<]
TUDelft

Delft University of Technology

More is Better (Mostly): On the Backdoor Attacks in Federated Graph Neural Networks

Xu, J.; Wang, R.; Koffas, S.; Liang, K.; Picek, S.

DOI
10.1145/3564625.3567999

Publication date
2022

Document Version
Final published version

Published in
Proceedings - 38th Annual Computer Security Applications Conference, ACSAC 2022

Citation (APA)

Xu, J., Wang, R., Koffas, S., Liang, K., & Picek, S. (2022). More is Better (Mostly): On the Backdoor Attacks
in Federated Graph Neural Networks. In Proceedings - 38th Annual Computer Security Applications
Conference, ACSAC 2022 (pp. 684-698). (ACM International Conference Proceeding Series). ACM.
https://doi.org/10.1145/3564625.3567999

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1145/3564625.3567999
https://doi.org/10.1145/3564625.3567999

More is Better (Mostly): On the Backdoor

Attacks in Federated Graph Neural Networks

Jing Xu
j-xu-8@tudelft.nl
Delft University of Technology
Delft, The Netherlands

Kaitai Liang
kaitailiang@tudelft.nl
Delft University of Technology
Delft, The Netherlands

ABSTRACT

Graph Neural Networks (GNNs) are a class of deep learning-based
methods for processing graph domain information. GNNs have
recently become a widely used graph analysis method due to their
superior ability to learn representations for complex graph data.
Due to privacy concerns and regulation restrictions, centralized
GNN' s can be difficult to apply to data-sensitive scenarios. Federated
learning (FL) is an emerging technology developed for privacy-
preserving settings when several parties need to train a shared
global model collaboratively. Although several research works have
applied FL to train GNNs (Federated GNNs), there is no research
on their robustness to backdoor attacks.

This paper bridges this gap by conducting two types of backdoor
attacks in Federated GNNs: centralized backdoor attacks (CBA) and
distributed backdoor attacks (DBA). Our experiments show that
the DBA attack success rate is higher than CBA in almost all cases.
For CBA, the attack success rate of all local triggers is similar to
the global trigger, even if the training set of the adversarial party is
embedded with the global trigger. To explore the properties of two
backdoor attacks in Federated GNNs, we evaluate the attack per-
formance for a different number of clients, trigger sizes, poisoning
intensities, and trigger densities. Finally, we explore the robustness
of DBA and CBA against two state-of-the-art defenses. We find that
both attacks are robust against the investigated defenses, necessi-
tating the need to consider backdoor attacks in Federated GNNs as
a novel threat that requires custom defenses.

CCS CONCEPTS

« Security and privacy; - Computing methodologies — Ma-
chine learning;

KEYWORDS

backdoor attacks, graph neural networks, federated learning

This work is licensed under a Creative Commons Attribution International
4.0 License.

ACSAC °22, December 5-9, 2022, Austin, TX, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9759-9/22/12.
https://doi.org/10.1145/3564625.3567999

684

Rui Wang
r.wang-8@tudelft.nl
Delft University of Technology
Delft, The Netherlands

Stefanos Koffas
s.koffas@tudelft.nl
Delft University of Technology
Delft, The Netherlands

Stjepan Picek
picek.stjepan@gmail.com
Radboud University
Nijmegen, The Netherlands

ACM Reference Format:

Jing Xu, Rui Wang, Stefanos Koffas, Kaitai Liang, and Stjepan Picek. 2022.
More is Better (Mostly): On the Backdoor Attacks in Federated Graph Neural
Networks. In Annual Computer Security Applications Conference (ACSAC °22),
December 5-9, 2022, Austin, TX, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3564625.3567999

1 INTRODUCTION

Graph Neural Networks, which generalize traditional deep neural
networks (DNNs) to graph data, pave a new way to effectively learn
representations for complex graph-structured data [45]. Due to
their strong representation learning capability, GNNs have demon-
strated remarkable performance in various domains, e.g., drug dis-
covery [27, 48], finance [8, 41], social networks [12, 16], and rec-
ommendation systems [11, 52]. Usually, GNNs are trained through
centralized training. However, because of privacy concerns, reg-
ulatory restrictions, and commercial competition, GNNs can also
face challenges when centrally trained. For example, the financial
institution may utilize GNN as a fraud detection model, but they
can only have transaction data of its registered users (no data of
other users because of privacy concerns). Thus, the model is not
effective for other users. Similarly, in a drug discovery industry that
applies GNNs, pharmaceutical research institutions can dramati-
cally benefit from other institutions’ data, but they cannot disclose
their private data for commercial reasons [19].

Federated Learning is a distributed learning paradigm that works
on isolated data. In FL, clients can collaboratively train a shared
global model under the orchestration of a central server while
keeping the data decentralized [22, 31]. As such, FL is a promising
solution for training GNNs over isolated graph data, and there are
already some works utilizing FL to train GNNs [19, 25, 54], which
we denote as Federated GNNs.

Although FL has been successfully applied in diverse domains,
e.g., computer vision [28, 29] or language processing [18, 58], there
could be malicious clients among millions of clients, leading to
various adversarial attacks [1, 13]. In particular, limited access to
local clients’ data due to privacy concerns or regulatory constraints
may facilitate backdoor attacks on the global model trained in FL.
A backdoor attack is a type of poisoning attack that manipulates
part of the training dataset with a specific pattern (trigger) such
that the model trained on the manipulated dataset will misclassify
the testing dataset with the same trigger pattern [30].

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3564625.3567999
https://doi.org/10.1145/3564625.3567999

ACSAC °22, December 5-9, 2022, Austin, TX, USA

Backdoor attacks on FL have been recently studied [1, 3, 47].
However, these attacks are applied in federated learning on the
Euclidean data, e.g., images and words. The backdoor trigger gen-
eration methods and injecting position are different between graph
data and images/words [49]. In particular, in [47], the authors split a
square-shaped trigger placed in the top left corner of an image into
four parts so that four malicious clients use each part in their poi-
soned datasets. When the training ends, the adversary concatenates
these parts to form a global trigger in the image’s upper left corner
that activates the backdoor. This is impossible in GNNs as the data
is not Euclidean, and there is no position that we can exploit. Also,
defenses like FoolsGold [14] filter out clients that use similar up-
dates as malicious. This can be effective for Euclidean data that use
parts of the trigger in similar positions but may not be effective in
GNN. Indeed, the graph data is not Euclidean, and different partial
triggers vary the graph structure resulting in non-aligned updates.
Additionally, intensive research has been conducted on backdoor
attacks in GNNs [46, 49, 56]. However, these works focus on GNN
models in centralized training. In federated learning, the malicious
updates will be weakened in the aggregation function. Finally, there
can be more than one malicious client, while in centralized GNNss,
there is only one client. Thus, we should expect different behavior
of backdoor attacks in Federated GNNs. Then, it is crucial to investi-
gate if existing countermeasures that have been tested mostly with
Euclidean data are still effective for backdoor attacks in Federated
GNN s to understand how to deploy trustworthy Al systems.

This paper conducts two backdoor attacks in FL: centralized back-
door attacks (CBA) and distributed backdoor attacks (DBA) [47]. In
CBA, the attacker embeds the same global trigger to all adversarial
clients, while in DBA, the adversary decomposes the global trigger
into several local triggers and embeds them in different malicious
clients. In DBA, we assume two attack scenarios - honest majority
and malicious majority, to explore the impact of the percentage of
malicious clients on the attack. Our work focuses on the cross-silo
federated learning setting and our main contributions are:

o We explore two types of backdoor attacks in Federated GNNs.
Based on the experiments, we find that the DBA on Federated
GNNss is more effective or (at least) similar to the CBA. To the
best of our knowledge, this paper is the first work studying
backdoor attacks in Federated GNNGs.

e We find that in the CBA, although the adversarial local model
is implanted with the global trigger, the final global model
can also attain promising attack performance with any lo-
cal trigger. Since this phenomenon is inconsistent with the
related works, we provide further experiments to explain it.

e We observe that in most cases, local triggers in DBA can
achieve similar attack performance to the global trigger,
which is different from the findings for the DBA in Con-
volutional Neural Networks (CNNs).

e We run experiments for both types of attacks, varying the
trigger size, poisoning intensity, and trigger density, and
show that the trigger size has more impact than the poison-
ing intensity.

e We explore the robustness of DBA and CBA against two
state-of-the-art defenses: FLAME and FoolsGold. We find
both attacks are evasive to these defenses, while CBA can

685

Jing Xu, Rui Wang, Stefanos Koffas, Kaitai Liang, and Stjepan Picek

even obtain a higher attack success rate, but the testing
accuracy degrades.

2 BACKGROUND
2.1 Federated Learning

Federated Learning enables n clients to train a global model w
collaboratively without revealing local datasets. Unlike centralized
learning, where local datasets must be collected by a central server
before training, FL performs training by uploading the weights of
local models ({w' | i € n}) to a parametric server. Specifically, FL
aims to optimize a loss function:

n

min o) =) L Lo = 1 Y Glwx) ()

i=1 JjEP;

where L;(w) and k; are the loss function and local data size of i-th
client, and P; refers to the set of data indices with size k;.
At the t-th iteration, the training can be divided into three steps:

o Global model download. All clients download the global model
w; from the server.

o Local training. Each client updates the global model by train-
IL(w;,b)
ow,

b refer to learning rate and local batch, respectively.

o Aggregation. After the clients upload their local models {wi |
i € n}, the server updates the global model by aggregating
the local models. In this paper, we use the averaging aggre-

n

ing with their datasets: wi — wi -1 , where 1 and

gation function: wryq «— 2, %w;
i=1

2.2 Graph Neural Networks

Recently, Graph Neural Networks (GNNs) have achieved signifi-
cant success in processing non-Euclidean spatial data, which are
very common in many real-world scenarios. Unlike traditional neu-
ral networks, e.g., CNNs and Recurrent Neural Networks (RNNs),
GNNs work on graph data. GNNs take a graph G = (V, E, X) as an
input, where V, E, X denote nodes, edges, and node attributes, and
learn a representation vector (embedding) for each node v € G, z,,
or the entire graph, zg.

