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1
Introduction

The number of people that experienced a stroke in 2010 in the US is estimated
to be 795.000 [1]. Strokes are the cause of roughly 140.000 deaths annually.
87% of these strokes are caused by an ischemic event [2]. Carotid atheroscle-
rotic plaque rupture contributes to 15-20% of all ischemic strokes [3]. Carotid
atherosclerotic plaque is the result of an inflammation in the carotid vessel
wall, which gets progressively worse [4, 5]. Vulnerable atherosclerotic plaque
can rupture, and the expelled contents can become thrombotic material.
When this thrombotic material gets stuck in a cerebral artery, an ischemic
event results. The luminal narrowing caused by the growing of the plaque,
called stenosis, has commonly been used for identification of plaque sever-
ity [6]. There have been signs that plaque composition is also important in
identification of plaque severity [7]. Intraplaque hemorrhages (IPH) and
calcifications have shown to be a risk factor in plaque vulnerability [3, 8, 9].
Non invasive methods for the analysis of plaque composition are therefore
required (see Appendix A).

Magnetic resonance imaging (MRI) can characterize plaque composition
based on magnetic resonance tissue properties [10, 11]. Two of these tissue
properties, called T1 and T2, are magnetic relaxation times. Each tissue has
a T1-T2 combination, enabling characterization of tissue type by their re-
laxation times [12, 13]. In clinical practice, T1 and T2 weighted images are
usually acquired. Contrast is obtained between tissues in these weighted
images, due to signal intensity differences caused by differences in relaxation
times. However, T1 and T2 weighted images acquired using different pulse se-
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quences or brands of scanners, can yield different intensity values for similar
tissues across multiple images. Even the repositioning of the radiofrequency
surface coils on the same patient and scanner can induce apparent contrast
differences between tissues. This makes the comparison of images, using only
the voxel intensity values, difficult, especially for automatic segmentation
methods. Quantitative MRI aims at measuring quantitative values, T1 and T2,
as opposed to generating visually pleasing images optimized for qualitative
analysis. With quantitative MRI we can potentially produce the same results
regardless of the type of MR scanner or the positioning of the radio-frequency
neck coil. By mapping T1 and T2 instead of the MR signal, we can compare
measurements between and within patients. This would be highly beneficial
for accurate assessment of carotid plaque composition.

The estimation of T1 and T2 is performed by fitting a mathematical model
to a set of T1 and T2 weighted images. The MR scanner can employ sev-
eral pulse sequences that can produce T1 and T2 weighted images. Such
acquisition methods include Variable Flip angle (VFA), Look Locker (LL) and
Inversion recovery (IR) [14–16] that induce a T1 weighting in the image, and
T2 weighting methods such as Fast spin echo (FSE) and gradient-and spin
echo (GRASE) [17, 18]. Each method has its advantages and disadvantages
regarding time efficiency and accuracy. IR only induces a T1 weighted effect,
whereas VFA and LL also induce a T2 weighted effect in the image. On the
other hand, IR images take relatively longer to acquire than VFA and LL im-
ages, which could potentially induce errors or motion artifacts in the image.

We aim to produce T1 and T2 maps of the carotid artery wall in a short
amount of time. To this end, an optimized acquisition method was developed
in previous work. The acquisition method uses three pulse sequences, giving
a T1 or T2 weighting of the signal, namely: spin echo, inversion recovery and
saturation recovery. In this acquisition, the number of images from which
T1 and T2 can be fitted is very low, which imposes challenges in T1 and T2

fitting.

Currently, most methods estimate the parameters T1 and T2 by fitting a
mathematical model to a series of acquired magnitude MR images [14,19–22],
see Appendix A. Intrinsically, MR data is complex of nature. When the mag-
nitude data is used, phase information is removed. For T1 estimation using
multiple T1 weighted images, the loss of phase data is not a problem, since
there are enough measurements to correctly fit the signal model. In our
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acquisition scheme, where the number of acquired images is low, sign re-
moval by discarding the phase data, may be problematic as will be shown in
Section 2.4. In this case, ambiguous T1 and T2 estimates could potentially
be found, which hampers reproducibility and accuracy of the maps [23]. A
second disadvantage of using the magnitude signal is the Rician distribution
of the data. The non zero mean of this distribution may result in a bias in the
estimated T1 and T2 [24, 25]. A potential disadvantage of using complex data
is the possible introduction of phase errors [26], see Appendix A.

Another source of inaccuracy in T1 and T2 estimation is due to translation
between images. The parameter estimation method assumes that each voxel
represents the same anatomical structure in each image [27, 28]. Due to
translation of the subject, this assumption is not necessarily true, and T1 and
T2 estimation becomes incorrect for misaligned voxels [29]. For this purpose
image registration is needed, which aligns the images. Misalignment of the
images can have a significant impact on the reproducibility of T1 and T2,
since the carotid wall is only several voxels wide. Research of other groups
that use registration to compensate for translation can be found in Appendix
A.

In this thesis we will try to solve the challenges posed by the used ac-
quisition scheme, in the estimation of T1 and T2. In order to do so, we will
investigate the use of complex data. To use complex data, a signal model
needs to be defined that can represent the complex MR signal, which will
be discussed in Section 2.4. The feasibility of this model will be evaluated
on simulated data and data acquired from a hardware phantom. With the
hardware phantom data we can evaluate the presence and/or influence of
phase errors, due to the use of complex data. We will also focus on image reg-
istration, and how it impacts the reproducibility of the estimated parameters.
Three different registration methods will be explored that can potentially
increase the reproducibility of the estimated parameters due to better align-
ment of the images, see Section 2.3. To evaluate the registration methods,
we use data acquired from healthy volunteers. Each volunteer was scanned
twice, which allows us to evaluate the reproducibility by comparing the T1

and T2 maps between scan and rescan, and between volunteers.
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2
Methods

The estimation of T1 and T2 from acquired images can be visualized with a
processing pipeline, given in Figure 1. This pipeline can be split up in four
parts: image acquisition (the acquisition of MR data), image reconstruction
(the reconstruction of MR data to spatial images), image registration (the
alignment of images), and mapping (the estimation of T1 and T2). Image
acquisition and image reconstruction have been optimized in previous studies.
And as discussed in the introduction, image registration and mapping will
be evaluated in this thesis. In the following subsections we will elaborate on
each of the four parts of the pipeline.

2.1 Acquisition

For quantitative assessment of the carotid plaque components, MR images
were acquired. A subject is placed in an MRI scanner and on both the left
and right side of the neck, a radiofrequency surface neck coil with two

Figure 1: Visualization of the processing pipeline where MR images are
acquired and T1 and T2 maps are produced
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channels each, is placed. The pulse sequence that is hereafter played out
by the scanner consists of two modules: a preparation module, that induces
T1 or T2 weighting, and a readout module that was used to acquire the
MR signal. Three preparation modules were used for our images, namely
a spin echo preparation, saturation preparation and inversion preparation.
These preparation modules and the readout module will be discussed in the
following subsections.

2.1.1 CUBE sequence

A 3D CUBE readout module was used for each preparation module. CUBE
consists of FSE with varying flip angles [30]. Conventionally FSE uses fixed
flip angles [31]. In FSE a 90 degree radiofrequency (RF) pulse is applied to
the spins, given in Figure 2.A. Due to inhomogeneities in the magnetic field,
the spins start to dephase, and the signal strength decreases rapidly with a
time constant T ∗2 , Figure 2.B. At half the spin echo time, TE , a 180 degree
pulse is applied, Figure 2.C. This places the slower running spins ahead of
the faster running spins. At time TE , the faster running spins have caught
up with the slower running spins, and an echo signal is produced. For time
efficiency, multiple echos were acquired after one 90 degree flip.

Due to T2 relaxation, the echo signal decreases over time. In order to keep
the SNR constant over multiple echos, the fixed 180 degree flip angles can
be replaced by variable flip angles. By doing so, the magnetization is flipped
partially in the longitudinal direction. By storing a part of the magnetization
in an encoded longitudinal state, the magnetization can be converted back to
transversal magnetization at a later echo, keeping the echo signal constant
over multiple echoes [30].

2.1.2 Spin echo preparation

A spin echo (SE) preparation was used to induce a combination of T1 and
T2 weighting in the image. A 90 degree pulse flips the longitudinal mag-
netization (Mz) into the transversal plane, see Figure 3. The transversal
magnetization Mxy , starts to decay with a time constant T2. For refocusing of
T ∗2 weighted effects, a 180 degree pulse was applied. At TE , an echo signal
is produced, and the signal is brought back into the longitudinal plane with
another 90 degree pulse. Subsequently, the CUBE readout sequence was
played out that acquires the recovered MR signal. And after a repetition time
TR, the sequence was repeated.
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Figure 2: Spin echo. A: Initial magnetization after 90 degree flip. B: Spin
dephasing. C: 180 degree flip. D: Spin rephasing. E: Echo signal

The equation that describes the evolution of the signal for this preparation
is modeled by [32]:

S = A(1− e−(TR−TE)R1)e−TER2 (1)

, given T1»TE , where A is the unprepared magnetization, TR the repetition
time, TE the echo time and, R1 is 1/T1 and R2 is 1/T2, the tissue specific
properties.

2.1.3 Saturation preparation

Saturation (SR) preparation comprises of two 90 degree pulses. The initial
magnetization, just before the first 90 degree pulse in Figure 4, is flipped in
the transversal plane with a 90 degree pulse. Over time, the longitudinal
magnetization will recover with a time constant T1, and the transversal
magnetization will decrease with a time constant T2 due to the absence of
an RF field. After a time TR a subsequent 90 degree is applied. The already
recovered magnetization, is flipped into the transversal plane again where
it can be read out. The signal intensity after the first 90 degree pulse can be
modeled by:

S = A(1− e−TRR1) (2)
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Figure 3: Pulse diagram, longitudinal and transversal magnetization for a
spin echo preparation
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Figure 4: Pulse diagram and longitudinal magnetization for saturation prepa-
ration

2.1.4 Inversion preparation

An inversion (IR) preparation consists of two RF pulses. Ideally, the first
pulse flips the magnetization with 180 degrees, inverting the orientation of
the spins. When a non-adiabatic pulse is used, inhomogeneities in the RF
field may impact the applied flip angle, and flip a portion of the longitudinal
magnetization in the transversal plane [33]. Therefore, adiabatic pulses
were used, that do not suffer from inhomogeneities in the RF field and can
uniformly flip the magnetization in a subject [34]. After the 180 degree pulse
the longitudinal magnetization will recover, see Figure 5. After an inversion
time TI a 90 degree pulse is applied. This brings the recovered longitudinal
magnetization in the transversal plane. In the transversal plane, the signal
can be read out. The magnitude signal can be modeled by Equation 3, where
B is the inversion efficiency, which models the efficiency of the 180 degree
adiabatic inversion pulse. When a flip angle of 180 degrees is applied, B = 2.
When no flip is applied, B = 0. In previous work it was concluded that
B = 1.95 was appropriate for neck tissue.

