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PREFACE

This master thesis is the result of the master research I performed under supervision from Prof. Michel Ver-
haegen in the last year.

After two years following courses for the Master Embedded Systems and working part-time with the de-
velopment of milking robots, I decided to stop working for a year to focus only on my master research. I
chose to do the research at the university, to learn the most I could in my last year here. Initially I contacted
Prof. Verhaegen to discuss the research options, aiming to do research on fault-tolerant control. After talking
to him, the focus of the research was on the control-loop for adaptive optics. With the guidance of my daily
supervisor Baptiste Sinquin and from Prof. Verhaegen, I had freedom to make my own choices and focus on
what was more interesting for me.

During the literature survey, the possibility to use 2D models in large-scale adaptive optics was discussed,
and a goal for the research was proposed. The goal was to study the application of 2D models in adaptive
optics, but that seemed to be a project much larger than a master research.

So the focus went to the identification of 2D models, keeping in mind that the goal was to identify de-
formable mirrors in adaptive optics. The result of my research is here, and I hope you enjoy reading it!
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ABSTRACT

Current control algorithms for large-scale adaptive optics are computationally demanding and an accurate
wavefront correction is hardly achieved within the time requirements. An idea is to exploit the local inter-
actions between the wavefront sensor and the actuators and to develop compact models that describe the
spatial dynamics of the mirror for future use in control.

The goal of this research is to study the subspace identification of 2D Roesser models to model the spatial
dynamics of a deformable mirror. Two subspace identification algorithms for 2D Roesser models are pre-
sented. Both rely on the decomposition of the Roesser model into two 1D state-space models. The difference
is how the models are connected. In the first case the 1D models are connected in a feed-back loop. In the
second case the 1D models are connected in series.

The subspace identification using the feed-back decomposition provides good estimates of the system
matrices, but can only be applied to a subclass of Roesser models. Is is also shown that using the estimates
from the subspace method as an initial guess for a parametric identification allows to identify more general
Roesser models. A subspace identification algorithm for the decomposition in series has been studied and
handles a subset of Roesser models as well.
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1
INTRODUCTION

With new scientific goals in mind, astronomers need better telescopes to make sharper pictures of astronom-
ical objects. In order to achieve this, new telescopes are being built such as the European Extremely Large
Telescope (E-ELT) and the Thirty Meter Telescope (TMT).

The requirement for larger telescopes comes from 2 factors. The first is the image distortion introduced by
the limited diameter of the telescope. A point light source in an ideal system generates an Airy pattern image,
shown in Figure 1.1. From the Airy pattern a resolution criterion can be defined. This resolution criterion is
called the Rayleigh resolution criterion, which states that two light spots can only be distinguished from each
other if the angular distance between them is bigger than 1.22λ/D , where λ is the light wavelength and D is
the aperture diameter, in the case of the telescope that is the telescope’s diameter.

Figure 1.1: Intensity plot of the Airy Disk. Most of the energy is gathered in the central spot. Around the central spot there are dark rings,
caused by light diffraction when light passes through a circular aperture.

The second factor is that a larger telescope is able to capture more light in a given time interval. This also
increases the quality of the images obtained.

The image captured by a telescope is also influenced by the atmospheric turbulence. The turbulent air
layers above the telescope introduce a disturbance on the incoming light wavefront. This disturbance reduces
the telescopes resolution. One commonly used approach to compensate for the wavefront disturbance is to
use an Adaptive Optics (AO) system.

In Figure 1.2 a schematic for an AO system is given. The main idea is to measure the incoming light wave-
front distortion, and reshape it to a flat wavefront. This is necessary to make sharper pictures. The basic
components are a measurement device, e.g. the Shack-Hartmann Sensor (SHS), a wavefront correction de-
vice, e.g. a Deformable Mirror (DM), and a computer that is able to determine the optimal control command
for the mirror based on the measurements of the SHS, i.e. the commands that will result in the most flat
wavefront possible.

For the E-ELT, the exact system specifications are not fully known, but approximate desired specifications
can be given. One of the challenges in the development of the AO system is the required computational power.
The control-loop for the E-ELT should run at a 1 kHz frequency. Considering the size of the mirror with 104
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2 1. INTRODUCTION

Figure 1.2: Schematic of an Adaptive Optics system for telescopes.

actuators and 4×104 measurements, that means that in less than 1 ms the data of 4×104 measurements have
to be processed and the optimal value for 104 actuators have to be computed.

In traditional systems, this has been done with a Matrix Vector Multiplication (MVM) algorithm. In this
algorithm, the relation between measurements and the optimal control sequence is given by a matrix-vector
multiplication:

û =G y (1.1)

where û is a vector containing the optimal commands that have to be sent to the actuators. y is a vector
containing all the measurements and G is a matrix obtained in the mirror calibration, a process where the
influence of each actuator on all the sensors is measured.

The matrix G is dense, i.e., most elements of the matrix are different from zero, and has a total size of
M×N , where M is the number of actuators and N the number of measurements. Three aspects of the required
computational power are explained:

1. Number of computations per second, denoted by Floating Point Operations per Second (FLOPS).

2. Amount of memory required in bytes (B).

3. The required memory bandwidth, i.e., the amount of data that has to be transferred from the memory
to the computational units, denote by Bytes per second (Bps).

The number of computations required on a matrix-vector multiplication is given by 2×N ×M Floating-
point operations. For the E-ELT numbers mentioned before, the number of operations for one multiplication
is 800×106 operations. With the specified control frequency of 1 kHz, the total number of operations is 800
GFLOPS.

The amount of memory required to store the matrix is the number of elements in the matrix times the
size of each element. Real numbers in computers are usually given by single-precision or double-precision
floating point numbers. The precision of single-precision numbers is lower, however they require less space,
and the computation is usually faster. If single-precision numbers are used, the size of each element is 4
bytes. In the studied case, the amount of memory required is approximately 1.6 GB. The required size for
double-precision is twice the size of the requirements for single-precision.

The required memory bandwidth is given by the size of the matrix (in bytes) times the control frequency.
With the numbers considered so far, the memory bandwidth required is 1600 GBps for single-precision num-
bers.

The matrix-vector multiplication can be implemented to run efficiently on Graphical Processing Units
(GPUs). Consider one of the most recent development in GPUs for scientific purposes, with the technical
specification given in Table 1.1.
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Feature Unit Value for K80 E-ELT requirements
Double-precision performance TFLOPS 1.87 0.8
Single-precision performance TFLOPS 5.6 0.8

Memory Bandwidth GBytes/s 480 1600
Memory GBytes 24 1.6

Table 1.1: Specifications of the most recent Kepler GPU from NVidia (K80), designed for scientific computing1.

As it can be seen, the number of computations per second and the total amount of memory necessary are
not a problem for this particular system. The bottleneck is the memory bandwidth. For less advanced GPU’s,
the number of computations and the amount of memory might also be a problem.

For this reason, much effort has been put into developing algorithms that require less computations,
memory and memory bandwidth. Most of the effort has been put in wavefront reconstruction algorithms
such as [1–3]. This algorithm has the task of determining what the current wavefront is, based on the mea-
surements of a SHS. Less has been done on optimizing the computation of the optimal actuator commands.

One possible approach to reduce the requirements mentioned before is to compress the mirror spatial
dynamics into a two dimensional state-space model, which will be introduced in the next chapter. In this
thesis, the focus is on an identification algorithm for 2D Roesser models, and the possibility to apply these
type of models to model the spatial dynamics of large-scale telescope mirrors.

The thesis starts with an introduction to Roesser models in Chapter 2. After that in Chapter 3 and Chap-
ter 4 two subspace identification algorithms are derived, both based in the decomposition of a special class
of Roesser models. In Chapter 5 future research work is suggested.

1Information available at http://www.nvidia.com/object/tesla-servers.html, acessed on 13-October-2015

http://www.nvidia.com/object/tesla-servers.html




2
2D ROESSER MODELS

2.1. INTRODUCTION TO 2D ROESSER MODELS
To describe the state behaviour for discrete 2 dimensional systems Roesser introduced a 2D state-space
model in [4]. Initially this model was intended for imaging processing algorithms, but its application has
also been studied in other multi-dimensional systems like magnetic maps and seismic models. It has also
been used to describe systems with one time dimension and one spatial dimension, such as the modelling of
heat-transfer systems [5].

In adaptive optics the model can be used to describe the mirror behaviour or to model the wavefront
aberration. This makes it possible to create a compact model of the mirror, where the size of the mirror
does not influence the size of the model. Important here is that the number of actuators on the mirror does
influence the number of computations. A larger size is similar to a larger simulation time for a 1D state-space
model.

The Roesser state-space model is given by the following equations:[
xh(i +1, j )
xv (i , j +1)

]
=

[
A1 A2

A3 A4

][
xh(i , j )
xv (i , j )

]
+

[
B1

B2

]
u(i , j ) ,

y(i , j ) = [
C1 C2

][
xh(i , j )
xv (i , j )

]
+Du(i , j ) ,

(2.1)

where the indices i and j represent the horizontal and vertical indices, xh ∈ Rnh and xv ∈ Rnv represents the
horizontal and vertical evolving state variable, u ∈ Rm represents the system’s input and y ∈ Rl the system’s
output. And the system matrices are: A1 ∈ Rnh×nh , A2 ∈ Rnh×nv , A3 ∈ Rnv×nh , A4 ∈ Rnv×nv , B1 ∈ Rnh×m , B2 ∈
Rnv×m , C1 ∈Rl×nh , C2 ∈Rl×nv , and D ∈Rl×m .

In this chapter, different concepts related to the Roesser models are explained. These concepts are im-
portant for understanding the identification algorithms presented later in the thesis.

2.2. COMPUTATION OF THE STATE-SPACE MODEL
The computation of the Roesser model can be done iteratively, similar to the 1D state-space model. It is also
possible to compute the state at point (i1, j1) based on the initial state and the inputs, without the necessity
to compute all the intermediate states.

First the initial-state is defined. The initial state can be separated in vertical and horizontal initial states,
and are composed by:

xh
0 = [

xh(0,0) xh(0,1) xh(0,2) · · ·xh(0, Nv )
]T

(2.2)

and
xv

0 = [
xv (0,0) xv (1,0) xv (2,0) · · ·xv (Nh ,0)

]T
(2.3)

where Nv is the number of vertical points of the 2D grid of the model, and Nh is the number of horizontal
points. The initial conditions are also known as boundary conditions, and graphically represented in Fig-
ure 2.1.

5



6 2. 2D ROESSER MODELS

Figure 2.1: The model progress in horizontal (i ) and vertical ( j ) directions. The blocks with horizontal lines have an initial vertical state
xv (i ,0) and the blocks with vertical lines have an initial horizontal state xh (0, j ). The block at (i , j ) = (0,0) has both an initial vertical

and horizontal state defined in the boundary conditions.

Roesser introduced the state-transition matrices Ai , j for 2D systems, given by the following equations:

A0,0 = I (2.4)

where I is the identity matrix of size nh +nv ,

A0,1 =
[

0 0
A3 A4

]
, A1,0 =

[
A1 A2

0 0

]
, A1,1 =

[
A1 A2

A3 A4

]
, (2.5)

Ai , j = A1,0 Ai−1, j + A0,1 Ai , j−1 , (i , j ) > (0,0) (2.6)

A−i , j = Ai ,− j = 0 , fori ≥ 1, j ≥ 1. (2.7)

If the system has no inputs, and the initial state is 0 except for xh(0,0) and xv (0,0), then the state at i , j is
given by: [

xh(i , j )
xv (i , j )

]
= Ai , j

[
xh(0,0)
xv (0,0)

]
(2.8)

One very important detail in this equation is that the matrix Ai , j is given by the summation of multiple
matrices. This is important in the creation of data-equations for sub-space identification.

