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Abstract: Water volume, a fundamental characteristic of lakes, serves as a crucial indica-
tor for understanding regional climate, ecological systems, and hydrological processes.
However, limitations in existing estimation methods and datasets for water depth, such
as the insufficient observation of small and medium-sized lakes and unclear temporal
information, have hindered a comprehensive understanding of global lake water volumes.
To address these challenges, this study develops a machine learning (ML)-based approach
to estimate the dynamic water depths of global lakes. By incorporating various lake fea-
tures and employing multiple innovative water depth extraction methods, we generated
an extensive water depth dataset to train the model. Validation results demonstrate the
model’s high accuracy, with the bias of −0.08 m, a MAE of 1.09 m, an RMSE of 4.78 m, and
an R2 of 0.95. The proposed method provides dynamic monthly estimates of global lake
water depths and volumes in 2000~2020. This study offers a cost-effective and efficient
solution for estimating global lake water dynamics, providing reliable data to support the
monitoring, analysis, and management of regional and global lake systems.

Keywords: water depth; water volume; global lakes; machine learning; depth estimation

1. Introduction
Lakes are an integral component of ecosystems and play a crucial role in maintaining

ecological balance. Although lakes cover approximately 4% of the global land surface
area, they store more than 80% of the Earth’s liquid freshwater [1–4]. Lake volume holds
profound implications for water quality, hydrological processes, biodiversity, and overall
ecological equilibrium [5–8]. Accumulating evidence highlights significant spatiotemporal
variations in lake water volume due to climatic changes and increased human activities in
recent decades [3,9–12].

Despite their importance, detailed estimations and records of global lake volumes
remain scarce, often limited to over-generalized documents, localized regional studies, or
unclear measured methods and data sources. Lake extent, water level, and water depth are
the three primary indicators of water volume [13–15]. Remote sensing satellites have proven
effective for the global monitoring of land surface water (including lake extents) extraction
and mapping [16–18]. Various radar altimetry missions, e.g., Topex Poseidon, Jason-1/2/3,
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CryoSat2, Envisat, and the latest Surface Water and Ocean Topography (SWOT), as well
as laser altimetry satellites, i.e., the Ice, Cloud, and land Elevation Satellite (ICESat) and
ICESat-2, have been employed to measure lake water levels. Many studies rely on water
level measurements to infer regional or even global lake volume changes, analyzing trends
and driving factors based on these data [9,12,19–24]. However, directly acquiring lake
water depth from satellite imagery is challenging. The main limitation is the unknown
lakebed elevation, which cannot be measured by satellites. Without this information, it is
impossible to accurately obtain the water depth solely from water levels.

Several approaches are available for measuring lake water depth in the field, in-
cluding the following: (1) stage-height measurements of water level at a fixed location
over time combined with one or more (low temporal frequency) bathymetry surveys;
(2) regular bathymetry surveys by acoustic remote sensing combined with a GPS-equipped
floating platform or boat; and (3) an estimation of water depth from the differential ab-
sorption of VNIR solar light [13–15]. However, the high costs and inefficiencies with in
situ measurements limit their widespread and continuous application on a large scale [25].
Spectral-based measurements are strongly dependent on water composition and are gener-
ally applicable only to shallow and clear water [26,27]. Despite these limitations, several in
situ lake available datasets provide water depth or volume information, including but not
limited to the Global Lake Bathymetry Database (BathybaseDb), Database for Hydrological
Time Series of Inland Water (DAHITI), Global Reservoir and Dam dataset (GRanD) [28],
HYDROLARE database, Lake Water Physical Environment Dataset (LWPED), Reservoir
Morphology Database (RMD), Texas Rivers, Streams, & Waterbodies (TRSW), and Water
Data for Texas (WDFT). These datasets cover multiple lakes within localized regions.

Although retrieving lakebed elevations through satellite observations remains a sig-
nificant challenge, many studies have attempted to develop methods for estimating water
depth using remote sensing technology. These estimation approaches can generally be
classified into two categories: one relies on in situ measured water depths to establish
empirical relationships with lake features, while the other uses only remote sensing data to
estimate water depth (i.e., without relying on in situ measurements).

The first approach primarily establishes an empirical relationship between in situ
measured water depths and other lake features (e.g., water reflection characteristics, lake
area, and the surrounding topography of lakes), which can be observed by remote sensing
satellites. This relationship is then applied to estimate the unknown water depths. For
instance, numerous studies have employed in situ water depth data combined with multi-
spectral characteristics to establish empirical relationships (i.e., water depth inversion based
on water spectral transmittance in the visible/near-infrared range) for estimating water
depth [13,15,26,27,29–32]. However, this method is only applicable to shallow and clear
lakes. In addition, some studies considered that relevant relationships exist between lake
water depth and other features. These works have utilized lake area and in situ water depth
data to establish functional relationships for estimating unknown water depths [33–37].
Further improvements have incorporated additional lake features, such as lake shape,
surrounding topography, and catchment topography, to estimate lakebed shape and ele-
vation [2,5,28,38–44]. These studies have demonstrated that incorporating lake features
related to surrounding or catchment topography enhances the understanding of lakebed el-
evation. As a result, several available datasets have been produced, including the Database
for Hydrological Time Series of Inland Water (DAHITI), HydroLAKES database [2], Global
lakes bathymetry dataset (GLOBathy), Global Lakes and Wetlands Datasets (GLWDs), and
the Global Reservoir Geometry Database (ReGeom). While these datasets offer estimations
over larger areas, they are constrained by the limited availability of in situ measurements.
Some datasets also lack precise temporal data on water depth. Due to scarce measurements



Remote Sens. 2025, 17, 1052 3 of 29

in the small and medium-sized lakes, the methods based on in situ data have high un-
certainty on these lakes. Previous research [2] artificially adjusted water depth estimates
guided by histograms of depth frequency distributions and expert judgment for lakes of
less than 500 km2.

Given the scarcity of globally available in situ water depth measurements, scholars
have sought to estimate lake depths using remote sensing observations alone, without rely-
ing on in situ data. Some studies have employed laser altimetry data from ICESat/GLAS
and ICESat-2/ATLAS (collectively referred to as ICESat/ICESat-2) to estimate water depth.
For example, Fair et al. [45] manually screened elevation points obtained from laser reflec-
tions off the water surface or lakebed, calculating water depth as the difference between
the water level and lakebed elevation. Other studies [46,47] have established an empirical
relationship between lake area and water level, assuming that the elevation corresponding
to a lake area of zero (i.e., the lake disappearing) represents the lowest bottom elevation.
This approach enables the calculation of water depth as the difference between the water
level and the lowest elevation of the entire lake. Additionally, some studies have examined
the relationship between water-body-occurrence frequency over a defined period and
water levels, using the elevation during dry conditions as the bottom elevation to estimate
water depths [48–51]. Moreover, methods based on digital elevation models (DEMs) have
been proposed to estimate water depth. For instance, some studies predicted lakebed
topographic slopes by extrapolating from the slopes of the surrounding terrain, facilitating
the calculation of lake bathymetry distributions [52,53]. A novel method by Bemmelen
et al. [54] involved creating virtual reservoirs near existing ones to derive area–volume rela-
tionships for the existing reservoirs. Studies focusing on lakes with fully exposed lakebed
elevation during DEM acquisition [55,56] have introduced a new method for estimating
the dynamic water depths of lakes with exposed lakebed topography at some point in time.
Unfortunately, some methods require extensive artificial involvement and computational
intensity (e.g., manually screening data or creating virtual lakes). Other methods are lim-
ited to specific lakes (e.g., those with sufficient satellite observations or meeting special
conditions). Those questions hinder their widespread adoption of such methods.

To overcome the uncertainties related to conflicting evidence in the literature on the
water depth in small and medium-sized lakes and the scarcity of time series, which led
to a challenging generalization of the available estimates, we developed an ML approach
to estimate the water depths of global lakes. Our method combines two key strategies,
i.e., using estimated methods to obtain water depths as reference, then establishing relation-
ships as various features (i.e., morphology and topography) to estimate the dynamic water
depth of global lakes. In this study, we refer to features related to a lake water surface as
“morphological” and to features related to the terrain surrounding a lake as “topographic”.
The morphological features represent the size and shape of the free water surface, and
the topographical features represent the elevation and terrain around a lake. To gener-
ate the necessary training sets, the approach employs three methods: (1) searching lakes
whose lakebed elevations were exposed and observed at the acquired time of the DEM (so
called “dry lakes”) [56] and estimating the water depth when the dry lakes are inundated;
(2) searching for the date when the monthly lake area is nearest to the area provided by the
available lake datasets, then setting the date as the timestamp of the mean water depth
of the lake datasets without time information; (3) converting the water levels measured
by ICESat/ICESat-2 into water depths by co-locating the ICESat/ICESat-2 measurements
and reference data on lake water depth. The relative importance of the morphological and
topographical features is quantitatively assessed based on their influence on water depths.
Finally, dynamic lake volumes are estimated by combining the estimated lake extents and
water depths. The remainder of this paper is organized as follows: Section 2 introduces the
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multiple data used in this study. The proposed methodology and framework are described
in Section 3. In Section 4, the results and the related analysis are listed. Section 5 discusses
the advantages and uncertainty of the assessment results. Finally, we conclude this study
and highlight the potential advantages of the novel framework and lake dataset in Section 6.

2. Materials
In this study, we utilize multiple sources of remote sensing imagery and datasets,

including global surface water maps, global lake extents, digital elevation models (DEMs),
available lake datasets, and ICESat/ICESat-2 observations, to implement the proposed
method. Detailed descriptions of the data are provided below and listed in Table 1.

Table 1. Datasets used in the study and their sources.

Data Format Source URLs Description

GSWED Raster image Big Data for Sustainable
Development Goals

https://data.casearth.cn/
thematic/GWRD_2023/275
(accessed on 14 March 2025)

Global surface water maps

GLAKES Shapefile Pi et al., 2022 [16]
https://zenodo.org/records/
7016548 (accessed on
14 March 2025)

Global lake extents

Bare-Earth
SRTM DEM Raster image O’Loughlin et al., 2015 [57]

https://data.bris.ac.uk/data/
dataset/10tv0p32gizt01nh9
edcjzd6wa (accessed on
14 March 2025)

DEM

BathybaseDb Raster image Open contribution
and access

http://bathybase.org/
(accessed on 14 March 2025) Lake bathymetric data

HydroLAKES Shapefile HydroSHEDS project
https://www.hydrosheds.
org/products/hydrolakes
(accessed on 14 March 2025)

Global lake data

GLWD Shapefile

WWF and the Center for
Environmental Systems
Research, University of
Kassel, Germany

https://worldwildlife.org/
pages/global-lakes-and-
wetlands-database (accessed
on 14 March 2025)

Global lakes and
wetlands database

GRanD Shapefile Global Water System
Project [28]

https://www.
globaldamwatch.org/grand
(accessed on 14 March 2025)

Global Reservoir and
Dam database

ReGeom Shapefile Yigzaw et al., 2018 [1]
https://zenodo.org/records/
1322884 (accessed on
14 March 2025)

Global Reservoir and
Dam database

LWPED Table Big Earth Data Center

https:
//data.casearth.cn/dataset/
65387d82819aec0f26f0adc0
(accessed on 14 March 2025)

Lake field-observed data

WDFT Table Texas Water
Development Board

https://waterdatafortexas.
org/reservoirs/statewide
(accessed on 14 March 2025)