S = |A(1−Be−TIR1 + (B− 1)e−TRR1)| (3)

An advantage of IR is that in contrast to SR, the contrast range is larger
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Figure 5: Pulse diagram and longitudinal magnetization for inversion prepa-
ration

when complex data is used [26]. Due to the fact that the magnetization is
allowed to be negative, the Mz range goes from -M0 to M0, in comparison to
0 to M0 for saturation prepared imaging. However, the addition of parameter
B in the IR signal model, increases the complexity of parameter estimation.

2.1.5 Sequence settings

In preliminary work at Erasmus MC, the amount of images per preparation
module and the preparation module settings were optimized for accuracy and
time efficiency, i.e. T1 and T2 accuracy per unit of scan time. The acquisition
scheme for T1 weighting consists of two images with an IR preparation and
two images with a SR preparation. For T2 weighting, five images with a SE
preparation were acquired. TI , TR and TE for these preparations are given in
Table 1.

As an example, images acquired with the settings described in Table 1
are given in Figure 6. In this figure there is a clear difference between the
contrast in the SR images and the other images. The images that are given in
this figure were reconstructed magnitude images, using the reconstruction as

10



Table 1: TI , TR and TE in seconds, for the used preparation modules
Image nr. 1 2 3 4 5 6 7 8 9
Sequence IR IR SE SE SE SE SE SR SR
TI(s) 0.091 0.429 0 0 0 0 0 0 0
TE(s) 0 0 0.028 0.03 0.032 0.033 0.034 0 0
TR(s) 0.954 3.694 1.336 1.336 1.336 1.336 1.336 1.056 0.876

Figure 6: Magnitude images corresponding to the sequence settings described
in Table 1

described in the next subsection.

2.2 Reconstruction

The acquired MR signal is stored in a Fourier space, called k-space. This
k-space data needs to be reconstructed into image space. Normally the MRI
scanner reconstructs this data into magnitude images, discarding information
on the phase data. By reconstructing the images ourselves, using an already
developed method, the complex nature of the data remains intact. In Figure
7, the real and imaginary part of a complex image are given as example.

For the reconstruction of the images, the complex valued coil sensitivity
profiles of the neck coils were used. In Figure 8.A-D, the magnitude of
the sensitivity maps is given for all channels and coils. The corresponding
reconstructed image is given in Figure 8.E. The same sensitivity profile was
used for the reconstruction of all images from the same scan session. If a
different profile was used for each image, the noise in each reconstructed
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image could be different, adding additional variability in the mapping results.
Hence, the same complex valued coil sensitivity profiles were used for the
reconstruction of all images.

Figure 7: Real (Re) and imaginary (Im) parts of an MR image

2.3 Registration

During the acquisition of the T1 and T2 weighted images, translation of the
subject can occur due to breathing, swallowing or repositioning of the head.
This results in a misalignment between all images and hampers quantitative
assessment, since in this case a given voxel does not represent the same
anatomical structure in each image. To account for these effects, image
registration can be applied. Registration can also be used in the evaluation of
reproducibility, for baseline-follow up scan comparison.

Registration is the process in which an image, called the moving image, is
deformed to fit another image, the fixed image, using the transformation T (x)
of the voxels x. The transformation describes how a moving image needs to
be deformed to align with a fixed image, and is defined as the transformation
from fixed to moving image domain, as the arrow in Figure 9 implies.

In Figure 9, the transformation T of the given data point describes the
relation between the location of this point in the fixed and moving image,
p and q. The transformation that is applied to align the fixed and moving

12



Figure 8: Coil sensitivity maps used in the reconstruction. A: Coil 1, chan-
nel 1, B: Coil 1, channel 2, C: Coil 2, channel 1, B: Coil 2, channel 2, E:
Reconstructed image
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Figure 9: Pairwise registration of point p in one image to point q in another
image [35]

images, can either be rigid or non rigid. A rigid transformation involves
rotation and translation of the fixed image. A non rigid, affine transformation
has no restrictions, e.g. it can translate, rotate, scale, deform and shear the
image.

We propose three different registration methods, each performing regis-
tration between the images in a scan (intrascan registration) and registration
between scans (interscan registration), for baseline-followup scan compari-
son. Pairwise, groupwise and multi pairwise registration, will be discussed
in the following subsections.

2.3.1 Pairwise

In pairwise registration one moving image was registered to one fixed image.
Pairwise registration is described by the optimization of the transformation
parameters µ, given by:

µ̂ = arg
µ

maxS(Sba (x),Sdc (Tc(x))) (4)

where S(Sba (x),Sdc (T (x))) is the similarity metric that compares the fixed
and moving image, where Sba (x) is image a in scan session b, and Sdc (Tc(x)) is
the transformed image c in scan session d. The metric that was used is based
on mutual information. Mutual information is a measure of the information
contained in one image about another image, and depends on the joint proba-
bility distribution [36].

In Figure 10, pairwise registration for two scans is visualized, where the
direction of registration is given by the arrows. For each scan, image 8 was
used as fixed image, since this image had the highest contrast, see the SR
images in Figure 6. The other images in the same scan were used as moving
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images. For these moving images specific transformations were estimated,
that transform the moving image to the fixed image.

Linking the inter- and intrascan transformation, we obtained images that
are aligned between scan sessions but also maintain intrascan alignment. In
the following examples TSab→Scd (x) gives the transformation that transforms
the image points x from image b in scan a to image d in scan c. The voxel
values of image 5 of scan 2, S2

5 in Figure 10 can be transformed to S1
8 , by

transforming S1
8 to S2

8 using transformation T (x) of data points x in S1
8 ,

TS1
8→S

2
8
(x), followed by the transformation of S2

8 to S2
5 using transformation

TS1
8→S

2
8
(x) as starting point, giving a total transformation: TS2

8→S
2
5
(TS1

8→S
2
8
(x)).

By applying this transformation to the voxel values S2
5 (TS2

8→S
2
5
(TS1

8→S
2
8
(x))),

translation between S2
5 and S1

8 is compensated for.

Figure 10: Pairwise registration in and between scan 1 and scan 2

2.3.2 Groupwise

Instead of registering one moving image to one fixed image, in groupwise
registration all images from a single scan were transformed in the same
optimization. The optimization of the transform parameters µ is given by:

µ̂ = arg
µ

minD(µ) (5)
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where D(µ) is the minimized dissimilarity metric, in which µ contains the
transform parameters for all images g. For groupwise registration we used
a metric proposed by Huizinga et al. [27]. This metric is based on Princi-
pal Component Analysis of the correlation matrix, which is insensitive to
intensity scaling of the images.

DP CA(µ) =
G∑
j=1

jλj(µ) (6)

λj , in Equation 6, is the jth eigenvalue of the correlation matrix which is
summed over G. The dissimilarity metric promotes that as much variance as
possible is explained by a few large eigenvalues.

All images from a given scan were registered to a mean space S̄pG, where
p is the scan number and G is a set of used images {1....G}. This mean space
contains the groupwise registered images. As a result of this registration,
intrascan alignment was achieved.

For interscan alignment, the same method as in pairwise interscan regis-
tration was used. In order to do so, the mean space images were transformed
back to image 8. Doing so, the interscan transformation, TS1

8→S
2
8
(x)), can be

applied for interscan alignment. An additional advantage by using the same
interscan transformation, is that it made comparison between the registration
methods easier, since registration results in both methods are given in the
image space of S1

8 .

As an example transformation, image 5 in scan 2 was firstly transformed
to the mean space image A2, giving transform parameters TS̄2

G→S2
5
(x), see

Figure 11. Hereafter the inverse transformation of image 8 to the mean
space image was used TS2

8→S̄
2
G
(x). Followed by the interscan transformation,

similar as in pairwise registration (TS1
8→S

2
8
(x)). Giving a total transformation

S2
5 (TS̄2

G→S2
5
(TS2

8→S̄
2
G
(TS1

8→S
2
8
(x)))), that aligned both inter- and intrascan.

2.3.3 Multi pairwise

The third method that we propose, is multi pairwise registration. Multi
pairwise registration was performed interscan, and has as advantage that it
utilizes all available images in the registration optimization, as opposed to
using only one fixed and moving image to perform interscan registration, as
was the case in the previously discussed methods. The images were trans-
formed to mean spaces S̄1

G and S̄2
G, as shown in Figure 12 using groupwise
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Figure 11: Groupwise registration in scan 1 and scan 2, and pairwise registra-
tion between scan 1 and scan 2

registration as was discussed in the previous subsection.

The optimization of the transform parameters in multi pairwise registra-
tion is given as:

µ̂ = arg
µ

max
G∑
g=1

λgSg(S̄1
g(x), S̄2

g(Tg(x))) (7)

given Tg a parametrization of µ. The similarity between two images with
the same index g in scan one and two is summed over all images g. The
contribution of the similarity between a given pair S̄g

1(x), S̄g
2(Tg(x)) in the

optimization is weighted by λg . In our case the weight of each pair in the
optimization was set equal. The metric used in the optimization is based on
mutual information.

As an example, for image 5 in scan 2 the transformation can be written
as S2

5 (TS̄2
G→S2

5
(TS̄1

G→S̄
2
G
(TS8

1→S̄1
G
(x)))). TS̄2

G→S2
5
(x) describes the groupwise regis-

tration in scan 2, TS̄1
G→S̄

2
G
(x) the multi pairwise registration between mean

spaces S̄1
G and S̄2

G, and TS8
1→S̄1

G
(x) is the transformation to reference image

S1
8 .
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Figure 12: Groupwise registration in scan 1 and scan 2, and multi pairwise
registration between scan 1 and scan 2. The multi pairwise registration gives
one transformation for all image pairs

2.3.4 Registration settings

Elastix was used to perform the registration [35]. In each method described
above, intrascan registration was performed using a non-rigid B-spline trans-
formation. Interscan registration was performed in two stages. Firstly, a rigid
Euler transform was applied, and secondly a non-rigid B-spline transforma-
tion was used. The B-spline gridsize was 15mm, which was optimized by van
’t Klooster et al. [28]. The cost function is optimized using adaptive stochastic
gradient descent, as proposed by Klein et al. [37].

All three methods were evaluated in the image space of S8
1, as to make a

fair comparison between the registration methods.

