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Abstract

A formal Taylor series approach for the generating function of the limit random variable W of a
branching process is presented. The framework is applicable to any production distribution function
for which all moments exist. The Taylor coeflicients show an interesting relation to Gaussian
polynomials. The application of the formal series approach to the Poisson production function
leads to (a) a modular-like functional equation for the moment generating function of W and (b)
two different series for the probability distribution function of W.

1 The Limit Random Variable W

We consider a branching process in which each offspring produces a number of items independent
from the others but with same distribution. Let X denote the total number of items produced in
generation k£ and let the i.i.d. production in any generation be specified by the non-negative discrete
random variable Y with F[Y] = p > 1. The set X}, describes the evolution of a branching process
over the generations k. The scaled random variables {Wj},>1 defined by W), = %,é constitute a
martingale process with characteristic property that E [Wy] = E [Xj] for all k. It is known [6] that
the limit variable W = limy_,,, W}, exists if u > 1. In the sequel, we confine to the case where Xy =1
and, mostly, 4 > 1. The moment generating function (mgf) xy (t) = E [e7*V]
equation for Re(t) > 0,

obeys the functional

w (8) = oy (xW (ﬁ)) 1)

where py (2) = E [zy] is production generating function. The limit ¢ — oo exists and lim;_,o0 Xy (t) =

Pr [W = 0] = mo is the extinction probability which obeys, as follows from (1), the well-known equation
To = @y (o).

The main motivation for this study was the computation of the limit random variable W that
appeared in the distribution of the hopcount or distance between two arbitrary nodes in graphs with
finite variance degree distributions [7, 12]. Although many theoretical results are available (see e.g.
[6],[10],[3]), less effort has been devoted to compute the mgf xy;- (¢) and the probability density function
fw (z) of W.
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This paper presents a formal Taylor series approach for the mgf xy;, (¢) of branching processes with
production generating functions ¢y (z) that possess a Taylor series around z = 1; i.e. all moments of
Y exist. A recursion relation for the Taylor coefficients is given that, on modern computers, allows the
computation to any desired order. By computing the Taylor coefficients of the mgf xyy (¢) explicitly,
we found a remarkable appearance of Gaussian-like polynomials, also called g-binomials [5, 8].

The major part of the article is devoted to a Poisson production function for which we present
several results that culminate in two exact series for the probability density function fuw,p, (x) of Wp,.
In order to make the dependence on the Poisson production rate p explicit, we sometimes denote the

corresponding mgf by Xy .p, (p|t). Apart from the series for fy,p, () and from the well-known

t
i)-) g
I
we found an intriguing theta-function or modular-like functional equation
E
— 3

where 8 = % —1 and F), is a newly appearing parameter that can be solved from (3) as illustrated

in Section 4. The methods presented indicate that, for entire generating functions xy (¢), a same type

functional equation

XW;Po (:U’|t) = exp (:U’ <XW;P0 <:u

Xw;po (4[t) = Toxw,po (WTO

of exact series for fy () may exist. The duality principle [2, pp. 164] states that a Poisson branching
process with mean g has, conditional on extinction, the same distribution of the Poisson branching
process with mean umg. This duality principle seems related to our modular-like functional equation
(3), however, not in any obvious way. It would be of interest to find a physical or probabilitistic
interpretation of (3) and F),.

The confinement to a Poisson production function is not that narrow as it first appears. The
geometric distribution function has as Taylor coefficients around z = 1, u, = p¥, while a Poisson
distribution possesses as Taylor coefficients around z = 1, ug = "2—1;, which are, from an analytic point
of view, two basic types of series coefficients. Moreover, as illustrated in Figure 3, the geometric
distribution leads to a definitely distinct mgf xy (¢) and pdf fyy (z) than the Poisson distribution.

The next subsection briefly reviews the well-known functional equation for W. Section 2 presents
the Taylor series for xyy (t) while Section 3 gives the asymptotic series for xy (t). Section 4 applies

the framework to a Poisson production.

