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Abstract

This paper introduces a semi-analytical model based on the spectral analysis method for the
simulation of transient conductive-convective heat flow in an axisymmetric shallow geothermal
system consisting of a double U-tube borehole heat exchanger embedded in a soil mass. The
proposed model combines the exactness of the analytical methods with an important extent of
generality in describing the geometry and boundary conditions of the numerical methods. It
calculates the temperature distribution in all involved borehole heat exchanger components and
the surrounding soil mass using the fast Fourier transform, for the time domain; and the complex
Fourier and Fourier-Bessel series, for the spatial domain. Numerical examples illustrating the
model capability to reconstruct thermal response test data together with parametric analysis are
given. The CPU time for calculating temperature distributions in all involved components, pipe-in,
pipe-out, grout, and soil, using 16,384 FFT samples, for the time domain, and 100 Fourier-Bessel
series samples, for the spatial domain, was in the order of 3 seconds in a normal PC. The model
can be utilized for forward calculations of heat flow in a double U-tube geothermal heat pump
system, and can be included in inverse calculations for parameter identification of shallow
geothermal systems.

Keywords: Borehole heat exchanger, GSHP, TRT, spectral analysis, FFT.

1. Introduction

Geothermal heat pump (GHP) is an important source of energy for heating and cooling of
buildings. It saves energy by making use of the relatively constant temperature conditions at small
depths of the earth. This system, also known as borehole heat exchanger (BHE) or ground source
heat pump (GSHP), works by circulating a fluid (refrigerant), mostly water with antifreeze
solution, through a closed loop of polyethylene pipe that is inserted in a borehole in a soil mass.
The borehole is filled with some grouted materials to fix the polyethylene pipe and to ensure a
good thermal interaction with the soil. Several types of GHP are available in practice. In this
publication, the GHP system is assumed to consist of a vertical double U-tube BHE embedded in
a soil mass and subjected to an inlet temperature coming from the heat pump, air temperature, and
a temperature coming from the bottom of the earth.

The borehole heat exchanger is a slender heat pipe with dimensions of the order of 30 mm in
diameter for the U-tube, and 150 mm in diameter and 100 m in length for the borehole. The U-
tube carries a working (circulating) fluid that collects heat from the surrounding soil via
convection-conduction heat flow mechanisms. Physically, the heat flow process in such a system
is well understood, but computationally, and in spite of the bulk of existing models, still creeping
due to the combination of the slenderness of the boreholes heat exchangers and the involved
thermal convection. This combination constitutes the main source of computational challenges in
this field. Consequently, several theoretical and computational assumptions and approximations
have been introduced in order to circumvent this problem and obtain feasible solutions. All
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known solution techniques, such as analytical, semalytical and numerical, have been utilized
for this purpose. However, in spite of the verggtibf the numerical methods, analytical and
semi-analytical solutions are yet preferable beganfstheir comparatively little demands on
computational power and ease of use in enginegriagtice. In this publication, focus is placed
on analytical and semi-analytical solution techeigu

In the last three decades, several analytical and-analytical models for the simulation of heat
flow in geothermal heat pump systems with differearnplexities and rigor have been introduced.
Based on their treatment of heat flow inside theihks, these models can be classified into three
categories: 1. No heat convection; 2. Implicit aaetion; and 3. Explicit convection.

Models belonging to the first category are thossetlaon the work of Carslaw and Jaeger [1],
who seem to be the first to introduce a comprekenseatment of heat conduction in solids.
Heat flow in finite, semi-infinite and infinite doains subjected to point, line, plane and
cylindrical heat sources were extensively studiedhieir work between 1947 and 1959. In the
meanwhile, and on the basis of Carslaw and Jaegsds, Wgersoll et al. [2] made a significant
contribution to the field of heat conduction inidsl and provided a practical framework for
modeling geothermal systems. Currently, most ofahalytical and semi-analytical models for
heat flow in geothermal heat pumps are based @ ttveo sources. These models calculate heat
flow in a soil mass subjected to a heat sourceresgmting the borehole heat exchanger,
regardless of the convective heat flow in the flinside the U-tubes and the thermal resistance
between the different components. Philippe et3l.gave a perceptive review of these models
and the researchers who employed them.

Along the same category, but different represematif the geometry, there are several other
models in use. In such models, the convective-cctidiheat flow in the U-tubes is replaced by
a constant cylindrical heat source, and the gegnetitescribed by a concentric two-dimensional
(radial) composite domain. Gu and O’Neal [4] gaveetaborate literature review on analytical
solutions of radial heat conduction in a compositanain. They utilized this technique to
simulate transient heat flow due to a constant keatce, resembling U-tubes, surrounded by a
backfill (grout) and a soil mass bounded by a f@ldfboundary. The cross sectional areas of the
two branches of the U-tubes are replaced by arvelguit cross sectional area. They utilized the
eigenfunction expansion to solve the governingigladifferential equation that gave rise to
solving an eight degree transcendental equationdftermining the involved eigenvalues.
Apparently, solving an eight degree transcendesgahtion is difficult and might be a source of
numerical oscillations and computational ineffic@gnin this model, summing up to 1000 terms
was needed for the series to converge.

