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Abstract. The evaluation of cognitive agent systems, which have been
advocated as the next generation model for engineering complex, dis-
tributed systems, requires more benchmark environments that offer more
features and involve controlling more units. One issue that needs to be
addressed time and again is how to create a connector for interfacing cog-
nitive agents with such richer environments. Cognitive agents use knowl-
edge technologies for representing state, their actions and percepts, and
for deciding what to do next. Issues such as choosing the right level of
abstraction for percepts and action synchronization make it a challenge
to design a cognitive agent connector for more complex environments.
The leading principle for our design approach to connectors for cogni-
tive agents is that each unit that can be controlled in an environment
is mapped onto a single agent. We design a connector for the real-time
strategy (RTS) game StarCraft and use it as a case study for establishing
a design method for developing connectors for environments. StarCraft is
particularly suitable to this end, as AI for an RTS game such as StarCraft
requires the design of complicated strategies for coordinating hundreds
of units that need to solve a range of challenges including handling both
short-term as well as long-term goals. We draw several lessons from how
our design evolved and from the use of our connector by over 500 students
in two years. Our connector is the first implementation that provides full
access for cognitive agents to StarCraft: Brood War.

1 Introduction

Multi-agent systems, consisting of multiple autonomous agents interacting with
an external environment, have been promoted as the approach for handling
problems that require multiple problem solving methods, multiple perspec-
tives, and/or multiple problem solving entities [8]. In the past twenty years,
the research community has combined multi-agent system (MAS) concepts and
approaches into mature frameworks for agent-oriented programming (AOP)
[2,15]. Current cognitive agent technology thus offers a viable and promising
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alternative to other approaches for engineering complex distributed systems
[6,14]. However, Hindriks [6] also concludes that “if [cognitive] agents are advo-
cated as the next generation model for engineering complex, distributed systems,
we should be able to demonstrate the added value of [multi] agent systems.”

Designing a connector that can demonstrate this added value by connecting
cognitive agents with an environment that puts strict real-time constraints on
the responsiveness of agents, requires coordination at different levels (ranging
from a few agents to large groups of agents), and requires complex reasoning
about long-term goals under a high level of uncertainty is not a trivial task. The
connectors that are currently available for use with cognitive agent systems have
remained rather simple, and thus do not fully demonstrate the added value of
cognitive agent technology.

In this chapter, we aim to establish a design approach for developing connec-
tors for complex environments, aimed at facilitating the development of more
connectors that can be used to demonstrate the ease of use of cognitive tech-
nologies for engineering large-scale complex distributed systems for challenging
environments. We believe that RTS games that deploy large numbers of units
provide an ideal case study to this end [4,17]. The basic idea is to control each
unit with a cognitive agent. Based on this, and in accordance with Google (Deep-
Mind) and many other AI researchers [13,16], we believe that StarCraft is the
most suitable RTS game to target in our case study. Moreover, several popular
competitions exist for StarCraft AI that can serve as a benchmark for implemen-
tations that use cognitive technologies [16]. By carefully designing and efficiently
implementing a cognitive agent connector to StarCraft, and then testing this con-
nector with large groups of students, we iteratively refine our approach for the
development of agent-environment connectors.

Our focus in this work is on the case study of designing a connector that
enables and facilitates the use of cognitive agent technology for engineering
strategies for StarCraft (Brood War) based on a one-to-one unit-agent map-
ping, which is different from most existing StarCraft AI implementations. This
unit-agent mapping introduces important challenges that need to be addressed:

1. The connector should facilitate a MAS that operates at a level of abstraction
that is appropriate to cognitive agents.

2. The connector should be sufficiently performant in order to support a suffi-
cient variety of viable MAS implementations using cognitive agents (i.e., both
different approaches to implementing strategies as well as the use of different
agent platforms).

In other words, the connector design should not force a cognitive MAS to oper-
ate at the same level of detail as bots written for StarCraft in C++ or Java,
but also not promote the other extreme and abstract too much (e.g., clearly the
extreme abstraction of providing a single action ‘win’ is not useful). To make
optimal use of the reasoning typically employed by cognitive agents, the con-
nector should leave low-level details to other control layers whilst still allowing
agents sufficiently fine grained control.
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The remainder of this chapter is organized as follows. In Sect. 2, we discuss
the current state-of-the-art in environments available for cognitive agents. Next,
in Sect. 3, we introduce StarCraft as a case study for connector design. In Sect. 4,
we detail our design approach of a multi-agent connector by introducing general
guidelines, applying them to our case study, and discussing the lessons learned
from this. Finally, Sect. 5 concludes this chapter with recommendations for future
work on both cognitive agent connectors as well as cognitive agent technologies
in general.

