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Introduction

Just like other industries, the global aviation market is under large pressure to decrease the global emissions.
In 2018, 2.4% of the world wide fossil fuel emissions are emitted by the aviation industry, with 8% of that
related to dedicated freighter flights [19]. Even though the passenger airlines are heavily impacted by the
COVID-19 pandemic, demand for full freighter airlines has only increased. Boeing expects that the world air
cargo traffic keeps increasing with 4% per year [3], which will most likely result in even higher carbon emis-
sions [22].

Some attempts are being made to reduce the carbon emissions of the aviation industry, like phasing out
older aircraft, improving the carbon efficiency of new aircraft models and the introduction of alternative fu-
els. However, due to the long aircraft lifetime and relatively slow innovation in sustainable fuel techniques,
improvements can only be expected on the long term. For reduction of aviation emissions on a shorter term,
ICAO and the European Commission have instated two initiatives that directly target airlines financially to
reduce and offset their carbon emissions: CORSIA and EU-ETS. These emission trading systems penalise air-
lines if they exceed the allowed amount of carbon emissions. This creates financial incentive for airlines to
decrease the emissions of their operations. A way to do this on a shorter term than renewing the fleet is to
alter the flight schedule. Therefore, this paper looks into what potential CO, reduction is available when also
taking account carbon emissions in the flight scheduling process.

When designing a flight schedule, multiple sub-problems have to be solved. Based on the available demand
between airports, trade-offs have to be made between the operational costs of certain flights and the revenue
that can be earned from transporting cargo. In addition to this existing trade-off, which is already broadly
described in literature, this paper also introduces the aircraft emissions into the decision making process. A
novelty of the model developed in this paper is that the emissions are modelled with a direct dependency
on the cargo that is on-board of the aircraft. Using this model, multiple experiments are performed to show
the financial feasibility of schedule revisions that are necessary to decrease the emissions. However, this will
come with a loss of profit, meaning that it is up to the airline to decide what schedule revisions are carried
out. Overall, this paper is a starting point for further research in this field and can help airlines to identify
profitable schedule revisions to reduce the carbon emissions of their operations.

This thesis report is organised as follows: In Part I, the scientific paper is presented. Part II contains the

relevant Literature Study that supports the research. Finally, in Part 111, the supporting work will go deeper
into some parts of the model, input data and additional results.

xiii
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Combining operational and environmental sustainability for an
integrated flight scheduling and aircraft routing model of a
full-cargo carrier

W.A. Broeders?
Delft University of Technology, Delft, The Netherlands

Abstract

This study proposes a flight scheduling model with an added aircraft emission model to solve the sched-
ule design, aircraft routing and cargo routing problems for a full-cargo airline, where aircraft emissions are
explicitly part of the decision-making process. Our model considers both operational sustainability (maximi-
sation of profit) and environmental sustainability (minimisation of CO2 emissions) in the objective function
and can be used to identify trade-offs between the two potentially contrasting objectives. Aircraft emissions
are modelled based on the aircraft type and load factor for each flight leg. Several experiments have been
performed using 3 different sub-networks of a full-cargo airline as a reference, with instances of up to 8 air-
ports, 3 aircraft and 25 cargo requests. The results show how different network characteristics and changes
in cargo demand affect the profit decrease required to reduce emissions. On average, for a reduction of 25%
of carbon emissions, profits in networks with short to medium-range flights decrease by roughly 14%. The
expected loss of profit is larger and more inconsistent for networks that include long-range flights.

Keywords: Aircraft emission modelling, Flight scheduling, Aircraft routing, Cargo routing, Mixed-integer
linear programming, Pareto front

1 Introduction

The global aviation industry is responsible for a large amount of carbon emissions. Although the contribution
of 2.4% of the world wide fossil fuel emissions seems relatively small, this translates to 918 million metric tons of
COy [Graver et al., 2019]. Of all aviation emissions in 2018, 19% can be assigned to the transportation of cargo,
with 8% related to dedicated freighter flights and the rest coming from freight transported in the cargo belly of
passenger aircraft. The carbon emissions increased with 32% over the five year period prior to 2018 and forecasts
by the International Civil Aviation Organisation ICAO show this growth continuing in the coming years [ICAO,
2016b]. This is further substantiated by the expectation that the world air cargo traffic keeps growing with 4%
per year [Boeing, 2020]. Despite this, the International Air Transport Association IATA aims to achieve carbon
neutral-growth from 2020 onward, with a following goal to halve the carbon emissions in 2050 of what they
were in 2005 [IATA, 2020]. Initiatives like the introduction of alternative fuels and innovations in aircraft fuel
efficiency are expected to only make a difference in the long term. Therefore, emission trading systems are set up
on a European (EU-ETS) and global (CORSIA) scale to stabilise the increase of emissions until the previously
mentioned improvements will become available. In these schemes, airlines have to offset the carbon emissions of
their operations. This puts a direct financial pressure on the airlines themselves to reduce CO5 emissions. With
cargo-only carriers generally flying older aircraft, such airlines can choose to replace older aircraft types in their
fleet by newer, more efficient models, which can significantly reduce the emissions of the airline [Brueckner and
Abreu, 2017]. However, this is both very costly and takes multiple years to complete. A more short term option
would be to increase the carbon efficiency of the operations by adapting the flight schedule and aircraft rotations.

The flight schedule design of a full freighter airline consists of multiple subproblems, where the best airport
combinations, flight frequencies, aircraft types for each flight leg, and cargo transported on each flight leg are
determined [Derigs et al., 2009]. In the aircraft routing part, a specific aircraft is assigned to each flight in the
schedule to create flight rotations for all aircraft in the fleet. The goal is to maximise the available revenue of the
network, while minimising the operating costs of aircraft rotations. Adding the reduction of aircraft emissions
to the objectives of the flight planning can help to find schedule revisions that reduce the carbon emissions,
while still being financially feasible. This paper proposes a mixed-integer linear programming (MILP) flight

*Msc Student, Air Transport and Operations, Faculty of Aerospace Engineering, Delft University of Technology



scheduling model with an integrated aircraft emission model that can be used to find what schedule revisions
are necessary to reduce the emissions of a dedicated cargo airline. This model aims to maximise the profit of the
airline, which consists of revenue from transporting cargo and operating costs to fly the aircraft. An emission
term is introduced in the objective function that has a negative impact on the profit. The emissions are mapped
in an emission matrix that depends on each unique (flight leg, aircraft type, load factor) combination, hence
influencing routing decisions both at aircraft and cargo level. A set of cargo requests is available for the airline
to transport, which are generated based on Cargolux flight frequencies. A general overview of the different steps
that lead to MILP optimisation model is shown in Figure 1.

Emission model Emission matrix

Section 3

Aircraft & Cargo
routing MILP model

Network formulation}—) Airline network >
Section 4.1

Airports & Fleet
Section 5.1

—>» Flight Schedule

Section 4.2

Demand generation

Cargo requests

Section 5.2

Figure 1: Flowchart showing the relation between the different segments of the flight schedule optimisation.

Multiple flight scheduling and aircraft routing models for full-cargo airlines are available in the academic litera-
ture. Also, a lot of research is available that calculates and analyses aircraft emissions around airports and for
airline networks. However, to the best of our knowledge, no prior work exists that combines these aspects and,
more specifically, computes aircraft emissions based on cargo routing decisions (via the load factor). Therefore,
the first contribution of this work is the development of a model that simultaneously optimises (i) aircraft and
cargo routing and (ii) the environmental impact of these rotations considering explicit dependency on cargo
routing decisions. A further contribution is made by performing experiments with the proposed model, which
are performed based on three sub-networks of a major full-cargo airline, where possible flight legs are determined
from publicly available aviation data repositories. Due to the lack of available data, apart from global average
load factors, fully synthetic cargo demand data is generated. The results presented in this paper confirm the
financial feasibility of reducing emissions by flight schedule revisions, but also show that this comes with a loss
of profit and it is up to the airline’s decision-makers to decide where the sweet spot is.

This paper is structured as follows. Section 2 gives an overview of the related literature to this research. This is
followed by the methodology of this study, which is split up in the description of the emission model in Section
3 and the flight scheduling model in Section 4. Section 5 describes the experimental setup and defines the four
different experiments that are performed. The results of these experiments are discussed in Section 6. Section
7 presents the discussion, followed by the conclusion and recommendations in Section 8.

2 Literature Review

This section gives an overview of the relevant literature for this research. First, the different aspects of airline
scheduling will be discussed, which is followed by a more detailed look into air cargo operations. After that, the
available literature on aircraft emission models and research that combines flight scheduling for cargo airlines
with aircraft emission modelling is analysed.

The airline planning problem can be split up into four sub-problems, namely the schedule design (SDP), fleet
assignment (FAP), aircraft rotation (ARP) and crew scheduling problem (CSP). The first three of these problems
are modelled in this study, as the CSP is considered less relevant in this stage of research. The SDP generates
a timetable based on the available demand, which is further discussed in the air cargo modelling part. The
model developed in this research solves the SDP simultaneously with the FAP and ARP due to the chosen
network modelling approach. The FAP aims to maximise the profit of a given flight schedule by assigning
aircraft types to each flight. This is followed by the ARP, which assigns specific aircraft to every flight, often
also considering maintenance constraints. For the modelling of the FAP and ARP, three different methods are
described in literature: Time-space networks, connection-based networks and string-based networks. A recent
literature study that analyses the different parts of the airline planning problem is presented by [Zhou et al.,
2020].

The time-space network is first proposed by [Hane et al., 1995] to solve the FAP. In such a network, a node
represents an airport location at a certain time-stamp and is connected to other nodes by flight arcs, ground
arcs and wrap-around arcs. [Sherali et al., 2006] uses this approach to solve the ARP, which is further extended
to an aircraft maintenance routing problem by [Liang et al., 2011] and [Khaled et al., 2018] These studies all
use three pre-processing steps that are described by [Hane et al., 1995] to reduce the number of arcs and nodes
in the network and speed up the computational time.



The second approach is using a connection-based network, which was also first proposed to solve the FAP
[Abara, 1989]. Instead of every airport only having one timeline with their available nodes, in a connection-
based model every airport has a separate timeline for arrival and departure nodes. These two node types are
connected using connection arcs. [Clarke et al., 1997] included maintenance and crew modelling in the FAP, with
the addition of an extra pre-processing step to reduce the problem size. This research is extended to solve the
ARP with maintenance constraints by [Haouari et al., 2013]. The advantage of the connection-based network
lies in the ability to model the attractiveness of connections and transfers for passenger airlines. However, this
is less suitable when cargo operations are modelled, as in this paper.

The final method is the string-based network, which is presented by [Pollack, 1974] to solve the ARP and
later adjusted by [Barnhart et al., 1998] to both solve both the FAP and ARP. Flight strings are created, which
describe a sequence of flights that can be flown sequentially by a single aircraft. [Liang and Chaovalitwongse,
2013] create their flight strings based on a time-space network, while [Barnhart et al., 1998| and [Froyland et al.,
2014] use a connection-based network to find the feasible sequences of flights. The problem size rapidly increases
due to the large amount of possible flight strings, which requires a more complex solving technique like column
generation. The main benefit of this technique is the ability to solve larger networks or simulate longer term
maintenance schedules.

The available research on flight planning for cargo airlines proposes integrated solutions for the SDP, FAP and
ARP. While objective functions might slightly change according to the specific model, profit maximisation is
the key driver. The model described by [Yan et al., 2006] selects the most profitable airports of the network
and creates a flight planning, based on a time-space network. Demand arcs are added to show if certain cargo
demand is served. To speed up the model, heuristics are used that vary the allowed number of intermediate
stops in a single cargo routing. This model is extended to also optimise flight scheduling for freight airline
alliances [Yan and Chen, 2008]. The string-based network is used by [Derigs et al., 2009], which create the
flight strings based on a set of mandatory and optional flights. Maintenance modelling is added to this model in
[Derigs and Friederichs, 2013]. [Delgado et al., 2020] investigates how cargo flight schedules can be redesigned as
a consequence of demand disruptions (differences between expected and actual demand), in order to minimise
the rescheduling costs. In the model, both aircraft and cargo requests are routed in the same time-space net-
work. No-service arcs are added that directly connect the source and sink node of a cargo request, to allow the
possibility not to transport some demand requests, resulting in a monetary penalty due to the missed delivery.
Another approach to react to demand disruptions is given in [Delgado and Mora, 2021], where a combination
of heuristics and column generation is used to deal with larger instances.

Several studies on aircraft emissions are available that can be categorised in research into (i) influence on local
air quality and (ii) atmospheric climate effects. Aircraft pollution around airports is mainly caused by emissions
during the different landing and take-off (LTO) phases. These are defined as all aircraft operations below 3000
ft and have different characteristics. During taxiing and idling the low thrust results in incomplete combustion,
which leads to large amounts of CO and hydrocarbons. However, the high thrust during take-off and climb-
out causes higher combustion temperatures, which result in a larger production of NO,, and SO, [Pagoni and
Psaraki, 2014]. The combustion of kerosene also leads to COy emissions, with a relation of 3.149 kg CO4 per kg
kerosene [Carlier et al., 2006]. The LTO-emissions are generally calculated following the standard ICAO LTO-
cycle, which provides a set of times and thrust setting per phase [ICAO, 2016a]. This cycle is also implemented
in the LTO-emissions calculator from the European Environment Agency [EEA, 2019].

Most research into full flight emissions is limited to carbon emissions, as this is directly related to the amount
of fuel that is burned. The effect of CO5 on climate effects is also better understood than other emissions, such
as nitrogen oxides and water vapour. The carbon emissions are dependent on multiple factors, such as the flight
distance (discussed by [Jardine, 2005]), load factor and aircraft age [Brueckner and Abreu, 2017] and air traffic
management influences [Miyoshi and Mason, 2009]. In addition, the type of network that is operated has an
influence on the emissions of an airline. It was found in [Loo et al., 2014] that hub-and-spoke models decrease
the CO2 emissions per passenger km. However, they have a negative effect on the local air quality around
the hub airports. Different emissions models are available, such as the Advanced Emissions Model! developed
by Eurocontrol, which uses the Base of Aircraft Data (BADA) aircraft performance model. Publicly available
models are Piano-X, the master flight emissions calculator of EMEP/EEA [EEA, 2019] and OpenAP, which is
an aircraft performance model developed at the TU Delft [Sun et al., 2020] and is the model used in this paper.

Finally, three studies are available that combine aircraft emission modelling to air cargo modelling. The
study of [Derigs and Illing, 2013] investigates how the network of a global airline changes due to the intro-
duction of EU-ETS, showing a shift towards areas that do not fall under these European regulations. For the
calculation of the emissions, a fixed emission rate per flight km is used, with added emissions if more payload
is on board. [Chao, 2014] analyses how different freighter aircraft types are impacted by four ETS scenarios,

Lhttps://www.eurocontrol.int/model /advancedemissionmodel, accessed on 19-04-2021



assuming a fixed fuel consumption throughout the whole flight. The third study does not consider the effects of
emission trading systems, but proposes a multi-objective optimisation model to minimise the costs and carbon
emissions of an air cargo alliance network [Yan et al., 2020]. Again fuel consumption is assumed to be constant
during the cruise flight, with the LTO-emissions calculated following the ICAO LTO-cycle. The model is al-
lowed to outsource operations to airlines in the alliance, which can results in lower emissions for the airline itself.

This study focuses on solving the flight scheduling, aircraft routing and cargo routing problems in an single
model, with the aircraft emissions integrated in the objective function. For this, a time-space network is used,
which also allows for the development of a flight schedule based on a given cargo demand. The emissions are
calculated based on the amount of payload on board, which is used to analyse what schedule revisions are
necessary to reduce the emissions.

3 Emission model

The emission model acts as a precursor to the flight scheduling model and generates an emission matrix that
is used during the flight schedule design. The emission matrix holds emission data of all possible flights in the
network for a range of load factors. During the flight schedule optimisation, emissions of a large number of
flights with a variety of load factors have to be calculated. In order to speed up that process, the data-points of
the emission matrix are used to approximate the emissions of each specific flight. This provides a good trade-
off between having a continuous-like approach (more realistic, but computationally very difficult), and current
approaches in the literature where emissions do not depend on the load factor at all. For the calculation of the
emissions for the emission matrix, the emission model divides each flight into two sections: The combined taxi,
landing and take-off phase (LTO-cycle) and the cruise or en-route phase. The CO4 calculation for both phases
is described in Section 3.1. The quality of the results is validated in Section 3.2 by comparing it to existing
emission models.

3.1 Carbon Emissions Calculation

The CO4 emissions are directly related to the combustion of kerosene, which means that the fuel flow can be
used to find the amount of COy emitted in the flight. The fuel used is multiplied to the emission coefficient
(3.149 kg COs per 1 kg kerosene [Carlier et al., 2006]). The emissions of the LTO phase and the cruise part of
the flight are calculated separately and are described below.

3.1.1 LTO-emissions

The main reason that the emissions of the LTO phase are calculated separately is due to the standardised
ICAO LTO-cycle [ICAO, 2016a]. This allows for a more reliable calculation of the emissions for this part of
the flight. The cycle describes all operations that take place below an altitude of 3000 ft and gives standard
times and thrust settings for each part of the LTO-cycle. Emission and fuel flow data of all commercial aircraft
engines is available for the four thrust settings shown in Table 1 in the ICAO emission databank?. These
values are independent of aircraft weight and load factor. The taxi times for each airport are retrieved from
Eurocontrol®. If no data is available for the airport, the ICAO standard values of 7 and 19 minutes for taxi-in
and taxi-out are used. The Open Aircraft Performance Model OpenAP is used for the calculation of the fuel
flow and emissions for each of the LTO phases. This open-source performance model also uses values from the
ICAO engine emission databank and allows for inputs of different thrust settings, altitudes and engine types
[Sun, 2019]. The fuel usage and emissions of the LTO phases are found for each origin and destination airport
combination, dependent on the local taxi times and altitude of the airport. The standard engine types are used
for the two aircraft types in the fleet, which can be found in Table 2.

Table 1: Reference times and thrust settings for ICAO LTO-cycle [ICAO, 2016a)

Operating phase Time [min] Thrust setting [%]
Take-off 0.7 100
Climb 2.2 85
Approach & landing 4.0 30

Airport dependent

7.0 (in) & 19.0 (out) 7

Taxi & ground idle

2https://www.easa.europa.eu/domains/environment /icao-aircraft-engine-emissions-databank, accessed on 08-11-2021
Shttps://www.eurocontrol.int /publication /taxi-times-summer-2019, accessed on 12-04-2021



3.1.2 En-route emissions

The cruise part of the flight is less strictly defined than the LTO-cycle. First a flight trajectory is generated,
where the flight length is assumed to be equal to the great-circle distance between the origin and destination.
This is the shortest path between two locations on a sphere. A vertical trajectory is generated using the TrajGen
function of OpenAP, which describes the altitude, airspeed and vertical velocity during the flight. The function
creates the trajectories using a kinematic model which is based on statistical ADS-B data [Sun et al., 2020].
The trajectory is generated with a time step of 10 seconds. The default settings of the B747-400 are used, which
represent the most occurring values of parameters such as calibrated airspeed during climb and descent, cruise
Mach number and cruise altitude. The cruise range parameter is set equal to the great-circle distance of each
airport pair, from which an average distance needed for climb and descent is subtracted. For flights shorter than
600 km, a lower cruise altitude of 20,000 ft is assumed. External influences such as wind, flight instructions from
air traffic management and fuel saving procedures like a step climb during cruise are neglected. These factors
are considered to be outside the scope of this study. Plots of the altitude, airspeed and vertical velocity for
a flight from Hartsfield-Jackson Atlanta International airport (ATL) to Chicago O’Hare International airport
(ORD) are shown in Figure 2. In order to prevent counting the LTO-emissions twice, the trajectory data-points
below 3000 ft are not used in the emission calculation.
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Figure 2: Output plots of altitude, velocity and vertical velocity for a generated trajectory between Atlanta
(ATL) and Chicago 'O Hare airport (ORD)

The fuel use and emissions for each flight leg are calculated for 11 evenly spaced load factor values. The number
of data-points can be varied depending on the desired accuracy, with a minimum of two load factors that are
necessary for linear interpolation. The maximum load factor is based on the payload-range diagram of each
aircraft. This diagram relates the payload capacity to the mission range, graphically shown in Figure 3. For a
hypothetical range of 0 km, indicated in point A, the full payload capacity is available. This capacity is limited
by the difference between the maximum zero fuel weight (MZFW) and the operational empty weight (OEW).
For the ranges between the points A and B, fuel can be added without needing to reduce the payload weight.
For longer ranges than R,z cap, @ trade-off has to be made between payload capacity and fuel weight, to stay
below the maximum take-off weight (MTOW). This decrease in payload capacity continues until point C, which
represents the point where the maximum fuel limit is reached. From this point onward, no extra fuel can be
added which decreases the payload capacity even quicker. Point D indicates the maximum mission range with
no payload on board. The payload capacities and ranges indicated on the diagram are shown in Table 2 for the
two most used aircraft by Cargolux.

Take-off weight A

A
MZFW

A

Cap max
Cap1

\4

OEW >
R max cap R1 R max Range

Figure 3: Payload-range diagram

The amount of fuel that is necessary for the flight can be determined for each load factor. The fuel use is among
other dependent on the mass of the aircraft, and thus also on the amount of fuel that is loaded into the aircraft
before the flight. Therefore, an estimation of the fuel needed for the flight is made (M pye; est), with an assumed



Table 2: Aircraft input values [Sun et al., 2020] [Boeing, 2012] [Boeing, 2002]
: : MTOW OEW Capmaz Capl Rmaa: ca Rl Rma:z:
Aircraft type Engine type P
A ke]  [ke]  [ke]  [km]  [km] [km]

B747-8F GEnx-2B67 447,700 197,000 134,000 70,000 7,778 13,890 16,112
B747-400F RB211-524G 412,770 165,000 113,000 60,000 7,963 13,334 15,186

constant fuel flow of 3 kg/s. This gives the model an approximation of the take-off weight for this flight. For
every time step, the fuel flow is calculated using the OpenAP FuelFlow function [Sun et al., 2020|. OpenAP
uses a kinematic model to find the thrust needed to fly at the altitude, velocity and flight path angle provided
by the generated trajectory. The aircraft mass for each time step is updated by subtracting the fuel used during
that period. When the complete flight has been simulated, the sum of the fuel flow (mpgye) can be compared
to the estimated fuel mass mpye; ese. If the difference is larger than 2%, the fuel mass estimation is adjusted
and the simulation is repeated. If the gap is smaller than 2%, this take-off mass and fuel flow are used in the
en-route emissions calculation.

3.1.3 Full flight emissions

The integrated value of the en-route fuel flow is multiplied to the emission coefficient of CO2 and added to the
emissions of the LTO phase to find the total amount of CO5 that is emitted on each flight. These values are stored
in the emission matrix for all routes in the network. This is done for each available (aircraft type, load factor)
combination. The matrix is constructed before the flight schedule optimisation to limit the computational time.
An example of this output is plotted in Figure 4 for a flight between ATL and Luxembourg airport (LUX). The
result is a slightly non-linear relation, with the emissions increasing faster for higher load factors. In Section
4.2 two methods are described that use these 11 known data-points to approximate the emissions for a specific
load factor during the flight schedule optimisation.
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Figure 4: Full flight CO4 emissions from the emission matrix for 11 load factor values, connected by a piecewise
linear function.

3.2 Comparison with other emission models

Aircraft emissions for this study were computed using the OpenAP database, due to its flexibility and easiness
of use and integration in the optimisation model. Because OpenAP is a recent addition to the existing literature
on aircraft emission, the results obtained with OpenAP are validated using two other emission models. The
EMEP/EEA model [EEA, 2019] was used to validate both LTO and full flight emissions, while Piano-X* was
only used for the full flight emissions. The emissions are validated for an Airbus A380-800 equipped with
GP7270 engines, as no Boeing 747 models are available in the Piano-X database. Although the A380 is not
used in the remainder of this study, it displays much similarities to the both Boeing 747s, being a wide-body
aircraft with four engines. Therefore, it gives a good indication on the accuracy of the results of the developed
emission model.

