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X-ray diffraction scans consist of series of counts; these numbers obey Poisson

distributions with varying expected values. These scans are often smoothed and

the K�2 component is removed. This article proposes a framework in which both

issues are treated. Penalized likelihood estimation is used to smooth the data.

The penalty combines the Poisson log-likelihood and a measure for roughness

based on ideas from generalized linear models. To remove the K� doublet the

model is extended using the composite link model. As a result the data are

decomposed into two smooth components: a K�1 and a K�2 part. For both

smoothing and K�2 removal, the weight of the applied penalty is optimized

automatically. The proposed methods are applied to experimental data and

compared with the Savitzky–Golay algorithm for smoothing and the Rachinger

method for K�2 stripping. The new method shows better results with less local

distortion. Freely available software in MATLAB and R has been developed.

1. Introduction
Smoothing of X-ray diffraction data and K�2 elimination are

often applied before evaluation of the data in software

packages as supplied with commercially available diffract-

ometers. The scans consist of series of counts which appear to

follow Poisson distributions. Smoothing, for instance using the

method of Savitzky & Golay (1964), is used to reduce random

noise, by combining the counts in adjacent channels to get

better local estimates of the expected values. The resulting

smooth curve is better suited for estimating, for example, the

locations and heights of peaks than the observed data.

In addition to the random noise, analysis is hampered by the

fact that the peaks show a doublet structure, caused by the

K�1 and K�2 emission lines of the X-ray source. The K�2

reflection can be eliminated by utilizing information about the

differences in wavelength, intensity and shape of the K�1 and

K�2 lines. The K�2 component is often removed by applying

the Rachinger (1948) correction.

In this article, we present a smoothing procedure using

penalized likelihood estimation and extend it to include K�2

elimination. This results in a decomposition into two smooth

components: a K�1 and a K�2 part. The amount of smoothness

can be optimized automatically. Because the method is

grounded in a well developed statistical theory, the general-

ized linear model (GLM) (Nelder & Wedderburn, 1972),

standard errors can also be computed, if desired.

The next section briefly introduces the instrumental setup

and software implementations. The theory is introduced in

several steps. x3 starts with an introduction to smoothing,

using penalized least squares. Because we are dealing with

counts, we switch to penalized likelihood smoothing, which

utilizes the Poisson distribution. In x4 we estimate the K�1 and

K�2 components. We use a P-spline basis (Eilers & Marx,

1996) in combination with the composite link model

(Thompson & Baker, 1981), explained in xx4.1 and 4.2,

respectively. Penalized estimation requires tuning of the

penalty parameter; an automatic procedure is presented in x5.

To illustrate the proposed methodology, a number of appli-

cations are presented. The article closes with a discussion of

the main findings and possibilities for future research.

Although the proposed methodology is useful in a number

of settings, we also note that for various programs to obtain a

fit to the whole diffraction pattern (e.g. Rietveld analysis or

MAUD; Lutterotti & Bortolotti, 2003) it is usually not

appropriate to apply smoothing and/or K�2 elimination prior

to data analysis.

2. XRD experiments

All measurements were carried out using a Bruker D8

Advance diffractometer in Bragg–Brentano geometry,

equipped with a Vantec position-sensitive detector and a

graphite monochromator in the diffracted beam. Data

collection was carried out at room temperature using Co K�
radiation (�Co K�1

= 0.179026 nm). Diffractometer scans were

made in �–2� scanning mode with a fixed step size and a fixed

counting time per step. The specimens were spun at

30 r min�1.
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Three specimens were used to test the smoothing and K�2

elimination:

(a) LaB6. For this specimen, the standard reference material

for line position and line shape, SRM660a from NIST, has

been used. The particle size of the LaB6 powder was such that

the effect of crystal statistics is virtually absent. The actual

specimen consists of a thin layer of LaB6 on an Si single-crystal

substrate wafer with orientation (510). It was made by

applying a sedimentation method (mass thickness 33 �m,

diameter 24 mm). Scan parameters: step size 0.007� 2�, time

per step 2 s. This specimen produces sharp isolated reflections

on a low background and it was especially used to check the

K�2 elimination procedure.