Modern GNNss follow a neighborhood aggregation strategy, where
one iteratively updates the representation of a node by aggregating
representations of its neighbors. After k iterations of aggregation, a
node’s representation captures both structure and feature informa-
tion within its k-hop network neighborhood [50]. Formally, the k-th
layer of a GNN is (e.g., GCN [23], GraphSAGE [17], and GAT [40]):

zi,k) = a(zz(,k_l),AGG({z,(,k_l);u € Np}), Yk e [K], (2)
where zf,k) is the representation of node v computed in the k-

th iteration. Ny are neighbors of node v, and the AGG(-) is an
aggregation function that can vary for different GNN models. zz(,o)
is initialized as node feature, while o is an activation function.
For the graph classification task (considered in this work), the
READOUT function pools the node representations for a graph-

level representation zg:

26 = READOUT (240 € V). 3)

More is Better (Mostly): On the Backdoor Attacks in Federated Graph Neural Networks

READOUT can be a simple permutation invariant function such
as summation or a more sophisticated graph-level pooling func-
tion [53, 55].

2.3 Backdoor Attacks on Federated Learning

Backdoor attacks aim to make a model misclassify its inputs to a
preset-specific label without affecting its original task. Attackers
poison the model by injecting triggers into the training data that
activate the backdoor in the test phase. Once activated, the model’s
output becomes the targeted label pre-specified by the attacker to
achieve the malicious intent purpose (such as misclassification).

Backdoor attacks are common in FL systems with multiple train-
ing dataset owners. Specifically, the adversary A manipulates one
or more local models to obtain poisoned models W that are then ag-
gregated into the global model G; affecting its properties. There are
two common techniques used in backdoor attacks in FL: 1) data poi-
soning where A manipulates local training dataset(s) Dliocal used
to train the local model [34, 47], and 2) model poisoning where A
manipulates the local training process or the trained local models
themselves [1]. In this work, we use data poisoning for our attacks
in Federated GNNs as model poisoning requires multiplying large
factors to model weights when conducting attacks, which can be
detected by traditional byzantine-robust aggregation rules such as
Median [51] and Krum [4].

3 PROBLEM FORMULATION

3.1 Overview

FL is a practical choice to push machine learning to users’ devices,
e.g., smart speakers, cars, and phones. Usually, federated learning is
designed to work with thousands or even millions of users without
restrictions on eligibility [1], opening up new attack vectors. As
stated in [5], training with multiple malicious clients is now con-
sidered a practical threat by the designers of federated learning.
Because of the data privacy guarantee among the clients in the fed-
erated learning, local clients can modify their local training dataset
without being noticed. Furthermore, existing federated learning
frameworks do not provide a functionality to verify whether the
training on local clients has been finished correctly. Consequently,
one or more clients can submit their malicious models trained for
the assigned task and backdoor functionality.

3.2 Threat Model

Unlike traditional machine learning benchmarking datasets, graph
datasets and real-world graphs may exhibit non-independent and
identical distribution (non-i.i.d) due to factors like structure and fea-
ture heterogeneity [19]. Therefore, following the FL assumptions,
we assume that graphs among K clients are non-i.i.d. distributed.
The clients engaging in training can be divided into honest and
malicious clients. In Table 1,! we summarize the settings of different
experiments shown in Section 5. Molecular machine learning is a
paramount application in the Federated GNNs, where many small
graphs are distributed between multiple institutions [19]. Therefore,
we run experiments (Exp. I and II) on two molecular datasets, i.e.,
'Exp. I, Exp. II, Exp. III, and Exp. IV represent the experiments of honest majority

attack scenario, malicious majority attack scenario, the impact of the number of clients,
and the impact of percentage of malicious clients, respectively.

686

ACSAC °22, December 5-9, 2022, Austin, TX, USA

NCI1 and PROTEINS_full. For these experiments, we set 5 clients
in total because, with more clients, the local dataset of each client
becomes very small, resulting in severe overfitting for the local
models. Similar settings and phenomena can also be found in prior
works on Federated GNNs [19]. The choice of small datasets may
be a limitation of our work, but real-world cross-silo settings could
involve only a few different organizations (from two to one hun-
dred) [22]. Besides the molecular domain, substantial attention has
also been given to Federated GNNs in real-world financial scenar-
ios [42, 54]. In such scenarios, clients can be different organizations,
e.g., banks, and a GNN model is trained on siloed data, leading to a
cross-silo federated learning setting [22]. As shown in Exp. IIl and
IV, we assume 10, 20, and 100 clients for a synthetic dataset, i.e.,
TRIANGLES, which is a realistic real-world cross-silo scenario [38].

Table 1: Summary of the experimental setting (K: number of
clients, M: number of malicious clients).

Experiment Dataset K M
Exp. I NCI1, PROTEINS_full, TRIANGLES 5 2
Exp. 1T NCI1, PROTEINS_full, TRIANGLES 5 3

10 4,6
Exp. III TRIANGLES 20 8,12
Exp. IV TRIANGLES 100 5,10, 15,20
Prior work [19] Molecules 4 0

All clients strictly follow the FL training process, but the mali-
cious client(s) will inject graph trigger(s) into their training graphs.
We also assume the server is conducting model aggregation cor-
rectly. Our primary focus is to investigate backdoor attack effective-
ness on Federated GNNs, so we adopt two backdoor attack methods
as defined below (the definitions of the local trigger and global
trigger used in these two attacks are also given).

DEFINITION 1 (LocAL TRIGGER & GLOBAL TRIGGER.). The local
trigger is the specific graph trigger for each malicious client in DBA.
The global trigger is the combination of all local triggers.?

DEFINITION 2 (DISTRIBUTED BACKDOOR ATTACK (DBA).). There
are multiple malicious clients, and each of them has its local trigger.
Each malicious client injects its local trigger into its training dataset.
All malicious clients have the same backdoor task. An adversary A
conducts DBA by compromising at least two clients in FL.

DEFINITION 3 (CENTRALIZED BACKDOOR ATTACK (CBA).). A global
trigger consisting of local triggers is injected into one client’s local
training dataset. An adversary A conducts CBA by usually compro-
mising only one client in FL.

Adversary’s capability. We assume the adversary A can cor-
rupt M (M < K) clients to perform DBA. We perform a complete
attack in every round, i.e., a poisoned local dataset is used by ma-
licious clients in every round, following the attack setting in [47].
The adversary cannot impact the aggregation process on the central
server nor the training or model updates of other clients.

Adversary’s knowledge. We assume that the adversary A
knows the compromised clients’ training dataset. In this context,
the adversary can generate local triggers as described in Section 4.2.

%Since it is an NP-hard problem to decompose a graph into subgraphs [9], we first
generate local triggers and then compose them to get the global trigger used in CBA.

ACSAC °22, December 5-9, 2022, Austin, TX, USA

Additionally, we follow the original assumptions of FL. The number
of clients participating in training, model structure, aggregation
strategy, and a global model for each iteration is revealed to all
clients, including malicious clients.

Adversary’s goal. Unlike some non-targeted attacks [36] aiming
to deteriorate the accuracy of the model, the backdoor attacks
studied in this paper aim to make the global model misclassify the
backdoored data samples into specific pre-determined labels (i.e.,
target label y;) without affecting the accuracy on clean data.

In distributed backdoor attacks, each malicious client injects its
local trigger into its local training dataset to poison the local model.
Therefore, DBA can fully leverage the power of FL in aggregat-
ing dispersed information from local models to train a poisoned
global model. Assuming there are M malicious clients in DBA, each
has its local trigger. Each malicious client i in DBA independently
implements a backdoor attack on its local model. The adversarial
objective for each malicious client i is:

wi =argmin(Y e(wi_y (@(xh), 4r)

W, i
t 5 i
]EDtriggEr

+) Ewi (e, g, vie [M],

; i
]EDclean

©)

i
trigger
= D!

local

where the poisoned training dataset D
dataset Dilmn satisfy D;rigger U Dilean and D;rigger N
iean = D+ Djy.q 18 the local training dataset of client i. @ is the
function that transforms the clean data with a non-target label
into poisoned data using a set of trigger generation parameters k.
In this paper, k! consists of trigger size s, trigger density p, and
poisoning intensity r: k = {s, p, r}.

Trigger Size s: the number of nodes of a local graph trigger.
Here, we set the trigger size s to be the y fraction of the graph
dataset’s average number of nodes. Note that this does not violate
our threat model (the adversary does not have access to the whole
dataset) as the average number of nodes in the local dataset is
similar to the number of the whole dataset.

Trigger Density p: the complexity of a local graph trigger, which
ranges from 0 to 1, and is used in the Erds-Rényi (ER) model to
generate the graph trigger.

Poisoning Intensity r: the ratio that controls the percentage of
backdoored training dataset among the local training dataset.

Unlike DBA with multiple malicious clients, there is only one
malicious client in CBA.3 CBA is conducted by embedding a global
trigger into a malicious client’s training dataset. The global trigger is
a graph consisting of local trigger graphs used in DBA, as explained
further in Section 4.1. Thus, the adversarial objective of the attacker
k in round ¢t in CBA is:

and clean training

* .
wk' = argmlkn(Z t’(wf_l (cI)(xj.‘,), Yt))
i jEDfrigger

0 ewE),),

jeDk

clean

©)

3In practice, the centralized attack can poison more than one client with the same
global trigger, as mentioned in [1]. Here, we assume there is one malicious client

687

Jing Xu, Rui Wang, Stefanos Koffas, Kaitai Liang, and Stjepan Picek

where « is the combination of x!. Utilizing the power of FL in
message passing from local models to the global model, the global
model is supposed to inherit the backdoor functionality.

4 BACKDOOR ATTACKS AGAINST
FEDERATED GNNS

4.1 General Framework

We focus on subgraph-based (data poisoning) backdoor attacks and
the graph classification task. Attackers can perform DBA or CBA
as shown in Figure 1. In DBA, multiple malicious clients engage in
attacking, and they inject local triggers into corresponding mali-
cious clients’ local training datasets. CBA is conducted with one
malicious client, whose training data is poisoned with the global
trigger that consists of the local triggers used in DBA. We describe
the notations used throughout the paper in Table 5 in Appendix A.