4https://www.lissys.uk/PianoX.html, accessed on 08-11-2021



3.2.1 EMEP/EEA

This model is developed by the European Environment Agency and provides a separate LTO-emissions calcu-
lator® and a master emissions calculator® that can be used for emission calculations for a whole flight. EEA
estimates the uncertainty of its model to be 5 to 10% for the LT O-emissions and 15-40% for the cruise phase[EEA,
2019]. The LTO-emissions are compared for a complete LTO-cycle at LUX. An average taxi-out time of 624
seconds and taxi-in time of 258 seconds are obtained from the Eurocontrol data. The comparison between
the developed model and the EEA LTO-emissions calculator is shown in Table 3. The overall LTO emissions
are 300 kg lower when using the OpenAP model (9,480 vs 9,772 kg, which corresponds to a relative difference
of 3%). OpenAP finds lower values for the two taxi phases, while the emissions of the other three phases are
slightly overestimated compared to the EEA calculator. A reason for these discrepancies might be that OpenAP
approximates the relation between the thrust setting and fuel flow with a 3rd-degree polynomial [Sun, 2019].
This function is based on the values from the ICAO emissions databank”, which only provides the fuel flow for
the four thrust settings of the LTO-cycle. OpenAP uses this polynomial to also have the possibility to calculate
the en-route fuel flows for different thrust settings. The EMEP/EEA approach uses the exact values from the
ICAO emissions databank, which results in a difference between the two models. Furthermore, the altitude of
the airport has been incorporated in the developed model, where the EEA model calculates all LTO emissions
at sea level. The thinner air at higher altitude means that a larger fuel flow is necessary for a similar thrust
force. Although LUX only lies at 350 meters altitude, assuming the airport at sea level would already result in
a COg reduction of around 250 kg.

Table 3: Validation of the LTO emissions of an A380-800 at Luxembourg Findel Airport (LUX). Comparison
between the developed model, which uses OpenAP, and the LTO emissions calculator of EMEP/EEA

Operating phase OpenAP [kg CO2] EMEP/EEA [kg COs]
Taxi-out 1,448 1,843
Take-off 1,440 1,396
Climb 3,697 3,607
Approach & landing 2,294 2,150
Taxi-in 599 775
LTO-cycle total 9,480 9,772

For the full flight emissions a short haul and a long haul flight are investigated, namely a flight from Glasgow
Prestwick (PIK) to LUX (978 km) and a flight from ATL to LUX (7274 km). The EMEP/EEA Master emissions
calculator does not allow for changes in the amount of payload, therefore only one value per flight is generated
and shown in Table 4. The emissions for the PIK-LUX flight are just higher than the emissions for the flight
with LF = 1 using OpenAP. However, the amount of CO4 for the longer ATL-LUX flight that is found using
the EMEP/EEA approach lies closer to the value calculated for LF' = 0.5. The results are difficult to compare
as no exact information is available on the take-off weight that is used for these flights. However, this gives a
confirmation that the results are of a similar order of magnitude.

3.2.2 Piano-X

Second, the Piano-X aircraft emissions and performance model is considered. Only the full flight emissions are
compared, as its definition of the LTO phases differs from to the ICAO LTO-cycle used in this study. The load
factor is set at 0, 0.5 and 1 to show how the developed model relates to the results of Piano-X with different
amounts of payload on board. Table 4 shows a comparison between the three emission models. The results for
the short flight display an excellent agreement, with the largest error being just under 5% for the empty flight
(LF = 0). The Piano-X model seems to be more sensitive to the changes in load factor, as the difference between
flying with minimum and maximum payload being larger than for the OpenAP model. When considering the
longer route, the difference increases as the OpenAP model expects larger emissions compared to Piano-X. A
possible explanation is the assumption of a constant cruise altitude and speed that is used in the OpenAP
model. The flight trajectory in Piano-X is optimised for the aircraft weight and also a step climb during cruise
is implemented to save energy. Again, the impact of the load factor is slightly larger for the Piano-X model.

Shttps://www.eea.europa.eu/publications/emep-eea-guidebook-2019 /part-b-sectoral-guidance-chapters/1-energy /1-a-
combustion/1-a-3-a-aviation-1-annex5-LTO /view, accessed on 08-11-2021

Shttps://www.eea.europa.eu/publications/emep-eea-guidebook-2019 /part-b-sectoral-guidance-chapters /1-energy/1-a-
combustion/1-a-3-a-aviation-1/view, accessed on 08-11-2021

Thttps:/ /www.easa.europa.eu/domains/environment /icao-aircraft-engine-emissions-databank, accessed on 08-11-2021



Table 4: Validation of the full flight emissions of an A380-800 for a short (PIK-LUX) and a long haul flight (ATL-
LUX). Comparison between the OpenAP model, Piano-X and the EMEP/EEA Master emissions calculator.

Route LF [-] OpenAP [kg CO;] Piano-X [kg CO3] EMEP/EEA [kg COs]
0 48,155 45,998
PIK-LUX 0.5 51,707 52,547
1 58,124 59,884 60,468
281,980 249,585
ATL-LUX 0.5 322,325 298,878
1 377,931 357,329 339,803

4 Flight scheduling model

This section describes the flight scheduling model, which aims to find the most profitable flights and assigns
an aircraft to each route. First, a time-space network is formulated in Section 4.1, which is used to route all
aircraft and cargo requests between the different airports in the network. Section 4.2 describes the mathematical
formulation of the MILP, together with two variants that are used to incorporate aircraft emissions (and hence,
environmental sustainability) into the model.

4.1 TSN formulation

The routing of both the aircraft and cargo requests is carried out in a TSN that is inspired by [Delgado et al.,
2020]. A TSN is a particular type of network that simultaneously maps events occurring in space and time. Each
node in the network is uniquely defined by a tuple with a specific position (e.g. an airport) and a time-stamp.
In a TSN, time is only defined as multiples of the chosen time step At. The overall planning horizon is defined
between an initial time 0 and a final time T}, with a set of time-stamps Tpnor = {0, At, 2At, -+ , Thor}. The
spatial component is represented by the set of airports | € £ that the aircraft can fly to. Hence, the aircraft
network consists of a set of itinerary nodes (N) for each unique combination of airport and time-stamp. These
nodes are connected to each other by a set of ground arcs (A%) and flight arcs (A). The ground arcs connect
different nodes associated to the same airport, indicating that the aircraft is stationary on the ground. Flight
arcs connect a node i to node j, where the airports associated to nodes ¢ and j are different. The flight time is
defined as t;; = distance;;/Veruise + trro + trar. The great circle distance is divided by an assumed constant
cruise speed of 900 km/h, with 30 minutes added for the LTO phase. A turnaround time (TAT) of 1 hour is
already added to the flight time, which means that the aircraft can directly start the next flight using the same
itinerary node. In the likely scenario that the flight time of a flight arc does not match a multiple of At, the
arrival time is rounded up to the time-stamp of the next available node, hence overestimating the flight time.
The combined set of ground arcs (A%) and flight arcs (AF) are referred to as itinerary arcs A! = A% U AF.
Each aircraft £ in the fleet K is assigned an origin and final airport, where it must be located at the start and
end of the time horizon, respectively.

Airport 1

O Itinerary node

I:I Request node
—> Flight arc
----- > Ground arc

——> Request access arc

S>> No-service arc

Airport 3

time 1 time 2 time 3 time 4 time 5
Figure 5: Example of a time-space network consisting of node set N/ and arc set A
Each cargo request r € R is routed over the same TSN where the aircraft can move. Next to the itinerary

nodes, two special request nodes are available for each cargo request: Origin node i and destination node
i.-. These request nodes represent, respectively, the (origin airport, release time) and (destination airport, due



time) tuples for request r. The request nodes are collected in the set N and are grouped with the itinerary
nodes in the set A = N7 UNT. The request nodes are connected to the network of itinerary arcs and nodes by
a set of request access/egress arcs: A% = A%t U A%~ Here At define the access and A%~ define the egress
arcs. Section 5.2 further elaborates on the generation of the cargo requests. Finally, each request node pair (i,
i) is directly connected to each other via a no-service arc. The set of all no-service arcs is AY. A no-service
arc is used to model the situation where a request r is not physically transported through the TSN, and thus
represents a missed delivery, resulting in no revenue that is earned from this request. The whole set of arcs is
A=AUAF UARU AN, Cargo requests can use all arcs in A and nodes in N, while aircraft can only use arcs
A! and nodes N'T. An example of a TSN with a single cargo request 7 is presented in Figure 5. The complete
definitions of all sets used in the TSN are given in Table 5.

Table 5: Definitions of all sets used in the TSN.

Notation Description Definition

K Aircraft fleet {k:keKk}

R Cargo requests {r:remR}

L Airports {l:leLl}

Thor Time steps {t:t€ Thor}

NT Itinerary nodes {{l,t): e L,t € Thort

NE Request nodes {67 reRU,t7):r eRY

N Nodes {NTUNTE}

AF Flight arcs {(i,§) 4,5 ENTAL £ Nt < 5}

A¢ Ground arcs {(,§) i, ENTAL =1 Aty +T =t}

AR Request access/egress arcs  {(if,i): 7 € RATENI AL =1F Ath <t; <t}
W(,i ) ir e RATENIANL =17 AtE <t <t}

AN No-service arcs {(if,i):reR}

Al Itinerary arcs {AF U A%}

A Arcs {AF UAY U AR U AN}

4.2 Mathematical formulation

The time-space networks that are discussed in Section 4.1 display all possible options that the model can choose
from in the design of the flight schedule. In order to indicate which arcs are chosen for each aircraft and cargo
request, two main decision variables are used: xfj and ¢;;. Both are binary decision variables, and indicate if
an aircraft or cargo request is routed over arc (7,5), where ¢ is the origin node and j is the destination node
of the arc. A formal definition of the aircraft decision variable is X: {zf; : k € K, (i,j) € A}, indicating
that the aircraft can only be routed over itinerary arcs. @ gives the set of cargo routing decision variables:
(a7, ;7 € R, (i,j) € A}.

Each aircraft k in the fleet K is characterised by a maximum payload capacity Capfj, which depends on the
flight arc (4,7) and the aircraft type, due to payload-range restrictions. All aircraft need to comply with the
maximum block time Tyiock max, With ¢;; being the flight time between the airports associated with nodes i and
j. Finally, OperCosti—“j characterises the operational costs for each aircraft. Note that OperCostfj is listed as a
parameter, while it directly depends on decision variables X and @) and should formally be considered as such.
More details are given in Section 4.2.1.

For each request r € R, a revenue Rev;; is defined. Each request can be routed on a maximum number of
flight legs equal to 7 iignes to limit the amount of intermediate stops. Although this parameter is constant in
this paper, it can be easily translated into a request-specific parameter to capture different cargo characteristics.

Next to the routing decision variables, the model uses another set of decision variables to map the COq
emissions produced by each aircraft k € K when flying flight arc (¢,j). This is given by the set E: {efj k€
K, (i,§) € AF}. When assessing the environmental impact of the emissions, a fixed cost per unit weight of CO5
is used, which is given by parameter Cco,.

In Table 6 and 7 the decision variables and parameters of the MILP are summarised.

Note that some of the described parameters are obtained as a function of other parameters that have not
been presented yet for ease of notation. These will be thoroughly described in Section 4.2.1 and 4.2.2.



Table 6: Definitions of all decision variables used in the MILP.

Notation Description

xfj Binary. Unitary if aircraft k traverses arc (i,5) € A’

4 Binary. Unitary if cargo request r traverses arc (i,j) € A

er; Continuous. COy emissions of aircraft k when traversing arc (i,5) € A!
Table 7: Definitions of all parameters used in the MILP.

Notation Description

OperCostfj Operational cost of aircraft k to fly arc (7,5)

Rev;; Revenue for request r for request access arc (4,5)

Capy; Payload capacity of aircraft k on arc (4,5)

Thiock Maximum daily block time (z,j)

1 Flight time for flight arc

N flight Maximum number of flight arcs that a cargo request can be routed over

Cco, Cost per unit weight of CO5 emissions

max E

The flight schedule design and aircraft routing problem is formulated as a MILP model that aims to maximise
the objective value, which is defined as follows:

Z Revfj oqu — Z Z OperC’ostfj - Z Z efj -Cco,, (1)

T€R (i,j)€ AR+ ke (i,5)€AF ke (i,5)€AF

subject to the following constraints:

> wea; <Y Capliar, v(i,j) € A (2)
reR kex
1, di=if
Z ak — Z ek =41, i=ip VieNT kek (3)
(i,5)€ AT+ (i) (4,1)€AT=(d) 0, otherwise
Z xfjtz] < Thiock max Vk e K (4)
(i,5)€AF
Soak <1, v(i.j) € A" (5)
ke
1, i=qf
Soooay— > d=1-1 i=ip Vie N,reR (6)
(i,5)€ AT (i) (4,1) €A™ (3) 0, otherwise
> al < npiights, vreRr (7)
(i,j)€AF
;<> ak, v(i,j) € A", vr e R (8)
ke

Z af =1, Vt € Thor, k €K (9)
(i,4)€AT:{t; <t<t;}

Z @ =1, Vte{th <t<t },reR (10)
(i,j)eA:{t¢§t<tj}

ay; € {0,1}, v(i,j)e Al ke K (11)

qf; € {0,1}, V(i,j) € A,reR (12)

ek >0, v(i,j) e AT ke K (13)

The objective function (Equation 1) consists of three terms that are used to determine the profit. The first
term maps the revenue that is earned from transporting requests. The operational costs that are required are
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mapped in the second term, and further explained in Section 4.2.1. The third term maps the costs due to CO4
emissions, which is elaborated upon in Section 4.2.2. These terms are combined to find the most profitable
flight schedule, while also taking account the corresponding aircraft emissions.

To find a feasible schedule, first a set of constraints is created which take care of the aircraft and cargo
routing part. Constraints 2 assure that the payload per flight is smaller than or equal to the payload capacity
of the aircraft operating that flight leg. Conservation of aircraft flow in the TSN is ensured by Constraints 3.
Here A" (i) and A~ (i) represent the set of all out- and ingoing arcs of node i. Subtracting all active incoming
arcs from the outgoing arcs of a node should always result in zero, except for the starting and ending nodes of
the aircraft (22' and i, ). Furthermore, Constraints 4 limit the operational time of each aircraft to the maximum
allowed block time Tyjock maz, Which is set to 16 hours per day for this study. In addition, Constraints 5 enforce
that at most one aircraft can operate each flight arc. Similarly to the aircraft flow conservation constraints, also
cargo flow conservation is added by Constraints 6. This forces each cargo request r from its release source node
i," to the sink node i, . Constraints 7 limit the maximum number of flights of each cargo request to N flights
which is set to 3 in this work.

On top of the routing and operational constraints mentioned above, an additional set of constraints is added
to tighten the formulation. Cargo requests can only traverse flight arcs that are operated by an aircraft, which is
checked using Constraints 8. Constraints 9 and 10 ensure that each aircraft and each cargo request is allocated
to exactly one location at each time-stamp. For the aircraft this is done for the whole simulation horizon
Thor, while the cargo only is checked for the period in which it is active, which is between ¢ and ¢,". Finally,
Constraints 11 and 12 define the binary nature of the x and ¢ decision variables, while the emission variables e
are continuous (Constraints 13).

4.2.1 Revenue and Operational cost

The first two terms of the objective function (Equation 1) are more elaborately described next.

Revfj = W, PrSy (14)
OperCosty; = Crti;zy; + CrueWhyer ij + ChandiingWhake—of 1.ij (15)
i l — fuely o
k > l ZTGRqu” .fuemaz (11— k M v c r Lek 16
Whyerij = | Juelo + Capr IF (1 —a3;) - M, (i,7) € A", (16)
Whrke—offuij = <OEW + Whyeris + Y qu;j> —(1-ak)- M, Y(i,j) e AF ke K (17)
reER
w?uelﬂ'j >0, V(’L,j) € AF, ke (18)
wfak:e—off,ij > Oa V(’L,j) S .AF, ke (19)

The revenue for each request can be determined by multiplying the weight of the cargo request w,. by the freight
price per kg p, and a strategic weighting factor s, (Equation 14). This strategic weighting factor can be used to
vary the importance of specific requests. The revenue is calculated for each request access arc in the set A%F. If
the request is not served, it is routed directly over a no-service arc and will therefore not yield any revenue. In
the objective function, the revenues are multiplied to the corresponding cargo routing variable ¢ and summed
to find the total revenue.

The costs that are required to operate the aircraft are split up in three terms. First, the flight time is multiplied
by a fixed cost term Cp, which includes maintenance cost, crew wages, asset depreciation costs, take-off and
landing charges and other general operating costs. The hourly value for these fixed cost is retrieved from
[van der Meulen et al., 2020] and stated with all other cost parameters in Table 8. Second, the fuel costs are
considered. The fuel weight needed for each flight is determined using the emission model described before.
A linear function between the fuel weight for the flight at zero and maximum payload (fuely and fuelnqz) is
assumed. Constraints 16 show the linear interpolation between these two values to find the fuel weight for the
load factor of the flight. This load factor is defined as the sum of all request weights on board of the flight
divided by the payload capacity of aircraft k. A fuel price of 75 euro per barrel is used®, which can be converted
to 600 euro per tonne. w’;uem ; 1s implemented as an additional continuous decision variable (Equation 18),
mapping the amount of fuel necessary as a function of decision variables xfj and qu Third, a term is added
for the airport handling cost. This term is dependent on the take-off weight, which consists of the operational

8https://www.iata.org/en/publications/economics/fuel-monitor/, accessed on 03-11-2021
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empty weight, the fuel weight and the weight of all cargo on board (Constraints 17). Similar to the fuel weight,
wfake_ of f.ij is an additional continuous decision variable, defined in Equation 19. Note that Constraints 16 and

17 are implemented using a big-M formulation that activates the constraint only if the associated xfj is equal
to 1.

Table 8: Used values for the different cost parameters used in the objective function.

Cost parameter Value

Cargo price Dr 2 [€/kg]

Fixed operating cost Cp 5,375  [€/hr]

Fuel cost Cuyel 600 [€/tonne]
Handling cost Chandiing 10 [€/tonne TOW]|
COq cost Ceco, 50 [€/tonne]

4.2.2 Aircraft emissions

The final term of the objective function is the sum of all emission costs, which are subtracted from the profit
term. These are calculated by multiplying the CO5 emissions by the cost to emit one tonne of COs. This cost
is based on the current prices for an allowance for one tonne in the EU Emission Trading System (EU-ETS)?.
Although the pricing of these allowances is dependent on more factors, this fixed price is assumed for the CO4
costs. The carbon emissions are calculated using the emission model, discussed in Section 3, as part of the
pre-processing phase. Based on these known values that are stored in the emission matrix, an approximation
of the carbon emissions of the flights that are considered in the optimisation is carried out. Two approximation
methods are implemented: (i) Linear interpolation and (ii) discretisation of a piecewise linear function.

Linear interpolation is the most straightforward way to approximate the flight emissions. In Figure 6 the data-
points from the emission matrix of a ATL-LUX flight are plotted. Within this figure a linear function is shown,
which connects the emissions of an instance with a load factor of 0 and 1. The emissions of both cases are
referred to as Ey and F,,,, respectively. The emissions are dependent on the load factor, which is calculated
using cargo routing decision variable g. Therefore the linear interpolation is implemented as a constraint, shown
by Constraints 20. The load factor is found by dividing the weight of all cargo requests on flight arc (i,5) by
the cargo capacity of aircraft k. The values for emissions at a load factor of 0 and maximum capacity LF,qz
(Eo and Ey,q, respectively) are retrieved from the emission matrix. efj contains the carbon emissions of this
flight and acts as a continuous decision variable that can directly be used in the objective function (Equation
1). The constraint is only activated if xf] = 1, indicating that the flight arc is used in the flight schedule.

T B — E
b > (g Zrer Ol Bras — B0 gy V(i i) e AP ke K 20
o _< " Capy LFpas (1 —ai) - M, (i,5) € Ak € (20)

Two approximations of CO2 versus LF [ATL-LUX, B747-8F]

3400001 __ Linear interpolation
Piecewise linear function

320000 - Boundaries of each interval
2 e Emission matrix datapoints
o Central CO2 value of interval
.© 300000 4
a
IS
w
o~ 280000 A
o
o
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Figure 6: Graphical representation of the two methods used to approximate emissions based on load factor:
Linear interpolation and discretisation based on a piecewise linear function.

9https://ember-climate.org/data/carbon-price-viewer/, accessed on 03-11-2021

12



A second method is proposed that can better capture the non-linear behaviours in the relationship between
load factor and emissions. For this, the piecewise linear function is divided up into equally spaced segments,
each with a lower and upper load factor bound. If the load factor of a certain flight falls between two of these
bounds, the central value of that interval is chosen. An example with a discretisation of 20 sections (ngiser = 20)
is shown in Figure 6. The load factor bounds are shown by the dotted vertical lines and the middle CO4 values
are depicted by the blue dots. An extra binary decision variable is created for each segment to indicate if it is
used or not, to indicate if the (flight arc, load factor range) combination that the segment refers to is flown by
aircraft k. The additional set of decision variables is defined by S: {sfj" ckeK,(i,5) € AP, n € ngiser}. The
extra set of constraints that is necessary for the implementation of this second method is described below.

2 w=t V(i,j) e AF ke kK  (21)
n€(0,ndiscr—1)
Z n SZ’" < ZTZ’R 4;; < Z ”+ Sf]’ ; V(i j) € AF7/€ ek (22)
n€(Onreer—1) T APk €O, marecr—1) | LT
ez Y, sy (eonlisty") = (1—ay) - M, Vi) e AT ke (23)

n€(0,ndiser—1)
Sf]’n € {0, 1}, Vn € (07ndiscr - 1)7 (zaJ) € AF7 kek (24)

Constraints 21 enforce that each unique (flight arc, aircraft) combination should be assigned a specific load
factor segment. The load factor segment that is valid for this combination is computed using Constraints 22.
The emissions associated to the middle-point load factor of the selected segment are computed with Constraints
23 which outputs the associated value of ei—“j. Note that coﬂistfj?" is a vector containing all CO5 emission values
of the middle-points of each segment of the discretisation. Again, only emissions of scheduled flights are added
to the objective function by checking the associated aircraft routing variable xfj using a big-M formulation.
Finally, the binary nature of the decision variables is defined by Constraints 24.

5 Experimental setup

After describing the emission model and flight scheduling model, this section will explain how the experiments
are set up. First, Section 5.1 shows the three networks that are investigated in the experiments. Second, the
simulation of the cargo demand and generation of cargo requests in these three networks is discussed in Section
5.2. Details on the different experiments that are performed are given in Section 5.3.

5.1 Description of the Networks

The ideal scenario would be to simulate the complete network of a full-cargo airline like Cargolux, however due
to computational time limitations this is not possible. Therefore, a part of the Europe and North-American
part of the Cargolux network is split up in three smaller networks that are analysed separately. First, a Euro-
pean network is created (EU), which consists of 7 airports and is characterised by relatively short flights. In
the second network (EU-NA), three European airports are connected to five American airports. This allows
for analysis of the combination of transatlantic flights and shorter continental flights. Finally, the airports on
western side of North-America are joined in a third network (NA), which also contains the two largest airports
in Mexico and Calgary in Canada. These are all medium range flights apart from the airport pair in Mexico,
which is a shorter flight of just under 500 km. Figure 7 presents a graphical representation of the three networks.

Each network can be simulated with a fleet of 1, 2 and 3 aircraft, indicated by AC0O, AC1 and AC2. The aircraft
type of each aircraft is stated in Table 9, together with the airport locations and TATA codes of each network.
In addition, the initial and final location of each aircraft is given. These airports act as the source and sink
nodes in the time-space network as described in Section 4.1.

5.2 Demand and request generation

The next step is to define the demand between each airport in the networks. Very limited data on cargo de-
mand is publicly available, therefore the demand was synthetically simulated to model the operations of a cargo
airline. For each origin-destination pair, the flight frequency is found, based on publicly available data from
flight tracking platforms. The demand between each city is based on the assumption that the cargo on a specific
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Figure 7: Graphical representation of the airports in the three networks that are investigated. The airports are
connected by a line that shows the great-circle distance.

Table 9: Overview of the airports of the three networks that are investigated: EU, EU-NA and NA. The aircraft
fleet is indicated with the initial and final airports per network.