Based on Gu and O’Neal’s approach, a number of lmduese been introduced using different
mathematical formulations and solution techniqliasnarche and Beauchamp [5] solved Gu and
O'Neal's composite problem using Laplace transfofirey solved both forward and inverse
Laplace transforms analytically. Bandyopadhyay kt[@] solved the same problem using
dimensionless equations by means of Laplace transfohey utilized Gaver-Stehfest numerical
algorithm to solve the inverse Laplace transforoctBmodels, together with those employing the
finite, infinite and cylindrical line sources, cailso be classified as a no thermal resistance
models.

Models belonging to the second category are thdsehacalculate the BHE fluid temperature
implicitly, i.e. without really simulating fluid 8w along the axial axis of the U-tubes. In such
models, a mean fluid temperature is specified tiicate the average temperature in the U-tubes.
It is calculated by first computing the soil temgtere at the borehole wall, using any of the
known analytical models, then adjusting the borehitlermal effective resistance to obtain
equilibrium. Marcotte and Pasquier [7] introducedtsa model for a transient pseudo convective
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problem using the fast Fourier transform for difizieg the time domain, and the cubic spline for
interpolating results obtained at selected samepfethe analytical function. They utilized the
principle of superposition method to simulate tksponse to multiple heat fluxes. Javed and
Claesson [8] solved Gu and O'Neal's problem usisigndar pseudo convective approach.

Yet another type of models has also been introdtisadimplicitly accounts for the fluid heat
flow in the U-tubes. In this kind of models, helawf in a geothermal heat pump is described by
an assembly of interconnected resistances anditaga®e Carli et al. [9] and Zarrella et al. [10]
proposed what is known as the Capacity ResistanodeM(CaRM) for the calculation of
transient temperature distributions in borehole legahangers, including those for the grout and
the circulating fluid. In this model, the geomeisydiscretized by nodes representing slices in the
vertical and radial directions. Heat flow in a slits described by calculating the temperature
difference between adjacent slices, controlledhigythermal resistance between them. Bauer et al.
[11] extended the idea of the CaRM model by diwdihe grout thermal resistance over the
number of the involved U-tubes in the borehole.iftrdel is known as the Thermal Resistance
Capacity Model (TRCM). Pasquier and Marcotte [12jeaded Bauer et al. [11] model by
incorporating the circulating fluid and the pipeetitmal capacity. They also introduced a better
account for the pipe spacing. This kind of modelsd in spite of their apparent ease of
formulation, is sensitive to the number of nodekizetl to discretize the geometry, making them
sensitive to the thermal parameters, the definitibthermal resistance and the time steps. Such
models can also be classified as thermal resistaock!s.

Models belonging to the third category are thoseéclwitalculate the BHE fluid temperature
explicitly, i.e. simulating fluid flow along the &t axis of the U-tubes. Eskilson and Claesson [13]
introduced a semi-analytical model for ground seureat pumps that approximates heat flow in
the borehole heat exchangers by two interactingirodla conveying a circulating fluid in the
vertical axis and embedded in an axisymmetric s@its. Heat flow in the channels is assumed
steady state convective, and in the soil, transientluctive. They utilized Laplace transform to
solve the involved heat equations of the chanmeild, the explicit forward difference method to
solve the heat equations of the soil mass. Zerg). 4] solved the same problem but using
dimensionless heat equations for the channels. Rinid of models, in spite of its realistic
physical representation of heat flow in the GHReays is mainly suitable for long term analyses.
As for the second category models, this kind of el®dcan also be classified as thermal
resistance models.

Alongside this category, Al-Khoury [15,16] introdagt a semi-analytical model for transient
conductive-convective heat flow in a single U-tudmehole heat exchanger embedded in a soil
mass. The model calculates the temperature ditibin all involved borehole heat exchanger
components (pipe-in, pipe-out and grout), and timeosinding soil mass using eigenfunction
expansion in terms of the spectral analysis metfdw. fast Fourier transform is utilized for
discretizing the time domain, and the complex Feuseries and Fourier-Bessel series are
utilized for discretizing the spatial domain. Thaimadvantage of this model is that it solves the
governing partial differential equations of the teys directly, making it physically sound.
Additionally, the use of the spectral analysis nsalkeomputationally efficient.

In this paper, this model is extended to describat lilow in a double U-tube borehole heat
exchanger embedded in an axisymmetric soil mastilB& mathematical formulation of the
double U-tube together with eigenvalue determimatamd spectral analysis are given. The
mathematical formulation and solution of heat flomthe soil mass are adopted from Al-Khoury
[16] but, for completeness, the general solutiodeiscribed in this paper. The proposed model is
utilized to simulate a thermal response test (TRT).
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Figure 1. A schematic representation of the double U-tube BHE temperature.

2. Heat flow in the double U-tube borehole heat exchanger

Consider a double U-tube BHE, consisting of fivenponents (two pipes-in, denotediasandi2;

two pipes-out, denoted asl and o02; and grout, denoted ay, see Figure 1. Due to the
slenderness of the BHE, the heat flow is considéoedccur only along its axial axis. Radial
distribution of temperature is in effect negligiblEhough, there is heat exchange across the
surface areas of the BHE components. Accordinghg transient heat flow in the BHE
components can be expressed as [17]:

Pipes-in
PCr 8;1d\/|1 Ar 822T'ldV|1+ CrU dV|1 bg1(Ti1—Tg)dS 1 "
pC; 8;'2‘1\/.2 Ar 8;'20‘V2+ peu— < Oz dVi 2 =Rg oT; 2—Tg)dS >
Pipes-out
i 6;?1 dV1 — X 882:(2)1 dvol_PCru%dvolz bog1(To1—Tg)dS1 "
PCr 8;?2 dVoo — A 82ng dVoo — Cruaggz Vo2 = bog 2To 2~ Tg)dS, 2
Grout
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oT, 0°T
dVg — Ag ?dvg = Bg1(Tg —TiD)d] g +Bg 2Ty —Ti JdS 2 + 3)