2 Taylor Expansions of the Generating Functions

If f(z) has a Taylor series around =z,

FO=3 fila) - with fi(z0) = oy TL
k=0

z2=2z0

then the general relation where G (z) is analytic around f (zp) is

o) m L
GU() =Gl (o) + Y (;% *ap)

S[kvm]f(z)(zo)) (z = 20)" (4)
p=f(20)

m=1



where the characteristic coefficient [13] of a complex function f (z) is

k
slk,m]y(z) (20) = > IIfi=0)

Sk Gi=mgi>0 =1

which obeys the recursion relation

S[lam]f(z) (Z[)) = fm (ZO)
m—k+1
slk,mly) (200 = Y fi (20) slk—1,m = j]4(2) (20) (k>1) (5)
=1

2.1 Expansion of y,(t) around t =0

If ¢y (2) is analytic inside a circle with radius Ry > 0 centered at z = 1, then the Taylor series around

z) = l—i-Zuk(z—l)k
k=0

zo = 1,

with u; = p and for k > 1,
1 dFoy(2)
k! dzk

U =

(6)

z=1

converges for all |z — 1| < Ry. The definition xyy (£) = E [e~*"] implies that the maximum value of

tW]
|xw (t)| inside and on a circle with radius r around the origin is attained at xy (—r). The functional
equation (1) then shows that xy (¢) is analytic inside a circle around ¢ = 0 with radius Ry for which
Xw (_%m) < 14 Ry. Since xy (0) = 1, xyy (¢) is convex and decreasing for real ¢ and Ry > 0, there

exists such a non-zero value of Ryy. This implies that the Taylor series
o0
=1+ wth (7)
k=1

converges around t = 0 for [t| < Ry. Since () = E [e7™V] = 300 (—1)"E [W*] %, there holds
for k > 0 that

w 1 deW( ) o (_1)kE [Wk} (8)
PR AR |, k!
and w; = —F [W] = —1. In other words, the coefficients wy, are alternating because E [Wk] > 0.

We will expand the functional equation (1) around tp = 0. Using (4), the right hand side of (1)
has the Taylor series
1 d¥p
oo o (1)) 10 3 (B 52

t m
sthol, 0 ) (£)
p=1 /"L
Equating corresponding powers in t yields for m > 0,

= = S s (0)

k=1




from which the recursion for wy, follows because s[1,m] = w,, by (5),

L e slh, mlyy (0) 9)
H k=2

Wy, = D

In summary, only if the probability generating function of the production process py-(z) is analytic

in some region around z = 1 (which implies that all derivatives u; at z = 1 exist), the recursion

relation (9) determines all derivatives wy, of xy(¢) around ¢t = 0, for p # 1. For u = 1, we obtain
m—1

with s[2,m]y, (0) = > 75" wjwm—j for m > 1,

1 m—1 m
Wm—1 = o Z Wijlm—j + Zuk s[k, m]y,, (0)
j=2 k=3

For 11 # 1, the first few values are, with w; = —1,

RET(TE )
vy = 2u3 + pu(p — 1)ug
p? (p—1) (p? = 1)
oy — (+5) ud +p(p—1) Bu+5) uguz+ p? (u—1) (> — 1) uy
p? (p—1) (p? = 1) (u3 = 1)
s — 2202 +30+7) ug +p(p—1) (3u3 + 14p* 4+ 20p + 21) uus

pt (p—=1) (p2 = 1) (p? = 1) (p* = 1)
L2 1) (12 —1) (24% + 20+ 3) ugua+ 3p® (u—1) (p* — 1) u3
pt (p—1) (02 = 1) (p = 1) (p* = 1)
P (p—1) (2 - 1) (0° — 1) us
pt (p—1) (2 = 1) (1 = 1) (* — 1)

from which, by inspection, the general structure arises

+

m (gn)*l
wmw):(—l) > k2o ay, (m) p¥ (10)

m—1
pr T (W = 1)
j=1

where ai(m) are, in general, rather cumbersome coefficients in the uy with a(my_ (m) = —a(my s (m) =
2 2

Up,. This form bears resemblance to Gaussian polynomials [5, 8.