Airport TATA-code AC type Initial Final
Luxembourg LUX ACO BT47-8F LUX LUX
Amsterdam Schiphol AMS AC1 BT47-8F STN PIK
Glasgow Prestwick PIK AC2 B747-400F MXP LUX
EU London Stansted STN
Milan Malpensa MXP
Vienna VIE
Budapest Ferenc Liszt BUD
Luxembourg LUX ACO BT47-8F LUX ORD
Glasgow Prestwick PIK AC1 BT747-8F ORD LUX
Milan Malpensa MXP AC2 BT747-400F MXP ATL
New York JFK JFK
EU-NA \Miami MIA
Chicago O’Hare ORD
Hartsfield-Jackson Atlanta ATL
George Bush Houston TAH
Dallas Forth Worth DFW ACO BT47-8F MEX LAX
Los Angeles LAX ACl1 BT747-8F LAX SEA
NA Seattle-Tacoma SEA AC2 BT747-400F SEA DFW
Calgary YYC
Guadalajara GDL
Mexico-City MEX

flight is either aimed for its original destination (primary demand), one connection after the original destination
(secondary demand) or two connections after the original destination (tertiary demand). The percentages for
the primary, secondary and tertiary demand (ratio, ratios, ratios) can be manually adapted and sum up to 1.

The primary demand is determined for all airport pairs (¢,j), using Equation 25, which is dependent on the
number of flights between airports ¢ and j (freg;;) and on the ratio of the cargo that is assumed to be headed
to airport j: ratio;. These values are multiplied by the average load factor of Cargolux, which is reported to be
0.65 in 2019'°. The average cargo capacity of an aircraft is based on a fleet of B747-400F and B747-8F aircraft.
A similar procedure is followed to find the secondary demand, which is determined as the cargo that is first
transported on flight (i,5) and then transferred to an available flight (j,9). This flight transports the cargo to
its destination airport g. The cargo is equally divided over the different connections, based on the frequencies
to each airport. Finally, the last part of the cargo from flight (i,5) is distributed in a similar manner over the
available connections from airport g (Equation 27).

The departure times and dates are neglected in the determination of connections for the secondary and tertiary

1Ohttps: / /www.cargolux.com/media-room /media-releases /media-releases/ Archives-2020 /Cargolux-financial-results-for-2019, ac-
cessed on 09-08-2021
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demand. It is assumed that the cargo can be transferred to any available connection from the airport that does
not lead back to the origin airport of the cargo or an intermediate stop that the cargo has already visited. The
demand ratios can be adjusted, given the characteristics of the considered airline. If most cargo is flown to its
destination directly, ratio; can be increased, and if more connections are used in the network, ratios and ratios
should be increased. A division of {ratio; = 50%, ratio, = 30%, ratios = 20%} is used during this research.

Primary demand (ij) = freg;; * ratio; * LE g, * Capauyg Vi,j € Airports  (25)
Secondary demand (ig) = fregq;; * ratios * LF g * Capayg * ﬂ
> conn,

Vi, j, g € Airports, g # i (26)

fregsg  freggn
Y- conn; > conng
Vi, j,g,h € Airports, g # i, h#1i,j (27)

Tertiary demand (ih) = freg;; * ratios * LFquq ¥ Capayg *

The primary, secondary and tertiary demand between each airport couple is summed to create a demand matrix
that is used in the generation of cargo requests. Not every experiment is simulated with the full demand of
the Cargolux network to reduce the computational time, therefore the size of the demand matrix can be scaled
down. This allows for creating more suitable request sets for each experiment, while still keeping the same
demand distribution. The request generation creates new cargo requests until the demand between a certain
airport pair is met. The weight of each request (w,) is randomly generated between 15,000 and 30,000 kg.
The due time ¢, can vary randomly between the beginning of day 2 (after 24 hours) and the end of the time
horizon. The release time ¢, should be at least 24 hours and at most 48 hours before the due time. The value
of ¢ is varied randomly between the two bounds, as long as the value is not negative. This can be described
by t : {max{0,t; — 48}, — 24}. A strategic weight s, is given to each request, which has a standard value
of 1 and is set to 1.5 for transatlantic flights, to reward the model to fly these longer and more costly flights.
Also, this represents the increased value of commodities being transported overseas.

5.3 Description of experiments

Using the three created airline networks and the generated demand, a set of experiments is performed. These
experiments each aim to investigate different parts of the research objective. First, the two emission approxi-
mation methods are compared in Experiment 1. This is done to find which approach is most suitable for the
implementation of the carbon emissions into the MILP in the remainder of the research. Second, an analysis
on the relation between the profit and emissions term is performed by means of a Pareto front analysis. This
helps to understand how the model behaves when the two terms are disconnected and weighted differently.
A modification to the objective function that is necessary for this analysis is explained in Section 5.3.1. The
third experiment aims to find what decrease in profit can be expected given a pre-determined reduction of
carbon emissions. The used constraint for this experiment is briefly discussed in Section 5.3.2. The goal of this
experiment is to find how financially feasible a fixed reduction of emissions would be for different networks and
combinations of fleet size and cargo requests. Finally, a sensitivity analysis is performed in Experiment 4 to
determine how the model reacts to changing input variables. The first of these sub-experiments intends to find
the consistency of the results with different request sets available. This is done by feeding the same model ten
different variations of a request set that is generated from the same demand matrix. Furthermore, the effects of
a different aircraft type on the flight scheduling is analysed. A flight schedule is optimised for both the B747-8F
and the B747-400F with the same initial conditions. An overview of all experiments is shown in Table 10, which
also indicates the fleet size and number of cargo requests that are used in each instance.

Table 10: Summary of the four experiments that are performed.

Subject |[Fleet size/Cargo requests| Discussed in
E1 Comparison of emission approximation methods [1/20] Section 6.1
E2 Pareto front search [1/30] Section 6.2
E3 Constraining maximum allowed emissions [2/20], [3/25] Section 6.3
E4  Sensitivity analysis [2/15], [1/25] Section 6.4

The networks used for this study are set up with a time horizon T}, of 72 hours and a time step At of 3
hours. This time step provides a good trade-off between scheduling accuracy and computational complexity.
The MILP is written in Python 3.8 and solved using the Gurobi Optimiser!!. The maximum run time is set to
2 hours for a single flight schedule optimisation.

Mhttps:/ /www.gurobi.com/, accessed on 18-11-2021
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5.3.1 Objective function for Pareto front search

For experiment E2,; a slight adjustment to the objective function is necessary. Because the objective function
consists of two distinct parts, namely increasing profit and reducing emissions, the problem can be considered
a multi-objective optimisation. In such a problem, a Pareto front search can be performed to analyse how the
two objectives relate to each other. A point is considered Pareto optimal if one of the objectives cannot be
improved, without the other objective resulting in a lower value. In order to find this front, a weighting factor
and normalisation are applied. This emission weighting factor wco, can range continuously from 0 to 1 and
is multiplied to the emission objective, while the profit part is multiplied by the (1 — wco,) term. Increasing
weo, will therefore move the objective more towards minimising the emissions at the cost of a decrease in profit.
Furthermore, both terms of the objective function are normalised. First a run with wco, = 0 is performed
for each instance to find the maximum profit (Profit,,.,) that can be achieved. In this profit, the costs
that the airline has to pay for the emitted COs is neglected. This run also indicates the maximum emissions
(Emissionmaz) in tonnes that can be expected for the instance. By dividing the first term by Profit,., and
the second by Emissionm,q., the terms now both vary between 0 and 1, giving them equal influence in the
objective function. The adjusted objective function is shown in Equation 28.

1—
max (meﬂztc::j Z Z Revfj'q:j—z Z OperCost;;

rER (i,5)EAR keK (i,5)€AF

w i
___weo, Z E : ekl with 0 < weo, <1
Emissiones A
keK (i,j)e AT

5.3.2 Constraint to restrict allowed emissions

An extra constraint is added in E3 to investigate how the profit responds to a forced reduction of the carbon
emissions. First, a model is optimised with the conventional objective function (Equation 1) to find the maximum
amount of COy that is produced in the optimal schedule. Input parameter %;,cquc: can be used to enter the
percentage of carbon emissions that is wished to be reduced. Equation 29 is used to ensure that the total
emissions are reduced by the desired percentage %, cquet- In the experiment %;eque: is varied in the range
[0,5,10,15,20,25].

Z Z efj < (100 — Doreduct) - Emissionaq (29)
keK (i,j)€AF

6 Results

This section will present and discuss the results of the four experiments that are presented in Table 10. Sections
6.1 to 6.4 present the results of Experiments E1, E2, E3 and E4 respectively.

6.1 E1: Comparison of emission approximation methods

In Section 4.2.2, two methods are proposed to implement the COy emissions into the MILP, without needing to
calculate the emissions for each flight throughout the optimisation. Because both methods are an approximation
of the actual emissions, this experiment aims to find the validity of this approximation and to determine which
of the two methods is the most suitable for this research.

First, the average error between the approximated values and the actual COs emissions is analysed. This is
done for a long haul (ATL - LUX) and a short haul (PIK - LUX) flight, which are each simulated 1,000 times
with random load factors. The actual emissions are calculated using the emission model and approximations
are made using the linear and discretisation approach. The error is calculated as a relative percentile error:
(Eapproz — Factual)/ Pactuat * 100%. The results for the two approaches are shown in a boxplot in Figure 8(a).
The linearised approach overestimates the emissions both for short and long range flights, with a maximum
error of 2.5%. This could be expected from Figure 6, as the linear function is constantly above the calculated
data-points. The maximum error can be expected around a load factor of 50%. The errors for the discretisation
approach have a mean of 0, with a tighter spread for the short range flight. This can be explained due to the
larger impact that the load factor has on longer flights. The difference between flying the PIK-LUX flight empty
and with maximum payload is around 8 tonnes of COs, while this value lies over 85 tonnes for the ATL-LUX
flight. This results in a steeper curve and a higher expected error when dealing with longer flights. Figure 8(b)
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shows the error distribution of both flights combined, which results in a shape resembling a normal distribution
for the discretisation approach. This can be a consequence of the selection of the middle-point of the identified
load factor segment the flight belongs to, as described in Section 4.2.2. The errors of the linear approach are
more uniformly distributed, which can be related to the randomly generated load factors and the larger spread
of the interquartile range in the boxplot.
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Figure 8: Calculated errors between the actual and estimated emission values for 1000 runs with a random LF
on a short range and long range flight.

Both methods were implemented in the MILP to analyse the behaviour of the approximation methods in the
optimisation. The first observation was that the designed schedules for both methods are identical for all
networks. This indicates that the approximation method has little to no influence on the aircraft and cargo
routing when using a carbon price of €50 per tonne CO5. Table 11 shows more detailed information on the
calculated carbon emissions and the run times. The emissions for the linear approach are slightly higher than
the discretisation method, which could be expected from the analysis of Figure 8. However, the differences seem
negligible when compared to the increase in run time, which is almost an order of magnitude higher for the
discretisation approach. This is mainly caused by the extra set of decision variables that is needed to identify the
correct load factor segments (Section 4.2). If the computational time is not a limiting factor, the discretisation
approach was proven to be slightly more accurate. However, for this research limiting the computational time
as much as possible (provided a reasonable accuracy), was considered more important in order to analyse more
instances in the performed experiments. Therefore, linear interpolation is used for the remainder of this study.

Table 11: Results of a run on each network, using a single aircraft and 20 available cargo requests.

COq [tonnes] Run time [s]
Network Linear Discretisation Linear Discretisation
Network 1: EU 363 360 43.7 480
Network 2: EU-NA | 1,039 1,034 3.0 17.2
Network 3: NA 745 740 3.6 37.4

6.2 E2: Pareto front search

The second experiment investigates the relation between the profit and emissions terms, using the adjusted
objective function (Equation 28). The model is run while varying the emission weighting factor weo, between
0 and 1 in steps of 0.05. The combined objective value for this range of weighting factors is shown in Figure
9(a). Since the objective function is normalised, all curves start from 1 when weo,=0. At this point, no weight
is given to the emissions and the maximum available profit is found. With the weighting factor increasing,
the objective value steadily decreases. If nothing would change to the flight schedule, this line would linearly
decrease to a value of —1 at wco, = 1. However, due to the two contrasting objectives, revisions to the flight
schedules occur. These changes aim to decrease the COs emissions without cutting too much of the profit.

When comparing the three different networks in Figure 9(a), the first difference that can be observed is the

objective value at wco, = 1. This value is negative for the EU-NA and NA networks, while being 0 for the
EU network. This can be attributed to the initial and final location of aircraft ACO being the same airport for
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the EU network. Therefore no mandatory flights are operated. For the other two networks at least one flight
is required to satisfy aircraft repositioning requirements, which results in CO2 emissions and thus a negative
objective value. In addition, no cargo requests are carried on these mandatory flights. This would only result in
extra emissions due to the higher load factor, because the profit term is cancelled out by the (1 — weo,) term.
Another notable difference is the orange line of EU-NA that stays almost linear until weo, = 0.5, where the
objective value turns negative. This indicates that until that point no schedule revision is needed to improve
the objective value. For the other two networks, revisions of the network are found for smaller values of weo,,
which can be seen from the lines slightly deviating upwards.

Objective function for a variation of weighting factor wco, Pareto front search for three different networks
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(a) Relation between wc o, and the normalised objective value. (b) Pareto fronts showing the relation between the profit and
emissions terms. The emission weighting factors of the three
most profitable schedules are given.

Figure 9: Results of the model using the normalised objective function with the emission weighting factor weco,
for the three different networks. A single aircraft is used (ACO0), with 30 cargo requests available.

The trade-off between the CO4 emissions and the profit term is graphically shown by the Pareto fronts in Figure
9(b). Each point shows the amount of carbon emissions and the profit for an optimal schedule that was found
during the variation of the emission weighting factor. The lines that connect the points represent the Pareto
front, which indicates that the profit of a schedule can only be increased by also emitting more COs. Similarly,
the emissions cannot be reduced, unless lower profits are accepted. Next to the three most profitable schedules
of each network the weo, value is shown. This is the smallest weighting factor that led to this revision of the
schedule. These values correlate to the points in Figure 9(a) where a change in the slope can be observed. A
first look at the three Pareto fronts in Figure 9(b) already highlights some of the characteristics of each network.
The blue line of the EU network stays the most in the bottom-right part of the plot, indicating that large profits
can be made with relatively little emissions. This is the result of the cargo prices not being dependent on the
flight distance, which is beneficial for the short-haul flights within Europe. For EU-NA a large gap is identified
between the two most profitable points on the Pareto front, which corresponds to the line being linear until
weo, = 0.5 in Figure 9(a). The NA network lies in between the other two, with a relatively steep slope for
the first four schedule revisions. The small difference between the weighting factors of these schedules suggests
that the most profitable schedule emits relatively much COs, and that there are many options in the network
to reduce the emissions without losing a lot of profit. These observations are further discussed below using the
corresponding flight schedules.

The two most profitable flight schedules for EU are shown in Figure 10. From the Pareto front it can be seen
that the first revised European schedule (wco, = 0.1) considerably reduces the carbon emissions, while almost
maintaining the same profit as the original schedule. This is achieved by still flying the most profitable routes,
while cancelling more polluting routes or routes with low load factors. A part of the schedule is unchanged,
namely from the PIK-AMS flight 12 hours into the simulation horizon until the VIE-LUX flight that ends at
t = 30. Most of these flights are performed with a relatively high load factor, which brings in a lot of revenue
in an efficient way. In the revised schedule, the aircraft stays on the ground longer at LUX to wait for two new
cargo requests that become available for the LUX-PIK flight at ¢ = 9. In the original schedule these requests
are transported using an extra round trip from LUX to PIK at hour 30, making those two flights redundant.
Such revisions result in a profit decrease of just over 2%, while reducing CO5 emissions by 180 tonnes. When
analysing the Pareto front in Figure 9(b), the remainder of the blue line is not as steep as the line between 0
and 0.1. This means that a further reduction of the emission will require more severe schedule changes, with a
larger impact on the profit of the airline.
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Network 1: EU Flight schedule
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Figure 10: Flight schedules for the EU Network for aircraft AC0. Schedules are optimised for weco, = 0 and
0.1. The load factor is given for each flight arc, which is also indicated by the thickness of the line.

As mentioned during the analysis of Figure 9, no revised schedule for the EU-NA network is found until
weco, = 0.55. A comparison between the initial and revised schedule is shown in Figure 11. A big difference
between both schedules is the extra transatlantic round trip that is scheduled in the wco, = 0 instance. In
this work, the revenue per kg for transatlantic cargo demand is assumed to be 50% higher, which makes these
trips very appealing. In order to capture both the demand from Europe to the US and back, three transatlantic
flights must be performed to also reach the final aircraft location ORD. At the start of the initial schedule,
the aircraft is scheduled to fly from PIK to ORD with a load factor of only 0.17, which results in a loss of
around €15,000. After that, the aircraft picks up cargo in ATL, ORD and JFK to fly back to LUX at ¢t = 30
at maximum payload capacity. The huge profit that is made on this flight is very hard to match by flying extra
flights in Europe or in the US. This schedule only becomes non-optimal for an emission weighting factor of 0.55
and higher. Due to a transatlantic flight emitting around 250 tonnes of COs, compared to 50-100 tonnes for
other flights in the network, these flights are not profitable anymore for such high values of wco,. Another
interesting observation is that both aircraft rotations end with an empty flight to ORD. This indicates that the
mandatory final location of the aircraft is not ideal for this instance.

Network 2: EU-NA Flight schedule
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Figure 11: Flight schedules for the EU-NA Network for aircraft AC0. Schedules are optimised for weco, = 0
and 0.55. The load factor is given for each flight arc, which is also indicated by the thickness of the line.

Finally, Figure 12 presents the two most profitable schedules for Network 3. The revised schedule reduces the
amount of carbon emissions by more than 250 tonnes, while only making around 6% less profit. This is achieved
by slightly increasing the average load factor of all flights and decreasing the average flight length. However,
only picking the flights with a higher load factor does not directly end up in a better objective. This can be
seen by comparing the first flights of both schedules. In the initial schedule the aircraft is first routed to LAX
and GDL before heading back to MEX. Although the average load factor on these three flights is above 0.6, it
is replaced by just flying back and forth between MEX to GDL, with an average load factor of only 0.34. In
this case the revenue from the cargo requests in LAX does not weigh up to the extra emissions from the longer
flight. Such trade-offs between the revenue from the cargo requests and the carbon emissions show how the
model maximises the combined objective function. When looking back at the Pareto front in Figure 9(b) it can
be seen that the first three revised schedules for the NA network all come up with a significant CO2 reduction
with limited impact to the profit. This network and the corresponding cargo requests allow for easier schedule
revisions than the EU-NA network. The demand is more evenly spread out in Network 3 and the costly and
long transatlantic flights of Network 2 reduce the amount of options to vary the schedules. This points out how
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the relationship between the profit and the emissions term is influenced by the airports in the network and the
available cargo demand.

Network 3: NA Flight schedule
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Figure 12: Flight schedules for the NA Network for aircraft AC0. Schedules are optimised for weo, = 0 and
0.2. The load factor is given for each flight arc, which is also indicated by the thickness of the line.

6.3 E3: Constraining maximum allowed emissions

For the third experiment an extra constraint is added to the MILP formulation, as presented in Section 5.3.2.
This constraint allows the model to find an optimal schedule which reduces the emissions by at least a pre-
defined percentage %.cduct, With respect to an initial schedule. The original objective function (Equation 1)
is used, where the objective value is equal to the profit. This profit consists of the revenue, operational costs
and the COgy costs, which is why in this section the amount of carbon emissions is discussed in terms of euros.
The initial schedule is created by running the model with %,.cquc: = 0. The maximum amount of CO4 that is
allowed is reduced in five steps of 5% to find how the revenue and cost parameters react.

The results of the EU network are presented in Table 12. The first three columns specify the input parameters
of the instance, followed by the resulting revenue, cost and profit. As expected, aiming for lower carbon
emissions decreases the profit of the network. Fewer cargo requests are served compared to the initial schedule
(Y%oreduct = 0), resulting in a reduction of the revenue. However, rerouting aircraft and cancelling flights also
reduces the operational and COs costs, which prevents the profit to decrease faster. The larger number of
available cargo requests and the extra aircraft in the fleet result in higher profits for the network. In these
cases, more demand is available, which makes it easier to find profitable flights. In both instance sets, a fairly
large percentage of the profit is lost in order to comply with the reduction in carbon emissions, with mainly the
larger values of %;.cquct leading to bigger drops in the profit.

Table 12: Results for Network 1: EU.

Instance Output Objective value
Porequct  Fleet  Requests Revenue Operational COsz cost Profit Decrease Run time Gap
[€] cost [€] [€] [€] (7] [s] [%]
0 2 20 773,968 192,672 15,249 566,047 0.0 225.9 0.0
5 2 20 739,846 175,532 14,147 550,167 2.8 134.3 0.0
10 2 20 693,984 155,521 12,712 525,750 7.1 374.0 0.0
15 2 20 693,984 155,521 12,712 525,750 7.1 144.3 0.0
20 2 20 600,592 141,854 12,083 446,654 21.1 872.6 0.0
25 2 20 588,592 142,027 10,862 435,703  23.0 877.1 0.0
0 3 25 1,090,308 257,737 20,459 812,111 0.0 154.6 0.0
5 3 25 1,023,996 232,393 18,434 773,169 4.8 700.9 0.0
10 3 25 1,023,996 233,016 18,237 772,744 4.8 1,820.2 0.0
15 3 25 966,962 212,530 17,063 737,369 9.2 2,249.4 0.0
20 3 25 922,810 207,888 16,114 698,808 14.0 1,688.7 0.0
25 3 25 872,096 188,789 14,735 668,572 17.7 1,421.0 0.0

The results of the second network have some other interesting aspects. Table 13 shows that for the smaller
instance with 2 aircraft and 20 requests only one revised schedule is found. Even though the revenue of this new
schedule has decreased by almost €300,000, only a 6.3% profit decrease is needed. Next to that, the amount of
COs; is lowered by over 40%, which makes this schedule also optimal for the cases with higher values of %;cquct-
When focusing on the larger instance set, no optimal solution can be found for the COs reductions of 10% and
higher. The final column in the table shows the optimality gap when the branch-and-bound process was stopped
due to run-time restrictions. The value indicates the gap between the best lower and upper bound solutions
that the model has found. If both bounds are equal, a global optimum is found. If no optimal solution can be
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found within the maximum run time of 2 hours, the gap and the best bound objective value are given. These
results show the limitations of the model for larger instances. The complexity of the solution rapidly increases
due to options for cargo to transfer between different aircraft in the fleet. The problem size is also increased by
adding more airports and cargo requests, which need extra nodes and arcs in the TSN. Therefore, this model is
not ideal for the simulation of larger networks or for optimising over longer time horizons.

Table 13: Results for Network 2: EU-NA.

Instance Output Objective value
Yorequct Fleet  Requests Revenue Operational COsz cost Profit Decrease Run time Gap
[€] cost [€] [€] [€] (%] [s] [%]
0 2 20 1,071,448 649,995 75,777 345,676 0 19.0 0.0
5 2 20 717,301 352,760 40,798 323,743 6.3 126.9 0.0
10 2 20 717,301 352,760 40,798 323,743 6.3 140.7 0.0
15 2 20 717,301 352,760 40,798 323,743 6.3 120.1 0.0
20 2 20 717,301 352,760 40,798 323,743 6.3 60.9 0.0
25 2 20 717,301 352,760 40,798 323,743 6.3 90.7 0.0
0 3 25 1,506,257 892,026 106,567 507,664 0.0 2,762.7 0.0
5 3 25 1,405,257 809,794 98,630 496,834 2.1 6,654.9 0.0
10 3 25 1,345,711 781,947 95,818 467,946 7.8 7,200.1 11.7
15 3 25 1,133,918 645,783 72,827 415,308 18.2 7,200.1 21.9
20 3 25 1,133,918 645,783 72,827 415,308 18.2 7,200.0 19.7
25 3 25 1,133,918 645,783 72,827 415,308 18.2 7,200.1 15.8

Table 14 shows the results of the North-American network. For both instances the profit reduction stays limited
to a maximum of 10% when reducing the emissions by 25%. This is a similar observation to the one that was
made during the analysis of the Pareto front (Section 6.2). The emissions are reduced with relatively small
adjustments to the schedule, without the need to cancel a lot of cargo requests. The demand is more evenly
spread out over the airports compared to the EU network which is mostly focused on the Cargolux hub in LUX.
The medium range flights also allow for more flexibility in the aircraft routing than the transatlantic flights in
the EU-NA network.

Table 14: Results for Network 3: NA.