PgCg— Vg
ot
bogt (Tg — To)dSh1g + bog 2Ty — To 29 2

in which the subscripts and g represent the circulating fluid (refrigerant) atite grout,
respectivelyT;, T, andTy are the temperatures at pipe-in, pipe-out andtgrespectively}, and
Aq are the thermal conduct|V|ty of the circulatingid and grout, respectively (m/s) is the
C|rculat|ng fluid veIOC|ty by (W/mP.K) is the reciprocal of the thermal resistancenveen pipe-in
and grout;byg (W/m?K) is the reciprocal of the thermal resistanceneein pipe-out and grout;
andpc (J/ m°’ K) is the volume heat capacity with(J/kg.K) the specific heat and(kg/n?) the
mass densitydV;, is the partial volume of pipe-in(1), etc. ad§; is the partial surface area of
pipe-in(1), etc.

In practice, all U-tube pipes are made of the samaterials and have the same size. This entails
that heat flow in pipe-in(1) is similar to pipe-®)(and pipe-out(l) is similar to pipe-out(2),
leading to a reduced governing equations, whichbeadescribed as

Pipe-in
S Ih 07T, I o,
o M AT A eV =g (T T )
Pipe-out
aT 07T, o,
pe 2V, —A ~ T2 dV, — peu 6°dvo_bog(To ~Ty)dS, (5)
Grout
T, 0°T,
PgCq deg _)‘g 572 dVg = Zhg (Tg =T )ng + 2309 (Tg =Ty )dSbg (6)

where the subscripthas been removed for clarity of notation. Note tha grout in Eq. 6 is in
contact with two pipes-in and two pipes-out.

The associated initial and boundary conditionsypieally:
T(z2.0)=T,(z,0)=Ty ,0)=Ts €,0)
Ti(Lt) =To(L,1) (7)

0T,(z,t
.Y %dsgs—mg (T ~T)dSig — 2hg (Tg —To)dSog —bgs (lg —T,)dSe

where, initially, the temperature distribution etBHE components is equal to that of the steady
state condition of the soil before heating/coolopgration startT;, is the fluid temperature at z =
0, coming from the heat pump; is the soil temperature immediately surroundirgy BHE; and

bgs is the reciprocal of the thermal resistance betvibe soil and the groulSy, dS,y anddS are

the partial surface areas at the contact betwegssripiand grout, pipe-out and grout, and grout
and soil, respectively.
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2.1 Spectral analysis

Integral transform methods are central among mamsently applied exact solution techniques

for solving transient initial and boundary valuelglems. The Laplace transform is one of the
best known and most widely used integral transfegohnique. It is utilized to produce an easily

solvable ordinary differential equation from a alrtifferential equation by transforming it from

a certain domain, usually time, to the Laplace damBlowever, in most cases, finding the

inverse transform, which is needed to reconsthetime function back from the Laplace domain,
is quite difficult, if possible, and usually nuneal and asymptotic schemes are employed in
order to extract usable solutions.

The spectral analysis method, on the other handnismportant alternative to the Laplace
transform for solving many transient problems [18]s commonly utilized to transform partial
differential equations in time domain to ordinaiifetential equations in frequency domain and
vice versa. Spectral analysis of a space-time fomantails discretizing the dependent variables
in the frequency domain using the well-known fastufier transform algorithm (FFT) and
discretization in the spatial domain using Foursaries expansion. It involves solving a
homogeneous eigenfunction of the system to obtairigenvalues. The general solution of the
system can then be obtained economically by sumrowey all significant eigenvalues, to
reconstruct the spatial distribution, and the iseefast Fourier transform algorithm (IFFT), to
reconstruct the temporal distribution.

Using the discrete Fourier transform, a temperdtumetion of time can be discretized as

T(Z,tm)zznf(z,wn )eiwntm , '|:(Z,wn ):%ZmT @t )efiwntm ®)

in whichN is the number of the discrete samples, wherdydrfdst Fourier transform, it is usually

madeN=27=2,4,8;.- ,2048;-. For a real signal, such as the one treated & whirk, the

transform is symmetric about a middle frequencyerred to as the Nyquist frequency. This
means thalN real points are transformed ind2 complex points. For clarity of notation, the
summation, the exponential term and the subscaigsgnored and the transform is represented

asTeT.

Applying Eq. (8) to Egs.(4)-(6), gives

N d°T, dT, A
wopefiat 2SSV, + peu v~y T )as, =0
o dT, dT. A
prCTodVo — )\?20 dVo — pCUd—ZOdVO — bog (TO _Tg)dS)g =0 9)

. d2T . ..
. g .
iwpgCTydVg — Ag ?dvg — 28, (T, —T;)dSy — 20y (g —T5)dS, =0

wheredV;, dV, anddV, are the partial volumes of pipe-in, pipe-out anolg respectively. In this
equation, the spectral representation of the tievevdtive has been replaced by

%_I:%anew = S liwgTnent =it (10)

and the spatial derivative is replaced by
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The utilization of the spectral approach has redube partial differential equations, Egs. (4)-(6),
to ordinary differential equations by convertings time derivative to an algebraic expression.
However, the resulting equations are frequency wigget and need to be solved for every
frequencywy, .