G,

1
Y

federated learnin;

sal
RN
malicious clients honest clients
a a a

M0 R A

local trigger | local trigger 2 local trigger 3 local trigger

G:
(a) DBA

A‘

malicious client(s)
1

global trigger

(b) CBA

Figure 1: Attack Framework.

Distributed Backdoor Attack. For DBA in Federated GNNs, we
assume there are M (M < K) malicious clients among K clients, as
shown in Figure 1(a). Each malicious client embeds its local training
dataset with a specific graph trigger to poison its local model. For
instance, in Figure 1(a), each malicious client has a local trigger
highlighted by a specific color (i.e., orange, green, red, yellow).*
In this paper, we did not use the same local trigger for different
malicious clients in DBA as it would mean poisoning intensity for
this specific local trigger is increasing, but simultaneously, the total
trigger pattern activating the backdoor is reduced. We evaluated
this setting by running some additional experiments, and we found
the attack under this setting is not stronger than the current setting
(i.e., different local triggers). Through training with these poisoned
training datasets, the poisoned local models are uploaded to the
server to update the global model. The final adversarial goal is
to use the global trigger to attack the global model. Algorithms 1
and 2 illustrate the distributed backdoor attack in Federated GNN.

4 Although we use the triangle as the graph trigger for each malicious client, in practice,
the local triggers are more complex and different from each other.

More is Better (Mostly): On the Backdoor Attacks in Federated Graph Neural Netwo

We first split the clients into two groups, the honest (Cy,) and the
malicious one (Cy;) (line 2, Algorithm 1). In each round, each client
updates its weights through local training (line 13, Algorithm 1),
and finally, the global server aggregates local models’ weights to
update the global model through averaging (line 15, Algorithm 1).

The local training for every client is described in Algorithm 2. If
the client is malicious (line 2, Algorithm 2), the local training dataset
will be backdoored (line 4, Algorithm 2) with the local trigger (line
3, Algorithm 2. As mentioned in Section 3.2, all the local triggers
form the global trigger (line 5, Algorithm 2).

We conduct experiments for the malicious majority and honest
majority settings to explore the impact of different percentages of
malicious clients on the attack success rate. We provide additional
motivation for the malicious majority setting in Section 7.

Centralized Backdoor Attack. Unlike DBA conducted with
multiple malicious clients, CBA performs the attack with only one
malicious client. CBA is a general approach in a centralized learning
scenario. For example, in image classification, the attacker poisons
the training dataset with a trigger so that the model misclassifies
the data sample with the same trigger into the attacker-chosen label.
As shown in Figure 1(b), the malicious client embeds its training
dataset with the global trigger highlighted by four colors. This
global trigger consists of local triggers used in DBA, as shown in
Line 5 of Algorithm 2. Specifically, the attacker in CBA embeds
its training data with four local patterns, together constituting a
complete global pattern as the backdoor trigger.’

To compare the attack performance between the distributed
backdoor attack and centralized backdoor attack in Federated GNNs,
we need to make sure the trigger pattern in CBA is the union set
of local trigger patterns in DBA. We can use two strategies: 1) first
generate local triggers in DBA and then combine them to get the
global trigger, or 2) first generate a global trigger in CBA and then
divide it into M local triggers. We utilize the first strategy as it is
an NP-hard problem to divide a graph into several subgraphs [9].
Thus, in different attack scenarios (i.e., honest majority or malicious
majority attack scenarios), the CBA performance is different since
the global trigger has been changed due to the different number of
malicious clients.

4.2 Backdoored Data Generation

We adopt the Erdés-Rényi (ER) model [15] to generate triggers
(function GenerateTrigger in Algorithm 2) as it is more effective
than the other methods (e.g., Small World model [43] or Preferential
Attachment model [2]) [56]. In particular, GenerateTrigger (line 3 in
Algorithm 2), creates a random graph of s nodes. An edge between
a pair of nodes in this graph is generated with probability p.

Backdoored data is generated (line 4 in Algorithm 2) through the
following process. We sample subsets of the local training datasets
(with non-target labels) with proportion r, and the rest are saved
as clean datasets. For each sampled data, we inject a trigger into
it by sampling s (trigger size) nodes from the graph uniformly at
random and replacing their connection with that in the trigger
graph. Additionally, the attacker re-labels the sampled data with
an attacker-chosen target label. The backdoored data is composed
of the dataset with trigger and the original clean dataset.

SHere, the four colors are only used to denote four trigger patterns.

rks

688

ACSAC °22, December 5-9, 2022, Austin, TX, USA

Algorithm 1: Distributed Backdoor Attacks in Federated
GNNs

Input: Dataset D, Target label y,
Output: Backdoored Global model G;.1, global trigger Zgi0pal

1 Function DBA():
2 Cp, Cpy < ClientSplit(Clients)
3 Diocals Dtest < DataSplit(D)
4 tglobal < @
5 Server executes:
6 initialize Gy, f = False
7 foreach roundt =0,1,2,... do
8 foreach clientk € (C,, U Cyy,) do
9 wtk =G,
10 if k € Cp, then
1 | f=True
12 end
13 Wtk+l «— ClientUpdate(k, wf,f, tglobal)
14 end
1‘)k
15 Gy Zf:l -+
16 end

17 End Function
18 return Gri1, Lglobal

Algorithm 2: ClientUpdate

Input: Client k, Local training dataset Djocq7, Current global model w, flag
£ global trigger ¢gi0pal
Output: Updated model w
1 Function ClientUpdate():
if fis True then
tiocal < GenerateTrigger(s, p)
Diocal < BackdoorDataset(Djocals tiocal> Yt)

tglobal = tglobal U tiocal

end
B « (split Djpcqr into batches of size B)
foreach local epoch i from 1 to E do
foreach b € B do

‘ we w-nVI(wb)

e N u e W N

-
S

end

-
=

12 end
13 End Function
14 return w

5 EXPERIMENTS

5.1 Experimental Setting

We implemented FL algorithms using the PyTorch framework. All
experiments were run on a server with 2 Intel Xeon CPUs, one
NVIDIA 1080 Ti GPU with 32GB RAM, and Ubuntu 20.04 LTS OS.
Each experiment was repeated ten times to obtain the average result.
Our code is blinded for review but will be made public.

Datasets. We run experiments on three publicly available datasets:
two molecular structure datasets - NCI1 [32], PROTEINS_full [6],
and one synthetic dataset - TRIANGLES [24], which is a multi-class
dataset. Table 6 in Appendix B provides more information about
these datasets.

Dataset splits. For each dataset, we randomly sample 80% of the
data instances as the training dataset and the rest as the test dataset.
To simulate non-i.i.d. training data and supply each participant with
an unbalanced sample from each class, we further split the training
dataset into K parts following the strategy in [13] with hyperpa-
rameter 0.5 for TRIANGLES (10 classes) and hyperparameter 0.7
for other datasets (2 classes). In this paper, apart from Appendix C

ACSAC °22, December 5-9, 2022, Austin, TX, USA

where we analyze the effect of trigger factors, we set trigger factors
as follows: y = 0.2, p = 0.8, and r = 0.2. As we show in Appendix C,
these hyperparameters yield an effective attack. By choosing them,
we model a strong adversary that helps in evaluating the attack’s
behavior in the worst-case scenario.

Models and metrics. In our experiments, we use three state-of-
the-art GNN models: GCN [23], GAT [40], and GraphSAGE [17].

We use the attack success rate (ASR) to evaluate the attack effec-
tiveness. We embed the testing dataset with local triggers or the
global trigger and then calculate the ASR of the global model on the
poisoned testing dataset. We only embed the testing dataset of the
non-target label with triggers to avoid the influence of the original
label. The ASR measures the proportion of trigger-embedded inputs
that are misclassified by the backdoored GNN into the target class
y; chosen by the adversary. The trigger-embedded inputs are

Dg; = {(Gl,gt, Y1), (Gz,g,, yz), cees (Gn,g,, yn)} .

Here, g; is the graph trigger, {Gl,g,,GZ,gt . ..,Gn,gt} is the test
dataset embedded with graph trigger g;, and y1,y2, ..., yn is the
label set. Formally, ASR is defined as:

Z;‘:l I(Gbackdoor(Gi,gt) =y)

Attack Success Rate = ,
n

where I is an indicator function and Gy cxd00r refers to the back-
doored global model. Here, the graph trigger g; can be local triggers
or a global trigger.

5.2 Backdoor Attack Results

We evaluate multiple-shot attack [1], which means that the attack-
ers perform attacks in multiple rounds, and the malicious updates
are accumulated to achieve a successful backdoor attack. We do
not evaluate the single-shot attack [1] because the multi-shot is
stealthier [35]. The multi-shot attack does not require multiply-
ing large factors to model weights when conducting the attack,
while the single-shot needs to multiply large factors to maintain
the effectiveness of backdoor attacks, which can be filtered out or
detected by traditional anomaly detection-based approaches such
as Krum [4]. Since our main goal is conducting backdoor attacks
on FL, we chose a multiple-shot attack with a high attack success
rate and stealthiness. As mentioned in Section 3.2, we perform a
complete attack in every round, showing the difference between
DBA and CBA in a shorter time [47].

To explore the impact of different percentages of malicious
clients on the attack performance, we evaluate the honest majority
and malicious majority attack scenarios according to the percentage
of malicious clients among all clients. Specifically, we set two and
three malicious clients among five clients for the honest majority
and malicious majority attack scenarios, respectively.

In our experiments, we evaluate the ASR of CBA and DBA with
the global trigger and local triggers. The goal is to explore:

o In CBA, whether the ASR of local triggers can achieve similar
performance to the global trigger even if the centralized
attacker would embed a global trigger into the model.

o In DBA, whether the ASR of the global trigger is higher than
all local triggers even if the global trigger never actually
appears in any local training dataset, as mentioned in [47].

