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a b s t r a c t

Self-triggered control (STC) and periodic event-triggered control (PETC) are aperiodic sampling tech-
niques aiming at reducing control data communication when compared to periodic sampling. In both
techniques, the effects of measurement noise in continuous-time systems with output feedback are
unaddressed. In this work we prove that additive noise does not hinder stability of output-feedback
PETC of linear time-invariant (LTI) systems. Then we build an STC strategy that estimates PETC’s worst-
case triggering times. To accomplish this, we use set-based methods, more specifically ellipsoidal sets,
which describe uncertainties on state, disturbances and noise. Ellipsoidal reachability is then used
to predict worst-case triggering condition violations, ultimately determining the next communication
time. The ellipsoidal state estimate is recursively updated using guaranteed state estimation (GSE)
methods. The proposed STC is designed to be computationally tractable at the expense of some added
conservatism. It is expected to be a practical STC implementation for a broad range of applications.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Event-Triggered Control (ETC) and Self-Triggered Control (STC)
are possibly the two dominant aperiodic sampling techniques
of the past couple of decades. ETC, proposed independently and
with different strategies by Åström and Bernhardsson (2002)
and Tabuada (2007), implements a state-dependent sampling
mechanism, where the current measurements are monitored con-
tinuously (or periodically, as in Periodic ETC, PETC Heemels et al.,
2013) only on the sensor side, and the decision to close the loop
is triggered upon the occurrence of a significant event. Its close
relative STC (Velasco et al., 2003) has the controller determining
when to sample next, often by predicting when an ETC event
would occur (Anta & Tabuada, 2008; Mazo & Tabuada, 2008;
Mazo Jr. et al., 2010). Both methods promise to significantly
reduce network usage on Networked Control Systems (NCSs) by
having input and output data communicated only when needed.

✩ This work is supported by the European Research Council through the
SENTIENT project (ERC-2017-STG #755953). The material in this paper was
partially presented at the 7th IFAC Workshop on Distributed Estimation and
Control in Networked Systems, NecSys 2018, August 27–28, 2018, Groningen,
The Netherlands. This paper was recommended for publication in revised form
by Associate Editor Dimos V. Dimarogonas under the direction of Editor Christos
G. Cassandras.
∗ Corresponding author.

E-mail addresses: g.gleizer@tudelft.nl (G. de Albuquerque Gleizer),
m.mazo@tudelft.nl (M. Mazo Jr.).

ETC provides the largest savings and has a straightforward im-
plementation — a simple triggering mechanism —, but its actual
usage in NCSs is challenging as it needs dedicated hardware (Anta
& Tabuada, 2008) and its communication times are difficult to
predict (Kolarijani & Mazo Jr., 2016). Such prediction is particu-
larly important to avoid communication collisions when multiple
control loops share the network.

In STC, the controller determines the next sampling time based
on available information, thus its communication is one-step
predictable by design. Its sampling time computation is generally
based on conservative estimates of when an ETC would trigger,
and most of the STC literature considers state-feedback with
noiseless measurement. For example, in Mazo Jr. et al. (2010),
disturbances may be present but are not considered in the event
prediction. While this method guarantees stability and a finite
L∞-gain, its disturbance rejection is poorer than ETC’s, since
event-triggering naturally takes disturbances into account. To
improve disturbance attenuation, Gleizer and Mazo Jr. (2018)
recently proposed an STC that considers disturbances within the
prediction; this way STC has the same performance as ETC, al-
though yielding more frequent communication.

Unfortunately, most practical control systems are not state-
feedback regulators, but take the output feedback form.
Moreover, measurement noise is always present, which can sig-
nificantly affect the event predictions that are inherent to STC.
When not all states are measured, few approaches are available in
the literature. In Almeida et al. (2014), an observer was developed

https://doi.org/10.1016/j.automatica.2020.109129
0005-1098/© 2020 Elsevier Ltd. All rights reserved.
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for self-triggered state-feedback control of LTI systems. For gen-
eral dynamic output-feedback controllers, still noiseless, Gleizer
and Mazo Jr. (2018) developed a self-triggered mechanism, where
an open-loop ellipsoidal observer was employed. One of its draw-
backs is that, as for any open-loop observer, there is no control
on its convergence. Also in Gleizer and Mazo Jr. (2018), matrix
norms were used for disturbance-related reachability, leading to
excessive conservativeness. In this work, tighter ellipsoidal reach-
ability (Kurzhanskiĭ & Vályi, 1997) is instead used to compute
disturbance-related reachable sets.

Set-based methods have also been employed for ETC and
STC on recent works, such as observer-based state feedback
ETC in Moreira et al. (2019), and ETC and STC for discrete-
time systems subject to disturbances and noise in Brunner et al.
(2019). Conceptually, the latter is the most similar to our work,
aside from Gleizer and Mazo Jr. (2018), because of the usage of
set-based methods for the disturbance reachability. The ma-
jor differences are the following: (i) their stability results are
for discrete-time systems, which do not immediately provide
guarantees for continuous-time systems; (ii) they invoke the
novel notion of θ-uniform global asymptotic stability (θ-UGAS),
a system theoretic property weaker than input-to-state stability,
which is what we use in this paper; (iii) their output-feedback
controllers are restricted to observer-based state feedback; and
(iv) they introduce new set-based events, while in this work we
employ well-established event-triggering mechanisms. In addi-
tion, our work is particularly focused on implementation and
computational efficiency, aspects that are very briefly touched
upon in Brunner et al. (2019). In summary, to the best of our
knowledge, no available STC strategy takes measurement noise
into account for continuous-time systems, nor is it prepared for
general forms of output-feedback controllers.

This work has two main contributions: first, we prove that, if a
PETC or STC closed-loop LTI system is globally exponentially sta-
ble, then it is input-to-state stable with respect to disturbances,
measurement noise, and additive perturbations in the triggering
condition; second, we devise a method to build self-triggered
implementations of controllers subject to unknown but bounded
disturbances and measurement noise. The stability results make
use of the notion of homogeneous hybrid systems from Nešić
et al. (2013). The STC design is an improvement and extension
of Gleizer and Mazo Jr. (2018) for the noisy case, which consists
of computing a lower bound to the triggering times of the PETC
strategy from Heemels et al. (2013). Here we use set-theoretic
methods for control, namely set-valued reachability (SVR) and
guaranteed state estimation (GSE). The state estimator keeps
track of a set that contains all possible states in which the plant
and controller could be. Reachable sets from the observer state
set are then computed for a given sequence of elapsed time
instants. At each of these instants, an algorithm checks if there
is a point in the reachable set that violates a designed trigger-
ing condition. Such a check is conservative but computationally
efficient. We hereafter refer to this method as Preventive Self-
Triggered Control (PSTC), since it is designed to prevent triggers
later than the reference PETC. The separation properties of linear
systems allow for most of the computations to be carried out
offline. Like in Gleizer and Mazo Jr. (2018), we choose ellipsoids
for the description of sets, even though other descriptions have
been shown to be more effective for general-purpose SVR and GSE
(e.g., constrained zonotopes in Scott et al. (2016)). One reason
is that the considered triggering functions are quadratic, which
simplifies computations when ellipsoids are used. In any case,
efficient ellipsoidal SVR and GSE methods are available for linear
systems: for SVR we use Kurzhanskiĭ and Vályi (1997, 2006); for
GSE, we adapt the results from Ros et al. (2002), Schweppe (1968)
and Scott et al. (2016). The final algorithm attains similar control
performance as PETC, while keeping the advantages of STC and
reasonably small computational costs; thus, it is likely to fit most
linear control applications.

1.1. Notation

Throughout the paper, bold letters are used for vectors and
matrices, or vector-valued and matrix-valued functions; and cal-
ligraphic letters are used for sets or set-valued functions. Signals
are denoted with greek letters, while points are denoted with
roman letters.