(b) FeOx. This is a bulk specimen made from finely grained

powder, pressed into a pellet with thickness 2 mm, diameter

31 mm. The powder consists mainly of haematite. Scan para-

meters: step size 0.041� 2�, time per step 1 s. This specimen

produces reflections on a relatively high background and was

especially used to check the residual background level after

K�2 elimination.

(c) Ni-alumina. This is a thin layer of powder on an Si

single-crystal substrate wafer with orientation (510). The

powder contains boehmite, aluminum oxides and nickel

oxides. Scan parameters: step size 0.035� 2�, time per step 4 s.

This specimen produces a mixture of sharp and broad reflec-

tions.

Data evaluation was performed with the DIFFRACplus

evaluation package program EVA (version 17.0.0.2; Bruker

AXS Inc., Madison, Wisconsin, USA). The proposed

smoothing algorithm and procedure for K�2 elimination are

available in a MATLAB script (The Mathworks Inc., Natick,

MA, USA) and the R programming language (R Develop-

ment Core Team, 2011). In addition, functions to read and

write .raw files from Bruker (version 3) are provided in the R

language. R and MATLAB scripts are made available as

supplementary material.1

The penalized likelihood smoother is compared with the

Savitzky–Golay filter as implemented in EVA. The latter is

controlled by one parameter, the width of the sliding interval

on which the filter is applied.

The procedure for K�2 stripping is compared with the

algorithm available in the EVA software, which is an imple-

mentation of the Rachinger method. This method assumes

that the K�1 and K�2 line profiles are identical in shape and

that both profiles are tied by a fixed intensity ratio �:

IK�2
=IK�1

= 0.5.

3. Smoothing

Smoothing is a frequently applied tool and many different

algorithms are available. Very popular in analytical chemistry

is the Savitzky–Golay filter (Savitzky & Golay, 1964), which

tunes smoothness by varying the order of the local polynomial

and the number of basis functions. Other methods use wave-

lets or Fourier transforms, which are both reviewed by

Artursson et al. (2000). Chen et al. (2005) used smooth prin-

cipal components to exploit the shared variation in a set of

different patterns. This can be valuable in some cases but also

limits the applicability of the method, because often only a

single scan is obtained. A more recent article (Hogg et al.,

2012) proposes a Bayesian method for de-noising signals. The

Poissonian nature of the data is accounted for by the use of the

Anscombe transform. Long computation times make this

procedure less practical.

In contrast, we present an automatic, fast, likelihood-based

method. The method is presented in a stepwise manner,

alongside applications to experimental XRD patterns. For

didactic reasons, we start with the case where the sum of

squares of differences is used to measure the fit of a model to

data (the ‘least-squares’ principle) and subsequently turn to

the likelihood approach.

3.1. Penalized least-squares smoothing

We indicate the counts by yi, for i ¼ 1 : m, with m the

number of data points of the X-ray pattern. We try to find a

smooth series l of the same length that does not deviate too

much from y. We have to balance two goals: (1) the fidelity of

l to the data y, and (2) the roughness (the opposite of

smoothness) of l. Intuitively it is clear that the smoother we

make l, the larger will be the difference between y and l.

To measure the fidelity of l to y, we use the familiar sum of

squares:

S ¼
Pm

i

ðyi � �iÞ
2: ð1Þ

A convenient way to measure the roughness of l is to take the

sum of squared differences of neighbouring values:

R ¼
Pm
i¼2

ð�i � �i�1Þ
2
¼
Pm
i¼2

ð��iÞ
2: ð2Þ

In the last term of (2), � is an operator, a shorthand notation

for taking differences. Actually a better measure of roughness

uses second-order differences, differences of differences:

R ¼
Pm
i¼3

½ð�i � �i�1Þ � ð�i�1 � �i�2Þ�
2

¼
Pm
i¼3

ð�i � 2�i�1 þ �i�2Þ
2
¼
Pm
i¼3

ð�2�iÞ
2: ð3Þ

The elegance of the � operator becomes clear this way: �2

means that it is applied two times.