The computation with different initial states and with inputs different from zero have been shown by
Roesser as well: [

xh(i , j )
xv (i , j )

]
=

j∑
k=0

Ai , j−k
[

xh(0,k)
0

]
+

j∑
h=0

Ai−h, j
[

0
xv (h,0)

]

+
j∑

h=0

i∑
k=0

(
Ai−h−1, j−k

[
B1

0

]
+ Ai−h, j−k−1

[
0

B2

])
u(h,k)

(2.9)

The state at any point (i , j ) is defined by multiple matrix summations. As mentioned before, this is very
important to know when formulating the data-equations for subspace identification.
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2.3. CONTROLLABILITY AND OBSERVABILITY
In 1D systems, the notions of observability and controllability are widely studied. See [11] for an introduction.
Based on these concepts, it is possible to determine if a system is minimal or not.

For 2D systems, the same notions exist. Roesser introduced the concept of local observability and con-
trollability [4].

Definition 2.3.1 (Local observability). A Roesser model is locally observable if and only if for any given initial

state x(0,0) = [
xh(0,0) xv (0,0)

]T
and a set of inputs, the output of the model y(i , j ) with (i , j ) ≥ (0,0) is not

the same as when the initial state is different.

Definition 2.3.2 (Local controllability). A Roesser model is locally controllable if and only if for a given initial

state x(0,0) = [
xh(0,0) xv (0,0)

]T
there exists an set of inputs and a pair (i , j ) ≥ (0,0) such that any possible

state x(i , j ) can be reached.

In [6] it has been shown that these concepts do not provide much information about the system mini-
mality. A Roesser model can be locally controllable and observable without being minimal, but it can also be
minimal without being locally controllable or observable.

One approach to study the system’s observability and controllability is to decompose the model into two
1D systems, and apply the known concepts of observability and controllability to the 1D systems. In the next
section two possible decompositions are demonstrated.

2.4. SEPARABILITY AND DECOMPOSITION OF 2D MODELS
Two dimensional models can also be represented in a transfer-function form given by:

H(zh , zv ) = N (zh , zv )

D(zh , zv )
(2.10)

where zh and zv are the forward shift operators in each dimension, N and D are polynomials in both zh and
zv .

The transfer function representation helps to understand the concept of separability of 2D systems. A
Roesser model can be separable in denominator or separable in numerator.

The separable in numerator transfer-function is given by:

H(zh , zv ) = Nh(zh)Nv (zv )

D(zh , zv )
. (2.11)

And the separable in denominator is given by:

H(zh , zv ) = N (zh , zv )

Dh(zh)Dv (zv )
. (2.12)

Some of the separable models can be decomposed into two 1D systems, i.e., modelling separately the
vertical and the horizontal behaviour.

2.4.1. SEPARABLE IN NUMERATOR
In [7] the decomposition of the Roesser model into two 1D state-space models interconnected in a feedback
loop is studied. The model can be seen in Figure 2.2.

The horizontal H and vertical V systems are given by:

xh(i +1, j ) = Ah xh(i , j )+Bhuh(i , j ) , (2.13a)

y(i , j ) =Ch xh(i , j )+Dhuh(i , j ) , (2.13b)

xv (i , j +1) = Av xv (i , j )+Bv uv (i , j ) , (2.13c)

yv (i , j ) =Cv xv (i , j ) . (2.13d)

The relation between the decomposed model and the Roesser model is given by:[
xh(i +1, j )
xv (i , j +1)

]
=

[
Ah BhCv

BvCh Av +Bv DhCv

][
xh(i , j )
xv (i , j )

]
+

[
Bh

Bv Dh

]
u(i , j )

y(i , j ) = [
Ch DhCv

][
xh(i , j )
xv (i , j )

]
+Dhu(i , j )

(2.14)
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Figure 2.2: Decomposition of a Roesser model into two 1D systems.

Lemma 2.4.1. A Roesser model as described in (2.1) can be decomposed as in Figure 2.2 with the system equa-
tions given in (2.13) if and only if:

rank
[
C1 D

]= rank

[
C1 D
A3 B2

]
(2.15a)

and

rank

[
B1

D

]
= rank

[
B1 A2

D C2

]
. (2.15b)

Proof. See [7]. If the system in Figure 2.2 is a decomposition of a Roesser model given by (2.1), then the system
matrices have to be identical, i.e.

Ah = A1; BhCv = A2; BvCh = A3; Av +Bv DhCv = A4;

Bh = B1; Bv Dh = B2; Ch =C1; DhCv =C2; D1 = D ; (2.16)

For a given model A1, A2, A3, A4, B1, B2, C1, C2 and D it is possible to choose Ah , Av , Bh , Bv , Ch , Cv and
Dh if

Bv [C1 D] = [A3 B2] and

[
B1

D

]
Cv =

[
A2

C2

]
. (2.17)

From the last equation, Bv and Cv can be computed if and only if (2.15a) and (2.15b) hold.

Lemma 2.4.2. The decomposition in Figure 2.2 leads to a separable in numerator transfer-function, i.e., a
transfer function where N (zh , zv ) is separable in the variables zh and zv .

Proof. This can be proved using the transfer functions from H and V:

Hh(zh) = Nh(zh)

Dh(zh)
and Hv (zv ) = Nv (zv )

Dv (zv )
. (2.18)

The transfer-function of two systems connected in a feed-back is given by:

G(zh , zv ) = Hh(zh)

1+Hv (Zv )Hh(zh)
= Nh(zh)Dv (zv )

Dh(zh)Dv (zv )+Nh(zh)Nv (zv )
. (2.19)

Remark. Not all the separable in numerator models can be decomposed as in Figure 2.2. An example is given
in [7]:

G(zh , zv ) = (zh +1)(zv +1)

z2
h z2

v + zh zv +1
. (2.20)
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Figure 2.3: Decomposition of a CRSD model into two 1D systems.

2.4.2. SEPARABLE IN DENOMINATOR
In [8] another decomposition of the Roesser model is proposed. Instead of connecting the vertical and hor-
izontal systems in a feedback loop, the systems are connected in series, as shown in Figure 2.3. Models that
fit into this decomposition are a special class of Roesser models called Causal, Recursive and Separable in
Denominator (CRSD) models.

The horizontal (H) and vertical (V) systems are given by:

xv (i , j +1) = Av xv (i , j )+Bv u(i , j ) , (2.21a)

w(i , j ) =Cv xv (i , j )+Dv u(i , j ) , (2.21b)

xh(i +1, j ) = Ah xh(i , j )+Bh w(i , j ) , (2.21c)

y(i , j ) =Ch xh(i , j )+Dh w(i , j ) , (2.21d)

where the intermediate signal w ∈Rp .

Lemma 2.4.3. The Roesser model in (2.1) can be decomposed into two 1D systems as in Figure 2.3 with the
system equations in (2.21) if the system matrix A3 or A2 is equal to zero.

Proof. See [8]. To prove this, the two systems in Figure 2.3 are combined into one system:

xv (i , j +1) = Av xv (i , j )+Bv u(i , j ) (2.22a)

w(i , j ) =Cv xv (i , j )+Dv u(i , j ) (2.22b)

And by replacing w(i , j ) in the horizontal equation with Cv xv (i , j )+Dv u(i , j ):

xh(i +1, j ) = Ah xh(i , j )+BhCv xv (i , j )+BhDv u(i , j ) (2.22c)

y(i , j ) =Ch xh(i , j )+DhCv xv (i , j )+DhDv u(i , j ) (2.22d)

And writing it in the Roesser model form:[
xh(i +1, j )
xv (i , j +1)

]
=

[
Ah BhCv

0 Av

][
xh(i , j )
xv (i , j )

]
+

[
BhDv

Bv

]
u(i , j )

y(i , j ) = [
Ch DhCv

][
xh(i , j )
xv (i , j )

]
+ [

DhDv
]

u(i , j )

(2.23)

Remark. The proof shows that the resulting system has A3 = 0. If you consider the horizontal system first as
in Figure 2.4, the same proof can be used to show that A2 = 0 in that case.

Figure 2.4: Decomposition of a CRSD model into two 1D systems. Horizontal system first.

Theorem 2.4.4. A Roesser model can be decomposed into two interconnected 1D models as in Figure 2.3 if and
only if the transfer-function is separable in denominator.
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Proof. To prove this theorem, the transfer function of a bivariate separable denominator function is given by:

H(zh , zv ) = N (zh , zv )

Dh(zh)Dv (zv )
=

∑J
j=0

∑K
k=0 m j k z j

h zk
v

Dh(zh)Dv (zv )
=

Z J
h M Z K

v

Dh(zh)Dv (zv )
(2.24)

where M is a matrix containing the coefficients m j k , Z J
h = [1, zh , · · · , z J

h], Z K
v = [1, zh , · · · , z J

h]T and Dh(zh) and
Dv (zv ) are univariate polynomials.

Now the decomposition is considered. The transfer-function for each 1D model is given by:

Hh(zh) =
Z J

h F

Dh(zh)
and Hv (zv ) = G Z K

v

Dv (zv )
(2.25)

where F = [F T
0 F T

1 · · ·F T
J ]T and G = [G0G1 · · ·GK ] are matrices with sizes (J +1)×p and p × (K +1).

When connecting the two 1D systems, the transfer-function of the 2D model is given by the product be-
tween the transfer-functions from the 1D models:

H(zh , zv ) =
Z J

h F

Dh(zh)

G Z K
v

Dv (zv )
(2.26)

The transfer function in (2.26) is equal to the transfer function in (2.24) when FG = M . Under that con-
dition, any 2D CRSD model can be decomposed into a vertical and horizontal model. And the model in
Figure 2.3 always leads to a CRSD model.

Definition 2.4.1 (Minimal Decomposition). As defined in [8], a minimal decomposition of the CRSD model is
the decomposition with the lowest possible value of p, i.e. the lowest size for the intermediate signal w(i , j ) ∈
Rp .

Based on the definition, the following theorem is formulated in [8]:

Theorem 2.4.5. The system given in Figure 2.3 is a minimal decomposition of a CRSD Roesser model if and
only if:

p = rank

[
A2 B1

C2 D

]
(2.27)

Proof. To prove this theorem, the relation between the original Roesser model and the decomposed system
is written as:

A1 = Ah , A4 = Av , C1 =Ch , B2 = Bv (2.28)

and [
A2 B1

C2 D

]
=

[
Bh

Dh

][
Cv Dv

]
(2.29)

Using the Sylvester’s rank inequality relation:

rank

[
Bh

Dh

]
+ rank

[
Cv Dv

]−p ≤ rank

[
A2 B1

C2 D

]
≤ min

(
rank

[
Bh

Dh

]
, rank

[
Cv Dv

])
(2.30)

then, by choosing rank[Bh Dh]T = p and rank[Cv Dv ] = p, no unnecessary terms are added to the interme-
diate signal w , and the decomposition is minimal.

2.5. CAUSALITY FOR ROESSER MODELS
In 1D state-space models, causality is a well known concept. A system is said to be causal if the state at time
instant k is only affected by past inputs. In a non-causal system, the state is also influenced by future inputs.
This can be the case for data-compressing algorithms, and other types of signal processing.

In 2D systems however, causality is a more complex definition. Instead of defining past and future inputs,
quarter-planes are defined as shown in Figure 2.5. And the terms causal and non-causal are replaced with
the notion of plane causality, i.e., a system can have Quarter-Plane (QP), Half Plane (HP) or Full Plane (FP)
causality.
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Figure 2.5: The 4 Quarter-planes for causality of 2D models. The causality of a model indicates which quarter-planes are influenced by
the input at the middle of the complete square.

A 2D system is said to be Quarter-Plane causal, if the input u(i , j ) only has effect on the output y(i ′, j ′)
with i ′ ≥ i and j ′ ≥ j , i.e, (i ′, j ′) ∈ Q1. In a Half Plane system, the input u(i , j ) only has effect on the output
y(i ′, j ′) with i ′ ≥ i , i.e., (i ′, j ′) ∈ (Q1∪Q4). And for a Full-Plane case, the input u(i , j ) influences outputs in all
the quadrants Q1, Q2, Q3 and Q4.

The Roesser model described in (2.1) only describes a quarter-plane (QP) system.