2.4 Mapping

Mapping of T1 and T2 was performed by fitting a mathematical model to
the data of each voxel. This mathematical model contains the signal model
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which determines the signal intensity for given settings. In the following
subsections S contains the MR signal for a voxel x over all images G.

2.4.1 Signal model

The signal models in Equations 1, 2 and 3 can be rewritten into one func-
tion that describes the complex signal intensity as a function of the given
parameters, for each of the used preparation modules. This function is given
by:

S = Ae−TER2(1−Be−TIR1 + (B− 1)e−R1(TR−TE)) (8)

where TE , TR, TI for each image are given in Table 1.

Usually the magnitude signal is used to estimate the signal model pa-
rameters, as was discussed in the introduction. The magnitude signal of the
complex signal given in Equation 8, is given by:

S = |Ae−TER2(1−Be−TIR1 + (B− 1)e−R1(TR−TE))| (9)

For the inversion prepared images TE = 0. When TE = 0, the signal model
in Equation 9 changes into:

S = |A(1−Be−TIR1 + (B− 1)e−R1TR)| (10)

Which is the same as Equation 3 in Section 2.1.4. For the spin echo prepared
images, images 3 to 7 in Table 1, TI = 0. Giving equation:

S = |Ae−TER2(1−B+ (B− 1)e−R1(TR−TE))| (11)

Since no inversion pulse is applied in this preparation, B = 0. This changes
Equation 11 to:

S = |Ae−TER2(1− e−R1(TR−TE))|, (12)

which is the signal equation for spin echo prepared images, as described
in Section 2.1.2. The last two image settings in Table 1 correspond to the
saturation prepared images. For these images TI = 0, giving Equation 11,
and B = 0, giving signal model 12. TE is zero as well for this preparation.
Equation 12 can therefore be rewritten to Equation 13, which is the signal
model for saturation prepared images as described in Section 2.1.3.

S = |A(1− e−TR R1)| (13)

The magnitude signal model may not suffice, when our acquisition scheme
is used. We can explain this with the following example. For a given IR
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Figure 13: Measured and true longitudinal magnetization for an IR sequence

pulse sequence and tissue type, the real part of the complex signal may look
like the red line in Figure 13. When the magnitude of this signal is used,
we measure samples along the blue line. The black circles in this figure
correspond to three measurement samples, taken at 50, 230 and 700 ms. Two
curves may be fitted to this data, namely the blue and ochre curves. The
measurement point around the null time, the time at which the signal is zero,
is important for correct fitting. If our point at 230 ms is assumed to have
negative magnetization, we would expect to fit the blue curve. If this point is
assumed to have positive magnetization the ochre curve would be a possible
fit. Based on whether a point has positive or negative magnetization at a
certain time, the estimated T1 can be incorrect.

Therefore, we propose to use a modified version of Equation 8, to allow
the use of complex data. This change was made according to work of Barral
et al. [19]. They proposed to change A:

A = rae
iφa (14)
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In this case ra, the scaled proton density is a real number, and φa is the
transmit-receive phase. The complex signal model is then given by:

S = rae
iφae−TER2(1−Be−TIR1 + (B− 1)e−R1(TR−TE)) (15)

2.4.2 Parameter estimation method

The signal model parameters were optimized using a maximum likelihood
(ML) estimator. A ML estimator, maximizes the likelihood of a parameter x
given the observed data y [38]:

x̂ = arg
x

maxlog(L(x|y)) (16)

For our problem, using magnitude data, optimization of the signal model
parameters θ can be written as:

θ̂ = arg
θ

maxlog(Rice(I |S(θ))) (17)

where the loglikelihood of the estimated magnitude signal S(θ) given the
true magnitude signal I and a Rician distribution, was maximized. θ is a
vector containing all signal model parameters that were estimated. When the
complex signal model was used, the optimization is given as:

θ̂ = arg
θ

max log(N (I |S(θ))) (18)

where I and S(θ) are normally distributed. The optimization method is based
on a trust region method, which approaches global optimization by minimiz-
ing a quadratic approximation of the cost function at each iteration of the
estimator. The estimated decrease in cost function, by assuming a quadratic
shape of the optimization problem, is compared with the actual decrease in
cost [39]. If the ratio between the predicted and actual decrease in cost func-
tion is in agreement, we can conclude that the quadratic approximation of the
cost function is correct and we adopt the predicted step in parameter change.
The trust region size is maintained or increased. If the agreement between
predicted and actual decrease in cost function is poor, we can conclude that
the current trust region can not be approximated by a quadratic model and
the trust region is therefore shrunk [39]. Eventually the cost function reaches
an optimum and no step can be taken that further decreases the cost.

The optimization also used a preconditioner. Preconditioning is an at-
tempt to scale the quadratic form of the optimization to make it more spheri-
cal. A spherical optimization problem is faster to solve than a more ellipsoid
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shaped optimization problem.

Before optimization of the signal model parameters, θ is initialized for
each voxel using a search in a Halton sequence [40]. A Halton sequence gener-
ates points from a range of values in a quasi-random fashion, for a more even
coverage over the set range, than would be the case when random samples
are drawn. The range of values are user-defined, by giving a maximum and
minimum value for each parameter. The parameter vector that results in the
lowest cost, is used as initial value for the optimization.

In the following two subsections, we propose two methods that use the ML
estimator and trust region method to estimate the signal model parameters.
One in which B was kept constant and one in which B was estimated and
spatially regularized.

2.4.3 Scenario 1: Constant B

In the first proposal, θ consists of four signal model parameters, namely: ra,
φa, R1, R2. B was set constant during optimization. The acquisition scheme
was only optimized for T1 and T2 accuracy per unit of scan time, and not for
accurate estimation for B. By setting B constant, the complexity of the param-
eter estimation decreases and we do not suffer from an ill-posed unknown B.

The estimation of the signal parameters from the registered images can
be described by a pipeline. A visual representation of this pipeline is given
in Figure 14. As described in the previous subsection, the signal parameters
were initialized by performing a search in a Halton sequence. Hereafter,
these parameters were optimized in a voxelwise manner. Two subsequent
optimizations of the signal model parameters performed optimization in a
blockwise manner. In blockwise optimization, multiple voxels are optimized
with a single cost function. E.g. all the voxels present in the white block,
given in Figure 15, are optimized with one cost function. After the voxels in
the white block are optimized, the block is moved along one direction, giving
the position of the red block. The voxels in this block are optimized, before
the block is moved to the position of the blue block. This process continues
until the block has moved across all spatial dimensions in the ROI. Blockwise
optimization enables spatial coupling of the estimation of the signal model
parameters. An optimum is found globally for the parameters of a block,
as opposed to optimal parameters per voxel. A step in parameters is taken
for all voxels in a block. There is no coupling in the optimization between
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Figure 14: Flowchart representing the mapping processing pipeline for sce-
nario 1

blocks. For instance, the optimization of the white block in Figure 15, does
not take into account that the voxels in the red block also get optimized after
the optimization of the white block. In order to couple the optimization of
all blocks, multiple iterations of the blockwise fitting or overlap of blocks,
were needed to achieve convergence of the optimization.

After two iterations of blockwise fitting, the final optimized parameters
were used for evaluation of the carotid wall T1 and T2.
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Figure 15: Three example blocks used in blockwise fitting

2.4.4 Scenario 2: B estimation and regularization

Setting B constant may induce a bias in the mapping results, and may give an
incorrect representation of the true parameters (see Appendix C). Therefore,
we propose to estimate B in this scenario. We also included the use of
prior information of the signal model parameters in the estimation. Prior
information can give insight on the spatial behaviour of a certain parameter,
i.e. what values are expected in certain tissues, how many variability is
expected in a certain ROI and what distribution is expected per parameter.
We expect that φa, B and σ are slowly spatially varying, where σ is the noise
level in the image. The CUBE readout sequence is based on spin echo, which
refocuses phase accumulation due to variations in B0, the main magnetic
field [41]. Slow variation in φa can be caused by non centering of the echos in
the readout window, which induces a phase gradient in the spatial dimensions.
B is expected to be slowly varying, since adiabatic inversion pulses were used
that are not influenced by inhomogeneities in the magnetic field [34]. From an
early experiment, shown in Figure 22.B, where B is not spatially regularized,
we observed that B was noisy and highly spatially varying. We therefore
propose to spatially regularize both B and σ . φa showed (Section 4.2) to
be slowly spatially moving, and thus did not require spatial regularization.
When prior information is included and regularization is applied, we propose
the following optimization for θ:

θ̂ = arg
θ

max(log(N (I |S(θ))) +λ L(θ) +λσ L(ln(σ );θ) +P (θ)) (19)
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a maximum a posteriori (MAP) estimator, where θ contains ra, φa, R1, R2, B.
The second argument in the equation contains the regularization term where
the LaplacianL of the parameters is weighted by λ. The third arguments gives
the regularization term of the Laplacian of ln(σ ) optimized for θ, weighted
by λσ . The fourth argument is the prior, containing information on the
distribution of each parameter. In the following subsections the changes
that were made in the cost function (Equation 19), as well as changes in the
preconditioner are explained.

Spatial regularization and global estimation

Spatial regularization was achieved by adding a penalty term to the cost func-
tion, given by the second argument in Equation 19. Here, the Laplacian of the
parameters is weighted by λ. A larger weight λ, increases the contribution of
the Laplacian to the cost function, limiting the amount of spatial variation.

It is assumed that B and σ are slowly varying across the spatial dimensions,
given the adiabatic pulse, discussed in Section 2.1.4. In order to correctly
fit a global, slow varying B, we chose to use global estimation. In global
estimation, a cost function is not optimized blockwise or voxelwise, but is
optimized including all voxels in the ROI. With global estimation we expect
to not suffer from spatial decoupling of the estimation of B due to blockwise
fitting, but to fit a smooth B to the ROI.

Prior

The prior P is the last term in Equation 19. The prior specifies a priori infor-
mation on the distribution of the parameters [18]. For simplicity, we assumed
that the signal model parameters could be modeled by a normal distribution
with a mean µ and standard deviation σ . Parameter estimates that are far
away from the mean of this distribution, have a low probability, and high
penalty in the prior.

In order to avoid bias due to the choice in distribution, we have chosen a
standard deviation that covered more than the expected range of parameter
values. By setting the prior, voxels with parameter values that are unlikely
according to the prior, are penalized and pulled towards the mean of the
distribution during optimization, even though the standard deviation of the
prior distribution is larger than the expected range.
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Preconditioner

As was discussed in Section 2.4.3, the preconditioner is based on the mean
of the Hessian of the parameters, and attempts to scale the parameters to
speed up the optimization. When global optimization is used, the mean of
the Hessian is calculated over all voxels. The mean of the Hessian is heavily
influenced by voxels where an incorrect fit with unrealistic parameter values
is found. Voxels where R1 and/or R2 are strongly negative and ra is close to
zero can give a proper representation of the signal, but are by no means real-
istic. These voxels are located in the vessel lumen, where the signal intensity
is low, and noise level is relatively high. In such outlier voxels the Hessian
is disproportionate to the Hessian of voxels with realistic parameter values,
which can have a large impact on the mean Hessian over all voxels.