Instance Output Objective value
Poreduct  Fleet  Requests Revenue Operational COz cost Profit Decrease Run time Gap
[€] cost [€] [€] [€] (7] [s] (%]
0 2 20 882,668 371,060 37,475 474,133 0.0 26.7 0.0
5 2 20 845,870 344,961 35,252 465,657 1.8 142.6 0.0
10 2 20 812,022 324,816 33,376 453,829 4.3 95.7 0.0
15 2 20 746,726 289,257 31,029 426,439 10.0 230.8 0.0
20 2 20 742,018 287,653 28,061 426,304 10.1 127.0 0.0
25 2 20 742,018 287,653 28,061 426,304 10.1 118.3 0.0
0 3 25 1,083,248 477,093 49,698 556,457 0.0 4,457.7 0.0
5 3 25 1,036,642 439,948 45,510 551,184 0.9 6,053.2 0.0
10 3 25 1,026,144 431,571 44,106 550,467 1.1 7,200.2 2.4
15 3 25 959,558 389,291 39,553 530,713 4.6 4,584.1 0.0
20 3 25 959,558 389,291 39,553 530,713 4.6 1,675.2 0.0
25 3 25 869,928 326,109 33,240 510,579 8.2 1,456.5 0.0

Finally, a more detailed breakdown of the profit of each network is shown in Figure 13. The results of the
initial schedule and the 25% CO» reduction instance are plotted, with the yellow dotted line showing the profit.
In the initial schedule, almost all cargo requests are served for each network, but the higher strategic factor
for the transatlantic cargo requests results in a much higher revenue for the EU-NA network. However, this is
cancelled out by much larger operational, fuel and COs costs, resulting in the lowest profit of the three. The
longer flight length clearly leads to higher costs for the airline, compared to the EU network, where only a small
portion of that cost is needed to serve the same amount of cargo requests. A similar distribution can be seen
for the instance where the carbon emissions have to be reduced by at least a quarter. Only the most profitable
flights are chosen, which leads to both less revenue and less costs for the airline. Analysing more closely the
portion of the costs that comes from the carbon emissions, it can be concluded that this is fairly small for all
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instances. Increasing the penalty to emit CO5, would create more financial incentive for airlines to change their
flight schedules in order to reduce emissions.
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Figure 13: Distribution of the revenue and the different cost terms for the initial and a revised schedule with
Doreduct = 25. The schedules are found for all three networks, with a fleet of 3 aircraft and 25 cargo requests
available.

6.4 E4: Sensitivity Analysis

The final experiment analyses the influence of changing the input parameters on the outcome of the model.
First, the sensitivity of the models to changes in the set of cargo requests is investigated by running similar
instances with newly generated request sets. Second, the influence of different aircraft types in the fleet is
assessed.

6.4.1 Cargo Requests

In all previous experiments, only one set of cargo requests is generated and used to find the results. The de-
mand distribution is based on the current flight network of Cargolux, which is kept constant. However, the
request generation is also dependent on three parameters that can vary randomly between a given upper and
lower bound, namely the weight, release time and due time of the request (Section 5.2). This means that even
though the general division of the total cargo weight across the network is similar, changes can exist between
different request sets. This section aims to find how the model behaves when receiving different request sets
based on the same network and demand distribution. Each network is run ten times with a newly generated
set of 15 requests and a schedule is optimised for a fleet of two aircraft (ACO and ACI). The randomised
request weight results in a difference in the maximum amount of revenue that is possible for the 15 requests. To
create a good comparison between the different instances, a similar set-up as in the E3 has been used, where the
emissions are constrained by a certain %;.cquct. The decrease in profit is shown for all three networks in Figure 14.

The thin lines in each indicate the results of one of the ten individual runs, which are combined to find the
mean, shown by the thicker line. In addition, a 95% confidence interval around the mean is formed. A dis-
tinctive difference can be observed between Network 2 (EU-NA) and the two networks that operate only in
Europe and North-America. Network 1 and 3 have similar characteristics, with a mean profit decrease of 14.1%
and 12.9% respectively at %requet = 25. When comparing this figure to the results of the European network
in the previous section, it can be concluded that the profit decrease found in Table 12 lies on the higher end
of the scale. The results from Network 3 in Table 14 are closer to the mean shown Figure 14. The different
runs show that the results are influenced by changes in the request sets, but that this impact is much larger
for the EU-NA network. This matches the analyses from the Pareto front, where it was found that in this
network few options are available to revise the schedule. The larger uncertainty can also be attributed to the
variation of the release and due times of the requests. For Network 2 this is an important factor in making the
long transatlantic flights profitable. Because this experiment is performed using instances with only 15 cargo
requests, it is a great advantage if multiple requests of a similar origin-destination pair are available at the
same time period. When this is not the case, the aircraft are forced to fly from Europe to North-America or
back with a very low load factor in order to reach the final scheduled destination. The low number of request
also means that the available profit is lower in the first place, automatically resulting in larger relative differences.

Overall, the results of Network 1 and 3 are relatively consistent when designing the schedules for different
request sets and give a reliable indication on the profit decrease that can be expected for a certain reduction of
carbon emissions. For the longer range network (EU-NA) the results are more inconsistent. This shows that
the potential to decrease emissions by changing the flight scheduling and aircraft routing is dependent on the
characteristics of the network and the available cargo demand. The model proposed in this study can still help
determining how to revise aircraft rotations to improve operations.
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Figure 14: Progression of the objective function when constraining the carbon emissions. The thick line shows
the mean of the ten runs. The larger contours gives a 95% confidence interval around the mean.

6.4.2 Aircraft Types

Next to the cargo inputs, also the available aircraft are varied in this study. The two most common aircraft
types that Cargolux operates are used in this research, namely the Boeing 747-8F and the 747-400F. In E3,
schedules for a non-homogeneous fleet with both aircraft types are optimised. However, using a mixed fleet
it is hard to compare how the aircraft types relate to each other in terms of performance. In this section, a
schedule is optimised for all three networks, with the similar set of 25 requests available for both aircraft types
operated separately. The initial and final location of ACO are used (Table 9), to keep all conditions equal. The
aircraft parameters are given in Table 2, which shows the longer range and larger payload capacity of the newer
B747-8F. The emission model is used to generate emission matrices for both aircraft.

Table 15 shows the output of the model, with the operational cost split out into the fixed operational cost,
fuel cost and handling cost. For the European network, both aircraft are scheduled to serve all 25 cargo re-
quests. However, from the difference in fixed operational costs it can be concluded that different schedules are
produced. The fixed operating costs per hour (Cr) are assumed equal for both aircraft types, which means
that the B747-400F needs more flights hours to transport the same amount of cargo. This is caused by the
lower payload capacity compared to the B747-8F. Furthermore, the longer flights result in higher fuel costs and
over 60 tonnes more COs. In return, the larger OEW of the B747-8F causes an increase in the average take-off
weight, resulting in larger handling costs.

Larger profits can be made in all three networks when allocating the B747-8F, which makes this aircraft type
more attractive for airlines. The aircraft is also more fuel efficient and emits less CO4y per flight. However,
the proposed schedule of the B747-400F for the EU-NA network ends up with lower costs for fuel and carbon
emissions. Because the goal of the model is to maximise the profit, trade-offs between revenue and costs are
made in the determination of an optimal schedule. The Boeing 747-8F still makes more profit, because it flies
a slightly different route where it can make more revenue by transporting heavier cargo requests. If the price
for carbon emissions or fuel would be increased, this results in a schedule that is less focused on the revenue.

Table 15: Results for both aircraft types on the three networks, with 25 requests available.

Instance Output Objective
Network  Aircraft Requests Revenue  Fixed oper Fuel Handling CO2 cost Profit
type served [€] cost [€] cost [€] cost [€] €] [€]
EU B747-8F 25 1,090,308 157,500 88,437 35,593 22,574 786,202
B747-400F 25 1,090,308 163,974 100,602 32,598 25,722 767,408
EU-NA B747-8F 14 904,317 248,694 234,686 30,296 61,623 329,016
) B747-400F 14 822,019 224,282 215,591 23,937 56,605 301,601
NA B747-8F 20 905,166 200,833 150,843 33,341 39,330 480,817
B747-400F 19 874,424 200,833 155,578 29,202 40,724 448,084

Finally, Figure 15 gives a visual representation of the two flight schedules that are created for Network 3. The
schedules for both aircraft are identical for the first part. The two values on top of each flight arc indicate the
load factor of the different aircraft. From this, the effect of a larger payload capacity can be clearly seen, as
the load factor of the B747-8F is always lower. A problem arises when the load factor of the B747-8F is higher
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than 0.84, which is equal to the maximum payload capacity of the Boeing 747-400F. This occurs at t = 45, for
the flight from LAX to YYC. The B747-400F is now forced to fly a slightly different route, with the result that
one request less can be served. This is creates the largest difference in profit between the two aircraft.

Network 3: NA Flight schedule with two AC types
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Figure 15: Flight schedule of the NA Network with 25 cargo requests, optimised for a B747-400F and B747-8F
aircraft. The load factor is given for both aircraft on each flight arc, which is also indicated by the thickness of
the line.

The results of this analysis show that aircraft type that is used in the fleet directly influences the flight schedule
and thus also on the corresponding profit and emissions. This is already visible in the schedule design for two
very similar aircraft types that both belong to the Boeing 747 family. From the results presented in this section,
the expected conclusion can be drawn that the newer B747-8F is the more efficient aircraft of the two, and
allows for higher profits and fewer CO5 emissions.

7 Discussion

This section briefly discusses the limitations of the developed model and the effects of certain assumptions and
simplifications on the results.

Computational and modelling limitations As highlighted in Section 6.3, the model is not always able
to find an optimal result within the set maximum run time of 2 hours. Increasing the number of airports in
the network, the fleet size and/or the amount of time steps in the simulation horizon has a clear effect on
the solution complexity and therefore also the computational time. This creates challenges when optimising
operations for the whole fleet and network of a full-cargo carrier which, in the case of Cargolux, corresponds
to roughly 30 aircraft and 100 airports. Even though the problem size is reduced in a pre-processing step that
eliminates unnecessary decision variables, no optimal flight schedules can be found for combinations with more
airports, aircraft and cargo requests than a certain threshold. The same is valid if a smaller simulation time
step is required, although for cargo operations generally a larger time step is allowed, compared to passenger
operations. Nevertheless, the chosen time step of 3 hours already results in unnecessary long waiting times for
short-haul flights that take far shorter than 3 hours. In addition, flights that are just longer than 3 or 6 hours
are put in a disadvantage to flights that ’cost’ one time step less to perform in the model, but much less in reality.

Concerning the two approximation methods used to implement carbon emissions into the objective function,
the simpler linear approximation approach was chosen for the specific instances of this paper due to its com-
putational efficiency. In case of severely non-linear behaviours, the piecewise linear approximation should be
more appropriate. Nevertheless, further modelling improvements are possible for this approach. In the current
framework, CO2 emissions referring to the middle-point of the selected load factor segment are selected. This
is an approximation within an already approximated function. An alternative would be to implement a linear
combination of the CO5 emissions of the left and right bounds of the selected segment, given the computed load
factor, to determine a more precise value for emissions.

Synthetic data Second, the experiments performed in this study are all based on synthetic data, which is
inspired by actual flight schedules and reported average load factors due to the lack of available real data.
Therefore, the quantitative results of this study are not directly representative of the real operations of the
airline that is considered in this paper. However, the results do give an impression of the capabilities of the
proposed flight scheduling model. The model can also be easily adjusted to run experiments with real life input
values and demand data. Furthermore, the decrease of the emissions in E3 (Section 6.3) is determined relative
to a schedule that has already been optimised using the developed model, which includes an emissions term.
It is possible that a smaller profit decrease is required if the schedules are revised based on an initial schedule
that has been designed without considering the aircraft emissions.
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Fleet initial and final location Next to the demand, also the fleet inputs are varied in the case studies. All
aircraft are given fixed initial and final locations to keep the initial conditions of different runs similar. From the
flight schedules that were generated, it could be seen that these fixed positions sometimes led to flights that are
flown empty or with a very low load factor in order to comply with the repositioning requirements. Optimising
the initial and final aircraft position was not investigated in this study, just as maintenance constraints that
might justify such repositioning requirements. However, such features can easily be implemented in the model.

Emissions calculation Finally, the emission model uses simplifications in the calculation of the carbon emis-
sions for each flight. The vertical flight path is not optimised for the aircraft weight during the flight and it is
assumed that the aircraft can follow the great-circle arc to reach its destination. If it is desired to model the
emissions with greater accuracy, such assumptions should be reconsidered. Furthermore, only a single aircraft
type is used for the validation of the emission model. The results of this validation were found to be accurate
enough for this study, however more extensive validation is necessary to improve the knowledge of how the
developed model relates to existing emission models.

8 Conclusions and Recommendations

This paper proposes an integrated flight scheduling, aircraft routing and cargo routing model with an aircraft
emission model to produce a more sustainable flight planning for a full-cargo airline, where trade-offs are made
between operational (profit maximisation) and environmental (CO4 emissions minimisation) sustainability. The
emissions are introduced into the objective function with a direct dependency on the cargo that is on-board the
aircraft, using the current EU-ETS price of €50 per tonne of COs. The aim of this study was to find how flight
schedules can be revised in order to decrease the carbon emissions of a dedicated cargo airline, while monitoring
the effect on the profit.

The emission model that is used as input to the optimisation model is developed using an open source aircraft
performance model, and is validated by comparing the results to two existing emission models. The emissions
are implemented into the MILP with a direct relation to the amount of cargo scheduled for each flight leg,
using two different approaches. The first conclusion is that for this study a linear function that maps the
emissions as a function of the load factor was the most suitable method due to computational performances.
The other method, which uses discretisation of a piecewise linear function, does lead to slightly more accurate
results. However, this increase in accuracy does not outweigh the much larger computational time. In case
computational time is not a limiting factor, or if the simulated aircraft types and/or configurations lead to a
more non-linear relationship between load factor and emissions, this second approach that was provided is more
suitable.

The performance of the integrated model was assessed using three air cargo networks, varying between 6
and 8 airports, created to simulate part of the operations in Europe and North-America of Cargolux, a major
European full-cargo airline. A Pareto front search was carried out to determine the interdependence between
operational and environmental sustainability. From this it was concluded that the relationship between the
profit and emissions term is heavily influenced by the characteristics of the network. The long transatlantic
flights give less opportunity to implement schedule revisions than networks with shorter flight distances and
more evenly spread out demand. Increasing the load factor can be used to increase the carbon efficiency. Also,
reducing the number of long-haul flights from the schedule is effective in reducing the CO2 emissions.

Another set of experiments was run with the goal of modifying an initial schedule by reducing emissions by a
percentile range from 5 to 25%. For the largest instances of 3 aircraft and 25 cargo requests, this led to a profit
decrease of 17.7% for a reduction of 25% of the COs for the European network. The transatlantic Europe-North
America network led to a 18.2% reduction of the profits for the same carbon reduction. However, the model
could not find a global optimum within the 2 hour run time, showing the computational limitations for larger
networks. The North-American network performed best and only lost 8.2% of the profit for the same 25% CO4
reduction.

The consistency and reliability of this experiment was tested by running a set of ten similar instances with
newly generated demand requests based on the same demand distribution. This showed consistent results for
the EU and NA networks. However, the EU-NA network was more sensitive to request changes, leading to
less reliable results. Lastly, it was found that the allocation of the B747-8F leads to higher profits than the
B747-400F, due to its larger payload capacity and higher fuel efficiency. From this it is concluded that replac-
ing older aircraft in the fleet can result in higher profits and thus more opportunity to decrease aircraft emissions.

A major takeaway of this research, especially in an era where all airlines and transport providers are adver-

tising (environmental) sustainability and promising carbon reduction or neutrality, is that implementing these
promises always comes with a cost. While we can only base our conclusions on the specific instances we tested,
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it is evident how reducing CO4 emissions has an effect (decrease) on profit. For our test cases, the two objectives
proved to be contrasting and hence trade-offs must be made. At the same time, we developed a framework
where these trade-offs can be easily mapped and assessed, hence providing a useful decision-making tool for air-
lines. In particular, one of our experiments specifically maps the loss of profit given a pre-determined percentile
reduction in carbon emissions, to mimic current airline environmental sustainability goals. While having some
modelling limitations, airlines could use this approach to assess if the carbon reduction they want to comply
with is economically sustainable or if that goal needs to be revised in order to contain profit losses.

Finally, while this research provides a first solid step towards a better understanding of the interdependencies
between operational and environmental sustainability for a full-cargo airline, it can be improved in many ways.
First, the computational time should be reduced in order to better simulate larger networks, shorter time steps,
and/or longer time horizons. While our results are still valid, they refer to a subset of a full-cargo airline
both in terms of fleet size and airport network. Full freighter rotations are generally geographically specific
and periodic (and hence different sub-networks operate almost independently). Nevertheless, modelling the
whole set of operations is more accurate and might lead to similar or relatively different results. Improving the
algorithmic performance of the model can be achieved, for example, by implementing a string-based network
for the cargo routing, that is solved using meta-heuristics or column generation. Second, the emission model
can be improved by generating a more realistic trajectory that includes air traffic management constraints and
a function to optimise the airspeed and altitude during cruise. Furthermore, other emissions such as nitrogen
oxides, water vapour, and CO should be added to the emission model, since they contribute to atmospheric
pollution. This can help to better understand the atmospheric and local air quality effects of the newly designed
schedules. Third, provided data availability, future research should be based on real demand and cost data,
to better support conclusions on the feasibility and potential of carbon emissions reductions. Next to a more
realistic financial analysis, operational features could be added, like maintenance modelling, crew scheduling,
and optimisation of the fleet size and re-positioning.
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Introduction

Just like all other industries and transport sectors, the airline industry is under large national and interna-
tional pressure to decrease the emissions of greenhouse gasses and other hazardous emissions that influence
the air quality around airports. Graver et al. [19] determined that the global CO, contribution of the aviation
industry in 2018 was 2.4% of the world wide fossil fuel emissions, which translates to 918 million metric tons
of CO;. The CO; emissions increased with 32% over the five year period prior to 2018 [19] and forecasts by
the International Civil Aviation Organisation ICAO [22] show this growth continuing. Innovations in aircraft
efficiency and the use of alternative fuels are expected to slow down the increase in emissions compared to
the increase in aviation demand, but international goals on sustainability will still be hard to meet. The In-
ternational Air Transport Association IATA aims to achieve carbon neutral-growth from 2020 onward and to
reduce the carbon emissions in 2050 to 50% of what they were in 2005 [25]. Emission trading systems like
CORSIA' and EU-ETS” are created to makes this carbon-neutral growth achievable, by offsetting the addi-
tional emissions of airlines compared to 2019. Such goals and systems make the need for airlines to reduce
their emissions more urgent.

When looking more specifically to full cargo airlines, it is estimated that they contributed to 8% of all aviation
CO; emissions in 2018 [19]. The world cargo forecast from Boeing shows an average yearly growth in cargo
demand of 4.3% from the years 2009 to 2019 and an average growth of 4% per year is expected for the com-
ing 20 years [3]. Just over 50% of all global cargo is carried on average by full freighters, with the other cargo
carried in the belly of passenger aircraft. This represents the importance of the full freighter airlines in the air
cargo industry. The routing of cargo aircraft is mostly focused on maximising profits or minimising the cost to
operate the network, with no real attention being payed on how much different flight types add to emissions
of the network. The research on the sustainability of air cargo networks is very limited, which means that
there is a lot of room for improvement in this field. With most cargo airlines generally operating older, less
efficient aircraft’, making the routing of aircraft more efficient could be a relatively easy and low-cost way to
reduce the aircraft emissions. This research aims to combine an emission model with an air cargo routing
model to investigate the possibility of reducing the airlines emissions due to changes in the network.

This report is a Literature Review of the existing research on air cargo operations, aircraft scheduling models
and aircraft emissions. The aim is to gain this knowledge for the master thesis, to get an overview of the
research in these fields that has been performed and to identify a research gap in the literature. First, the
research framework of the thesis is discussed in Chapter 2. This is followed by Chapter 3, which analyses the
three modelling setups that are used to simulate aircraft scheduling problems, which is then applied to cargo
airlines and cargo routing in Chapter 4. Chapter 5 reviews the literature on aircraft emission modelling and
the different emission models that are available.

Thttps://www.icao.int/environmental-protection/ CORSIA/Pages/default.aspx, accessed on 23-03-2021
2https://ec.europa.eu/clima/policies/ets_en, accessed on 23-03-2021
Shttps:/ /simpleflying.com/cargo-operators-older-planes/, accessed on 23-03-2021
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Research Framework

2.1. Problem Statement

The problem that is considered for this project is the routing of cargo and fleet for a full freighter cargo airline
in a more sustainable way. This is a difficult combination, as reducing the emissions of a network will most
likely go against the objective of the cargo airline which is to maximise the profit. In this problem it is as-
sumed that nothing can be changed to the aircraft fleet and other ground operations to decrease emissions,
and the solution should solely be focused on revisions of the network and flight schedule.

The fleet routing, flight scheduling and cargo routing problems are mostly focused at maximising the profit
of the operations of the airline, by serving cargo requests between origin and destination airports. These re-
quests do not have to be served by a single flight, but can also be transferred between aircraft to reach the
destination in a sequence of one or more flights. By doing this, cargo demand on a less busy OD-pair can
also be served without the need for a direct connection between these two airports. An existing network of
the scheduled cargo carrier Cargolux will be taken as a reference, which restricts the fleet and airports that
are served. The existing network can impose extra constraints like flying to some airports with a minimum
frequency or aircraft beginning and ending their rotation at a hub.

By also introducing the aircraft emissions in the objective function, the schedule can be changed to minimise
the overall objective. If certain types of flights contribute a lot to the networks emission, these might be
cancelled and replaced by more sustainable routes. The cargo and fuel loads are also incorporated in the
emission model to investigate their influence on the amount of greenhouse gasses emitted. A choice should
be made how these emissions are integrated in the objective function and at which scale they are considered.
A revised schedule could reduce the overall flight emissions, but increase the emissions around a specific
airport due to a large number of flights. This trade-off should be considered to find how the sustainability
of the network can be improved the most. Finally, the revisions to the schedule should not have a too large
impact on the costs and profits of the network, to make sure it is financially feasible.

2.2. Research Questions
The main research question that is aimed to be answered is stated below:

"How can the aircraft emissions of a scheduled full cargo airline be reduced by introducing an
emission model to a MILP air cargo scheduling model, while also minimising the cost for the
airline?"

The main research question can be be further detailed into lower level questions, which are stated below:

1. What should an air cargo scheduling model look like in order to minimise both network operating costs
and the airline emissions?

(a) What method should be used to model the air cargo scheduling model?
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34 2. Research Framework

(b) What input data should be used to realistically model the network of a scheduled full cargo airline
like Cargolux?

(c) How should an emission model be altered to implement it into a MILP cargo scheduling model?

(d) How can the cost of aircraft emissions be compared to the operational costs and profits of the
airline?

(e) How can local airport-based emissions be compared to the global effects of greenhouse gasses?
2. How should the network and schedule of a cargo airline be changed to minimise the airline emissions?

(a) How do factors like load factor, taxi time and flight distance influence fuel usage and aircraft emis-
sions?

(b) What types of flights in the flight network of a scheduled cargo airline like Cargolux contribute the
most to the emissions of the airline?

(c) What is the difference in emissions of a revised schedule that minimises emissions compared to
an original schedule?

(d) What are the extra costs that would arise from a more sustainable aircraft routing schedule?

2.3. Research Objective

The main research objective of this thesis is defined below:

To investigate the effect of aircraft routing on the aircraft emissions of a scheduled full cargo air-
line like Cargolux, by implementing an aircraft emission model that is dependent on the route,
aircraft type and load factor, into a MILP flight scheduling model which generates aircraft rota-
tions to serve cargo requests, while both maximising the total operating profit and minimising
the flight emissions of the airline.

The research objective can be split up in more detailed and tangible sub-goals. The first part of the project
mainly is about rewriting an existing air cargo scheduling model from literature that can be used for this re-
search. When this model can be used to realistically simulate the aircraft and cargo routing of a full freighter
cargo airline like Cargolux, the goal is to add the emissions part. Existing models and theories will be used for
the emissions modelling, which will be extensively discussed in this review. With the complete model work-
ing, experiments with different weights for the emission costs in the objective function are performed. The
goal is to find which types of flights in the schedule are responsible for the most emission and to determine
if and how the network can be adapted in order to reduce emissions. The operational costs of the revised
network should be compared to an original network, to investigate the financial feasibility of this schedule
redesign. This combination of objectives has not been researched yet and would create an useful addition to
the existing literature in the air cargo scheduling field.