689

Jing Xu, Rui Wang, Stefanos Koffas, Kaitai Liang, and Stjepan Picek

Honest Majority Attack Scenario. The attack results of CBA
and DBA in the honest majority attack scenario are shown in Fig-
ure 2. Notice that the DBA ASR with a specific trigger is always
higher than or at least similar to that of CBA with the correspond-
ing trigger. For example, in Figure 2a (the result for the GAT model),
the DBA ASR with the global trigger is higher than CBA with a
global trigger. The only exception happens for GCN on TRIAN-
GLES. We also find that the ASR of the two attacks in TRIANGLES
is significantly lower than the other two datasets but still higher
than random guessing. The TRIANGLES is a multi-class dataset
containing complex data relations. Thus, more information needs to
be encoded in each model’s weights for the class features compared
to the other datasets. As a result, there is not enough remaining
space to learn our triggers easily. In most results on NCI1 and PRO-
TEINS_full, there is an initial drop in the attack success rate for
both DBA and CBA, resulting from the high local learning rate of
honest clients [1]. Based on the result for CBA, surprisingly, the ASR
of all local triggers can be as high as the global trigger even if the
centralized attacker embeds the global trigger into the model, which is
inconsistent with the behavior in [47]. We analyze it through further
experiments shown in Figure 6.

Moreover, the results for the PROTEINS_full dataset show that
in DBA, the attack success rate of the global trigger is higher than (or
at least similar to) any local trigger, even if the global trigger never
actually appears in any local training dataset. This indicates that
the high attack success rate of the global trigger does not require
the same high attack success rate of local triggers. However, for the
other two datasets (NCI1 and TRIANGLES), the attack success rate
of the global trigger is close to all local triggers (except the result
of GraphSage on TRIANGLES). This indicates that in some cases,
the local trigger embedded in local models can successfully transfer
to the global model so that once any local trigger is activated, the
global model will misclassify the data sample into the attacker-
chosen target label. This phenomenon is not consistent with the
observations in [47] as in Euclidean data, most locally triggered
images are similar to the clean image, but any (small) change in the
structure of a graph will result in a significant dissimilarity.

Malicious Majority Attack Scenario Figure 3 illustrates the
attack results in the malicious majority attack scenario. Compared
with the honest majority attack scenario, in most cases, the attack
success rate of DBA and CBA increases as with more malicious
clients, more malicious updates are uploaded to the global model,
making the attack more effective and persistent. Moreover, the
increase in DBA is more significant than in CBA. For instance,
based on the NCI1 dataset and GraphSage model, the DBA ASR
with the global trigger in the honest majority attack scenario is
3.85% higher than CBA, while in the malicious majority attack
scenario, the ASR difference is 10.33%. Thus, increasing the number
of malicious clients is more beneficial for DBA than CBA. With
more malicious clients, more local models are used to learn the
trigger patterns in DBA, while there is only one malicious local
model in CBA.

For CBA, the ASR with the global trigger is higher while the
attack performance with local triggers stays at a similar level or
even decreases. One possible reason is that more malicious clients
mean a larger global trigger, requiring more learning capacity of
the model. If there is not enough learning capacity for every local

More is Better (Mostly): On the Backdoor Attacks in Federated Graph Neural Networks

GeN GAT Graphsage
1.0 1.0 |
ooVt
o A A |
Zos nertiai™ miub | 08
4 f ¢ 3
406l [
fo6] | 0.6
8 /
8 ;
E /
o4 0.41] 0.4
%
3
202 0.2 0.2
0.0 0.0 0.0
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

Round Round Round

(a) NCI1

GraphSage

1.0
Los
<
w
306
o
@
Coa
:
Zo02 0.2 0.2
0.0 0.0 0.0
0 10 20 30 40 50 0 10 20 30 40 50 [10 20 30 40 50
Round Round Round
(b) PROTEINS_full
GCN GAT GraphSage
1.0 1.0 1.0
gos 0.8 0.8
4
I
$06 0.6 0.6
S
H
204
]
bl
202
0.0
0 10 20 30 40 50
Round
—— Global Trigger ~ —— Local Trigger 0 Local Trigger1 ~ —— DBA —+— CBA
(¢) TRIANGLES

Figure 2: Backdoor attack results in the honest majority at-
tack scenario.

trigger in the global trigger, the backdoored model can have poor
attack performance with a specific local trigger but will behave
well with the union set of the local triggers, i.e., the global trigger.

Impact of the Number of Clients We only set the number of
clients as 5 for these graph datasets because some of these datasets,
i.e., NCI1 and PROTEINS_full, are small (less than 5,000 graphs).
However, to explore the impact of the number of clients on DBA and
CBA, we also conduct experiments with more clients on the largest
dataset - TRIANGLES. We set the number of clients as 10 and 20 and
keep the ratio of malicious clients among the total clients the same
as before, i.e., 0.4 and 0.6 for the honest majority and malicious
majority attack scenarios, respectively. Here, we provide the results
of the honest majority attack scenario, as shown in Figure 4. The
results of the malicious attack scenario are given in Appendix D.1,
and the phenomenon between the two attack scenarios with 10 and
20 clients is similar to that with 5 clients.

It is obvious that with the increase in the number of clients, the
attack success rate of CBA decreases dramatically while the attack
performance of DBA keeps steady. This is reasonable because, in
CBA, there is only one malicious client whose malicious updates
contribute less to the global model with more clients in total. On
the contrary, in DBA, the proportion of malicious clients among
total clients is the same, meaning the malicious updates contribute
the same to the global model regarding the different number of

690

ACSAC °22, December 5-9, 2022, Austin, TX, USA

GraphSage

Attack Success Rate

0.2 0.2 0.2
0.0 0.0 0.0
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Round Round Round
(a) NCI1
GCN GraphSage
1.077 1.097
) W
%08 0.8
4 hah Ay ;
@ % I
306 VN 0.6
g — o
g s L TP bt
3 y 4 hy
Coa4 0.4
]
£
202 0.2 0.2
0.0 0.0 0.0
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Round Round Round
(b) PROTEINS_full
GCN GAT GraphSage
1.0 1.0 1.0
)
208 0.8 0.8
<
@
306 0.6
S
I+
a S
L 04 . e A 0.4
g
Zo02 0.2
0.0 0.0 .
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Round Round Round
—— Global Trigger Local Trigger 1 —— DBA
—— Local Trigger 0 Local Trigger 2~ —+-- CBA
(c) TRIANGLES

Figure 3: Backdoor attack results in the malicious majority
attack scenario.

GCN GAT GraphSage
1.0 1.0 1.0
£os 0.8 08
2
”
0.6 0.6 0.6
g
a
204
]
8
02

od
o

(a) 10 clients

GCN GAT GraphSage
1.0 1.0 1.0
)
208 0.8 0.8
<
@
306 0.6 0.6
S
I+
&
204 0.4 0.4
]
£
%02 0211 M’V\m 02
T A S o
0.0 0.0 -~ 0.0 = - ——
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Round Round Round
—— Global Trigger Local Trigger 2 —— Local Trigger 4 Local Trigger 6 —— DBA
—— Local Trigger 0 Local Trigger 3 —— Local Trigger 5 Local Trigger 7 —+— CBA

Local Trigger 1

(b) 20 clients

Figure 4: Backdoor attack results of TRIANGLES with more
clients in the honest majority attack scenario.

ACSAC °22, December 5-9, 2022, Austin, TX, USA

clients. Therefore, as shown in Figures 4a and 4b, the number of
clients has negligible impact to the DBA.

Impact of the Percentage of Malicious Clients Although
we have analyzed the experiments with the honest majority and
malicious majority scenarios, we further explore the impact of the
percentage of malicious clients on the attack performance by cal-
culating their Pearson Correlation Coefficient (PCC), as shown in
Figure 14 in Appendix E, (we provide the results for the GraphSage
model as the example as they are more stable, and the results of
other models are aligned). Recall that M represents the number of
malicious clients, and each number over the line is the correspond-
ing PCC. As we can see, for all datasets, PCC in DBA is larger than
CBA, meaning the increase in M has a more positive impact on DBA
than CBA. This is intuitive as more malicious clients in DBA lead
to more local models embedded with local triggers, while in CBA, it
means a larger global trigger due to more local triggers. Specifically,
in DBA, more malicious clients mean more model weights to learn
the trigger. In CBA, there is only one attacker, and learning a larger
global trigger can be out of the model’s representation capability.
Additionally, as we keep the poisoning intensity of DBA and CBA
the same for each malicious client, there are more poisoned training
data in DBA than CBA as more malicious clients are used.

We also explore the attack performance with more clients and
less percentage of malicious clients on the large dataset - TRIAN-
GLES. Figure 5 shows the attack results on TRIANGLES with 100
clients and fewer malicious clients, ranging from 5% to 20% (here,
we also take the results of the GraphSage model as the example,
the results of other models are presented in Appendix D.2). Table 2
illustrates the specific attack results. We can see from Figure 5
that DBA’s ASR gradually increases with more malicious clients
while CBA’s ASR stays very low (around 2%), further verifying
that the increase in M has a more positive impact on DBA than
CBA. Comparing Figures 5 and 4, with 20% malicious clients, DBA
can also achieve similar ASR (nearly 20%) to that of 40% malicious
clients (ASR of 21%), which means with less percentage (e.g., 20%)
of malicious clients, the DBA is still effective. With more clients in
total, the attack performance of CBA decreases, consistent with the
observation in Figure 4. Thus, adding more clients does not change
our previous conclusions (with 5 clients).

Table 2: Attack success rate of CBA and DBA with less per-
centage of malicious clients in TRIANGLES (K=100, Graph-
Sage).