We denote by N0 the set of natural numbers including 0,
N := N0 \ {0}, and R+ := {x ∈ R : x ≥ 0}. The floor function
on x ∈ R is denoted by ⌊x⌋. For a vector x ∈ Rn we denote
by |x| its 2-norm . The canonical vector, denoted by c i, has its
ith entry equal to 1 and the rest equal to zero. For a matrix A ∈
Rn×m we denote by AT its transpose, by rank(A) its rank, by λ(A)
its eigenvalues, by λmax(A) (λmin(A)) its maximum(minimum)-in-
real-part eigenvalue, by |A| its 2-induced norm, by Tr(A) its trace,
and by A† its pseudoinverse. We denote A|I,J the sub-matrix of
A indexed by the row index set I ⊆ {1, . . . , n} and the column
index set J ⊆ {1, . . . ,m}. If I = {1, . . . , n} or J = {1, . . . ,m}
we use A|•,J or A|I,•, respectively. For a symmetric square matrix
S ∈ Rn×n, the statements S ≻ 0 and S ⪰ 0 denote that S is
positive definite or positive semidefinite, respectively. We denote
by Sn

:= {S ∈ Rn×n
|S = ST

}, Sn
+
:= {S ∈ Sn

|S ⪰ 0}, and
Sn
++
:= {S ∈ Sn

|S ≻ 0} the sets of symmetric, symmetric positive
semidefinite, and symmetric positive definite, respectively. The
set B(r) is a ball of radius r ≥ 0. For two sets X1 and X2 we denote
their Minkowski sum as X1+X2. We often denote a singleton {x}
as x when it is in an operation between sets.

2. Preliminaries

2.1. Hybrid dynamical systems

For stability results, we will model the STC closed-loop system
as a hybrid system, which allows states to flow on continuous
time and/or to jump instantly. In this modeling framework, so-
lutions are defined on the hybrid time domain, which is a subset
of R+ × N that can be written as ∪i∈{0,...,J}([ti, ti+1] × {i}), where
J ∈ N and 0 = t0 ≤ t1 ≤ · · · ≤ tJ+1, with J and/or tJ+1 possibly
∞. A hybrid signal χ is a function defined on a hybrid domain. A
hybrid system is described as follows:⎧⎨⎩
χ̇ = f (χ, δ), (χ(t, j), δ(t, j)) ∈ C
χ+ = g i(χ, δ), (χ(t, j), δ(t, j)) ∈ Di

ψ = h(χ, δ),
(1)

with i ∈ {1, . . . , I}, where χ(t, j) ∈ Rn is the state vector, δ(t, j) ∈
Rnd is an exogenous input, ψ(t, j) ∈ Rny is the output vector,
f , g i and h are continuous functions with inputs and outputs of
appropriate dimensions, and C ⊆ Rn+nd and Di ⊆ Rn+nd are
closed sets. Following Cai and Teel (2009) and Nešić et al. (2013),
we say that a pair (χ, δ) is a solution to (1) if domχ = dom δ and

• for all j ∈ N and almost all t such that (t, j) ∈ domχ, the pair
satisfies (χ(t, j), δ(t, j)) ∈ C and χ̇(t, j) = f (χ(t, j), δ(t, j));
• for all i ∈ {1, . . . , I} and all (t, j) ∈ domχ such that

(t, j+ 1) ∈ domχ, the pair satisfies (χ(t, j), δ(t, j)) ∈ Di and
χ(t, j+ 1) = g i(χ(t, j), δ(t, j)).

Definition 1 (Lp Norm, Nešić et al. (2013)). For a hybrid signal
ψ, with domain domψ, and a scalar T ∈ R+, the T -truncated
Lp-norm of ψ is given by1

∥ψ[T ]∥p :=

( j(T )∑
i=1

|ψ(ti, i− 1)|p +
j(T )∑
i=0

∫ σi

ti

|ψ(s, i)|pds

) 1
p

, (2)

1 As a convention,
∑0

i=1 f (i) = 0.
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where j(T ) := max{k : (t, k) ∈ domψ, t + k ≤ T }, and σi :=
min(ti+1, T − i). From (2), the Lp-norm of ψ is defined as

∥ψ∥p := lim
T→T∗
∥ψ[T ]∥p, (3)

where T ∗ = sup{t + j : (t, j) ∈ domψ} (possibly infinity). The
L∞ norm is taken by replacing the sums (integrals) in (2) by the
(essential) suprema.

Definition 2 (Global Exponential ISS, Nešić et al. (2013)). System (1)
is exponentially finite-gain input-to-state stable from δ if there
exist positive scalars k, a, and γ such that, for any initial condition
x and any δ ∈ L∞, all solutions to (1) satisfy

|χ(t, j)| ≤ max
{
ke−a(t+j)|x|, γ ∥δ∥∞

}
(4)

for all (t, j) ∈ domχ. Moreover, the origin is globally exponen-
tially stable (GES) if (4) holds with δ ≡ 0.

Definition 3 (Lp Stability, Nešić et al. (2013)). Given p ∈ [1,+∞),
system (1) is Lp stable from δ to ψ with gain (upper bounded by)
kp ≥ 0 if there exists a scalar β ≥ 0 such that any solution to (1)
satisfies

∥ψ∥p ≤ β|x| + kp∥δ∥p (5)

for any initial condition x ∈ Rn and any δ ∈ Lp.

The last definition we need is that of homogeneous hybrid
systems of degree zero:

Definition 4 (Homogeneous Hybrid System, Nešić et al. (2013)). The
system (1) is homogeneous of degree zero if, for any scalar λ > 0,
we have
f (λχ, 0) = λf (χ, 0),∀χ(t, j) ∈ C0,
g i(λχ, 0) = λg i(χ, 0),∀χ(t, j) ∈ Di0, i ∈ {1, . . . , I},

(6)

χ ∈ C0 H⇒ λχ ∈ C0,
χ ∈ Di0 H⇒ λχ ∈ Di0,∀i ∈ {1, . . . , I},

(7)

where closed sets C0,Di0 are projections of C and Di when δ ≡ 0.
We are particularly interested in homogeneous systems that

satisfy the following assumption:

Assumption 1 (Flow and Jump Sets, Nešić et al. (2013)). For system
(1), there exist scalars LC and LD such that, for all (x, d) ∈ Rn+nd ,

(x, d) ∈ C H⇒ x ∈ C0 + LCB(|d|) (8a)

(x, d) ∈ Di H⇒ x ∈ Di0 + LDB(|d|). (8b)

Homogeneous systems satisfying Assumption 1 have a power-
ful stability property2:

Theorem 1 (Nešić et al., 2013). Let system (1) be homogeneous in
the sense of Definition 4 and Assumption 1 hold; then, the following
statements are equivalent:

• the origin of system (1) is GES if δ ≡ 0;
• system (1) is globally exponentially ISS;
• system (1) is Lp stable from δ to ψ.

2.2. Recursive guaranteed state estimator

Consider an LTI system of the form:

ξ̇p(t) = Apξp(t)+ Bpυ̂(t)+ Eω(t),
ψ(t) = Cpξp(t)+ ν(t),
ξp(0) = xp,

(9)

2 This result was proven for a single pair of jump map and set, i.e., I = 1.
However, the proofs could incorporate multiple jump maps and sets, with the
results remaining valid.

where the sub-index p is used to denote plant variables, with
ξp(t) ∈ Rnp as its state, υ̂(t) ∈ U ⊂ Rnu as its received control
input, ω(t) ∈ W ⊂ Rnw as the unknown disturbances, ψ(t) ∈
Rny as the measured output, ν(t) ∈ V ⊂ Rny as the unknown
measurement noise, and xp ∈ X0 ⊂ Rnp as its initial state. The
following assumptions hold:

Assumption 2. Sets U,W , and V are compact, and the pair
(Ap, Cp) is observable.3

Let FU (resp. FW ) be the set of essentially bounded piecewise
continuous functions from R+ to U (resp. W). We denote a
solution of system (9) for initial state xp, input υ̂ ∈ FU , and
disturbance ω ∈ FW by

ξxpυ̂ω(t) = eAptxp +
∫ t

0
eAp(t−τ )(Bpυ̂(τ )+ Eω(τ ))dτ .

We are interested in computing the set of possible solutions to
system (9) for sets of initial states, control input trajectories and
disturbance trajectories. For that, the following definitions are
necessary.

Definition 5 (Reachability Operator). Given an initial time t1, a
final time t2, an initial state set X and the sets U andW , the reach-
ability operator reach(·) is defined as reach(t1, t2,X ,U,W) :=
{ξxpυ̂ω(t2) : ξxpυ̂ω(t1) ∈ X ,υ ∈ FU ,ω ∈ FW}. Moreover, the
output of this operator is denoted as the reachable set.

A recursive GSE is a set-valued version of a general recursive
state estimation and, as such, it follows the same principles. A
GSE requires that bounds to input, disturbance and noise signals
are known in the form of sets:

Assumption 3. There exist known compact sets Ũ, W̃ and Ṽ such
that U ⊆ Ũ,W ⊆ W̃ and V ⊆ Ṽ .