2.6. IDENTIFICATION OF ROESSER MODELS
The use of Roesser models in the control of deformable mirrors requires some identification method that
allows to create a model of the mirror based on input and output data. To model the mirror dynamics the in-
puts of the model are the voltages applied to the actuators, and the output is the wavefront phase introduced
by the mirror.

Two identification approaches studied for 2D models are the subspace identification as studied in [9, 10]
and parametric model estimation [5].

The subspace algorithm from [9, 10] is limited to CRSD models. One of the reasons is that for the full
Roesser models, the formulation of the data-equations necessary in subspace identification is far from trivial.

When writing the data-equations, the first question is how to consider the two different dimensions in the
Hankel matrices. One possible approach is to consider Hankel matrices for the columns:

H s,N (i , j ) =


u(i , j ) u(i , j +1) · · · u(i , j +N −1)

u(i , j +1) u(i , j +2) · · · u(i , j +N )
...

...
. . .

...
u(i , j + s) u(i , j + s +1) · · · u(i , j +N + s −2)

 (2.31)

where N is the number of columns, and s the number of rows of the Hankel matrix.
Then, the row Hankel matrices are added to block Hankel matrices:

Ui , j ,s,N =


H s,N (i , j ) H s,N (i +1, j ) · · · H s,N (i +N −1, j )

H s,N (i +1, j ) H s,N (i +2, j ) · · · H s,N (i +N , j )
...

...
. . .

...
H s,N (i + s, j ) H s,N (i + s +1, j ) · · · H s,N (i +N + s, j )

 (2.32)

One problem is that the influence of the input u(i1, j1) on the output y(i2, j2) cannot be expressed only by
matrix multiplications, but it also requires matrix summations. This can be seen in (2.9). These summations
make it difficult to estimate the system matrices, even when a data-equation is formulated.

SUB-SPACE IDENTIFICATION OF CRSD MODELS

In [9] an algorithm for the identification of 2D CRSD models has been described. The goal is to estimate
approximate system matrices A1, A2, A4, B1, B2, C1, C2 and D from an input-output dataset.

This algorithm relies on the fact that the influence from the input u(i1, j1) on the output y(i2, j2) can be de-
scribed by matrix multiplications only in a CRSD model, and by the fact that it is possible to decouple vertical
and horizontal information, and use the vertical information as an input of the horizontal data-equations.
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One assumption made in order to decouple the vertical system is that the initial states, i.e. the boundary
conditions for the vertical states is 0. By decoupling the systems, data-equations can be formulated, and
the sub-space identification can be performed with known techniques available in Numerical algorithms for
Subspace State-Space System IDentification (N4SID) [11].

PARAMETRIC IDENTIFICATION USING LFT
Another identification approach is to use parametric identification as described in [5]. The algorithm relies
on the strong link between the Roesser model and the Linear Fractional Representation (LFR).

In the parametric approach, the system is parametrized as a function of the vectorΘ. The goal is to choose
an ideal Θ such that the error between the output of the estimated model and the output data is minimal.

The big drawbacks of this identification algorithm are two. The first one is that some initial knowledge
about the system order is necessary. The second drawback is that it relies on a non-convex optimization
problem. This can cause the optimization to fail to find the best solution due to local minima. A good initial
guess of the system is necessary for a good system estimate.

This algorithm can be combined with subspace identification methods. In that case the subspace method
defines the size of the model and an initial estimate of the system matrices, and the LFT algorithm improves
the model fit.



3
SYSTEM IDENTIFICATION FOR SEPARABLE IN

NUMERATOR MODELS

A subset of the class of Roesser models is considered in the present chapter. As seen in Section 2.4, a special
case of separable in numerator models can be decomposed into two 1D systems interconnected in a feedback
loop. In this chapter an identification algorithm for this class of Roesser models is derived.

It is also shown that the derived algorithm can be applied to a more general class of 2D Roesser models,
by providing a good initial guess for the non-linear LFT algorithm described in [5].

The chapter starts with the formulation of the identification problem in Section 3.1. After that the data-
equations for the sub-space identification algorithm are derived in Section 3.2. In Section 3.3 the minimiza-
tion problem of the algorithm is formulated. After that, the methods for estimating the system matrices are
explained in Section 3.4, and the best estimation is chosen according to the description in Section 3.5. A sum-
mary of the algorithm is given in Section 3.6, together with some implementation details. In Section 3.7, it is
explained how the code was optimized by using another solver. The results are presented in Section 3.8 and
discussed in Section 3.9.

3.1. FORMULATION OF THE IDENTIFICATION PROBLEM
THE CLASS OF ROESSER MODELS BEING CONSIDERED

The decomposed Roesser model is shown in Figure 3.1, and the decoupled model is given by:

xh(i +1, j ) = Ah xh(i , j )+Bhuh(i , j ), (3.1a)

y(i , j ) =Ch xh(i , j )+Dhuh(i , j ), (3.1b)

xv (i , j +1) = Av xv (i , j )+Bv uv (i , j ), (3.1c)

yv (i , j ) =Cv xv (i , j ), (3.1d)

uh(i , j ) = yv (i , j )+u(i , j ), (3.1e)

with xh ∈ Rnh , xv ∈ Rnv , u ∈ Rm , y ∈ Rl , and the matrices Ah , Av , Bh , Bv , Ch , Cv and Dh are real matrices of
appropriate dimensions.

THE SIMILARITY TRANSFORMATION

Before defining the identification problem, the concept of similarity transformation is explained, as it is re-
quired to understand it in the identification algorithm.

There are different matrices that describe the same relation between input and output for the subsystems
in (3.1), and all the models are valid. The similarity transformation for a 1D state-space model is a linear
transformation of the state-variable. The similarity transformation for the horizontal subsystem is given:

xh(i , j ) = Th xT h(i , j ), (3.2)

13
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Figure 3.1: Decomposition of a Roesser model into two 1D systems. The system equations are given in (3.1).

where Th is an invertible matrix.
By replacing the new state-variable in the state-space model, the relation between a system and a similar

system is:

xT h(i , j ) = T −1
h AhTh xT h(i , j )+T −1

h Bhuh(i , j ) , (3.3)

yh(i , j ) =ChTh xT h(i , j )+Dhuh(i , j ). (3.4)

And now the system matrices AT h , BT h , CT h and DT h are defined by:

AT h = T −1
h AhTh ,

BT h = T −1
h Bh ,

CT h =ChTh ,

DT h = Dh .

A very important property of this transformation, is that it describes the same system, but with new state-
variables. Using this property it can be concluded that estimating a system up to a similarity transformation
is sufficient to describe the system.

THE IDENTIFICATION PROBLEM

The identification problem can now be formulated.
Consider an input-output dataset: {

u(i , j ), y(i , j )
}(Nh ,Nv )

(i , j )=(1,1)

with Nh > nh and Nv > nv . Further a SISO system is considered, thus u(i , j ) ∈R and y(i , j ) ∈R.
Some conditions are required and assumptions made about the input-output dataset. The first criterion

is related to the definition of persistence of excitation.

Definition 3.1.1. According to [11], a signal u(k),k = 1,2, . . . is persistently exciting of order n if and only if
there is an integer N such that the matrix:

U0,n,N =


u(0) u(1) · · · u(N −1)
u(1) u(2) · · · u(N )

...
...

. . .
...

u(n −1) u(n) · · · u(N +n −2)

 (3.5)

has full rank n.

For this identification problem, the signals uv and uh have to be persistently exciting. This conditions
cannot be ensured in the experiment, but can be used to discard an input-output dataset.

Assuming the dataset was retrieved from an identification experiment with a Single-Input Single-Output
(SISO) Roesser model decomposed as shown in Figure 3.1, the identification problem is to estimate the sys-
tem orders nv , nh and the system matrices (ÂT h , ÂT v , B̂T h , B̂T v , ĈT h , ĈT v and D̂T h) that define the decom-
posed model:

x̂T h(i +1, j ) = ÂT h x̂T h(i , j )+ B̂T h ûh(i , j ), (3.6a)

ŷ(i , j ) = ĈT h x̂T h(i , j )+ D̂T h ûh(i , j ), (3.6b)
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and

x̂T v (i , j +1) = ÂT v x̂T v (i , j )+ B̂T v uv (i , j ), (3.6c)

ŷv (i , j ) = ĈT v x̂T v (i , j ), (3.6d)

such that

ûh(i , j ) = ŷv (i , j )+u(i , j ). (3.6e)

Remark. In this identification approach, it is also necessary to estimate the signals yv and uh , although this
is not a primary goal of the algorithm.

Using the estimated matrices, an estimate of the Roesser model is given by:[
x̂T h(i +1, j )
x̂T v (i , j +1)

]
=

[
ÂT h B̂T hĈT v

B̂T vĈT h ÂT v + B̂T v D̂T hĈT v

][
x̂T h(i , j )
x̂T v (i , j )

]
+

[
B̂T h

B̂T v D̂T h

]
u(i , j )

y(i , j ) = [
ĈT h D̂T hĈT v

][
x̂T h(i , j )
x̂T v (i , j )

]
+ D̂T hu(i , j )

(3.7)

3.2. DATA EQUATIONS FOR SUBSPACE IDENTIFICATION
The first step in the subspace identification algorithms is the formulation of the data equation. For the de-
composed model being identified, two data equations are formulated. In this section the formulation of the
data equation for the horizontal case is detailed, but the steps are similar for the vertical case.

The input/output data is structured in Hankel matrices, with s block rows, where s > n. The number of
columns is chosen so that N + s −1 = Nh and let j ∈ [1, Nv ] be an index denoting the row where the data is
selected from.

Yh
j ,s,N =


yh(1, j ) yh(2, j ) · · · yh(N , j )
yh(2, j ) yh(3, j ) · · · yh(N +1, j )

...
...

. . .
...

yh(s, j ) yh(s +1, j ) · · · yh(Nh , j )

 , (3.8)

Uh
j ,s,N =


uh(1, j ) uh(2, j ) · · · uh(N , j )
uh(2, j ) uh(3, j ) · · · uh(N +1, j )

...
...

. . .
...

uh(s, j ) uh(s +1, j ) · · · uh(Nh , j )

 . (3.9)

The state sequence is given by:

Xh
j ,N = [

xh(1, j ) xh(2, j ) · · · xh(N , j )
]

. (3.10)

Then the extended observability matrix and the Toeplitz matrix T h
s are defined as:

Oh
s =


Ch

Ch Ah

Ch A2
h

...
Ch As−1

h

 and T h
s =


Dh 0 0 · · · 0

ChBh Dh 0 · · · 0
Ch AhBh ChBh Dh 0

...
. . .

. . .
Ch As−2

h Bh Ch As−3
h Bh · · · ChBh Dh

 . (3.11)

Then the relation between the matrices is derived similarly as done in [11] and is given by:

Yh
j ,s,N =Oh

s Xh
j ,s,N +T h

s Uh
j ,s,N . (3.12)

As mentioned in [12], the data equation as formulated in (3.12) has some key structural properties worth
emphasising:

1. The matrix product Oh
s Xh

i , j ,s,N is low rank since s > nh .
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2. The matrix T h
s is block Toeplitz.

Similar to the Nuclear Norm Subspace IDentification (N2SID) algorithm in [12, 13], these properties will
be used in the identification process proposed in this chapter.

The vertical system is very similar. The difference is how the data is indexed in the input and output
Hankel matrices. To show the difference, the Hankel matrix Uv

i ,s,N is shown:

Uv
i ,s,N =


uv (i ,1) uv (i ,2) · · · uv (i , N )
uv (i ,2) uv (i ,3) · · · uv (i , N +1)

...
...

. . .
...

uv (i , s) uv (i , s +1) · · · uv (i , Nv )

 . (3.13)

The data equation for the vertical system is given by:

Yv
i ,s,N =O v

s Xv
i ,s,N +T v

s Uv
i ,s,N . (3.14)

CONCATENATING DATASETS
In the identification problem, the equality constraint yv (i , j )+u(i , j ) = uh(i , j ) has to hold.