2.2 Computation of xy (t)

If xy (t) is not known in closed form, the interest of the Taylor series (7) of xy (¢) around ¢ = 0
lies in the fast convergence for small values of |t| < 1. The recursion (9) for the Taylor coefficients
wy enables the computation of yy (¢) for |t| < 1 to any desired degree of accuracy. The functional

equation xy (t) = vy (XW ﬁ ) extends the ¢t-range to the entire complex plane. For large values of

t and in particular for negative real ¢, xyy () is best computed from xy, (W) after [log, [t]] +1

functional iteratives of (1). Indeed, since x> 1 such that W < 1, the Taylor series (7) provides
o

an accurate start value xy, ( ) for this iterative scheme.

t
M[log“\t|]+l
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3 The Asymptotic Behavior of xy; (¢)

The convexity of xy (t) = E [e7*"] implies that xj; (t) < 0 for all real ¢ and that xj; (t) is increasing
in t. We know that x7;, (0) = —FE [W] = —1. Since lim;_,c X3y (t) = o, it follows that lim; .o X}y (t) =

0. The following Lemma 1 is a little more precise.
Lemma 1 y}y, (t) = o(t™1) fort — .

Proof: The derivative of the functional equation (1) is pxiy (#t) = ¢ (xw (£)) X3y (). By itera-

tion, we have
K—1

wxw (15t) = X () TT % aw (#71))
§=0

Since xyy (t) € [mo, 1] for real ¢ > 0, then ¢} (7o) < ¢ (xw (1/t)) < p for any j. In addition, it is well-
known in the theory of branching processes that, if 1 = ¢}, (1) > 1, then there are two zeros mg and 1 of
f(2) = py(2)—zin z € [0, 1]. By Rolle’s Theorem applied to the continuous function f (z) = ¢y (2)—z,
there exist an § € (mp, 1) for which f/(§) = 0. Equivalently, ¢} (§) = 1 and & > mp. Since ¢} (2) is
monotonously increasing in z € [0, 1], we have that ¢} (0) = Pr[Y = 1] < ¢4 (m9) < 1. Since xyy (¢)
is continuous and monotone decreasing, there exists an integer Ky such that ¢f (XW (,ujt)) < 1 for
J > Ko and any ¢t > 0. Hence,

K-1 Kop—1 0
Jdim TT ¢ Gav (071) = TT ¢ Gav (071) TT #h Car (7)) =0
j=0 J=0 J=Ko
and, for any finite ¢ > 0, ufx};, (u*t) — 0 for K — oo which implies the lemma. O

Lemma 1 is, for large ¢, equivalent to |x} (t)| < Ct~17 for some real B > 0 and where C is a

finite positive real number. Lemma 1 thus suggests to consider
Xiw (8) = =g (£t (11)
where 0 < g, (t) < C on the real positive t—axis.
Lemma 2 If ¢} (m9) > 0 and pn > 1, then
Fy = lim g, (1) (12)
exists, is finite and strict positive.

Proof: We first use (a) the convexity of any pgf xy (t) implying that xj}, () > 0 for all ¢ and we
then invoke (b) the functional equation (1) of xy (¢).

(a) The function g, (t) = —x} (t)t°*1 is differentiable, thus continuous, and has for real ¢ > 0
only one extremum at ¢ = 7 obeying 7 = ;,(,W(S) (B+1) > 0. Since xjy (0) = —1 implying that
w
gu(t) = tP1 (1 +o(t) as t | 0 or that g,(t) is initially monotone increasing in ¢, the extremum at
t =7 is a maximum. The derivative of g, (£) = —x};, (¢)t°*1 is with (11)
p+1
gy (8) = =g (1) =i () 77



such that, for 7 finite, max g,, (t) = Zrxjy (7). Since xjy () > 0 for all ¢, we also obtain the inequality

gy (t) < 7 9n (t) < "

from which lim¢ . g}, (t) < 0. Hence, g, (t) is not increasing for ¢t — oo.
(b) Substitution of (11) in the derivative of the functional equation (1) yields

gu (t) = ¥y <XW <£>> Iu <%> s (13)

Since ¢, (XW (;)) > ¢ (mg) > 0 (restriction of this Lemma), there holds with A = ¢}, () /% > 0
for all ¢ > 0 that

gu (t) > Ag, <£>

For t < 7, g, (t) is shown in (a) to be monotone increasing which requires that A > 1 for p > 1.
But, since the inequality with A > 1 holds for all ¢ > 0, we must have that 7 — oco. Hence, g,(t) is
continuous and strict increasing for all ¢ > 0 with a maximum at infinity which proves the existence
of a unique limit F,, < C.