Monitored water
supply reservoirs

HydroBASINS Shapefile HydroSHEDS project
https://hydrosheds.org/
products/hydrobasins
(accessed on 14 March 2025)

Global sub-basin boundaries

ICESat-2/ATLAS HDF5 NASA National Snow and
Ice Data Center

https://nsidc.org/data/glah1
4/versions/34 (accessed on
14 March 2025)
https://nsidc.org/data/atl1
3/versions/5 (accessed on
14 March 2025)

Ice, cloud, and land elevation

2.1. Global Surface Water Maps and Lake Extents

To obtain dynamic global lake extents, this study uses the Global Surface Water Extent
Dataset (GSWED) [18] as the primary source for extracting changes in global lake extent.
The GSWED, derived from the Moderate Resolution Imaging Spectroradiometer (MODIS)

https://data.casearth.cn/thematic/GWRD_2023/275
https://data.casearth.cn/thematic/GWRD_2023/275
https://zenodo.org/records/7016548
https://zenodo.org/records/7016548
https://data.bris.ac.uk/data/dataset/10tv0p32gizt01nh9edcjzd6wa
https://data.bris.ac.uk/data/dataset/10tv0p32gizt01nh9edcjzd6wa
https://data.bris.ac.uk/data/dataset/10tv0p32gizt01nh9edcjzd6wa
http://bathybase.org/
https://www.hydrosheds.org/products/hydrolakes
https://www.hydrosheds.org/products/hydrolakes
https://worldwildlife.org/pages/global-lakes-and-wetlands-database
https://worldwildlife.org/pages/global-lakes-and-wetlands-database
https://worldwildlife.org/pages/global-lakes-and-wetlands-database
https://www.globaldamwatch.org/grand
https://www.globaldamwatch.org/grand
https://zenodo.org/records/1322884
https://zenodo.org/records/1322884
https://data.casearth.cn/dataset/65387d82819aec0f26f0adc0
https://data.casearth.cn/dataset/65387d82819aec0f26f0adc0
https://data.casearth.cn/dataset/65387d82819aec0f26f0adc0
https://waterdatafortexas.org/reservoirs/statewide
https://waterdatafortexas.org/reservoirs/statewide
https://hydrosheds.org/products/hydrobasins
https://hydrosheds.org/products/hydrobasins
https://nsidc.org/data/glah14/versions/34
https://nsidc.org/data/glah14/versions/34
https://nsidc.org/data/atl13/versions/5
https://nsidc.org/data/atl13/versions/5
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onboard NASA’s Terra and Aqua satellites, has an 8-day temporal resolution and a spatial
resolution of 250 m. The dataset is downloaded as raster images from the Data Sharing and
Service Portal of the Big Earth Data Science Engineering Project (CASEarth). Compared
with other water datasets, such as the Joint Research Centre’s Global Surface Water Dataset
(JRC GSWD) [58] and Global Surface Water Dynamics [17], the GSWED offers distinct
advantages, including seamless coverage, high-frequency observations, and moderate
spatial resolution. The dataset categorizes land cover into 5 classes: 1 for water, 3 for ice
and snow, 4 for land, 5 for mountain shadow, and 6 for clouds (with “1” for preliminary
extracted surface water and “2” for temporally interpolated surface water merged into “1”
in the latest version of the GSWED). The processing methodology is detailed in Section 3.1.
Additionally, this study utilizes the global lakes dataset (GLAKES) [16], derived from the
JRC GSWD, to refine lake extents within the land surface water maps. The GLAKES maps
3.4 million lakes globally, detailing their maximum extents and probability-weighted area
changes over the past four decades. By integrating these refined lake extents, this study
effectively excludes water bodies such as rivers, estuaries, coastlines, and marshes from the
surface water maps.

2.2. DEM Data

The Shuttle Radar Topography Mission (SRTM) DEMs, produced by NASA and the
National Geospatial-Intelligence Agency (NGA), are selected as the reference elevation data
for this study. Acquired over a 12-day period in February 2000, the SRTM DEM avoids the
temporal inconsistencies caused by topography and land cover changes. In contrast, other
DEMs, such as the Advanced Land Observing Satellite Global Digital Elevation Model
(AW3D30), are acquired over a longer period (2006~2011), while the TerraSAR-X add-on
for Digital Elevation Measurements (TanDEM-X) DEM covers 2010~2015, and the Multi-
Error-Removed Improved-Terrain (MERIT) DEM [59] combines multi-source data with
varying acquisition times. A key advantage of the SRTM DEM is its derivation from both
X-band and C-band radars, enabling it to penetrate vegetation and forest layers and provide
elevations closer to bare ground. This capability is crucial for accurately representing the
terrain surface. The literature also supports the use of the SRTM DEM, as it shows good
agreement with ICESat/ICESat-2 observations [60]. For this study, the “Bare-Earth” SRTM
DEM [57] with a spatial resolution of 90 m is chosen as the base DEM. This improved
version of the SRTM DEM removes vegetation contamination by integrating multiple
remote sensing datasets. The use of this enhanced SRTM DEM is expected to minimize
disturbances from vegetation cover and provide more accurate land surface elevations.

2.3. Available Datasets

This study uses several available lake datasets which provide effective lake water
depth information for relationship construction. There datasets encompass BathybaseDb,
HydroLAKES, GLWD, GRanD, ReGeom, LWPED, and WDFT. BathybaseDb is a single, or-
ganized, openly accessible dataset mapping the world’s inland waters. It has been collecting
1322 lakes with their bathymetry as pixel-wise information without clear timestamps. The
data are provided as they are and originate from many different sources and researchers
worldwide. HydroLAKES is developed as a team effort in the Global HydroLAB and
widely applied in geographical and hydrological studies. Although the dataset was pub-
lished in 2016 and has not incorporated newly emerged lakes and reservoirs in recent
years, it remains one of the most important and comprehensive lake databases. The GLWD,
developed by the World Wide Fund (WWF) and the Center for Environmental Systems
Research at the University of Kassel, Germany, amalgamates globally available resources
on lakes and wetlands. Our study specifically utilizes Level 1 (GLWD-1), which comprises
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over 3000 large lakes and 600 reservoirs worldwide, along with extensive attribute data.
GRanD, a product of the Global Water System Project, is the result of a collaborative in-
ternational effort to collate existing dam and reservoir datasets with the aim of providing
a single, geographically explicit, and reliable database for the scientific community. We
employ the latest version 1.3 of the GRanD, which contains over 7000 reservoirs. ReGeom
is an improved and extended reservoir dataset based on the GRanD. It was supported by
the U.S. Department of Energy, Office of Science, as part of research in the Multi-Sector
Dynamics, Earth and Environmental System Modeling Program. The dataset computes the
storage and depth from an optimal geometric shape selected iteratively from five possi-
ble regular geometric shapes and has the same unique lake ID with the GRanD. LWPED
is an open-access dataset provided by the Big Earth Data Center and encompasses four
lakes in China. It provides the multiple attributes of four lakes at different hydrological
stations during 2016~2018. The WDFT partners with several data providers, including
the United States Geological Survey (USGS), International Boundary Water Commission
(IBWC), United States Army Corps of Engineers (USACE), United Stated States Bureau
of Reclamation (USBR), etc., to obtain and verify water-related data and offer the WDFT
data. There are additional lake datasets providing water depth or water volumes, but they
all have disadvantages. For example, DAHITI data only offer bathymetry within a partial
extent of a lake. We cannot calculate the mean water depth from it to generate the water
depth samples. There are several outliers in the TRSW data, and we do not know how to
remove such outliers effectively and judge data accuracy. GLOBathy data are an addition
to HydroLAKES, which include estimates of the maximum water depth. HydroLAKES has
been used in this study. We did not use those datasets in model building for the reasons
explained above.

In addition to the above available data for lakes, a catchment dataset, namely Hy-
droBASINS, is used to delineate lake catchments. HydroBASINS consists of a series of
vectorized polygon layers that depict sub-basin boundaries at a global scale. The dataset
is provided by HydroSHEDS and extracted from the gridded HydroSHEDS at arc-second
resolution. All the available datasets of lakes used in our study are openly accessible and
available online.

2.4. ICESat/ICESat-2

The ICESat/ICESat-2 data, publicly available through the NASA National Snow and
Ice Data Center, are used as a reference to evaluate the estimated water level. ICESat/GLAS,
launched in January 2003 and retired in October 2009, operated at an altitude of approxi-
mately 600 km and carried three laser sensors to collect data from latitudes between 86◦S
and 86◦N. ICESat-2/ATLAS, launched in September 2018, has an inclination of 92◦ and
an exact repeat cycle of 91 days. Compared to the first-generation ICESat/GLAS measure-
ments, ICESat-2/ATLAS offers significant improvements in both detection capability and
application potential. In this study, the ICESat/GLAS Global Land Surface Altimetry Data
(GLAH14) in HDF5 format from 2003 to 2009 and the ICESat-2/ATLAS ATL13 (inland wa-
ter surface height) version 5 from 2018 to 2020 are collected and processed. The processing
method is detailed in the next section.

3. Methodology
The methodology applied in this study includes three main elements and multiple

steps, as illustrated in Figure 1: (a) computing lake features, (b) generating training sets
on water depth, and (c) building a relationship between candidate features (predictors)
and water depth (predictand) using ML to estimate the water depth and volume of global
lakes. Specifically, three ML algorithms are selected to estimate the required relationship.
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To construct the input datasets, this study generates monthly dynamic lake extents in
2000~2020 using the 8-day GSWED and GLAKES. Next, using the monthly lake extents and
DEM, multiple lake features are computed as training features, including the morphological
features of the lake water surface and the topographical features of the lake buffer zone and
catchment. These features potentially influence lake water volume and lakebed topography.
As shown in Figure 1b, this study applies three independent approaches to generate water
depth data. The first approach estimates the water depth of the lakes which were dry at
some point in time and where lakebed elevations were captured in a DEM and the lake
water surface could be observed at any other time. Water depth is estimated as the difference
between the elevation of the water surface and the lakebed (see Section 3.4.1 for a detailed
explanation). The second approach searches for the date when the monthly lake area is
nearest to the area provided by the available lake datasets, setting the date as the timestamp
of the mean water depth of available lake datasets without time information. The third
approach estimates lake water depth using the ICESat/ICESat-2 water level observations,
which requires concurrent ICESat/ICESat-2 observations and estimates based on the first
two methods. Using the water depth for these common dates as a reference, ICESat/ICESat-
2 water levels are correlated with water depths, with the resulting relationship being
usable as an estimator of lake water depth. The three methods are described in more
detail in Section 3.4. Finally, the lake features and water depth estimates are used to
establish relationships by applying ML methods. Dynamic water volumes are calculated by
combining the monthly water surface area by GSWED and the monthly mean water depth
estimates of each lake. To evaluate the models, we use the performance metrics described
in Supplementary SB.