Definition 6 (Recursive GSE, Blanchini and Miani (2008, Chap. 11)).
Let X̃ (t1|t1) ∋ ξp(t1) be an available set estimate of the current
state at time t1. Let y := ψ(t2) be an output measurement
obtained at t2. A recursive GSE has the form

X̃ (t2|t1) = reach(t1, t2, X̃ (t1|t1), Ũ, W̃), (10a)

Xy(t2) = {xp ∈ Rnp |∃v ∈ Ṽ : Cpxp + v = y}, (10b)

X̃ (t2|t2) = X̃ (t2|t1) ∩ Xy(t2). (10c)

Eq. (10a) is the prediction step, simply a reachability oper-
ation. Eq. (10c) is the update step, where the predicted set is
intersected with Xy(t2), the set of all possible states that are
coherent with the measurement. By construction, X̃ (t2|t2) ∋
ξp(t2). The sets above can have arbitrary complexity. Hence, it is
common to replace the equalities above with superset operations,
then restricting the set families to computationally tractable ones.

Throughout this paper, the aforementioned sets will be (outer-
approximated by) ellipsoids. This idea dates back to 1968
(Schweppe, 1968), when possibly the first GSE was proposed.
Ellipsoids are described by few parameters – one vector and
one symmetric matrix – and are bounded. Since they may be
described as quadratic inequalities, they also harmonize well with
the quadratic triggering functions generally employed for ETC of
LTI systems. Some definitions follow:

3 (Ap, Cp) could be relaxed to be detectable. The unobservable but stable
subspace does not affect the controller, thus one should only consider the
observable subspace when implementing the results in this paper.
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Definition 7 (Ellipsoid, Kurzhanskiĭ and Vályi (1997, Chap. 2)). Let
m ∈ Rn andM ∈ Sn

+
. An ellipsoid is defined in terms of its support

function:

E(m,M) :={x ∈ Rn
: lTx ≤ lTm+ (lTMl)1/2,∀l ∈ Rn

}.

Remark 1. In case the ellipsoid is not degenerate (M ≻ 0), it can
be described in the well-known inequality form E(m,M) = {x ∈
Rn
: (x − m)TM−1(x − m) ≤ 1}. The degenerate case is flat on

some of its semi-axes.

A closely related set is the elliptical cylinder. The following
definition comes from Ros et al. (2002), with a small change in
notation:

Definition 8 (Elliptical Cylinder). Let M ∈ Sm
++

, C ∈ Rm×n,m ≤ n,
and rank(C ) = m. An Elliptical Cylinder is defined as

C(y,M, C ) := {x ∈ Rn
: (Cx− y)TM−1(Cx− y) ≤ 1}.

Remark 2. If m < n, the elliptical cylinder is unbounded. If
m = n, it trivially resolves to the ellipsoid E(C−1y, C−1MC−T ).

We use some operations on ellipsoids, namely affine trans-
formations, intersections and Minkowski sums. An affine trans-
formation on an ellipsoid is also an ellipsoid: AE(m,M) + b =
E(Am + b,AMAT ). Even though ellipsoids are not closed un-
der Minkowski sums and intersections, there are methods to
tightly outer-approximate them with ellipsoids. Here we use
trace-optimal outer-approximations. For the Minkowski sum, one
has (Kurzhanskiĭ & Vályi, 1997, Chap. 2):

E(m∗,M∗) ⊇ E(m1,M1)+ E(m2,M2)
m∗ := m1 +m2

M∗ := (1+ p−1)M1 + (1+ p)M2

p :=
√
Tr(M1) Tr(M2)−1.

(11)

If not empty, the intersection may be outer-approximated by a
fusion (see below). We particularly need to compute the inter-
section between an ellipsoid and an elliptical cylinder.

Definition 9 (Fusion Adapted from Ros et al. (2002)). A fusion be-
tween the ellipsoid E(m1,M1) and the elliptical cylinder C(y,M2,

C ) is the ellipsoid Eλ(m,M) defined over a parameter λ ∈ [0, 1),
such that:
Eλ(m,M) ⊇ E(m1,M1) ∩ C(y,M2, C )
M = zZ−1

Z = λM−11 + (1− λ)CTM−12 C
e = y − Cm1

z = 1− λ(1− λ)eT(λM2 + (1− λ)CM1CT)−1e
m = Z−1(λM−11 m1 + (1− λ)CTM−12 y).

(12)

The parameter λ controls how close the output ellipsoid is to
either of its inputs. For λ = 1, E0(m,M) = E(m1,M1); when λ
gets close to 0, the output tends to be close to C(y,M2, C ).

Remark 3. The trace of the matrix M is convex over λ, since the
trace of the inverse is a convex function (Boyd & Vandenberghe,
2004) and z ∈ [0, 1] provided the intersection is not empty (Ros
et al., 2002). This allows the use of bisection or golden search
methods to compute λ that minimizes the fusion trace.

2.2.1. Ellipsoidal reachability
For linear systems with ellipsoidal descriptions of X ,U,W ,

and V , ellipsoidal reachability can be used. The concept and

Fig. 1. Illustration of a reachable set of the disturbance response Xw(t) and an
ellipsoidal outer-approximation X̃w(t).

Fig. 2. Block diagram of a plant controlled with STC. ZOH stands for zero-order
hold.

techniques are thoroughly explained in Kurzhanskiĭ and Vá-
lyi (1997, Chap. 3). Its authors developed the Ellipsoidal Tool-
box (Kurzhanskiĭ & Vályi, 2006), which contains operations to
compute reachable sets. In this paper we use the reachable set for
the disturbance response Xw(t) := reach(0, t, 0, 0,W). The Ellip-
soidal Toolbox has the tools to compute outer-approximations of
Xw(t), denoted by X̄w(t, l), that are tight along the ray supported
by a given vector l ∈ Rnp , i.e., ∀α ∈ R, αl ∈ X̄w(t, l) ⇐⇒
αl ∈ Xw(t). Overall tighter over-approximations can be obtained
by computing X̄w(t, l i) for different input vectors l i and taking
an ellipsoidal outer-approximation of the intersection, offering a
trade-off between accuracy and precision. Let L be a pre-specified
set of the said vectors. The outer-approximation X̃w(t) satisfies
X̃w(t) ⊇ ∩l∈LX̄w(t, l). Fig. 1 depicts the sets Xw(t) and X̃w(t) for
a given instant. The Ellipsoidal Toolbox is used to compute the
intersection outer-approximation.

3. Problem definition and stability results

Consider a controller for system (9) of the form

ξc(k+ 1) = Acξc(k)+ Bcψ̂(k),

υ(k) = C cξc(k)+ Dcψ̂(k),
(13)

where ξc(k) ∈ Rnc is the controller state, υ(k) ∈ Rnu is the
computed control command and ψ̂(k) ∈ Rny is the available
plant output measurement. The controller runs with period h, so
that t = hk. The feedback loop is of sample-and-hold form. For
two consecutive sampling times kb and kb+1, υ̂(t) = υ(kb),∀t ∈
[hkb, hkb+1) and ψ̂(k) = ψ(hkb),∀k ∈ {kb, kb + 1, . . . , kb+1 − 1}.
The closed-loop system is depicted in Fig. 2. We pose the PSTC
problem as follows:

Problem 1. Let the plant (9) and controller (13) models be
known and suppose that (conservative estimates of) the sets
X0,W,V are known. Design an algorithm that computes κb :=
kb+1−kb at time kb based on (historical values of) υ̂, ψ̂ and other
available information, e.g., ξc(kb). The closed-loop system must be
globally exponentially ISS w.r.t. bounded disturbances and noise.
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Remark 4. A compact set X0 is required for the STC strategy we
develop in Section 4. A large enough set may be easily estimated
in most applications. For X0 = Rnp , we provide an initialization
algorithm in Appendix C.