When the mean of the Hessian is relatively high for one parameter, the
allowed change in this parameter in the entire optimized volume is close to
zero. In order to avert problems with the preconditioner due to the parame-
ters of outlier voxels, we propose to compute the mean of the Hessian only on
voxels that have realistic values, where R1 is between 1/3 and 10s−1 and R2

is between 10 and 100s−1. By doing so, a single outlier voxel does not have
influence on the optimization of the other voxels.

We also propose to smooth the preconditioned parameters using a filter.
When regularization is applied during the optimization, the optimization can
be sped up by smoothing the preconditioned parameters. Doing so, improves
the condition number of the preconditioner. The condition number is a
measure for the impact of a change in parameter values to a change in cost.
Smoothing the preconditioned parameters improves the condition number
and the optimization of the parameters. Smoothing is performed using a 1D
filter to the preconditioned parameters, where the smoothed preconditioned
parameter y(n) at point n is given by:

y(n) = x(n) +αx(n− 1) (20)

where x(n) is the non smoothed preconditioned parameter at point n. α
determines the strength of the smoothing. The spatial filter is based on an
autoregressive model of order 1.
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Signal model adaptation

The direction of the steps taken by the trust region method were based on the
derivative of the signal to the signal model parameters, δSδθ , i.e. how much
the signal changes by a change in parameter values. Over the entire range of
realistic parameter values it is expected that a change in parameters changes
the signal. With the current signal model, Equation 15, this is not completely
possible. In Figure 16, δSδra is given for a range of R1 for all nine images. The
parameters are set at: ra = 100, φa = 0, B = 1.85, R2=20. When parameter R1

goes to zero, δS
δra

tends to zero as well. This means that when R1 is close to
zero, no efficient step can be taken for ra that can change the signal, since ra
and S are decoupled.

Figure 16: Derivative for ra for a range of R1 given the first signal model
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In order to create a smooth and continuous derivative δS
δra

over a large
range of R1, an adaption in signal model is required. By dividing ra by R1, as
given in Equation 21, continuity of the derivative is achieved. The derivative
δS
δra

is non-zero around R1 = 0, see Figure 17.

S =
rae

iφa

R1
e−TER2(1−Be−TIR1 + (B− 1)e−R1(TR−TE)) (21)

Figure 17: Derivative for ra for a range of R1 given the second signal model

Data substitution for unrealistic voxel values

Voxels with unrealistic parameter values can also have a negative impact on
how steps are taken by the trust region method. As discussed in the previous
subsection the trust region method optimizes the signal model parameters
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based on δS
δθ . When there are outlier voxels with large parameter values,

e.g. R1 and R2 are 1000 times larger than the surrounding voxels, the trust
region method can find a relatively large step in parameter values, due to a
large gradient for these parameters. It assumes that the biggest change in
cost function can be made by changing the parameter values of these voxels,
voxels that are of no interest, since they are located in low SNR regions
such as the vessel lumen. In order to avert the trust region method to only
optimize these voxels we propose to replace the data and θ for these voxels
imposing synthetic values that have minimal impact on the optimization of
the neighbourhood. The data was created using parameter values given by
the mean of the initial value range used in the Halton sequence. ra was set
to 0.1 times the median of ra in the optimized volume, to lower the SNR of
these voxels, and thus their contribution in the optimization.

Flowchart scenario 2

The estimation of the signal model parameters using scenario 2, can be visu-
alized with the flowchart given in Figure 18. In this flowchart the first three
optimization steps are similar as for scenario 1. In these steps parameters
are initialized and optimized voxelwise and blockwise. During these steps,
the adjustments proposed in this section are used. B is kept constant during
the voxelwise estimation, as to avert spatial decoupling of the estimation of
B during this step. In the next optimization step, B is optimized using the
constant B from the voxelwise estimation as initialization.

In addition, four extra optimization steps are included that globally opti-
mize the signal model parameters. It is expected that one global optimization
should suffice, but to rule out termination of the optimization before an
optimum is found, a total of four global optimization iterations are executed.
As discussed in the previous subsections, global optimization is performed to
estimate a smooth and continuous B for the ROI.

2.5 Cramer Rao Lower Bound

For the evaluation of the estimated parameters in the carotid wall, the Cramer
Rao Lower Bound (CRLB) of the parameters was used. The CRLB gives the
lower bound of the variance of an unbiased estimator [42]. In this thesis, the
CRLB was used as a weight to evaluate the mean T1 and T2 in the carotid wall.
The weighted mean is given by:
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Figure 18: Flowchart representing the mapping processing pipeline for sce-
nario 2
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T̄k =
∑N
x Tk(x)w(x)∑N

x w(x)
(22)

where Tk is T1 or T2, and w(x) = 1/CRLB(x;Tk) the CRLB at point x for
parameter Tk .
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3
Experimental setup

In the following subsections the experiments are described that are required
to evaluate the reproducibility. As was discussed in the introduction, the
feasibility of the complex signal model will be firstly tested on simulated
data (Section 3.1) and secondly on hardware phantom data (Section 3.2). In
Section 3.3, the experimental setup for the volunteer studies is given, with
which we want to evaluate three different registration methods, and the influ-
ence of B on the reproducibility of T1 and T2.

In this thesis, a GE Discovery MR750 3.0T MR scanner was used for the
acquisition of MR images. The size of the FOV was 16 cm in the frequency
direction, and 14 cm in the phase direction. The image size in the frequency
direction was 512 voxels and 448 voxels in the phase direction, where the
voxel size in these directions was 0.3mm. A total of 16 slices were acquired,
with a slab thickness of 2mm. Parallel imaging was used to acquire these
images, where an ARC factor of 2 was used [43].

3.1 Complex signal model testing: Monte Carlo ex-
periment

In this experiment the aim was to evaluate the performance of both the com-
plex and magnitude signal model using simulated data. Data was generated
using the complex signal model (Equation 15) and the optimized acquisition
settings, for a range of T1 values (100 through 1500ms). B was set to 1.9, the
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unprepared magnitude, ra, at 1000 and φa = 0. Zero mean Gaussian noise
with σ=33, was added to both the real and imaginary parts for each of 10.000
independent realizations.

The data was fitted by both the complex and magnitude signal model.
For the magnitude model, the magnitude of the complex data was used. The
distribution of the estimates for each given T1 was inspected visually on
bimodality. A threshold that separates the data of both distribution modes
was manually set. The mean and standard deviation of both modes was
evaluated.

3.2 Complex signal model testing: Hardware phan-
tom

The performance of the complex signal model (Equation 15) and the magni-
tude signal model (Equation 9) was also evaluated using a hardware phantom
consisting of twelve tubes. Each tube contained an unknown amount of
agarose, for T2 shortening, and GdCL3 for T1 shortening. It is assumed that
the contents in the tubes are uniformly distributed.

The pulse sequence settings as described in Section 3.3 were also used
for the acquisition of images of the hardware phantom. For the hardware
phantom no image registration was required, since the phantom remained
still during the acquisition of all images.

For the fitting of the acquired data, scenario 1 was used, with B = 1.95.
A blocksize of 3x3x3 and an overlap of one was used for the blockwise opti-
mization.

For evaluation of the results, the mean T1 and T2 for each tube, as well
as the standard deviation, are given. We also visually evaluated the phase
estimates to determine the presence of phase errors and/or effects of phase
errors.

3.3 Volunteers

In this experiment nine volunteers were scanned using the settings described
in Section 2.1.5. Each volunteer was scanned twice to be able to evaluate
reproducibility of T1 and T2 maps. Between each scan, the volunteer was

34



taken off the table for a short period of time. The influence of registration
and mapping methods was evaluated on the T1 and T2 of the carotid wall.

For evaluation of the estimated signal model parameters, a mask was
manually drawn on the carotid wall in one scan. This mask was used to
evaluate the results for both scan and rescan. We have given the weighted
mean for T1 and T2, calculated using Equation 22.

3.3.1 Evaluation of registration methods

In this experiment the goal was to evaluate the performance of each registra-
tion method described in Section 2.3.

For parameter estimation, the optimization scheme given in scenario 1
(Section 2.4.3) was used, with B = 1.95, so only five parameters (ra,R1,R2, φa
and σ ) are estimated.

The performance of the registration methods was tested by evaluating T1

and T2 weighted mean between scan and rescan in the carotid wall.

3.3.2 B estimation and regularization

In order to test the dependence of the T1 and T2 maps on the value of B, we
performed an experiment using scenario 2, where B was estimated and spa-
tially regularized using the MAP estimator (Section 2.4.4). Image registration
was performed using the multi pairwise approach.

In this experiment, B was set constant at 1.85 during the voxelwise opti-
mization. In the following six iterations, B was estimated and regularized. In
blockwise optimization, a blocksize of 3x3x3 voxels with an overlap of one
was used.

For the regularization, four weights for B were used, namely 0, 50, 1000
and 10.000. The weight for the Laplacian of σ was set to 50. α, the autore-
gressive filter variable, was set at 0.5.

For the evaluation of the results, the T1 and T2 weighted mean was cal-
culated using the carotid wall mask. The regularization weights for B were
evaluated by visual inspection of the B maps.
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3.3.3 Patient example

As an example, we also scanned a patient that had carotid plaque. The
patient was scanned only once, but with the same pulse sequence settings
as described in Section 2.1.5. For registration we used the multi pairwise
approach. Mapping was performed using the method described in Section
2.4.4.
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4
Results

4.1 Complex signal model testing: Monte Carlo ex-
periment

Figure 19 shows the mean and standard deviation for observed modes of T1

estimates, given both signal models. From this figure we can clearly see that
over almost the entire range of T1, bimodality occurs when the magnitude
model is used for fitting the data. For a true T1 of 300ms, bimodality is
not observed. When the complex model is used, the mean of the estimates
corresponds to the true T1. For both models, the spread in T1 estimates
increases as the true T1 increases.