Figure 1. The flowchart of the proposed method: (a) computing the lake features, (b) generating the
training sets on water depth, and (c) building the relationship by ML between the candidate features
and water depth to estimate the water depth and volume of global lakes. The red boxes are the input
data, the blue boxes are the key processing, and the yellow boxes are the productions and results
during the method.
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3.1. Machine Learning Models

The experiment applied three ML algorithms’ methods, i.e., Random Forest (RF),
Gradient Boosting (GB), and Bagging (Bg) regressors, to estimate a relationship between
the lake water depth and the multiple features of a lake and its surroundings. Specifically,
the training and testing features capture the morphology of the lake water surface and
the surrounding terrain, as explained in detail in Section 3.3. The RF is a meta estima-
tor that fits a number of decision tree regressors on various sub-samples of the training
dataset, and uses an averaging approach to improve the predictive accuracy and to control
overfitting [61,62]. It is suitable for dealing with high-dimensional data and for dealing
with problems characterized by complex interactions. The GB builds an additive empirical
relationship in a forward stage-wise fashion. It allows for the optimization of arbitrary dif-
ferentiable loss functions. In each stage, a regression tree is fitted on the negative gradient
of the given loss function [63,64]. It is suitable for dealing with complex nonlinear rela-
tionships and problems with strong feature interactions. The Bg regressor is an ensemble
meta-estimator that fits each base regressor on a random subset of the original dataset and
then aggregates their individual predictions (either by voting or by averaging) to form a
final prediction [65,66]. Such a meta-estimator can typically be used as a way to reduce
the variance of a black-box estimator (e.g., a decision tree) by introducing randomization
into its construction procedure and then making an ensemble out of it. It is suitable for
working with large datasets and dealing with low-variance problems. The three methods
are classic and commonly used ML methods. The three ML algorithms are all ensembled
learning methods, which improve the performance and stability of a model by combining
multiple weak learners. Integrated learning methods usually have better generalization
ability and robustness than single models (e.g., linear regression, support vector machines,
etc.), especially when dealing with complex datasets. These algorithms were chosen to take
full advantage of integrated learning and to avoid overfitting or underfitting problems that
might exist with a single model. In this study, we mainly use Python 3.11.6 and scikit-learn
library to implement the three methods and to test multiple operating parameters to obtain
the best performances.

3.2. Monthly Global Lake Extents

The 8-day GSWED provides continuous and spatiotemporal surface water maps in
2000~2020, including the lake extents. The approach converted the 8-day data into monthly
values and extracted the lake extents accordingly. Using the integration approach shown
in Figure 2, a pixel was designated as water if it contained any water cover during a
given month. After completing the processes including image mosaicking (where the
initial images, downloaded from the website, have been segmented into equal regions),
vectorization, and the selection of water features, this study derived the monthly global
water surface extents in a refined vector format using ArcGIS Pro. To specifically isolate
lake extents, the study employed the GLAKES dataset as a spatial mask, which was
systematically intersected with monthly water surface extents. This spatial filtering process
retained only those water bodies within the GLAKES boundaries as monthly lake extents,
while effectively excluding non-lake water features including river systems, estuarine
environments, coastal zones, and wetland marshes. The lake extents were identified
consistently with the GLAKES dataset. Notably, lakes located at latitudes exceeding
60◦N and 56◦S or with surface areas smaller than 10 km2 were excluded, as the elevation
information from the SRTM DEM pertains only to the range between 56◦S and 60◦N.
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Figure 2. The method for integrating the 8-day images into monthly images during 2000~2020.

3.3. Lake Features

In this study, we integrated previous findings and employed a variety of lake features
(Table 2) as training and testing features for the ML models and took the monthly mean
water depth of each lake as the target value. For the sake of conciseness, we used the term
“morphological” to refer to the lake water surface and “topographic” to refer to the terrain
surrounding a lake. The morphological features represent the size and shape of the free
water surface, which indirectly reflect the lake water volume. The topographical features
represent the elevation and terrain around the lake and in the catchment, which potentially
affect the shape of the lakebed.

Table 2. The detailed parameters of the lake features.

Features Type Unit Description

Area

Morphologic features

km2 The surface area of a lake
Perimeter km The perimeter of a lake

SRatio \ The ratio of the surface area and perimeter
Length km The range (maximum–minimum) of the longitude of a lake
Width km The range (maximum–minimum) of the latitude of a lake
LRatio \ The ratio of the length and width

MeanS100

Surrounding topographic features

% The mean slope in the 100 m buffer zone around a lake
Median S100 % The median slope in the 100 m buffer zone around a lake

MaxS100 % The maximum slope in the 100 m buffer zone around a lake
RangeS100 % The range (maximum–minimum) of the slope in the 100 m buffer zone around a lake
STDS100 % The standard deviation of the slope in the 100 m buffer zone around a lake

MeanHybas

Catchment topographic features

meter The mean elevation in the hydrological basin where a lake is located
MedianHybas meter The median elevation in the hydrological basin where a lake is located

MaxHybas meter The maximum elevation in the hydrological basin where a lake is located
STDHybas meter The standard deviation of elevation in the hydrological basin where a lake is located

In detail, the morphological features include surface area, perimeter, the area–
perimeter ratio (SRatio), length, width, and the length–width ratio (LRatio). The surface
area and perimeter of a lake serve as indicators of its size, reflecting the capacity of a lake
to hold water. The SRatio is a measure of the complexity of a lake water surface. A smaller
ratio indicates simpler shapes, like circles or ellipses. The different ratios are caused by the
terrain morphology, which determines the lake water depth. The length, width, and LRatio
of a lake reflect a lake orientation. In general, tectonic lakes have larger length–width ratios
and tend to be deeper, while volcanic lakes have a length–width ratio close to 1.

The surrounding topography determines the shape of the lakebed. For example, steep
mountainous topography is often associated with deeper lakes (e.g., tectonic or glacial
lakes), whereas shallower lakes, formed by wind or water erosion, are usually found in
gently sloping plains. In addition, the surrounding topography indirectly affects lake
volume and depth by influencing local climate (e.g., more precipitation on windward
slopes, less on leeward slopes). Terrain morphology may reduce irradiance and therefore
evaporation at a lake surface and maintain lake depth. A 100 m wide buffer zone around
a lake boundary was defined and applied to calculate slope-related features. The latter
included the following: mean slope (MeanS100), median slope (MedianS100), maximum
slope (MaxS100), slope range (RangeS100), and standard deviation of slope (STDS100). The



Remote Sens. 2025, 17, 1052 10 of 29

mean and median values reflect the average and intermediate values of the surrounding
terrain slope, respectively. The mean is sensitive to extreme values, but it provides an
overall representation of the terrain surrounding a water body. In contrast, the median
is less affected by outliers. The maximum slope highlights the extreme values of the
surrounding terrain slope, while the range and standard deviation capture the variability
of the slope.

The topography of the catchment in which a lake is located affects the depth of the
lake in a number of ways. A larger catchment area usually means that more precipitation is
pooled into the lake, while a smaller catchment area may result in insufficient water inflow
and a shallower lake. Steep terrain increases runoff and water inputs. Multiple topographic
features of a lake catchment were used: mean (MeanHybas), median (MedianHybas), and
maximum elevation (MaxHybas) and the standard deviation of elevation (STDHybas). The
mean and median elevation values reflect the overall altitude of the catchment. The
standard deviation of elevation measures the terrain ruggedness, aiding in the assessment
of the spatial distribution of lake depth.

The parameters of area and perimeter are basic and well-known metrics and thus are
not discussed further. We introduce two additional parameters: SRatio and LRatio, which
are calculated as follows:

p = 2
√

Area ∗ π (1)

SRatio =
Perimeter − p
Perimeter + p

(2)

LRatio =
Length − Width
Length + Width

(3)

where p represents the equivalent perimeter of a lake, defined as the perimeter of a circle
with the same area as the lake, and Perimeter is the actual perimeter of the lake. Both ratio
parameters are normalized: SRatio ranges from 0 to 1, and LRatio spans from −1 to 1.
When SRatio is close to 0, the lake’s shape approximates a perfect circle. Conversely, as the
SRatio increases, the shape becomes more irregular. A value of LRatio near −1 indicates
a lake elongated in the north–south direction, whereas a value near 1 suggests a broader,
east–west orientation.

As regards the topographic features in the surroundings of a lake, this study first
estimated the slope for the entire SRTM DEM including the lake. This operation was
carried out by applying the “Slope” tool in ArcGIS Pro. Then, the 100 m wide buffer zone
around each monthly lake extent was applied as a mask to extract the slope values in the
buffer zone and used to calculate the five topographic features. The five metrics were
calculated with the “Zonal Statistics as Table” tool in ArcGIS Pro. The tool can summarize
the statistical values of a raster within the zones of other data. Further, the catchment of
each lake was determined according to the HydroBASINS Level 4 dataset. Then, the four
indicators representing the catchment topographic features were likewise calculated by
applying the “Zonal Statistics as Table” tool to the HydroBASINS and bare-earth SRTM
DEM data.

3.4. Training Sets on Water Depth

This section introduces the three methods described in Figure 1b, which are used to
generate water depth samples for training ML models.

3.4.1. Training Set on the Dry Lakes

The water depth of so-called “dry lakes”, where lakebed elevations were exposed
at a moment in time when a DEM could be generated and where the extent of the water
surface was observed and delineated at any other time, can be calculated as the difference
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between the water level and lakebed elevations. This method has been validated in previous
studies [56]. As shown in Figure 3, dry lakes (i.e., those with fully exposed lakebeds) were
identified by comparing the lake extent images from February 2000 (the time when the
SRTM DEM was acquired) with those from subsequent months. The SRTM DEM provides
the elevation of these exposed lakebeds in February 2000. These elevations, combined
with the vectorized monthly lake extents, were used to estimate the lake water surface
elevation for each month between March 2000 and 2020. The estimation process involves
the following steps: (1) converting the monthly lake water extents (polygons) into water
boundary polylines; (2) creating a 30 m buffer zone around the water boundary; (3) using
the ‘Zonal Statistics as Table’ tool in ArcGIS Pro to calculate the mean elevation values of
the SRTM DEM within the buffer zone along the water boundary. The average elevation
of the buffered water boundary serves as an estimate for the monthly lake water surface
elevation, i.e., water level. Furthermore, estimates with significant inaccuracies in water
boundaries (indicated by large standard deviations) would increase the uncertainty in
water depth calculations. Considering that the elevations on the water boundary are
nearly equal because the water surface is horizontal, a large standard deviation in the
elevations on the water boundary pinpoints inaccuracies in the land–water boundary. To
improve accuracy and reduce uncertainty, samples with water boundary elevation standard
deviations exceeding 10 m were excluded.

Figure 3. The concept for extracting water depth from the dry lakes during 2000~2020. (a) the
lakebed elevations, if exposed, can be completely determined using a DEM; (b) the elevations along
water-land boundary at time t1 and t2 are determined using the same DEM to estimate the elevation
of the water surface.

Monthly maps of water surface elevations were generated following this methodology.
For each month of inundation from March 2000 to December 2020, the water surface
elevations were calculated on a pixel-wise basis. This involved subtracting the lakebed
elevations in February 2000. Using this approach, a substantial global dataset on water
depths was generated and utilized as training and testing samples. We calculated the
monthly average water depth of the dry lakes as the training samples.