3.1. Triggering mechanism and stability results

In the spirit of Gleizer and Mazo Jr. (2018), we design an
algorithm that computes worst-case triggering times of PETC. For
compactness of expressions, denote the auxiliary vectors

ζ(t) :=
[

ψ(t)
υ(⌊t/h⌋)

]
and ζ̂(t) :=

[
ψ̂(⌊t/h⌋)
υ̂(t)

]
as the updated output/input and the held output/input, respec-
tively. We start with a centralized output-based PETC triggering
mechanism from Heemels et al. (2013), which for STC means that
all inputs and outputs are updated at the same time:

tb+1 = inf
t∈Tb

η(ζ(t), ζ̂(t)) > ϵ2, (14a)

η(ζ(t), ζ̂(t)) := |ζ(t)− ζ̂(t)|2 − σ 2
|ζ(t)|2, (14b)

where Tb = {tb + hk, tb + 2hk, . . . , tb + hκ̄}, 0 ≤ σ < 1
is the designed triggering parameter, κ̄ is a specified maximum
inter-event discrete time,4 and ϵ ≥ 0 is a margin parameter.5

Unfortunately, there are no results in the literature for whether
the closed-loop PETC system is ISS w.r.t. measurement noise or
a positive value of ϵ. Thus, first we prove that this is the case;
i.e. when the PETC (or any mechanism that triggers earlier) is GES,
then it is ISS and Lp stable w.r.t. additive disturbances, measure-
ment noise, and the ϵ parameter. These results are relevant not
only for the current STC work, but also for PETC.

We first model the plant (9) controlled with (13) under the
PETC triggering rule (14) with κ̄ = ∞ as a hybrid system (1)
equipped with a timer, with χT

:= [ξTp ξTc ψ̂T υ̂T
] and δT :=

[ωT νT ϵ ]; the model is[
χ̇
τ̇

]
=

[
Āχ+ B̄ω

1

]
, τ ∈ [0, h], (15a)

[
χ+

τ+

]
=

⎧⎪⎪⎨⎪⎪⎩
[
J1χ+Lν

0

]
,
τ=h, (i)
(F̄χ+Ḡν)TQ̄ (F̄χ+Ḡν)≥ϵ2 (ii)[

J2χ
0

]
,
τ = h, (iii)
(F̄χ+ Ḡν)TQ̄ (F̄χ+ Ḡν) ≤ ϵ2 (iv)

(15b)

ψ = C̄χ+ ν, (15c)

where

Ā =

⎡⎢⎣Ap 0 0 Bp
0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎦, B̄ =
⎡⎢⎣E
0
0
0

⎤⎥⎦, C̄ = [Cp 0 0 0
]
, (16)

J1=

⎡⎢⎣ I 0 0 0
BcCp Ac 0 0
Cp 0 0 0

DcCp C c 0 0

⎤⎥⎦, J2 =
⎡⎢⎣ I 0 0 0
0 Ac Bc 0
0 0 I 0
0 0 0 I

⎤⎥⎦, L =
⎡⎢⎣ 0
Bc
I
Dc

⎤⎥⎦
4 This parameter often arises naturally in ETC (see Gleizer and Mazo Jr.

(2018)) or can be specified by the user in order to establish a heart beat of
the system. It is necessary for STC, in order to impose a finite number of steps
to be calculated. It does not hinder stability because it only causes early triggers
w.r.t. PETC.
5 When ϵ > 0, Eq. (14) is called mixed-triggering (Borgers & Heemels, 2014),

which is often used in practice to improve sampling performance around the
origin. When σ = 0, it is known as Lebesgue sampling (Åström & Bernhardsson,
2002).

Q̄ =
[
(1− σ 2)I −I
−I I

]
, F̄ =

⎡⎢⎣ Cp 0 0 0
DcCp C c 0 0
0 0 I 0
0 0 0 I

⎤⎥⎦, Ḡ =
⎡⎢⎣ I
Dc
0
0

⎤⎥⎦,
where Q̄ is partitioned according to (ζ, ζ̂). The jumpmap matrices
represent the update of input and output (J1) or no update except
for the controller state (J2). The quadratic inequalities represent
the triggering condition (14a), where condition (15b) is present
for the PETC, but absent for an STC that triggers no later than
PETC. For absent noise (ν ≡ 0) and ϵ = 0, LMI conditions for
verifying stability are available in Heemels et al. (2013) for PETC
and in Gleizer and Mazo Jr. (2018) for STC. The main result of
this Section is that the system is homogeneous in the sense of
Definition 4, which implies that it is input-to-state and Lp stable
w.r.t. noise and the ϵ parameter.

Remark 5. The choice of non-strict inequalities in Eqs. (15b)(ii)
and (15b)(iv) renders the system non-deterministic. This choice
was made for mathematical convenience: the proofs using
Eq. (15) are valid across the non-determinism, and thus cover
both choices of making strict either inequality.

Lemma 1. System (15) is homogeneous in the sense of Definition 4
and satisfies Assumption 1.

Homogeneity is trivial; for Assumption 1, the proof is found
in Appendix A. The following result follows from Theorem 1 and
Lemma 1.

Theorem 2. If the system (9) with controller (13), using triggering
mechanism (14) (or triggering earlier) is GES when ω ≡ 0, ν ≡ 0
and ϵ = 0, then it is ISS and Lp-stable if ω ̸= 0, ν ̸= 0 and ϵ ̸= 0.

Remark 6. Lemma 1 and Theorem 2 are valid for any quadratic
triggering function of the form
η(ζ(t), ζ̂(t)) =

[
ζ(t)T ζ̂(t)T

]
Q̄
[
ζ(t)
ζ̂(t)

]
, as long as Q̄ renders the

closed-loop GES. We focus on the triggering function (14b) be-
cause for this case there are design procedures available (e.g.,
Heemels et al. (2013)).

4. Self-triggered control implementation

In this section, we devise a method to compute a lower bound
of the PETC triggering time tb+1 from the available information at
tb. This lower bound becomes the STC triggering time. Throughout
this section, we denote z := ζ(tb) and u := υ(tb). A way of
computing such worst-case (earliest) time is by checking, for
increasing values of κ ∈ N, κ ≤ κ̄ , whether η(ζ(tb + hκ), z) can
be greater than ϵ2 given the available information. This leads to
the following subproblem:

Subproblem 1. Let (supersets of) X (tb) and W be known. For a
given κ ∈ {1, . . . , κ̄}, determine, in a conservative but computation-
ally efficient way, if there exist x′p ∈ reach(tb, tb + hκ,X (tb), u,W)
and v ∈ E(0,V ) such that η

([
Cpx′p + v υ(tb + hκ)

]
T, z
)
> ϵ2.

In the subproblem above, conservative means that, if the exact
answer cannot be established, the answer is assumed to be true.
Note that it requires the state set X (tb), which ideally would be
a single point. The larger this set is, the more conservative our
solution is. This brings us the following subproblem:

Subproblem 2. Given a superset of X0, historical values of ζ̂, and
ξc(k), determine a small outer-approximation of X (tb).

In order to use ellipsoidal methods, we assume initial set
estimates to be ellipsoids:
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Assumption 4. Matrices X0 ∈ Snp
++, W̄ ∈ Snw

++, and V ∈ Sny
++ are

known, such that X̃0 = E(0,X0) ⊇ X0, W̃ = E(0, W̄ ) ⊇ W , and
Ṽ = E(0,V ) ⊇ V .

Let us solve Subproblems 1 and 2 recursively. Suppose that, at
time kb, an ellipsoid X̃ (kb|kb−1) := E(ξ̃p(kb−1),Xb|b−1) ∋ ξp(hkb)
is known. First the state estimate X̃ is updated with the newly
acquired information y. That is achieved through the intersection
operation in (10c), which returns X̃ (kb|kb): in this case, Xy(tb) =
C(y,V , Cp) and therefore the trace-optimal Fusion in Eq. (12) is
used.6 From this point, denote the center of the state estimate
as x̃p ∈ Rnp and its shape matrix as X ∈ Snp

++; thus, X̃ (kb|kb) =
E(x̃p,X).

We can now compute the reachable sets for the controller and
plant states. First define the transition matrices:

Φp(κ) := eAphκ , Γ p(κ) :=
∫ hκ

0
eApsBpds, (17a)

Φc(κ) := Aκc , Γ c(κ) :=
κ−1∑
0

AκcBc, (17b)

Due to linearity, we can separate the reachable set X (tb + hκ|tb)
between the contribution of state and control input, and that of
the unknown disturbances:

X̃ (tb+hκ|tb)=Φp(κ)X̃ (kb|kb)+Γ p(κ)u+X̃w(κ), (18a)

X̃w(κ) ⊇ Xw(κ) =
⋃

ω∈FW

∫ hκ

0
eAp(hκ−s)Eω(s)ds. (18b)

Remark 7. The computation of supersets X̃w(κ) ⊇ Xw(κ) can be
done off-line for all κ ∈ {1, . . . , κ̄} using the method described in
Section 2.2.1.