If F,, =0, the suggestion (11) is not correct implying that x7; (¢) decreases faster than any power
of t~1. The proof of Lemma 1 indicate that his case can occur if ¢} (7o) = 0. U

In fact, A = 1. For, when passing to the limit ¢t — oo in (13) using Lemma 2, we obtain

-8

1 = ¢y (mo)

which determines the exponent 5 > 1 as

5= Lo ¢y (o)

14
log 1 (14)

Dubuc [3, Theorem 1.1 | has derived (14) earlier based on an entirely different method. Applying (4)

to G(f1(2)), the exact series of ¢} (7o) in terms of y can be derived. For small ;1 — 1, we obtain

2
us U3 — U2U4
G(mo) =2 = pt =3 (= 1P + 22— (= 1)° + 0 (u - 1)*)
2 2

which shows that 8 — 1 if p — 1.

3.1 Asymptotic series for g, (t)

We now give the precise asymptotic series for g, (t) in case ¢} (mg) > 0 and p > 1. Integrating both
sides of (11) gives

xw (t) =m0+ /too gu (u) uw B du (15)

Iterating (13) yields

K KB K-1 /
j=0 Py (770 + fwj 9u (u) lfﬁ_ld“)



where (15) is used. The limit K — oo gives with Lemma 2,

o0

/
0 () =1, T~ i (16)
j=0 Py (770 + ft,u‘ G (w) u=P= du)
Since 0 < g, (t) < F), for t > 0, we have
= Y B (r))
,5,1d <F (N _tp Py (7o
/m-t gu (W du < B = T
For large ¢, expanding (16) gives
0 = F o (70 + Jow g (0w~ u)
gy (t) = exp | — og
g g : ¢y (mo)
py (m0) B,y (£2)
~ F,[1- O(t
g ( 8 1
which suggests that g, (¢) has an asymptotic series of the form
N-1
g =Y gt +0 (t‘N5> (17)
k=0
with go = F),. Using (15) with (17) gives
N
#I IR (1) o () = Zw L0 (M) (19
k=1
where ¢ = %=L and ¢y = 79 and z = t?. This series for xw (t) can be regarded as a truncated
Bk w

Taylor series at ¢ — oo. Earlier, Dubuc [3, Theorem 2] has shown that the term by term (inverse)
Laplace transform of the series (18) exists. Expanding the functional equation (1) in a Taylor series

around ¢t — oo using (4) with z — 29 = t =% and 2y — oo, gives

¢y<xw<u>>—¢y o +Z< l d@yk()

dp

s[k,m]y,, (oo)) (uﬁt*ﬁ)) "

p=mo

We denote the Taylor coefficient of the production generating function ¢y (z) around z = 7y with
vo = ¢y (mo) = 7o and vy = ¢l (m0) = p~# < 1 by (14). After equating corresponding powers of ¢~
n (1) leads for m > 0 to
m
em = ™ ka s[k,m]y,, (00)
k=1

from which the recursion for ¢,, and m > 1 follows using v; = =7 as

1

Cm =m2w M)y (00)
k=2

For m = 1 for which ¢; = pPvys[1,1]y,, (00) = c1, we obtain an identity for ¢; = Eﬁfi where the

parameter F), appears as a natural measure or property for xy (¢). This recursion for ¢, (xw (%)



expanded around ¢y = oo) is formally the same as (9) for wy,, (xy () expanded around ¢y = 0) if we
replace u, — vg, p — P and the initial start value w; = —1 by ¢; = % Hence, the Gaussian

polynomial-like form (10) for w,, translates to

D > & A ) (5)"
m p— ‘ 3
"] ((u‘ﬂ)j - 1)
j=1

where the coefficients aj are functions of vg. Provided the set of u; and the set of v together with
F}, is known, the computation of the Taylor coefficients of xyy, (t) around ¢t = 0 and ¢t = oo is equally
intensive.