2 Related Work

Connectors that support connecting cognitive agent technology to games have
been made available for other games [3]. So far, however, most connectors have
remained rather simple. The most complex cognitive multi-agent connectors that
have been made available so far, are connectors for Unreal Tournament [7]. The
design of such a connector involves similar issues related to the facilitated level of
abstraction and the resulting performance as in this work. However, the resulting
implementation as reported on by Hindriks [7] does not support running more than
10 agents, whereas for a StarCraft interface we need to connect hundreds of cog-
nitive agents to control the hundreds of units in game. Moreover, corresponding
agent systems for Unreal Tournament generally offer only a very restricted set of
actions that agents can perform (i.e., mostly just a “go to” action because other
middleware software is used to take care of path planning, shooting, etc.) or com-
munication (i.e., mostly just informing others about enemy positions), limiting the
complexity of decision making that is required. Relatively speaking, compared to
StarCraft, the diversity in strategies or tactics that can be deployed is rather small.
Another problem related to Unreal Tournament is that games cannot be sped up,
complicating testing and debugging. It is therefore not feasible to derive a design
approach for connectors to richer environments from this work.

RTS games are widely regarded as an ideal testbed for AI [13,17]. An RTS
game like StarCraft involves long-term high-level planning and decision making,
but also short term control and decision-making with individual units. This dis-
tinction between respectively strategical and tactical decision making is generally
referred to as macro and micro respectively. These factors and their real-time
constraints with hidden information make RTS games like StarCraft ideal for
iterative advancement in addressing fundamental AI challenges [17]. Although
machine learning solutions have been applied to some problems at the micro
level, learning techniques have not been successfully applied to other aspects,
mainly due to the vast state spaces involved [16]. The concepts of cognitive
agents seem to be a good fit for addressing these challenges, allowing individual
cognitive agents to reason about their tactical decision making whilst also inher-
ently facilitating communication to make decisions at a joint strategical level.
The reasoning typically applied by cognitive agents seems to lend itself for macro
really well, but such systems can potentially employ learning techniques to per-
form specific sub-tasks (at the micro level) as well. A cognitive agent connector
can also facilitate the use of MAS as an approach for allowing several individual
AI techniques to work together.
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The work of Weber et al. [19] recognizes the value of agent-oriented techniques
for StarCraft AI. Their “EISBot” uses a reactive planner combined with external
components like case-based reasoning and machine learning. Similar to multi-
agent systems, the concepts of percepts and actions are used. However, there is
only a single ‘agent’ that is compartmentalized into several specific managers.
This approach is thus still based on a single-bot approach, whilst in this work,
we instead aim to design a connector for multi-agent systems in which each in-
game unit is connected to an individual cognitive agent. Moreover, it is not made
clear which percepts and actions are provided, and what the gain in terms of
abstraction level and the loss in terms of performance in this implementation is,
as the focus is on the implementation of the StarCraft bot itself, instead of on
the design of a (generic) connector as in this paper.

The prototypical RTS game is StarCraft [16], originally developed by Bliz-
zard in 1998, but still immensely popular both in (professional) gaming and
AI research. An API for StarCraft (Brood War) has been developed for sev-
eral years: BWAPI [5]. BWAPI reveals the visible parts of the game state to
AI implementations, facilitating the development of competitive (non-cheating)
bots. Several dozens of such bots have been created with this API, mostly writ-
ten in C++ or Java, aimed at participating in one of the tournaments that
are being held for StarCraft AI implementations. However, this work does not
directly facilitate cognitive agents that use knowledge technologies and realise a
one-to-one unit-agent mapping.

A first attempt at creating a cognitive interface for StarCraft was performed
by Jensen et al. [9]. In this work, a working proof-of-concept that ties in-game
units to cognitive agents was introduced. However, it does not address the major
challenges such an implementation faces concerning the level of abstraction and
corresponding performance, as we do in this work. When using this connector, it
is not possible to create viable (diversities of) strategies, as the range of strategies
it supports is quite limited. This connector only offers a small subset of all
possible actions associated with each unit in the game, and the percepts made
available by the connector do not provide sufficient information for in game
decision making either. In this work, we aim to allow virtually any strategy to
be implemented with a sufficient level of performance using a cognitive agent
connector based on the design approach we propose.

3 Case Study: StarCraft

In StarCraft, each of the three playable races have their own set of unit types,
with roughly 15 types of air/ground units and 15 types of buildings per race.
Although many races share similar types of buildings (e.g., depots to bring
resources to), there are also substantial differences to take into account (e.g.,
one race requiring units to ‘morph’ into a different type of unit). For most types
of units, there are usually multiple ‘instances’ (i.e., individual units) in a game,
thus allowing anywhere from 5 up to 400 units representing one army in the
game at a certain time. Depending on factors such as game length, the average
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number of units for an army in a typical game at any point in time is around
100, although many units will also die during the game (i.e., the total number of
agents used is much higher). Performance is thus of vital importance, as a sub-
stantial performance impact caused by large amounts of percepts for example,
will limit the amount of viable strategies.