We are ready to solve Subproblem 1. Denote W (κ) as the
shape matrix of X̃w(κ), i.e., X̃w(κ) := E(0,W (κ)); also, let pT

:=

[xTp xTc yT
] and

CE :=

[
0 0 I
0 C c Dc

]
,

N (κ) :=
[
CpΦp(κ) CpΓ p(κ)C c CpΓ p(κ)Dc

0 C cΦc(κ) C cΓ c(κ)+ Dc

]
.

Note that, if there exists z ′ yielding η(z ′, z) > ϵ2, then
maxz ′ η(z ′, z) > ϵ2. This means that we can pose Subproblem 1
as an optimization problem:

Subproblem 3. From existing information on the controller, deter-
mine the worst-case triggering function value at a given time instant.
That is, given x̃p,X, xc and y , determine, for a given κ ,

max
z ′,z,xp,d,v′

η(z ′, z) = [z ′T zT
]Q̄
[
z ′
z

]
(19a)

subject to z ′ = Nκp+
[
v′

0

]
+

[
Cpd
0

]
, (19b)

z = CE p, (19c)

(xp − x̃p)TX−1(xp − x̃p) ≤ 1, (19d)

dT W (κ)−1d ≤ 1, (19e)

v′TV−1v′ ≤ 1, (19f)

6 Only a scalar parameter needs to be optimized and, since the function is
convex, a golden search can be used up to a given precision. Nonetheless, this
may be computationally too expensive depending on the application. In that
case, a fixed λ can be picked, improving computation speed at the expense of
larger ellipsoids and more frequent triggering.

The decision variables are z ′ representing the possible values
of ζ(tb + hκ); z; xp which is the unknown value of ξp(tb); d
as the contribution from the unknown disturbances to states
at tb + hκ; and v′ as the unknown future noise ν(tb + hκ).
The objective function (19a) is the triggering function and the
constraints are: (19b) for the dynamics of ζ; (19c) as its initial
condition; and (19d), (19e) and (19f) as the ellipsoidal constraints
for the state estimate, d and v′, respectively. This problem is
solved for increasing values of κ ∈ {1, . . . , κ̄}, until one yields
a value greater than ϵ.

Remark 8. Subproblem 3 is a non-convex Quadratically Con-
strained Quadratic Programming (QCQP) problem. Its constraints
are convex but the objective function is non-convex since Q̄ is
not definite. Nevertheless, it is always feasible: one solution is
obtained by taking d = 0, v = 0, xp = x̃p, and using these values
to determine z ′ and z in Eqs. (19b) and (19c).

The remark above discourages solving the actual optimization
problem. Instead, we propose computing a conservative upper
bound for it like in Gleizer and Mazo Jr. (2018). Let p̃T

:=

[x̃Tp xTc yT
] be the vector of available information, N :=

{1, 2, . . . , np}, and

Q (κ) :=
[
N (κ)
CE

]T
Q̄
[
N (κ)
CE

]
, Cw :=

[
Cp
0

]
, Cv :=

[
I
0

]
,

Fw(κ) :=
[
N (κ)T CT

E

]
Q̄ Cw, F v(κ) :=

[
N (κ)T CT

E

]
Q̄ Cv,

Rw(κ) := Fw(κ)W (κ)Fw(κ)T, Rv(κ) := F v(κ)VF v(κ)T,

Qw := CT
wQ̄ Cw, Q v := CT

vQ̄ Cv, cv := λmax(VQ v),

cvw(κ) :=
√
λmax(CT

vQ̄ CwW (κ)CT
wQ̄ CvV ). (20)

Note that all of the matrices and scalars above can be computed
off-line for κ ∈ {1, . . . , κ̄}. Define the estimate of the triggering
function

η̄(κ, p̃,X) := p̃TQ (κ)p̃+ 2
√
p̃TQ (κ)|•,NXQ (κ)|T

•,N p̃

+λmax(XQ (κ)|N ,N )+ 2
√
p̃TRv(κ)p̃

+2
√
λmax(Rv(κ)|N,NX)+ 2

√
p̃TRw(κ)p̃

+2
√
λmax(Rw(κ)|N,NX)

+2cvw(κ)+ cv + λmax(W (κ)Qw).

All eigenvalues in Eq. (20) and in η̄ are real, because their argu-
ments are either symmetric matrices or products of symmetric
matrices. We have the following result, whose proof is found in
Appendix B.

Theorem 3. η̄(κ, p̃,X) provides an upper bound for the solution
of Subproblem 3. That is,

η̄(κ, p̃,X) ≥ η(z ′, z)

for all z ′, z, xp, d, v′ satisfying constraints (19b)–(19f).

The controller selects κ∗ = infκ η̄(κ, p̃,X) > ϵ2, if η̄ > ϵ2

for some κ ≤ κ̄ , or κ∗ = κ̄ otherwise. Finally, step (10a)
of the observer is executed using Eq. (18a). Its operations are
the affine transformation Γ p(κ∗)X̃ (tb|tb) + Φp(κ∗)u followed by
a Minkowski sum with X̃w(κ∗), which is outer-approximated
through Eq. (11).

Algorithm 1 summarizes the steps performed at every in-
stant kb for both updating the state estimate and computing κ∗.
The operations ‘‘fusion’’ and ‘‘minksum’’ represent the ellipsoidal
outer-approximations from Eqs. (11) and (12), respectively. The
ellipsoidal GSE (steps 2, 11 and 12) is depicted in Fig. 3.
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Algorithm 1 PSTC Algorithm
Input: xc, y
Output: u, κ∗

1: u← C cxc + Dcy
2: E(x̃p,X)← fusion

(
E(x̃p,X), C(y,V , Cp)

)
(Eq. (12))

3: p̃← [x̃Tp xTc yT
]
T

4: κ∗ ← 1
5: while κ∗ < κ̄ do
6: if η̄(κ∗, p̃,X) > ϵ2 then
7: break
8: end if
9: κ∗ ← κ∗ + 1

10: end while
11: E(x̃p,X)← Φp(κ∗)E(x̃p,X)+ Γ p(κ∗)u
12: E(x̃p,X)←minksum(E(x̃p,X), E(0,W κ∗)) (Eq. (11))

Remark 9. For the noiseless case (V = 0), we need to mod-
ify step 2 of Alg. 1, because in this case the elliptical cylinder
C(y,V , Cp) degenerates to a hyperplane. The intersection be-
tween an ellipsoid and a hyperplane has an exact ellipsoidal
solution (see Schweppe (1968, Appendix IV)).

Remark 10. The complexity of Algorithm 1 is O(κ̄ max(np, nw,

ny)3). It is dominated by the iterative procedure to compute η̄
(line 6), which involves matrix multiplications and eigenvalue
computations on matrices whose sizes depend on np, nw and nw.7

5. Numerical example8

Consider the perturbed, unstable linearized batch plant with a
PI controller taken from Walsh and Ye (2001)9:

Ap =

⎡⎢⎣ 1.38 −0.208 6.715 −5.676
−0.581 −4.29 0 0.675
1.067 4.273 −6.654 5.893
0.048 4.273 1.343 −2.104

⎤⎥⎦,

Bp =

⎡⎢⎣ 0 0
5.679 0
1.136 −3.146
1.136 0

⎤⎥⎦, C c =

[
1 0 1 −1
0 1 0 0

]
, E =

⎡⎢⎣1
0
0
0

⎤⎥⎦ ,
Ac =

[
1 0
0 1

]
, Bc =

[
0 h
h 0

]
, C c =

[
−2 0
0 8

]
, Dc =

[
0 −2
5 0

]
,

with h = 0.01, ξp(0) = 10[1 −1 −1 1]T and ξc(0) = 0. The
triggering parameter was set to σ = 0.1. We set κ̄ = 25 and
computed W (κ) using the procedure described in Section 2.2.1,
with Xw(0) = E(0, 10−4I) and L = {c i|i ∈ {1, 2, . . . , np}}. The
simulated disturbance was the same as the one in Gleizer and
Mazo Jr. (2018): ω(t) = 0.1, if t ≤ 5; 0 otherwise. Simulations
were run using Matlab R2018a on a MacBook Pro with a 3.1 GHz
Intel Core i5 and 8 GB, 2133 MHz LPDDR memory. Noise was
simulated through pseudo-random numbers between −0.01 and
0.01, which were pre-generated for all simulation steps with seed
1907. The optimal fusions from Eq. (12) were computed with the
function fminbnd with default options. We set W = 0.12 and
V = 2 · 0.0112I, with the observer starting with X̃0 = Rnp .