(11)

Collecting terms, Eq. (9) can be written as

27
ddT' av; +pcudd—dv + (iwpcdV; —bgdS,)T, = —b,T,dS,
v
d%f dT,
- d22° dv, pcud—dV + (iwpcdV, bogdsog)T —_bongdSOQ (12)

o

d-T, r T r
g : _
—Ag ?dVg +(iwpgCe@Vy — 200y — 20,5dSg )Ty = — N TidS — Dy TodSyg

The associated boundary conditions in the frequelooyain are
Ti(0.w) =Ty @)
To(Liw) =T (Lw) (13)

dT, (zw . o o
_)\g —g(jzz ) ngS - Zhg (Tg _Ti )ng - 2:)Og (Tg _TO )dsbg = ng (Tg —TZ (Z,w ))dsgs

Eigenfunction expansion

The solution of the primary variables can be regmé=d by an exponential complex function of
the form [19]:

T =Ae™, T =AY T,=Ae™ (14)

in which A,,Ab,Ag are the integral constants akdenotes the system eigenvalues, which need

to be determined. Note that different signs areleyegl at the exponents of Eq. (14) to impose
heat in pipe-in and grout to flow im>0 direction, and heat in pipe-out to flow in the opjte

direction, Figure 1.

Substituting Eq. (14) into Eqg. (12), rearranging @at in a matrix form, gives

Ak?dV, —pcuikadV; +

iwpcdV; —hy dS 0 By 85
. A K2 dV, +iwpc, dV, — A
Zh ds 230 eZIkZdS) g g g [¢] Ab -0 (15)
g 9 g g zqg ng_ZJogdSog Ag

Ak?dV, —pcuikdV, +

—2ikz
e d
iwpcdV, —by, dS, g g
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Non-trivial solution of Eq. (15) can only be obtathby letting the determinate equal to zero,
giving a complex six degree polynomial of the form:
aﬁk6+a5k5+a4k4+a3k3+a2k2+a1k+a0:0 (16)

This polynomial represents the eigenfunction ofdbable U-tube BHE system witki denoting

its set of eigenvalues, which can be obtained byirgpfor the roots of Eq. (16). Only for this set
of eigenvalues do the eigenfunction exist thasbathe boundary conditions of the problem. The
exact forms of the coefficients of Eq. (16) aréelsin the Appendix.

Six eigenvalues in three complex conjugates araimdd from Eq. (16), representing three basic
eigenmodes, one for each BHE component. Accordintilg solution of the temperature
distribution in the three BHE components can bétamias
T“i :Ae—iklz_'_ Bie—ikzz+cie—ik32
Ty=Age K Z+Bye 2 +Cye (17)
-lfozpbeilgz_l_Boeikzz_l_Coeiksz
where the integral constante‘,,A),---,Cg need to be determined from the boundary conditions.

SinceT;, Ty, andT, are coupled, the integral constants, A, ,--,Cy , are related to each other.
Eqg. (17) can be written as

Qi 0 Q| A
Qa Qo Q3| A |=0 (18)
0 Qs Qs3|A

Following this equation, the relationship betwela pipe-in constant and the grout constant can
be expressed as

_a—_Qu
Ag Ag Ql3

Similarly, the relationship between the pipe-outstant and the grout constant can be expressed
as

A =YgA (19)

A~
P =g Qs3

For eactk there is a correspondingy andYyy, i.e. there isYjgy, Yogifor ki, etc. (Doyle, 1988).

A= Yog A (20)

Eqg. (18) states that there is a direct contact &etwpipe-in and the grout, and between pipe-out
and the grout. There is no direct contact betwdentivo pipes, but the grout works as the

medium that transfers heat between them. The dob&ween pipe-in and pipe-out takes place
only at the bottom of the borehole, which is nopament in this equation. Upon solving this

equations, this relatively weak coupling often kdd the generation of a spurious unphysical
eigenvalue pair. This eigenvalue pair is too laxgepared to the other two pairs. This problem is
typically encountered in solving transport phenoaasing the spectral analysis method, and has
been intensively treated in literature (see [20]). obtain a solution, the spurious eigenvalues
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have to be eliminated. One of the methods to elitrithe spurious eigenvalues is the reduction
of the number of the governing coupled equations.

Considering the geometry of the U-tube, where [ipeneets with pipe-out at the bottom
boundary of the borehole, the three coupled difféaeequations (Egs. (4)-(6)) can be reduced to
two systems of two differential equations plus kyebraic constraint linking the two zones of the
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grout, as

Pipe-in — grout

>

= Ae_”(lz + ae_ﬂ(zz

R . . (21)
G = Aige_lklz + Bige_'kzz
Pipe-out — grout
Ao — Abelklz + Boelkzz (22)
£ _ -ik -ik
Tgo = Apg€ % +Byge 2
and
Ty =2 (T +7 23
g _E( gi + go) ( )
This system is governed by the first two eigenvalue
Heat flow in Pipe-in — grout
Boundary conditions relevant to Eq. (21) are:
T (0,w)=Ti )
dT, (z.w) . . 5 5 (24)
_/\g Tdsgs - Zhg (Tgi (zw)-T (zw ))ng :bgs (Tg Zw)-T,@zw )ﬁsgs
Substituting Eqg. (21) into Eq. (24), after rearriagg gives
A+8 =T,
Age " ik A0Sy — 2040S — bydSye) + -
Bg€ " (ikpAgUSys — 2050S, — byedSgs) +
Zhg Ae_ikizdag + zqg ae_ikzzng == bgsfz zw )dsgs
Using Eqg. (19) leads, after rearrangement, to
A +B =Tin
A€ 2[4 (iki\gdSgs — 2090S g — beedSgs) + 2igdSig |+ (26)

