betere representatie van de
werkelijkheid? Verder geeft een posteriori verdeling een subjectieve kwantificatie van
onzekerheid. Hoe betrouwbaar is deze kwantificatie van onzekerheid?

Deze vragen liggen ten grondslag van dit proefschrift. Ze zijn voor bepaalde klassen
van priors beantwoord. Echter zijn ze niet voor alle klassen van priors volledig beant-
woord. In deze thesis, in de inleiding, beschrijven we eerst de statistische theorie die
nodig is om deze vragen te formuleren en beantwoorden. In het bijzonder zullen we
zien hoe we de stelling van Schwartz en de Bernstein-von Mises stellingen kunnen
gebruiken om de posteriori te bestuderen. Daarna gaan we kijken naar het gedane
onderzoek.

In ons onderzoek hebben we de Pitman-Yor prior en de hyperpriors op de parameters
bestudeerd. Om dit te kunnen doen moesten we Bernstein-von Mises stellingen for-
muleren en bewijzen. Samen met de technieken uit de inleiding van dit proefschrift
kunnen we frequentistische garanties geven voor deze methoden. In het bijzonder
tonen we aan dat het Pitman-Yor process een statistische vertekening heeft. We iden-
tificeren precies wat deze vertekening is en laten zien hoe je hiervoor kan corrigeren.
We tonen echter ook aan dat als de ware verdeling een continue component heeft er
meer mis is met de posteriori. De asymptotische verdeling van de posteriori is in dat
geval niet de juiste verdeling. Hierdoor is de onzekerheid kwantificatie onbetrouwbaar.
Het was echter al bekend dat de posteriori verdeling in dit geval ook inconsistent is,
het vind de ware verdeling sowieso niet. Dus kun je beter het Pitman-Yor process as
prior vermijden als je vermoed dat er een continue component is in de ware verdeling.
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Voor de hyperprior hebben we het schatten van het type van de ware verdeling
bestudeerd. Dit is een waarde die terug komt in verschillende statistische toepassin-
gen. Een voorbeeld hiervan is het schatten van het aantal verschillen soorten in een
groep. Dit is weer relevant bij de interpretatie van de sterkte van DNA bewijs in
het geval van een zeldzaam genotype. We doen dit door middel van een Bernstein-
von Mises stelling voor de hyperpriors. Verder bestuderen we puntschatters voor de
hyperpriors en geven we frequentistische garanties.

Tenslotte hebben we een nieuwe Bayesiaanse methode ontwikkeld voor het kwantifi-
ceren van onzekerheid in deep learning. Door middel van een een variant van de
stelling van Schwartz kunnen we direct frequentistische garanties geven. Onze meth-
ode heeft twee voordelen ten opzichte van de concurrentie. Ten eerste is onze methode
veel sneller voor het kwantificeren van de onzekerheid. Ten tweede heeft onze methode
theoretische garanties, welke vaak ontbreken bij de concurrenten.
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