Airline Scheduling Problem

The airline planning problem consists of four sub-phases, which each deal with a specific part of the airline
schedule [48]. The schedule design problem (SDP) considers which airports will be served and can determine
a preliminary timetable. The SDP in this project is mostly focused at cargo scheduling and will be further
discussed in Chapter 4. This chapter mainly focuses on the flight planning parts, consisting of the fleet as-
signment problem (FAP) and aircraft rotation problem (ARP). The overall goal of these problems is to assign
aircraft to the available flights and create aircraft routings for each aircraft in the fleet. The fourth and final
subproblem is the crew scheduling problem (CSP), which does not have priority in this project. A general
overview of the objective function and constraints of the flight schedule planning is given in section 3.2, but
first the different network designs are presented in section 3.1. Finally, section 3.3 compares the advantages
and disadvantages of the different network types.

3.1. Network Setup

The three methods that are used the most to model an aircraft routing network are described in this sec-
tion: First time-space networks are discussed (subsection 3.1.1), then connection-based networks (subsec-
tion 3.1.2) and finally subsection 3.1.3 discusses string-based networks [48]. An overview of the used literature
for the different network types and the scheduling applications can be found in Table 3.1.

3.1.1. Time-Space Network

The time-space network was first used to model the fleet assignment problem by Hane et al. in 1995 [20],
where an airport is represented by a single time line. A node on this time line is created for each arrival
or departure and a flight is defined as a connection between a departure node and an arrival node on two
different airports. A decision variable is used to designate that a fleet is assigned to a specific flight. The
end of the time line is connected to the beginning to create a cycle, to for example model a daily or weekly
schedule. An example for a time line of a single airport is shown in Figure 3.1 [20], where every flight to and
from this airport is assigned to a specific fleet.
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Figure 3.1: Time line of a single airport in a time-space network [20]

This method can also be used to model an ARP. Such a model often uses three types of arcs to connect the
nodes: Flight arcs, ground arcs and wrap-around or overnight arcs [28, 31]. The flight arcs serve as a direct
flight between two airports for a single aircraft. In this flight arc, the time that is needed for the turnaround at
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the airport is added to the flight time, to ensure the connection to the next flight of the aircraft is feasible. A
ground arc connects two time steps at the same airport and thus means that the aircraft remains unused on
the airport for this time period. Multiple aircraft can stay on a ground arc at the same time. The overnight or
wrap-around arc connects the last node of the planning period to the first time stamp of the new period. An
example is shown in Figure 3.2a from [31], where two airports are connected by eight flight arcs and ground
arcs connect the event nodes at the airport. The time increases to the right and the overnight arcs are used to
create a daily schedule.

For problems with more flights, the time-space network can get large very fast. In order to reduce the number
of nodes and ground arcs and thus to reduce the size of the problem, Hane et al. [20] introduced three pre-
processing steps, namely node aggregation, island isolation and the elimination of missed connections. The
technique of node aggregation is to combine nodes if the connections between two flights are still valid when
the exact time of the event node changes. Two or more flights that arrive consecutively at an airport can share
their arrival node, as these flights can still be connected to any flight departing from this node. The same can
be done for consecutive departing flights and flights that subsequently arrive and depart from an airport, as
described for an ARP by Sherali, Bish and Zhu [40]. Liang et al [31] shows a schematic representation of the
node aggregation in Figure 3.2b, where the number of nodes is reduced from 16 to 7 nodes. For example, the
first two departing flights from airport A can be merged into a single node, because no flights arrive or depart
between those two flights and the conservation of aircraft is still valid. Also at station B the arrival node at
18:30 and the departure node at 19:00 are merged into an aggregated node, because it does not matter when
for the model when exactly the arrival and departure take place, as long as the connection is valid.

(a) A time-space network of two stations and eight flights
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Figure 3.2: Time-space network with two airports and eight flights, with examples for node aggregation and island isolation [31]

An extra step of preprocessing that Hane et al. [20] propose is island isolation, which means to remove un-
used ground arcs and thus creating periods of time, ’islands’, where one or more aircraft are on the ground
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at that airport. This is mostly true for smaller airports with less traffic, where this might lead to a large re-
duction of arcs, for example in spoke airports of a hub-and-spoke network [40]. This is vizualised by Liang et
al. [31] in Figure 3.2c, where the ground arcs are removed for the periods where no aircraft are present at the
airports. This reduces the number of ground arcs from 9 to 6 for this specific case. For islands which consist
of one arrival and one departure, the departure flight always has to be flown by the aircraft that also served
the arriving flight, as no other aircraft are on the ground at that airport. Therefore, the decision on the air-
craft that flies the outbound flight is already made and the decision variable now defines a flight path of one
or more consecutive flights that are connected [20]. When considering different aircraft types with different
turnaround times, it can occur that the time between the two connecting flights is too short to be served by
a certain aircraft type with a long turnaround time, for example a wide-body aircraft. Hane et al. [20] and
Sherali et al [40] describe that as a third preprocessing step these missed connections should be eliminated.
The aircraft types that miss the connection cannot serve these flights and thus this set of flights does not have
to bee considered in network of this specific aircraft.

Implementation of these preprocessing steps can aid in strongly reducing the problem size, as proven by
Hane et al. [20]. For this study the first two preprocessing methods could be of use to decrease the problem
size and computational time. During operations of a scheduled cargo carrier like Cargolux, a lot of time no
aircraft are on the ground at smaller airports that are not a hub, which results in many empty ground arcs
which can be removed by island isolation. Also combining consequent arrival and departure nodes at an
airport into a single aggregated node is possible to further reduce the problem size. Removing missed con-
nections will probably less effective due to the fairly homogeneous fleet of a carrier like Cargolux, which only
uses Boeing 747s'. Although there are small differences in the versions of the aircraft, this most likely will not
affect the turnaround time, making the removal of missed connections less likely.

Extra arc types can be added to deal with the uncertainty and reliability of aircraft, for example the reserve
arcs as proposed by Burke et al. [5]. If an aircraft is assigned to such an arc, this means that it can be used as a
back-up aircraft at this airport. The probability that an aircraft can depart on time is modelled using stochas-
tic distributions and the spare aircraft that is scheduled on the reserve arc can be used to replace any delayed
or cancelled flights. Adding aircraft reliability into the aircraft routing modelling lies outside the scope of this
research and nominal operations of the flights will be assumed. Yan and Young [45] proposed arcs for an in-
termediate stop (one-stop arcs) as a replacement for non-stop flights and rental arcs to increase the capacity
of a fleet. This is also deemed outside the scope of this research.

The combination of aircraft routing and air cargo scheduling is often performed using time-space networks
and results in the implementation of extra arc types, like the no-service arcs and request arcs proposed by
Delgado et al. [9] and delivery, holding and demand arcs in the study of Yan et al. [46]. This will further be
discussed in Chapter 4.

3.1.2. Connection-based Network

Just like the time-space network, the connection-based network first was used for a fleet scheduling problem.
In 1989, Abara [1] proposed this network type for the modelling of the American Airlines fleet schedule. The
main difference to the time-space network is the fact that each airport now has a separate timeline for arrivals
and departures. This is schematically shown in Figure 3.3 [48], showing two timelines per airport, which in-
crease downwards.

The flight arcs or leg arcs still represent a flight between two airports, connecting a departure and arrival
node. Connection arcs are used to connect an arrival event on the arrival timeline to the next departure event
on the departure timeline. The wrap-around arcs connect the last event at an airport with the first event
of the next day, meaning that aircraft which are allocated to such an arc stay the night at this airport [48].
The overnight can also be modelled using originating and terminating arcs, which represent the starting and
ending situations at the airports [29]. Unlike for the time-space network, for the connection network a pre-
liminary flight schedule should be available before assigning the flights and connections to specific aircraft.
This can be a time-space network with some of the flight options filtered out, to give the model room to shift
flights and create feasible connections. An advantage of the connection network over the time-space network

Ihttps:/ /www.airfleets.net/flottecie/ Cargolux.htm, accessed on 29-03-2021
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Figure 3.3: Connection-based network of 3 airports and 4 flights [48]

is the possibility to easily track the flights and flight path of specific aircraft, with arcs representing connec-
tions between two flights [38].

The connection network is often modelled for passenger airlines, where through-values are used to note if a
flight with an intermediate stop appeals to passengers who otherwise would pick a direct flight. This means
that the stop cannot add too much flight time and thus has to lie more or less on the route. Clarke et al. [7]
propose that passengers rather stay in the aircraft on an intermediate stop than that they have to switch to
another aircraft. Connections that have a ground time longer than 1.5 hours are given a penalty, as these
flights are not attractive to passengers. Haouari, Shao and Sherali [21] give the through values a negative cost
as extra revenue can be generated by these connections. For an air cargo network these connection times or
transfers between aircraft are less important, as for cargo it does not matter what route it takes or how long
a certain connection is. The only thing that is important is that the cargo is at its final destination before the
due time. This makes penalties for long ground times or negative costs for good connections obsolete.

Due to the extra connection arcs that have to be modelled, the problem size increases faster than a time-space
network as the number of legs increase [48]. To cope with this increased problem size, again preprocessing
steps can be taken. Next to node aggregation, also arc aggregation is proposed by Clarke et al. [7]. A sequence
of flights that is flown by the same aircraft can be aggregated into a super-arc, reducing the number of arcs
and possibilities to make connections. This is shown in Figure 3.4a, with a network of 4 flights connecting a
hub to a spoke airport. Flight 1 is an outgoing flight, which is connected to flight 2 to fly the aircraft back to
the hub airport. By aggregating flight arcs 1 and 2, these two flights have to be served by the same aircraft and
no extra attention has to be paid to the connection between these two flights at the spoke airport. The same
has been done with flights 3 and 4. Figure 3.4b shows the node aggregation of the arrival and departure node
of the hub airport, creating a singe super-node for all operations at the airport. This removes the ground arc
that connected the two nodes. In this network, the only choices that have to be made is which sequence of
flights each aircraft has to serve. For example after completion of flight 2, the aircraft can then be connected
to either sequence 3-4 or again to sequence 1-2. The aircraft that performed sequence 3-4 in the first rotation
will then be allocated to the other sequence. The goal of this preprocessing is to create a single super-node for
each airport with available possibilities to connections. At a larger airport with more flights, this does require
some extra steps. In Figure 3.4¢, a schematic representation is showed, before the aggregation into a super-
node. If ground arc y would be removed, this would give the possibility to connect the arriving flights 7 and
8 to the departure of flight 1. However, flight 1 has already departed once flights 7 and 8 arrive, meaning this
is an impossible connection. Therefore, the through values are given a penalty of negative infinity to restrict
this connection to be made [7].
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Figure 3.4: (a) Arc aggregation of two pairs of two flights. (b) Node aggregation of arrival and departure node. (c) Preprocessing a larger
network. All images taken from Clarke et al. [7]

3.1.3. String-based Network

The third and final network type that is used in aircraft routing is the string-based network. A string is de-
termined in 1974 by Pollack [37] as a sequence of flights served sequentially by a specific aircraft. Pollack
proposes a method to generate strings from a flight schedule and determine the minimum aircraft fleet size
to serve the schedule. The model assigns one flight per string, which is followed by the model trying to con-
nect two strings together. This is only possible if the final arrival airport of the first string matches the first
departure airport of the second string and if the departure time of the second string is later than the arrival
time of the first. The objective of this model is to minimise the number of strings necessary to cover all the
flights. The problem is solved using a heuristic that shifts departure times between the earliest and latest
allowed departure times to decrease the number of strings necessary.

Barnhart et al. [2] are the first to implement the string network into an integrated aircraft fleeting and routing
problem. They determine an augmented string as a sequence of linked flights, with a maintenance slot added
at the end of the string. The objective is to allocate exactly one aircraft from the fleet to each flight segment,
while minimising the cost of the sum of all strings. In order to model the string-based network, the base of
either a time-space network or a connection-based network is used. Liang et al. [30] modify a time-space net-
work to create flight strings, while Barnhart et al. [2] and Froyland, Maher and Wu [18] connect their flights
using a connection-based network. Like described in subsection 3.1.1 and subsection 3.1.2, the advantage of
a time-space network is that it contains less arcs and thus limits the problem size. However this does come at
the cost of less extensive modelling possibilities and information about the connections in the created sched-
ule. In order to also have these possibilities in a time-space network, Liang et al. propose to add penalty, zero
cost and through arcs to have extra connection and maintenance modelling options [30]. To deal with the
larger size of the string network problems, often column generation is used [2, 18]. In this technique the lin-
ear programming problem is divided into a master problem and multiple subproblems which are then solved
iteratively. The integer programming problem is then solved using a branch-and-price algorithm [48].

The main use of the string-based model is to add the maintenance planning to the aircraft rotation schedule.
The schedule is often designed for a longer time horizon, like a weekly maintenance schedule discussed by
Liang et al. [30], and for requirements like equal fleet utilization over a longer period of time [2]. The only
available use of the string network in cargo based operations is from Derigs and Friederichs [10]. The time-
space network is extended to model the maintenance constraints by creating augmented flight strings as
proposed by Barnhart et al. [2]. Adding maintenance constraints into this research will not have priority and
will be first considered beyond the scope of this research. With maintenance constraints not essential for the
project, the disadvantages of a string network, like a larger problem size and the use of column generation,
quickly grow larger than the advantages of creating a more extensive solution.

3.2. Objective and Constraints for Aircraft Routing Problems

To get a better oversight of the way that aircraft routing and scheduling models are set up, this section dis-
cusses the general structure of such models.
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3.2.1. Objective Function

In modelling of aircraft planning problems, a decision variable is used in the objective function to determine
if a certain leg, connection or string is flown by a specific aircraft. For flight leg / in a set of all flight legs L and
aircraft k in a set of K aircraft in the fleet, x;; would be the decision variable that notes if flight / is operated by
aircraft k in the time-space network. When modelling with connections, the decision variable indicates the
connection between flight i and j, which are part of set L; x; j. The same reasoning is used with string-based
networks to form x, for string r € R [48]. Equation 3.1 shows that the binary decision variable can only vary
between 0 and 1, depending on the choice of flights for each aircraft.

1 ifleg/, connection ij or string r is operated by aircraft k
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When purely looking at the aircraft rotation planning, often the objective of the model is to minimise the total
schedule cost. In such cases already a preliminary flight schedule has been made, which consists of the flight
legs that have to be flown and basic flight times. The main goal is to choose which leg, connection or string
is flown by which aircraft in order to minimise the cost of the schedule, while every flight in the schedule is
assigned. From Khaled et al. [28], an example of objective functions for a time-space network is shown in
Equation 3.2. The cost cj can very per flight leg I and aircraft k, which gives the model the opportunity to
determine the lowest schedule cost for the given flight schedule.

Minimise Yo ckexik (3.2)
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If the fleet assignment problem has also been done, each flight leg has been allocated a specific aircraft type.
This means that the cost for each flight leg is now c¢;, with the aircraft type already fixed. Zhou et al. [48]
give an example for a string based network where the schedule cost is minimised (Equation 3.3). The model
has to choose between all strings, which are sequences of flight legs operated by the same aircraft type. The
cost of each string r is now determined as c,, which leaves the objective function with the simplified decision
variable x;.

Minimise Y crxr (3.3)
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An objective proposed by Clarke et al. for a connection-based network is to maximise the sum of all through
values [7]. As earlier described in subsection 3.1.2, the through value of a connection between two flight is
dependent on multiple factors including connection time and how the flight with intermediate stop relates
to the direct flight time. When the main interest of the model lies in creating a maintenance routing planning,
the model can also be setup as a feasibility problem. This is done by simply setting the objective function to
zero [48]. minimising the costs of the aircraft maintenance rotation is possible by adding these costs to the
objective function. In air cargo scheduling, the objective can also include parts like no-service costs for not
serving a certain request [9] or maximising the total revenue of the cargo routing part [10]. This is further
discussed in Chapter 4.

3.2.2. Constraints

In order to come up with a feasible solution, constraints are used during the optimisation. The constraints
require that variables meet certain conditions, which are needed to create a feasible and usable schedule.
Some constraints that are used in a typical aircraft routing problem are explained below.

The cover constraint can be found in nearly every aircraft scheduling problem. This constraint makes sure
that each leg, connection or string is covered exactly once. This prevents that multiple aircraft are assigned to
the same part of the schedule. An example for such a constraint for a time-space network is shown in Equa-
tion 3.4 [48]. For each flight leg /, the sum of the decision variables x;; of each aircraft k should be exactly 1,
meaning that the leg is assigned to a specific aircraft (ARP) or aircraft type (FAP). Zhou et al. also show cover
constraints for different flight networks [48]. Note that for this constraint, already a flight schedule should be
available where it is required that all legs are flown. This is almost always the case for a scheduled passen-
ger network, however this is not always valid for cargo networks, which are more dependent on individual
requests.
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Y xp=1 vielL (3.4)
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A schedule also needs to guarantee that the flow of aircraft in and out of airport is in equilibrium. This is
done using flow balance constraints or equipment continuity constraints, which make sure that the aircraft
that are scheduled to depart from a certain airport also are located at that airport at the planned departure
time [28]. For a time-space network this constraint can be checked by comparing the sum of aircraft entering
and exiting a specific node, as shown in Equation 3.5 [48]. In this constraint L, and L, are the sets of legs
respectively entering and exiting node n. To count the number of aircraft on the ground that enter and exit
this node, y,+ and y,- are used. The constraint now forces an equal aircraft flow balance for each node.
Similar constraints can be created for connection- and string-based networks [48].
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The model cannot assign more aircraft in the schedule than the number of available aircraft in the fleet Mj.
Therefore an aircraft count is implemented that assures that the sum of aircraft in the air and on the ground at
a certain count time P is smaller or equal than the number of aircraft available. Zhou et al. [48] give examples
for the three different model networks. A constraint for a time-space network of a fleet assignment problem
is shown in Equation 3.6. For a connection based network no specific count time is used, but this is checked
at the first leg of the daily route of all aircraft, as shown in Equation 3.7. The sum of all original flight legs
should be smaller or equal than the number of available aircraft. Finally, Equation 3.8 shows an example
for a constraint for an ARP of a string network. Because the string network often runs over a multiple day
time period, variable y, is introduced that counts the number of times that string r crosses the count time P.
Aircraft that are on the ground at the count are summed like in the time-space network.
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Extra constraints can be implemented, like initial condition constraints that require an aircraft to depart its
first flight from a specific airport, for example the hub of the airline [28]. Similar constraints can be added for
the final flight of a day or of a time horizon. Airports can also introduce minimum or maximum frequency
constraints, which require the schedule to serve a specific airport a number of times during the modelling
horizon [10]. For non-homogeneous fleets constraints might be used to deal with the compatibility of some
aircraft types to serve certain flight legs, for example due to the maximum range or runway length at an
airport [10]. Turnaround time or turn time constraints can also be used to create feasible connections be-
tween two flights. If the time between the arrival and departure of two connecting flights is too short, there
is no time for things like boarding and refuelling, making the connection infeasible [28]. In some models
this turnaround time is already added flight time, which eliminates the need for an extra constraint. Fur-
thermore, maintenance constraints can be introduced to force a maintenance check after a certain amount
of flight hours, flight cycles or a specific elapsed time since the latest maintenance check. The aircraft can
then be constrained to undergo maintenance at a certain airport, where extra constraints can be added for
maximum maintenance capacity at this airport [48]. Adding extra constraints will make the solution more
realistic, however this does increase the complexity of a problem. The objective for this research lies more on
the combination of the air cargo scheduling model with an emission model, therefore first a working schedul-
ing model will be implemented and merged with the emissions model before the possible addition of extra
constraints. Constraints more specific for air cargo modelling will be further discussed in Chapter 4.

3.3. Comparison of network types

In this chapter the three main network setups for the modelling of aircraft routing problems are discussed
to gain enough knowledge to decide which network would be suitable for this research. The used research is
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summarized in Table 3.1, with distinctions for the three network types, namely time-space, connection-based
and string-based networks, and whether the network is used to model a fleet scheduling, aircraft routing or
air cargo scheduling problem. Some papers treat multiple applications or network types.

Table 3.1: Summary of used literature on FAP, ARP and Air Cargo Scheduling for three different network types

Time-Space Network Fleet Scheduling Aircraft Routing Air Cargo Scheduling
Hane et al. (1995) [20] v

Yan and Young (1996) [45] v

Yan et al. (2006) [46] v v
Burke et al. (2010) [5] v

Liang et al. (2011) [31] Ve

Derigs and Friederichs (2013) [10] v v v
Khaled et al. (2018) (28] v

Delgado et al. (2020) [9] v v
Zhou et al. (2020) (48] v v

Connection-Based Network

Abara (1989) (1] v

Clarke et al. (1997) (7] v

Sherali et al. (2006) [40] v

Haouari et al. (2013) [21] v

Safaei and Jardine (2018) [38] v

Zhou et al. (2020) (48] v v

String-Based Network

Pollack (1974) [37] v

Barnhart et al. (1998) (2] v v

Derigs and Friederichs &

Schifer (2009) [12] v v
Derigs and Friederichs (2013) [10] v v v
Liang et al. (2013) [30] v v
Froyland, Maher & Whu (2014)  [18] v
Zhou et al. (2020) (48] v v

The basics of the model objective functions and constraints are quite similar when comparing the three net-
work types. Constraints for the flight coverage, flow balance and the number of aircraft can be found in each
network type. Most models aim to minimise the schedule cost, with exceptions like maintenance feasibil-
ity objectives for some string-based models and through value optimisation for some connection networks.
The difference between the three network types is the way that the schedules are created. In a typical time-
space network, event nodes are created for each timestep and connected by either flight arcs, ground arcs
or overnight arcs. This creates a fairly simple network setup, which is convenient to model a complete flight
schedule from scratch. A connection network needs more preprocessing and a preliminary set of flight times
which can then be connected using connection arcs. The advantage of this method is that individual aircraft
can be more easily followed throughout the flight schedule, which is not possible in the time-space network. A
major disadvantage is the problem size of a connection network, which grows quickly when more flight legs or
aircraft are available. This is also a problem for the string-based network, with the number of possible strings
growing exponentially if new flight legs or aircraft are added to the problem. Therefore, string-based models
always have to be solved using column generation. The main use and research performed using string-based
networks is the modelling of aircraft maintenance routing, which is not essential for this research. Looking
more closely at the research performed on connection-based networks, it can also be concluded that almost
no papers exist that combine this network type with air cargo scheduling (Table 3.1). This is due to the fact
that the path that cargo takes is less important than for passengers, as the main focus does not lie on short
connection times but on the delivery of cargo before the due time. More research is available on the com-
bination of time-space networks and routing for cargo airlines, as can be seen in Table 3.1. Therefore, this
network type will be further discussed in combination with cargo routing and modelling in the next chapter.



Air Cargo Modelling

With the theoretical basis of the aircraft routing problem and parts of the fleet scheduling problem covered,
this chapter focuses on the application of these techniques on air cargo modelling. These applications cover a
combination of scheduling flights, routing aircraft and routing cargo. This research only focuses on full cargo
operations, which means no bellyhold cargo in passenger aircraft is considered. Feng et al. [17] review the
available literature of all air cargo operations, covering the perspective of airlines, airports and the freight for-
warders. This can be used to get a wider overview of the whole air cargo industry. The number of researchers
that really combine the cargo routing to the airline scheduling problems is fairly limited and can be found in
Table 4.1. This chapter will discuss the different problems that were solved in these papers, first by reviewing
the different model setups (section 4.1), followed by the objective function and most important constraints
of the models in section 4.2.

4.1. Model Setup

In Table 4.1 it is clear that the most used network type in cargo modelling is the time-space network (TSN),
which was earlier discussed in subsection 3.1.1. However, the first research that was published on air cargo
scheduling by Marsten and Muller [33] uses a network type that is designed more like a connection network.
They design a hub-and-spoke flight schedule for an overnight express cargo airline. For this purpose, all air-
craft fly in the evening from their base airport to the hub, where cargo from all airports is sorted and put back
onto the outbound flights to their base airports. By combining multiple stops on the inbound and outbound
flights towards the hub, not every airport needs to be served by a single aircraft, but a spider graph network
can be created. An example with a single hub and eight base airports is shown in Figure 4.1, where can be seen
that multiple airports are connected by a single multi-stop flight to and from the hub. The model created by
Marsten and Muller maximises the profit by combining the origin-destination (OD) pairs and assigning the
most suitable aircraft type towards each flight. The model is extended for multiple hub operations, where
paths are limited to at most two hubs per overnight schedule. Also a daytime system has been added, where
the aircraft fly towards the hub in the morning and return in the evening before the overnight operations be-
gin. This model is designed specifically for express delivery operations with one or two cycles per day and
cargo that needs to be delivered the next day. This is different to the scheduled carrier airline network this
research is most interested in, where operations are more continuous throughout the day, less focused on big
hubs and with a more relaxed delivery time.