The analysis shows first of all that all Taylor coefficients around ¢ — oo exist and that xy (¢) is
analytic around ¢ — oo such that the asymptotic series (18) exists for all N. Hence, we may termwise
integrate that series within the radius of convergence. If that radius is infinite, a series for probability

density function fyy(x) is obtained from

c+1i00
f () = — / xw (£) et (19)

218 Jo—ioo

An example is the branching process for a Poisson production function given in Section 4.6. Second,
k k

if there is a simple relation (independent of k) between uy, = 7 d—“;;’k(—z) and v, = 4 d—“;;’k(—z)

1 1 4

. . . . — k

such as in the case of a Poisson production function ¢y.p, (2) = etZ=1) where ug,po = 4y and

k . . . . . . .
Vk:Po = Wo% = ToUk;Po, & New, modular-like functional equation (3) is obtained as shown in Section

Z=mo

4.4. Finally, if p > 1, ¢y (z) has two fixed points z = 1 and z = 7. The theory of automorphisms [9]
illustrates the importance of fixed points. Hence, it is not surprising that the two expansions around

the two fixed points of ¢y (2) play a characteristic role.

4 The Poisson Distribution

4.1 The Functional Equation of ;. p,(t)

For a Poisson production function with generating function ¢y p, (2) = e*>=1 the functional equation

(1) of Xw.p, (t) is given in (2). By taking the logarithm of the functional equation (2), we obtain

t

8 (v ) = (v () 1) (20)

while the logarithmic derivative of the functional equation (2) is

X{/V;Po (t) = XW;Po (t) X%/V;Po (%) (21)

4.2 Properties of xy,.p, ()

Theorem 3 xyy.p, (t) is an entire function.



An entire function has no singularities in the finite complex plane. Consequently, any Taylor series

around a finite point has an infinite radius of convergence implying that the Taylor series

Xwipo (1) = T4 > wWinipo (1) £ (22)
m=1

converges for all t.

Proof: Suppose that xyy.p, (t) possesses a singularity at ¢t = ¢; and that t; is the singularity with
the smallest modulus. Moreover, t; > 0 because xyy,p, (t) is analytic in a region around ¢ = 0 as
vy (2) = e#=1) is an entire function. Since the precise type of singularity is not relevant, but only
its position matters, we confine ourselves here to a simple pole. Then, we may write

«
t—ts

Xw;po (1) = +g(t)

where ¢ (t) is analytic for |[t| < |ts| and where « is a complex number. Introduced into the functional

Xw;po (t) = exp (M (ﬁ fts +9 (5) —1))

shows that xyy.p, (t) is analytic for [t| < u|ts|. Since > 1, the initial assumption that xy,p, () has

equation (2),

a singularity at ts leads to a contradiction. Hence, xyy.p, (f) cannot have singularities in the finite

complex plane. O
Corollary 1 xyy.p, (t) does not possess zeros in the finite complex plane.

Theorem 3 applied to the logarithm (20) of the functional equation indicates that also log (xy.p, ()
is an entire function which immediately implies Corollary 1. The proof also follows from Jensen’s the-
orem [11, sec. 3.61]. This type of entire function can be written as xy.p, (t) = exp (h(t)), where h (t)
is also an integral function. An entire function & (t) is of finite order p [11, pp. 248] if h (t) = O (etﬁe)

for any arbitrary small, but positive e.
Corollary 2 xyy.p, (t) is an entire function of infinite order.

It is readily verified from (20) that, for large real ¢, xyy. p, (—t) cannot be of the form xy.p, (—t) ~
Ke! for finite p.