3.4.2. Training Set on the Available Lakes

Most available datasets provide only mean surface area and water depth values
without temporal information, but they also offer valuable information improving the
accuracy of water depth estimates. This study used the seven datasets introduced in
Section 2.3. For the BathybaseDb, HydroLAKES, GLWD, GRanD, and ReGeom, and this
study extracted the mean area and water depth values for special lakes. For the LWPED
and WDFT, we obtained the water depth time series for several lakes in Asia and America.
Due to the different geographical coverages and the unclear timestamps in the original
data, these data need the necessary preprocessing and timestamp alignment.
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BathybaseDb contains over 1200 lakes, providing their spatial extent and bathymetry
in raster images but lacking clear timestamps. To address this, this study vectorized the
raster images into polygons, extracted the geographical coordinates of each lake, and
aligned them with the lake extents produced in Section 3.2. By calculating the average
water depth and polygon area, this study estimated the surface area and mean water
depth for each lake. Datasets such as HydroLAKES, GLWD, GRanD, and ReGeom offer
precise spatial coordinates and polygons for lakes worldwide, along with attributes like
average water depth and volume in lake shapefiles. However, these datasets lack temporal
information, thus providing only static water depths. This study matched the lakes in
these datasets with our lake extents based on their geographic location, then extracted their
area and mean water depth. The LWPED dataset includes monthly in situ measurements
from four lakes in China during 2016~2018, with multiple stations in each lake. This study
assigned the same IDs to these lakes as in the lake extents, calculated the average water
depth from the station data, and derived the monthly water depth for each lake during
this period. The WDFT dataset provides in situ data with lake names, real-time surface
areas, and volumes. Using Google Earth and the dataset’s published website, this study
identified the corresponding lakes within our lake extents, then calculated the mean water
depth by computing the ratio of water volume to surface area. The daily water depths
were averaged to obtain the monthly water depths. Through these approaches, this study
effectively organized the available data from multiple sources.

Although the available lake datasets, after preliminary processing, provide water
depths for lakes, the absence of timestamps hinders their integration with dynamic lake
features. To assign appropriate timestamps to the available data, this study adopted two
matching approaches: one based on lake area and the other on available timestamps. The
approach based on surface area assumes that a lake maintains a similar water depth under
similar surface area conditions. As shown in Figure 4, the matching process based on the
lake area involves the following steps:

(1) extract the mean surface area and water depth of the target lake (At, Dt);
(2) determine the monthly lake area from the lake extent data (A1, A2, . . . An);
(3) identify the mth month where the lake area (Am) most closely matches the mean area (At);
(4) use the lake features and corresponding water depth for the mth month as a training

sample (Fm, Dt).

Figure 4. The matching method for the available dataset based on lake area.

This method was applied to datasets from BathybaseDb, GLWD, GRanD, Hydro-
LAKES, and ReGeom. In contrast, the LWPED and WDFT datasets provide dynamic
water depths. To synchronize these with the lake features, this study used the acquired
timestamps to integrate the water depths with the corresponding lake features (listed in
Table 2), as shown in Figure 5. The dynamic water depths (Dn) were subsequently aligned
with the timestamps, generating feature-depth samples (Fn, Dn) for each timestamp. No-
tably, while the WDFT observations date back to the 1950s, this study focused only on the
2000~2020 period. Therefore, only the WDFT data within this timeframe were considered.
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Figure 5. The matching method for the available dataset based on the acquired timestamps.

3.4.3. Training Set on the Lakes Observed by ICESat/ICESat-2

ICESat/ICESat-2 have demonstrated their ability to provide the remote sensing mea-
surements of lake water levels [19,60,67]. Assuming negligible fluctuations in lakebed
elevation, the lakebed elevation can be estimated as the difference between the lake water
level and the water depth (if known):

WL1 − WD1 = WL2 − WD2 = Lakebed elevation (4)

WD2 = WL2 − WL1 + WD1 (5)

where WL1 and WL2 represent the water levels at different times, and WD1 and WD2

represent the water depths at corresponding times. Once the water depth is determined at
a specific moment during ICESat/ICESat-2 observations, water depths at other observed
times can be extrapolated using the recorded fluctuations in the water level. Therefore, this
study operated under the assumption presented in the previous section, which posits that
individual lakes maintain approximately equal water depths when subjected to the same
or similar surface area conditions. A matching method for the ICESat/ICESat-2 observed
lakes is illustrated in Figure 5. The monthly water levels of global lakes have been derived
by processing the ICESat/ICESat-2 data, as detailed in Supplementary SA. As shown in
Figure 6, the matching process can be divided into several steps:

(1) determine in which months (tn) the water level of a given lake was observed by
ICESat/ICESat-2;

(2) compare the observed months with the training sample months (tm) generated by the
previous methods, and identify the coincident months (to);

(3) establish the corresponding water level from ICESat/ICESat-2 measurements and the
water depth from the training sample for the coincident month (WLo, Do);

(4) convert the ICESat/ICESat-2 water levels into water depths as a baseline (WLo, Do);
(5) integrate the lake features (listed in Table 1) and water depths according to their

timestamps to create new training samples (Fn, Dn).

Figure 6. The converting method for the water levels derived by ICESat/ICESat-2.
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4. Results and Analysis
4.1. Model Performance
4.1.1. Water Depth of the Global Dry Lakes

Figure 7 illustrates the global distribution and proportions of dry lakes relative to total
lakes, highlighting significant regional disparities. Dry lakes account for ~7% of all lakes
globally, amounting to 665 out of 8889 lakes. Their distribution is uneven across continents:
Africa (~12.6%), Asia (~13.2%), and South America (~18.3%) exhibit significantly higher
proportions of dry lakes, while Oceania (~9.3%), Europe (~3.7%), and North America
(~1.7%) show much lower values. Dry lakes are concentrated in arid or semi-arid regions of
the Northern Hemisphere, such as the western interior of North America (e.g., the “Great
Basin” region of the United States), central Asia (e.g., northwestern China, Central Asia),
and the Sahel region of Africa. These distribution patterns are likely influenced by regional
climatic, topographic, and hydrological variations.

Figure 7. The distributions and numbers of the global dry lakes: (a) is the spatial distribution of the
global dry lakes, (b) is the number of the dry and total lakes in each continent, and (c) is the ratio of
the dry lakes in global lakes.

Despite accounting for a small proportion of global lakes, dry lakes hold considerable
scientific significance. The dry lakes serve as key sources of water depth data during
subsequent periods of inundation, as their exposed lakebeds allow for accurate elevation
measurements. Using the estimation methods described in Section 3.4.1, this study ex-
tracted a substantial number of water depth samples from these regions, contributing to a
better support for the water depth estimation.

This study also calculated the multi-year averages of their surface areas and the mean
water depths of the dry lakes, as illustrated in Figure 8. The majority of dry lakes have a
surface area of less than 100 km2, and their mean water depths are predominantly below
4 m. These findings indicate that most dry lakes are medium or small sized. The accurate
estimation of dry lake water depths provides valuable Supplementary Data to address the
scarcity of field observations, particularly for small lakes. Field measurements for such lakes
are limited, as they often receive less attention from researchers and organizations despite
their widespread distribution. The scatterplot in Figure 8c illustrates the relationship
between the multi-year averages of surface area and mean water depths for dry lakes.
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However, the analysis reveals no significant correlation to support the assumption that
larger surface areas correspond to greater water depths. Small lakes can also exhibit
relatively large water depths, undermining the reliability of estimating water depth based
solely on surface area. This highlights the complex and multifaceted nature of the factors
influencing the lakebed topography, even lake water depths, underscoring the need for
further in-depth studies to understand these relationships.

Figure 8. The multi-year averages of the surface areas and the mean water depths of the global dry
lakes: (a) is the multi-year averages of the surface areas of dry lakes in each continent, (b) is the
multi-year averages of the mean water depth statistics of dry lakes in each continent, and (c) is the
relationship between the multi-year averages of the surface area and the mean water depths of the
dry lakes. The different colors represent the different continents. The abridges of continents are
as follows: Af is Africa, As is Asia, Eu is Europe, NA is North America, Oc is Oceania, and SA is
South America.

The estimated water depths of the dry lakes play a crucial role in constructing the ML
relationships, because they add key dynamic information into the training samples. Thus,
the accuracy of these estimates directly impacts the performance of these relationships.
As detailed in Section 3.4.1, the key to estimate the dynamic water depths of these lakes
is the estimation of water levels. We used the water levels observed by ICESat/ICESat-
2 as a reference to evaluate the estimated water levels. There are 763 ICESat/ICESat-2
observations (497 from ICESat and 266 from ICESat-2) and concurrent estimates based
on our procedure. The results of the comparison (Table 3) are quite encouraging, e.g., an
overall MAE of 2.74 m. Both the R2 and KGE approach 1, indicating excellent performance.
These results verify that the water levels estimated using the water boundary method
align strongly with the ICESat\ICESat-2 observations. The estimated lake water depths
are sufficiently reliable as a reference dataset to establish ML relationships applicable to
all lakes.

Table 3. Comparative analysis of water levels observed by the ICESat\ICESat-2 and estimated by the
water boundary method.

Number Bias (m) MAE (m) RMSE (m) R2 KGE

ICESat 497 0.91 2.41 3.12 0.999 0.997
ICESat-2 266 2.10 3.35 5.35 0.999 0.996
Total 763 1.33 2.74 4.04 0.999 0.997

4.1.2. Lake Training Samples

This study collected 76,030 training samples from 6472 lakes, representing approxi-
mately 73% of global lakes (Figure 9). Among these, a majority of the 56,976 samples (~75%)
derived the estimated water depths of dry lakes. This method effectively addressed the gap
in data for small and medium-sized lakes, which were often neglected in global lake studies
and provided critical support to develop an empirical relationship to estimate lakebed
elevation. In addition to the dry lake samples, the ICESat-derived method contributed
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9424 samples, offering complementary dynamic water depth information. Together, these
two methods supplied the majority of training samples, facilitating the modeling of lakes
across all sizes. Moreover, available lake datasets, such as HydroLAKES (4145 samples),
WDFT (3201 samples), and GRanD (1161 samples), contributed approximately 13% of the
total samples (9630). These datasets were particularly valuable to estimate the lakebed
elevations of large lakes. Although some lakes only have single-date samples that lack
dynamic water depth information, they provide essential data that compensate the limi-
tations of the dry lake approach. The integration of multiple data sources improved the
spatial and geomorphological coverage of the lake training samples. Although the inte-
gration of multiple data sources might introduce uncertainties, these datasets contained
valuable reference information that could not be ignored. Therefore, this study retained
these datasets and leveraged their complementary strengths to improve the accuracy and
robustness of the analysis. The training samples also exhibited a realistic distribution
pattern, with a dominance of small lakes and relatively fewer large ones. The abundant
and widely distributed training samples play a pivotal role in enhancing the performance
and reliability of these models, particularly in improving water depth predictions for lakes
of varying sizes.

Figure 9. The sources of data, water depth, and lake area of lake training samples: (a) is the sources
of data, (b) is the distributions of water depth, and (c) is the distributions of lake area (“+” represents
the outliers beyond the caps). The ticks in the x axis represent: D (dry lakes), I (ICESat/ICESat-2), H
(HydroLAKES), W (WDFT), G (GRanD), R (ReGeom), L (LWPED), GL (GLWD), and B (BathybaseDb).

4.1.3. Reliability of ML Models

This study utilized a large water depth training dataset to explore the relationship
between lake features and water depth using ML models. The original samples were
randomly divided into a training set consisting of 80% of the original data and the remaining
20% was set aside as an independent testing set. The testing data were set as the reference to
evaluate the estimates of lake water depths. To construct the ML relationships, we applied
a hierarchical 5-fold cross-evaluation to the training set to optimize the hyperparameters of
each of the three ML models. In addition, we applied thresholds to the maximum depth
and the minimum number of splitting samples to reduce the model’s complexity and
mitigate against overfitting. The grid search was applied to find the optimal parameters in
each ML model with detailed information provided in Supplementary SC Table S1. After
determining the optimal parameters, we applied the random segmentation to the testing
samples five times to fully evaluate the performance of the relationships. Furthermore, a
piecewise GB model was developed by the piecewise subsets of the training dataset. The
piecewise subsets included samples with lake areas in the ranges of 0~1 km2, 1~10 km2,
10~102 km2, 102~103 km2, 103~104 km2, and more than 104 km2 (noting that some lakes did
not always maintain areas larger than 10 km2). Table 4 summarizes the average performance
metrics of the three ML models under the five strategies and the total performance of the
piecewise GB model, using metrics such as bias, MAE, RMSE, R2, and KGE for both training
and testing datasets. The detailed individual performance metrics of the three models
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under each splitting strategy are available in Supplementary SC Table S2. Additionally,
scatterplots illustrating the comparison between the reference and predicted water depths
for both training and testing datasets across the four models are presented in Figure 10.
The compared scatterplots for the piecewise GB model in different lake area ranges are in
Supplementary SC Figure S1.