Bie ™' ¥ig ikphgdSgs — 20gSig — bysUSys) + DigdSig | = —bysT, (2w Sy

Putting Eq. (26) in a matrix format, and upon irsheg and solving, it can be written as
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13

1 ~ -
A= (atn(@) -T,(zw)]
|
1 ~ ~
B = {2 Tin(w) + To(zw)]
|
in which
efikzz ]
al:_m[z% dSig + Yga (KyAg ISgs — 2 dSg —bys dSys)
'gs Ygs
e—iklz ]
%= gs._| 290 S+ Yr (kg 0555 ~ 2 Uiy — s 0S5
gs U gs
and the determinant is:
e—iklz ]
A= b,.dS (2 dSg + Yigs (iky Ag dSys — 204 dSg — bys dSgs ) —
gs “gs
efikzz

m(zhg ng +Yigz (ikz)‘g ngs_ qu ng - bgs ngs))

Heat flow in Pipe-out — grout
The boundary conditions relevant to Eq. (22) are:
To(Lw)=Ti(Lw)=Ty

L ATy (zw)

Substituting Eq. (22) into Eq. (30), after rearriagg gives
Akt B dlt — T,
Pog€ "% (kA USg — 205, Sy — byedSee ) +
Bog€ "% ((ko)\g USys — 20, 0Syy — byedSys) +
2A8% by, dS,, + 2B,€" by dS,, = —DydS,T, (2, w)
Using Eq. (20) leads, after rearrangement, to
AL + Bkt =T,

Ao %[ 267, Sy -+ Yogr (kg US s — DpgUSg — by Sy ) |+

B, o k.2 [ 262ik22bog dsog +Yog2 (ik, Ay ngs _ 2bog dSog — [;)gsds.gS )=— ngngS'I:Z (zw)

Putting Eq. (32) in a matrix format, and upon irsheg and solving, it can be written as

10

g Tdsgs - 2bog (TAgo (Z,w)_fo (zw ))dSOg = bgs (Icg (zw )_-I:z (Zw )ﬂsgs

(27)

(28)

(29)

(30)

(31)

(32)
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A= [T~ €T (20)

1 (33)
B, :A_O[bZTiL + elleTz(va)}
in which
e ™ 1 iz -
b = —m[ze g Sy T Yogz (koAgUSys — 20y 0Shy — byedSys)
(34)
b, = b & [2e2"<12|oogolsog 1+ Yoga (1KigISgs — 2yg ISy — Bys0Ss)|
and the determinant is
_ k1 .
e
Ay = s, |26™%0,g 0S5 + Yoga (1Ki\gASys — 2pg g — BysdSye )| €' —
—ik,z (35)
e 2 . . .
e 26705 05 + Yogz (Ikp\g IS5 — g ASg — Dys0Sys )|
gsgs

General solution of BHE heat equations

Having determined the eigenvalues and the integratonstants, the general solution of the
double U-tube BHE system of equations can then btireed by summing over all
eigenfunctions (corresponding kg andk,) and frequencies, as

Pipe-in — grout
Ti(Z:t):Zn(A e'MZ+p e_ik2z)ei“’nt (36)
Pipe-out — grout
To(zt)=Y (Ab 'k12+Boeik22)eiwnt (37)
Grout
Tg(z’t)ZEZn[(YiglA +Yogl'°o)e_iklz + (Yig 2B+ Yo zBo)e'iKZZJei%t (38)

whereA; andB; are defined in Eq. (27§, andB, are defined in Eq. (33Yiq... Yog are defined in
Egs. (19)-(20) an#; andk, are determined from solving the roots of Eq. (IT#)e reconstruction
of the time domain is obtained using inverse Frjbadhm.

3. Heat flow in the soil mass

A detailed derivation of heat flow in the soil masgiven in Al-Khoury [16,17]. Following that,
the general solution of the soil heat equatiorthéntime domain can be expressed as

Tsoil(1,2,t)=Tg (2)+ Ty (Z)+ Ty, (r,2 1) (39)

in which
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Tg(2)=Ts [1—3 +Tb§ (40)

_ AT () Kkn(z- AT () ~KnZ |
nr(z,t)—Zn[‘l_e—We ( Zh)+1_e——zknhe ]e”‘t 41
and
To(rz)=3 3" AnJdo(Emr)e“™ (42)
where
K= iw/a
(=(r? -
_Bm 43
Em= R (43)
i¢mL
An=-—t D p

CmL (=1 ¢mAs +Dgs) T

4. Reconstructing the Thermal Response Test data

The proposed spectral analysis model has beenrmapiied in a computer code, SA-Geotherm,
developed at Delft University of Technology. Botimgte and double U-tubes borehole heat
exchangers embedded in an axisymmetric soil massrgriemented. In [15,16] full verification
examples were given for heat flow in a single UetBHE embedded in a soil mass. Here, we
examine the double U-tube BHE and its thermal aaion with the soil mass by reconstructing a
real thermal response test data.