7 Computing eigenvalues has been proven to have the same big-O complexity
as matrix multiplication in Demmel et al. (2007). The actual complexity of the
matrix multiplication is unknown, the best known being O(n2.37). We chose to
use the exponent of 3 because most practical algorithms for small matrices have
this complexity.
8 Code to reproduce this paper’s numerical results is available in https:

//github.com/ggleizer/pstc.
9 The controller was discretized using forward-Euler.

Fig. 3. Steps of the ellipsoidal GSE in Alg. 1: step 11 (top right), step 12 (bottom
left) and step 2 (bottom right).

Fig. 4. Simulation results without noise for PSTC, STC from Gleizer and Mazo Jr.
(2018) (GM18-STC), and PETC: state norm |ξ(t)| (top) and inter-event times κ∗
(bottom).

We first simulated the closed-loop STC without noise with
ϵ = 0, comparing its control and sampling performances with
the method from Gleizer and Mazo Jr. (2018) and PETC (Fig. 4).
The state norms of all cases converge to zero at virtually the
same rate, while, especially at the first two time units, PSTC yields
higher sampling times than the STC from Gleizer and Mazo Jr.
(2018). This improvement is due to the intersection step from
Eq. (10c), which provides faster observer convergence, and to
the increased tightness of the disturbance ellipsoids Wκ , when
compared to the norm-based bounds of Gleizer and Mazo Jr.
(2018). Nevertheless, for both STC cases, the triggering times tend
to 1 as the state approaches the origin because η̄(κ, 0,X) > 0 for
any κ,X .

For the scenario with measurement noise, Fig. 5 (top) displays
the triggering times from PSTC. These are compared to the times
triggered by the PETC logic (14b) at each PSTC step. As expected,
the PSTC times constitute lower bounds for the PETC ones. It is
also clear how the sampling performances of both PSTC and PETC
are affected by the noise: as the inputs get close enough to zero,
noise alone can provoke a trigger. Due to that, we also simulated
a case with ϵ = 0.1, depicted in the bottom plot of Fig. 5. The
resulting triggering times got significantly higher at a small cost
in steady state error.

The on-line CPU time statistics of Alg. 1 are displayed in
Table 1. These numbers were obtained for the case with noise

https://github.com/ggleizer/pstc
https://github.com/ggleizer/pstc
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Fig. 5. Simulation results with noise. State norm |ξ(t)| with PSTC with ϵ ∈

{0, 0.1} (top); inter-event times κ∗ from PSTC and PETC with ϵ = 0 (middle)
and ϵ = 0.1 (bottom).

Table 1
CPU times of Alg. 1 for the numerical example.
Phase (line(s) in Alg. 1) Time (ms)

Min. Mean Max.

Fusion (line 2) 0.39 0.49 1.71
Calculation of η̄ (line 6) 0.50 0.60 1.90
Prediction (lines 11 and 12) 0.02 0.02 0.08
Full PSTC cycle 1.01 1.27 8.49

with ϵ = 0, after ten consecutive runs of the main script to
mitigate the overhead from, e.g., just-in-time compilation and
process management of the operating system. The initialization
step time (Appendix C) was 0.03 ms. The figures show that the
computations are fast, despite involving an optimization step
for the fusion. The most expensive step was the calculation of
η̄, mainly due to the computation of eigenvalues and matrix
multiplications. The off-line computations totaled 623.46 ms, out
of which 609.26 ms were spent on the reachability (W (κ)) and
14.19 ms on the remaining matrices and scalars (Eq. (20) and the
ones in Appendix C).

Remark 11. Qualitatively comparing with Brunner et al. (2019),
the issue of eventually triggering always when ϵ = 0 also hap-
pens with θ = 1 and γ = 1 in their STC. In this setting, one would
achieve UGAS of the minimal robustly positive invariant subset
associated with periodic control with disturbances. Increasing θ
and γ enlarges the terminal set, in a similar way ϵ > 0 does.

6. Conclusions

We presented a self-triggered strategy for output-feedback
control of linear systems subject to bounded disturbances and
noise, named PSTC. It is, to our knowledge, the first self-triggered
implementation of such a general control structure, improv-
ing the results and broadening the applicability of Gleizer and
Mazo Jr. (2018). We first proved that the introduction of noise
or mixed triggering does not hinder stability of neither PETC nor

PSTC, then developed an algorithm that uses set-based meth-
ods for a viable self-triggered implementation. PSTC achieves
virtually the same control performance as PETC, with slightly
smaller inter-sample times. It is expected to be fast enough for
most applications, as each step CPU time averaged 1 ms for the
simulated four-state plant; and it scales well with the state–
space dimension, since the few online optimization and line
search operations are done on scalars, while higher-dimension
computations are handled with simple linear algebra.

PSTC was developed for linear plants with linear controllers,
which presents a limitation to its applicability. Some classes of
nonlinearities could be handled by considering them as distur-
bances; since we assume that they are bounded, one would have
to determine a compact set on which the states lie in order
to compute the proper bounds. For locally linearizable systems,
other types of unknown-but-bounded uncertainty descriptions
are more suitable, such as parametric model uncertainty. In this
case, the ellipsoidal estimator in El Ghaoui and Calafiore (2001)
could be used as a starting point. There are also opportunities
for improving the PSTC performance for linear systems. Aiming
at a small computation complexity, we chose ellipsoids as set
descriptors and devised simple upper bounds to the solution
of online non-convex QCQP problems; however, these choices
probably bring additional conservatism and hence increased com-
munication frequency. From our simulations, this seems to be
particularly relevant when the state approaches the origin and
when disturbances are significantly smaller than their estimated
bounds. A few alternatives might reduce conservativeness: for ex-
ample, (constrained) zonotopes (Scott et al., 2016) could replace
ellipsoids; note, however, that this would require reformulating
the optimization problem. Another possibility would be deriving
tighter bounds for the non-convex QCQP. Finally, the methods
proposed in this paper are not restricted to STC. For example,
we are extending this work to ETC communication scheduling, by
employing the PSTC algorithm as a generator of triggering times’
lower bounds.

Appendix A. Proof of Lemma 1

Before approaching the proof, one remark must be made:
system (15) is equipped with a timer, with jumps only occurring
after a certain time; this specializes it to what is defined in Nešić
et al. (2013, Section 5) as a system with average dwell time, with
N = 1, δ = 1/h, and ζ arbitrarily small. This actually relaxes
the Lyapunov stability conditions presented therein Nešić et al.
(2013, Proposition 2). Theorem 2 of Nešić et al. (2013) states that
homogeneous systems with average dwell time satisfy Theorem 1
with ψ = χ. Remark 16 of Nešić et al. (2013) argues that the same
Propositions that build the proof of Nešić et al. (2013, Theorem 2)
can be derived with ψ ̸= χ. Thus, the timer does not play a
significant role in our proofs; as an additional benefit, the results
without timer can be applied to continuous ETC.

For analysis purposes, even though ϵ is a design parameter,
we can treat it as a disturbance on the jump set. With that, let
n := np + nc + nu + ny and the collected vector of exogenous
signals dT

:=
[
wT vT ϵ

]
, giving nd := nw + ny + 1. The flow

sets are C = Rn and C0 = Rn+nd , and the jump sets are

D1 ={x ∈ Rn, [wT vT ϵ]T ∈ Rnd : (A.1)

(F̄ x+ Ḡv)TQ̄ (F̄ x+ Ḡv) ≥ ϵ2},

D2 ={x ∈ Rn, [wT vT ϵ]T ∈ Rnd : (A.2)

(F̄ x+ Ḡv)TQ̄ (F̄ x+ Ḡv) ≤ ϵ2},
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and their projections with d = 0 are

D10 = {x ∈ Rn
: xTF̄ TQ̄ F̄ x ≥ 0},

D20 = {x ∈ Rn
: xTF̄ TQ̄ F̄ x ≤ 0}.

Since sets Di0 are conic and the flow and jump maps in (15) are
linear, properties (6) and (7) hold; also, condition (8a) is trivially
satisfied because C and C0 are the entire Euclidean space.