The balancing act between fidelity and roughness can now

be written as an objective function that has to be minimized:

Q ¼
Pm

i

ðyi � �iÞ
2
þ �

Pm
i¼3

ð�2�iÞ
2: ð4Þ

This is known as the Whittaker (1923) smoother, which was

more recently discussed by Eilers (2003). Because the second

term works as a penalty on l, driving it away from the minimal

sum of squares solution (but in the desirable direction of more

smoothness), this procedure is also called penalized least
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1 Supporting information for this article is available from the IUCr electronic
archives (Reference: FS5067).



squares. The parameter � tunes the balance. If � is small the

second term has little influence and l will be near to y, but it

will be relatively rough. On the other hand, when � is large, l
will be (too) smooth, sacrificing fidelity to y.

The loss function Q can be rewritten using matrices and

vectors as

Q ¼ jjy� ljj2 þ �jjDd ljj2: ð5Þ

Here jjxjj2 ¼
P

i x2
i is shorthand notation for the quadratic

norm, the sum of squares of elements, of any arbitrary vector

x. Dd is the difference matrix: it computes the dth-order

differences over l. For a signal with length m ¼ 5, D2 is

defined as

D2 ¼

1 �2 1 0 0

0 1 �2 1 0

0 0 1 �2 1

0
@

1
A: ð6Þ

In the remainder of this article we drop the subscript d and

only use second-order differences. The minimizing vector l̂l
follows as the solution the linear system of equations

ðI þ PÞl̂l ¼ y; ð7Þ

with P ¼ �D0D and I the identity matrix. This is a large

system: m linear equations with m unknowns. Yet it can be

solved extremely easily and quickly, using sparse matrices, in

both MATLAB and R.

3.2. Penalized likelihood smoothing

Penalized least squares, as explained above, is very

successful in various applications (Eilers, 2003), but it is not a

good choice when we are dealing with counts. The least-

squares procedure does not guarantee that l will be positive

everywhere. Also we do not account for the fact that higher

counts have a larger variance. In addition, this smoother

rounds off sharp peaks too much (strong smoothing) or gives a

wavy baseline (lighter smoothing). We can solve these

problems by switching to penalized likelihood.

The X-ray photon counts in a diffraction pattern are

assumed to follow a Poisson distribution, with an expected

value that varies with the diffraction angle. The photon

counting sets a limit to the precision that can be obtained in a

given amount of time. According to the Poisson distribution,

the variance of the counts is equal to the expected value, l, so

the standard deviation, �, is equal to the square root of l. The

relative error is thus equal to l�1=2.

The Poisson distribution states that the probability of

observing yi, given the expected value �i, is

Prðyi j �iÞ ¼ �
yi
i expð��iÞ=yi!: ð8Þ

The logarithm of this probability, as a function of �i, given yi,

is the log-likelihood

Lð�i j yiÞ ¼ yi log�i � �i � logðyi!Þ: ð9Þ

The last term is a fixed number once yi is given, so we will drop

it from here. If the elements of y, conditional on their expected

values, l, are independent, we can sum the log-likelihood over

all observations and use it as a measure of fit, replacing the

sum of squares in (1). Because a better fit gives a larger log-

likelihood, we flip its sign, so that minimization becomes the

goal again. Also, for technical reasons, to get simpler equa-

tions later on, we multiply it by 2. We then have

G ¼ 2
Pm

i

ð�i � yi log�iÞ; ð10Þ

which is known as the deviance. In principle it is possible to

combine equation (10) with the old measure of roughness, R,

as in (4). Instead we introduce a transformation of l,

g ¼ log l; ð11Þ

and insert that into the roughness expression. This step is

inspired by the theory of generalized linear models (GLM)