The order p of the entire function x . p,(t) is determined [11, pp. 253] by % = limy, 00 = loBwim;po(y)

mlogm
Corollary 2 shows that, for all finite y and any finite, positive a, the coefficients wy,.p, (1) tend slower
than % to zero for large m, but since xyy,p,(t) has infinite radius, the wp,;p, (1) tend faster than a=™

to zero.

4.3 The Taylor series of xy.p,(t)

The Taylor coefficients of xyy.p,(t) in (22) for a Poisson production function follow from (9) with

up = /2—’7 as
(=)™ ™y (1)

m—1
m! ] (W —1)
j=1

wWm;Po (1) = (23)

9



m—1
with, for m > 1, the polynomial €, (1) = Z,(c:% ) br(m)u”. Specifically,

() =1

Q(p) =1

Qs (p) = 2+p

Qq(p) = 6+6p+5u"+p4°

Qs (1) = 24+ 36p+ 46 % + 40 13 + 24p* + 9 p® + 18

Q6 (1) = 1204 2404 + 390 1% + 480 pi® + 514 pu* + 416 11® + 301 1 + 16047 + 64 1% + 14 42 + p*°
Q7 () = 7204 1800 p + 3480 1% + 5250 pi® + 7028 it + 8056 p® + 8252 b + 7426 ™ 4 5979 B

+4208 112 + 2542 1110 + 1295 pt + 504 p*? + 139 p*3 + 20 !t 4 pt?
Further, by inspection, some coefficients are found explicitly,
b(mfl) (m) = 1
_ = (M) 128D _
b(m, 1)_1(m) <2> 1 Sm 1

b(m71)72(m) = Sy(nm—Q) —1

L o (m—3) (m—2) m—2 m—2 B m—2 _
b(m;)_?’(m) = Sm +Sm +( 3 >+< 9 ) ( 1 1

o = )

bl(m) = (m_2)'<m2_1>_(m_2)'87(:i_12)
bo(m) = (m—1)!

where S are the Stirling Numbers of the Second Kind [1, Sec. 24.1.4] and

o = 1) -5

j=2
m—2
S (m—2j
7=0
The positive integers Q, (2),, (3),... that rapidly increase in m contain in their factorization

relatively large prime numbers different for different m which quite likely excludes the existence of
simple expressions as for ,, (1) and Q,, (—1). Also, we found that the polynomials Q,, (1) are not
divisible by polynomials in the numerator of wy,. p,, in contrast to the geometric distribution where the
presence of Gaussian-like polynomials is eliminated in this way. Perhaps, here lies the basic difference
in the properties of W between a geometric and a Poisson production function.

We can rewrite the series as

14+ 20 by gy

" T3

XW;Po(t) =1+



The theory of partitions [8, pp. 222] states that the series

= P (m)a” (24)
[[a-2) =0

J=1

where p,, (n) is the number of partitions of n into parts not exceeding m, converges for |x| < 1.

Introduced yields the expansion of xy.p, (u|t) in powers of %,

i t2€7t eft t4 t3 t2
XW;PO (:LL|t) =e +

oo oo (—t)m n

. —n

7 (55 7) 2 | X S bt (=) |
n=2 \m=0 7=0

For large p1, Xyw.po(t) ~ €' which implies' that fy () = § (¢t — 1), an atom at ¢t = 1 or W =1 for

1 — 00.

XW:Po(t)

a0

L T u=>5

=

0 20 40 60 80 100

Figure 1: The generating function xy,p,(t) as a function of ¢ for various values of y. Observe that

Xw;po(t) Tapidly converges to 7.