Model [Attack Success Rate (CBA% | DBA%)

| 5% [10% [15% | 20%
GCN 2.76[1.07 | 2.48]1.45 | 2.70]2.25 | 2.67]6.84
GAT 0.29]2.51 | 0.33]4.75 | 0.12]8.16 | 0.12]15.24

GraphSage | 1.96/9.30 | 2.01|15.16 | 2.50]17.63 | 2.40]19.99

Analysis of CBA results In Figure 2, for CBA, the attack suc-
cess rate of all local triggers can be as high as the global trigger,
which is counterintuitive as the centralized attack only embeds
the global trigger into the model. To explain these results, we fur-
ther implement an experiment (NCI1 on GraphSage model) where
we evaluate the attack success rate of the global trigger and local

691

Jing Xu, Rui Wang, Stefanos Koffas, Kaitai Liang, and Stjepan Picek

triggers in both the malicious local model ¢ and the global model.
As shown in Figure 6, in the malicious local model, the ASR of all
local triggers is already close to the global trigger, which means
that the malicious local model has learned the pattern of each local
trigger. After aggregation, the global model inherits the capacity of
local models. Once any local trigger exists, the global model will
misclassify the data sample into the attacker-chosen target label.
Still, in [47], for the CBA, the attack success rate of all local
triggers is significantly lower than the global trigger. There, the
malicious local model learns the global trigger instead of each local
trigger, so the poisoned model can only misclassify the data sample
once there is a global trigger in the data. The different results in
CBA between [47] and our work can be explained since there, the
local triggers composing the global trigger are located close to each
other (i.e., less than three pixels distance). In our work, the location
of local triggers is random since a graph is non-Euclidean data
where we cannot put nodes in some order. When the local trigger
graphs are further away from each other, the malicious local model
in CBA can only learn the local trigger instead of the global trigger.

5.3 Clean Accuracy Drop

The goal of the backdoor attack is to make the backdoored model
simultaneously fit the main task and backdoor task. Therefore, it
is critical that the trained model still behaves normally on untam-
pered data samples after training with the poisoned data. Here, we
use clean accuracy drop (CAD) to evaluate if the backdoored model
can still fit the original main task. CAD is the classification accu-
racy difference between global models with and without malicious
clients over the clean testing dataset. CBA’s and DBA’s final clean
accuracy drop results in the honest and malicious majority attack
scenarios are given in Tables 3 and 4, respectively. In most cases,
both attacks have a low CAD, i.e., around 2%, and only in a few
cases is there a significant CAD. These results imply that, in most
cases, both attacks have a negligible impact on the original task of
the model. Additionally, in some cases, DBA’s CAD is significantly
higher than CBA’s, e.g., DBA’s CAD is 11.11% in the GAT model on
TRIANGLES while CBA’s is 1.58%. At the same poisoning intensity
for each client, there are more poisoned data in DBA than CBA,
leading to worse performance in the main task. The substantial
clean accuracy drop in DBA can also be observed in [47].

Table 3: Clean accuracy drop of CBA and DBA in the honest
majority attack scenario.

Clean Accuracy Drop (CBA% | DBA%)

Dataset [GCN [GAT [GraphSage
NCI1 2.73]3.88 0.37 [1.75 0.91]0.53
PROTEINS_full 0.19 | 2.50 0.720.87 3.23(1.82
TRIANGLES 0.18]0.06 2.21]2.39 1.22]6.70

6 DEFENSES

Potential Countermeasures FLAME [33] is one of the state-of-
the-art defenses against backdoor attacks in FL, combining the

®For the CBA, we assume there is one centralized attacker, so there is only one local
model that will be poisoned and we define this model as the malicious local model

More is Better (Mostly): On the Backdoor Attacks in Federated Graph Neural Networks

ACSAC °22, December 5-9, 2022, Austin, TX, USA

5% 10% 15% 20%
1.0 1.0 1.0 1.0
—— Global Trigger
—— Local Trigger 0

0.8 08 08 08 Local Trigger 1
g g g © Local Trigger 2
2 2 2 2 Local Trigger 3
& & & &
206 206 206 %06 Local Trigger 4
g g g g — oea
2 3] 3 --+- CBA
2 2 @ a
%04 %04 %04 %04
3 5 5 5
£ £ £ £
E E 2 2

02 02 02 02 AR RS

A ﬁ\//}yecf\\-j/m-j
00 e 00 : ik 0.0 | St 0.0 | Mt ot R
0 10 20 30 40 50 0 10 2 30 40 50 10 20 30 40 50 0 10 20 30 40 50
Round Round Round Round

Figure 5: Backdoor attack results of TRIANGLES with less percentage of malicious clients (K = 100, GraphSage).

Malicious local model Global model

~+- Global Trigger
-+~ Local Trigger 1
ol Y Bbess tasn st it T T 8 Local Trigger 2

Py g,
b VR R R P

§

B S TR e T

°
©

°
S
°
S

°
=

Attack Success Rate
o
IS

Attack Success Rate

°
°
N

0 10 20 30 40 50 [10 20 30 40 50
Round Round
(a) Honest majority attack scenario

Malicious local model Global model

1.0 10 -+~ Global Trigger

-+~ Local Trigger 1
»

P b g b A . Frrreerr bR Local Trigger 2

K i o Local Trigger 3

ehrirk o

°
©

PRSARIHIENEY, Wi

A e PR

°
S

Attack Success Rate
o
IS

Attack Success Rate

°
°
N

20
Round Round

(b) Malicious majority attack scenario

Figure 6: Centralized backdoor attack results on the mali-
cious local model and global model with different triggers.

Table 4: Clean accuracy drop of CBA and DBA in the mali-
cious majority attack scenario.

Dataset { Clean Accuracy Drop (CBA% | DBA%)

[GCN [GAT [GraphSage

NCI1 2.21|2.50 0.43]0.02 1.07]0.91
PROTEINS_full 2.13]0.65 3.4416.15 0.990.85
TRIANGLES 0.220.36 1.58 | 11.11 1.629.72

benefits of both defense types (Byzantine-robust aggregation mech-
anisms and differential privacy techniques) to eliminate the im-
pact of backdoor attacks while maintaining the performance of
the aggregated model on the main task. FoolsGold [14] is a robust
FL aggregation algorithm that can identify attackers in federated
learning based on the diversity of client updates. It reduces the
aggregation weights of detected malicious clients while retaining
the weights of other clients. One of the assumptions in this defense
is that each client’s training data is non-i.i.d and has a unique dis-
tribution, which fits the non-i.i.d data distribution setting in our
paper. Thus, we focus on evaluating the attack effectiveness of DBA
and CBA against both FLAME and FoolsGold.

692

Results and Analysis Figures 7 and 8 show the attack perfor-
mance for the TRIANGLES dataset under FLAME and FoolsGold
in the honest majority attack scenario (the results in the malicious
majority attack scenario are similar). The results for other datasets
illustrate that these two defenses have a negligible impact on the
attack performance, as shown in Appendix D.3. As we can see in
Figure 7 and 8, generally, for both defenses, once there is an obvi-
ous increase in the ASR of an attack, the testing accuracy of the
corresponding attack decreases. For example, under FLAME, the
DBA’s and CBA’s ASR stays steady for GCN and GAT models while
it increases by about 10% for the GraphSage model. However, the
testing accuracy of these two attacks on GraphSage has a more
obvious drop than on other models (Figure 8a).

Under FoolsGold, there is a significant increase in CBA’s ASR in
all models, but the testing accuracy of CBA reduces significantly
at the same time. Our hypothesis for this situation is that under
FoolsGold, the malicious client in CBA is assigned a higher weight
(recall the description of the FoolsGold mechanism from the para-
graph above) than other clients, so malicious updates contribute
more to the aggregated model. Simultaneously, the low weights on
the honest clients’ updates lead to the failure of the performance on
the original task. We reported FoolsGold’s weights on every client
in DBA and CBA in Appendix F and showed that this hypothesis
is reasonable. One possible reason is that in CBA, there is only
one malicious client whose updates are likely to appear dissimilar
from those of other honest clients, so FoolsGold cannot identify the
malicious updates successfully.

Based on the experimental results against defenses, we find that
both defenses cannot detect malicious updates successfully. One
reason may be that both methods apply cosine distance to try to
identify malicious models, i.e., the distance between malicious up-
dates is smaller than between honest updates. Still, in our attacks,
the malicious clients’ updates could already be very dissimilar to
each other, so the malicious updates are likely to be clustered into
honest updates. It thus seems crucial to design a defense specifically
for the backdoor attacks in Federated GNNs.

7 RELATED WORK

Backdoor Attacks in GNNs Several recent works have conducted
backdoor attacks on GNNs. Zhang et al. proposed a subgraph-based
backdoor attack on GNNs for the graph classification task [56].
Xi et al. presented a subgraph-based backdoor attack on GNNs,
that works for both node classification and graph classification
tasks [46]. Xu et al. investigated the explainability of the impact

ACSAC °22, December 5-9, 2022, Austin, TX, USA

GraphSage

o o o iy
> o ® o

o
N

Attack Success Rate

o
o

1.0

0.8

0.6

1.0

0.8

20 30 50
Round

(a) FLAME

GAT

o o o g
~ o ® o

Attack Success Rate

o
N

o
o

1.0

S
0 10 20 30
Round

—— Global Trigger

—— Local Trigger 0

10 20 30 40 50
Round

Local Trigger 1

(b) FoolsGold

Figure 7: Backdoor attack results of TRIANGLES on two de-
fenses: FLAME and FoolsGold.

GAT

GraphSage

Accuracy

1.0

0.8

0.6

TSN

0 10 20 30
Round

40

50

10

20 30 40 50
Round

GraphSage

Accuracy

1.0

0.8

061

0.4

0.2

1.0

0.8

0.6

0.4

P—

0 10 20 30
Round

—— Clean model

40

50

DBA

0.0

10 20 30 40 50
Round

CBA

0.0

10

20 30 40 50
Round

(b) FoolsGold

Figure 8: Testing accuracy of TRIANGLES on two defenses:
FLAME and FoolsGold.

of the trigger injecting position on the performance of backdoor
attacks on GNNs and proposed a new backdoor attack strategy for
the node classification task [49]. All current attacks are implemented
in centralized training for GNNs. No works explore the backdoor
attacks in distributed training for GNNG, e.g., Federated GNNE.