When using the data-equations (3.12) and (3.14) for the subspace identification, the only point where this
constraint can be applied is at (i , j ) as can be seen in Figure 3.2.

Figure 3.2: For an starting (i , j ) coordinate, the data used in the vertical an horizontal Hankel matrices are different. For the horizontal
system the row j is used, and for the vertical system the column i is used. The only point where the equality constraint
uh (i , j ) = yv (i , j )+u(i , j ) can be applied is at point (i , j ). At all other points, the variables yv and uh are free to chose.

Considering the horizontal system, adding more rows to the data equation is similar to adding more in-
put/output datasets to a 1D subspace identification algorithm like MOESP [11, 14]. The same holds for adding
more columns to the vertical data equations.

Adding datasets to subspace identification algorithms is done by concatenating the Hankel matrix of each
dataset. As an example, the data equation for the horizontal system is given:

[
Yh

1,s,N Yh
2,s,N ... Yh

Nv ,s,N

]
=Oh

s

[
Xh

1,s,N Xh
2,s,N ... Xh

Nv ,s,N

]
+

T h
s

[
Uh

1,s,N Uh
2,s,N ... Uh

Nv ,s,N

]
.

(3.15)
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To denote the concatenated matrices the following notation is used:

Uh
s,N =

[
Uh

1,s,N Uh
2,s,N ... Uh

Nv ,s,N

]
. (3.16)

The data-equation for the horizontal case is then formulated as:

Yh
s,N =Oh

s Xh
s,N +T h

s Uh
s,N . (3.17)

Note that in this new formulation of the data equation, the two structural properties still hold, i.e.:

1. The matrix product Oh
s Xh

s,N is low rank since s > nh .

2. The matrix T h
s is block Toeplitz.

A second important remark is on the size of the matrix Yh
s,N . Keeping the notation used so far, the number

of rows for SISO models is given by s, and the number of columns is given by (s +N −1)N .

3.3. THE MINIMIZATION PROBLEM
In the data-equations (3.12) and (3.14), the signals yv and uh are unknowns. But the relation between the
unknown signals and the the known signals can be given by uh = u + yv .

Using the property that the matrix product Oh
s Xh

s,N is low rank, a minimization problem can be formulated

to minimize the rank of Yv
s,N −T v

s Uv
s,N and the rank of Yh

s,N −T h
s Uh

s,N
The minimization problem is given by:

min
Yv

s,N ,Uh
s,N ,T v

s ,T h
s

rank
(
Yv

s,N −T v
s Uv

s,N

)
+ rank

(
Yh

s,N −T h
s Uh

s,N

)
subject to yv (i , j )+u(i , j ) = uh(i , j ) .

(3.18)

This optimization problem is not tractable, due to the rank operator. As seen in [12, 13, 15], a convex
relaxation of the problem makes it tractable, and solvable with convex optimization algorithms.

The nuclear norm of a matrix, defined as the sum of the singular values of a matrix, and denoted by the
operator ||M ||∗ is known to be a convex relaxation of the rank operator [12, 13, 15] and can be used to make
the optimization problem in (3.18) convex.

Now the optimization problem can be written as:

min
Yv

s,N ,Uh
s,N ,T v

s ,T h
s

∣∣∣∣∣∣Yv
s,N −T v

s Uv
s,N

∣∣∣∣∣∣∗+ ∣∣∣∣∣∣Yh
s,N −T h

s Uh
s,N

∣∣∣∣∣∣∗
subject to yv (i , j )+u(i , j ) = uh(i , j ) .

(3.19)

This optimization problem is bilinear, since the optimization variables T h
s and Uv

s,N appear as a multipli-
cation.

The approach used to avoid the bilinear problem, was to consider the inverse of the horizontal model (H),
given by:

xI (i +1, j ) = AI xI (i , j )+BI uI (i , j )

yI (i , j ) =C I xI (i , j )+D I uI (i , j )
(3.20)

where AI =
(

Ah −BhD−1
h Ch

)
, BI = BhD−1

h , C I = −ChD−1
h , D I = D−1

h , uI (i , j ) = yh(i , j ), yI (i , j ) = uh(i , j ) and
xI = xh .

Note that the inversion is only possible if Dh is invertible. So besides the assumptions made before about
the system, it is also assumed that Dh 6= 0.

When considering the inverse model, the identification problem becomes the identification of two mod-
els in parallel with the same input as seen in Figure 3.3.

The new optimization problem is given by:

min
Yv

s,N ,YI
s,N ,T v

s ,T I
s

∣∣∣∣∣∣Yv
s,N −T v

s Uv
s,N

∣∣∣∣∣∣∗+ ∣∣∣∣∣∣YI
s,N −T I

s UI
s,N

∣∣∣∣∣∣∗
subject to yv (i , j )+u(i , j ) = yI (i , j ) .

(3.21)
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Figure 3.3: Block scheme for the identification of the inverse system.

The equality constraint has been enforce by adding a penalty to the minimization problem. By doing this
the minimization problem becomes:

min
Yv

s,N ,YI
s,N ,T v

s ,T I
s

∣∣∣∣∣∣Yv
s,N −T v

s Uv
s,N

∣∣∣∣∣∣∗+ ∣∣∣∣∣∣YI
s,N −T I

s UI
s,N

∣∣∣∣∣∣∗+λ(||yI (i , j )− yv (i , j )−u(i , j )||22) (3.22)

where λ ∈ [0,∞) is a regularization parameter.
The problem formulated in (3.22) is very similar to the optimization problem formulated in the N2SID

algorithm in [12]. This problem is convex, and by searching through λ, a whole set of optimal solutions can
be found.

Only the solution which best approximates the actual system is of interest. To test which solution is the
best, it is first necessary to estimate the system matrices out of the optimal solution.

3.4. CALCULATION OF THE SYSTEM MATRICES
This section explains how the system matrices are computed from the solution of the optimization problem.

3.4.1. ESTIMATING THE SYSTEM MATRICES USING THE EXTENDED OBSERVABILITY MATRIX
In this subsection, the computation of the system matrices is described, based on N2SID and other subspace
algorithms. This is done based on the data-equation for the inverse horizontal system. The same principles
are applied to the vertical system.

As described in [12], the first step is to compute the Singular Value Decomposition (SVD) of the estimated
matrix as follows:

[
YI

s,N −T I
s UI

s,N

]
= [

Un̂h ?
][
Σn̂h 0

0 ?

][
V T

n̂h

?

]
(3.23)

where n̂h is an integer that denotes the n̂h largest singular values and? denotes a matrix which is compatible
and the contents are of no interest here.

The value of n̂h can be automatically computed. This is done by ordering the singular values in descend-
ing order and then select the index of the singular value which is the closest to logarithmic mean of the first
and the last singular value, i.e., the highest and the lowest singular value.

Then the system matrices ÂT I and ĈT I can be extracted from Un̂h , as shown in [11]. To compute the
system matrices the notation M(m : n, p : q) is used to specify the sub-matrix of M with rows m to n and
columns p to q . To specify a complete row or column only : is necessary.

The matrix Un̂h can be considered an approximation of the extended observability matrix O I
s . The matrix

ĈT I corresponds to the first m rows of Un̂h . The matrix ÂT I can then be computed by solving an overdeter-
mined set of equations given by:

Un̂h (1 : (s −1)m, :)ÂT I =Un̂h (m +1 : sm, :). (3.24)

The matrix B̂T I can be computed by solving another overdetermined set of equations given by:

Un̂h (1 : (s −1)m, :)B̂T I =T I
s (m +1 : ms,1 : l ). (3.25)

The system matrix D̂T I can be extracted directly from the Toeplitz matrix T I
s .
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D̂T I =T I
s (1 : m,1 : l ). (3.26)

The same technique can be applied to estimate the matrices of the vertical system (ÂT v , B̂T v ,ĈT v ).

3.4.2. ESTIMATING THE SYSTEM MATRICES USING THE TOEPLITZ MATRIX

The first column of T I
s contains the so called Markov parameters. A Hankel matrix Hh with the Markov

parameters, except the first one, i.e. Dh , is defined as:

Hh :=


CT I BT I CT I AT I BT I . . . CT I Al1

T I BT I

CT I AT I B CT I A2
T I BT I . . . CT I Al1+1

T I BT I
...

...
. . .

...

CT I Al2
T I B CT I Al2+1

T I BT I · · · CT I Al1+l2
T I BT I

=


CT I

CT I AT I
...

CT I Al2
T I


[

BT I AT I BT I . . . Al1
T I BT I

]
(3.27)

where l1 + l2 +1 ≤ s. We prove with Sylvester’s inequality that r ank(Hh) = n̂h and therefore l1 > n̂h .
A SVD of H give rise to the triplet (U ,S,V ). From the singular values in S we can determine the system

order as done in subsection 3.4.1.
The matrices, known up to a similarity transformation, are computed with :

Un̂h =U (:,1 : n̂h),

ĈT I =Un̂h (1 : p, :),

ÂT I =Un̂h (1 : (s −1)p, :)−1Un̂h (p +1 : sp, :),

B̂T I = S(1 : n̂h ,1 : n̂h)V T (1 : n̂h ,1 : m).

The matrix D̂T I is computed in the same way as in subsection 3.4.1.
One drawback of this approach is that the number of singular values of the matrix H is less or equal to

half the value of s in the Hankel matrices Yv
s,N −T v

s Uv
s,N and Yv

s,N −T v
s Uv

s,N . That means that in this approach
the value chosen for s should be s ≥ 2nh .

Again, the approach describes the identification of the system matrices for the horizontal system, but the
same technique can be applied for the vertical one.

3.5. SELECTING THE BEST SYSTEM ESTIMATION
The minimization problem (3.22) contain a regularization term λ. In the identification process multiple λ

values are used, and the best result is selected as the final result of the algorithm.
To select the best result, a second dataset is considered. The model estimated with a specific value of λ is

simulated with the input-data.
A common measurement for the difference between an estimated signal and the actual signal is the root-

mean-square error (RMSE). For one experiment of a 2D system it is given by:

RMSE(y(i , j ), ŷ(i , j )) =

√√√√∑(Nh ,Nv )
(i , j )=(1,1)(y(i , j )− ŷ(i , j ))2

Nh Nv
(3.28)

where y is the original signal, ŷ is the signal obtained from the estimated model, Nh is the number of columns
in the experiment, and Nv the number of rows.

To select the ideal model, the RMSE is computed for each model, i.e., the model estimated for each λ

value. The model with the lowest RMSE is considered the best one.

3.6. SUMMARY AND IMPLEMENTATION OF THE ALGORITHM
The implemented algorithm is fully described in Algorithm 1.

The algorithm has been implemented in MATLAB, with the use of CVX [16] to solve the optimization
problem (3.22). The code is delivered on a CD along with the report.

The results of the algorithm will be discussed later in Section 3.8. The initial implementation with CVX
was considered slow, taking approx. 1 hour for a single identification run for Hankel matrices of size s = 12
and N = 12, and 13 lambda values to be tested.
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Algorithm 1 Identification algorithm for the feed-back decomposition of the Roesser model.

initialization:
Define identification parameters s, N , and a set of λ values Λ= logspace(log(λmi n), log(λmax ), steps).
Create the Hankel matrices for the data-equations with dataset 1.

for each λ ∈Λ do
Solve the optimization problem (3.22).
Compute vertical and inverse system matrices using the algorithms in Section 3.4.
Compute the inverse of system I , to get H .
Compute Roesser model, from the estimated H and V system matrices.
Simulate the estimated model using dataset 2.
Compute the RMSE of the output of the simulation and the output of dataset 2.

end for
Select the estimated system with the lowest RMSE.

3.7. OPTIMIZING THE COMPUTATIONS
In the first tests of the algorithm, the CVX implementation was considered slow, taking more than one hour
to estimate a system, depending on the sizes of the Hankel matrices. The experiments were performed with
MATLAB 2015b on an Ubuntu 14.04 installation on a computer with an Intel® Core™ i7-3610QM CPU run-
ning at 2.3 GHz with 24 GBytes of memory.