Our cognitive agent connector to StarCraft was developed and refined in
three iterations. We draw several general lessons from these iterations, which
we have incorporated into our proposal for a connector design approach. Ini-
tially, a pilot was held with around 100 Computer Science master’s students
that worked in groups on creating a StarCraft bot using this connector. Shortly
after, over 200 first year Computer Science bachelor’s students did the same with
an improved version of the connector, being the largest StarCraft AI project so
far. We continued development of the connector after this project, and made
several additional improvements, after which 300 first year Computer Science
bachelor’s students used the ‘final version’ of our connector.

4 Connector Design Approach

In this section, we discuss our design approach for a cognitive agent connector.
The core of such a connector consists of three components: (i) the entities that
are provided for agents to connect to (i.e., units in an RTS game), (ii) the outputs
that are generated by each entity (and thus which percepts a corresponding
agent receives), and (iii) the inputs that are available for each entity (and thus
which actions an agent controlling the entity can perform). This structure is
illustrated in Fig. 1. Each of these aspects will be discussed, starting with general
guidelines, their application to our case study of StarCraft, and the refinements
that were made after practical use of the StarCraft connector. Next, key steps for
evaluating whether the connector design is fit for use in practice for developing
cognitive MAS will be given and performed for our connector.

Fig. 1. An overview of the various components, with StarCraft on the left, our con-
nector in the center, and a cognitive agent system playing the game on the right.

We make some basic assumptions about the architecture of a cognitive agent,
as illustrated in Fig. 2. We assume such an agent pro-actively reasons about the
actions that it should take based on (for example) its goals and beliefs in some
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Fig. 2. The assumed structure of a cognitive agent in a multi-agent system (left) inter-
acting with an external environment (right).

fixed decision cycle that is asynchronous from the environment in which it oper-
ates (for a certain entity in that environment), from which it receives information
through percepts. Multiple agents can work together in one multi-agent system,
which is not centrally controlled but does facilitate direct messaging between
(groups of) agents. Our connector makes use of the Environment Interface Stan-
dard [1] in order to facilitate interacting with MAS platforms.

4.1 Micro and Macro Management

In complex environments such as StarCraft, a crucial distinction exists between
top-down strategical decision making (macro) and bottom-up tactical decision
making (micro). The basic assumption that we make is that a connector needs
to provide support for a multi-agent approach based on a one-to-one unit-agent
mapping, which inherently facilitates decision making from a bottom-up per-
spective. At the micro level, every unit that is active in the environment should
be mapped onto an entity that a cognitive agent can connect to in order to con-
trol the behaviour of the unit. For StarCraft, this thus means that any moving or
otherwise active unit such as a building will be controlled by a cognitive agent.

Although we initially assumed that the emergent behaviour from these agents
would be sufficient to cover the strategical aspects, in practice this was hindered
by the high dynamicity of an environment such as StarCraft, for example illus-
trated by the fact that any unit can be killed at any point in time. To facilitate
macro management, we therefore have introduced a new, special kind of entities,
so-called managers, which are made available by the connector. Managers do not
match with unique in-game units, and as such they do not naturally have percepts
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or actions associated with them. However, as they still need to be informed about
the state of the game in order to perform strategical decision making, they instead
should have the ability to receive desired global information through percepts, as
for example indicated by a developer in the initialization settings of a MAS.

Manager agents are especially useful to reason about groups of units. For
example, without managing agents, all agents for resource gathering units in
StarCraft (of which there are generally several dozen) would have to process
information about the available resources and resource depots (i.e., subscribe to
the relevant percepts and handle them), and then coordinate amongst each other
about the division of tasks (i.e., implement some decentralized messaging pro-
tocol). Instead, a single manager agent can be the only one to have to deal with
all the information about resources, and then use this information to assign a
task to each resource gathering unit (i.e., through messaging), whilst in contrast
the agents for those units would still handle defending themselves for example.
This significantly reduces the total amount of percept processing and message
sending that is required in such a situation. Moreover, in our case study we found
that there is a need for dynamically adding or removing managers in order to
for example temporarily centralize the reasoning for a group of attacking units,
which is another frequently occurring situation in which using managers is bene-
ficial for both performance and the effectiveness of the coordination between the
relevant agents. The specific type and choice of managers that are made avail-
able by a connector and the resulting organizational structure is, however, not
specified in our design approach so as to facilitate as many multi-agent system
structures as possible. As there is information that is specific to certain units
(and thus specific agents), and each unit has its own set of actions (which a single
agent needs to call), it is not possible to completely centralize the reasoning.