Table 4. The train and test mean performances of the three models.

Number Sample Bias (m) MAE (m) RMSE
(m) R2 KGE

RF 76,030
train 0.01 0.45 1.99 0.99 0.97
test 0.03 1.19 4.74 0.95 0.94

GB 76,030
train −0.06 0.12 1.45 0.99 0.98
test −0.03 1.12 5.20 0.95 0.96

Bg 76,030
train 0.02 0.57 2.42 0.99 0.97
test 0.06 1.24 4.77 0.95 0.94

Piecewise GB 76,030
train −0.02 0.19 1.17 0.99 0.96
test −0.08 1.09 4.78 0.96 0.95

Piecewise GB (0~1 km2) 6672
train −0.02 0.05 0.18 0.99 0.97
test 0.01 0.44 0.81 0.39 0.51

Piecewise GB (1~10 km2) 26,251
train −0.08 0.14 2.13 0.91 0.84
test −0.06 0.58 3.07 0.54 0.65

Piecewise GB (10~102 km2) 34,847
train −0.09 0.17 1.74 0.97 0.94
test −0.10 1.22 4.97 0.76 0.82

Piecewise GB (102~103 km2) 6366
train −0.09 0.16 1.07 0.99 0.97
test 0.01 2.15 6.82 0.88 0.91

Piecewise GB (103~104 km2) 1502
train −0.32 0.58 1.77 0.99 0.98
test −0.38 2.96 9.25 0.97 0.97

Piecewise GB (~104 km2) 392
train −3.38 5.89 10.16 0.99 0.95
test −1.81 10.38 22.60 0.99 0.95

Figure 10. Scatterplots of the referenced and predicted water depth from the training and testing
datasets with three ML models.
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The three ML methods demonstrated similar and outstanding performances in estimat-
ing water depth. In capturing the relationship between water depth and selected features,
the models achieved average R2 and KGE values near 1, showcasing their excellent ability
to fit the data and explain the variation in mean water depth. In terms of error metrics,
the biases were 0.01 m, −0.06 m, and 0.02 m; the MAEs were 0.45 m, 0.12 m, and 0.57 m;
and the RMSEs were 1.99 m, 1.45 m, and 2.42 m. These results indicate that the models
consistently produced low error rates compared to the training samples. Overall, the three
models proved to be reliable and robust, offering strong support for accurate water depth
predictions in future applications. The test performances of the three methods remained
strong, with R2 and KGE values also near 1. These results indicate that all methods ef-
fectively captured the relationship between lakebed elevation and lake features, even for
the unknown water depth with no reference. In terms of error metrics, the biases were
0.03 m, −0.03 m, and 0.06 m; the MAEs were 1.19 m, 1.12 m, and 1.24 m; and the RMSEs
were 4.74 m, 5.20 m, and 4.77 m. While the MAE values were satisfactory, the larger RMSE
values suggest that predictions were generally accurate, but individual lakes exhibited
larger errors. This discrepancy highlights the challenges in predicting water depths for
certain lakes with specific conditions. Among the three methods, GB demonstrated the
best overall performance, followed by RF, showcasing their robustness and adaptability to
complex datasets. Although the performance on the test set was slightly worse than on the
training set, the results underscored their strong generalization ability, delivering stable
and accurate estimates across diverse datasets. Water depth, as a multifaceted attribute
influenced by numerous factors, reflects the complexity of lake systems. The capability of
ML algorithms to adapt to such intricate relationships proves to be a significant advantage,
further affirming their suitability for large-scale water depth estimation.

Similarly, the assessment of the piecewise GB methods demonstrates their robust
overall performance on both the training and testing samples in Table 4. For lakes across
different area ranges, the models consistently achieved high R2 values and KGE values,
along with low biases, MAEs, and RMSEs, indicating their ability to accurately estimate
known water depths. For the testing dataset, the models exhibited strong performance
for lakes with areas larger than 10 km2. Specifically, R2 values were 0.76, 0.88, 0.97, and
0.99, and KGE values were 0.82, 0.91, 0.97, and 0.95 for lakes in the ranges of 10~102 km2,
102~103 km2, 103~104 km2, and more than 104 km2, respectively. However, the performance
significantly deteriorated for smaller lakes. For lakes with areas of 0~1 km2 and 1~10 km2,
the R2 values were only 0.39 and 0.54, and the KGE values dropped to 0.51 and 0.65,
respectively. These results suggest that the piecewise GB models would provide uncertain
estimations for smaller lakes. The reason will be discussed in Section 5.

4.2. Results and Assessment
4.2.1. Assessment of the Individual Lakes

There are 6472 lakes which have water depths provided by the three generation
methods. This section compares the estimates of the four models and the observed water
depths wherever the latter were available. Figures 11 and 12 presented the boxplots
and spatial distributions of the performance metrics for the four methods. The results
showed that the model performance on the individual lakes was consistent with the overall
evaluation: the GB and the piecewise GB outperformed the other methods. The piecewise
GB method achieved the best overall performance, with a lower bias, MAE, RMSE, and
relative bias compared to the standard GB model. Specifically, the piecewise GB model
achieved average values of −1.86 m (Bias), 3.59 m (MAE), 3.91 m (RMSE), and 0.27 (relative
Bias), outperforming the standard GB model, which had values of −1.13 m, 3.69 m, 3.99 m,
and 0.74, respectively. The superior performance of the piecewise GB model stemmed
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from its ability to capture the nuanced relationships between lake features and lakebed
elevations across different lake size intervals. In particular, the piecewise GB model was
effective in mitigating the disruption caused by the frequent oscillations in the water levels
of small lakes compared with larger lakes. In contrast, the standard GB model struggled
to fully describe these relationships without area-based segmentation. Based on these
results, the piecewise GB model was selected as the final method of estimation, as it
offers better adaptability to diverse lake characteristics and supports more accurate water
depth estimation.

Figure 11. The boxplots of the performance metrics of the three methods and the piecewise GB
method in each assessed lake.

Figure 12. The relative bias between the reference and estimated water depths in each lake during
2000~2020.

4.2.2. Estimated Water Depth

The monthly water volumes are calculated as the product of the lake area and the
corresponding water depth for each month (Figure 13). According to the GLAKES database,
the total area of the lakes analyzed in this study is ~1.628 million km2, which accounts for
about 85% of the total area of global natural lakes larger than 10 km2 [16]. In terms of water
depth distribution, the global lakes have an average water depth of 8.5 m and a median of
5.1 m. Notably, 951 lakes have a mean water depth of less than 1 m, while 6821 lakes have
a mean water depth of less than 10 m, representing ~10.7% and ~72.6% of the total number
of global lakes, respectively. This indicates that the majority of lakes worldwide have water
depths ranging between 1 and 10 m. In addition, Supplementary SC Figure S2 illustrates
the dynamic water depth of the selected lakes. This figure provides a visual representation
of temporal changes, highlighting the methods’ capabilities to capture fluctuations in water
depth over time.
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Figure 13. The mean water depth (a) and volume (b) of global lakes during 2000~2020 estimated
with the piecewise GB methods.

In addition, the total water volume of global lakes is estimated to be approximately
188.5 × 103 km3, which is about 8.0% higher than the ~174.2 × 103 km3 reported by
HydroLAKES. In terms of water volume distribution, the global lakes have an average
water volume of 21.2 km3 and a median of 0.12 km3. Notably, 7676 lakes have water
volumes of less than 1 km3, accounting for approximately 86.3% of the total number of
global lakes but only ~0.63% of the total water volume. Similarly, 8619 lakes, representing
~97.0% of the total number of lakes, hold less than 10 km3 of water, contributing just ~2.12%
of the global lake water volume. These findings highlight that while the majority of the
global lake water volume is concentrated in large lakes, the widely distributed small and
medium-sized lakes play a crucial complementary role in regulating water balance within
regional catchments.

4.2.3. Comparison with the ICESat/ICESat-2 Observations

For the lakes with the ICESat/ICESat-2 observations, this study calculated the water
level changes at the first and last observed months. Concurrently, the water depth changes
in our estimates of those lakes at the coincident months (the first and last observed months
of the ICESat/ICESat-2) were calculated as comparisons. The distribution of differences be-
tween the ICESat/ICESat-2 and our retrievals (Figure 14) is centered around zero, indicating
that the majority of the differences are small. This suggests that while the model performs
reasonably well overall, there are outliers where the discrepancies are more pronounced.
Figure 13b provides a scatterplot comparing the estimated water depth changes with the
ICESat water level changes for individual lakes. While many data points cluster around
this line, some deviation is evident, particularly for larger change values. Key performance
metrics are also presented: a bias of −0.405 m indicates a slight underestimation by the
model on average. The MAE of 2.491 m and the RMSE of 3.867 m quantify the magnitude
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of errors, while the R2 value of 0.297 reflects a moderate correlation between the estimates
and ICESat/ICESat-2 observations. Overall, the figure highlights that our method obtains
similar water depth changes with the ICESat/ICESat-2 observations.

Figure 14. The histogram (a) of the difference between the water level changes derived by
ICESat/ICESat-2 and the water depth changes in the estimated results and the scatter (b) between
the two sets.

This study further analyzed the monthly observation frequency (Figure 14) of ICESat
and ICESat-2 over their operational periods (January 2003 to October 2009 for ICESat and
September 2018 to December 2020 for ICESat-2), covering a total of 109 months. Given
the sparse observations collected by these laser altimeters, larger lakes are more likely to
receive frequent observations. To examine the quantitative frequency of observations, we
categorized lakes by size and analyzed their observation frequencies, as shown in Figure 15.
The results reveal a clear correlation between lake size and observation frequency. For lakes
larger than 5000 km2, the observation counts exceeded 10 times, with 42% (11 out of 26)
being observed more than 55 times. The lake with the highest observation frequency was
recorded 62 times, equivalent to ~57% of the total operational months of ICESat/ICESat-2.
However, even for such large lakes, the data are not continuous, requiring time gaps to be
filled. The situation is even worse for smaller lakes. Many lakes smaller than 5000 km2

have significant gaps or even no observations. Notably, ~23% of the lakes within the
10~50 km2 range were not observed at all, and ~96% of these lakes were observed no more
than 11 times. This sparse observation frequency is insufficient for detailed analyses of
water volume and depth changes in smaller lakes. By comparison, the water depths and
volumes estimated by our model offer a significant advantage, as they achieve a temporal
resolution comparable to that of optical satellites, enabling a more consistent and reliable
analysis of lake dynamics.