(Nelder & Wedderburn, 1972), where it is called the link

function. It guarantees positive values of l. The objective

function to minimize now becomes

Q ¼ 2
Pm

i

½expð	iÞ � yi	i� þ �
Pm
i¼3

ð�2	iÞ
2; ð12Þ

with the second part being the roughness penalty. Minimiza-

tion of (12) leads to the system of equations

Pg ¼ y� l: ð13Þ

Estimation is usually performed using iteratively reweighted

least squares (IRWLS). This boils down to iteratively solving

the linear system

ð ~WW þ PÞ~gg ¼ y� ~llþ ~WW ~gg; ð14Þ

where a tilde as in ~gg indicates the current approximation to the

solution. W ¼ diagðlÞ is a diagonal matrix with weights, for

Poisson data, defined as

wii ¼
1

�i

@�i

@	i

� �2

¼ �i: ð15Þ

Convenient starting values are obtained by taking

~		0 ¼ logðyi þ 1Þ. Usually about five iterations are needed to

obtain estimates for g that are near enough to a solution for

practical purposes (four significant figures or better in the

solver residuals). More details on the theoretical properties of

the GLM and its estimation routines have been given by

McCullagh & Nelder (2000) and Dobson & Barnett (2008).

3.3. Comparison: penalized likelihood smoothing versus the
Savitzky–Golay smoother from EVA

Fig. 1 shows the results of smoothing the XRD pattern of a

sample of Ni-alumina. The upper panel shows the complete

scan, with the observed data (black) and the smoothed pattern

(green) obtained using the penalized likelihood method (PL

smoother). The optimal smoothing parameter according the

Akaike information criterion (AIC) is 33932. The AIC is

further explained in x5.

For a more detailed inspection of the Ni-alumina scan, we

zoom in on two specific regions, which are presented in the

lower two panels of Fig. 1. In both panels the penalized like-

lihood approach gives satisfactory results. The Savitzky–Golay

filter from EVA (SG filter), which is tuned manually, seems to
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be too flexible in the right panel. For the likelihood smoother

we included 95% confidence bands, which are depicted as the

grey areas surrounding the fit of the smoother.

Given the smooth fit l̂l, we can check whether the Poisson

assumption is reasonable. The variance of yi should be equal

to �i, so the normalized (or Pearson) residuals ðyi � �̂�iÞ=�̂�
1=2
i

should have a standard deviation close to 1. In the case of the

penalized likelihood smoother, it is 0.92, close to the expected

value, showing that the Poisson assumption holds well for the

present data. Checking the residuals of the pattern derived

using the SG filter gives a standard deviation of 0.80 and might

indicate too little smoothing is applied.
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Figure 2
Comparison of the SG filter and the PL smoother using a simulated data set. The upper panel shows the complete scan and the observed data (black) and
the true, noise-free, input data (orange). The two smaller panels show more details about two regions of the scan. In both cases the input, the output and
the smooth curves of both procedures are provided.

Figure 1
Results of smoothing the Ni-alumina scan. The upper panel shows the complete pattern, with the observed data (black) and the smoothed data (green)
obtained using the penalized likelihood method. The two lower panels provide more detail on two regions of the scan. They include the penalized
likelihood smoother with 95% confidence intervals (grey shaded regions) and the results of applying the Savitzky–Golay filter.



For a more solid comparison of both

smoothers, a simulation was conducted.

The simulated XRD pattern is

presented in the upper panel of Fig. 2.

The noise-free (input) pattern is

depicted in orange. The observed data,

including Poisson noise, are shown in

black. The pattern consists of a number

of peaks on a drifting baseline.

Parts of the smoothed data are

shown in the lower panels of Fig. 2. The

smooth pattern from the penalized

likelihood smoother (green) is shown

together with the pattern coming from

the SG filter using ! = 17 (red), the true

profile (orange) and the observed data

(black). The optimal amount of

smoothness when using the penalized

likelihood smoother is obtained using

the AIC.