Because our approach is to provide an entity (i.e., to which an agent can
connect) for each unit, and the available actions for each unit are mainly defined
by the (interface to) the environment itself, the main challenge when balancing
the level of abstraction with the resulting performance is in determining the
percepts that are available. As we assume cognitive agents here that explicitly
represent their beliefs and goals, this essentially means we need to design an
ontology that includes all relevant concepts for representing and reasoning about
the environment at an appropriate level of abstraction.

4.2 Local and Global Information

The set of available percepts determines what information a specific entity ‘sees’
during the game, and thus what information its corresponding agent will receive.
Percepts have a name to describe them and a set of arguments that contain the
actual data. For example, a percept could be defined as map(Width, Height),
and an agent could then receive map(96, 128) in a match. In order to determine
the percepts that are created for each type of unit, our approach proposes several
design guidelines. A key foundation of our approach to handling information from
complex environments such as StarCraft is that there is a difference between
‘local ’ information that is specific to a certain unit in the game (e.g., a unit’s
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health) and ‘global ’ information that is potentially relevant to all units (e.g.,
the locations of enemy units). An agent should be able to perceive all local
information that is specific to its corresponding unit’s state, whilst a manager
agent should be able to perceive all global information that is needed for its
strategic (macro) reasoning. However, pieces of global information might also be
needed in the agent for a specific unit (e.g., nearby enemy units in StarCraft).

To this end, we initially pushed all global information to all unit and man-
ager entities, as a connector cannot determine which parts of this information
a specific agent will need. However, our case study showed that this caused a
significant performance impact with larger numbers of units. We have therefore
found it useful to provide specific mechanisms to a developer to fine-tune the
delivery of global percepts. Through the connector’s initialization settings, a
list of desired ‘global information’ (i.e., names of percepts) can be given (“sub-
scribed to”) for each unit type. For example, the (pseudocode) initialization
rule zergHatchery: [friendly, enemy] will ensure that all agents for all Zerg
Hatchery entities in a match will receive information about all friendly units and
all visible enemy units. In this way, a developer can decide which information is
relevant for certain agents, instead of such information being sent to agents at
all times. This mechanism can also be used for specifying in more detail which
global information a certain manager agent needs to be made aware of. Finally,
we assume that when local information is needed for macro reasoning, this can
be sent to the appropriate manager agent by the agent for a specific unit within
the agent platform; it is thus not required to handle this within the connector
(design) itself, as illustrated by the wave-shape in Fig. 3.

Fig. 3. Main design approach for organizing information into local and global percepts
for micro (unit) or macro (manager) entities.

The ease of use of the percepts for an agent programmer should also be
taken into consideration, i.e., by grouping related pieces of information together.
The design guideline here is that one should only group sets of parameters that
naturally belong together. Moreover, to avoid having to deal with different kinds
of percepts for each type of unit, a design guideline is that the percepts should be
as generic as possible in order to facilitate re-use between different agents. This
guideline is aimed at reducing the number of different concepts introduced in
our percept ontology, and thus aims for efficiency of design. An example of this
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is the status percept for each unit, as its structure (i.e., the set of parameters)
is the same for each unit, even though not all information might be relevant for
each unit (not all units use energy for example, but a unit’s energy level is always
provided in the percept). This also allows for specifying generic code for handling
the status percept for all agents only once in the program, instead of having to
specify this specifically (and nearly identically) for each unit type; special cases
for certain types of units can then be programmed only where necessary.

Performance. One of the main challenges is how to deliver all percepts while
guaranteeing sufficient performance levels. It is important to manage the per-
cept load of individual agents, as creating the information needed for percepts
(i.e., in the connector) and relaying that information to one or multiple agents
who then have to make this information available for use in reasoning (i.e., by
representing them in a Prolog base) is the most resource intensive task in a
connector. In contrast to actions, of which usually at most one is selected per
decision cycle, there are usually many percepts (all containing various amounts
of information) sent to each agent per decision cycle. We therefore introduce a
number of optimization guidelines which aim to either reduce the total number
of percepts an agent will have (to store) or the amount of updates to this set of
percepts that an agent will have to process.