The generating function xyy.p, (t) is efficiently computed by using the well-known Euler transfor-

() e

'Tt also follows from the functional equation (2) and the expansion xyy (t) =1 —t+ O (¢*) that

)

The fact that E [Wp,] = 1 and var [Wp,] = ﬁ gives additional support.

mation because the coefficients wy (u) are alternating

m

> <T]:__11> wWispo (12) ¢°7

k=1

XW;PO (t) =1+ Z

m=1

11



Since xyy.p, (t) is an entire function, the Euler transform converges for all ¢+ with Re(t) > 0 provided
g > 0 and for all ¢ with Re(¢) < 0 provided g < 0. We have used for the computations in Figure 1 and
Figure 2 the value ¢ = 1 for ¢ > 0 and ¢ = —1 for £ < 0. Since lim; oo Xy p, (t) = 7o, it follows from

the Euler transformation that the extinction probability obeys

=1+ [Z (7:__11 ) Wi Po (1) q’“"] qim (26)

m=1 Lk=1

Log(w.po(t))

i Gl il el uu\«_\ Ll Nl

1 L L L L L L L L 1 L
! 2x10”

Figure 2: The logarithm of generating function xy.p, () as a function of real negative values of ¢ for

several values of 1 on a log-log plot.

4.4 Second Recursion for wy,p,

By equating in (21) corresponding powers in ¢ and using wo.p, (1) = 1, we obtain a new recursion

k—1
m + 1 wm+1 Po (,UJ)

Wk+1;Po (M) = Wk—m;Po (,U) (27)

(1——) (k+1) 2=
which is computationally more attractive than the general recursion (9).
The recursion (27) can be used to obtain an additional relation between the polynomials Q,, ().

Substitution of (23) into (27) and invoking Gaussian polynomials defined [8, pp. 250] as

k _ H?:l(l_qj)
[ ! ] S TNy = (T B

yields

k—1
- [ 0 ) i ) ()1

12



Since 1 (1) = 1 and Q2 (1) = 1, the relation shows that all Q,, (1) are polynomials with positive
coefficients by, (m) because all appearing terms in the sum are positive for ;> 1 and the Gaussian

polynomials have positive coefficients. The argument also shows that bx(m + 1) > bg(m).

4.5 Second Functional Equation

Lemma 4 For a Poisson production function, the coefficients of the asymptotic series (17) are

F m
o= B )™ 4 1) i umo) (25 ) (29
Proof: Change in the recursion (27) for wy41,p, the summation index to j = k — 1 — m and rewrite

that recursion as

1

(- pb) .

(k+1— j)wit1—j;po (1) wjpo (1) 1/
1

k
(k + 1) wpt1;p0 (1) =

Substitution of xyy.p, (t) = —gy (t) t=P=1 in the functional equation (21) yields

w0 (£) (2 )

Using the asymptotic expansion (17) of g, (¢) leads after equating corresponding powers in t=P to the
recursion for k > 0

k
1 Im—19k—-m (

_5770 <1 - (lﬂro)k) m=1

Comparison shows that gj possesses a same recursion as (k + 1) wy41,po With p — pmo, apart from

pmo)™

9k =

the scaling by a factor % and the initial value go = F), while wi;p, () = —1. This correspondence
proves the expression (28). O

By using (28) into (15), we obtain the asymptotic series for

M_1+§:w (o) b m+0<t(N+1)/5>
o0 - m;Po \HTT0 WOBtﬁ

m=1

F“tﬁ‘ < 1. For these values of ¢, comparison with the

This sum converges for all N provided ’m
Taylor series (22) leads to a second, modular-like functional equation (3). By analytic continuation
because Xy .p, (1|t) is an entire function in ¢, the second, modular-like functional equation (3) for
Xw;po (12t) holds for all ¢+ and u, except for negative real ¢ where the right hand side has a branch
cut. This modular-like functional equation (3) extends the p-range to values smaller than 1 since
pmo < 1. Since Q,, (1) is a polynomial and with (24), the definition (23) of wy, p, (1) demonstrates
that wm.po (1) is an analytic function for u < 1, and, hence, so is xyy.p, (plt) for p < 1.
1

It follows from the functional equation (3) that lim;—.— oo Xy, p, (40lt) = -

13



4.5.1 The Parameter F),

The series for g, (t) and for log g, (%),

Wm;Po (HTTO F, "
log g, (t) = log F}, — po Z (METU) ) <_7Toﬁut5>

contain F), as a natural parameter which seems equally important as mg. We have determined F),

numerically from the second, modular-like functional equation (3) after rescaling that equation as