Figure 15. The observed frequency (a) and ratio (b) of ICESat/ICESat-2 in different-sized lakes at the
monthly scale during 2000~2020 (January 2003~October 2009 and September 2018~December 2020).
“--” represents no observation of ICESat/ICESat-2.
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4.3. Lake Feature Analysis
4.3.1. Feature Pairwise Correlations

The pairwise correlations among features were calculated to examine the relationships
between them, as shown in Figure 16. The results indicate that most features exhibit low
correlations with each other, highlighting their unique contributions. This diversity in lake
features supports the construction of multidimensional relationships by ML methods. How-
ever, the same type of feature shows moderate to high correlations. For instance, lake area,
perimeter, length, and width have pairwise correlations of approximately 0.7. Similarly,
the statistical metrics of MeanS100, MedianS100, MaxS100, RangeS100, and STDS100 exhibit
correlations around 0.9. Likewise, MeanHybas, MedianHybas, MaxHybas, and STDHybas have
correlations near 0.7. This pattern aligns with traditional understanding, where larger
lakes tend to have a greater area, perimeter, length, and width. Similarly, statistical values
describing the topographical characteristics of the surrounding terrain or hydrological
basin naturally correlate with each other. This is particularly important for capturing the
multifaceted drivers of lakebed elevation, where different features may exhibit varying
levels of importance depending on lake size, topography, or other conditions. Moreover,
features with low correlations to others often provide unique and valuable information
that enhances model performance and generalization. For instance, while features like lake
area and perimeter are highly correlated, they may provide complementary information in
describing different aspects of lake morphology. For example, when lakes are of the same
area, lakes with longer perimeters are likely to have differences in lakebeds due to more
complex surrounding topography. Similarly, the topographical features of the catchment
may reveal patterns not captured by other variables. The next section on feature importance
further elaborates on the relative contribution.

Figure 16. The pairwise correlations of each feature.

4.3.2. Feature Importance

To gain deeper insights into the significance and impact of various lake features, this
study utilized SHapley Additive exPlanations (SHAP) to analyze the results obtained
with the ML algorithms applied in the experiment. SHAP is a game-theory framework
designed to interpret the outputs of ML algorithms. It links optimal credit allocation to
local feature explanations by leveraging the classical Shapley values from game theory and
their extended adaptations. For an ML model, the SHAP value measures the contribution
of each feature to the model estimate, and SHAP decomposes the estimated value into the
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sum of the contributions of each feature, improving the transparency and consistency of
interpretation [68,69].

To identify the key features influencing the GB model, SHAP values were analyzed
and visualized across all samples (Figure 17). Features were ranked by the total magnitude
of their SHAP values, reflecting their overall contribution to the estimated relationship.
Among them, the lake area was the most significant predictor of lakebed elevation, though
its relationship with water depth was nonlinear and complex, indicating interactions with
other factors. The second and third most important features were the standard deviation
and median of the elevation slopes around the lake, capturing terrain variability and
general slope decline, respectively. Despite correlations between topographic features, each
contributed unique information. Notably, the median slope had a greater impact than the
mean, likely due to its robustness to outliers. In contrast, catchment topographic features
were less influential, likely because of their long-term stability and limited variability. These
features primarily served as contextual references, with a minimal direct impact on water
depth estimates.

Figure 17. The SHAP values for (a) each feature and (b) lake area in the GB model.

Further analysis of the influence of the lake area on the GB model’s predictions,
as shown in Figure 17b, reveals a clear segmentation pattern with thresholds around
1 km2, 10 km2, and 102 km2. This observation supports this study’s implementation of
a piecewise GB relationship and aligns with previous research emphasizing stage-based
relationships between lake area and water depth. For lakes in the 0~1 km2 range, SHAP
values generally increased with lake area, indicating a positive correlation. However, some
samples displayed negative SHAP values, implying that additional, complex factors—such
as local hydrological or topographical variability—may reduce the contribution of lake area
to water depth estimates for smaller lakes. In the 1~10 km2 range, SHAP values showed a
steeper increase with lake area, demonstrating a strong positive influence of area on water
depth predictions within this interval. For larger lakes (10~102 km2 and more than 102 km2),
SHAP values stabilized, indicating a consistent, albeit less pronounced, impact of lake area
on estimates. Notably, the influence of lake area was slightly reduced for lakes larger than
102 km2 compared to those in the 10~102 km2 range, suggesting diminishing returns in
its predictive power as the lake size increases further. This segmentation highlights the
nonlinear and scale-dependent relationship between lake area and water depth, reinforcing
the necessity of a piecewise modeling approach to better capture these dynamics across
different lake size ranges.

The mean absolute SHAP values for each feature in the piecewise GB model are shown
in Figure 18. In the area-based piecewise GB model, area characteristics are no longer the
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dominant influencing factors. Lakes of varying sizes exhibit different patterns of feature
importance. For lakes smaller than 10 km2, the median slope of the surrounding elevation
emerges as the most important feature. In this context, we believe that the overall slope
plays a crucial role. As the lake area increases to 10~103 km2, the maximum slope and
the range of the slope become the most influential factors. These two metrics essentially
represent the range of extreme slope values. For lakes of 103~104 km2, the lake area
becomes more significant. For lakes larger than 104 km2, the standard deviation of the
slope ranks highest, followed by the mean slope. For smaller lakes with shorter shorelines,
the range of slope extremes and variations is limited, meaning that the overall slope plays
a more significant role in shaping the lake’s bottom topography. As the lake size increases
and the shoreline lengthens, the range of terrain around the lake becomes more relevant,
and the range of extreme slope values becomes more important than the overall slope.
Finally, for very large lakes, greater variation in the surrounding terrain’s slope makes the
standard deviation the most influential indicator. This finding will contribute to a better
understanding of how the lake surface topography influences the formation and variation
in the lakebed topography.

Figure 18. The mean absolute SHAP values for each feature in the piecewise GB model: (a) 0~1 km2,
(b) 1~10 km2, (c) 10~102 km2, (d) 102~103 km2, (e) 103~104 km2, and (f) more than 104 km2.

5. Discussion
5.1. Uncertainty in Small Lakes

Although the results and evaluation indicate that the proposed method achieves
high accuracy for most lakes, some uncertainty remains, particularly for smaller lakes.
According to Table 4 in Section 4.1.3, the piecewise GB model improves the R2 values of
0.39 and 0.54, and the KGE values of 0.51 and 0.65, respectively, in the lakes with areas
of 0~1 km2 and 1~10 km2. Several factors may contribute to the lower accuracy in small
lakes. First, in many small lakes, there may be more anomalous relationships between
lake features and water depth. The ML algorithm may overlook these specificities while
identifying and interpreting general relationships, leading to errors. Second, the spatial
resolution limitations of the surface water maps and the DEM data used in this study, along
with the issue of mixed pixels caused by coarse resolution, are particularly problematic
for small lakes. This may result in errors in the estimation and affect the relationships
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established by machine learning. Finally, smaller lakes typically have shallow water depths,
and the inherent small errors in the method may be amplified in lakes with lower depths,
further increasing relative bias.

5.2. Limitations of Surface Water Maps

Several global land surface water datasets are available, including the JRC GSWD [58]
and the GSWED used in this study. The JRC GSWD provides lake water extent at 30 m
spatial resolution, but with significant gaps in spatial and temporal coverage. The GSWED
offers a seamless surface water map with 250 m of spatial resolution, that includes explicit
classifications for ice and snow, effectively addressing the data gaps in frozen or snow-
covered regions.

However, it is important to acknowledge the limitations of the GSWED. One key limita-
tion is its spatial resolution of 250 m, which is considerably coarser than the 30 m resolution
of the JRC GSWD. Lv et al. [56] showed that finer spatial resolution significantly improves
the accuracy of water depth estimation, especially for small lakes. We hypothesize that the
lower spatial resolution of the GSWED contributes to the reduced accuracy of the piecewise
relationships when applied to small lakes compared to larger ones. Another limitation
of the GSWED is its inability to distinguish whether ice and snow are located within the
lake itself, a challenging but critical task. Although the study uses the GLAKES dataset to
refine lake extents from the surface water data, it cannot differentiate dynamic lake extents
that are covered by ice or snow. This limitation results in the loss of valuable dynamic
information for lakes that are seasonally glaciated or snow-covered, thereby increasing
the uncertainty in establishing the water depth estimator. Future advancements in surface
water maps with finer spatial resolution and improved methods for identifying dynamic
lake extents, including those influenced by ice and snow, are expected to significantly
enhance the accuracy and reliability of water depth estimation models.

5.3. Applicability of the Methodology

The proposed method delivers dynamic estimates of lake water depth, but the tem-
poral resolution is limited to one month by the GSWED satellite data products applied
to delineate lake water surfaces. The monthly estimates of lake water depth are deemed
sufficient to establish the required ML relationships. This implies that the proposed method
cannot be applied for the real-time monitoring of lake water depth, since it is designed for
long-term change and trend analysis.

6. Conclusions
The estimation of water depth and volume in global lakes has long been a complex

and pressing challenge. Historically, only fragmented and approximate information about
global lake depths and volumes has been available, with dynamic changes often inferred
indirectly and partially through variations in lake water levels. The proposed method
introduced an innovative sampling framework that generated comprehensive training
datasets for ML models through multiple data approaches. This framework addressed
two critical limitations of previous research: (1) it provided extensive coverage of lakes
across all size categories, with emphasis on small and medium-sized lakes that were
underrepresented in existing datasets; (2) it enabled continuous water depth estimation.
The resulting dynamic estimates of global lake depth and volume represented a significant
advancement in monitoring and managing lake water resources, particularly in response to
climate change and anthropogenic impacts. Using these relationships, this study produced
integrated monthly water depth and volume datasets for global lakes spanning 2000~2020.
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Accuracy evaluations and subsequent analyses demonstrate that the results provide reliable
and essential data for advancing the analysis and management of global lakes.

The analysis highlights the varying importance and influence of different lake fea-
tures on water depth. Among these, lake surface area emerges as the most critical factor,
exhibiting a distinct piecewise relationship with thresholds at 1 km2, 10 km2, and 102 km2.
This finding justifies the adoption of a piecewise relationship in this study. Within each
interval, surrounding topographic features, i.e., slopes around the lake, play a significant
role in the estimation. For lakes smaller than 10 km2, water depth is primarily influenced
by localized topographic features, whereas larger lakes are more affected by the range of
extreme slope values and standard deviation. Additionally, the median slope value proved
more representative of general topographic trends than the mean slope value. In contrast,
watershed-scale topographic features showed relatively low relevance and influence on
water depth estimation.

While the research has achieved notable results, there is room for improvement. Due
to computational constraints, this study primarily focused on lakes with surface areas
exceeding 10 km2. However, a vast number of smaller lakes, those less than 10 km2 in area,
are widely distributed across the globe. Expanding the method to dynamically estimate
the water depth and volume for these smaller lakes remains a key objective. Furthermore,
this study’s reliance on average water depth could be enhanced by acquiring pixel-wise
bathymetry data, particularly for dry lakes. This finer-scale information would provide
deeper insights into the lakebed topography. Future research will aim to address these
limitations and advance the methodology further.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/rs17061052/s1, Figure S1: The operated parameters for the ML models.;
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individual lakes in each continent. Refs. [70–72] are cited in the Supplementary Materials.