Thermal Response Test (TRT) is an in-situ paraméentification experiment for the
characterization of ground thermal properties, Fq It is one of the most utilized technique for
determining the thermal conductivity of soil and thorehole thermal resistance.

Several analytical and numerical models have be#ined for the interpretation of TRT test

results. The infinite line source model has bedlized by, among others, Mogensen [21],
Hellstrom [22], Gehlin [23]; the finite line soureceodel by Bandos et al. [24], to give only few
examples. Numerical models have been utilized imgray others, Signorelli et al. [25], Zanchini

[26], and Schiavi [27]. Nevertheless, the line seumodel is widely utilized for this purpose
because of its simplicity of use. However, this elclffers from several shortcomings. Among
others, it lumps all convective-conductive heatflm the U-tubes and grout and their thermal
interactions together with their geometry and niaktegproperties into a constant conductive
infinite line source. Apparently, this simplificati is a rather simplistic representation of the
physics of the problem.

Here, we utilize the proposed spectral model taukite the TRT and to back calculate the soil
thermal conductivity.

12
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Figure 2. TRT equipment
TRT case study

The thermal response test was carried out in ErRiimagna region in ltaly. The borehole heat
exchanger is 100 m in length and 0.127 m in diameiid a filling grout made of bentonite. The
collector is a double U-tube with an external ditanef 0.032 m. The working fluid is water.

The stratigraphy of the area is:

e 0to 1.5 m: dryclay.
* 1.5to0 100 m: marl (there are some small infiloasi of water between 60 and 65 m depths).

Due to this simple stratigraphy, the soil formatgnrounding the borehole was considered to be
consisting of a single layer. The physical and mi@t@arameters of the soil formation and the
TRT borehole are given in Table 1. The averageldtiseimal conductivity is not shown in the
table because it needs to be determined.

During the experiment, the fluid volume flow wasasered, together with the inlet and outlet

temperatures. No real insulation was made to thpeupart of the BHE. The experiment was

conducted in a cooling mode, i.e. injection of he&t the ground. Figure 3 shows the measured
inlet and outlet temperatures versus time.

40
5
°©
e
©
[}
Q.
£
£ 10

0

0 20 40
Time (h)
-==Tin-TRT ——Tout-TRT

Figure 3. Measured inlet and outlet temperaturesgd RT.
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Table 1. Physical and material parameters

Parameter Value
Borehole:
Borehole length 100 m
Borehole diameter 0.127 m
Pipe external diameter 0.032m
Pipe thermal conductivity 0.42 W/(mK)
Fluid:
Fluid thermal conductivity 0.56 W/(mK)
Fluid dynamic viscosity 0.001 Pa.s
Fluid velocity 0.42 m/s
Fluid specific thermal capacity 4180 J/(kg.K)
Grout:
Grout density 1420 kg/m’
Grout thermal conductivity 0.6 W/(m.K)
Grout specific thermal capacity 1197 J/(kg.K)
Soil:
Soil specific thermal capacity 400 J/(kg.K)
Soil density 1680 kg/m’

Computational procedure

In this work, no attempt was made to conduct irvezalculations by a minimization of an
objective function. (This will be carried out infarthcoming work.) Rather, several spectral
analyses were conducted by keeping all parameteesd,f but varying the soil thermal
conductivity, until there is a match between thpezimental results and the computed ones.

Time discretization off;, and Ty sighals was conducted using the forward FFT algari The
number of samples was 16,384%2and the sample length was 30 s, giving a timedwin of

approximately 136 hours. Spatial discretizatiorthef soil mass was conducted using 100 Bessel
function roots, and the far field boundary of tegion-of-interesR was calculated as

wherea is the thermal diffusivity of the soil artdis the time when the temperature at péint
reaches its maximum [1]. In this workvas set equal to 100 days, giviR@pproximately 12 m.

R=+/6at

A discussion on this choice is given in [16].

The thermal resistance coefficients between thehme components and between the borehole
and the soil mass are calculated using the Y-cordigpn analogy to Ohm'’s law [17]. Following
this configuration, heat transfer coefficients fgpe-in - grout and pipe-out - grout can described

as

; bog:
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where

1 +roln(ro/ri)

_ R . _ 46
Rg RCOI”IVQCIIOH pipe materiar ro/ri h )\p ( )

in which r; andr, are the inner and outer radius of pipe-in, respelgt A, is the thermal
conductivity of pipe-in material; anti = Nu)\/D is the convective heat transfer coefficient,

whereD is the inner diameter of the pipe and Nu is thedelt Number of the circulating fluid. A
similar formulation is valid foRy.

Heat transfer coefficient of the grout-soil is d#sed as
1

bys = 47
% 2Rg + 2Ryg + Rys “n
where
rgIn(ry / rey)
s =t (48)
Ag

in whichrq is the radius of the grout (borehole), agg= 2\/ri,2] + ro2ut with rj, is pipe-in inner
radius and, is pipe-out inner radius.

Input parameters

The computer code requires description of the géymenaterial parameters and initial and
boundary conditions of both, the BHE and the sodsm The geometry parameters include
information about the dimensions of the BHE compuasie The material parameters include
information about the thermal properties of the BetiEnponents and the soil mass. The initial
condition includes the BHE and soil initial temperas. The boundary conditions include the
input temperature at the inlet of pipe-in, togethth the flow rate of the circulating fluid, and
the air temperature at the soil mass surface.