4.2 Complex signal model testing: Hardware Phan-
tom

In Figure 20, the resulting T1 map is given for a cross section of the hardware
phantom tubes. In the top row, the magnitude model is used, and in the
bottom row the complex signal model is used. As we can see in Figure 20.A,
the T1 maps are not uniform in each tube. We would however expect the
maps to be uniform for each tube, since the contents of the tubes are as-
sumed to be homogeneous. For several T1 there is ambiguity in the estimated
results. In Figure 20.B one tube is magnified and we can clearly see two
distinct T1 modes. The mean and standard deviation of these two modes are
846.6±10.9ms and 541.5±8.7ms. When the complex signal model is used,
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Figure 19: T1 mean and standard deviation for using the magnitude and
complex signal model, for fitting the simulated data

Figure 20: T1 maps for a cross section of the hardware phantom, using the
magnitude and complex model

Figure 20.D we no longer suffer from ambiguous results, and only a single
mode is observed with mean 846.1±12.3ms.

The phase map, when using the complex signal model, is smooth and
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slowly spatially varying, as can be seen in Figure 21. In the z-direction the
phase ranges from -1 to 1 radians. In x and y there is also a gradient visible,
roughly varying 0.5 radians over the range visible in this figure. There are no
artifacts visible in this figure that could be caused by phase errors.

Figure 21: Phase map of the hardware phantom in all spatial dimensions

4.3 Volunteers

4.3.1 Evaluation of registration methods

In Tables 2 and 3, the estimated carotid T1 and T2 are given, using the pre-
viously described registration methods. For each of the nine volunteers, a
weighted mean for T1 and T2 is given. The square root of the CRLB (sCRLB)
of the weighted mean is also given in these tables.

Differences in T1 between scan and rescan vary from 7 to 90ms, with
as extrema a difference of 230ms for volunteer 38. The mean difference in
T1 between scan and rescan is 58.3ms, given a mean T1 of 960.7ms. The
differences between scan and rescan for T2 do not follow the same pattern as
in T1, i.e. a larger T1 weighted mean does not give a larger/lower T2 weighted
mean. For volunteer 38 the difference between scan and rescan in T2 is the
largest, 15ms, whereas the mean difference between scan and rescan over all
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volunteers in T2 is 6.3ms.

The T1 values seem to be slightly closer between scan and rescan for
the groupwise approach than when the pairwise approach is used, given
the difference in weighted mean for volunteers 30, 31, 32, 35, 36 and 40.
For the other volunteers an increase in difference between scan and rescan
is observed. The difference between scan and rescan T1 weighted mean is
not significantly different between the pairwise and groupwise approach,
t(8)=0.38,p=0.7115. The mean sCRLB remains the same between pairwise
and groupwise. The mean of the difference in scan and rescan for T2 remains
the same when using both methods and the difference between scan and
rescan T2 weighted mean is not significantly different between the pairwise
and groupwise approach, t(8)=0.13,p=0.904.

When the multi pairwise approach was employed, we can see that for
volunteer 29, 30, 31, 32, 36, 38, the T1 weighted mean is closer to that of scan
1 than when the groupwise method is employed. The mean of the differences
between scan and rescan between pairwise and multi pairwise registration
decreases from 58.3ms to 50.6ms. However, the difference between scan and
rescan T1 weighted mean is not significantly different between the pairwise
and multi pairwise approach, t(8)=0.91,p=0.388. The T2 weighted mean
changes similar to the T1 weighted mean between the registration methods.
Only for volunteer 36, where the T1 was closer for scan and rescan in multi
pairwise than in pairwise registration, the T2 is slightly further apart. For
volunteer 41, the T2 is closer together in multi pairwise than in pairwise regis-
tration, as opposed to a larger T1 difference when multi pairwise registration
is employed. The difference between scan and rescan T1 weighted mean is
not significantly different between the pairwise and multi pairwise approach,
t(8)=0.22,p=0.835.

4.3.2 B estimation and regularization

B was regularized using four regularization strengths. In Figure 22B-E, the
estimated B maps for a given ROI, using a regularization weight of 0, 50,
1000 and 10.000, is shown. In Figure 22.B, the B map is given for weight 0.
In this case there is no spatial coupling of B, and estimated values for B range
from 0.86 to 56.4, where values above B = 2 are physically impossible. In the
carotid lumen, the substituted voxels can be clearly seen, where B = 1.85. In
Figure 22.C, multiple modes are visible across the ROI, where B ranges from
1.49 to 2.00. When the weight is increased, around four to five modes remain,
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Vol.
T1 (ms)

Pairwise Groupwise Multi pairwise

Scan
Weighted

mean
sCRLB

Weighted
mean

sCRLB
Weighted

mean
sCRLB

29
1 939.6 3.9 933.9 3.9 933.9 3.9
2 962.4 3.7 969.6 3.7 963.8 3.6

30
1 858.3 4.8 923.2 4.9 923.2 4.9
2 943.5 5.5 865.5 6.0 968.9 5.8

31
1 1012.3 6.5 1035.2 6.0 1035.2 6.0
2 1028.2 5.7 1050.7 5.3 1036.8 5.3

32
1 897.0 5.6 903.7 5.6 903.7 5.6
2 870.0 5.6 926.5 5.7 911.4 5.6

35
1 1021.0 3.8 1018.2 3.7 1018.2 3.7
2 995.7 3.5 1001.6 3.4 999.3 3.5

36
1 969.1 5.2 979.1 5.2 979.1 5.2
2 945.4 5.0 961.4 5.0 980.8 5.2

38
1 894.6 5.6 889.6 5.4 889.6 5.4
2 1124.8 7.6 1133.3 7.3 1116.6 7.0

40
1 935.0 4.9 939.4 5.0 939.4 5.0
2 1022.3 4.5 1002.1 4.5 1006.2 4.5

41
1 933.6 4.7 998.8 5.2 998.8 5.2
2 940.6 3.4 966.8 3.4 942.5 3.4

mean 960.7 5.0 972.1 5.0 974.9 4.9
mean of dif. 58.3 0.7 56.0 0.8 50.6 0.7

Table 2: Weighted mean and sCRLB for T1, for pairwise, groupwise and multi
pairwise registration

and the range in B is significantly smaller (1.61 to 1.86). Increasing the weight
to 10.000 gives a very smooth and continuous B map, with values between
1.65 and 1.85. Given the background in Figure 22.A, global estimation of B is
not heavily influenced by the substituted voxels where B was set at 1.85, as
was discussed in Section 2.4.4.

Table 4 shows the weighted mean for T1 and T2 when B is estimated and
regularized, using a regularization weight of 10.000. For most volunteers the
difference in T1 between scan and rescan has increased, as well as a systemat-
ically higher T1 weighted mean for each volunteer. This increase can more
clearly be seen in Figure 23, where the weighted mean is given for T1 and T2,
using scenario 1 and 2. Two points connected with a colored line represent
the weighted means for scan and rescan for one volunteer. The red lines at
each point represent the sCRLB for T1 and T2. The results for scenario 2 are
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Vol.
T2 (ms)

Pairwise Groupwise Multi pairwise

Scan
Weighted

mean
sCRLB

Weighted
mean

sCRLB
Weighted

mean
sCRLB

29
1 39.2 0.2 39.3 0.2 39.3 0.2
2 40.7 0.2 39.4 0.2 39.3 0.2

30
1 38.8 0.3 39.8 0.3 39.8 0.3
2 38.4 0.3 37.1 0.4 40.0 0.3

31
1 41.3 0.4 40.3 0.3 40.3 0.3
2 51.4 0.4 49.0 0.4 50.6 0.4

32
1 44.0 0.4 45.1 0.4 45.1 0.4
2 36.5 0.3 37.3 0.3 37.5 0.3

35
1 37.9 0.2 37.0 0.2 37.0 0.2
2 41.7 0.2 41.4 0.2 42.0 0.2

36
1 36.5 0.2 35.8 0.2 35.8 0.2
2 42.3 0.3 40.8 0.3 42.2 0.3

38
1 34.2 0.3 34.6 0.3 34.6 0.3
2 49.6 0.6 51.1 0.5 50.1 0.5

40
1 39.8 0.3 39.8 0.3 39.8 0.3
2 44.5 0.3 42.9 0.3 43.7 0.3

41
1 44.8 0.3 44.2 0.4 44.2 0.4
2 37.2 0.2 36.2 0.2 36.8 0.2

mean 41.0 0.3 40.6 0.3 41.0 0.3
mean of dif. 6.3 0.1 6.3 0.1 6.3 0.1

Table 3: Weighted mean and sCRLB for T2, for pairwise, groupwise and multi
pairwise registration

given in dashed lines and the results from the previous experiment, using
scenario 1, are given in solid lines. This Figure clearly shows an increase in
weighted mean for T1, whereas the weighted mean for T2 remains the same.
For volunteers 30 and 41, the difference in T1 weighted mean has increased
to more than 200ms, where it was only a few milliseconds when B was kept
constant. For volunteers 38 and 40 the difference in T1 decreased up to 70ms.
The weighted mean of T2 is very much the same as when B was kept constant.

In Figure 24, the difference in parameters is given between two subse-
quent optimizations. Between the third and fourth optimization, the largest
change in parameters is observed. The fourth iteration, is the first itera-
tion that employs global optimization. Convergence is reached after seven
iterations. T1 changes only up to a few milliseconds between the last two
iterations.

42



Figure 22: Inversion efficiency maps for various regularization weights. A:
MR image, B: weight 0, C: weight 50, D: weight 1000, E: weight 10.000

Figure 23: T1 and T2 weighted mean for scan and rescan for all volunteers.
Scenario 1 multi pairwise where B is fixed: results given in solid lines, sce-
nario 2 multi pairwise results where B was estimated and regularized: results
given in dashed lines
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Vol.
T1 (ms) T2 (ms)

Scan
Weighted

mean
sCRLB

Weighted
mean

sCRLB

29
1 1152.2 0.4 36.1 0.02
2 1203.8 0.5 38.1 0.02

30
1 1133.0 0.8 39.5 0.03
2 1367.6 0.6 37.8 0.01

31
1 1368.4 1.3 37.2 0.03
2 1344.6 1.3 45.7 0.08

32
1 1053.5 0.8 41.9 0.03
2 1072.0 0.5 35.3 0.02

35
1 1178.9 0.5 35.1 0.03
2 1236.4 0.6 39.5 0.03

36
1 1109.7 0.6 34.8 0.03
2 1098.3 0.7 41.8 0.04

38
1 1124.6 0.7 32.0 0.02
2 1298.0 1.0 46.6 0.04

40
1 1242.0 0.5 36.8 0.02
2 1261.6 0.4 41.5 0.03

41
1 1405.2 0.9 39.1 0.03
2 1145.0 0.5 34.7 0.02

mean 1210.8 0.7 38.5 0.03
mean of dif. 94.5 0.2 6.0 0.01

Table 4: Statistics for scan and rescan, and T1 and T2

As an example, the resulting maps for Volunteer 35 are given in Figure
25. The carotid wall can be clearly seen in the T1 and ra maps. The lumen of
the vessel and substituted voxels have no clear effect on the global estimation
of B, which is smooth and continuous throughout the ROI.