Author Contributions: Conceptualization, Y.L., L.J. and M.M.; Methodology, Y.L., M.M., C.Z., J.L.
and M.J.; Software, Y.L. and Q.C.; Validation, Y.L.; Formal analysis, Y.L.; Investigation, Y.L., L.J., M.M.,
C.Z., J.L., M.J. and Q.C.; Writing—original draft, Y.L.; Writing—review & editing, Y.L., L.J., M.M., C.Z.
and Y.Z.; Visualization, Y.L.; Project administration, L.J.; Funding acquisition, L.J. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was jointly funded by the National Natural Science Foundation of China
(NSFC) (Grant No. 42090014), the Open Research Program of the International Research Center of
Big Data for Sustainable Development Goals (Grant No. CBAS2023ORP05), the Chinese Academy of
Sciences President’s International Fellowship Initiative (Grant No. 2025PVA0200, 2020VTA0001), and
the MOST High-Level Foreign Expert Program (Grant No. G2022055010L).

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Yigzaw, W.; Li, H.Y.; Demissie, Y.; Hejazi, M.I.; Leung, L.R.; Voisin, N.; Payn, R. A New Global Storage-Area-Depth Data Set for

Modeling Reservoirs in Land Surface and Earth System Models. Water Resour. Res. 2018, 54, 10372–10386. [CrossRef]
2. Messager, M.L.; Lehner, B.; Grill, G.; Nedeva, I.; Schmitt, O. Estimating the volume and age of water stored in global lakes using a

geo-statistical approach. Nat. Commun. 2016, 7, 13603. [CrossRef]
3. Woolway, R.I.; Kraemer, B.M.; Lenters, J.D.; Merchant, C.J.; O’Reilly, C.M.; Sharma, S. Global lake responses to climate change.

Nat. Rev. Earth Environ. 2020, 1, 388–403. [CrossRef]

https://www.mdpi.com/article/10.3390/rs17061052/s1
https://www.mdpi.com/article/10.3390/rs17061052/s1
https://doi.org/10.1029/2017WR022040
https://doi.org/10.1038/ncomms13603
https://doi.org/10.1038/s43017-020-0067-5


Remote Sens. 2025, 17, 1052 27 of 29

4. Allen, G.H.; Pavelsky, T.M. Global extent of rivers and streams. Science 2018, 361, 585–588. [CrossRef]
5. Sobek, S. Predicting the depth and volume of lakes from map-derived parameters. Inland Waters 2011, 1, 177–184. [CrossRef]
6. Zhao, G.; Gao, H.; Cai, X. Estimating lake temperature profile and evaporation losses by leveraging MODIS LST data. Remote

Sens. Environ. 2020, 251, 112104. [CrossRef]
7. Zhao, G.; Gao, H. Estimating reservoir evaporation losses for the United States: Fusing remote sensing and modeling approaches.

Remote Sens. Environ. 2019, 226, 109–124. [CrossRef]
8. Obertegger, U.; Flaim, G.; Braioni, M.G.; Sommaruga, R.; Corradini, F.; Borsato, A. Water residence time as a driving force of

zooplankton structure and succession. Aquat. Sci. 2007, 69, 575–583. [CrossRef]
9. Feng, Y.; Zhang, H.; Tao, S.; Ao, Z.; Song, C.; Chave, J.; Le Toan, T.; Xue, B.; Zhu, J.; Pan, J.; et al. Decadal Lake Volume Changes

(2003–2020) and Driving Forces at a Global Scale. Remote Sens. 2022, 14, 1032. [CrossRef]
10. Grafton, R.Q.; Pittock, J.; Davis, R.; Williams, J.; Fu, G.; Warburton, M.; Udall, B.; McKenzie, R.; Yu, X.; Che, N.; et al. Global

insights into water resources, climate change and governance. Nat. Clim. Change 2012, 3, 315–321. [CrossRef]
11. Verpoorter, C.; Kutser, T.; Seekell, D.A.; Tranvik, L.J. A global inventory of lakes based on high-resolution satellite imagery.

Geophys. Res. Lett. 2014, 41, 6396–6402. [CrossRef]
12. Luo, S.; Song, C.; Ke, L.; Zhan, P.; Fan, C.; Liu, K.; Chen, T.; Wang, J.; Zhu, J. Satellite Laser Altimetry Reveals a Net Water Mass

Gain in Global Lakes with Spatial Heterogeneity in the Early 21st Century. Geophys. Res. Lett. 2022, 49, e2021GL096676. [CrossRef]
13. Ma, Y.; Xu, N.; Liu, Z.; Yang, B.; Yang, F.; Wang, X.H.; Li, S. Satellite-derived bathymetry using the ICESat-2 lidar and Sentinel-2

imagery datasets. Remote Sens. Environ. 2020, 250, 112047. [CrossRef]
14. Liu, K.; Song, C.; Zhan, P.; Luo, S.; Fan, C. A Low-Cost Approach for Lake Volume Estimation on the Tibetan Plateau: Coupling

the Lake Hypsometric Curve and Bottom Elevation. Front. Earth Sci. 2022, 10, 925944. [CrossRef]
15. Li, J.; Knapp, D.E.; Lyons, M.; Roelfsema, C.; Phinn, S.; Schill, S.R.; Asner, G.P. Automated Global Shallow Water Bathymetry

Mapping Using Google Earth Engine. Remote Sens. 2021, 1, 1469. [CrossRef]
16. Pi, X.; Luo, Q.; Feng, L.; Xu, Y.; Tang, J.; Liang, X.; Ma, E.; Cheng, R.; Fensholt, R.; Brandt, M.; et al. Mapping global lake dynamics

reveals the emerging roles of small lakes. Nat. Commun. 2022, 13, 5777. [CrossRef]
17. Pickens, A.H.; Hansen, M.C.; Hancher, M.; Stehman, S.V.; Tyukavina, A.; Potapov, P.; Marroquin, B.; Sherani, Z. Mapping and

sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series. Remote Sens. Environ.
2020, 243, 111792. [CrossRef]

18. Han, Q.; Niu, Z. Construction of the Long-Term Global Surface Water Extent Dataset Based on Water-NDVI Spatio-Temporal
Parameter Set. Remote Sens. 2020, 12, 2675. [CrossRef]

19. Ma, S.; Liao, J.; Jing, R.; Chen, J. A dataset of lake level changes in China between 2002 and 2023 using multi-altimeter data. Big
Earth Data 2024, 8, 166–188. [CrossRef]

20. Xu, N.; Ma, Y.; Zhang, W.; Wang, X.H. Surface-Water-Level Changes During 2003–2019 in Australia Revealed by ICESat/ICESat-2
Altimetry and Landsat Imagery. IEEE Geosci. Remote Sens. Lett. 2021, 18, 1129–1133. [CrossRef]

21. Luo, S.; Song, C.; Zhan, P.; Liu, K.; Chen, T.; Li, W.; Ke, L. Refined estimation of lake water level and storage changes on the
Tibetan Plateau from ICESat/ICESat-2. Catena 2021, 200, 105177. [CrossRef]

22. Zhang, G.; Chen, W.; Xie, H. Tibetan Plateau’s Lake Level and Volume Changes from NASA’s ICESat/ICESat-2 and Landsat
Missions. Geophys. Res. Lett. 2019, 46, 13107–13118. [CrossRef]

23. Qiao, B.; Zhu, L.; Wang, J.; Ju, J.; Ma, Q.; Huang, L.; Chen, H.; Liu, C.; Xu, T. Estimation of lake water storage and changes based
on bathymetric data and altimetry data and the association with climate change in the central Tibetan Plateau. J. Hydrol. 2019,
578, 124052. [CrossRef]

24. Fang, Y.; Li, H.; Wan, W.; Zhu, S.; Wang, Z.; Hong, Y.; Wang, H. Assessment of Water Storage Change in China’s Lakes and
Reservoirs over the Last Three Decades. Remote Sens. 2019, 11, 1467. [CrossRef]

25. Xie, J.; Li, B.; Jiao, H.; Zhou, Q.; Mei, Y.; Xie, D.; Wu, Y.; Sun, X.; Fu, Y. Water Level Change Monitoring Based on a New Denoising
Algorithm Using Data from Landsat and ICESat-2: A Case Study of Miyun Reservoir in Beijing. Remote Sens. 2022, 14, 4344.
[CrossRef]

26. Mateo-Pérez, V.; Corral-Bobadilla, M.; Ortega-Fernández, F.; Vergara-González, E.P. Port Bathymetry Mapping Using Support
Vector Machine Technique and Sentinel-2 Satellite Imagery. Remote Sens. 2020, 12, 2069. [CrossRef]

27. Yang, H.; Guo, H.; Dai, W.; Nie, B.; Qiao, B.; Zhu, L. Bathymetric mapping and estimation of water storage in a shallow lake using
a remote sensing inversion method based on machine learning. Int. J. Digit. Earth 2022, 15, 789–812. [CrossRef]

28. Lehner, B.; Liermann, C.R.; Revenga, C.; Vörösmarty, C.; Fekete, B.; Crouzet, P.; Döll, P.; Endejan, M.; Frenken, K.; Magome, J.;
et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ.
2011, 9, 494–502. [CrossRef]

29. Caballero, I.; Stumpf, R.P. Retrieval of nearshore bathymetry from Sentinel-2A and 2B satellites in South Florida coastal waters.
Estuar. Coast. Shelf Sci. 2019, 226, 106277. [CrossRef]

https://doi.org/10.1126/science.aat0636
https://doi.org/10.5268/IW-1.3.426
https://doi.org/10.1016/j.rse.2020.112104
https://doi.org/10.1016/j.rse.2019.03.015
https://doi.org/10.1007/s00027-007-0924-z
https://doi.org/10.3390/rs14041032
https://doi.org/10.1038/nclimate1746
https://doi.org/10.1002/2014GL060641
https://doi.org/10.1029/2021GL096676
https://doi.org/10.1016/j.rse.2020.112047
https://doi.org/10.3389/feart.2022.925944
https://doi.org/10.3390/rs13081469
https://doi.org/10.1038/s41467-022-33239-3
https://doi.org/10.1016/j.rse.2020.111792
https://doi.org/10.3390/rs12172675
https://doi.org/10.1080/20964471.2023.2295632
https://doi.org/10.1109/LGRS.2020.2996769
https://doi.org/10.1016/j.catena.2021.105177
https://doi.org/10.1029/2019GL085032
https://doi.org/10.1016/j.jhydrol.2019.124052
https://doi.org/10.3390/rs11121467
https://doi.org/10.3390/rs14174344
https://doi.org/10.3390/rs12132069
https://doi.org/10.1080/17538947.2022.2069873
https://doi.org/10.1890/100125
https://doi.org/10.1016/j.ecss.2019.106277


Remote Sens. 2025, 17, 1052 28 of 29

30. Tsolakidis, I.; Vafiadis, M. Comparison of Hydrographic Survey and Satellite Bathymetry in Monitoring Kerkini Reservoir Storage.
Environ. Process. 2019, 6, 1031–1049. [CrossRef]

31. Wan, J.; Ma, Y. Shallow Water Bathymetry Mapping of Xinji Island Based on Multispectral Satellite Image using Deep Learning. J.
Indian Soc. Remote Sens. 2021, 49, 2019–2032. [CrossRef]

32. Yang, N.; Li, J.H.; Mo, W.B.; Luo, W.J.; Wu, D.; Gao, W.C.; Sun, C.H. Water depth retrieval models of East Dongting Lake, China,
using GF-1 multi-spectral remote sensing images. Glob. Ecol. Conserv. 2020, 22, e01004. [CrossRef]

33. Qi, M.; Liu, S.; Wu, K.; Zhu, Y.; Xie, F.; Jin, H.; Gao, Y.; Yao, X. Improving the accuracy of glacial lake volume estimation: A case
study in the Poiqu basin, central Himalayas. J. Hydrol. 2022, 610, 127973. [CrossRef]

34. Qiao, B.; Ju, J.; Zhu, L.; Chen, H.; Kai, J.; Kou, Q. Improve the Accuracy of Water Storage Estimation—A Case Study from Two
Lakes in the Hohxil Region of North Tibetan Plateau. Remote Sens. 2021, 13, 293. [CrossRef]

35. Gu, Z.; Zhang, Y.; Fan, H. Mapping inter- and intra-annual dynamics in water surface area of the Tonle Sap Lake with Landsat
time-series and water level data. J. Hydrol. 2021, 601, 126644. [CrossRef]

36. Haakanson, L.; Peters, R.H. Predictive Limnology: Methods for Predictive Modelling; Wiley: Hoboken, NJ, USA, 1995. [CrossRef]
37. Håkanson, L.; Karlsson, B. On the Relationship between Regional Geomorphology and Lake Morphometry—A Swedish Example.