FL on GNNs FL has gained increasing attention as a training para-
digm where data is distributed at remote devices and models are
collaboratively trained in a central server. While FL has been widely
studied in Euclidean data, e.g., images, texts, and sound, there are
increasing studies about FL in graph data. FL on graph data was
introduced in [26], where each client is regarded as a node in a

693

Jing Xu, Rui Wang, Stefanos Koffas, Kaitai Liang, and Stjepan Picek

graph. When it comes to detecting financial crimes (e.g., fraud or
money laundering), traditional machine learning tends to lead to
severe overreporting of suspicious activities. Thanks to the rea-
soning ability of the graph neural network, its advantages can be
well-reflected. Considering the need for privacy, [39] proposed the
framework for Federated GNNs to optimize the machine learning
model. Besides, other research works [21, 44, 57] have been dedi-
cated to enhancing the security of Federated GNNs. By using secure
aggregation, [21] proposed a method to predict the trajectories of
objects via aggregating both spatial and dynamic information with-
out information leakage. With differential privacy, [57] and [44] put
forward a framework to train Federated GNNs for vertical FL and
recommendation system, respectively. Moreover, SpreadGNN was
proposed in [20] to perform FL without a server. Although there is
an increasing number of works on FL for graph data, the vulnerability
of Federated GNNs to backdoor attacks is still underexplored.

The Security Assumption of Malicious Majority Clients Cao
et al. took into account the situation of backdoor attacks in the
malicious majority of clients and proposed a method of defense-
FLTrust [7]. Before training begins, an honest server collects and
trains on a small dataset. The server takes the updates obtained by
training on a small dataset as the root of trust in each iteration. It is
then compared to the updates uploaded by the clients. If the cosine
similarity between them is too small, the updates will be filtered
out. With this approach, the accuracy of the global model remains
equivalent to that of the baseline. Based on FLTrust, Dong et al.
considered the setting of two semi-honest servers and malicious
majority clients and proposed FLOD to ensure that gradients are
not leaked on the server side [10].

8 CONCLUSIONS AND FUTURE WORK

This paper explores how Centralized and Distributed Backdoor
attacks behave in Federated GNNs. Through extensive experiments
on three datasets and three popular GNN models, we showed that
generally, DBA achieves a higher attack success rate than CBA. We
showed that in CBA, the ASR of local triggers could be as high as
the global trigger even if, during training, only the global trigger
is embedded in the model. The impact of the percentage of mali-
cious clients on DBA’s ASR is analyzed with correlation, where
we confirm the intuition that more malicious clients lead to more
successful attacks. We analyzed the critical backdoor hyperparam-
eters to explore their impact on the attack performance and the
main task. We also demonstrated that DBA and CBA are robust
against two state-of-the-art defenses for the backdoor attack in FL,
necessitating the need for custom defenses. Interestingly, the CBA’s
ASR is even higher under one defense. The experimental setting
in this work verifies the effectiveness of our method in a cross-silo
federated learning setting and motivates further research in explor-
ing backdoor attacks in Federated GNNs considering cross-device
FL [38]. Future work will include exploring backdoor attacks in
Federated GNNs for the node classification task. For example, in
a social media app where each user has a local social network G¥
and {G*} constitutes the latent entire human social network G, the
developers can train a fraud detection GNN model through FL. In
such a case, an attacker can conduct a backdoor attack to force the
trained global model to classify a fraud node as benign.

More is Better (Mostly): On the Backdoor Attacks in Federated Graph Neural Networks

REFERENCES

(1]

=
&

[14]

[15

[16]

[17

[18]

=
L

[20

[21]
[22]
[23]

[24

[25]

[26

[27]

[28

[29]

[30

Eugene Bagdasaryan, Andreas Veit, Yiging Hua, Deborah Estrin, and Vitaly
Shmatikov. 2020. How to backdoor federated learning. In AISTATS. PMLR.
Albert-Laszl6 Barabasi and Réka Albert. 1999. Emergence of scaling in random
networks. science 286, 5439 (1999), 509-512.

Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin Calo.
2019. Analyzing federated learning through an adversarial lens. In ICML. PMLR.
Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer.
2017. Machine learning with adversaries: Byzantine tolerant gradient descent.
Advances in Neural Information Processing Systems 30 (2017).

Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, et al. 2019. Towards
federated learning at scale: System design. arXiv preprint arXiv:1902.01046 (2019).
Karsten M Borgwardt, Cheng Soon Ong, Stefan Schénauer, et al. 2005. Protein
function prediction via graph kernels. Bioinformatics 21 (2005).

Xiaoyu Cao, Minghong Fang, Jia Liu, and Neil Zhenqiang Gong. 2020. FLTrust:
Byzantine-robust Federated Learning via Trust Bootstrapping. arXiv preprint
arXiv:2012.13995 (2020).

Dawei Cheng, Fangzhou Yang, Sheng Xiang, and Jin Liu. 2022. Financial time
series forecasting with multi-modality graph neural network. Pattern Recognition
(2022).

Sanjoy Dasgupta, Christos H Papadimitriou, and Umesh Virkumar Vazirani. 2008.
Algorithms. McGraw-Hill Higher Education New York.

Ye Dong, Xiaojun Chen, Kaiyun Li, Dakui Wang, and Shuai Zeng. 2021. FLOD:
Oblivious Defender for Private Byzantine-Robust Federated Learning with
Dishonest-Majority. In Computer Security — ESORICS 2021, Elisa Bertino, Haya
Shulman, and Michael Waidner (Eds.).

Shaohua Fan, Junxiong Zhu, Xiaotian Han, et al. 2019. Metapath-guided hetero-
geneous graph neural network for intent recommendation. In Proceedings of the
25th ACM SIGKDD.

Wengqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.
2019. Graph neural networks for social recommendation. In WWW.

Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Gong. 2020. Local model
poisoning attacks to byzantine-robust federated learning. In USENIX Security.
Clement Fung, Chris JM Yoon, and Ivan Beschastnikh. 2018. Mitigating sybils in
federated learning poisoning. arXiv preprint arXiv:1808.04866 (2018).

E. N. Gilbert. 1959. Random Graphs. The Annals of Mathematical Statistics 30, 4
(1959), 1141-1144. https://doi.org/10.1214/a0ms/1177706098

Zhiwei Guo and Heng Wang. 2020. A deep graph neural network-based mecha-
nism for social recommendations. IEEE Transactions on Industrial Informatics 17,
4 (2020), 2776-2783.

William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NeurIPS.

Andrew Hard, Kanishka Rao, Rajiv Mathews, et al. 2018. Federated learning for
mobile keyboard prediction. arXiv preprint arXiv:1811.03604 (2018).

Chaoyang He, Keshav Balasubramanian, Emir Ceyani, Carl Yang, Han Xie,
Lichao Sun, Lifang He, Liangwei Yang, Philip S. Yu, Yu Rong, Peilin Zhao, Jun-
zhou Huang, Murali Annavaram, and Salman Avestimehr. 2021. FedGraphNN:
A Federated Learning System and Benchmark for Graph Neural Networks.
arXiv:2104.07145 [cs.LG]

Chaoyang He, Emir Ceyani, Keshav Balasubramanian, Murali Annavaram, and
Salman Avestimehr. 2021. SpreadGNN: Serverless Multi-task Federated Learning
for Graph Neural Networks. arXiv:2106.02743 [cs.LG]

Meng Jiang, Taeho Jung, Ryan Karl, and Tong Zhao. 2020. Federated dynamic
gnn with secure aggregation. arXiv preprint arXiv:2009.07351 (2020).

Peter Kairouz, H Brendan McMahan, Brendan Avent, et al. 2019. Advances and
open problems in federated learning. arXiv preprint arXiv:1912.04977 (2019).
Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR.

Boris Knyazev, Graham W Taylor, and Mohamed Amer. 2019. Understanding
attention and generalization in graph neural networks. Advances in neural
information processing systems 32 (2019).

Anusha Lalitha, Osman Cihan Kilinc, Tara Javidi, and Farinaz Koushanfar. 2019.
Peer-to-peer federated learning on graphs. arXiv preprint arXiv:1901.11173(2019).
Anusha Lalitha, Osman Cihan Kilinc, Tara Javidi, and Farinaz Koushanfar. 2019.
Peer-to-peer federated learning on graphs. arXiv preprint arXiv:1901.11173(2019).
Jaechang Lim, Seongok Ryu, Kyubyong Park, Yo Joong Choe, Jiyeon Ham, and
Woo Youn Kim. 2019. Predicting drug—-target interaction using a novel graph
neural network with 3D structure-embedded graph representation. Journal of
chemical information and modeling 59, 9 (2019), 3981-3988.

Fenglin Liu, Xian Wu, Shen Ge, Wei Fan, and Yuexian Zou. 2020. Federated
learning for vision-and-language grounding problems. In AAAL

Yang Liu, Anbu Huang, Yun Luo, He Huang, Youzhi Liu, Yuanyuan Chen, Lican
Feng, Tianjian Chen, Han Yu, and Qiang Yang. 2020. Fedvision: An online visual
object detection platform powered by federated learning. In AAAL

Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang
Wang, and Xiangyu Zhang. 2018. Trojaning Attack on Neural Networks. In 25th
Annual Network and Distributed System Security Symposium, NDSS 2018, San

694

[31

[32

(33]

[34

@
2

(36]

[37

[38

[39

=
=

[41

[42]

[43

[44]

=
&

o
S

o
&

o
=

‘o
o

[57]

[58

ACSAC °22, December 5-9, 2022, Austin, TX, USA

Diego, California, USA, February 18-21, 2018.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-
works from decentralized data. In AISTATS. PMLR.

Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel,
and Marion Neumann. 2020. Tudataset: A collection of benchmark datasets for
learning with graphs. arXiv preprint arXiv:2007.08663 (2020).

Thien Duc Nguyen, Phillip Rieger, Huili Chen, et al. 2022. FLAME: Taming
Backdoors in Federated Learning. arXiv:2101.02281 [cs.CR]

Thien Duc Nguyen, Phillip Rieger, Markus Miettinen, and Ahmad-Reza Sadeghi.
2020. Poisoning attacks on federated learning-based IoT intrusion detection
system. In Proc. Workshop Decentralized IoT Syst. Secur.(DISS).