What remains to be verified is condition (8b). Note that the
only components of d that enter the jump sets are v and ϵ.
Rewriting the set sum on the LHS of (8b) gives

Di0 + LDB(|d|) = {x′ + x′′ : x′ ∈ Di0, x′′ ∈ LDB(|d|)}
= {x : (x− x′′)TF̄ TQ̄ F̄ (x− x′′) ∼i 0,
x′′Tx′′ ≤ L2D(v

Tv+ ϵ2)},

where ∼1 is ≥ and ∼2 is ≤. Thus, (8b) can be restated as

∀x ∈ Rn, v ∈ Rnv, ϵ ∈ R : (F̄ x+ Ḡv)TQ̄ (F̄ x+ Ḡv) ∼i ϵ
2,

∃x′′ ∈ Rn
: (x− x′′)TF̄ TQ̄ F̄ (x− x′′) ∼i 0,

x′′Tx′′ ≤ L2D(v
Tv+ ϵ2). (A.3)

Since the pair (Ap, Cp) is observable, we can assume system (9)
is in its canonical observable form; thus, taking Cp =

[
I 0

]
, we

can partition F̄ as

F̄ =

⎡⎢⎣ I 0 0 0 0
Dc 0 C c 0 0
0 0 0 I 0
0 0 0 0 I

⎤⎥⎦ = [ Ḡ H̄
]
,

where xT is partitioned accordingly as
[
yT x̄T

]
, with x̄ containing

all the remaining state components, obtaining F̄ x = Ḡy+ H̄ x̄. We
now divide the proof in two parts: i = 1 and i = 2.

To show (A.3) for i = 1, let us construct one x′′ that satisfies it
for every x, v, ϵ : take x′′T =

[
−vT 0

]
. Then obviously x′′Tx′′ =

vTv ≤ L2D(v
Tv+ ϵ2) with LD = 1 and

(x− x′′)TF̄ TQ̄ F̄ (x− x′′) = (F̄ (x− x′′))TQ̄ F̄ (x− x′′)

=

(
F̄
[
y + v

x̄

])T

Q̄
(
F̄
[
y + v

x̄

])
= (Ḡ(y + v)+ H̄ x̄)TQ̄ (Ḡ(y + v)+ H̄ x̄)
= (F̄ x+ Ḡv)TQ̄ (F̄ x+ Ḡv) ≥ ϵ2 ≥ 0.

Showing (A.3) for i = 2 is slightly more involved. First, notice the
following fact:

λmin(F̄ TQ̄ F̄ ) < 0. (A.4)

This is true because xTF̄ TQ̄ F̄ x is just another representation of the
triggering function (14b); thus, it can be expressed as |z − ẑ|2 −
σ 2
|z|2 for some z, ẑ ∈ Rny+nu . This expression is negative if,

e.g., z = ẑ ̸= 0.
Again, let us construct one x′′ that satisfies (A.3) for every

x, v, ϵ. This is x′′T =
[
−vT 0

]
+ qT, where q is the vector along

the eigendirection corresponding to λmin(F̄ TQ̄ F̄ ), i.e. , F̄ TQ̄ F̄q =
λmin(F̄ TQ̄ F̄ )q, satisfying

(Ḡ(y + v)+ H̄ x̄)TQ̄ F̄q ≥ 0, (A.5)

|q|2 = |λmin(F̄ TQ̄ F̄ )|−1ϵ2. (A.6)

One can always find such q: (A.6) determines its norm; and, if
(A.5) is not satisfied, −q satisfies it. This gives

qTF̄ TQ̄ F̄q =
λmin(F̄ TQ̄ F̄ )
|λmin(F̄ TQ̄ F̄ )|

ϵ2 = −ϵ2, (A.7)

where the negative sign comes from Eq. (A.4). Therefore, the
second inequality in (A.3) satisfies

(x− x′′)TF̄ TQ̄ F̄ (x− x′′)
= (Ḡ(y + v)+ H̄ x̄)TQ̄ (Ḡ(y + v)+ H̄ x̄)
−2(Ḡ(y + v)+ H̄ x̄)TQ̄ F̄q+ qTF̄ TQ̄ F̄q

(A.2)
≤ ϵ2 − 2(Ḡ(y + v)+ H̄ x̄)TQ̄ F̄q+ qTF̄ TQ̄ F̄q
(A.5), (A.7)
≤ ϵ2 − ϵ2 = 0.

Additionally, the norm of x′′ satisfies

|x′′| ≤ |v| + |q| = |v| + |λmin(F̄ TQ̄ F̄ )−
1
2 ||ϵ| ≤ L(|v| + |ϵ|),

for L := max
(
1, |λmin(F̄ TQ̄ F̄ )|−

1
2

)
. Now, it is easy to see that

(|v| + |ϵ|)2 ≤ 2vTv+ 2ϵ2.

Hence, x′′Tx′′ ≤ L2D(v
Tv+ ϵ2) holds with LD =

√
2L. □

Appendix B. Proof of Theorem 3

First, we introduce the following Lemma:

Lemma 2. LetM ∈ Sn
+
. Then, for any x ∈ Rn such that x ∈ E(0,M),

there exist a vector s with |s| ≤ 1 and a matrix S such that x = Ss
and SST

= M .

Proof. Since M is symmetric, it admits the singular value decom-
position

M = UT

[
D 0
0 0

]
U ,

with U invertible and D ∈ S++ diagonal. From Definition 7, it
must hold that, for all l ∈ Rn,

lTx ≤ (lTMl)1/2 =
(
lTUT

[
D 0
0 0

]
Ul
)1/2

. (B.1)

Take l ′ := Ul and s′ := U−Tx. Then, (B.1) becomes

l ′Ts′ ≤
(
l ′T
[
D 0
0 0

]
l ′
)1/2
= (l ′1

TDl ′1)
1/2, (B.2)

where l ′ is partitioned into
[
l ′1T l ′2T

]
T according to

[
D 0
0 0
]
. Like-

wise, partition s′ into
[
s′1

T s′2
T
]
T. Then, (B.2) becomes

l ′1
Ts′1 + l ′2

Ts′2 ≤ (l ′1
TDl ′1)

1/2,

which, to hold for all l ′1 and l ′2, requires that s′2 = 0. As l ′1Ts
′

1 ≤

(l ′1TDl
′

1)
1/2 is the definition of the ellipsoid E(0,D), we also con-

clude that s′1
TD−1s′1 ≤ 1. Finally, the choice s = D−1/2s′1 satisfies

sTs ≤ 1. Moreover,

U−Tx =
[
s′1
s′2

]
=

[
D1/2

0

]
s ⇐⇒ x = UT

[
D1/2

0

]
s,

so, S = UT

[
D1/2

0

]
gives x = Ss and SST

= M . □ □

With the result above, the following Lemma introduces some
useful bounds:

Lemma 3. LetM i ∈ Sn
+
, i ∈ {1, 2}, p ∈ Rm, F ∈ Rn×m, and Q ∈ Sn.

For any xi ∈ Rn such that xi ∈ E(0,M i), the following inequalities
hold:

pTFxi ≤
√
pTFM iF Tp, (B.3a)

xTi Qxi ≤ λmax(M iQ ), (B.3b)

xT1Fx2 ≤
√
λmax(FM2F TM1). (B.3c)
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Proof. Using Lemma 2, take si, S i satisfying S iST
i = M i and

xi = S isi such that |si| ≤ 1. Thus, pTFxi = pTFS isi ≤ |pTFS i|;
xTi Qxi = sTi S

T
i QS isi ≤ λmax(ST

i QS i); and xT1Fx2 = sT1S
T
1FS2s2 ≤

|ST
1FS2| =

√
λmax(ST

1FS2ST
2F TS1). Using the fact that λ(AB) =

λ(BA) for any A,B ∈ Rn×n and replacing S iST
i with M i provides

(B.3). □

Now we can proceed to the proof of Theorem 3:

Proof. Let e := xp − x̃p. Hence,

p = p̃+ [eT 0 0]T (B.4)

and, from (19d), eTX−1e ≤ 1. Rewrite Eq. (19a) as a function of
p̃, e, d, and v′ by replacing z ′, z and p from Eqs. (19b), (19c) and
(B.4):

η(z ′, z) = η′(κ, p̃, e, v′, d) =(
p̃+

[e
0
0

])T
Q (κ)

(
p̃+

[e
0
0

])
+

2

(
p̃+

[e
0
0

])T
F v(κ)v′ + 2

(
p̃+

[e
0
0

])T
Fw(κ)d +

2v′TCT
vQ̄ Cwd + v′TQ vv

′
+ dTQwd,

Which results in

η′(κ, p̃, e, v′, d) = p̃TQ (κ)p̃+ 2p̃TQ (κ)|•,N e
+eTQ (κ)|N ,N e+ 2p̃TF v(κ)v′ + 2eTF v(κ)|N ,•v

′

+2p̃TFw(κ)d + 2eTFw(κ)|N ,•d
+2v′TCT

vQ̄ Cwd + v′TQ vv
′
+ dTQwd. (B.5)

Now Lemma 3 is used. The only known term in Eq. (B.5) is
the first. Eq. (B.3a) is used for second, fourth and sixth terms;
Eq. (B.3b) for the third, ninth and tenth; and Eq. (B.3c) for
the fifth, seventh and eighth terms. Mere replacement provides
η̄(κ, p̃,X). □

Appendix C. Observer initialization

For Assumption 4 to hold, we need to construct a bounded set
X̃ containing the initial state. Fortunately, this can be achieved
for our class of systems in a finite number of steps, as detailed in
this Section. During these first few steps, the PSTC must trigger
periodically with κ∗ = 1. The construction of X̃ requires the
following:

Assumption 5. The matrix Φp(1) is invertible and the pair
(Φp(1), Cp) is observable.