4.3.3 Patient example

The parameter maps for the patient are given in Figure 26. In the ra map, an
outline of the vessel lumen and outer vessel wall are given in green and blue
respectively. The outline of the plaque is given in purple. The corresponding
T1 and T2 maps show a clear decrease in T1 and increase in T2 in the observed
plaque compartment.
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Figure 24: Absolute difference in parameters (row) between two subsequent
iterations of the ML estimator (column)
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Figure 25: Parameter maps for a cross section of Volunteer 35
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Figure 26: Parameter maps for a cross section of the patient
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5
Discussion

Our findings demonstrate that the use of a complex signal model represents
the acquired MR data better than the use of a signal model based on the
magnitude signal. From the results in Section 4.1 and 4.2 we observed for
various T1, which correspond to possible T1 present in carotid plaque, that
ambiguity in estimated T1 occurs when the magnitude signal model is used.
Two solution modes are observed, see Figure 19, although only one mode
is expected, that corresponds to the true T1. Therefore reproducibility of
T1 estimation might be hampered when the magnitude signal is used. In
plaque characterization using T1 and T2, it is not desirable to estimate am-
biguous T1 values in a homogeneous area. In this case, several voxels with
incorrect T1 might be classified as a different tissue. The use of complex data
resolves the ambiguity in T1 estimation and the inclusion of phase data in
the estimation of T1 and T2 does not result in phase errors in the mapping re-
sults. The estimatedφa is smooth and continuous over the spatial dimensions.

The difference in weighted mean for T1 between scan and rescan, when
evaluating the registration methods, shows an improvement in scan-rescan
reproducibility when the multi pairwise approach is employed versus the
pairwise approach (50.6ms vs. 58.3ms). This difference is not significant.
However, the use of multi pairwise registration is recommended. The most
important contribution of multi pairwise registration is that it uses all images
in interscan registration, rather than relying on a single user defined image
pair for interscan registration. The bias that might be introduced by choosing
an image pair for interscan registration might jeopardize the validity of tissue
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quantification.

Image registration on its own is an important preprocessing step in tissue
quantification. If a voxel does not represent the same anatomical structure
in each image, quantification of tissue parameters will be inaccurate. Future
work can involve improvement of the registration. Exploring the use of other
metrics and gridsizes might improve reproducibility of T1 and T2. We do have
to take into account that in this study healthy volunteers were scanned. It is
likely that patients suffer from more conditions and are therefore less likely
to stay still in the scanner. In patient scans, other than shown in the example
in Section 4.3.3, more motion artifacts were visible in the taken images than
in volunteers. An increased amount of motion artifacts could make image
registration harder and could hamper the quantitative assessment of plaque
components. It is not known how large this influence can be.

The estimation of B has an impact on the estimation of T1. The results
in Section 4.3.2 show an increase in T1 weighted mean when B is estimated
and regularized. It is clear that there is a coupling between B and T1. B
was estimated between 1.65 and 1.85 when using a regularization weight
of 10.000, resulting in a higher T1 than when B was set constant at 1.95.
The difference in estimated T1 weighted mean is more than 200ms between
scenario 1 and 2, even though B only changes up to 0.3. The implication of
this is that a relatively small change in B results in a relatively large change in
T1. If B is not correctly estimated a difference in T1 between scan and rescan
can be expected. Since the acquisition scheme is not optimized for accurate B
estimation, the incorrect estimation of B can potentially hamper the accurate
quantification of T1. Between scenario 1 and scenario 2, the sCRLB drops
about a factor ten for both parameters. The lowest achievable variance for an
unbiased estimator is smaller when scenario 2 is used, as opposed to when
scenario 1 is used. Future work may show where this difference in sCRLB
between both scenarios comes from, and why the sCRLB is so low for the
parameters estimated in scenario 2.

The spatial regularization of B should aid in a global estimation of this
parameter, but can be incorrect at the borders of the mask. As can be seen in
Figure 22, the edge of the mask has a value of 1.85, the initial value of this
parameter. When the carotid is close to the border of the mask, B is poten-
tially incorrect in the carotid wall, which could impact the reproducibility of
T1. However, as the mask is drawn manually around the carotid, this is not
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expected to be a serious limitation. There is a big advantage in using scenario
2 over scenario 1. Due to the estimation of B, a potential bias in results is
averted. From our results, it becomes clear that a constant B for the entire
ROI is an incorrect assumption.

The reproducibility of T1 and T2 suffices when the T1 and T2 difference
between plaque tissues is larger than the observed inter volunteer differ-
ence. The difference in T1 and T2 between scan and rescan should not be
attributable to difference in patient loading or coil positioning, but on differ-
ence in tissue type. Harteveld et al. [44] have determined the T1 and T2 of
various plaque components, ex-vivo on intracranial arterial plaque using a
7T MR scanner. For lipids they estimated a T1 of 838±167ms, for calcium a
T1 of 314±19ms, for fibrous tissue a T1 of 583±161ms, for the fibrous cap a T1

of 481±98ms and for the intracranial arterial vessel wall a T1 of 436±122ms.
We estimated the inter volunteer difference in T1 at 94.5ms. Lipids and
calcifications can most likely be correctly characterized with the current
reproducibility.

Biasiolli et al. [13] estimated T2 for multiple tissues, in-vivo using a 3T
MR scanner. Yielding a T2 of 56±9ms for fibrous tissue, 54±13ms for the
tunica intima and media, 37±5ms for the LRNC, and 107±25ms for calcifica-
tions. With the current reproducibility, differences between calcifications and
other tissues can be clearly seen. The difference between the LRNC and other
tissues can possibly also be observed. The estimated interscan difference in T2

is estimated at 6ms, which is roughly three times smaller than the difference
between the T2 of the LRNC and the T2 of fibrous tissue and the tunica intima
and media.

There is room for improvement in the reproducibility of T1 and T2. An
estimation of B in the sternocleidomastoid muscle could potentially aid in
scan-rescan reproducibility. The homogeneity and size of this muscle makes
parameter estimation less dependent on registration results and influence
of other tissues. A difference in B in this muscle between scan and rescan
can help as an indicator for a potential difference in B in the carotid artery.
Correcting for this occurring difference could improve the reproducibility in
T1 between scan and rescan.

The strong coupling between B and T1 could potentially be resolved by
changing the parametrization of the signal model, e.g. replacing B by a
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parameter that is also dependent on T1. Another solution could include a
revision of the optimization of the acquisition scheme. Also optimizing for
accurate B estimation could aid in better T1 reproducibility. This would
probably result in an increase in acquired images, and would have as disad-
vantage that total scan time increases. It is unfavorable to increase the total
scan time, due to the chance of an increased number of motion artifacts in
the last images caused by restless patients.

Even though a strong coupling between B and T1 exists, the coefficient of
variation is larger for T2 than for T1, namely 0.16 vs. 0.08. Relatively more
can be gained from improving T2 estimation than T1 estimation. A possibility
would be to reevaluate the settings for the spin echo prepared images. It
should be evaluated what the gain is in reproducibility in T2 when more SE
prepared images are acquired or when the used TE range is increased.
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6
Conclusion

This thesis was set out to explore the reproducibility of T1 and T2, where
an optimized acquisition scheme was used. The challenges posed in T1 and
T2 mapping by this acquisition scheme were evaluated, where we looked at
image registration and parameter estimation using complex data.

We conclude that the reproducibility of T1 and T2 with our proposed
method is sufficient to potentially allow the characterization of several plaque
components in patient studies. Our patient example showed the presence of
different T1 and T2 regions in the plaque. For further analysis of the quan-
tification of plaque components using T1 and T2, more patients need to be
scanned.

The reproducibility of our proposed method suffers from a few limitations,
e.g. the accurate estimation of B and the accuracy of the image registration.
Future work, as was discussed in Section 5, could potentially resolve these
limitations.

To my knowledge, no quantitative study has been performed to this day
that evaluated the reproducibility of T1 and T2 estimation of the carotid artery
wall using a spin echo based 3D imaging protocol. Results are comparable
with the carotid T1 and T2 estimated by Coolen et al. [15] where a variable
flip angle approach was employed. The experiments performed in this thesis
show promising initial results regarding tissue quantification using T1 and
T2 of carotid atherosclerotic plaque.
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Appendix A

Literature review

Stroke and atherosclerotic plaque

Strokes are the cause of roughly 140.000 deaths annually in the US [1]. 87%
of these strokes are caused by an ischemic event [2] where carotid atheroscle-
rotic plaque rupture contributes to 15-20% of all ischemic strokes [3]. Carotid
atherosclerotic plaque is the result of an inflammation in the carotid ves-
sel wall, which gets progressively worse [4, 5]. Vulnerable atherosclerotic
plaque can rupture and its contents can form thrombotic material that is
expelled in the artery. When this thrombotic material gets stuck in a narrow
cerebral artery, an ischemic event results. The luminal narrowing caused
by the growing of the plaque, called stenosis, has commonly been used for
identification of plaque severity. This was already done in the 1980’s on the
coronary artery [45].

But there have been signs that plaque composition is also important in
identification of plaque severity. Intraplaque hemorrhages (IPH) have shown
to be a risk factor in plaque vulnerability. Carr et al. [46] and Ota et al. [47]
showed that there was a strong correlation between IPH and plaque rupture.
van den Bouwhuijsen et al. [8] found that a high load of calcification is of-
ten related to more hemorrhagic components in the plaque core. Mughal
et al. [3] point out that cholesterol crystals in the lipid core can also cause
IPH, by tearing apart the vasa vasorum of the intima which causes additional
lipids, originating from the blood in the vasa vasorum, to enter the intima
and enlarge the lipid core. Takaya et al. [9] also found that IPH stimulate
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progression of atherosclerosis by increasing the lipid core and plaque volume.
This additional material puts more strain on the thin cap that keeps the core
material in place.

We can conclude that early diagnosis of vulnerable plaque and the specific
contents of the plaque are of utmost importance. Using plaque composition
analysis, the rupture risk of vulnerable plaque can be assessed.

Imaging modalities

There are several imaging modalities that are able to visualize plaque pres-
ence and plaque composition. X-ray angiography and intravascular ultra-
sound (IVUS), have excellent resolution and provide good information on
the composition of plaque [48]. Limitations of the spatial resolution makes
recognition of a thin fibrous cap impossible and possible altered gray values
caused by display controls such as brightness and gain make IVUS incapable
to accurately discriminate tissue components [49]. X-ray angiography has as
disadvantage that it uses harmful radiation, both in imaging as in contrast
agent. Both above described methods also have as disadvantage that they are
invasive [50].