Krishna Pillutla, Sham M Kakade, and Zaid Harchaoui. 2019. Robust aggregation
for federated learning. arXiv preprint arXiv:1912.13445 (2019).

Omid Poursaeed, Isay Katsman, Bicheng Gao, and Serge Belongie. 2018. Genera-
tive adversarial perturbations. In CVPR.

Pavel Pudlak, Vojtéch Rodl, and Petr Savicky. 1988. Graph complexity. Acta
Informatica 25, 5 (1988), 515-535.

Virat Shejwalkar, Amir Houmansadr, Peter Kairouz, and Daniel Ramage. 2022.
Back to the drawing board: A critical evaluation of poisoning attacks on pro-
duction federated learning. In 2022 IEEE Symposium on Security and Privacy (SP).
IEEE, 1354-1371.

Toyotaro Suzumura, Yi Zhou, Natahalie Baracaldo, et al. 2019. Towards feder-
ated graph learning for collaborative financial crimes detection. arXiv preprint
arXiv:1909.12946 (2019).

Petar Veli¢kovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph Attention Networks. ICLR (2018). https:
//openreview.net/forum?id=rJXMpikCZ

Daixin Wang, Jianbin Lin, Peng Cui, Quanhui Jia, Zhen Wang, Yanming Fang,
Quan Yu, Jun Zhou, Shuang Yang, and Yuan Qi. 2019. A semi-supervised graph
attentive network for financial fraud detection. In ICDM. IEEE.

JIANIAN WANG, SHENG ZHANG, YANGHUA XIAO, and RUI SONG. 2022. A
Review on Graph Neural Network Methods in Financial Applications. Journal of
Data Science 20, 2 (2022), 111-134.

Duncan] Watts and Steven H Strogatz. 1998. Collective dynamics of ‘small-
world’networks. nature 393, 6684 (1998), 440-442.

Chuhan Wu, Fangzhao Wu, Yang Cao, Yongfeng Huang, and Xing Xie. 2021.
Fedgnn: Federated graph neural network for privacy-preserving recommendation.
arXiv preprint arXiv:2102.04925 (2021).

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chenggqi Zhang, and
S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
transactions on neural networks and learning systems 32, 1 (2020), 4-24.
Zhaohan Xi, Ren Pang, Shouling Ji, and Ting Wang. 2021. Graph backdoor. In
USENIX Security.

Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. 2019. Dba: Distributed backdoor
attacks against federated learning. In ICLR.

Zhaoping Xiong, Dingyan Wang, Xiaohong Liu, et al. 2019. Pushing the bound-
aries of molecular representation for drug discovery with the graph attention
mechanism. Journal of medicinal chemistry 63, 16 (2019), 8749-8760.

Jing Xu, Minhui Xue, and Stjepan Picek. 2021. Explainability-based backdoor
attacks against graph neural networks. In Proceedings of the 3rd ACM Workshop
on Wireless Security and Machine Learning.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful
are graph neural networks? arXiv preprint arXiv:1810.00826 (2018).

Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. 2018.
Byzantine-robust distributed learning: Towards optimal statistical rates. In Inter-
national Conference on Machine Learning. PMLR, 5650-5659.

Ruiping Yin, Kan Li, Guangquan Zhang, and Jie Lu. 2019. A deeper graph neural
network for recommender systems. Knowledge-Based Systems 185 (2019), 105020.
Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L Hamilton, and
Jure Leskovec. 2018. Hierarchical graph representation learning with differen-
tiable pooling. arXiv preprint arXiv:1806.08804 (2018).

Huanding Zhang, Tao Shen, Fei Wu, Mingyang Yin, Hongxia Yang, and Chao Wu.
2021. Federated Graph Learning—-A Position Paper. arXiv preprint arXiv:2105.11099
(2021).

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. 2018. An
end-to-end deep learning architecture for graph classification. In AAAL

Zaixi Zhang, Jinyuan Jia, Binghui Wang, and Neil Zhengiang Gong. 2021. Back-
door attacks to graph neural networks. In Proceedings of the 26th ACM Symposium
on Access Control Models and Technologies.

Jun Zhou, Chaochao Chen, Longfei Zheng, Huiwen Wu, Jia Wu, Xiaolin Zheng,
Bingzhe Wu, Ziqi Liu, and Li Wang. 2021. Vertically Federated Graph Neural
Network for Privacy-Preserving Node Classification. arXiv:2005.11903 [cs.LG]
Xinghua Zhu, Jianzong Wang, Zhenhou Hong, and Jing Xiao. 2020. Empirical
studies of institutional federated learning for natural language processing. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: Findings.

https://doi.org/10.1214/aoms/1177706098
https://arxiv.org/abs/2104.07145
https://arxiv.org/abs/2106.02743
https://arxiv.org/abs/2101.02281
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://arxiv.org/abs/2005.11903

ACSAC °22, December 5-9, 2022, Austin, TX, USA

A NOTATION

In Table 5, we summarize the notations used throughout the paper.

Table 5: Notations used in this paper.

Notations | Descriptions
Yr target label
Gy joint global model at round ¢
E local epochs
K number of clients
M number of malicious clients
Ch,Cm honest clients, malicious clients
Dyocal client’s local training dataset splitted from dataset Dsrqin
Dyest testing dataset splitted from dataset D
Lglobal global trigger
Yocal local trigger
wf client k’s local trained model at round ¢
r poisoning ratio
s number of nodes in graph trigger
p edge existence probability in graph trigger
Dirigger dataset with trigger embedded
Delean clean training dataset
Dypackdoor | backdoored training dataset
B local minibatch size
n learning rate

B DATASET STATISTICS

In Table 6, we show various statistics about the datasets used.

C ANALYSIS OF BACKDOOR
HYPERPARAMETERS

This section studies the backdoor hyperparameters discussed in
Section 3.2. We only modify one factor for each experiment and keep
other factors as in Section 5.1. We provide results for TRIANGLES
and the GraphSage model as an example as those results are more
stable, i.e., have the smallest standard error, and the results of other
models are aligned.For each factor, we evaluate the global trigger’s
ASR and the test accuracy on the clean test dataset. We illustrate
the results on TRIANGLES in two attack scenarios to analyze the
effects of each factor for DBA and CBA. The results are shown in
Figure 9.

Effects of Trigger Size From the ASR results in Figure 9, for
both attacks and attack scenarios, with the increase of trigger size,
the attack success rate rises significantly, e.g., the DBA’s ASR in-
creases from 0.09 to 0.80 with trigger size rising from 0.15 to 0.30
(honest majority attack scenario). There is no significant effect of
trigger size on the test accuracy of the global model, implying that
the trigger size has little impact on the original main task.

Effects of Poisoning Intensity Similar to the impact of trigger
size on the attack success rate, a higher poisoning intensity gives a
higher attack success rate. Intuitively, a backdoor attack can per-
form better with more poisoned data. Nevertheless, the increase is
less significant than that of different trigger sizes. Specifically, in
comparison with [46], where there is no obvious difference between
the impact of poisoning intensity and trigger size, here, a larger
trigger size has a more positive influence on ASR than a larger poi-
soning intensity. We consider this an interesting observation and

695

Jing Xu, Rui Wang, Stefanos Koffas, Kaitai Liang, and Stjepan Picek

plan to investigate it in future work. Moreover, in DBA, the test ac-
curacy decreases with the increasing poisoning intensity, and with
more malicious clients, the drop is more significant, as shown in
Figures 9a and 9b. This can be explained as with higher poisoning in-
tensity, and more malicious clients, more model weights (including
some for the original task) are influenced by the malicious trigger
patterns, and the performance on the main task degrades more.
We can also observe that with higher poisoning intensity, there is
no obvious drop in the testing accuracy for CBA, as presented in
Figures 9c and 9d. Although more local data is poisoned, the other
honest clients (the majority part) still guarantee the performance
on the main task.

Effects of Trigger Density From Figure 9b, DBA’s ASR im-
proves from 30.10% to 47.96% when the trigger density increases
from 0.50 to 0.80. This is because the average complexity of the
TRIANGLES dataset is 0.16 [37]. Thus, when the trigger density is
set close to this value, the difference between the original graph
and the trigger graph is harder to distinguish. However, the effect
of the trigger density in CBA’s ASR is not strong. We see a slight
fluctuation as the trigger density increases, but its range is very
small to be considered a trend. In CBA, we use only one malicious
client, and the weak effect of the trigger density is smoothed by the
averaging operation.

In Figure 9, in most cases, there is no significant drop in the test
accuracy with an increase in the trigger size and trigger density.
On the contrary, in the backdoor attacks in centralized GNNs [49],
as trigger size increases, the test accuracy decreases. This can be
explained as, in FL, the influence of backdoor functionality on the
main task is weakened by the aggregation of local models.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 More Clients (Malicious Majority Attack
Scenario)

The attack results on TRIANGLES with 10 and 20 clients in the
malicious majority attack scenario are shown in Figure 10. In the
malicious majority attack scenario, with more clients, the ASR of
DBA keeps steady while that of CBA drops dramatically, which
is consistent with the observations in the honest majority attack
scenario, as shown in Figure 4.

D.2 Less Percentage of Malicious Clients

The attack results with less percentage of malicious clients on
TRIANGLES are shown in Figure 11. Similar to the attack results
for GraphSage (Figure 5)7, DBA’s ASR is gradually increasing with
the rise in the percentage of malicious clients. On the contrary, the
attack success rate of CBA keeps steady.

D.3 Additional Defense Results

The attack success rate under defenses on NCI1 and PROTEINS _full
datasets (honest majority attack scenario) are shown in Figures 12
and 13, respectively. There is a slight increase in the attack success
rate of DBA and CBA under two defenses: FLAME and FoolsGold,
which indicates that both defenses fail to identify the malicious

"Here, we put the first 5 local triggers in the legend to make the figure more clear. The
results for the rest local triggers have the same phenomenon

More is Better (Mostly): On the Backdoor Attacks in Federated Graph Neural Networks ACSAC ’22, December 5-9, 2022, Austin, TX, USA

Table 6: Datasets statistics.