This is not a limiting assumption: one can always find h such
that Φp(1) = eAph is invertible.10 Likewise, since the pair (Ap, Cp)
is observable, so is (Φp(1), Cp) with the proper selection of h.11
For compactness of expressions, denote Φp(1) as Φp and Γ p(1)
as Γ p throughout the rest of this Appendix.

Instead of following the standard recursive GSE, which would
require Minkowski sums of unbounded sets,12 we collect sets re-
lating the current state to each specific measurement up to a cer-
tain instant, then compute an intersection outer-approximation.

10 For h = 0, eAph = I; from continuity, eAph ≈ I for small enough values of h,
hence it is invertible.
11 See Gopal (1993, Sec. 6.8) for the pathological selections of h for which it
does not hold.
12 There are tools for that, but it is both unnecessary and computationally
inefficient to do so. During the initialization, the STC has to trigger periodically,
hence there is no advantage in keeping track of the best state estimate.

Let O(k) be the observability matrix for k+ 1 instants:

O(k) :=

⎡⎢⎢⎢⎣
Cp

CpΦp
...

CpΦ
k
p

⎤⎥⎥⎥⎦ .
Denote k̄ := infk∈N0 rank(O(k)) = np. This is the number of steps
needed to reconstruct the initial state on linear systems. We will
see that it is also the minimum number of steps for getting a
bounded set estimate from measurements with bounded noise.
For now, denote δ(k1, k2) :=

∫ hk2
hk1

eAp(hk2−s)Eω(s)ds as the contri-
bution of disturbances to state from k1 to k2, and let ψ̃(k, k̄) :=
ψ(hk) + Cp

∑k̄−1
j=k Φk−1−j

p Γ pυ̂(hj) be the prediction of the output
at time k̄ from the output at k and inputs from k to k̄ − 1. The
following holds:

Lemma 4. Consider system (9), (13) with b = k (periodic
triggering), and let Assumption 4 hold. Then, for all k ≤ k̄,

CpΦ
k−k̄
p ξp(hk̄) ∈ E(ψ̃(k, k̄),V )+ CpΦ

k−k̄
p X̃w(k̄− k).

Proof. We can assess the contribution of the information ψ(hk),
k ≤ k̄ to the instant k̄ in a similar manner to Eq. (18):

ξp(hk̄) = Φ k̄−k
p ξp(hk)+

k̄−1∑
j=k

Φ k̄−1−j
p Γ pυ̂(hj)+ δ(k, k̄),

which implies, if Φp is invertible,

CpΦ
k−k̄
p ξp(hk̄) = Cpξp(hk)

+Cp

k̄−1∑
j=k

Φk−1−j
p Γ pυ̂(hj)+ CpΦ

k−k̄
p δ(k, k̄). (C.1)

Since Cpξp(hk) = ψ(hk)−ν(hk), it belongs to the input uncertainty
set E(ψ(kh),V ), which after summing with the contribution from
inputs Cp

∑k̄−1
j=k Φk−1−j

p Γ pυ̂(hj) yields E(ψ̃(k, k̄),V ). The remain-
ing term is the contribution from disturbances after k̄ − k steps,
which belongs to X̃w(k̄−k), followed by the linear transformation
through CpΦ

k−k̄
p . □

Denote the outer-approximation (Eq. (11)) of the Minkowski
sum in Lemma 4 as E(ψ̃(k, k̄),Ṽ (k)). From Definition 8, if CpΦ

k−k̄
p

ξp(hk̄) ∈ E(ψ̃(k, k̄),Ṽ (k)), then ξp(hk̄) ∈ C(ψ̃(k, k̄),Ṽ (k), CpΦ
k−k̄
p ) =

X̃ (k̄|k). That is, we have found the elliptical cylinder that contains
ξp(hk̄) given information at k. Since this is true for all k ∈
{0, 1, ..k̄}, we have that

ξp(hk̄) ∈
k≤k̄⋂
k=0

X̃ (k̄|k). (C.2)

An ellipsoidal outer-approximation of this intersection of ellipti-
cal cylinders can be derived with the following:

Lemma 5. Let C i ∈ Rm×n,M i ∈ Sn
++
, y i ∈ Rm, i ∈ {1, . . . , q}.

Denote C̄ := [CT
1 CT

2 · · · CT
q ] and assume rank(C̄ ) = n. Denote

ȳT
:= [yT

1 yT
2 · · · yT

q ] and

M̄ :=

⎡⎢⎢⎢⎢⎣
1
µ1

M1 0 · · · 0
0 1

µ2
M2 · · · 0

...
...

. . .
...

0 0 · · ·
1
µq

Mq

⎤⎥⎥⎥⎥⎦ ,
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with
∑q

i=1 µi = 1. Then,

∩iC(y i,M i, C i) ⊆ E(C̄†ȳ, C̄†M̄C̄†T).

Proof. The intersection means that (C ix− y i)TM
−1
i (C ix− y i) ≤ 1

for all i; thus, it holds that
∑q

i=1 λi(C ix − y i)TM
−1
i (C ix − y i) ≤∑q

i=1 λi for any λi > 0. Divide both sides by
∑q

i=1 λi and denote
µi = λi/(

∑q
i=1 λi). Putting in matrix form,

(C̄x− ȳ)T

⎡⎢⎢⎢⎣
µ1M−11 0 · · · 0

0 µ2M−12 · · · 0
...

...
. . .

...

0 0 · · · µqM−1q

⎤⎥⎥⎥⎦ (C̄x− ȳ) ≤ 1.

The middle matrix is M̄−1. Hence, C̄x ∈ E(ȳ, M̄). Since C̄ is full
rank, then mq ≥ n, which implies that C̄†C̄ = I. Therefore, x =
C̄†C̄x ∈ C̄†

E(ȳ, M̄). Finally, applying the linear transformation on
the latter ellipsoid gives x ∈ E(C̄†ȳ, C̄†M̄C̄†T). □

Finally, using the fact that O(k̄) is full-rank, we apply Lemma 5
with µi = k̄+1 to Eq. (C.2), obtaining the main initialization step:

Theorem 4. Let Ō(k̄) := O(k̄)Φ−k̄p and

ψ̄(k̄)T :=
[
ψ̃(0, k̄)T ψ̃(1, k̄)T · · · ψ(k̄)T

]
,

V̄ (k̄) :=

⎡⎢⎢⎢⎣
(k̄+ 1)Ṽ (0) 0 · · · 0

0 (k̄+ 1)Ṽ (1) · · · 0
...

...
. . .

...

0 0 · · · (k̄+ 1)Ṽ (k̄)

⎤⎥⎥⎥⎦ .
Then ξp(hk̄) ∈ E

(
Ō(k̄)†ψ̄(k̄), Ō(k̄)†V̄ (k̄)Ō(k̄)†T

)
.

Matrices Ō(k̄)†, V̄ (k̄), Ō(k̄)†V̄ (k̄)Ō(k̄)†T and Φ−kp , k ∈ {1, . . . , k̄}
can be computed off-line. On-line, ψ̃(k, k̄) are calculated and, at
k = k̄, the center of the state estimate X̃ , Ō(k̄)†ψ̄(k̄) is computed.
The main loop with Algorithm 1 then follows.
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