43
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Figure 4.1: Spider graph for an express cargo airline with a single hub and eight base airports [33]

Yan et al. [46] present a method to model aircraft fleet routing and the determination of a timetable for a full
freighter airline, based on a classic time-space network. Their model combines a fleet-flow and a cargo-flow
time-space network to model both the fleeting problem and the cargo routing problem. The aircraft schedul-
ing is done using the same three arc types as discussed in subsection 3.1.1, namely flight leg arcs, ground arcs
and cycle arcs. For the cargo scheduling three new arc types are proposed: Delivery arcs, holding arcs and
demand arcs. The delivery arcs represent cargo being allocated to a flight from one airport to another, similar
to flight leg arcs. Costs for this arc type are determined by the handling cost, which is relative to the cargo
weight and flight. The holding arc is similar to a ground arc, indicating that the cargo stays on the ground at
this airport during a certain time. Holding costs can be induced for storing the cargo at an intermediate air-
port. These costs are mostly disregarded if the cargo is still on the origin airport or already at the destination
airport. Finally, the demand arcs represent a negative cost if the cargo demand is served. The arc connects
the destination to the origin if the model chooses to service this specific demand. The objective of the model
is to minimise the network cost, which means that not all cargo demand needs to be transported if this does
not bring any profit.

Figure 4.2 shows the three different arcs of the cargo routing model, with a timestep of 4 hours between each
node. The cargo-flow network consists of multiple layers, each for a specific OD-time pair from the OD-
table [46]. Yan and Chen [44] further elaborated on this paper by coordinating operations for freight airline
alliances, which can further reduce operating cost and lead to higher profits. In this research only a single air-
line will be considered, however if the results are promising, it could be further examined how a cargo airline
alliance could contribute to reducing emissions.

Two combinations of a string-based air cargo network are presented by Derigs, Friederichs and Schéfer [12]
and Derigs and Friederichs [10]. Their first paper from 2009 creates a string network based on a connection
network. In this model it is possible that a planner selects a set of optional flights, which will then be formed
into feasible rotations. The aircraft rotation problem is then solved to connect sequences of flights together
that are flown by the same aircraft. For this only the connections are of importance, not the exact departure
or arrival times as described in the previous chapter. The model aims to minimise the number of aircraft
needed to serve the selected flights. The cargo is then routed over the flights by creating cargo itineraries or
strings which connect an OD pair. For larger problems not all OD-itineraries can be created and column gen-
eration has to be applied. The goal of the cargo routing is to maximise the profit of transporting the demand.
A second option is also possible where the whole flight selection, aircraft rotation planning and cargo routing
are done in a integrated model. The same steps as described before are taken, with column generation used
to decrease the problem size and complexity of the problem [12].

Note that for this problem, a predefined set of mandatory and optional flights should already be available,
which are than linked to create flight sequences. Furthermore, also bellyhold capacity of passenger aircraft is
available in the model, which goes beyond the scope of this research.
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Figure 4.2: A graphical representation of the cargo-flow time-space of Yan et al. [46], showing delivery, holding and demand arcs.

In a paper from 2013, Derigs and Friederichs [10] present an extended version of the model described above.
However, this model is based on a time-space or timeline network instead of modelling the connections be-
tween flights. A weekly schedule is created with timesteps of only 1 minute, creating a large number of possi-
ble routings. The nodes are connected with flight, ground and wrap-around arcs like in a typical time-space
network. A string network is then created to include maintenance opportunities in the aircraft rotations [10].
The cargo routing problem is solved using the same OD-itineraries as described above [12]. Delgado and
Mora [8] also solve the problem using a mix of a time-space and string network, in order to find a replace-
ment schedule for demand disruptions in a short computational time. The flights are routed on flight and
ground arcs, while cargo pickup and delivery nodes at an airport are grouped for a specific aircraft.

In 2020 Delgado et al. [9] implemented a pure time-space network to find an optimal schedule after demand
disruptions. This network combines the flight and cargo schedules by implementing two types of nodes,
namely itinerary nodes which represent all possible airport-time pairings, and request nodes which hold the
origin and destination nodes of the cargo requests that are made. The itinerary nodes are connected by flight
and ground arcs like in a normal time-space network, with request access and no-service arcs added for the
cargo routing. A graphical representation is shown in Figure 4.3. The request access arcs connect the request
node to the itinerary node, from where the cargo request can be routed on the same flight and ground arcs as
the aircraft. The no-service arc directly connects the origin and destination request node and is activated if
this cargo request is not served in the model, adding costs to the objective function for not receiving the fare
of the customer.

The OD-pair for the request is randomly generated from a set of airports and like the weight, release and due
time of the cargo. These values can vary between a selected range of cargo sizes and times in the time horizon.
This information is stored in the request nodes [9]. The model uses a timestep of 20 minutes, to quickly find
a replacement schedule for the 3 day time horizon. This is a larger timestep than the model of Derigs and
Friederichs [10], who use a time discretisation of 1 minute, which gives a very detailed schedule of all flights.
However, this does increase the problem size, as for the determination of a weekly schedule the time horizon
consists of 10,080 time steps that have to be considered. Larger timesteps in the range of multiple hours can
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Figure 4.3: Example of the time-space network with three cargo requests [9].
also be used like Yan et al. [46], if a less detailed schedule is required.

4.2, Objective and Constraints for Cargo Scheduling
Just like for the models for aircraft routing discussed in the last chapter, this section will discuss the objective
functions and constraints of the air cargo scheduling models.

4.2.1. Objective Function

Where the objective function of aircraft routing problems discussed in section 3.2 mostly consist just of a
decision variable and a cost function for the flight, the objective functions for cargo scheduling problems
often are more elaborate. Next to the flight costs, also costs and profits for carrying cargo are important. An
example of such a function is given in Equation 4.1 [11, 12], with the first term representing the cargo profit
which should be maximised. The second and third term should be minimised as they represent the total costs
of the selected flights in the schedule and fixed aircraft costs which depend on the fleet size. Here the decision
variable for cargo flow f, over path p is multiplied by the profit margin m, of the specific path that is flown.
The costs ¢y for all flights that are selected is determined by multiplying it with decision variable ys. The
number of aircraft needed to fly the schedule is equal to the number of rotations x,, which is multiplied to
the fixed costs per aircraft c!. Minimising the aircraft fleet would be useful in case of aircraft leasing, however
with a fixed fleet this does add value. The three different sub-problems can be solved in separate steps or in
an integrated model, where all factors are combined in a single objective function. Derichs, Friederichs and
Schéfer [12] and Derichs and Friederichs [10] present ways to take both approaches.

Maximise Y mpfy= Y. cryr— Y. ¢t 4.1)
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The objective function can further be expanded, like the addition of a third term that subtracts the fixed costs
of each aircraft in order to minimise the fleet size that is needed [12]. Yan et al. [46] also add costs for airports
that are chosen in the schedule to compensate for the cost of ground infrastructure and personnel. Delgado
et al. [9] introduce penalty cost for crew reassignment due to schedule disruptions. In other research crew
scheduling or crew costs are mostly neglected. Changes to the flight schedule, like flight cancellations due
to demand disruptions, are penalized by Delgado and Mora [8] in order to keep the original schedule intact
the most as possible. They also propose a policy to split a cargo request and transport them on two different
flights or itineraries, that could potentially increase the profits of the airline. However this is not preferred by
the customer and leads to a more complex model [8].

The addition of an extra term or penalty function in the objective function could also be applied to implement
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the emissions factor of each flight. A similar method is proposed by Derigs and Illing [11], who add a variable
for extra EU ETS allowances that need to be bought. EU ETS is a European emission trading system that forces
airlines to buy allowances if they emit more than the allowed amount of CO,, this will further be discussed in
Chapter 5'. In the model presented by Derigs and Illing only these extra costs for the whole airline are taken
into account. However, there is no research in the emissions of specific flight legs, aircraft with different load
factors or different parts of the flight, which is a gap that this research will focus on.

4.2.2. Constraints

For the aircraft scheduling part of the models mostly the same constraints are used, like the aircraft flow and
balance constraints and the aircraft count constraints (section 3.2). The cover constraint is used less in the
models using time-space networks, because often no preliminary flight schedule is available for the air cargo
modelling, in contrast to the modelling of passenger flight schedules. The string-based networks do use a
cover constraint to make sure every string is covered by an aircraft [10, 12].

The cargo routing problem is mostly constrained by the available capacity of each leg or aircraft. In some
research this is only done by checking the cargo weight [8, 9, 33, 46], while others also include the cargo
volume [10, 12]. Also the demand on a certain OD-pair should always be larger or equal than the actual cargo
flow that is being transported over them. Equation 4.2, Equation 4.3 and Equation 4.4 show how Derigs and
Friederichs set these constraints [10]. xgo"" is the decision variable that states the weight of the cargo that is
carried on cargo flow path p. P; contains all cargo flow paths that are routed over flight leg /. The sum of the
weight of the cargo routed over these paths should be smaller than the maximum weight capacity on leg [,
given by w;"*. The same is done for the sum of volumes of the cargo path that should be smaller than the
volume capacity v;"®. The set Pyq holds all cargo flow paths that run between a certain OD-pair. The sum of

the weight over all these paths should be smaller than the demand for this OD-pair.
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The constraints for aircraft flow balance can also be implemented for cargo flow, like shown by Delgado et al.
[9] in Equation 4.5. In this case 6* (i) and 6~ (i) are the sets of arcs that start and end at node i respectively
and i; and i are the initial and final nodes of request r. If node i is the starting node of request r this should
result in a positive flow of 1. Similarly the ending node acts as a sink resulting in a flow of -1. If the node is
neither the start nor the end node of the request, the balance should be 0. This is because the cargo both
enters and exits this node as an intermediate stop, or because the node is not used by the cargo request at all.
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If the model needs to be constrained more for the research purposes, more constraints can be added, like
picking up the cargo only after it is available and delivering it before its due time [10]. Furthermore, only
cargo transfers can take place at an airport with the right facilities [10] or a fixed ground time can be made
mandatory for cargo to allow for cargo transfers [9]. A constraint can be made to fix the position of aircraft
at the start and end of the time horizon [8]. Marsten and Muller [33] propose a fuel constraint that limits the
total fuel usage of the whole fleet for each overnight operation. Yan et al. [46] use a constraint to determine
if an airport is used and thus extra airport costs should be added. Finally, constraints can be used to make
sure that cargo and aircraft cannot be assigned to multiple places at once [9], that capacity of airports or flight
routes is not exceeded [46] and that cargo can only be routed over a flight arc if an aircraft is assigned to that
arc. During the model specification it should be determined which constraints will be used and which will be
relaxed to fit the schedule requirements.

Ihttps://ec.europa.eu/clima/policies/ets_en, accessed on 23-03-2021
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4.3. Solution Methods

The different models that are reviewed use different techniques to come to a solution, mainly due to the char-
acteristics of the model, as also described in Table 4.1. The optimisation problem described in this chapter
and Chapter 3 are called Mixed-Integer Programming models (MIP), with an objective function and one or
more constraints that the model should adhere to. If such a model only consists of only linear parts, it is
called a Mixed-Integer Linear Programming model (MILP). Models like this can either be solved by commer-
cial solvers, like CPLEX and Gurobi, or by techniques such as column generation and heuristics.

A commercial solver often uses a technique called branch-and-bound to solve the MIP or MILP. In this method
first the integrality constraints are relaxed, meaning that some variables do not are not fixed as integers any-
more and making it a linear programming (LP) model. By then rounding the value of one of the variables up
and down, two branches are created with new MIPs. The solutions for these problems create an upper and
lower bound for the solution. The process is then repeated to decrease the gap between these two bounds,
until the gap is zero and an optimal solution is found. Branches can also be fathomed, either if the MIP of
this branch gives an infeasible solution or if all integrality restrictions are satisfied. If that is the case and the
objective value found is lower than any other feasible solution that was found (for a minimisation problem),
the value is kept until an even lower value is found. Next to branch-and-bound, solvers use other techniques,
like presolving and cutting planes, to quickly arrive at or near the global optimum solution of the problem?.

In the paper presented by Delgado et al. [9] the model is solved by the Gurobi solver. The result tables show
how the solving process behaves for different network sizes. The number of airports is varied, together with
the number of original, cancelled and new cargo requests. In the instances with a smaller number of airports
and cargo requests the model can find an optimal solution within a few minutes, but this time increases
strongly when the size of the network is increased. The number of variables and constraints rapidly grows
for an increase in the network, which can result in very high computational times. This is graphically shown
by Yan et al. [46] in Figure 4.4, by showing the possible options for a flight between an OD-pair. If no in-
termediate stops are allowed only four options are possible within this time frame, however the number of
options very quickly increases if also stops at intermediate airports are allowed. The same growth in schedule
complexity arises if the number of aircraft, airport or cargo requests increases, or if the time discretisation is
reduced to a smaller timestep.

origin destination origin destination origin destination

(a) Non-stop network (b) One-stop network (c) All-stop network
Figure 4.4: Graphical representation of the increase in complexity if multiple stops are allowed in a time-space network [46]

Techniques as heuristics and column generation are developed to be able to solve larger and more complex
problems in a faster computational time. Heuristics do not necessarily find the global optimum solution of
the problem, but try to make an approximation or find a local optimum. Such an approach is taken by Yan et
al. [46] using the different stop strategies shown in Figure 4.4. When the commercial solver does not converge
in the all-stop network within a certain computational time, modifications are done by simplifying parts of
the network to non- or one-stop restrictions. If this still not converges, a series of network modifications are

Zhttps:/ /www.gurobi.com/resource/mip-basics/, accessed on 08-04-2021
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proposed in the heuristic to find an approximation to the solution within a reasonable computational time.

Another method that is regularly used in aircraft and cargo routing problems is column generation. This
technique is mostly used on problems with a very high number of columns or variables with respect to the
other dimensions of the problem. The model is divided into a restricted master problem (RMP) and multiple
subproblems. The RMP only contains a subset of the columns and is first solved. Then the model searches in
the subproblems for columns that can improve the objective, which continues until no improvement is iden-
tified [12]. The column generation approach is mostly used for string-based networks, where the number of
feasible strings increases dramatically due to an increase in for example flight legs and airports. Examples
can be found in the research of Derigs, Friederichs and Schifer [12] and Derigs and Friederichs [10]. Finally, a
combination between heuristics and column generation is possible, for examle the matheuristic approach as
proposed by Delgado and Mora [8]. The RMP is solved using column generation, while a heuristic is created
to solve the subproblems. The problem is also solved using Gurobi’s MIP solver, which had trouble finding
optimality of the larger problems within the given run time.

A trade-off should be made to choose which solution method fits the research goals. If the network is not
extremely big, or a larger time discretisation is used, the MILP can be solved within a reasonable computation
time using a commercial solver. For larger problems or problems with non-linear terms, column generation
or heuristics should be considered, although this will not directly lead to a global optimum solution. This
does mean that extra focus and programming time will have to be invested in writing the column generation
or heuristic model, while modelling a MILP for a commercial solver is usually easier.
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Table 4.1: Summary of the available literature on flight scheduling and cargo modelling, with the key characteristics of each model.

Source Year | Model Objective Network Type | Output
s CN Flight schedule of OD pairs
Marsten and Muller [33] 1980 | Maximising profit Spider Graph | Fleet planning
Mixed-integer programming model.
Cargo transfer only possible at hubs.
Airport selection
Yan et al. [46] 2006 | Minimising system cost | TSN Am:rafti fleet routing
Fligth timetable

Integrated scheduling model.
Mixed-integer programming model in combination with heuristics.
The allowed number of stops for the cargo routing is varied.
Projected demand given, applied to a weekly time horizon.

Yan and Chen [44]

2008

Minimising system cost

TSN

Airport selection
Aircraft fleet routing
Flight timetable

Extended model from Yan et al. [46].

Coordinated flight scheduling for

freight airline alli

ances.

Derigs, Friederichs
and Schifer [12]

2009

Maximising profit

CN and SN

Flight selection
Aircraft rotation planning
Cargo routing

Column generation with shortest path algorithms.
Methods for both incremental and integrated planning.
Modifying an initial flight schedule with mandatory and optional cargo flights.
Also bellyhold capacity of passenger aircraft is available.

Derigs and Friederichs [10]

2013

Maximising profit

TSN and SN

Flight selection
Aircraft rotation planning
Cargo routing

Extended model from Derigs, Friederichs and Sché

fer [12].
Maintenance modelling added with a string network.

Derigs and Illing [11]

2013

Maximising profit

TSN and SN

Flight selection
Aircraft rotation planning
Cargo routing

Extended model from Derigs and

EU ET

Friederichs [10].

S costs for CO» added to observe schedule changes.

Delgado et al. [9]

2020

Minimise cost

TSN

Flight schedule
Aircraft routing
Cargo routing

Redesign a flight schedule with MILP model to deal with demand disruptions.
Three different crew management policies.
Random demand generation with cargo request arcs.

Delgado and Mora [8]

2021

Maximising profit

TSN and SN

Flight schedule
Aircraft routing
Cargo routing

Adjusting base flight plan to demand disruptions.
Matheuristic solution that solves problem using column generation.
Cargo cannot be transferred between aircraft.




Aircraft Emission Modelling

To goal of this research is to combine an air cargo scheduling model with an emission model to investigate
how cargo networks would change if a more sustainable schedule would be used. Therefore, this chapter
presents an overview of the different aspects of emission modelling that are relevant for this project. First,
section 5.1 will briefly discuss the different emissions of air transportation that are relevant for sustainability.
This is followed by a closer look on the emissions in two parts of the flight, namely the airport-based emissions
from the LTO-cycle (section 5.2) and the full flight emissions which include the cruise phase (section 5.3). In
section 5.4 existing emission models are discussed. Finally, in section 5.5 the research that combines air cargo
networks with emissions is reviewed. Table 5.1 summarises the used literature in this chapter.

5.1. Aircraft Emissions

When discussing emissions from the aviation industry, mostly CO; is mentioned. However, during the com-
bustion of fuel in a jet engine, more (by)products are produced, like H,O, NOy, CO, HC, SOy and soot. These
emissions are produced to a different extent in the different phases of the flight and also have other atmo-
spheric and air quality effects. CO, and H,O are products of the combustion and therefore can directly be
connected to the amount of fuel consumed by the aircraft [36]. Per kg of kerosene that is burned around 3.15
kg of CO; is produced, which is mixed throughout the atmosphere during its long lifetime, meaning that its
effect is similar when produced at ground level and at cruise altitude [26]. Because it is a greenhouse gas, it
has a warming effect on the atmosphere. 1.26 kg of H,O is produced per kg of fuel and it is also is defined as a
greenhouse gas, but its direct contribution to warming up the atmosphere is fairly small [43]. However, it can
lead to the formation of contrails if emitted at high altitudes, which can capture heat within the atmosphere
[26]. Trade-offs can be made to fly lower in order to reduce the possibility of contrails, however this does
increase the amount of fuel used, as the atmosphere is thicker. This trade-off of the trajectory optimisation is
considered outside the scope of this research. The emission modelling of the cruise phase is further explained
in section 5.3.

During the idle and taxi phase of the flight, the aircraft engines are running in very low thrust conditions,
which is not where the engines are designed for. This inefficient operation results in incomplete combustion
and much emissions of CO and HC (hydrocarbons) [36]. The take-off and climb-out phase requires totally
different engine characteristics, namely very high thrust. In this complete and high temperature combustion,
the CO and HC emissions are very low, however the production of NOy, SOy and soot is much larger [36].
These pollutants are mainly affecting the local air quality around airports and thus the health of people living
nearby the airport. The modelling of these emissions is further explained in section 5.2. Next to local effects,
nitrogen oxides also have an effect on the atmospheric temperature. Due to the emissions of NOy at altitude,
this stimulates the formation of ozone (O3), which has warming effects on the atmosphere. However, O3
also helps breaking down methane (CH,4) [26]. This also is a greenhouse gas that warms the atmosphere,
and overall effect of NOy can also slightly decrease the temperature effects of aviation. This cycle is less
understood than for example the effect of CO, on global warming, therefore it might not have full priority
during the emission modelling of the network.
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5.2, Airport-based Emissions

The first part of the flight that is looked at is the landing and take-off cycle, also called LTO-cycle. This part
combines all emissions of the flight operations that take place around the airport, while the aircraft is below
3000 ft (914 m) above ground level [15]. This contains take-off, climb-out, approach-landing and taxi and
ground-idle, also graphically shown in Figure 5.1 [15]. For these phases, the ICAO has defined a standard
cycle, which contains the length of each phase and the standard thrust setting of the engine. The emissions
for these thrust settings can be found in the ICAO Aircraft Emissions Databank [13]. The high thrust settings
during the take-off and climb that were discussed earlier can be found, just as the very low thrust setting
during the taxi and idle phase. This phase is by far the longest part of the LTO-cycle and is based on average
taxi times. However, more recent and accurate taxi times per airport are defined by Eurocontrol, which can
be implemented to create a more realistic estimation of the emissions during the LTO-phase'. The European
Environment Agency also implemented these data into a LTO emissions calculator’, which outputs the fuel
usage and different emissions for the different phases in the LTO phase for a specific aircraft and airport.
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Climb + Cruise + Descent

@ fuel use and emissions
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Figure 5.1: Flight phases that are grouped into the LTO-cycle and cruise phase [15]

Thrust setting
Time-in-mode (percentage of
Operating phase (minutes) rated thrust)
Approach 4.0 30
. 7.0 (in)
Tax1 and ground 2% 19.0 7
idle
(out)
Take-off 0.7 100
Climb 2.2 85

Figure 5.2: Reference times and emissions for the standard ICAO LTO-cycle [23]

The importance of the reduction of the taxi phase is shown in multiple papers that investigate the local emis-
sions at one or more specific airports. Kesgin [27] focuses on Turkish airports and varied the taxi times be-
tween 26 and 20 minutes. A decrease of 2 minutes was found to lead to a 6% decrease in LTO emissions,
which was defined as the sum of HC, CO, NOy and SO». Further reducing the taxi time to 20 minutes results
in a total decrease of 16.5% in LTO emissions. Tokuslu [42] presents similar values for the LTO emissions (HC,
CO and NOy) at a Georgian airport, with a 2 minute shorter taxi time resulting in 5% less emissions. If the taxi
times at specific airports in the network are significantly shorter, this might lead to the optimisation model
preferring such airports over airports with long taxi times to reduce emissions. Next to the three pollutants

Thttps:/ /www.eurocontrol.int/publication/taxi-times-summer-2019, accessed on 12-04-2021
2https:/ /www.eea.europa.eu/publications/emep-eea-guidebook-2019/part-b-sectoral-guidance-chapters/1-energy/1-a-
combustion/1-a-3-a-aviation-1-annex5-LTO/view, accessed on 14-04-2021
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calculated by Tokuslu, Turgut and Rosen [43] also calculate H,O and CO, emissions for multiple large air-
ports, based on three different databases. For the LTO-cycle it was found that the ICAO database leads to the
most accurate results. Large differences were found between the emissions of the different airports, mainly
due to the different types of aircraft that operate at these airports. A heavy-wake category aircraft emits way
pollutants per LTO-cycle and thus has a larger impact on the total amount of emissions at an airport than a
smaller aircraft. Finally, Schiirmann et al. [39] compared real measurements of emissions during idling and
taxiing at Zurich airport to estimations done using the ICAO emission database. Differences up to a factor
of 2 were found, with calculations showing lower values for some aircraft, but higher values for others. This
shows that it should be taken into account that the values obtained from emission models do not perfectly
match reality.