Not all information necessary to be input into tule were recorded during the experiment.
Though, estimates could be deduced from the aveail@leasurements. The initial temperature in
the soil and the borehole were assumed similaFt@t the beginning, i.e. 13C. During the
experiment, the air temperature was varying betwEgrand 20°C. Table 2 shows the air
temperature variation with time, as was input ie ttode. The geometry and the material
parameters were input as those given in Table 1.

Table 2. Input air temperature

Time (h) Air temperature (°C)
0 13
0.1 135
0.3 14
0.6 15
1.4 17
2.8 19
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Computational results

As mentioned above, the backcalculation of the #mmal conductivity was conducted by
performing several calculations with varying sdietmal conductivity. The best fit solution is
shown in Figure 4, where the soil thermal condifgtiwas equal to 2.15 W/m K. The figure
shows the measurdgh andT,ytogether with the computeld,:

Apparently, the results are close and the modeaable of reconstructing the TRT in the long
and short terms, as shown on the left and rightl Isistes of the figure respectively. An important
feature of the model is manifested on the rightdhside figure. The measured spikesTindata
are shifted in time in the measurgg; data and exhibited damping. The compulggdaccurately
exhibits these two occurrences.

In addition to reconstructing the TRT measured ddtgipe-in inlet and pipe-out outlet, the
model is capable of computing the temperatureildigion at any point along the borehole and in
the soil mass. For example, Figure 5 shows, intaddio pipe-in and pipe-out, the temperature
distribution of the grout at the borehole surfaggure 6 shows the temperature distribution of
the soil at different radial distances from thedbmie atz = 0.25 m.

40 30
e S 25
g 30 ®
E] 2
© © 20
] o)
o %
£ 20 qE)
Q = 15

10 10

0 20 40 0 1 2 3
Time (h) Time (h)
—Tin-TRT —Tout-TRT ——Tout-Model —Tin-TRT —Tout-TRT ——Tout-Model

Figure 4. Best match of the TRT data, obtained with soil thermal conductivity equal to 2.15
W/mK.
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Figure 5. Temperature vs. time of pipe-in, pipe-out and grout atz=0m.
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Figure 6. Soil temperature vs. time at different radial distances from the center of the borehole
at depth=0.25m

Discussion

The TRT results were utilized to validate the calggbof the proposed spectral model to
simulate heat flow in a double U-tube borehole feahanger and its thermal interaction with
the surrounding soil mass. Two outcomes can beadetfrom this case study: 1. Accuracy, and
2. Computational efficiency.

For the first, the comparison between the experialgrsults and the computed shows that the
model is accurate for both, the short term anddhg term. As shown in Figure 4, details of the

response in the short term are accurately captuyatie model. In the long term, the computed

results are very much matching those of the exparim

For the second, the proposed spectral model sttegessmplicity of use of the infinite line source
model, but strongly overrules it in simulating hteysics of the problem. This model is capable of
simulating full conductive-convective heat flow &l BHE components and their thermal
interactions between themselves and between the &ttEthe soil mass. All geometrical and
material properties are taken into consideration.

17
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The gained computational accuracy and efficiencthefproposed model make it suitable for an
appropriate inverse calculation based on minindratdof objective functions describing the
difference between the experimental results and@ohgputed. Such an inverse model is currently
under development.

5. Parametric analyses

Having reconstructed the TRT experimental resufta@metric analysis was conducted to study
the effect of different material and physical paetens on heat flow in the system. Thermal
conductivity of the soil was kept constant. Thedwing was studied:

Grout thermal conductivity : Figure 7 shows the temperature distributionimsetat the outlet of
pipe-out for different grout thermal conductivityg = 0.4, 0.6, 1.0 and 10.0 W/m.K. The figure
shows that the effect of this parameter, for teisup, is not negligible.

This example represents a cooling mode; i.e. waitbra temperature greater than that of the soil
is inject at the inlet of pipe-in. In spite of thihe calculated fluid temperature at the outlet is
higher for the high grout conductivity. This isréttited to that for a high grout conductivity,
more heat transfers from the inlet to the outlet thie grout; while for a low grout conductivity,
the opposite occurs. As heat transfer in the U-tishenostly convective, thermal resistance
between the pipes and the grout is small, allowimye heat to transfer between the BHE
components, as compared to the conductive heatférabetween the BHE and the surrounding
soil. This phenomenon cannot be captured by mdoeéed on averaging the temperatures in
pipe-in and pipe-out and ignoring the thermal tasise and the convective heat transfer along
the U-tube length.

This issue seems in contradiction with the commmactre which promotes the utilization of
grout with more conductivity at all times. In fattjs should not be the case. In the heating mode,
for instance, we tempt to gain more heat whilewloeking fluid is running along pipe-in; and
preserve the gained heat while the fluid is runrimgugh pipe-out. Using high conductivity
grout would allow gaining more heat along pipeknt on the other hand, losing more heat along
pipe-out. Therefore, there should be an appraisdicav much heat needs to be gained and lost.
This should be made at the design level, dependimghe initial and boundary conditions,
together with the required geometry and physicedpaters.

35

Temperature (°c)

0 20 40
Time (h)

——Ag=04 ---- A\g=06 ——Ag=10 ——Ag=10.0

Figure 7. Temperature distribution of Tout for different grout thermal conductivity.
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Injection flow rate: Figure 8 shows the temperature distribution imsetat the outlet of pipe-out
for different fluid velocity:u = 0.21, 0.42 and 0.84 m/s. The figure shows thiatgarameter, in
the studied range, is not negligible. With highetoeity, there is a less time for the thermal
interaction between the BHE and the soil, and héngleer temperature in the output. However,
this is influenced by other factors, such as, ttleerhal conductivities of the involved components,
the viscosity of the working fluid, and the georyetf the BHE. Therefore, during the design
process, an appraisal between the heat flow ratétengained temperature should be made.