The SG filter is generally tuned

manually. Fig. 3 shows the performance

of this filter for different values of the

window width. The upper panel shows

the distance between the simulated

data without noise and the obtained

pattern applying the SG filter. The

distance is expressed as the root mean

squared error (RMSE). The window

width is given on the x axis. The red

horizontal line is the optimal value

obtained using the PL smoother and

the AIC. The lower panel is similar to

the upper one, the only difference

being that it shows the distance towards the data with noise

(the ‘observed data’). The performance of the optimal model

of the SG filter is similar to that of the model obtained using

the penalized likelihood smoother. However, in the absence of

a proper criterion it is difficult to identify the optimal model.

In contrast, the PL smoother is tuned automatically and in

addition can be extended to K�2 elimination (see x4).

4. Ka2 elimination

X-ray diffraction patterns usually contain several different

wavelength components: K�1, K�2, K
 and bremsstrahlung.

For analysis of X-ray diffraction patterns it is attractive to

work with monochromatic patterns. Usually, physical filtering

of the X-ray radiation is applied. Often a K
 filter or a

monochromator is placed in the X-ray beam path in order to

absorb the unwanted radiation. Also detectors with high

energy resolution can be applied to distinguish between K

and K�, but at present these are not able to separate K�1 lines

from K�2 lines.

In (our) daily practice K
 is removed by physical filtering.

The classical procedure for K�2 elimination is the Rachinger

(1948) correction. This method relies on three assumptions.

First, the peak shape is assumed to be the same for the K�1

and K�2 components. Second, the �2 line is expected to be half

the intensity of the �1 line. Third, the doublet distance is

assumed to be a known function of the diffraction angle 2� and

the characteristic wavelengths of the anode material.

Here we take a similar approach: the X-ray diffraction

pattern is considered to be the sum of two smooth latent

components. Both components can be estimated using the

penalized composite link model (Eilers, 2007). Smoothness is

imposed using P-splines, which are explained below.

4.1. Penalized likelihood using P-splines

In the previous section, smoothness was obtained by using

simple differences in the roughness penalty of the smoother.

This is possible because the scans we use have data that are

equally spaced on the diffraction angle (2�) scale. Because the

doublet distance � does not coincide with the data points,

estimating a smooth component for both K�1 and K�2 is

impossible using this approach. Instead, a model is required

that enables interpolation. This can be realized using a basis

representation, with the additional advantage that the
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Figure 3
Simulation results, comparing the Savitzky–Golay filter with the penalized likelihood smoother. The
upper panel shows the distance (expressed as the RMSE) between the noise-free simulated profile
and the obtained pattern applying the SG filter. The window width of the SG filter is given on the x
axis. The red horizontal line is the optimal value obtained using the PL smoother and the AIC. The
lower panel is similar to the upper one but shows the differences towards the data with noise (the
‘observed data’).



dimensions of the estimating equations are reduced, which

leads to faster calculations.

Here we use P-splines (Eilers & Marx, 1996), which are

B-splines on a regular grid, combined with a penalty. The

penalty is a natural extension of the difference penalty as

discussed in the previous section, with the only difference that,

instead of penalizing differences of adjacent data points, the

penalty is imposed on adjacent spline coefficients. As advo-

cated by Eilers & Marx (1996) we use a richly defined basis

and smoothness is tuned with the penalty.

A B-spline of degree q is a smooth bell-shaped curve,

composed of q + 1 polynomial segments each of degree q

which join smoothly at the knots. The left panel of Fig. 4 shows

the individual polynomial pieces, the resulting smooth spline

function and the positions of the knots for a single B-spline. A

simple example where a series of P-splines are fitted to the

data is presented in the right panel of Fig. 4. Notice that it

shows the general principle of P-splines using least squares

and does not resemble the likelihood case, which involves a

transformation of the data. We refer to Dierckx (1995) and

de Boor (2001) for a thorough discussion of B-splines.