5.3. Flight Emissions

Next to only looking at the emissions on and close to the airport, also the emissions of the complete flight
can be observed. The main pollutant that is researched for the cruise phase and the entire flight is CO,, due
to the less known climate effects of NOx and H,O. Because the CO, emissions are directly related to the fuel
use, this is the main indicator on how much a flight emits. Miyoshi and Mason [34] separately calculate the
emissions for cruise and LTO-cycle. The great circle distance is used to determine the flight distance, while
the altitude was set to the most used cruise level of the aircraft type. 10 to 15 minutes were added to the
cruise phase to compensate for the period from the end of the take-off phase at 3000 ft and the cruise level.
Miyoshi and Mason also mention air traffic management inefficiencies, which can cause approximately 10%
to the total flight times, however this extra time was not used in the calculations. In the analysis the emissions
of complete flights are considered, which show that the carbon efficiency (g CO,/ passenger km for a fixed
load factor) increases for longer flight distances. This is due to the LTO-phase, which represent a large part of
shorter flights as the take-off and climb takes a large amount of fuel to complete. Jardine [26] shows that this
carbon efficiency slightly decreases for extremely long-haul flights, due to the amount of fuel that needs to
be carried for the whole flight. This can be seen for the Boeing 747 and Airbus A340 in Figure 5.3. Also flights
shorter than 2000 km become very inefficient for a Boeing 737.
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Figure 5.3: Carbon efficiency per passenger as a function of flight distance [26]

Loo et al. [32] use similar methods described above for LTO and cruise emissions, and investigate what effects
hub-and-spoke networks have on the total emissions. It is found that on a global level, the introduction of
hubs decreases the CO;, emission per passenger km. However, the large aircraft that are used to connect in-
ternational hubs leads to a high concentration of emissions at a local level. Also, capacity limits are proposed
for hub airports to limit the extra emissions from aircraft flying in holding stacks and or having to taxi longer.
Brueckner and Abreu [4] perform a statistical analysis on different factors that influence fuel usage and CO,
emissions per available seat mile (ASM). For example aircraft fuel efficiency, seats per aircraft, flight length,
load factor and average aircraft age. The load factor is interesting, as this is often kept constant in other pa-
pers. An increase of 5% in average load factor of an airline would lead to 8.2% more fuel use, due to the larger
weight that has to be carried by the aircraft. It has to be noted that this represents a value for an entire airline
and might be different for individual flights. Furthermore, also the average age has a large impact and a fleet
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that is 3 years 'younger’ would reduce the fuel use by 2.2%. This is not something that can be changed in the
creation of a flight schedule, therefore aircraft age will not be considered.

5.4. Existing Emission Models

As mentioned in the sections above, almost all papers calculate LTO-emissions using the standard ICAO LTO-
cycle and engine emissions database. This method is also implemented in the LTO-emissions calculator from
the European Environment Agency’, which can be used to find emissions for an aircraft type with a specific
engine and at a certain airport. This calculator is also expanded to the calculation of the emissions of a
complete flight! [15]. This model assumes the most used altitude and cruise velocity for a certain aircraft and
flight distance in order to calculate the emissions of the flight. A similar model has been created by ICAO®,
which takes the number of passengers and the origin and destination of a flight as an input to calculate an
average CO, consumption for such a flight. This calculator is designed to determine carbon emissions for
emission offset programs and it is not suitable for cargo flights, however the documentation can be used as
a reference further in the project [24]. Eurocontrol have developed the Advanced Emissions Model® which
uses their aircraft performance model Base of Aircraft Data (BADA) [35]. Some researchers also combine two
models, like Miyoshi and Mason who determine the total CO, emissions by using BADA inputs for the cruise
phase and the EEA method for the LTO-cycle. Finally, within the TU Delft the performance model OpenAP is
developed, which is an open-source Python toolkit that can be accessed via the GitHub’ . In this performance
model, also fuel use and aircraft emissions can be calculated [41]. This is mostly aimed at the cruise phase,
which means the emissions from the LTO-cycle should separately be implemented, for example by using the
EEA method.

5.5. Air Cargo Emissions

In the literature, not much research is available that combines air cargo modelling with aircraft emissions.
Two papers that do incorporate emissions in their cargo models are Derigs and Illing [11] and Chao [6]. How-
ever, both of these papers are not interested in the emissions itself, but in the effects of the emission trading
system EU ETS. This system is a so-called 'cap-and-trade’, that aims to reduce the EU greenhouse gas emis-
sions in 2030 by 55% and make the EU climate neutral in 2050°. Originally this system was only implemented
for heavy energy industries, but since 2012 also the aviation industry is implemented. The airlines are capped
to a maximum amount of greenhouse gasses that the whole aviation industry can emit, and this cap is re-
duced over the years to stimulate a decrease in emissions. A part of the allowances to emit greenhouse gasses
are given to the airlines for free, based on benchmark ton-kilometers of each airline at a certain reference
point, and another part is auctioned to airlines that exceed their allowed emissions. Airlines also can trade
these allowances, if a certain airline emits less than it is allowed [14]. The system focuses mainly on CO,, but
the plan is to also cover other greenhouse gasses and, if the understanding is improved, the climate effects
of contrails [16]. Only flights between two European airports are considered at this moment, but the goal is
to also connect the trading system with other countries and systems, like the world-wide emission trading
system CORSIA from ICAQ”.

Derigs and Illing [11] investigated the expected effect of EU ETS on the air cargo network that was proposed
by Derigs and Friederichs [10]. The goal of the model is to optimise the profits of a cargo airline that operates
globally. In the objective function the cost of buying extra allowances is implemented, which dependent on
an estimation of the free allowances and on the total CO, emissions of the airline. The emissions are calcu-
lated based on the fuel used, emitting 2.5 kg CO, per litre of kerosene. A fixed fuel consumption per km is
assumed for an empty aircraft without cargo, and variable fuel usage is added for each kg of cargo to compen-
sate for the extra fuel that is needed for heavier aircraft. The necessary fuel load for the flight is calculated to
find the weight before take-off, with a 10% fuel reserve included. With the allowance costs added, the network

3https:/ /www.eea.europa.eu/publications/emep-eea-guidebook-2019/part-b-sectoral-guidance-chapters/1-energy/1-a-
combustion/1-a-3-a-aviation-1-annex5-LTO/view, accessed on 14-04-2021

4https:/ /www.eea.europa.eu/publications/ emep-eea-guidebook-2019/part-b-sectoral-guidance-chapters/1-energy/1-a-
combustion/1-a-3-a-aviation-1/view, accessed on 14-04-2021

Shttps:/ /www.icao.int/environmental-protection/Carbonoffset/Pages/default.aspx

Shttps:/ /www.eurocontrol.int/model/advanced-emission-model, accessed on 19-04-2021

7https://github.com/junzis/openap, accssed on 19-04-2021

8https://ec.europa.eu/clima/policies/ets_en, accessed on 20-04-2021

Ihttps:/ /www.icao.int/environmental-protection/ CORSIA/Pages/default.aspx, accessed on 23-03-2021
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is optimised. It is found that the network is still almost the same, only with some short inner-EU flights being
replaced by longer flights to a destination outside the EU, because these flights do not belong to the EU ETS
system. Also two more aggressive forms of the ETS are investigated, where no free allowances are given and
where the CO, emissions are multiplied by 4 to deal with the extra environmental impact of other greenhouse
gasses. Due to the system only working in the EU, this mainly results in the cargo network concentrating in a
place outside the EU like Asia or America, with only a few connections back to Europe.

In the reseach presented by [6] the main focus lies on how different aircraft types are influenced by ETS regu-
lations for different routes. The fuel use and emissions are calculated separately for the LTO-cycle and cruise
phase, using the ICAO standard LTO-cycle and an average fuel consumption for the aircraft in the cruise. This
means that unlike Derigs and Friederichs, no variable aircraft weight is used. For shorter routes it is found
that the contribution of the LTO emissions is up to 20% of the total flight emissions, while this decreases to
around 3% for extremely long flights. The corresponding carbon emission costs are calculated for four dif-
ferent ETS allowance scenarios which showed that costs per ton-kilometer are largest for small cargo aircraft,
and smallest for large or new aircraft types. A cargo airline like Cargolux has little variation in their fleet, only
using 747’s, making this comparison less relevant for this research. However, it does point out that the LTO
emissions can take up a large percentage of the flight emissions for shorter flights and thus lowering the car-
bon efficiency per km.

The only research that is available, which does not look at minimising ETS costs but CO, emissions is the
research by Yan et al. [47]. They propose a multi-objective optimisation model to minimise the costs and
carbon emissions of an air cargo alliance network. The emission weight per LTO cycle is calculated based
on the aircraft type and the ICAO LTO-cycle. During the cruise phase a constant cruise speed and fuel usage
per unit time is assumed. The cruise time is found by subtracting the time spent in the LTO phase of the
complete flight time, which is then multiplied by fuel flow and the emission factor of CO,, being 3.15 kg per
kg of fuel. The model is also able to outsource the service of routes with low demand to airlines in the alliance,
which effectively reduces the emissions of the airline itself. This outsourcing of flights is done more if the
outsourcing costs are low and this then has a positive effect on the airlines emissions, however the emissions
of the alliance airlines are not taken into account. In this master thesis, the airline will be restricted to its
own operations and more focus will lay on redesigning the network of the airline itself in order to reduce
emissions and still make a profit. The research of Yan et al. also does not take into account the difference
in emissions due to different aircraft weights. It can however choose not to serve small demand pairs if an
alliance partner can take over, where the model designed in the thesis project will probably have to deal with
minimum frequencies per airport.

5.6. Relevant Literature

The research that is used for the review of aircraft emission modelling is summarised in Table 5.1. As said
before, the emissions of cargo airlines are only researched in three papers, from which two mainly focus on
the influence of the emission trading systems (Derigs and Illing (2013) [11], Chao (2014) [6]). However, these
articles can still be used as good references on the effects of dealing with emission costs of emission trading
systems on cargo airlines. The methodology of Yan, Zhang and Tang (2020) [47] is the most useful, as this
paper directly relates the operational costs with the amount of CO» that is emitted. For the research on aircraft
emissions, a clear distinction was found between emissions on an airport or local level and the emissions
during the entire flight. In this proposed research, the focus mostly lies on the CO, emissions throughout
the whole flight, which can be more easily compared globally for the complete airline than local emissions
at different airports. Therefore, the papers that deal with simulation of the full flights emission are the main
source of information. The different studies use similar methodologies that can also be implemented for this
research. If the full flight emissions are fully implemented in the model, also the effects on the local emissions
at different airports can be considered, however this does not have priority.
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Table 5.1: Summary of the available literature on aircraft emission modelling for airport-base, flight-based and cargo airline emissions.

Airport-based  Full flight

Cargo Airline

Kesgin (2005)

Jardine (2005)

Schiirmann et al. (2007)
Turgut and Rosen (2009)
Miyoshi and Mason (2009)
Derigs and Illing (2013)
Chao (2014)

Loo etal. (2014)

Pagoni and Psaraki (2014)
Brueckner and Abreu (2017)
Tokuslu (2020)

Yan, Zhang and Tang (2020)

(32]
(36]
(4]
[42]
(47]
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Conclusion

This literature study has summarised and reviewed the available research in the different fields of interest
for this master thesis, namely improving the sustainability of air cargo networks. The aim of the thesis is to
create a model that can optimise a cargo and aircraft routing schedule to both maximise the profits of the
network, but at the same time minimise the emissions of the flights in the network. With this model it will
be investigated if and how a network can be revised, without impacting the financial feasibility of the network.

Three different network setups for airline scheduling modelling are discussed, namely the time-space net-
work (TSN), connection-based network (CN) and the string-based network (SN). The characteristics of each
network like the objective function and constraints were analysed. It is found that a TSN is relatively easy to
implement for a aircraft and cargo routing model, and that it is very suitable to design a flight schedule from
scratch. For CN a preliminary flight schedule should be available, which is then used to connect the flights
at an airport. The CN is often used for modelling networks of passenger airlines. The SN models allocate
aircraft by choosing between all feasible strings in the network, which are sequences of flights that are linked
together. To cope with the large problem size, for this mostly column generation is used. SN also is often
focused on maintenance routing problems, which is not a priority for this research.

For integrated cargo and aircraft routing problems, the same three network types can be found, with the
most literature using a time-space network set-up. Next to minimising the operational cost of the network,
the models often also aim to maximise the profit that can be gained from serving requests. Differences were
found in the solution techniques, ranging from commercial MIP solvers, column generation and heuristics.

Next to cargo and aircraft routing, also the literature on aircraft emission models has been reviewed. The
emission models can be split up into two types: Local airport emissions and global emissions of the full
flight. Methodologies for both emission scales are available, however the focus in this research will mainly
lie on the CO, emissions of the entire flight, which can be compared the best for the whole airline network.
The literature on emissions of air cargo networks are limited and mainly focuses on the effects of emission
trading systems, however these papers can still be used as a reference during the thesis.

A research framework and general planning have been created to describe the goals and next steps of the

thesis. The knowledge that has been gained from the literature will be used to investigate how the emissions
of a cargo network can be reduced by adapting the aircraft and cargo routing problem.
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Input Data

A.1. Available airports and flight data

Table A.1 displays all airports that are used in the experiments, with their associated IATA and ICAO codes.
Also the average taxi-out and taxi-in times from the summer of 2019 are retrieved from Eurocontrol' and
shown in the table.

Table A.1: Available airports, with the corresponding taxi times.

City Airport IATA code ICAOcode Taxi-out[s] Taxi-in [s]

Luxembourg Luxembourg Airport LUX ELLX 624 258

Amsterdam  Amsterdam Airport Schiphol AMS EHAM 852 522

Prestwick Glasgow Prestwick Airport PIK EGPK 540 246

Stansted London Stansted Airport STN EGSS 930 396

Milan Milan Malpensa Airport MXP LIMC 882 348

Vienna Vienna International Airport VIE LOWW 672 384
B F Li

Budapest udapest Ferenc Liszt BUD LHBP 678 325
International Airport

hn E

NewYork ~ JonnF Kennedy JEK KJFK 2,016 1,104
International Airport

Miami Miami International Airport MIA KMIA 1,212 504

Chicago O’Hare International Airport ORD KORD 1,530 954

Atlanta Hartsfield-Jackson Atlanta ATL KATL 1224 244
International Airport

Houston George Bush Intercontinental IAH KIAH 1266 546
Airport Houston

Dallas Dallas/Fort Worth DFW KDFW 1,134 660
International Airport

Los Angeles  Los Angeles International Airport LAX KLAX 1,212 810

Seattle Seattle-Tacoma SEA KSEA 1,188 480
International Airport

Calgary Calgary International Airport YYC CYYC 1,038 384

Guadalajara  Guadalajara Airport GDL MMGL 1,140 420

Mexico City  Mexico City International Airport MEX MMMX 1,740 732

Ihttps:/ /www.eurocontrol.int/publication/taxitimessummer2019, accessed on 12-04-2021
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In the experiments performed in this study, the airports are grouped into three sub-networks, named EU, EU-
NA and NA. The flight distance between each airport pair are assumed to be equal to the great-circle distance.
This is calculated using Equation A.1, where the origin and destination airport are denoted by i and j. The
earth radius R, of 6371 km is used. The flight time is calculated using a constant cruise velocity of 900 km/h
with the addition of a 30 minute LTO phase t770.

lat(j)—lat(i
distij= Z-arcsin\/sin2 (#
distij
lij= — * 110 (A.2)
cruise

(A.1)

+cos(lat(j))-cos(lat(i))-sin? (M) ‘R,

2

The flight distances and flight times of Network 1: EU are shown in Table A.2 and Table A.3. The flight times
that are used in the TSN generation already have a turn-around-time of 1 hour added.

Table A.2: Flight distances for Network 1: EU in kilometres.

LUX AMS PIK STN MXP VIE BUD

LUX 0 315 978 489 483 776 990
AMS 315 0 708 313 797 960 1169
PIK 978 708 0 513 1441 1662 1867
STN 489 313 513 0 932 1238 1451
MXP 483 797 1441 932 0 657 830
VIE 776 960 1662 1238 657 0 214
BUD 990 1169 1867 1451 830 214 0

Table A.3: Flight times for Network 1: EU in hours.

LUX AMS PIK STN MXP VIE BUD

LUX 0 0.85 1.59 1.04 1.04 1.36 1.60
AMS 0.85 0 1.29 0.85 1.39 1.57 1.80
PIK 1.59 1.29 0 1.07 2.10 2.35 2.57
STN 1.04 0.85 1.07 0 1.54 1.88 2.11
MXP 1.04 1.39 2.10 1.54 0 1.23 1.42
VIE 1.36 1.57 2.35 1.88 1.23 0 0.74
BUD 1.60 1.80 2.57 2.11 1.42 0.74 0

The flight distances and flight times of Network 2: EU-NA are shown in Table A.4 and Table A.5.

Table A.4: Flight distances for Network 2: EU-NA in kilometres.

LUX PIK MXP JFK MIA ORD ATL IAH

LUX 0 978 483 6,053 7,612 6,854 7,274 8,276
PIK 978 0 1,441 5,160 6,784 5,906 6,375 7,347
MXP 483 1,441 0 6,412 7,919 7,260 7,634 8,659
JFK 6,053 5,160 6,412 0 1,757 1,188 1,222 2,277
MIA 7,612 6,784 7,919 1,757 0 1,930 960 1,550
ORD 6,854 5,906 7,260 1,188 1,930 0 976 1,490
ATL 7,274 6,375 7,634 1,222 960 976 0 1,107
IAH 8,276 7,347 8,659 2,277 1,550 1,490 1,107 0
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Table A.5: Flight time for Network 2: EU-NA in hours.

LUX PIK MXP JFK MIA ORD ATL IAH
LUX 0 1.59 1.04 7.23 8.96 8.12 8.58 9.70
PIK 1.59 0 2.10 6.23 8.04 7.06 7.58 8.66
MXP 1.04 2.10 0 7.62 9.30 8.57 8.98 10.12
JFK 7.23 6.23 7.62 0 2.45 1.82 1.86 3.03
MIA 8.96 8.04 9.30 2.45 0 2.64 1.57 2.22
ORD 8.12 7.06 8.57 1.82 2.64 0 1.58 2.16
ATL 8.58 7.58 8.98 1.86 1.57 1.58 0 1.73
IAH 9.70 8.66 10.12 3.03 2.22 2.16 1.73 0

The flight distances and flight times of Network 3: NA are shown in Table A.6 and Table A.7.

Table A.6: Flight distances for Network 3: NA in kilometres.

DFW LAX SEA YYC GDL MEX
DFW 0 1,983 2,668 2,451 1,509 1,511
LAX 1,983 0 1,537 1,943 2,106 2,500
SEA 2,668 1,537 0 727 3,448 3,757
YYC 2,451 1,943 727 0 3,528 3,759
GDL 1,509 2,106 3,448 3,528 0 458
MEX 1,511 2,500 3,757 3,759 458 0

Table A.7: Flight times for Network 3: NA in hours.

DFwW LAX SEA YYC GDL MEX
DFW 0 2.70 3.46 3.22 2.18 2.18
LAX 2.70 0 2.21 2.66 2.84 3.28
SEA 3.46 2.21 0 1.31 4.33 4.67
YYC 3.22 2.66 1.31 0 4.42 4.68
GDL 2.18 2.84 4.33 4.42 0 1.01
MEX 2.18 3.28 4.67 4.68 1.01 0
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A.2. Demand and request generation
In order to simulate the cargo demand between each airport pair, publicly available flight frequencies are
used. An example of the weekly flight frequencies are given for the NA network are given in Table A.8. The

weekly cargo demand is calculated using the methods given in the Scientific Paper (Part I) and shown in
Table A.9.

Table A.8: Weekly flight frequencies used as input for the demand generation for Network 3: NA.

Destination
DFW LAX SEA YYC GDL MEX
DFW 0 1 0 0 0 1
LAX 0 0 4 2 0 2
Origin SEA 0 0 0 2 0 0
YYC 0 1 2 0 0 0
GDL 2 0 0 0 0 3
MEX 1 3 0 0 4 0

Table A.9: Demand matrix with the weekly cargo demand generated for Network 3: NA in tonnes.

Destination
DFW LAX SEA YYC GDL MEX

DFW 0 50 20 16 26 46

LAX 40 0 240 240 38 80
Origin SEA 0 48 0 80 0 32

YYC 1 40 186 0 4 8

GDL 98 106 32 16 0 148

MEX 136 208 74 61 160 0

The demand matrix from Table A.9 is used to generate the set of cargo requests. The request generation
function loops through each origin-destination pair in the demand matrix and creates the corresponding
requests. The demand values are multiplied by % to adapt them to the three day simulation period. If the
demand between two airports is lower than the minimum request weight (set to 15,000 kg), no cargo request
is generated. If the demand is larger, a request is created with a random cargo weight w, between 15,000
and 30,000 kg. The due time ¢, is set randomly between the start of day two (¢ = 24) and the end of the
time horizon (¢ = 72). The release time t; has to be at least 24 hours before ;. The lower bound of the
release time is the maximum value of either 0 or 48 hours before the due time. All three variables are shown
mathematically in Equation A.3, A.4 and A.5. Finally, the strategic weighting factor s, is added, which is 1 for
all requests, except if one of the airports is located in Europe and the other in North-America. In that case s;
issetto 1.5.

w, = random(15000,30000) (A.3)
t; =random(24,72) (A4)
t; = random(max(0, t; —48), t; —24) (A.5)

After the request is generated, the sum of all request weights is calculated. As long as this value is smaller
than the 3-day cargo demand between the two airports minus the minimum cargo weight of 15,000 kg, new
requests are added. If this is not the case, the function moves on to the next origin-destination pair. In order
to vary the total number of requests for a certain experiment, the weekly demand matrix can be scaled up or
down by multiplying all values by a certain percentage. By doing this, the total cargo volumes can be changed,
while keeping the overall demand distribution the same. An example of the corresponding request set that is
created with 100% of the cargo demand of Table A.9 is given in Table A.10.
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Table A.10: Request set generated using 100% of the cargo demand of Network 3: NA.

Request Origin Destination w, kgl f [hour] f [hour] s, [-]
0 GDL MEX 15223 24 72 1
1 GDL MEX 18441 3 30 1
2 GDL MEX 25435 24 63 1
3 GDL DFW 29827 3 27 1
4 GDL LAX 24917 3 27 1
5 GDL LAX 24086 0 24 1
6 MEX GDL 25554 15 39 1
7 MEX GDL 23243 12 39 1
8 MEX GDL 27903 27 69 1
9 MEX DFwW 15073 0 33 1
10 MEX DFW 22899 30 57 1
11 MEX DFW 21897 18 45 1
12 MEX LAX 21336 15 45 1
13 MEX LAX 19347 3 45 1
14 MEX  LAX 25106 18 60 1
15 MEX LAX 15262 3 27 1
16 MEX SEA 29544 6 36 1
17 MEX YYC 27611 18 45 1
18 DFwW MEX 21700 0 33 1
19 DFW  LAX 16103 36 66 1
20 LAX GDL 20329 27 69 1
21 LAX MEX 23941 6 33 1
22 LAX DFW 17442 27 72 1
23 LAX SEA 17409 0 24 1
24 LAX SEA 19467 6 48 1
25 LAX SEA 26024 21 54 1
26 LAX SEA 21382 27 57 1
27 LAX SEA 21954 48 72 1
28 LAX YYC 19784 18 45 1
29 LAX YYC 16976 0 39 1
30 LAX YYC 27572 0 24 1
31 LAX YYC 22091 3 27 1
32 LAX YYC 23258 30 69 1
33 SEA LAX 17715 6 42 1
34 SEA YYC 28194 33 63 1
35 YYC LAX 17589 3 51 1
36 YYC SEA 27104 15 54 1
37 YYC SEA 29861 0 24 1
38 YYC SEA 25466 39 66 1







Emission Model

B.1. Calculating aircraft mass and emissions
The pseudo-code of Algorithm 1 shows the steps that are used to determine the fuel flow throughout the
flight, iterate to the aircraft take-off weight and calculate the CO, emissions of the whole flight.

Algorithm 1 Calculation of fuel mass and emissions for flight i j and aircraft k

1:

=

® N

10:
11:

12:
13:
14:
15:

16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

Input Flight time f;;, Load factor LF, trajectory data: {airspeed v, vertical velocity vs, altitude h}, op-
erational empty weight OEW, cargo capacity Cap,ax, OpenAP fuel flow function FuelFlow, fuel flow
estimate F Fegy, timestep T

: Mpyel est = FFesr - i /1 Bstimated fuel weight
: while Final weight = False do

mac(0) = OEW + LF - Capmax + MEyel est /1 Aircraft weight at take-off (¢ = 0)
for t € {0, ﬁ} do

0(r) = arcsin (%(f))) // Flight path angle at time ¢

FF(t) = FuelFlow(mAC(t), v(1), h(t),H(t)) /1 Fuel flow per second at time ¢
mac(t+1) =mac()—FF({)-T /1 Aircraft weight at next timestep ¢+ 1
end for
MEyel = Z;Z(QTFF(IT) -T /1 Actual fuel weight

gap= MEuel — MEuel est /1 Optimality gap between estimate and actual fuel weight

MEyel est
if |gap| < 0.02 then

Final weight = True
else
MEyel est = MFuyel est T
end if
end while
mro=0EW + LF-Capmax + Mryel est /| Take-off weight
COy en—roly_tg =0
for t€ {0, %} do
if h > 3000ft then
CO2 en-route = CO2 en—route + FF(t)- T -3.149 // En-route CO, emissions
end if
end for
return mro, Mryel, CO2 en-route
Output Take-off weight, fuel weight and en-route CO, emissions

MEyel — MFEyel est
2

The fuel is first estimated using a constant fuel flow FF,; of 3 kg/s, which is multiplied to the flight time to
find mfyep es:- With this initial guess, the aircraft take-off weight mc(0) can be determined by adding the
operational empty weight and the payload. The FuelFlow function of OpenAP to find the necessary fuel flow
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to fly at the altitude, velocity and vertical velocity that is provided for each time step by the OpenAP TrajGen
function. The aircraft mass is updated during each time step to compensate for the burned fuel. The fuel flow
for each time step in the flight is summed to find a closer estimate of the fuel that is needed for the flight. If
the gap between mp,,; os; and the newly calculated mp,; is larger than 2%, the mean of both values is taken
and used in the next iteration to find a closer estimate of the fuel needed during the flight. If the difference
is smaller, the estimate is assumed good enough and used to determine the take-off weight. This fuel weight
is used to determine the CO, emissions for the en-route phase, being the part of the flight that takes place
above 3000 ft. The emissions are summed to the LTO-emissions to find the emissions of the total flight.