Complex environments have a lot of static information to which all individual
agents may need to have access, like what a certain unit costs to produce or what
kinds of units a certain building can produce in StarCraft. Because such environ-
ments also introduce many units (and thus many agents), the initialization costs
for such information for each of these agents can have a rather big impact on a
connector’s performance. To avoid this issue as much as possible, we introduce
another design guideline to only create percepts for information that changes
in a single match or between matches. Static information is better suited to be
encoded in the agent system itself instead of being sent through percepts, as
this will significantly reduce the performance when initializing an agent (which
as aforementioned can happen many times during a game as large numbers of
units come and go almost constantly). To this end, information that is fixed by
the game itself can be coded as a separate part of the ontology that can and
needs to be loaded only once at the start of the game. Agents will still need to be
informed about changes between matches, e.g., map-specific information should
not be included in the ‘fixed part’ of the ontology. Another guideline to keep the
number of percepts low is to ensure that no data is sent through percepts that
can either be calculated based on other data (e.g., the number of friendly units
by counting the number of percepts about their status), or retrieved from other
agents (e.g., the position of a friendly unit). Relaying information (like friendly
unit positions) through messaging between the agents in a MAS is usually much
more efficient, as an agent programmer can then selectively choose at which
times and to which units to send specific pieces of information, as opposed to
percepts always being sent to certain units even when they do not require them
(at that time).
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In order to improve the performance of the percepts that we do have to send,
the Environment Interface Standard (EIS) [1], that we have used as a foundation
for implementing our connector, differentiates between three types of percepts1:

– Send once: this type of percept is only sent once. Such percepts are generally
used to send data about the (specific) match when an agent is created, such
as information about the map on which the match is played.

– Send on change: a percept of this type will only be sent if the percept
changes. Such percepts are generally used to update known information, such
as a unit’s health or the number of available resources.

– Send always: a percept of this type will be perceived every time the corre-
sponding agent asks for percepts. Such percepts are generally used to indicate
temporary information, such as seeing an enemy unit (which can die, after
which the corresponding percept is no longer generated).

Send once percepts will be most performant, whilst send always percepts will
be least performant. However, as indicated, some information cannot be repre-
sented in a ‘more performant’ type. It is thus important for to carefully consider
which percept category certain (groups of) information would best fit in order
to optimize the performance.

For StarCraft, combining the (finite set of) information that is available
through the BWAPI interface with the guidelines as posed in this section lead
to a set of about 25 percepts2.

We have designed and optimized our algorithms to compute the difference
between information states in order to generate new percepts as fast as possible.
Most percepts are only generated if some change occurred. Our connector has
been carefully designed so as to optimize the generation of percepts by first and
only once generating the global percepts (i.e., that are not specific to units),
such as the list of (visible) friendly and enemy units, followed by the generation
of the percepts specific to each entity. This structure also ensures that agents
receive their percepts immediately when they ask for them, i.e., they are not
generated when requested (which would slow down the agent significantly) but
only when information actually changes.

4.3 Asynchronous Actions

The actions available for a certain entity define the range of behaviour that is
possible for a corresponding agent implementation. The basic design guideline
here is that as a rule, any action that a unit can do (i.e., that is available in the
environment) should be available to its corresponding entity (and thus agent).

1 There are actually four percept types, but we do not consider on-change-with-
negation as this type will be removed in future versions of EIS due to compatibility
issues with knowledge representation languages other than Prolog.

2 For the full set of percepts and actions that are available, we refer to the Star-
Craft Connector Manual at https://github.com/eishub/Starcraft/blob/master/doc/
Resources/StarCraftEnvironmentManual.pdf.

https://github.com/eishub/Starcraft/blob/master/doc/Resources/StarCraftEnvironmentManual.pdf
https://github.com/eishub/Starcraft/blob/master/doc/Resources/StarCraftEnvironmentManual.pdf


312 V. J. Koeman et al.

A unit in StarCraft can roughly choose from about 15 types of actions at any
given time. Certain actions are only available to specific types of units (e.g.,
loading a unit into a loadable building). Some abstractions were used in order
to better facilitate the usability of this set of actions for agent programmers. For
example, instead of using pixel coordinates, StarCraft allows tile coordinates
to be used, i.e., corresponding to a certain block of 32 by 32 pixels (buildings
in StarCraft always have a size that is a multiple of 32 pixels in any dimen-
sion). This abstraction of pixels to tiles is also used in coordinates in percepts,
thus not only ensuring easy compatibility with the actions but also allowing for
percepts containing coordinates to be updated significantly fewer times when
a unit is moving for example. We also note that BWAPI does not explicitly
support grouping units (i.e., as a human player would do), and thus each unit
needs to choose its own course of action. However, creating group behaviour in
a multi-agent system is facilitated through inherent mechanisms such as mes-
saging between agents. Manager agents thus do not need specific actions from a
connector, as they can rely solely on the facilities in the agent platform.