Using splines for smoothing the data (meaning no K�2

elimination) the model can be written as

g ¼ Bb; ð16Þ

with B the B-spline basis and b the vector of coefficients. Here

we again use the transformation of l: g = logl. Parameters are

estimated by using the penalized deviance; adding a penalty to

equation (10) results in

Gþ �jjDbjj2 ¼ Gþ �b 0Pb: ð17Þ

Equation (17) can be solved using the iteratively

reweighted least-squares algorithm (IRWLS) for estimating

GLMs (Nelder & Wedderburn, 1972), with the penalty

included:

ðB0 ~WWBþ PÞb ¼ B0 ~WWB ~bb þ B0ðy� ~llÞ; ð18Þ

where ~bb and ~ll denote current approximations to the solution.

4.2. The penalized composite link model

Here we are interested in estimating not a single smooth

component but a separate smooth pattern for K�1 and K�2.

To do this we combine the P-spline framework with the

composite link model (CLM) (Thompson & Baker, 1981). The

CLM is an extension of the GLM, modelling so-called ‘indirect

observations’. The combination of P-splines and the CLM is

described by Eilers (2007), where it is termed the penalized

composite link model (PCLM).

Using the generalized linear model the counts would be

modelled as EðyÞ ¼ l. Assuming that the expected counts EðyÞ

are the sum of two components, K�1 and K�2, we add a

composition matrix C to the GLM. The elements of C describe

how the latent expectations c1 and c2, pertaining to the K�1

and K�2 components, respectively, are combined. Here we

assume the same shape for both components, which leads to

the composition matrix C ¼ ½I j �I�. Applying a PCLM, the

expected counts are modelled as

EðyÞ ¼ l ¼ Cc: ð19Þ

This results in l ¼ c1 þ c2�, where c1 pertains to the K�1

reflection and c2 to the K�2 reflection. Parameter � defines the

relative intensity of the two components and is set to 0.5

(Rachinger, 1948). The expectations are modelled using

P-splines:

c1 ¼ expðB1bÞ ¼ exp
P

k


kBkð�jÞ

� �
ð20Þ

and

c2 ¼ expðB2bÞ ¼ exp
P

k


kBkð�j þ �jÞ

� �
; ð21Þ
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Figure 4
(Left) A single cubic B-spline function, including the knots and the (shifted) segments. (Right) A series of P-splines fitted to some data, using penalized
least squares.



with � ¼ 2� and � being the doublet distance. It is calculated as

� ¼ 2 arcsin
�2

�1 sin �

� �
� 2�; ð22Þ

with �2 and �1 the wavelength of the K�2 and K�1 emission,

respectively.

Similarly to a GLM, the PCLM is estimated in an iterative

manner solving

ð ~XX 0 ~WW ~XX þ PÞb ¼ ~XX 0ðy� ~llþ ~WW ~XX ~bbÞ; ð23Þ

with ~bb indicating the current approximation to the solution.

The latent expectations c are combined in � ¼ diagðcÞ and the

matrix X is calculated as

X ¼ ~WW�1C ~��Bc; ð24Þ
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Figure 5
K�2 elimination using the PCLM, applied to the FeOx data. The two panels show the estimated K� components and the reconstructed data at two
different diffraction angles.

Figure 6
K�2 elimination applied to the LaB6 data. All panels present the observed data (grey), the estimated K�1 part using EVA (red) and the same component
estimated using the PCLM (blue). The lower-left panel shows a low-angle part of the data, while the right panel is taken at the high-angle side.



where B0c ¼ ½B
0
1 j B02�: the composition of the two B-spline

bases.

The result is illustrated in Fig. 5, which shows two parts of

an FeOx diffraction pattern, a low-angle part and the high-

angle part. In each panel, four curves are displayed: the

observed data (black), the estimated smooth curve (orange),

and the �1 (red) and �2 (blue) components. Irrespective of the

angle, the peaks are well separated, while the resulting

components and the fitted total curve are smooth.