Dataset [#Graphs | Avg #nodes | Avg #edges | Classes | Class Distribution
NCI1 4,110 29.87 32.30 2 2,053[0], 2,057[1]
PROTEINS_full 1,113 39.06 72.82 2 663[0],450[1]
TRIANGLES 45,000 20.85 32.74 10 4,500[0 — 9]
1.0 1.0
=
0.8 -/1 08 A~
x 0.6 x 0.6 / o ° —
<04 / K%}r‘/%—% <04 A/?/?/% ?—/H/T
o
0.2 / 3/0//4 02 a °
0.0— 0.0
. 1.0 . 1.0
%} %]
g o S =
809 o _m o & o~ B > g o9 . &
© T g o T o © [==1 = = &= =
o o T\E/’
£08 08 ° ° o ©° H
n [
S IS
0.7 0.7
0.15 0.20 0.25 0.30 0.05 0.10 0.15 0.20 0.20 0.50 0.80 1.00 0.15 0.20 0.25 0.30 0.05 0.10 0.15 0.20 0.20 0.50 0.80 1.00
Trigger Size Poisoning Intensity Trigger Density Trigger Size Poisoning Intensity Trigger Density
(a) DBA in honest majority attack scenario (b) DBA in malicious majority attack scenario
1.0 1.0
0.8 o 0.8
< o o | < & EN. .
o i/% — = 0.4 / ° = T =
- p— o
0.2 %‘/ = 0271
0.0 0.0
- 1.0 - 1.0
O O
g o o o & o -———= g o—=—0° = = == =
3091 5 = = = == | Zoo{ ¥ - St —s =
® @
o o
£038 o8
b b
0.15 0.20 0.25 0.30 0.05 0.10 0.15 0.20 0.20 0.50 0.80 1.00 0.15 0.20 0.25 0.30 0.05 0.10 0.15 0.20 0.20 0.50 0.80 1.00
Trigger Size Poisoning Intensity Trigger Density Trigger Size Poisoning Intensity Trigger Density
(c) CBA in honest majority attack scenario (d) CBA in malicious majority attack scenario

Figure 9: Results on TRIANGLES with different trigger parameters.

GCN GAT GraphSage GCN GAT GraphSage

1.0 1.0 1.0 1.0 1.0 1.0
Los 0.8 0.8 £o0s8 0.8 0.8
z z
505 0.6 0.6 ﬁ 0.6 0.6 0.6
g g
g g
Qoa Y04 0.4
5 g \
Zo2 Zo2 4 02

0.0 L% ! 00 = 00 A s it ot

0 10 20 30 40 50 0 10 20 30 40 50 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Round Round Round Round Round
(a) 10 clients (b) 20 clients
—— Global Trigger Local Trigger2 —— Local Trigger 5 —— Local Trigger 8~ —— Local Trigger 11
—— Local Trigger 0 Local Trigger 3 Local Trigger 6 Local Trigger 9~ —— DBA
Local Trigger 1~ —— Local Trigger 4 Local Trigger 7 —— Local Trigger 10—+~ CBA
(c) Legend
Figure 10: Backdoor attack results of TRIANGLES with more clients in the malicious majority attack scenario.

updates and misclassify them as benign. The graph data are not used as triggers do not induce aligned updates. As a result, the
Euclidean data, e.g., images, so the slightly different subgraphs cosine similarity cannot be used to detect malicious clients based

696

ACSAC °22, December 5-9, 2022, Austin, TX, USA

Jing Xu, Rui Wang, Stefanos Koffas, Kaitai Liang, and Stjepan Picek

5% 10% 15% 20%
1.0 1.0 1.0 1.0
—— Global Trigger
—— Local Trigger 0
08 08 08 08 Local Trigger 1
o o o o Local Trigger 2
s 3 3 3 Local Trigger 3
2 2 2 e
206 206 206 2 0.6 —— Local Trigger 4
¢ ¢ ¢ ¢ — oBA
5 5 5 5 -~ CBA
2 A a 2
%04 %04 %04 %04
2 2 2 H
02 02
0oLk 0.0 X —
0 10 20 30 40 50 0 10 20
Round Round Round Round
(a) GCN
5% 10% 15% 20%
1.0 1.0 1.0 1.0
—— Global Trigger
—— Local Trigger 0
08 08 08 08 Local Trigger 1
° o o o Local Trigger 2
T k] ki ki Local Trigger 3
2 e e e
206 206 206 906 —— Local Trigger 4
8 8 g g — DBA
3 3 5 5 -+- CBA
a a a a
304 304 %04 304
g £ g 8
< < < <
0.2 0.2 0.2 0.2
A
ke A e T A . A
0.0 L 0.0 e -~ 00 o = i 0.0 LA £ y % FVRa
o 10 30 40 50 10 20 30 40 50 10 20 30 40 50 o 10 20 30 40 50
Round Round Round Round

(b) GAT

Figure 11: Backdoor attack results of TRIANGLES with less percentage of malicious clients (K = 100, GCN and GAT).

on their updates. Even though there are more malicious clients in
the malicious majority scenario and the probability of detecting the
malicious updates should be higher, we observe the same behavior.
This further verifies our hypothesis that the defenses based on
cosine similarity between updates are not very effective in the
graph domain. The clean accuracy drop under the defenses on
these two datasets is similar to that without the defense. Thus, the
defenses do not affect the original task in that case.

GCN GAT GraphSage
1077 1.0 10T
Los] | i PR | 08 08
&
@
806 0.6 0.6
I
S
g / i
3047 | 041 ¢ 04
x |
¥ |
£ |
Zo2ql 02 02
0.0 0.0 0.0
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Round Round Round
(a) FLAME
Graphsage
1077 1017
g |
o8 0.8
g
P
206 0.6
I
S
E
@ 0.4 0.4 0.4
<
¥
£
Zo2 02 02
0.0 0.0 0.0
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Round Round Round
— Global Trigger —— Local Trigger 0 Local Tigger 1 —— DBA —+— cBA
(b) FoolsGold

Figure 12: Attack success rate on NCI1 on two defenses (in
the honest majority attack scenario): FLAME and FoolsGold.

697

GraphSage
1.0 1.0
i
" §
208
<
@
206
S
o
3
V0.4
x
]
&
02 0.2 02
0.0 0.0 0.0
0 10 20 30 40 50 [10 20 30 40 50 0 10 20 30 40 50
Round Round Round
(a) FLAME
GraphSage
1.0{F 1.0
)
Los 0.8
<
@
0.6 0.6
S
S
3
V0.4 0.4
~
]
£
Zo02 0.2 0.2
0.0 0.0 0.0
[10 20 30 40 50 [10 20 30 40 50 0 10 20 30 40 50
Round Round Round
—— Global Trigger —— Local Trigger 0 Local Tigger1 —— DBA —+— CBA
(b) FoolsGold

Figure 13: Attack success rate on PROTEINS_full on two
defenses (in the honest majority attack scenario): FLAME
and FoolsGold.

E IMPACT OF PERCENTAGE OF MALICIOUS
CLIENTS

In Figure 14, we show the Pearson Correlation Coefficient of the
percentage of malicious clients on the attack performance.

More is Better (Mostly): On the Backdoor Attacks in Federated Graph Neural Networks

Attack Success Rate

ACSAC °22, December 5-9, 2022, Austin, TX, USA

Table 7: FoolsGold weight in DBA and CBA on TRIANGLES (honest majority attack scenario).

Attacks [Attacker 1 [Attacker 2 (client 2 in CBA) [

Client 3 [Client 4 [Client 5 [Attackers (sum)

[0.86+0.13] 0.86+0.13 [1.00+0.00 | 1.14+0.23

[0.00+0.00 | 0.00+0.00 [0.00+0.00 | 1.00 +0.00

DBA [0.57+0.23 | 0.57 +0.23
CBA | 1.00£0.00 | 0.00 + 0.00
1.0
— NCi1
0.9 1 - PROTEINS_full
r».«)o// TRIANGLES
—— DBA
081 097 -+ CBA
0.7 L
078 eI -+
061 "
0.84
0.51
0.82
0.4 1
0.97
0.3+ T T T
2 3 4 5

Malicious Clients

Figure 14: Correlation between ASR and M.

698

F FOOLSGOLD WEIGHTS

To verify our hypothesis (Section 6) for a reason behind the attack
performance of DBA and CBA against the FoolsGold defense, we
reported the FoolsGold weights on every client in the DBA and CBA
on the GraphSage model, as shown in Table 7. Here, the FoolsGold
weight for each client ranges from 0 to 1. As we can see, in CBA, the
weight of the malicious client is 1, and the weights of other clients
are 0, which means only the malicious updates are aggregated
into the global model. Therefore, the attack success rate of CBA
increases significantly under FoolsGold.

On the other hand, in DBA, the weights of the malicious clients
are lower than the honest clients, indicating that the honest updates
contribute more to the aggregated model. Therefore, there is a
decrease of 5% in the DBA’s ASR after the defense. The reported
weights in Table 7 verify that our hypothesis is valid.

	Abstract
	1 Introduction
	2 Background
	2.1 Federated Learning
	2.2 Graph Neural Networks
	2.3 Backdoor Attacks on Federated Learning

	3 Problem Formulation
	3.1 Overview
	3.2 Threat Model

	4 Backdoor Attacks against Federated GNNs
	4.1 General Framework
	4.2 Backdoored Data Generation

	5 Experiments
	5.1 Experimental Setting
	5.2 Backdoor Attack Results
	5.3 Clean Accuracy Drop

	6 Defenses
	7 Related Work
	8 Conclusions and Future Work
	References
	A Notation
	B Dataset Statistics
	C Analysis of Backdoor Hyperparameters
	D Additional Experimental Results
	D.1 More Clients (Malicious Majority Attack Scenario)
	D.2 Less Percentage of Malicious Clients
	D.3 Additional Defense Results

	E Impact of Percentage of Malicious Clients
	F FoolsGold Weights