In [15], the Alternating direction method of multipliers (ADMM) method has been applied to solve the
minimization of a nuclear norm with a quadratic regularization term. It is known that ADMM is a method
suited to solve large-scale optimization problems in a distributed way [17]. The minimization problem (3.22)
can be adapted to fit into the problem solved in [15], so that algorithm can be applied here.

The minimization problem formulated by [15] was:

min
x

||A (x)−A0||∗+ 1

2
(x −a)T H(x −a) (3.29)

where x ∈Rk is the variable vector, the A (x) is a linear mapping A :Rk →Rp×q , A0 ∈Rp×q is a constant matrix
and H is a symmetric matrix with k rows ans columns. The vector a is a constant vector with the same size as
x.

To apply ADMM to (3.22), the first step is to define the variable vector x.

x = [tI
s tv

s y
I

y
v

] (3.30)

where: tI
s are the Markov parameters (D I ,C I BI ,C I AI BI , · · · ,C I As−2

I BI ) representing the first column of T I
s , tv

s
are the Markov parameters for the vertical system, except Dv = 0, as it is not a variable, but a constant. The
vectors y

v
and y

I
are given by:

y
v
= [yv (1,1) · · · yv (1, Nh) yv (2,1) · · · yv (2, Nh) yv (Nv ,1) · · · yv (Nv , Nh)] (3.31)

and
y

I
= [yI (1,1) · · · yI (Nv ,1) yI (1,2) · · · yI (Nv ,2) yI (1, Nh) · · · yv (Nv , Nh)]. (3.32)

The linear mapping A (x) produces the matrix:

A =
[

Yv
s,N −T v

s Uv
s,N 0

0 YI
s,N −T I

s UI
s,N

]
. (3.33)

The nuclear norm of the block-diagonal matrix A is equal to the sum of the nuclear norms of each block.
This means that by computing the nuclear-norm of A, the sum ||Yv

s,N −T v
s Uv

s,N ||∗ + ||YI
s,N −T I

s UI
s,N ||∗ is

computed.
By fitting the minimization problem (3.22) into the form given in Equation 3.29, the optimization problem

can be solved with the algorithm described in [15].
A big performance improvement was achieved by using ADMM. For the same identification experiment,

i.e., the same I/O data, for the same system, with Hankel matrices of the same size, the CVX implementation
takes over one hour, while the ADMM implementation requires less than a minute.
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Next to using ADMM, another approach to speed up the computations is to run the optimization problem
for multiple λ values in parallel. This can be done, as the results of one optimization problem do not interfere
with the results of the other.

3.8. RESULTS
In this section the performed tests, and the results are shown. To quantify the quality of the identification
algorithm, different quality criteria have been chosen.

Next to the quality criteria, some different test cases have been formulated for the algorithm. Although
there are no special features in the algorithm to handle noise, or non-zero boundary conditions in the Roesser
model, it is interesting to see how the algorithm performs in non-ideal cases.

3.8.1. QUALITY CRITERIA
To determine if the algorithm has a good quality or not, some performance indicators are necessary. In the
performed tests, the following indicators were used.

NORMALIZED ROOT MEAN SQUARED ERROR (NRMSE)
The first criteria is the difference between the actual system output and the output of the estimated system
for the same input.

As already mentioned before, the RMSE is a common measurement for the difference between an esti-
mated and the actual signal.

To compare different I/O datasets, the RMSE should be normalized. This allows for a fair comparison of
different datasets where the amplitudes of one signal are greater than the amplitudes of the other.

To normalize the RMSE, the signal range is used:

NRMSE(y(i , j ), ŷ(i , j )) = RMSE(y(i , j ), ŷ(i , j ))

ymax − ymi n
(3.34)

where ymax and ymi n are the highest and the lowest value found in y .
For the normalized root-mean-square error (NRMSE), a low value represents a better estimated system.

The lowest possible value is 0.

VARIANCE ACCOUNTED FOR ( VAF)
According to [11], another scaled version for the prediction error commonly used is the Variance Accounted
For (VAF):

VAF(y(i , j ), ŷ(i , j )) = max

0,

1−
1
N

∑(Nh ,Nv )
(i , j )=(1,1) ||y(i , j )− ŷ(i , j )||22
1
N

∑(Nh ,Nv )
(i , j )=(1,1) ||y(i , j )||22

 ·100%

 . (3.35)

The maximum value of the VAF is 100%, in which case the prediction error is zero, and the estimated
model is perfect. The lowest possible value is zero, in which case there is no relation between the actual
signal y and the estimated one ŷ .

EIGENVALUES OF THE A MATRIX

The last check is to compare the eigenvalues of the system matrix A:

A =
[

A1 A2

A3 A4

]
. (3.36)

As described before, the matrices for the horizontal and vertical systems are estimated up to similarity
transformation. The A matrices of similar systems have the same eigenvalues. So to estimate the quality of
the system, the eigenvalues of the A matrix are plotted, next to the eigenvalues of the actual matrix A.

Note that if the vertical and horizontal systems are estimated correctly (up to similarity transformation),
the matrix A is also estimated correctly up to a similarity transformation.

If the matrix A is constructed according to (3.7) and the similarity transformations are made explicit:[
T −1

h AhTh T −1
h BhCv Tv

T −1
v BvChTh T −1

v Av Tv +T −1
v Bv DhCv Tv

]
=

[
T −1

h 0
0 T −1

v

][
Ah BhCv

BvCh Av +Bv DhCv

][
Th 0
0 Tv

]
. (3.37)

This shows that if the subsystems are estimated up to similarity transformation, the matrix A is also esti-
mated up to a similarity transformation.
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3.8.2. IDEAL CASE
The first test has been done with ideal conditions given by:

• Noiseless I/O datasets

• A system which matches the requirements for the decomposition

• A system where D 6= 0

The used system is given by:

A1 =
−0.0200 −0.1663 −0.8796

2.0138 0.0039 −0.2513
−0.5713 0.0273 −0.2203

 , A2 =
0.5522 0.5570

0.2243 0.2262
0.5397 0.5444

 , (3.38a)

A3 =
[−0.1825 0.0553 0.2127
−0.3592 0.1087 0.4185

]
, A4 =

[−0.5258 0.9507
−0.2542 −0.3923

]
, (3.38b)

B1 =
−1.4186
−0.5761
−1.3864

 , B2 =
[−0.0159
−0.0314

]
, (3.38c)

C1 =
[
0.7144 −0.2162 −0.8322

]
, C2 =

[−0.0243 −0.0245
]

and D = [
1
]

. (3.38d)

The identification has been done for 50 different input/output datasets randomly generated. All of the
datasets have as boundary conditions xh

0 = 0 and xv
0 = 0.

The size of each Hankel matrix was s = 12 and N varying from 10 to 20. Remember that this means that
the concatenated Hankel matrices have a total size of s rows and (s +N −1)N columns. Varying N allows to
study the effect and necessity of more data-points in the identification algorithm. The two different extraction
methods are also compared to each other.

The VAF and NRMSE were computed with a validation dataset. The size of the validation datasets was
Nv = 40, Nh = 40. And the input signal was a randomly generated Gaussian signal, with 0 mean and unit
variance.

For the extraction algorithm in subsection 3.4.2, the plots can be found in Figure 3.5 and Figure 3.4. Al-
though most identification runs seem to have a high VAF and a low NRMSE, there are still outliers with very
low VAF, i.e. a VAF close to 0%. It is also possible to see that including more points does not necessarily mean
a better system estimation. This is due to the fact that the estimation is already very close to 100%.
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Figure 3.4: A box-plot for the VAF for 50 identification experiments with different values for N . The matrices are estimated with the
algorithm in subsection 3.4.2.

For the extraction algorithm in subsection 3.4.1, the plots can be found in Figure 3.7 and Figure 3.6. Again
the results have a high VAF and low NRMSE. In this matrix estimation algorithm N plays a more important
role in the quality of the estimated system.
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Figure 3.5: A box-plot for the NRMSE for 50 identification experiments with different values for N . The matrices are estimated with the
algorithm in subsection 3.4.2.
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Figure 3.6: A box-plot for the VAF for 50 identification experiments with different values for N . The matrices are estimated with the
algorithm in subsection 3.4.2.
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Figure 3.7: A box-plot for the NRMSE for 50 identification experiments with different values for N . The matrices are estimated with the
algorithm in subsection 3.4.2.

The median of the VAF when estimating the system matrices out of the Toeplitz matrix is higher, but this
approach also has more outliers around 0%. The same happens with the NRMSE, which in general is lower,
but has some much bigger outliers.

And finally the eigenvalues of the estimated system matrix A can be seen in Figure 3.8.
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Figure 3.8: Eigenvalues of the system-matrix A, when it is extracted from the Toeplitz matrix.

3.8.3. NOISY SIGNALS
In a more realistic case, the input-output datasets are noisy. The algorithm has been tested with different
noise levels with a Signal-to-Noise Ratio (SNR) varying from 30 to -5 dB. For each noise level 50 experiments
were done, and the results are presented in this section. The system is the same as in the previous subsection.

In these experiments, the size of the Hankel matrices are given by s = 12 and N = 10. The system matrices
are estimated from the Toeplitz matrices as described in subsection 3.4.2. The reason to chose this method
is that it had better results in the noiseless case. The reason for choosing N = 10 is that the computations are
faster with smaller values of N , while the quality of the estimated systems using the Toeplitz matrix was not
improved by a higher value of N in the noiseless case.

The results can be seen in Figure 3.9.
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Figure 3.9: Box-plot with the VAF and the NRMSE of the estimated systems for different noise levels.

For the eigenvalues, the experiments with a SNR of 15 dB have been considered. Lower SNR already had
a bad performance on the VAF, so no good estimation of the eigenvalues is expected.
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Figure 3.10: Eigenvalues distribution for the system matrix A, for 50 identification experiments with a SNR of 15 dB.

3.8.4. COMBINING WITH LFT
Subspace algorithms deliver an approximate system estimation. They can be combined with parametric
algorithms for a better estimation of the system.

In this experiment, the algorithm has been used to provide the system size and an initial guess for the
LFT algorithm described in [5]. The LFT is a parametric identification method. The system matrices are
parametrized as a function of the vector Θ. The algorithm searches for the ideal Θ which minimizes the
estimation error of the model. As mentioned [5], the algorithm is highly sensitive to the initial guess, as it
might find a sub-optimal local minimum.

The experiments consisted of estimating the same system as previously mentioned, with noisy data, as
described in the previous sub-section. The difference is that the LFT algorithm is used to provide a better
approximation.

The results can be found in Figure 3.11 and in Figure 3.12 the results are compared with the results of
subspace identification only.
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Figure 3.11: Box-plot with the VAF and the NRMSE of the estimated systems for different noise levels.
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Figure 3.12: Plots comparing the VAF and the NRMSE for the identification with the subspace algorithm only and for the identification
combined with the parametric LFT algorithm. The lines are the median. The area around them represent the region between the 25%

and 75% percentile, i.e., the region of the blue box in the box-plot.

3.8.5. ESTIMATING A SYSTEM THAT DOES NOT FIT IN THE REQUIRED CONDITIONS
The feedback model does not cover all types of Roesser models. But an interesting question to be answered
is how well the identification algorithm would perform for a generic Roesser model.

For this case, we use a noiseless dataset for the Roesser model presented in [9], given by:

A1 =
−0.2589 −0.4997 −0.2581
−0.4526 0.2943 −0.0616
−0.0736 0.0822 −0.0858

 , A2 =
 0.3967 0.1232
−0.0459 0.2855
0.3396 −0.0614

 , (3.39a)

A3 =
[

0 0 0
0 0 0

]
, A4 =

[−0.1175 −0.1809
0.1257 0.3264

]
, (3.39b)

B1 =
 0.1006

0.1273
−0.2313

 , B2 =
[−1.0636
−0.1246

]
, (3.39c)

C1 =
[
1.4578 1.7139 0.6824

]
, C2 =

[
0.3152 2.5705

]
and D = [−0.2638

]
. (3.39d)

The results can be found in Figure 3.13. The combination with the LFT algorithm has also been explored,
and the results can be found in Figure 3.14.
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Figure 3.13: Box-plot with the quality criteria when the algorithm is used to estimate a CRSD model.
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Figure 3.14: Box-plot with the quality criteria when the algorithm is used to estimate a CRSD model, using the LFT algorithm to improve
the quality of the estimated model.