4.2.1. Comparison: PCLM versus the EVA–Rachinger
correction. The top panel in Fig. 6 shows the complete scan

of the LaB6 sample. In grey, the observed data are presented;

the red line shows the estimated K�1 using the EVA software,

while the blue line is the K�1 component obtained using the

PCLM. At this scale it is difficult to observe differences

between the two procedures. Zooming in on one of the peaks

(as done in the lower panel of Fig. 6) does unveil some

differences. Especially on the high-angle side, EVA generates

unwanted artefacts.

5. Automated selection of the penalty parameter

In the previous sections we have presented a method for

smoothing and subsequently we have extended the method to

enable K�2 elimination. Both models can be tuned by visual

inspection, yet it is attractive to have a method for automatic

tuning of the amount of smoothing. We applied two fitting

criteria to determine the optimal penalty parameter, the AIC

proposed by Akaike (1974) and the L-curve, as introduced by

Hansen (1992).

In the case of the AIC one searches for the value of � that

minimizes the criterion. This minimum is supposed to be the

best trade-off between fidelity to the data and model

complexity. The AIC is defined as

AIC ¼ Gþ 2ED: ð25Þ

The first part of the equation is the deviance, which is

described in equation (10). The ED is the effective model

dimension, a measure of the effective number of parameters in

a model. The ED is computed as

ED ¼ tr½ðXŴWX þ PÞ�1
ðXŴWXÞ�; ð26Þ

where ŴW ¼ diagðl̂lÞ and tr denotes the trace of a matrix, which

is the sum of the elements on its diagonal. A simple grid search

can be used to find the value of � that minimizes the criterion.

The left panel of Fig. 7 shows, for K�2 removal from the

LaB6 data, how the AIC changes with �. Note that a linear grid

has been used for the logarithm of �, because a range of

several orders of magnitude has to be investigated.

Although the AIC performs satisfactorily, the computation

of the effective dimension is costly, because a complete matrix

of m rows by m columns is to be computed. For large m this

takes much memory and computation time. A simple solution

is to use only a segment of a scan and use that to search for the

optimal value for �. Once � has been determined in this way, it

can be used for processing the whole scan.

A more elegant solution is to use a fast alternative fitting

criterion: the L-curve, presented for ridge regression by

Hansen (1992) and recently used in the setting of P-splines by

Frasso & Eilers (2012). Here the algorithm is successfully

applied to Poisson data. The basic idea is simple: one plots the

logarithm of the size of the penalty term, ’, against the

logarithm of the residuals,  :

’ ¼ logðjjDbjj2Þ;  ¼ logðGÞ: ð27Þ

Notice that both quantities are a function of �. The figure will

show a more or less L-shaped curve. The optimal penalty

parameter is obtained in the corner of the L shape, where the

curvature is largest. A simple alternative, presented by Frasso

& Eilers (2012), is to search for the minimum of the squared

step size ð� Þ2 þ ð�’Þ2 and take the average of the two �
values related to that step. The right panel of Fig. 7 shows

these steps as a function of the penalty parameter, in the case

of the LaB6 data.
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Figure 7
The AIC curve (left) and the sequence of step sizes connected to the L-curve (right), used to obtain the optimal penalty parameter for estimating the K�1

component of the LaB6 data.



6. Discussion

Although our results are gratifying, we see areas that may

need improvement. We assumed that the K�1 and K�2

components have the same shape. In the applications

presented this assumption appears to hold well, but in the

literature examples exist in which this is not the case.

Currently we are investigating ways to incorporate these

broadening effects into the PCLM.

The PCLM method is insensitive to the point spacing,

meaning that one can always estimate the two components.

However, when the observed data are very coarse, the results

will not be useful, because too many details are lost. Conse-

quently it is preferable to use a relatively small step size and at

the same time keep the scanning times small as well. The

increased noise level is compensated by the smoother.

Using the penalized likelihood procedure, smooth deriva-

tives can be determined for peak finding purposes. In the case

of very coarse data the P-splines can be used to obtain

smoother results.