However, as a MAS platform uses and runs agents in its own (set of) thread(s)
that need to be connected to the environment, synchronisation issues arise that
in particular for StarCraft pose a challenge, as StarCraft runs at a specific rate,
updating the game logic at fixed millisecond intervals in so called ‘match frames’.
In existing (C++/Java) BWAPI bots, the match frame function is used as the
starting point (or even single function) for all decision making. In principle, this
conflicts with a multi-agent approach in which all cognitive agents run in their
own separate (autonomous) thread(s). As a solution, we use several synchroni-
sation mechanisms. First, and most importantly, for each entity all requested
actions are recorded (queued). On each match frame call, all queued actions
(for all entities) are executed, i.e., ‘forwarded’ to the corresponding unit in Star-
Craft itself. Agents have to carefully rely on feedback from the environment
(i.e., through percepts) to detect the effect of their actions, or when an action
has failed (e.g., because some other action by another agent just used up some
resources). A basic understanding of the synchronisation issues is thus needed
when developing agents for highly dynamic environments such as StarCraft.

Debugging and Testing. For complex environments such as real-time strat-
egy games and StarCraft in particular, it is also essential to provide a devel-
oper with environment-specific visualization tooling that provides easy access
to information that will allow the developer to understand what is going on in
this environment. Which (types of) tooling can be provided is specific to an
environment and the access provided by the basic API made available by the
environment.

In our case study, we have found that visualization tooling is most useful for
providing insight into basic capabilities such as navigation, the status of units,
and the progress of long-term actions such as a buildings producing a unit. For
example, even though agents do not exercise low-level navigation control, agents
do control the setting of target locations where units will move to. We therefore
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provide a developer with the option to enable visual cues about where a unit
is moving to in order to be able to debug the agent code that sets these target
locations. Another example of what our connector supports is visualizing when
a unit is being produced by a building, removing the need to click on each
building to see what it is producing (and how far along this production is) when
trying to debug the production logic in a specific building agent. Visualizations
like this can be implemented in StarCraft by using its debug drawing features
that support drawing lines or writing text in the game window. Using these
basic features, our connector allows for specific visualizations to be created by
agents themselves (i.e., through calling specific actions), also facilitating drawing
custom texts above in-game units. Examples of such ‘debug visualizations’ in
StarCraft are shown in Fig. 4.

Fig. 4. A screenshot of StarCraft with a bot performing many debug draw actions.

More generally, to be able to debug and test multi-agent systems effectively
and efficiently in an environment such as StarCraft where hundreds of agents
are running simultaneously, requires a developer to have access to cheats that
disclose or even modify gaming information that is not normally available to a
player. StarCraft specifically offers useful development functionalities (through
BWAPI calls) like removing the fog of war (i.e., making the whole map visible
to the player), quickly gaining resources, or to making units invincible. We have
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integrated these functionalities in a separate development tool (that includes a
button for gaining resources for example) and through initialization properties
of the connector (e.g., making units invincible right from the start of a match)
in order to make them easily accessible.

4.4 Evaluation

As high performance is critical for any cognitive approach that uses many agents
to deal with the challenges of AI for RTS, it is important to verify the (CPU)
performance of a connector. In addition, one should evaluate the requirement
that a connector does not restrict the strategy space in any essential way by
for example examining the success (i.e., in tasks in the environment) of a set
of cognitive MAS implementations that make use of the connector. We do so
by discussing the lessons we learned from the use of our connector by over 500
students in two years.

Performance. Complex real-time tasks, such as effectively attacking enemy
units in StarCraft, potentially require a new decision to be made in each match
frame (based on the new information such a frame generates). As our approach
is based on an unit-agent mapping, there are at least as many agents as units in
the game. To be performant, we need to show that all agents have the oppor-
tunity to receive new percepts and make a decision (i.e., perform an action)
each match frame. AI tournaments run StarCraft at speeds of at least 50 match
frames per second, which implies that in our case every agent should receive new
information and be able to perform a new action at least 50 times per second as
well, i.e., averaging3 at most 20 ms for performing all cycles of the agents in a
MAS. We assume here that no single agent should perform less than 50 decision
cycles per second, even though many agents will not need that many decision
cycles (e.g., most buildings would not as the decision making for production is
not as time critical as for combat for instance). We aim to demonstrate that
the minimum load required in the execution of the StarCraft connector leaves
sufficient CPU time for adding the key decision logic in an agent program. We do
so for our StarCraft connector by evaluating a simple multi-agent system that
keeps producing simple units (‘Zerglings’) that continuously move to a random
location on the map. In addition, all of these units are subscribed to all percepts
(i.e., have to process them every decision cycle). A cheat was also enabled to
ensure that these units cannot die. In this way, the maximum amount of units
that a player can have (which is close to 400) can be reached without being influ-
enced by the enemy in the game. Even though a player is very unlikely to reach
this number of units in a game in practice, or to have all units subscribed to all
percepts, we aim for our connector to provide sufficient CPU time for strategic
reasoning even in this worst-case scenario.