Non-invasive methods do suffer from lower resolution [49], but the non-
invasiveness of these methods outweighs the disadvantages. Surface ultra-
sound, can indicate vessel thickening, but is unable to provide information
on the cause of this thickening. Surface ultrasound measurements are also
very observer dependent and suffer from low reproducibility [10]. CT and
Magnetic Resonance Imaging (MRI) have the potential to be the most promi-
nent imaging modalities for plaque detection. Both methods are able to
characterize plaque composition [50]. As with angiography, a disadvantage
of CT is the use of radiation in imaging. MRI suffers from possible motion
artifacts, due to longer scan times than for CT imaging [49].

MRI can characterize plaque composition based on tissue properties
[10, 11]. These tissue properties, called T1 and T2 are magnetic relaxation
times, and are tissue specific. Quantification is performed by fitting a math-
ematical model to the data of images taken with different pulse sequence
settings. These pulse sequence settings and the tissue T1 and T2 determine
the signal intensity at the moment the image is acquired.
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The quantification of T1 and T2 involves on one end, the acquisition of MR
images and on the other end the estimation of T1 and T2. We will elaborate on
two parts of this image processing, namely image registration and mapping.

Image registration

During the acquisition of the MR images, translation of the subject can occur
due to breathing, swallowing or repositioning of the head. This results in a
misalignment between all images and hampers quantitative assessment, since
in this case a given voxel does not represent the same anatomical structure in
each image. To account for these effects, image registration can be applied.
In this section we will discuss two registration methods; pairwise registration
and groupwise registration.

Pairwise registration

Pairwise registration involves the alignment of one fixed image and one mov-
ing image, and is the most conventional registration method. Guyader et
al. [51] use pairwise registration as preprocessing step for quantification of
diffusion tensors in diffusion weighted images of the abdomen. They also
considered interpolations and Gaussian blurring as alternative strategies to
compensate for motion between images. However, they concluded that image
registration yields the best alignment between images.

Bron et al. [29] used automated registration to register T1 weighted im-
ages of the femur and tibia, separately. The image of the femur, that showed
the highest contrast was used as fixed image during the registration of the
femoral images. A similar procedure was performed for the tibial images.
Applying image registration before T1 mapping significantly improved the
90% percentile of the CRLB.

Pairwise registration is also used in the alignment of carotid images.
Van ’t Klooster et al. [28], validated the use of automatic grid-based image
registration of the carotid artery. They tested various mask sizes similarity
metrics and gridsizes. Similarity metrics give a measure of the similarity
between images. In registration, this metric is maximized to increase the
similarity between moving and fixed images. Several metrics are based on
gradients in the image, correlation or mutual information between images
[52]. They conclude that the most optimal registration involves a non-rigid
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transformation, with a gridsize of 16mm and a metric based on mutual
information.

Groupwise registration

In groupwise registration, multiple images are registered in one optimization.
By registering multiple images in one registration, the optimization process
utilizes the information of all images and is thus less sensitive to outliers [53].
A drawback of groupwise registration is the increase in dimensionality due to
an increased number of samples being used in the optimization [53], which
could make the optimization process more cumbersome and slower.

Metz et al. [54] propose a groupwise method for dynamic medical imag-
ing data, which takes smoothness into account in both spatial and temporal
directions of the data. Their method was tested on imaging data of the heart
and the lung. They showed that groupwise registration performed better than
a registration method that uses reference time point, regarding consistency
of the results.

Huizinga et al. [27] propose a metric that involves Principal Component
Analysis (PCA) of the correlation matrix, which is insensitive to intensity
scaling of the images, whereas PCA of the covariance matrix suffers from this
disadvantage. The dissimilarity metric promotes that as much variance as
possible is explained by a few large eigenvalues. Results show that groupwise
registration with a PCA based metric gives a lower CRLB than pairwise
registration methods, and other groupwise registration methods based on
sum of variances [54], or sum of the squared elements of the correlation
matrix [55]. It PCA based groupwise registration also shows a lower CRLB
than methods based on mutual information [56] and methods based on the
residual error of the signal model fit [57].

Mapping

The signal that is acquired during an MRI scan does not fill the spatial do-
main of an image, but rather the frequency domain, called k-space. The
signals that fill these k-space lines are complex valued. They consist of su-
perimposed cosine and sine functions, which have a real and imaginary part,
together formed by the amplitude and the phase of the signal. For clinical
diagnosis, the magnitude of the signal is used and the phase of the signal
is discarded [58]. For quantification of tissue properties it might be useful
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to retain the phase data of the signal. Already in the 1990’s, Gowland and
Leach [58] started using Phase Sensitive Inversion Recovery (PSIR), where
the sign of the magnitude data was restored by evaluating the phase images.

In the next subsections we will elaborate on T1 and T2 quantification that
has been done with magnitude data, polarity restored magnitude data and
complex data in other research. Polarity restored magnitude data consists
of, as the name suggests, restoring the polarity, or sign, of the longitudinal
magnetization by evaluating the difference in phase between subsequent
images. A 180 degree difference in phase indicates that the magnetization
has changed sign between the acquisition of these images. Intrinsically, MR
data is complex in nature. Quantification with complex data utilizes both
the real and imaginary parts of the signal to which a mathematical model is
fitted.

T1 mapping

Magnitude

There are several groups that use magnitude data for T1 estimation in carotid
plaques. Fanea et al. [20] used five magnitude images (256x128 pixels) where
an inversion recovery (IR) sequence was used to estimate T1 of a hardware
phantom. IR is a pulse sequence that induces a T1 weighting of an image [16]
and only induces a change in longitudinal magnetizationMz. Fanea et al. [20]
evaluated two methods to estimate T1. In the first method they directly fitted
a signal model to the set of acquired T1 weighted magnitude images. For the
second method they acquired one T1 weighted image and one proton density
image. By computing the ratio between the signal intensity in the proton den-
sity image and T1 weighted image, they estimated T1. They concluded that
the last method, utilizing only two images to estimate T1, was clinically more
feasible, due to lower computation times of T1. However, they concluded that
this method was less robust for exact T1 estimation than the first method.

Coolen et al. [14, 15] use a variable flip angle (VFA) approach for T1

estimation of the carotid. In this approach, the magnetization of the spins
is repeatedly perturbed by an RF pulse of duration t which results in a α
degrees flip of the magnetization, inducing a T1 weighted effect in the image.
In between each perturbation an image is acquired. Coolen et al. [14, 15]
assume exact knowledge of the flip angle used in acquisition of the images.
However, due to local magnetic field inhomogeneities, the flip angle that is
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introduced to the patient can be incorrect. This could potentially lead to
incorrect estimation of T1.

Polarity restored and complex data

There are many researchers that opt for polarity restored magnitude data
for estimating T1 [23,26,58–63]. Research topics that use this method vary
from cartilage T1 estimation [59], to myocardial T1 mapping [23, 62, 63]
and arterial T1 mapping [60, 61]. In the 1990’s, Gowland and Leach [58]
started the development of phase sensitive inversion recovery (PSIR), in which
the polarity of the data is recovered by evaluating the phase of the signal.
Reference images were used to correct for phase changes in subsequently
acquired images. By subtracting the phase image from the reference phase
image, polarity change can be determined. A 180 degree change in phase
indicates a change in signal sign. The use of polarity restored magnitude data
can contribute to a more accurate estimation of T1 than using magnitude data.
Using magnitude data could result in ambiguity in estimation; see Section
2.4.1.

Another application of PSIR involves the enhancement of image contrast.
Kellman et al. [62] have showed that the contrast between two tissues can
be enhanced when PSIR is used. We can illustrate this with Figure A.1. The
magnitude magnetic relaxation curves of two tissues are given by the blue
and ochre curve. When we take a measurement at t = 230ms, there would
be almost no difference in signal intensity between both tissues. If the po-
larity restored data is used, the red curve instead of the blue curve, a signal
difference of 0.2 between tissue 1 and 2, would be present at this measure-
ment point. The contrast would increase when the polarity restored data is
used, compared to the contrast between the tissues in the magnitude images.
This holds, if a TI is chosen that lies between the null times of both tissues.
Kellman et al. also found that T1 estimation, using polarity restored data
is less sensitive to uncertainty in TI . An uncertainty in TI could potentially
change the polarity of the magnetization at a point around the null time.
Therefore, if the polarity of the signal at that point is assumed incorrect, the
estimated T1 is potentially incorrect. Kellman et al. [63] state that the use of
PSIR improves the precision of the estimation of T1 in regions where tissue
null times are close to the used TI with 30%, compared to T1 estimation using
magnitude data.

A problem with (polarity restored) magnitude data is the fact that the
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Figure A.1: Magnitude signal for tissue 1 (ochre) and real and magnitude
signal for tissue 2 (red and blue)
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Figure A.2: T1 estimates as a function of true T1 [19]

data is Rician distributed. The noise of the complex data consists of a zero
mean Gaussian distribution with a standard deviation σ on both the real
and imaginary axis. For the magnitude data this 2D Gaussian distribution
translates to the Rician distribution [64]. This distribution is centered at
a value µ which is always greater than zero. Parameter estimation for low
SNR (<2) can therefore be biased, and yield inaccurate results [65]. Barral et
al. [19] evaluated the use of polarity restored magnitude data and complex
data, regarding T1 precision. They tested the precision for a range of SNR and
as in previous cases they used an IR sequence. Their methods were tested on
simulated data as well as on hardware phantom and volunteer data. In their
approach they go more in depth in the fitting of the acquired data.

Barral et al. [19] found that T1 estimation using polarity restored data
performed worse than estimation based on complex data. They evaluated the
root mean square error (RMSE) for a range of noise standard deviations. At
low SNR, and thus large noise standard deviation (σn>0.05), the parameters
estimated with the complex data and complex signal model represented the
data better than the parameters estimated using polarity restored data and
the magnitude model. At high SNR (σn<0.05) both methods perform equally
as good. Barral et al. estimated the relation between the precision of T1

estimation as a function of true T1 (Figure A.2). For increasing true T1, there
is a larger spread in T1 estimates than for low T1 values. They have not tested
their methods on T2 estimation.
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T2 mapping

The use of complex data has no direct effect, due to loss of signal polarity,
on the estimation on T2. There is potentially an effect on the estimation due
to the distribution of the data. As discussed before, when the magnitude
signal is used for T2 estimation a bias in results may occur, due to a Rician
distribution of the data [24, 25]. For lower SNR regions the bias increases,
and the estimation for T2 can potentially be incorrect [25]. Using the complex
data, averts the possible bias due to a Rician distribution of the data.