For a better comparison, the results are plotted together in Figure 3.15.

-5 0 5 10 15 20 25 30

SNR (dB)

0

10

20

30

40

50

60

70

80

90

100

V
A

F 
(%

)

Subspace only
Subspace + parametric

(a) VAF

-5 0 5 10 15 20 25 30

SNR (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o
rm

a
liz

e
d
 R

M
S
E

Subspace only
Subspace + parametric

(b) NRMSE

Figure 3.15: Plots comparing the VAF and the NRMSE for the identification of the CRSD model with the subspace algorithm only and for
the identification combined with the parametric LFT algorithm. The lines are the median. The area around them represent the region

between the 25% and 75% percentile, i.e., the region of the blue box in the box-plot.

3.8.6. IDENTIFICATION OF MIRROR MODELS
The final goal of the algorithm is to identify mirrors used in Adaptive Optics, such that the Roesser model can
be used in the control loop on Adaptive Optics (AO) systems.

For the experiment the shape of the mirror is given as the sum of the influence of all the actuators. By
applying a voltage to one actuator, the mirror is deformed in a Gaussian like shape around that actuator.
This Gaussian shape influences the height of the mirror at surrounding actuators. This influence is called
coupling. A coupling of 5% means that the displacement of the mirror at neighbouring actuators of (i , j )
is 5% of the displacement of the mirror at (i , j ). For this experiment, the data was generated by using the
Adaptive Optics Simulator YAO, found in [18]. The input of the model is the voltage applied to each actuator,
and the output is the height of the mirror at the same points.

The identification was based on noiseless datasets, but with varying coupling between actuators.
For this case, it is not possible to plot the eigenvalues of the system matrix A, so only the VAF and the

NRMSE were plotted. The graphs can be found in Figure 3.16.
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Figure 3.16: Quality of estimated mirrors for changing coupling between actuators.

3.9. DISCUSSION

3.9.1. ANALYSIS OF THE RESULTS
The algorithm was evaluated with three different indicators. The VAF and NRMSE are based on simulated
data. By plotting the estimated eigenvalues, a check is performed on the estimated system itself, and not only
on simulation data. In this section the results for each case are discussed.

NOISELESS CASE

For the noiseless case the algorithm presented good results with a VAF of more than 90% for most cases, and a
NRMSE of less than 5%. But the algorithm was not able to estimate the system correctly with all the data-sets,
generating statistical outliers in the quality data seen in Figure 3.4, Figure 3.5, Figure 3.6 and Figure 3.7. It
is interesting to note that the median and the outliers depend on the method used to estimate the system
matrices.

When estimating the system matrices from the Toeplitz matrix, the median of VAF for the estimated sys-
tems is higher, but the worse outliers have a VAF of 0%. For the other estimation method presented, the
median for the estimated system was lower, but the number of outliers close to zero reduced when the value
of N was increased.

The plots with the distribution of the eigenvalues seen in Figure 3.8 show that the eigenvalues of the
estimated system from the Toeplitz matrix is biased.

NOISY CASE

For the noisy case only the estimation based on the Toeplitz matrix was used, due to the results on the noise-
less cases. The VAF and the NRMSE showed a decrease in the quality of the estimated system. This is not
surprising, as no technique has been used to compensate for noise. The plots in Figure 3.9 show the effect of
the Signal to Noise Ration on the quality of the estimated systems. As expected, a lower SNR leads to worse
estimates. A SNR higher than 15 dB is necessary for good estimates. The eigenvalues plot for this SNR level,
seen in Figure 3.10 show the same bias as for the noiseless case.

COMBINATION WITH LFT
As an method to handle noise, a parametric identification method have been used. As expected, the results
showed an significant improvement for cases with a low SNR. Note that there does not seem to be an signifi-
cant reduction of the number of outliers. This is caused due to the fact that the approximation estimated by
the sub-space algorithm is already really bad, and the parametric optimization is not able to correct that. The
eigenvalues also are closer to the actual eigenvalues.

A CRSD MODEL
The most interesting result is that combined with LFT, the algorithm presented can also approximate Roesser
models that do not fit into the required conditions for decomposition. The approximated model have a high
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VAF and low NRMSE, and the eigenvalues are close to the actual ones. Again the quality of the estimated
system depends on the dataset used for the estimation.

MIRROR IDENTIFICATION
For the identification of the spatial dynamics of deformable mirrors the algorithm provides a satisfactory re-
sult for low coupling between actuators. Increasing the coupling reduces the quality of the estimated model.
Above 35% the algorithm is not able to estimate an approximate model. This can be due to the fact that even
estimation of D cannot be done, due to the great influence of neighbouring actuators not considered in the
model. The decreasing quality is expected as the mirror dynamics do not fit into the quarter-plane causality
of the Roesser models being estimated. For a low coupling, estimating D , the direct influence of an actuator
on the output at the same point, is enough to have a good estimation of the model. When the coupling is
high, the role of neighbour actuators is higher, reducing the quality of the estimated model. To fully describe
a mirror a full-plane Roesser model has to be estimated. See Figure 3.17.

i-1,j i+1,ji,j

i-1,j+1 i+1,j+1i,j+1

i-1,j-1 i+1,j-1i,j-1

Figure 3.17: The point (i , j ) of the mirror is influenced by the state of all its neighbours. The Quarter-Plane causal mirror however only
models the influence of the three blue neighbours.

3.9.2. FUTURE WORK
The algorithm presented here can be improved in different ways. In this subsection, suggestions for future
research work for this algorithm is given.

There are different points to improve the algorithm. One is to handle process and measurement noise.
This reduces the necessity to use parametric identification algorithms, and improves the results of the esti-
mated systems when the SNR is low. This can be done by using instrumental variables as done in PI-MOESP
and PO-MOESP [11]. Another approach is to consider the bilinear problem. That allows an approach similar
to N2SID, where the error between the model output and the actual output is included in the minimization
problem. A possible formulation of the minimization problem then is given by:

min
Yv

s,N ,Ŷh
s,N ,Uh

s,N ,T v
s ,T h

s

∣∣∣∣∣∣Yv
s,N −T v

s Uv
s,N

∣∣∣∣∣∣∗+ ∣∣∣∣∣∣Ŷh
s,N −T h

s Uh
s,N

∣∣∣∣∣∣∗+λ||ŷ − y ||22

subject to yv (i , j )+u(i , j ) = uh(i , j ) .

(3.40)

The algorithm derived in this chapter is limited to the SISO cases were D 6= 0. One area to improve the
system is to handle MIMO systems. Extending the current algorithm is one option, but ideally the bilinear
problem should be solved, instead of avoided. By solving the bilinear problem, there are no restrictions on D
to be invertible. This facilitates the identification for MIMO cases.

And finally, using the algorithm for Adaptive Optics require some extra work to identify Full Plane 2D
systems. As mentioned before, the mirror is a full-plane 2D system, while the identified system is only a
Quarter-Plane model. To have a useful identification algorithm for adaptive optics, the Full-Plane model is
required. One option is to consider non-causal 1D models for the vertical and horizontal case as mentioned
in [7].





4
SYSTEM IDENTIFICATION FOR SEPARABLE IN

DENOMINATOR MODELS

In this chapter a different subset of the class of Roesser models is considered. As seen in Section 2.4, separable
in denominator models can be decomposed into two 1D systems interconnected in series. In this chapter an
identification algorithm for this class of Roesser models is derived.

This algorithm has not yet been fully studied, so the chapter is structured explaining the problems en-
countered at each step done so far, and how the problem has been solved, or avoided.

The chapter starts with the formulation of the identification problem in Section 4.1. The data-equation
and minimization problem formulation is given together in Section 4.2. The first problem encountered was
the non-desired trivial solution of the optimization problem as seen in Section 4.3. As the algorithm requires
a bi-linear minimization solver, one has been tested in Section 4.4. Problems with the optimization regarding
the minimal decomposition are explained in Section 4.5. A regularization term was added to the minimiza-
tion problem as explained in Section 4.6. A summary of the algorithm is given in Section 4.7, together with
some implementation details. This algorithm has not yet been tested as the algorithm from Chapter 3. For
this reason there are only a few results. The discussion about implementation and partial results when devel-
oping the algorithm are described in Section 4.8.

4.1. FORMULATION OF THE IDENTIFICATION PROBLEM
THE CLASS OF ROESSER MODELS BEING CONSIDERED

The decomposed Roesser model is shown in Figure 4.1, and the decoupled model is given by:

xh(i +1, j ) = Ah xh(i , j )+Bhuh(i , j ), (4.1a)

y(i , j ) =Ch xh(i , j )+Dhuh(i , j ), (4.1b)

xv (i , j +1) = Av xv (i , j )+Bv u(i , j ), (4.1c)

yv (i , j ) =Cv xv (i , j )+Dv u(i , j ), (4.1d)

uh(i , j ) = yv (i , j ) = w(i , j ). (4.1e)

with xh ∈ Rnh , xv ∈ Rnv , u ∈ Rm , y ∈ Rl , w ∈ Rp and the matrices Ah , Av , Bh , Bv , Ch , Cv , Dh and Dv are real
matrices of appropriate dimensions.

Figure 4.1: Decomposition of a Roesser model into two 1D systems. The system equations are given in (3.1).
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THE IDENTIFICATION PROBLEM

The identification problem can now be formulated.
Consider an input-output dataset: {

u(i , j ), y(i , j )
}(Nh ,Nv )

(i , j )=(1,1)

with Nh > nh and Nv > nv . Further it is known that u(i , j ) ∈R and y(i , j ) ∈R.
Assuming the data-set was retrieved from an identification experiment with a SISO Roesser model decom-

posed as shown in Figure 4.1, the identification problem is to, given an intermediate signal size p, estimate
the system orders nv , nh and the system matrices (ÂT h , ÂT v , B̂T h , B̂T v , ĈT h , ĈT v , D̂T h and D̂T v ) that define
the decomposed model:

x̂T h(i +1, j ) = ÂT h x̂T h(i , j )+ B̂T h ûh(i , j ), (4.2a)

ŷ(i , j ) = ĈT h x̂T h(i , j )+ D̂T h ûh(i , j ), (4.2b)

and

x̂T v (i , j +1) = ÂT v x̂T v (i , j )+ B̂T v u(i , j ), (4.2c)

ŷv (i , j ) = ĈT v x̂T v (i , j )+ D̂T v u(i , j ) (4.2d)

such that

ûh(i , j ) = ŷv (i , j ) = ŵ(i , j ). (4.3)

Remark. In this approach it is also necessary to estimate the signal w although this is not a primary goal of
the algorithm.

Remark. Ideally the identification algorithm should also find the minimal value of p. But in the development
so far, the size of the intermediate signal is a known parameter.

The estimated Roesser model is then given by:[
x̂T h(i +1, j )
x̂T v (i , j +1)

]
=

[
ÂT h B̂T hĈT v

0 ÂT v

][
x̂T h(i , j )
x̂T v (i , j )

]
+

[
B̂T hD̂T v

B̂T v

]
u(i , j )

y(i , j ) = [
ĈT h D̂T hĈT v

][
x̂T h(i , j )
x̂T v (i , j )

]
+ [

D̂T hD̂T v
]

u(i , j )

(4.4)

4.2. DATA EQUATIONS FOR SUBSPACE IDENTIFICATION AND THE MINIMIZA-
TION PROBLEM

The formulation of the data-equations in this algorithm is similar to the formulation in Section 3.2. One dif-
ference in the matrices is that the vertical system now can be a Single-Input Multiple-Output (SIMO) system
and the horizontal a Multiple-Input Single-Output (MISO). That does change the sizes of the matrices, but
the formulation is still the same as in the previous chapter.