3 Most tournaments allow bots to take more time for a limited amount of frames
during a single match, but we disregard that here.
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Fig. 5. The average speed of a decision cycle for all agents in the system under a
growing number of agents.

The results of this evaluation for a minimum baseline are shown in Fig. 5. The
evaluation was performed on a system with an Intel i7-6500U CPU and 8 GB
RAM, with the StarCraft game speed set to the default tournament speed of 50
FPS. As each agent runs in its own thread(s), the average time any agent’s cycle
takes will increase when the number of agents increases due to limited system
resources (e.g., the number of available CPU cores). However, even in this worst-
case situation with up to 400 agents all processing all information available in
the environment, the average cycle time per agent grows to about 10 ms at most.
This thus leaves 10 ms for any additional reasoning to be implemented in the
MAS in this extreme scenario. In practice, there will be fewer agents that are all
subscribed to percepts more selectively. Therefore, in general, we see that around
18 ms (out of the possible 20 ms enforced by the tournaments themselves) will
be available to a MAS that uses our connector.

We note that we have designed this baseline MAS such that all of the agents
continuously execute decision cycles, whilst in practice, a decision is not required
by each agent in every frame. This fact provides further support for our claim
that sufficient processing power remains for implementing decision logic, as
agents in a MAS with a more diverse set of agents should refrain from exe-
cuting decision cycles (i.e., ‘sleep’) from time to time, thus freeing up CPU time
for where it is needed most.

Success. As we cannot directly establish whether the full strategy space is
made available by a connector, we aim to indirectly determine this by how well
a cognitive MAS is able to perform relative to an environment measure that we
would like to optimize. For a game like StarCraft, being successful at the game
by winning (against other AI implementations) can provide such a measure.
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Over the course of two years, groups of students created a varied range of
full-fledged StarCraft AI implementations using (different versions of) our con-
nector. After at most 8 weeks of work, nearly all of their implementations are
able to defeat the game’s built-in AI consistently. Some of the groups joined the
Student StarCraft AI Tournament (SSCAIT) [20] with their implementations,
successfully competing with the over 100 other active bots (which are mostly
written in C++ or Java, frequently based on other well-established implemen-
tations, and have often been around for many years or developed by companies
like Facebook). One of the students’ StarCraft AI implementations that makes
use of our connector is currently ranked at around the 50th place with a win-rate
of roughly 60%. Altogether, this suggest that we have made the strategy space
associated with StarCraft sufficiently available.

During the development and initial uses of the connector, we also gained
valuable insights into the benefits and challenges of using current cognitive tech-
nologies for engineering complex distributed systems. One particularly challeng-
ing development issue that developers face when environments become more
complex and the number of agents increases, is that every run of the system
will produce different results. For this reason, it is very hard for a developer
to test a specific scenario that s/he has in mind without additional tooling to
provide a developer with control over the type of scenario that will evolve in the
game. This makes testing very difficult and it thus is of the utmost importance
to do whatever possible to provide a developer with tooling and capabilities to
handle this. Testing against StarCraft’s built-in AI, for example, will give dif-
ferent results on each run. More importantly, it can take quite a while before a
scenario of interest occurs (if it does at all). In order to test specific (defined)
scenarios, agent programmers should be allowed to save the state of the game at
any given point, and then load that specific game again at a later stage, which
is supported by StarCraft itself. Although our connector has been designed to
support such state saving, in practice this will only provide support to some
extent, and agent platforms should provide some way of storing and restoring
the state of all agents at the same time.