1
Xw:po (Hlauy) = ToXw, po (,Lmo ’—y%) with a, = (ﬂFo_MB) ? and solving for a, with y = 1. For a few
values for p, we have listed the relevant parameters in the table below:

I o B ay F,

2 0.203188 1.29910 | 2.35150 | 0.80161
3 0.0595202 1.56818 | 5.94034 | 1.55259
4 0.0198274 1.82818 | 9.53381 | 2.23646
5 | 6.97715 1073 | 2.08500 | 13.0823 | 3.09793
6 | 2.51646 1073 | 2.34024 | 16.6420 | 4.24581
7 19.17759 1074 | 2.59399 | 20.2566 | 5.83328
8 | 3.36367 10~* | 2.84580 | 23.9487 | 8.05973
9 | 1.23547 10~* | 3.09557 | 27.7262 | 11.1980
10 | 4.54206 1075 | 3.34275 | 31.5893 | 15.6293

Although for p € [2, 5], the linear approximation F), ~ 0.75 (1 — 1) seems good, for larger values of
p, F, exhibits a faster than linear growth in p. A good fit for p € [4,10] is log F), = 0.3229 — 0.4899.

4.6 Series for the Probability Density Function fy.p, ()

In this section, we present two different series for the probability density function fy (z) for a Poisson
production function.

The probability density function fyy () can be obtained from (19) by termwise integration of the
series for moX . p, (,Lmo ’—%;%) in (3) for sufficiently large t. Indeed, since xyy,p,(t) is an entire
function and |xyy. p, (¢ )’ < xw,po(Re(t)), the line of integration in (19) can be shifted to any arbitrary
real number c¢. With 5 fccj.ioo el dt = F( B) for B > 0, the probability density function fy (x) is

ico 1B

T > m;Fo N
fw.po (plx) = mod () + ?0 2 : fla(ﬂgg;TO) <_}::OZ ) 0
m=1

Alternatively, the series (25) obtained by the Euler transform can be termwise integrated provided

the contour stays in one half-plane. Formally, we apply (19),

fwro@ =)+ 3 |3 (1 Nematma | o [T et
Wibo k—1) ke 2mi Joino (L qt)"
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For x > 0 and ¢ > 0, the contour in the integral can be closed over the negative Re (¢)-plane. Cauchy

z T J
t=*%: mﬂe q (]+ ) (_E>

1 _=
= ——¢ qu(l—m,Q,E>
q q

integral theorem applied to the (m — 1)-th derivative gives

,_.

1 erieo t 1 am!
— ¢ —ndt =

m xt
270 Je—ico (1+qt)™ qm(m —1)! dtm—1 ( )

t"e

k)

where M (a, b, z) = F(a Zzo 0 11: ZL’; f}’g, is Kummer’s confluent hypergeometric function [1]. For xz = 0,
the integral diverges which we represent by m5 (z). Then, taking (26) into account,

m

o -est12 5 & 8 omine] [ ) ()]

=1

Although ¢ may be chosen in a special way, we just choose ¢ = 1 and obtain the series
e (m—1 " /m 1 ;
_ _ _ )1
fW;Po (x) = mo0 (%) € Z [Z <k‘ . 1> WE;Po (,U’)] Z <]> (] — 1)' ( $) (30)
m=1 Lk=1 7j=1
Finally, Figure 3 shows the distinct difference between a Poisson and Geometric production func-
2

<i—1) exp(—x(l—%)) x>0
fwiGeo(x) = %(5 (x) =0 (31)

0 <0

tion, where [4]

5 Conclusion

The presented formal Taylor series approach enables numerical computations of the generating func-
tions of the limit random variable W of a branching process produced by a generation distribution
function for which all moments exist. Applications to a Poisson production function illustrates the
power of the method and suggests that, via the Euler transform, a series for the probability density
function of W may be obtained for other production functions as well.

Apart from the computational aspect, we discovered an interesting relation to Gaussian polyno-
mials and the theory of partitions or modular forms. For a Poisson branching process, a second,

modular-like functional equation (3) is presented.
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