35
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15

0 20 40
Time (h)
——v=0.21 ----- v=0.42 ——v=0.84

Figure 8. Temperature distribution of Tout for different injection flow rates.

Fluid viscosity: Figure 9 shows the temperature distribution isetat the outlet of pipe-out for
different fluid dynamic viscosity u = 0.0008, 0.0ahd 0.002 Pa.s. The fluid velocity is kept
constant. The figure shows that this parametethenstudied range, has some effect on the heat
flow, but its significance would depend on the &milon. With higher viscosity, the circulating
fluid can keep more heat, and hence brings higlmapérature to the output.

35

Temperature (°c)

0 20 40
Time (h)

——p=0.0008 - --p=0.001 ——p=0.002
Figure 9. Computational results of TRT by varying fluid viscosity.

6. Conclusions

A spectral model for the simulation of transientndoctive-convective heat transfer in an
axisymmetric shallow geothermal system consistiihg double U-tube borehole heat exchanger
embedded in a soil mass is introduced. The fasti€owansform is utilized for the discretization

of the governing partial differential equationstie time domain. Complex Fourier and Fourier-
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Bessel series are utilized for the discretizationthe spatial domain. The eigenvalues of the
borehole heat exchanger are obtained by eigenfimakpansion, and those of the soil are
obtained by prescribing a homogeneous boundaryibomdat a fictitious boundary at some
distancer = R, where the effect of the borehole heat exchargapérature is known a priori to
vanish. This condition allows for an algebraic suation over Fourier-Bessel series. This is
particularly important because the involved integis are transcendental and their evaluation
using typical semi-infinite contour integration weeps, if possible, excessive computational
demands.

The proposed model combines the exactness of thlgtimal methods with a great extent of
generality in describing the geometry and boundaryditions of the nhumerical methods. These
features make the model useful in engineering jwacthe CPU time for calculating temperature
distributions in all involved shallow geothermakt®m components: pipe-in, pipe-out, grout, and
soil; using 16,384 FFT samples, for the time domaimd 100 Fourier-Bessel series samples, for
the spatial domain; was in the order of 1 secorahiintel PC.

As a result of the model accuracy and computatipmficiency, it can be utilized in an iterative
scheme for parameter identification of soil therpatameters. In this publication, the model is
utilized to back calculate the soil thermal condiitst by comparing its computational results
with those obtained from a thermal response tdst. Backcalculation was conducted manually
by performing several calculations until a best ifit obtained. In a forthcoming work, an
appropriate inverse model based on minimizationthef system objective function will be
introduced.

The model can be utilized for forward and inverakewations of problems related to heat flow in
a double U-tube geothermal heat pump system. Hawi\e valid for a single layer system. For
a multilayer system, the model should be formulatétthin the spectral element method. The
spectral element method is a semi-analytical teglenicombining the exact spectral solution of
the system in a homogeneous domain to the fingeneht method solution of a heterogeneous
domain. The development of a spectral element medrlrrently underway.

7. Appendix

The coefficients of the six-degree polynomial af ttouble U-tube eigenfunction are:
ag = A2\gdV;aV,aV,,
a5 = —2IA\\gpcudV;dV,dV,
ay =~ AgAdS AV, AV, — p°c’uA AV, dV,dV, + 2iA\gwpedV; dVydV, —
227, AV, 0 AV, — AXgbog OV dSg AV, +iX2wpgc, AV dV,dV, —
2\%,dV;dS 0V,

ag = 2p°C2UAgwaV; dVydV,, + i pcudg by, dVidVy dS,, +ibigAgpcudV,aV,ds, +
4i Abyy peudV,dV; dS,y + 2\pCuwpy CydV,dVidV, + 4 Abg pcudV,dV;dS
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ap = 2\ b,y AV, dS S, — 4N wpcdV, dV,dS, — w?p?c?AaV,dV,aV, —
iBgwpgC AV, dV,dS, — 2\w?pyCypcaV; dV,aV, + 20°c Uy dVidV,dS, —

iwpCAGhog AV} AV S,y + Bigbog Ag 0S5 8V, 0S5 + 20°C2U hyy Vi AV, dS,, +
2b5bog AAS 40V, 0S5 — 4iAbggwpcdV; dV,0S,, —ibigAqwpcdV,dV,dS, —
Awp o Cyling AV, AV, S,y — i pC2U % pyCydVidV,aV,

ay = 2ipc?Uw pyCyAVi dV,aV, — 2ibyglh, peudV,dS;dS,, — pCuwpy Cyleg Vi dV,dSy, —
4p>CPuwhy AV, V,dS ; — 4 °C Uwbyy AV, dV,0S,y — bgwpgCypcudV,dV,ydS, —
2i peuly gbyg AV, dS 4 dS,

ag = —iw’p’C?pyCedViaV,aV, + 2w % T by dVidV,dS,, + 20 5 T B aviav,dS, +

w7 pCPyCybg AV AV USyy + 2iwpChghygdVidS g dSy + Awpc g,y dV,dS,dSy, +
D@ Cqlog @V dSidShy + Bgw?pgCqpcdVodV,dS,
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