Note that in order to formulate the data equations, a guess value for p is necessary, i.e., the size of the
intermediate signal has to be given or guessed.

The minimization problem is again, similar to the minimization problem formulated in Section 3.3. Con-
sidering the nuclear norm as a relaxation of the rank operator, the minimization problem is now given by:

min
Yv

s,N ,Uh
s,N ,T v

s ,T h
s

∣∣∣∣∣∣Yv
s,N −T v

s Uv
s,N

∣∣∣∣∣∣∗+ ∣∣∣∣∣∣Yh
s,N −T h

s Uh
s,N

∣∣∣∣∣∣∗
subject to yv (i , j ) = uh(i , j ) .

(4.5)

The minimization problem given is again a bilinear minimization problem, as T h
s and Uv

s,N appear as a
multiplication.

The approach of inverting the horizontal system in Chapter 3 can be directly applied here when p = 1.
The chosen approach was to first only consider models where the minimal decomposition was 1, i.e.,

p = 1. By choosing p = 1 and inverting the horizontal system, the optimization problem can be written as:

min
Yv

s,N ,YI
s,N ,T v

s ,T I
s

∣∣∣∣∣∣Yv
s,N −T v

s Uv
s,N

∣∣∣∣∣∣∗+ ∣∣∣∣∣∣YI
s,N −T I

s UI
s,N

∣∣∣∣∣∣∗
subject to yv (i , j ) = yI (i , j ) .

(4.6)
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In this case, Dh of the system being estimated is assumed to be different from 0.
The estimation of the system matrices are similar as described in Section 3.4, and will not be described

again here.

4.3. THE TRIVIAL SOLUTION TO THE MINIMIZATION PROBLEM
The first experiments to identify a CRSD model did not work, due to the fact that the optimization problem
has an undesired trivial solution where the cost function is 0.

This comes due to the fact that nothing enforces the intermediate signal yv = w to be different from 0.
And then all the Toeplitz matrices are filled with zeros. In that case, the optimal solution is zero.

To solve this problem, it has been considered that the value of D̂T h can be enforced to a desired value
without adding restrictions to the Roesser model being identified. In (4.4) the term D̂T h only appears multi-
plying other terms, i.e., it appears in the multiplications D̂T hĈT v and D̂T hD̂T v .

To enforce an intermediate signal different from 0, the value of D̂T h was enforced to 1, by adding a con-
straint to the minimization problem:

min
Yv

s,N ,YI
s,N ,T v

s ,T I
s

∣∣∣∣∣∣Yv
s,N −T v

s Uv
s,N

∣∣∣∣∣∣∗+ ∣∣∣∣∣∣YI
s,N −T I

s UI
s,N

∣∣∣∣∣∣∗
subject to yv (i , j ) = yI (i , j ),

D̂T h = 1.

(4.7)

Enforcing D̂T h = 1 can be done by enforcing it inside the Toeplitz matrix T I
s .

Applying this technique solved the problem with the trivial solution, and allowed systems with p = 1 to be
identified with good accuracy. However, this restricts the number of systems that can be identified with this
algorithm.

Consider the example given in [9]. The minimal decomposition of that system is p = 3. Estimating the sys-
tem with the algorithm described so far in this chapter results in a VAF lower than 70% for noiseless datasets,
using Hankel matrices with sizes s = 12 and N = 20. For this reason, solving the bilinear problem formulated
in (4.5) is desired.

4.4. THE BILINEAR PROBLEM
Restricting the size of the intermediate signal add restrictions to the identified Roesser model. We are there-
fore interested in being able to estimate systems with a higher p.

By applying a bilinear solver, it is possible to keep the original data-equations, and no system inversion
is necessary. This allows to estimate the vertical and horizontal system with p ≥ 1. Using a bilinear solver it
is also possible to handle noise in a similar approach as done in N2SID. The minimization problem for the
noisy case would become:

min
Yv

s,N ,Ŷh
s,N ,Uh

s,N ,T v
s ,T h

s

∣∣∣∣∣∣Yv
s,N −T v

s Uv
s,N

∣∣∣∣∣∣∗+ ∣∣∣∣∣∣Ŷh
s,N −T h

s Uh
s,N

∣∣∣∣∣∣∗+λ
∣∣∣∣ŷ − y

∣∣∣∣2
2

subject to yv (i , j ) = uh(i , j ) .

(4.8)

A bilinear solver developed inside the research group [19] has been applied to the minimization problem
for the noiseless case (4.5). The use of the algorithm in this optimization problem is described, but the theo-
retical explanation of the algorithm not. The reason is that the focus of the research was on the identification
algorithm, and a good formulation of the minimization problem rather than the optimization problem. The
solver allows to keep the data-equation structure, which is very important for estimating the system matrices.
The next paragraphs describe the implementation of the algorithm.

First, the optimization problem (4.5) is reformulated:

min
Yv

s,N ,Uh
s,N ,T v

s ,T h
s

∣∣∣∣∣∣Yv
s,N −T v

s Uv
s,N

∣∣∣∣∣∣∗+ ∣∣∣∣∣∣Yh
s,N −C

∣∣∣∣∣∣∗
subject to C =T h

s Uh
s,N

yv (i , j ) = uh(i , j ).

(4.9)

Then the matrices X and Y are initialized with random values. The size of X is equal to the size of T h
s

and the size of Y is equal to the size of Uh
s,N .
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Then the matrix M is defined as a function of X and Y :

M(X ,Y ) =
[

C +X Y +X Uh
s,N +T h

s Y T h
s +X

Uh
s,N +Y In

]
(4.10)

where In is the identity matrix of appropriate dimensions.
Now the following minimization problem is formulated:

min
Yv

s,N ,Uh
s,N ,T v

s ,T h
s ,C

∣∣∣∣∣∣Yv
s,N −T v

s Uv
s,N

∣∣∣∣∣∣∗+ ∣∣∣∣∣∣Yh
s,N −C

∣∣∣∣∣∣∗+λ||M ||∗

subject to C =T h
s Uh

s,N

yv (i , j ) = uh(i , j ).

(4.11)

After solving the minimization problem, new values for X and Y are defined:

X =−T h
s (4.12)

and
Y =−Uh

s,N (4.13)

The rank of the matrix M is then checked. If the rank is equal to the rank of In , then the optimal result has
been found. Due to numerical tolerance, the rank operator has been substituted by the nuclear-norm and a
small difference between the nuclear norms is allowed.

If that is not the case, the value of λ can be increased, and the steps repeated starting at solving the mini-
mization problem (4.11).

A summary is given in Algorithm 2.

Algorithm 2 Bi-linear solver algorithm from [19] applied to the identification problem.

initialization:
Generate a random X with the size of T h

s .
Generate a random Y with the size of Uh

s,N .
while ||M ||∗ > ||In ||∗ do

. Where M is computed as defined in (4.10)
Solve (4.11)
X =−T h

s
Y =−Uh

s,N
if ||M ||∗ did not change in this iteration then

λ=λ×2
end if

end while

4.5. ENFORCING A FULL RANK w
A problem found in the first implementation of this algorithm was that the minimization problem lead to a
trivial solution again. Enforcing D̂T h(1) = 1 solved the trivial solution of w(i , j ) = 0, but resulted in a solution
where all the values in the signal w(i , j ) were the same, i.e., if w(i , j ) = [w1(i , j ), w2(i , j ), · · · , wp (i , j )]T , then
w1(i , j ) = w2(i , j ) = ·· · = wp (i , j ) for all the values of i and j .

To study why this happens, it is necessary to study the minimal decomposition criteria described in Sec-
tion 2.4.

One of the conditions imposed for the minimal decomposition in Section 2.4 was:

rank
[
Cv Dv

]= p (4.14)

This rank condition ensures that all the information contained in w is unique, i.e., a signal sequence w =
[w(i ,1), w(i ,2), · · · , w(i , Nv )] is full row rank, i.e., rank(w) = p, if the input signal u = [u(i ,1),u(i ,2), · · · ,u(i , Nv )]
is persistently exciting. Note that it is not necessary to define here a 2D persistence of excitement, as the re-
quirement applies to single columns of the 2D data which are treated as a 1D system.

If for a p > 1 all the values of w(i , j ) = [w1(i , j ), w2(i , j ), · · ·wp (i , j )]T are the same for all i and j , then the
rank condition rank(w) = p is not met as rank(w) = 1.
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Lemma 4.5.1. The rank condition in (4.14) ensures that the sequence w = [w(i ,1), w(i ,2), · · · , w(i , Nv )] is full
rank if the input sequence u = [u(i ,1),u(i ,2), · · · ,u(i , Nv )] is persistently exciting.

Proof. The sequence w is given by the relation:

w = [
Cv Dv

][
Xv

j ,s,N

U v
j ,1,Nv

]
(4.15)

The rank of w is given by Sylvester’s rank inequality:

rank
([

Cv Dv
])+ rank

([
Xv

j ,s,N

U v
j ,1,Nv

])
− (nv +1) ≤ rank(w) ≤ min

(
rank

([
Cv Dv

])
, rank

([
Xv

j ,s,N

U v
j ,1,Nv

]))
. (4.16)

As proven in Lemma 10.4 from [11], the rank:

rank

([
Xv

j ,s,N

U v
j ,1,Nv

])
= nv +1, (4.17)

if the input signal u = [u(i ,1),u(i ,2), · · · ,u(i , Nv )] is persistently exciting of order nv +1.
This proves that rank(w) = p, if nv + 1 ≥ p. If the matrix [Cv Dv ] is full row rank, then nv + 1 ≥ p also

holds.

The solution where all the values of w are the same, even for a persistently exciting signal is an undesired
solution, as the full rank condition for the sequence w is not met.

To ensure the full rank condition, more equality constraints are added to the minimization problem.

Lemma 4.5.2. For an intermediate signal of size p ≥ 2, the full rank condition on w is achieved if the matrix:[
ĈT v Âp−2

T v B̂T v · · · ĈT v ÂT v B̂T v ĈT v B̂T v D̂T v

]
is full row-rank.

Proof. The relation between the sequence w and a Hankel matrix with the inputs is given by:

w ≈
[
ĈT v Âp−2

T v B̂T v · · · ĈT v ÂT v B̂T v ĈT v B̂T v D̂T v

]
U v

j ,p,Nv
(4.18)

and for conciseness is written as

w ≈CU v
j ,p,Nv

(4.19)

With the Sylvester’s rank inequality condition:

rank(C )+ rank(U v
j ,p,Nv

)−p ≤ rank(w) ≤ min(rank(C ), rank(U v
j ,p,Nv

)) (4.20)

With a persistently exciting system, rank(U v
j ,p,Nv

) = p. So if the rank of C is also p, the rank of w is also
p.

Ensuring the rank condition defined in Theorem 4.5.2 can be achieved by adding constraints to the mini-
mization problem:

min
Yv

s,N ,Uh
s,N ,T v

s ,T h
s

∣∣∣∣∣∣Yv
s,N −T v

s Uv
s,N

∣∣∣∣∣∣∗+ ∣∣∣∣∣∣Yh
s,N −T h

s Uh
s,N

∣∣∣∣∣∣∗
subject to yv (i , j ) = uh(i , j ),[

D̂T v ĈT v B̂T v ĈT v ÂT v B̂T v · · · ĈT v Âp−2
T v B̂T v

]
= Ip

(4.21)

The new constraint can be enforced in the Toeplitz matrix for the vertical system.
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4.6. WEIGHTING THE NUCLEAR NORMS
One assumption made so far is that the nuclear norm of Yv

s,N −T v
s Uv

s,N is approximately equal to the nuclear

norm of Yh
s,N −T h

s Uh
s,N , but this is not necessarily the case.