In the current setup, baseline removal is not required. The

present baseline component is distributed over both parts.

This is theoretically incorrect but does not cause any practical

problems. After K�2 removal, baseline estimation can still be

performed on the individual components for further analysis.

One of the aims for future investigations is to estimate the

baseline as part of the model.

7. Conclusion

We have presented a new method for smoothing and for

smoothing combined with K�2 elimination. The general

procedure is grounded in the generalized linear model, which

enables Poisson statistics to be used for modelling the counts.

The optimal smoothing parameter is determined using the

Akaike information criterion or the L-curve. If desired,

manual tuning of the model is possible as well.

An attractive property of the procedure for K�2 removal is

that the pattern is modelled non-parametrically. No functional

form for the peaks has to be assumed. In essence only the

characteristic wavelengths of the anode material are required.

Results obtained for XRD scans from our laboratory show

satisfactory results, both for smoothing and for smoothing

combined with K� doublet removal. This is confirmed by

inspection of the estimated components.

References

Akaike, H. (1974). IEEE Trans. Autom. Control, 19, 716–723.
Artursson, T., Hagman, A., Björk, S., Trygg, J., Wold, S. & Jacobsson,

S. (2000). Appl. Spectrosc. 54, 1222–1230.
Boor, C. de (2001). A Practical Guide to Splines. Applied

Mathematical Sciences, Vol. 21. New York: Springer.
Chen, Z. P., Morris, J., Martin, E., Hammond, R. B., Lai, X., Ma, C.,

Purba, E., Roberts, K. J. & Bytheway, R. (2005). Anal. Chem. 77,
6563–6570.

Dierckx, P. (1995). Curve and Surface Fitting with Splines. Mono-
graphs on Numerical Analysis. Oxford University Press.

Dobson, A. J. & Barnett, A. (2008). An Introduction to Generalized
Linear Models. Boca Raton: CRC Press.

Eilers, P. H. (2003). Anal. Chem. 75, 3631–3636.
Eilers, P. H. C. (2007). Stat. Modell. 7, 239–254.
Eilers, P. H. C. & Marx, B. D. (1996). Stat. Sci. 11, 89–102.
Frasso, G. & Eilers, P. H. C. (2012). Proceedings of the 27th

International Workshop on Statistical Modelling, pp. 402–405.
Utrecht University.

Hansen, P. C. (1992). SIAM Rev. 34, 561–580.
Hogg, C. II, Mullen, K. & Levin, I. (2012). J. Appl. Cryst. 45, 471–481.
Lutterotti, L. & Bortolotti, M. (2003). IUCr Commission on

Crystallographic Computing Newsletter, No. 1, pp. 43–50.
McCullagh, P. & Nelder, J. (2000). Generalized Linear Models.

London: Champman and Hall/CRC.
Nelder, J. A. & Wedderburn, R. W. M. (1972). J. R. Stat. Soc. Ser. A,

135, 370–384.
Rachinger, W. A. (1948). J. Sci. Instrum. 25, 254–255.
R Development Core Team (2011). R: A Language and Environment

for Statistical Computing. Vienna: R Foundation for Statistical
Computing.

Savitzky, A. & Golay, M. J. E. (1964). Anal. Chem. 36, 1627–1639.
Thompson, R. & Baker, R. J. (1981). Appl. Stat. 30, 125–131.
Whittaker, E. T. (1923). Proc. Edinb. Math. Soc. 41, 63–75.

research papers

860 Johan J. de Rooi et al. � Smoothing of X-ray diffraction data and K�2 elimination J. Appl. Cryst. (2014). 47, 852–860

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5067&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5067&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5067&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5067&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5067&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5067&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5067&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5067&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5067&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5067&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5067&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5067&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5067&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5067&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5067&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5067&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5067&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5067&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5067&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5067&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5067&bbid=BB100
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5067&bbid=BB100
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5067&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5067&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5067&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5067&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5067&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5067&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5067&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5067&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5067&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5067&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5067&bbid=BB19