4.5 Impact on Cognitive Technology

Even though the StarCraft connector has been optimized as far as possible when
it comes to percept delivery, we found that there still are optimizations that can
and should only be provided by the cognitive technology that is used, as we can
only do so much; if the MAS platform itself is inefficient, it will not be possible to
create an effective MAS approach for StarCraft with its strict real-time response
requirements. One issue is for example that cognitive agents typically try to run
as many decision cycles as possible. Considering the large number of agents that
are typically employed in StarCraft, however, this is not ideal. In order to free
up cycle time for e.g. agents that that have received new information to reason
about. Therefore, we believe that functionalities that reduce the total load on
the CPU, such as a ‘sleep mode’ in which an agent that does not receive new
percepts from the connector or new messages from other agents will not execute
any reasoning, should be provided by agent platforms.
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However, problems do arise in this mode when for example an agent is sup-
posed to do something (e.g., move around) after it has not received new informa-
tion for some time. Therefore, a timing mechanism should be introduced as well,
facilitating the automatic generation of timer percepts upon a certain requested
interval (thus waking up the agent after a set amount of time). A sleep action
can be added as well, allowing a developer to manually sleep an agent for a
certain amount of time, and thus free up performance for other agents if they
do not need to do any reasoning for a while (even when new information comes
in). An example of this is when a building agent starts producing a new unit,
and is sure it will keep producing this unit (which takes a while). In addition,
to allow developers to get more insight into the performance of their agents,
specific logging messages can be added to agents that when enabled, after each
decision cycle, show how many queries were performed and how many beliefs,
goals, percepts and messages the agent has (received) in total. This can be useful
for a developer to for example improve the ordering or nesting of rules in order
to reduce the average amount of queries that are executed per cycle, or to keep
tabs on the amount of messaging between agents (e.g., one agent might flood
another agent with redundant messages due to some bug).

Another observation is that communication with large amounts of agents
poses many challenges. In practice, with peer-to-peer based messaging, as is
typically done in cognitive architectures, developers often use broadcasts to all
agents in order to prevent having to use numerous bookkeepings of agents, which
has an especially large performance impact in systems with many agents (such as
those for StarCraft). We believe that this suggests that agent platforms should
support a publish-subscribe messaging system to be effective, as this prevents
agents that need to send messages to other agents from having to deal with
continuously keeping track of which agents are relevant for its messages (i.e.,
interested in the information and still alive). Publish-subscribe messaging facili-
tates sending messages to a ‘channel ’. Agents can subscribe to (and unsubscribe
from) such channels, thus receiving messages sent to a certain channel only if
they have explicitly indicated they want to do so. This allows for messaging based
on content instead of specific targets. This is especially convenient for ‘manager
agents’ to communicate with other (groups of) agents, as such an agent could for
instance relay all required information about enemy units in a specific region to a
certain channel, to which agents that need that information can then subscribe.

We believe that the application of cognitive agent technologies to complex
environments such as StarCraft will yield more ideas for further development.

5 Conclusions and Future Work

We have presented a design approach for creating connectors for cognitive agent
technology to (complex) environments, illustrated by a case study of such a
connector that provides full access to StarCraft. A major challenge that was
addressed during the development of this connector was to ensure correspond-
ing cognitive agent systems can be programmed at a high level of abstraction
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whilst simultaneously allowing sufficient variety in strategies to be implemented
by such systems. Based on this challenge, design guidelines for determining the
set of available percepts and actions in agent-environment connectors were deter-
mined. The viability of our approach is demonstrated by multiple large-scale
practical uses of the StarCraft connector, resulting in a varied set of competitive
AIs. Based on the development of the connector and this initial use, we gained
valuable insights such as the benefits of using publish-subscribe based messaging
and the challenges of debugging large sets of agents.

Ensuring a sufficient level of performance of the connector was a significant
challenge that had to be addressed in particular in order to demonstrate that a
unit-agent mapping (MAS) approach is viable. In our evaluations, we determined
the baseline performance of the connector in a worst-case scenario, which shows
that on average there remains sufficient CPU time for strategic reasoning in a
cognitive MAS. Even though the performance of such a MAS depends largely on
the agent technology used itself, we believe that our connector can be effectively
used in practice. Although our case study is focused on the ‘Brood War’ version
of StarCraft, the new ‘raw API’ of StarCraft 2 is reported to be similar to
BWPAI by Vinyals et al. [18], and tour work should therefore be relatively
straightforwardly applicable and/or portable to StarCraft 2 (and possibly other
RTS games) in future work.

Finally, through the development and use of our connector for StarCraft,
a number of challenges to cognitive agent technologies were identified. One of
those challenges is the fact that debugging (cf. Koeman et al. [12]) becomes
increasingly difficult with increasing numbers of agents. As debugging concur-
rent programs is a hard problem in general, more work is required in this area;
it could for example be useful to visualize the interaction between agents or
the CPU time required by each agent. In addition, in order to better support
automated testing, (cf. Koeman et al. [11]), it may be beneficial to develop a
mechanism that automatically saves the state of a MAS when a save game is
created in StarCraft. This can be used to immediately initialize a MAS to the
desired state when executing a test with a specific save game (i.e., a scenario).
Another observation is that communication with large amounts of agents poses
many challenges, requiring more investigation in future work, for example into
messaging architectures based on a publish-subscribe pattern. Finally, the per-
formance of a MAS itself (i.e., all processing that takes place outside of a connec-
tor) is of critical importance in highly dynamic environments such as StarCraft.
Functionalities that can reduce the CPU load of a MAS are thus important to
explore as well.
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