To consider a possible difference in the nuclear norms, an extra weighting factor γ has been added to the
minimization problem:

min
Yv

s,N ,Yh
s,N ,T v

s ,T h
s

∣∣∣∣∣∣Yv
s,N −T v

s Uv
s,N

∣∣∣∣∣∣∗+γ
∣∣∣∣∣∣Yh

s,N −T h
s Uh

s,N

∣∣∣∣∣∣∗
subject to yv (i , j ) = yI (i , j ),[

D̂T v ĈT v B̂T v ĈT v ÂT v B̂T v · · · ĈT v Âp−2
T v B̂T v

]
= Ip

(4.22)

The draw-back is that the computation time is increased, as the optimization problem has to be solved
for multiple values of γ, but based on the few experiments performed, the quality of the estimated system
increased with a γ 6= 1.

4.7. SUMMARY AND IMPLEMENTATION OF THE ALGORITHM
The implemented algorithm is fully described in Algorithm 3.

Algorithm 3 Identification algorithm for the CRSD decomposition of the Roesser model.

initialization:
Define identification parameters s, N , and a set of γ values Γ= logspace(log(γmi n), log(γmax ), steps).
Create the Hankel matrices for the data-equations with dataset 1.

for each γ ∈ Γ do
Solve (4.22) using Algorithm 2. . Solve the optimization problem
Compute vertical and horizontal system matrices
Compute Roesser model, from the estimated H and V system matrices.
Simulate the estimated model using dataset 2.
Compute the RMSE of the output of the simulation and the output of dataset 2.

end for
Select the estimated system with the lowest RMSE.

The code is delivered on a CD along with the report.

4.8. DISCUSSION
The algorithm presented in this chapter has not been thoroughly tested as the algorithm in Chapter 3. The
main reason is that the there was not much available time before the end of the research. The algorithm itself,
implemented with the bilinear optimization algorithm requires a full day to run, making the necessary time
for testing longer than the available time.

One big drawback of the algorithm is the necessary computational time. Considering this is due to the
iterative approach of the bilinear solver, optimizing the code of that algorithm can bring significant improve-
ments to the identification algorithm. Two approaches are possible. One is reducing the number of necessary
iterations. The second is to speed-up the code for a single iteration.

Two experiments were performed with the algorithm. The sizes of the Hankel matrices were s = 10 and
N = 10. The input data was a Gaussian random signal with zero mean. The eigenvalues of the estimated A
matrix match the eigenvalues of the actual system, but the NRMSE still indicates an error of 8%, and the VAF
is lower than 50%. The reason is that the estimated A2 matrix is close to zero. That would mean the algorithm
was able to identify the vertical and horizontal dynamics, but failed to give a good estimate of the coupling
between those two. The source of this problem is not known, and more research about it is necessary.

If the algorithm works for the noiseless case, a next step is to extend the algorithm to handle noise. The
suggested approach already has been introduced in Section 4.4. The draw back is that the algorithm already
has a regularization term γ between the 2 nuclear norms, and a second regularization term would increase
even more the time necessary to perform a single identification.
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Another field for improvement is on the bilinear solver. As mentioned before, the algorithm is really slow,
taking approximately 20 hours for one identification run for small Hankel matrices. One possible approach
is to adapt the ADMM algorithm to solve the optimization problem in (4.11).

Considering the existence of other subspace identification algorithms for 2D CRSD models such as the
one presented in [9], it would be interesting to compare the results of both algorithms. It would also be
interesting to know the effects of noise, and non-zero initial state on both algorithms.

The algorithm presented in the previous chapter had its results improved by combining it with a para-
metric identification algorithm. The same approach for this algorithm should be studied.

And finally, the use of this algorithm for mirror identification has to be studied. The problem of causal-
ity mentioned in the previous chapter should also be solved in here. In [20], the description of Full Plane
separable in denominator models has been given.





5
CONCLUSION AND FUTURE WORK

In this final chapter, the conclusions about the proposed algorithm are written. It starts with a short descrip-
tion of the problem aimed to solve in Section 5.1, then discusses the approaches tried out in Section 5.2 and
the results in Section 5.3. Finally future work is proposed in Section 5.4.

5.1. THE PROBLEM
The computational requirements in large-scale adaptive optics are not easily met. One of the problems is the
memory bandwidth required due to large dense matrices used in the computation of the control signal for
the deformable mirror.

One possible approach to reduce the requirements is to apply 2D state-space models, such as the Roesser
model [4]. One of the first steps for the application of Roesser models to large-scale adaptive optics is to have
an identification algorithm, that based on measurements is able to estimate a 2D model for the mirror.

The goal of the thesis was to develop an identification algorithm for Roesser models which can be applied
to the identification of deformable mirrors.

Two available algorithms were studied. One is a subspace algorithm restricted to Causal Recursive Sepa-
rable in Denominator models. This algorithm has as drawback that it does not handle the non-causal aspect
of the mirror.

The second algorithm is a parametric identification based on the Linear Fractional Representation. The
algorithm requires knowledge about the system size, and its results highly depend on the initial guess, as the
algorithm relies on a non-convex optimization.

Another algorithm was considered necessary, to allow the identification of the non-causal aspect of the
mirror.

5.2. SOLUTION APPROACH
The approach considered in this thesis was to consider the class of Roesser models which can be decomposed
into two 1D systems. In the literature, two decompositions were found. The first one explored in this research
is where the two 1D systems are connected in a feedback loop. The second algorithm considered the two
systems connected in series. The advantage of the series connection is that it leads to CRSD models, which is
a widely studied subclass of Roesser models.

By decomposing the Roesser model into two 1D systems, the identification problem can be reformulated
to identify two 1D systems. This allows to apply identification techniques for 1D systems.

Both approaches developed consider a minimization problem, to minimize the rank of the subspace of
interest. In the decomposed model, the Alternating Direction Method of Multipliers (ADMM) algorithm has
been used to speed up the computations. For the models connected in series, the CVX toolbox [16] has been
used, together with the bilinear solver described in [19].

No noise handling techniques have been applied to the identification algorithms so far, and the non-
causal aspect has not been considered either. Both aspects will be considered for future research.

39



40 5. CONCLUSION AND FUTURE WORK

5.3. RESULTS

FEEDBACK DECOMPOSITION
The first identification algorithm developed uses the feedback loop decomposition of the Roesser model. The
algorithm has been widely tested under difference scenarios.

First in the noiseless case, and with a Roesser model that fits into the decomposition. The results are good,
with a high Variance Accounted For (VAF) and a low Normalized Root Mean Squared Error (NRMSE). Some
of the datasets produced a bad system estimation but the overall performance was good.

When adding measurement noise to the dataset, the quality of the results decreases. But for a Signal to
Noise Ratio of 15 dB, the results are still good, with a high VAF and a low NRMSE. One approach tested to
handle noise, was to use the parametric LFT algorithm. First the system is estimated with the subspace algo-
rithm described in the thesis. That result was used as an initial guess for the LFT algorithm. A performance
increase can be seen for the combined algorithm.

The identification of systems that do not fit into the decomposed feedback model was also tested. The
subspace algorithm itself does not work well. The VAF remained under 80%, and the NRMSE close to 10%.
But when the algorithm is combined with the parametric LFT algorithm, the quality of the estimated systems
is good, with a VAF higher than 90% for most cases.

The conclusion from the results is that this subspace method works well under ideal conditions. Com-
bined with LFT it also works to estimate systems that do not fit into the required conditions for the feedback
decomposition.

SERIES DECOMPOSITION
The second algorithm has been less tested, and still requires more work. The discussion is based on two runs,
with noiseless data. The eigenvalues of the estimated A matrix are close to the eigenvalues of the actual A
matrix, but the VAF is lower than 50% and the NRMSE is approximately 8%.

Looking at the estimated systems, this is due to the fact that the algorithm is able to estimate the dynamics
in the horizontal and vertical system correctly, but fails to estimate the coupling between the two systems.

Another drawback of the algorithm is the time necessary to perform the identification. The two runs
performed took 20 hours each.

5.4. FUTURE WORK
Both algorithms can be improved with more research. In this section future work for both algorithms is pre-
sented, with some ideas on how to approach the problems. Other ideas related to the use of Roesser models
in adaptive optics are also presented.

FEEDBACK DECOMPOSITION
The first drawback of the algorithm is that it requires a system where D is invertible. That is not the case for
all 2D systems. In order to avoid this requirement is to handle the bilinear minimization problem which has
been avoided in this algorithm.

Another point for improvement is to handle noise in the algorithm. This could be achieved by considering
the bilinear minimization problem, and adding the estimation error to the cost function. This approach has
been used in N2SID for 1D systems [12, 13].

And a very important aspect for the use of the identification algorithm on large-scale adaptive optics,
specifically on the deformable mirror, is that the model should be non-causal. As proven in [7], the decom-
position is also valid for singular, i.e., non-causal models. So the algorithm has to identify two 1D non-causal
systems.

SERIES DECOMPOSITION
This algorithm requires more study, and tests. The first big improvement is to optimize the computation of
the optimization problem. A suggested approach is to use ADMM to solve the convex minimization problem
inside the bilinear solver.

The results of the algorithm need further study. In further tests for the algorithm, the relation between the
size of the datasets and the quality of the estimated model can studied. Larger datasets could improve the
quality of the estimation of the coupling between the two 1D systems, which is the problem of the algorithm
now.
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More results on this algorithm are also interesting so that it can be compared to existing subspace identi-
fication algorithms for CRSD models.

Similar to the feedback decomposition, this algorithm can also be extended to handle noise by adding an
estimation error to the cost function, similar to N2SID [12, 13]. This has already been mentioned during the
development.

No tests have been performed in the identification of deformable mirrors. This algorithm still requires
modifications in order to consider the non-causality of such systems.

MODELLING THE MIRROR WITH A 3D ROESSER MODEL
One assumption made so far is that the relation between measurements and actuators can be modelled only
with spatial dynamics. This is not the case. The relation also changes in time, due to the movements a tele-
scope has to make to follow a star.

When the time dynamics also play a role, the mirror could be modelled with a 3D Roesser model. In
the 3D model, two dimensions are for the spatial dynamics of the mirror, and one dimension is for the time
dynamics.

To make this possible, more insight on the application of the 2D models is necessary first. As mentioned
in Chapter 3 and Chapter 4, the first step is to have Full-plane models for the mirrors.

MODELLING THE WAVEFRONT ABERRATION WITH ND ROESSER MODELS
Not only the mirror, but the atmospheric disturbances to the wavefront could also be modelled with a Roesser
model. In [10] subspace identification of 2D Roesser models for stochastic input/output has been presented.
The algorithm was used to compress information of a picture into a 2D model with lower dimensions. The
technique could be applied for wavefront aberrations.

Using 2D models to compress the information of wavefront aberration would not require the model to
be Full-Plane. The wavefront aberration can be seen as a picture, and the Roesser model is only used to
compress the image information as done in [10]. However a Full-Plane model can be of lower dimension
than a Quarter-Plane model [20].

The wavefront can also be modelled as a 3D system, with two spatial and one temporal dimension. By
doing that, the aberration in future time-stamps can be predicted and corrected. Currently the correction is
applied based on previously measured wavefronts.
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ADMM Alternating direction method of multipliers. 20

AO Adaptive Optics. 1

CRSD Causal, Recursive and Separable in Denominator. 9, 33

DM Deformable Mirror. 1

E-ELT European Extremely Large Telescope. 1, 2

GPU Graphical Processing Unit. 2

LFR Linear Fractional Representation. 12

MISO Multiple-Input Single-Output. 32

MVM Matrix Vector Multiplication. 2

N2SID Nuclear Norm Subspace IDentification. 16, 33

N4SID Numerical algorithms for Subspace State-Space System IDentification. 11

NRMSE normalized root-mean-square error. 21, 22

RMSE root-mean-square error. 19, 21

SHS Shack-Hartmann Sensor. 1, 3

SIMO Single-Input Multiple-Output. 32

SISO Single-Input Single-Output. 14, 32

SNR Signal-to-Noise Ratio. 24

SVD Singular Value Decomposition. 18

TMT Thirty Meter Telescope. 1

VAF Variance Accounted For. 21, 22, 33
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