There are several factors that need to be taken care of when using complex
data. The introduction of the phase in the parameter estimation brings
additional uncertainty to the fitting. Phase errors can limit the applicability
of PSIR and full complex IR methods. Sources of phase errors include non-
centering of the echo in the readout window, variations in patient loading,
coil sensitivity and phase shifts from bandwidth filters [26].

Estimation improvement

As was discussed in the last subsection there are many options to perform
image registration, using different metrics or different transformations. Pair-
wise registration is the most basic form of image registration, taking one fixed
and one moving image. This however introduces a bias, due to the choice
of reference image that is taken. A groupwise registration method is more
robust, using more images in one optimization, making the end result less
sensitive to outliers.

The methods discussed on mapping all have the same goal; to accurately
estimate the T1 and T2 for plaque identification. The use of magnitude data
is sufficient for T1 and T2 weighted imaging. For accurate quantification
of T1 and T2 this is not enough. Using magnitude data is computationally
less intensive than the use of complex data, since two dimensional data is
reduced to only a single dimension. But this method is less robust for T1 and
T2 estimation when the signal noise is higher, due to the Rician distribution
of the data. The gain in additional information as well as the unbiased 2D
Gaussian noise of complex data, seems to be more beneficial in parameter
estimations than using magnitude data.

From the work of Faena et al. [20] we can conclude that using magnitude
data, requires more images for robust T1 estimation. This is due to the am-
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biguity in T1 estimation, as explained in Figure 13. Acquiring more images
is disadvantageous for patients. Due to a longer stay in the MRI machine,
more movement by the patient can be expected, and thus more artifacts and
inaccuracies in T1 mapping is expected.

As was pointed out, the quality of the estimations is less when polarity
restored magnitude data is used than when complex data is used. With polar-
ity restored magnitude data, the same bias problem occurs, due to the Rician
character of the data. The use of complex data in the quantification of T1

and T2 in carotid atherosclerotic plaque can potentially contribute to robust
characterization of plaque components, which may eventually be a better
indicator for plaque rupture risk than the currently used luminal stenosis.
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Appendix B

ISMRM Abstract:
Resolving ambiguity in T1

mapping using complex MRI
data

Kees M. van Hespen1, Dirk H.J. Poot1,2, Harm A. Nieuwstadt1, and Stefan
Klein1

1Departments of Medical Informatics and Radiology, Erasmus MC,
Rotterdam, Netherlands, 2Imaging Science and Technology, Delft University

of Technology, Delft, Netherlands

Synopsis

We have recently developed an optimized T1 mapping protocol for carotid
atherosclerotic plaque imaging, using a combination of inversion and re-
covery prepared acquisitions. This protocol requires less images to be
taken (and thus shorter acquisition time) for precise T1 estimation than
conventional inversion or saturation-prepared acquisition schemes. How-
ever, estimating T1 from magnitude data, acquired with the optimized set-
tings, causes bimodality of T1 estimates, due to the ambiguity in sign of
the inversion prepared magnitude images. Simulations and experiments
on a hardware phantom and a volunteer show that the ambiguity resolves
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when we fit a complex-valued model to the complex data.

Purpose

Rupture of carotid atherosclerotic plaque is a major cause of stroke. Plaque
composition, is believed to be an important indicator for rupture risk. For
quantitative assessment of plaque composition, T1 and T2 relaxation times
can be used1. In general, T1 can be accurately and efficiently quantified by a
combined set of inversion and/or saturation prepared fast spin echo (FSE)
acquisitions2. Our aim is to apply such a technique for T1 mapping in the
carotid artery wall. Conventionally, the T1 is estimated by fitting a signal
model to the acquired magnitude images. However, the removal of the sign
information by only considering the magnitude data of inversion prepared
images, can lead to ambiguous T1 values when the number of images is low
(see Figure B.1). In this study, we investigate if ambiguity in T1 estimation
can be eliminated by fitting complex-valued data.

Methods

We focus on T1 mapping based on a set of inversion and saturation prepared
acquisitions. The magnitude signal model is as follows:

Model 1: S = |A(1−Be−TIR1 + (B− 1)e−R1TR)|

where B is the inversion efficiency, TI the inversion time, TR the repetition
time, R1 the relaxation rate and A the unprepared magnitude. The complex
signal model is given by:

Model 2: S = raeiφa(1−Be−TIR1 + (B− 1)e−R1TR)

with ra the unprepared magnitude, and φa the phase of the signal.

For readout, we use a stabilized 3D FSE acquisition3, which leads to
black blood imaging suitable for carotid wall analysis. The preparation in
each acquisition consists of the saturation by the preceding readout, possi-
bly followed by an inversion pulse. Parameters TI and TR were optimized
numerically, so as to maximize the time efficiency of the entire protocol,
resulting in: TI/TR = 91/973, 429/3725, -/1074, -/907ms. From this set of
four inversion/saturation prepared images we estimate T1 by either a) fitting
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Figure B.1: Ambiguity in fitting the magnitude of the signal (Red), yielding
two possible solutions T1=380ms (Blue, correct solution) and T1=221ms
(Ochre, incorrect solution)

Model 1 to the magnitude data, or b) fitting Model 2 to the complex-valued
data. Fitting was done with a maximum likelihood estimation approach4.

In a Monte Carlo simulation, data was generated using the complex signal
model and the optimized parameters, for a range of T1 values (100 through
1500ms) occurring in carotid plaque, B = 1.9, ra = 1000, φa=0, and Gaussian
noise, µ=0 and σ=33, was added to the real and imaginary parts for each of
10.000 independent realizations.

In a hardware phantom experiment, 12 tubes were filled with water and
different concentrations of gadolinium trichloride to reduce T1 and agarose
to reduce T2

1. For our imaging protocol we used an echo-train-length of 18,
echo spacing of 6ms and an acquired voxel-size of 0.625x0.71x2mm3.
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In an in vivo example, a healthy volunteer is scanned with the aforemen-
tioned protocol and parameters.

Results

Figure B.2 shows the distribution of estimated T1 for the Monte Carlo exper-
iment (true T1=846ms). A bimodal distribution can be observed for the T1

estimates when Model 1 is used. After setting a manual threshold to sort
the estimates to one of the modes, we fit a normal distribution to each mode
with a built-in function of Matlab (normfit). Using Model 1, the modes are
T1=854±47.6ms and 539±32.6ms. Using Model 2 results in a single mode:
T1=846.5±47.7ms. For the entire range of T1 (See Figure B.3.A), a bimodal dis-
tribution is observed. Bimodality was assumed if the means of the assumed
modes were more than two σ apart. When Model 2 is used, the ambiguity is-
sue is resolved (Figure B.3.B) and the correct T1 is recovered for all simulated
T1.

In the hardware phantom experiment, several tubes show a non-uniform,
bimodal T1 map (Figure B.4.A) when Model 1 is used. In the example tube,
Figure B.4.B, two modes can observed: T1=846.6±10.9ms and 541.5±8.7ms.
Using Model 2 results in uniform T1 maps in all tubes. The example tube
(Figure B.4.D) shows a single mode: T1=846.1±12.3ms, which corresponds to
the T1 found in the Monte Carlo experiment (Figure B.2).

The in vivo example (Figure B.5) shows that using Model 1 yields esti-
mates T1=510.61±289.41ms in the carotid wall. With Model 2, T1 values of
939.12±206.75ms are found, which are in accordance with those found in
previous studies (700-900ms)1.

Discussion

Ambiguity in T1 values estimated from magnitude data acquired with op-
timized TI/TR settings was resolved by using complex data. This benefit
of using complex data for T1 estimation has previously not been explicitly
identified5. Our complex model enables us to use the optimized TI/TR set-
tings, which require less scan time than conventional inversion recovery
protocols that require more images for robust estimation. Hence, we con-
clude that T1 mapping with optimized TI/TR settings is more robust when
complex data is used for the fitting.
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Figure B.2: Probability of finding an estimate T1, using the magnitude (Blue)
or complex model (Red), given a true T1=846ms, B=1.9, Signal-to-noise
ratio=30 and bin size=11
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Appendix C

Experiment: Optimal constant
B

In initial experiments using scenario 1, we chose B = 1.95 as a constant. This
value may not actually correspond to the actual B of the spins in the tissue.
We evaluated the residual images, Rg(x) = Sg(x) − Ŝg(x) where Ŝg(x) is the
estimated signal for image g, for a range of B to test the validity of B = 1.95.
In this experiment, the influence of B on the residual was evaluated using
volunteer data.

C.1 Methods

The evaluation of the residual was performed on scan 1 and scan 2 of vol-
unteer 31, using a range of B from 1.70 to 2.00, with increments of 0.01. A
measure of standard deviation is used to evaluate the residual images. This
measure is given by:

σ =
1
G P

√∑G
g=1

∑N
x=1Rg(x) Rg(x)∗

2 G − P
(23)

Where Rg (x), is the residual of voxel x in image g. G is the number of images,
and P the number of estimated parameters.

Two masks were used; the first one is drawn outside the carotid in a
homogeneous area in a few slices (780 voxels), see Figure C.1. The second
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mask is the carotid mask (865 voxels) used in the evaluation of T1 and T2 in
other experiments, described in Section 3.3.

C.2 Results

In Figures C.2 and C.3, σ is given as a function of B for the first mask on scan
1 and scan 2. σ is minimal for scan 1 around B = 1.81 and around B = 1.78
for scan 2. Compared to B = 1.95, σ decreases 6 and 15% when the optimal B
is used for scan 1 and scan 2, respectively.

Figure C.1: Mask outside the carotid wall given in red

Figure C.2: Scan 1: σ as a function of B, using a mask outside the carotid wall
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Figure C.3: Scan 2: σ as a function of B, using a mask outside the carotid wall

Using the carotid mask, the results are slightly different (Figures C.4 and
C.5). The minimum σ for scan 1 is located at B = 1.69. For scan 2 we observe
a minimal σ at B = 1.72. There is a difference in B of up to 0.1, given the
minimum in σ , between a mask drawn at the carotid wall and a mask drawn
outside the carotid.

Figure C.4: Scan 1: σ as a function of B, using the carotid mask
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Figure C.5: Scan 2: σ as a function of B, using the carotid mask

C.3 Conclusion

We can conclude that for different anatomical structures, the optimal B, that
minimizes the residual, varies for each structure. The difference in optimal
B between these structures can become as large as 0.1, even though these
structures are located next to each other. This leads us to believe that we
should not try to fit a single B to the ROI, but estimate B. Using regularization
we can influence the spatial variability of the voxelwise estimated B, and
allow it to vary according to expected values.
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