Geogr. Ann. Ser. A Phys. Geogr. 1984, 66, 103–119. [CrossRef]
38. Heathcote, A.J.; del Giorgio, P.A.; Prairie, Y.T.; Brickman, D. Predicting bathymetric features of lakes from the topography of their

surrounding landscape. Can. J. Fish. Aquat.Sci. 2015, 72, 643–650. [CrossRef]
39. Cai, X.; Gan, W.; Ji, W.; Zhao, X.; Wang, X.; Chen, X. Optimizing Remote Sensing-Based Level–Area Modeling of Large Lake

Wetlands: Case Study of Poyang Lake. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 471–479. [CrossRef]
40. Hollister, J.W.; Milstead, W.B.; Urrutia, M.A. Predicting maximum lake depth from surrounding topography. PLoS ONE 2011,

6, e25764. [CrossRef]
41. Hollister, J.; Milstead, W.B. Using GIS to estimate lake volume from limited data. Lake Reserv. Manag. 2010, 26, 194–199. [CrossRef]
42. Lehner, B.; Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 2004, 296, 1–22.

[CrossRef]
43. Delaney, C.; Li, X.; Holmberg, K.; Wilson, B.; Heathcote, A.; Nieber, J. Estimating Lake Water Volume with Regression and

Machine Learning Methods. Front. Water 2022, 4, 886964. [CrossRef]
44. Muñoz, R.; Huggel, C.; Frey, H.; Cochachin, A.; Haeberli, W. Glacial lake depth and volume estimation based on a large

bathymetric dataset from the Cordillera Blanca, Peru. Earth Surf. Process. Landf. 2020, 45, 1510–1527. [CrossRef]
45. Fair, Z.; Flanner, M.; Brunt, K.M.; Fricker, H.A.; Gardner, A. Using ICESat-2 and Operation IceBridge altimetry for supraglacial

lake depth retrievals. Cryosphere 2020, 14, 4253–4263. [CrossRef]
46. Weekley, D.; Li, X. Tracking lake surface elevations with proportional hypsometric relationships, Landsat imagery, and multiple

DEMs. Water Resour. Res. 2021, 57, e2020WR027666. [CrossRef]
47. Weekley, D.; Li, X. Tracking Multidecadal Lake Water Dynamics with Landsat Imagery and Topography/Bathymetry. Water

Resour. Res. 2019, 55, 8350–8367. [CrossRef]
48. Yang, H.; Qiao, B.; Huang, S.; Fu, Y.; Guo, H. Fitting profile water depth to improve the accuracy of lake depth inversion without

bathymetric data based on ICESat-2 and Sentinel-2 data. Int. J. Appl. Earth Obs. Geoinf. 2023, 119, 103310. [CrossRef]
49. Xu, N.; Ma, Y.; Zhou, H.; Zhang, W.; Zhang, Z.; Wang, X.H. A Method to Derive Bathymetry for Dynamic Water Bodies Using

ICESat-2 and GSWD Data Sets. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [CrossRef]
50. Li, Y.; Gao, H.; Zhao, G.; Tseng, K.-H. A high-resolution bathymetry dataset for global reservoirs using multi-source satellite

imagery and altimetry. Remote Sens. Environ. 2020, 244, 111831. [CrossRef]
51. Armon, M.; Dente, E.; Shmilovitz, Y.; Mushkin, A.; Cohen, T.J.; Morin, E.; Enzel, Y. Determining Bathymetry of Shallow and

Ephemeral Desert Lakes Using Satellite Imagery and Altimetry. Geophys. Res. Lett. 2020, 47, e2020GL087367. [CrossRef]
52. Fang, C.; Lu, S.; Li, M.; Wang, Y.; Li, X.; Tang, H.; Odion Ikhumhen, H. Lake water storage estimation method based on similar

characteristics of above-water and underwater topography. J. Hydrol. 2023, 618, 129146. [CrossRef]
53. Liu, K.; Song, C. Modeling lake bathymetry and water storage from DEM data constrained by limited underwater surveys. J.

Hydrol. 2022, 604, 127260. [CrossRef]
54. Bemmelen, C.W.T.; Mann, M.; Ridder, M.P.; Rutten, M.M.; Giesen, N.C. Determining water reservoir characteristics with global

elevation data. Geophys. Res. Lett. 2016, 43, 1–11. [CrossRef]
55. Liu, K.; Song, C.; Zhao, S.; Wang, J.; Chen, T.; Zhan, P.; Fan, C.; Zhu, J. Mapping inundated bathymetry for estimating lake water

storage changes from SRTM DEM: A global investigation. Remote Sens. Environ. 2024, 301, 113960. [CrossRef]
56. Lv, Y.; Jia, L.; Menenti, M.; Zheng, C.; Jiang, M.; Lu, J.; Zeng, Y.; Chen, Q.; Bennour, A. A novel remote sensing method to estimate

pixel-wise lake water depth using dynamic water-land boundary and lakebed topography. Int. J. Digit. Earth 2024, 17, 2440443.
[CrossRef]

57. O’Loughlin, F.E.; Paiva, R.C.D.; Durand, M.; Alsdorf, D.E.; Bates, P.D. A multi-sensor approach towards a global vegetation
corrected SRTM DEM product. Remote Sens. Environ. 2016, 182, 49–59. [CrossRef]

https://doi.org/10.1007/s40710-019-00394-7
https://doi.org/10.1007/s12524-020-01255-9
https://doi.org/10.1016/j.gecco.2020.e01004
https://doi.org/10.1016/j.jhydrol.2022.127973
https://doi.org/10.3390/rs13020293
https://doi.org/10.1016/j.jhydrol.2021.126644
https://doi.org/10.1002/iroh.19960810309
https://doi.org/10.1080/04353676.1984.11880102
https://doi.org/10.1139/cjfas-2014-0392
https://doi.org/10.1109/JSTARS.2014.2342742
https://doi.org/10.1371/journal.pone.0025764
https://doi.org/10.1080/07438141.2010.504321
https://doi.org/10.1016/j.jhydrol.2004.03.028
https://doi.org/10.3389/frwa.2022.886964
https://doi.org/10.1002/esp.4826
https://doi.org/10.5194/tc-14-4253-2020
https://doi.org/10.1029/2020WR027666
https://doi.org/10.1029/2019WR025500
https://doi.org/10.1016/j.jag.2023.103310
https://doi.org/10.1109/LGRS.2020.3019396
https://doi.org/10.1016/j.rse.2020.111831
https://doi.org/10.1029/2020GL087367
https://doi.org/10.1016/j.jhydrol.2023.129146
https://doi.org/10.1016/j.jhydrol.2021.127260
https://doi.org/10.1002/2016GL069816
https://doi.org/10.1016/j.rse.2023.113960
https://doi.org/10.1080/17538947.2024.2440443
https://doi.org/10.1016/j.rse.2016.04.018


Remote Sens. 2025, 17, 1052 29 of 29

58. Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes.
Nature 2016, 540, 418–422. [CrossRef]

59. Yamazaki, D.; Ikeshima, D.; Tawatari, R.; Yamaguchi, T.; O’Loughlin, F.; Neal, J.C.; Sampson, C.C.; Kanae, S.; Bates, P.D. A
high-accuracy map of global terrain elevations. Geophys. Res. Lett. 2017, 44, 5844–5853. [CrossRef]

60. Zhan, P.; Song, C.; Luo, S.; Liu, K.; Ke, L.; Chen, T. Lake Level Reconstructed from DEM-Based Virtual Station: Comparison of
Multisource DEMs with Laser Altimetry and UAV-LiDAR Measurements. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [CrossRef]

61. Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3–42. [CrossRef]
62. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
63. Demiriz, A.; Bennett, K.P.; Shawe-Taylor, J. Linear Programming Boosting via Column Generation. Mach. Learn. 2002, 46, 225–254.

[CrossRef]
64. Friedman, J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [CrossRef]
65. Ho, T.K. The Random Subspace Method for Constructing Decision Forests. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20,

832–844.
66. Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
67. Zou, F.; Tenzer, R.; Jin, S. Water Storage Variations in Tibet from GRACE, ICESat, and Hydrological Data. Remote Sens. 2019,

11, 1103. [CrossRef]
68. Aas, K.; Jullum, M.; Løland, A. Explaining individual predictions when features are dependent: More accurate approximations to

Shapley values. Artif. Intell. 2021, 298, 103502. [CrossRef]
69. Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the 31st Conference on Neural

Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 22 May 2017.
70. Shen, C.; Jia, L.; Ren, S. Inter- and Intra-Annual Glacier Elevation Change in High Mountain Asia Region Based on ICESat-1&2

Data Using Elevation-Aspect Bin Analysis Method. Remote Sens. 2022, 14, 1630. [CrossRef]
71. Huang, T.; Jia, L.; Menenti, M.; Lu, J.; Zhou, J.; Hu, G. A New Method to Estimate Changes in Glacier Surface Elevation Based on

Polynomial Fitting of Sparse ICESat-GLAS Footprints. Sensors 2017, 17, 1803. [CrossRef]
72. Gupta, H.V.; Kling, H. On typical range, sensitivity, and normalization of Mean Squared Error and Nash-Sutcliffe Efficiency type

metrics. Water Resour. Res. 2011, 47. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1038/nature20584
https://doi.org/10.1002/2017GL072874
https://doi.org/10.1109/LGRS.2021.3086582
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1012470815092
https://doi.org/10.1016/S0167-9473(01)00065-2
https://doi.org/10.1007/BF00058655
https://doi.org/10.3390/rs11091103
https://doi.org/10.1016/j.artint.2021.103502
https://doi.org/10.3390/rs14071630
https://doi.org/10.3390/s17081803
https://doi.org/10.1029/2011WR010962

	Introduction 
	Materials 
	Global Surface Water Maps and Lake Extents 
	DEM Data 
	Available Datasets 
	ICESat/ICESat-2 

	Methodology 
	Machine Learning Models 
	Monthly Global Lake Extents 
	Lake Features 
	Training Sets on Water Depth 
	Training Set on the Dry Lakes 
	Training Set on the Available Lakes 
	Training Set on the Lakes Observed by ICESat/ICESat-2 


	Results and Analysis 
	Model Performance 
	Water Depth of the Global Dry Lakes 
	Lake Training Samples 
	Reliability of ML Models 

	Results and Assessment 
	Assessment of the Individual Lakes 
	Estimated Water Depth 
	Comparison with the ICESat/ICESat-2 Observations 

	Lake Feature Analysis 
	Feature Pairwise Correlations 
	Feature Importance 


	Discussion 
	Uncertainty in Small Lakes 
	Limitations of Surface Water Maps 
	Applicability of the Methodology 

	Conclusions 
	References