Because the aircraft take-off mass is calculated using an iterative process, this can be plotted in a graph. The
results of a short range (LUX-PIK) and a long range (LUX-ATL) flight are plotted in Figure B.1. For the short
flight, three iterations are needed (Figure B.1(a)). The blue line shows that the initial guess of a constant 3 kg
kerosene per second overestimates the actual fuel that is used. The climb phase can be recognised from the
aircraft mass quickly decreasing in the beginning of the flight due to the high thrust needed. The final part of
the flight shows the descent, which requires much lower fuel flow and thus a slower decrease in aircraft mass.
Five iterations are needed for the LUX-ATL flight, with the initial guess underestimating the actual fuel use
(Figure B.1(b)). The cruise part of the flight is much larger than in the short-haul flight, with the climb and
descent only taking up a small portion of the flight time.

Aircraft mass during flight LUX-PIK Aircraft mass during flight LUX-ATL
348000 1 — lteration 1 440000 1 —— lteration 1
346000 Iteration 2 Iteration 2
—— lteration 3 420000 4 —— lteration 3
o 344000 - =) —— lteration 4
= = 400000 - .
—— lteration 5
7 342000 A
© ©
£ £ 380000 -
£ 340000 - &
o o
£ 338000 A © 360000
< <
336000 -+ 340000 +
334000 + 320000 -
0 10 20 30 40 50 60 70 80 0 100 200 300 400 500
Time [min] Time [min]
(a) LUX-PIK flight (b) LUX-ATL flight

Figure B.1: Iteration to find the aircraft take-off mass for two flights, using a B747-8F with a load factor of 1. The figures show how the
aircraft mass changes during the flight.

B.2. LTO emissions validation

During the validation of the LTO emissions, some interesting differences appeared between the results from
the OpenAP model used in this research and the existing EMEP/EEA LTO-emissions calculator. For the taxi
and idling phases, OpenAP found lower emissions than the EEA model, while the other three phases of the
ICAO LTO-cycle (take-off, climb and approach/landing) resulted in higher emissions for OpenAP. It was found
that these differences are caused by two factors: The approximation of fuel flow in OpenAP and the airport
altitude that is used.

The ICAO emissions databank provides the fuel flow for the four thrust settings of the ICAO LTO-cylce, which
are plotted in B.2(a). In order to also calculate the fuel flow and emissions at intermediate values, OpenAP
approximates the fuel flow by applying a third degree polynomial fit, shown by the blue line in the figure.
Next to that, the airport altitude is added in the OpenAP model, which is shown for LUX in the figure. This
difference of 350 meters has some impact on the fuel flow needed to fly the same thrust. This causes an over-
estimation of the ICAO emission databank values for the take-off (100%), climb (85%) and approach/landing
(30%) phases. However, the fuel flow during the taxi phase is expected to be lower than the ICAO emission
databank value.

The cumulative CO, emissions of a complete LTO-cycle at LUX are shown in B.2(b). The black line indicates
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the emissions calculated with the EEA model using the ICAO emission databank values. A gap with the blue
and orange lines of the OpenAP CO; emissions grows during the taxi-out phase, which correlates to the dif-
ferent fuel flow that is used in the two models. During the take-off, climb and approach/landing phases the
gap with the blue line, indicating the OpenAP model at sea level stays relatively constant. This shows that
the regular polynomial fit is accurate for these three phases. The gap with the orange line that indicates the
OpenAP model at LUX altitude decreases, which could be expected from the higher fuel flows found in B.2(a).
This compensates for the lower fuel flow during the taxiing phase. Overall, this analysis shows the origins of
the inaccuracies of the emissions during the LTO-cycle.

Fuel Flow for a B747-8 at different thrust settings CO2 emissions during different LTO-phases
10000 4
10 41 —— OpenAP 3rd degree Polynomial fit —— OpenAP
OpenAP fit at LUX altitude OpenAP at LUX altitude | @PProach/
o landing —
e ICAO Emission Databank points 8000 { — ICAO emission databank

6000 -

4000 +

Fuel Flow [kg/s]

2000 +

Cumulative CO2 emissions [kg]

0 - 0
0.0 0.2 04 0.6 08 10 0 200 400 600 800 1000 1200
Thrust Setting [%] time [s]
(a) Fuel flow at different thrust settings (b) CO2 emissions during a LTO-phase

Figure B.2: Analysis of OpenAP difference in LTO calculations.

B.3. Emission matrix

Finally, Table B.1 shows an example of an emission matrix that is generated using the emission model. The
matrix of three flights of a Boeing 747-8F are shown: LUX-PIK, LUX-ATL and MXP-IAH. For each flight the
carbon emissions of the full flight (CO,_tot) are given for 11 different load factors. It can be observed that
the CO; emissions during the LTO-cycle are constant for the different load factors, as this part of the flight
is calculated independently of the aircraft weight. The CO, emissions during cruise and the fuel on-board
increase for higher load factors. Comparing the different flights, it can be seen for that the two transatlantic
flights emit a lot more CO, than the short European flight. The CO, emitted during the LTO-cycle of the LUX-
ATL is higher than the LUX-PIK flight, due to the longer taxi time at the ATL, compared to the relatively small
airport at Glasgow Prestwick (PIK). The LTO emissions for the third flight are even larger, due to long taxi-out
times at MXP compared to LUX. These taxi times can be found in Table A.1. The flight distance between Milan
Malpensa airport (MXP) and IAH is too large for the B747-8F to fly with a full payload capacity. Therefore, the
intermediate values are evenly spaced between 0 and the maximum load factor for the flight (LF = 0.93).
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Table B.1: Example of an emission matrix of a Boeing 747-8F for three origin-destination pairs.

index orig dest LF CO2_tot[kg] CO2_LTO[kg] CO2_cruise[kg] fuellkg] distance[km]

0 LUX PIK O 40,881 8,833 32,048 13,368 978
1 LUX PIK 0.1 41,506 8,833 32,673 13,707 978
2 LUX PIK 0.2 42,142 8,833 33,309 13,932 978
3 LUX PIK 0.3 42,687 8,833 33,854 14,135 978
4 LUX PIK 04 43,289 8,833 34,457 14,354 978
5 LUX PIK 0.5 43,924 8,833 35,091 14,590 978
6 LUX PIK 0.6 44,706 8,833 35,873 14,849 978
7 LUX PIK 0.7 45,721 8,833 36,888 15,269 978
8 LUX PIK 0.8 46,780 8,833 37,947 15,608 978
9 LUX PIK 0.9 47,886 8,833 39,053 15,835 978
10 LUX PIK 1 49,055 8,833 40,222 16,292 978
11 LUX ATL O 262,248 9,995 252,253 84,866 7,274
12 LUX ATL 0.1 268,952 9,995 258,957 86,706 7,274
13 LUX ATL 0.2 276,333 9,995 266,338 89,356 7,274
14 LUX ATL 0.3 283,871 9,995 273,877 91,639 7,274
15 LUX ATL 04 291,147 9,995 281,153 92,836 7,274
16 LUX ATL 0.5 298,638 9,995 288,643 93,848 7,274
17 LUX ATL 0.6 307,278 9,995 297,284 96,297 7,274
18 LUX ATL 0.7 316,871 9,995 306,876 99,423 7,274
19 LUX ATL 0.8 327,088 9,995 317,093 102,955 7,274
20 LUX ATL 0.9 337,257 9,995 327,262 105,804 7,274
21 LUX ATL 1 347,899 9,995 337,905 108,841 7,274
22 MXP IAH 0 315,223 10,089 305,134 101,932 8,659
23 MXP ITAH 0.09 323,543 10,089 313,454 105,054 8,659
24 MXP IAH 0.19 331,522 10,089 321,434 106,796 8,659
25 MXP JTAH 0.28 340,349 10,089 330,260 109,725 8,659
26 MXP IAH 0.37 347,800 10,089 337,712 109,725 8,659
27 MXP IAH 047 356,613 10,089 346,524 111,485 8,659
28 MXP JAH 0.56 366,636 10,089 356,548 114,604 8,659
29 MXP IAH 0.65 377,626 10,089 367,537 118,353 8,659
30 MXP IAH 0.74 389,347 10,089 379,258 122,442 8,659
31 MXP IAH 0.84 400,837 10,089 390,748 125,665 8,659
32 MXP ITAH 093 413,755 10,089 403,666 130,276 8,659




TSN Pre-processing

The time-space network that is used in this research has been described in the Scientific Paper in Part I. A
pre-processing step that is applied after the generation of the TSN network is described in this appendix. A
separate set of nodes and arcs is created for each aircraft k in the fleet #". Each aircraft is assigned an origin
and final airport, where it has to be at the start and end of the time horizon. Due to its origin and final airport
requirements, the aircraft cannot reach some nodes in the beginning and end of the time horizon, making
these nodes and adjacent arcs infeasible. By removing these arcs and nodes during pre-processing, the prob-
lem space is reduced. A limitation of the time-space network is that the problem size increases very fast for
larger networks. Therefore, reducing the problem space in a pre-processing step can help to speed up the
computational time of the optimisation.

A similar preprocessing technique is applied for each cargo request. First, all nodes and adjacent nodes with
a timestamp before the release time or after the due time of the request are removed. Because the requests are
only available for a period between 24 and 48 hours, this quickly reduces a large part of the problem size. An
example is shown in Figure C.2, where the infeasible nodes and arcs of the network in Figure C.1 are removed.
Request r) is available from timestamp 1 at Airport 2, which makes the nodes associated with the other two
airports at time-stamp 1 impossible to reach. Therefore, these two nodes and all flight arcs and ground arcs
starting from these nodes can be discarded from the TSN. At the end of the time period even more nodes and
arcs can be removed, due to the cargo having to be delivered at time-stamp 4. Immediately all nodes and
flights ending at time-stamp 5 can be taken out of the network. Finally, all nodes from which it is not possible
to reach airport 3 in time are removed, together with all arcs that start and end in these nodes. This only
leaves the relevant nodes and arcs for cargo request r;.

Airport 1

O Itinerary node

l:| Request node
— Flight arc
————— > Ground arc

— Request access arc

""" > No-service arc

Airport 3

time 1 time 2 time 3 time 4 time 5

Figure C.1: Example of a time-space network consisting of node set .4 and arc set .«/
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Airport 1

O Itinerary node
l:l Request node

Aiport2 | ry+ —> Flight arc
— NN TN N > Ground arc
—> Request access arc

""" > No-service arc

Airport 3

time 1 time 2 time 3 time 4 time 5

Figure C.2: A time-space network pre-processed for example request rq

In order to show the results of this step, the amount of arcs and nodes in the TSN is compared to the problem
size after pre-processing. Table C.1 gives the values for the nodes and Table C.2 shows the reduction of the
number of arcs. These results clearly show that the pre-processing step discards a large portion of the arcs
and nodes in the network. The largest reduction can be found for the transatlantic Network 2, with a 70.6%
decrease in the amount of nodes and 77.5% in the amount of arcs. This is mainly caused by the long flight
times between the European and American airports. Because of this, a part of the airports can only be reached
after 7 or more hours into the simulation horizon, making a lot of nodes and arcs infeasible. The same is valid
for time steps closer to the due time of a cargo request or the end of the schedule for an aircraft. Multiple
nodes and arcs can be discarded because it is no longer feasible to reach the final destination of the cargo or
aircraft in time. The problem sizes before the pre-processing steps can directly be related to the size of the
network, leading to a smaller problem size for the 6-airport NA network and the largest amount of arcs and
nodes for the EU-NA network with 8 available airports.

Table C.1: Amount of nodes before and after pre-processing for an instance with 3 aircraft and 25 cargo requests for all three networks.

Nodes Nodes after pre-processing  Difference [%]

Network 1: EU 4,375 1,743 -60.2
Network 2: EU-NA 5,200 1,528 -70.6
Network 3: NA 3,750 1,288 -65.7

Table C.2: Amount of arcs before and after pre-processing for an instance with 3 aircraft and 25 cargo requests for all three networks.

Arcs Arcs after pre-processing Difference [%]
Network 1: EU 29,200 10,980 -62.4
Network 2: EU-NA 37,544 8,447 -77.5

Network 3: NA 20,950 6,385 -69.5




Pareto front flight schedules

D.1. Network 1: EU

Tables D.1 and D.2 show the flight schedules which are graphically shown in the Pareto front search in Exper-
iment 2 in Part I. These schedule are the first two schedules of the Pareto front, with an emission weighting
factor of 0 and 0.1 respectively. Table D.3 gives the request set that is available for these instances, where also
it is noted if the specific cargo request is served.

Table D.1: Flight schedule for aircraft 0 for Network 1: EU with 30 available cargo requests and wcgp, =0

aircraft arc  orig dest Idep  tarr  TEquests payload LF CO2 dist tij
0 0 101 LUX STN 6 9 [3] 21456 0.160 26715 489 1.04
1 0 171  SIN PIK 9 12 [3, 22] 38992 0.291 28257 513 1.07
2 0 212 PIK AMS 12 15 [17, 19, 21, 22] 74749 0.558 35603 708 1.29
3 0 253 AMS LUX 15 18 [14, 15,17, 19, 21, 22] 124530 0.929 21499 315 0.85
4 0 298 LUX MXP 18 21 [7,9,10, 15, 21] 113993 0.851 27996 483 1.04
5 0 377 MXP BUD 21 24 [9, 10, 15, 25] 98892 0.738 42217 830 1.42
6 0 440 BUD VIE 24 27 [25, 28, 29] 64251 0.479 20490 214 0.74
7 0 477  VIE LUX 27 30 [25, 26, 27, 28, 29] 106964 0.798 39739 776 1.36
8 0 492 LUX PIK 30 33 [2, 4] 46289 0.345 44056 978 1.59
9 0 554 PIK LUX 33 36 [16, 18, 20] 52590 0.392 44381 978 1.59
10 O 643 LUX BUD 39 42 [0,1,5,6, 8] 115362 0.861 48990 990 1.60
11 0 730 BUD AMS 42 45 [0,1,5,6] 87149 0.650 54743 1169 1.80
12 0 745 AMS STN 45 48 [5,6,11, 12, 13] 117806 0.879 21633 313 0.85
13 0 806 STN LUX 48 51 [11,12, 13,23, 24] 96912 0.723 28530 489 1.04
Table D.2: Flight schedule for aircraft 0 for Network 1: EU with 30 available cargo requests and w¢p, =0.1
aircraft arc  orig dest ldep  larr  TEquests payload LF CO2 dist
0 0 149 LUX PIK 9 12 [2,3,4] 67745 0.506 45434 978 1.59
1 0 212 PIK AMS 12 15 [16, 17,19, 20, 21] 94754 0.707 36433 708 1.29
2 0 253 AMS LUX 15 18 [15, 16,17, 19, 20, 21] 118913 0.887 21426 315 0.85
3.0 298 LUX MXP 18 21 [7,9,10,15,21] 113993 0.851 27996 483 1.04
4 0 377 MXP BUD 21 24 [9, 10, 15, 25] 98892 0.738 42217 830 1.42
5 0 440 BUD VIE 24 27 [25, 28, 29] 64251 0.479 20490 214 0.74
6 0 477 VIE LUX 27 30 [25, 26, 27, 28, 29] 106964 0.798 39739 776 1.36
7 0 689 LUX STN 42 45 [0,1,5,6] 87149 0.650 27962 489 1.04
8 0 758 STN AMS 45 48 [0, 1, 23, 24] 66255 0.494 21497 313 0.85
9 0 792 AMS LUX 48 51 [11, 12, 13, 14, 23, 24] 122534 0914 21473 315 0.85
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Table D.3: Request set available for Network 1: EU.

orig dest  weight fo fgye Sr  Servedinwcp,=0  Servedin wcp, =0.1

0 LUX AMS 17081 39 63 1 yes yes
1 LUX AMS 15854 0 48 1 yes yes
2 LUX PIK 16418 9 33 1 yes yes
3 LUX PIK 21456 0 24 1 yes yes
4 LUX  PIK 29871 9 33 1 yes yes
5 LUX STN 26888 27 60 1 yes yes
6 LUX STN 27326 30 66 1 yes yes
7 LUX  MXP 28013 3 48 1 yes yes
8 LUX BUD 28213 33 69 1 yes no

9 LUX BUD 19211 0 24 1 yes yes
10 LUX BUD 26657 3 30 1 yes yes
11 AMS LUX 18005 30 69 1 yes yes
12 AMS LUX 25755 45 72 1 yes yes
13 AMS LUX 19832 21 69 1 yes yes
14 AMS LUX 25622 12 51 1 yes yes
15 AMS BUD 24159 3 30 1 yes yes
16  PIK LUX 15260 0 42 1 yes yes
17  PIK LUX 17930 0 24 1 yes yes
18 PIK LUX 15049 27 51 1 yes no

19 PIK LUX 23330 0 24 1 yes yes
20 PIK LUX 22281 0 39 1 yes yes
21 PIK MXP 15953 3 30 1 yes yes
22 STN LUX 17536 0 24 1 yes no

23 SIN LUX 17846 15 57 1 yes yes
24 STN  LUX 15474 45 69 1 yes yes
25 MXP LUX 28865 15 45 1 yes yes
26 VIE LUX 24757 0 45 1 yes yes
27 VIE LUX 17956 18 57 1 yes yes
28 BUD LUX 15958 21 45 1 yes yes
29 BUD LUX 19428 24 57 1 yes yes

D.2. Network 2: EU-NA

Tables D.4 and D.5 show the flight schedules which are graphically shown in the Pareto front search in Exper-
iment 2 in Part I. These schedule are the first two schedules of the Pareto front, with an emission weighting
factor of 0 and 0.55 respectively. Table D.6 gives the request set that is available for these instances, where
also it is noted if the specific cargo request is served.

Table D.4: Flight schedule for aircraft 0 for Network 2: EU-NA with 30 available cargo requests and w¢go, =0

aircraft  arc orig dest ldep larr  Tequests payload LF CO2 dist lij
0 0 193 LUX PIK 9 12 [0, 5] 39832 0.297 43642 978 1.59
1 0 269 PIK ORD 12 21 [5] 22648 0.169 223317 5906  7.06
2 0 494 ORD ATL 21 24 [22, 23] 55363 0.413 47974 976 1.58
3.0 566 ATL ORD 24 27 [25, 26] 44069 0.329 46822 976 1.58
4 0 620 ORD JFK 27 30 [16, 17, 21, 24, 25] 121231 0.905 61537 1188  1.82
5 0 665 JFK LUX 30 39 [10,11,16,17,25] 132111 0.986 288218 6053 7.23
6 0 835 LUX JFK 39 48 [2,3,4,6] 88977 0.664 263736 6053 7.23
7 0 1054 JFK ATL 48 51 [4, 6, 24] 64133 0.479 58840 1222 1.86
8 0 1205 ATL MIA 54 57 (4, 22] 51078 0.381 45730 960 1.57
9 0 1404 MIA ORD 66 72 1 0 0.000 75417 1930 2.64
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Table D.5: Flight schedule for aircraft 0 for Network 2: EU-NA with 30 available cargo requests and wco, =0.55

aircraft  arc orig dest Idep  larr  Tequests payload LF COo2 dist Ljj
0 0 385 LUX PIK 18 21 [0,2,3,4,5] 105426 0.787 47854 978 1.59
1 0 459 PIK JFK 21 30 [2,3,4,5] 88242 0.659 222677 5160 6.23
2 0 669 JFK ORD 30 33 [5] 22648 0.169 54694 1188  1.82
30 748 ORD JFK 33 36 [21,22,23,24] 96262 0.718 59581 1188  1.82
4 0 796 JFK MIA 36 42 [4, 22, 23, 24] 96113 0.717 82399 1757  2.45
5 0 998 MIA ATL 45 48 [23, 24] 45035 0.336 45749 960 1.57
6 0 1270  ATL ORD 57 60 1] 0 0.000 44109 976 1.58

Table D.6: Request set available for Network 2: EU-NA.

orig dest  weight .7  tgue Sr Servedin wcp, =0  Served in wcg, =0.55

0 LUX  PIK 17184 3 27 1 yes yes
1 LUX MXP 24794 27 51 1 no no
2 LUX JFK 19420 18 60 1.5 yes yes
3 LUX  JFK 23438 12 48 15 yes yes
4 LUX MIA 22736 9 57 1.5 yes yes
5 LUX ORD 22648 6 33 15 yes yes
6 LUX  ATL 23383 24 72 1.5 yes no
7 PIK LUX 16565 33 57 1 no no
8 PIK LUX 25221 36 66 1 no no
9 MXP LUX 15466 0 24 1 no no
10 JFK LUX 23777 3 51 1.5 yes no
11 JFK LUX 28002 0 42 1.5 yes no
12 MIA LUX 28462 3 36 1.5 no no
13 MIA IAH 19970 18 54 1 no no
14 MIA IAH 20088 15 42 1 no no
15 ORD LUX 23391 0 39 1.5 no no
16 ORD LUX 27816 24 66 1.5 yes no
17 ORD LUX 27070 12 51 1.5 yes no
18 ORD LUX 23179 24 57 1.5 no no
19 ORD PIK 23666 27 60 15 no no
20 ORD MXP 18674 30 66 1.5 no no
21 ORD JFK 22885 24 51 1 yes yes
22 ORD MIA 28342 21 60 1 yes yes
23  ORD ATL 27021 9 48 1 yes yes
24  ORD ATL 18014 27 63 1 yes yes
25 ATL LUX 25446 15 51 1.5 yes no
26 ATL ORD 18623 9 36 1 yes no
27 1AH LUX 24041 3 33 1.5 no no
28 IAH LUX 24593 3 48 1.5 no no
29 IAH PIK 21686 30 57 1.5 no no

D.3. Network 3: NA

Tables D.7 and D.8 show the flight schedules which are graphically shown in the Pareto front search in Exper-
iment 2 in Part I. These schedule are the first two schedules of the Pareto front, with an emission weighting
factor of 0 and 0.2 respectively. Table D.9 gives the request set that is available for these instances, where also
it is noted if the specific cargo request is served.



D. Pareto front flight schedules

Table D.7: Flight schedule for aircraft 0 for Network 3: NA with 30 available cargo requests and wco, =0

aircraft arc  orig dest Idep larr  Tequests payload LF COo2 dist Ljj
0 0 140 MEX LAX 9 15 [4, 5, 10] 68179 0.509 109607 2500  3.28
1 0 190 LAX GDL 15 21 [4, 5,15, 16] 86612 0.646 93678 2106  2.84
2 0 281 GDL MEX 21 24 [1,2,3,16] 89632 0.669 30067 458 1.01
3 0 319 MEX DFW 24 30 [2,3,6,8,9,12] 132874 0.992 77648 1511  2.18
4 0 361 DFW LAX 30 36 [3,8,9,12] 91365 0.682 89648 1983  2.70
5 0 441 LAX YYC 36 42 [12,17, 18, 21, 22, 24] 129700 0.968 93022 1943  2.66
6 0 525 YYC SEA 42 45 [17, 18, 27, 28, 29] 108853 0.812 39659 727 1.31
7 0 555  SEA YYC 45 48 [25] 25690 0.192 35983 727 1.31
8 0 596 YYC LAX 48 54 1] 0 0.000 75765 1943  2.66
9 0 656 LAX SEA 54 60 [19, 20] 55771 0.416 67271 1537  2.21
10 O 770  SEA LAX 63 69 1 0 0.000 62070 1537  2.21

Table D.8: Flight schedule for aircraft 0 for Network 3: NA with 30 available cargo requests and wcg, = 0.2

aircraft arc  orig dest ldep  larr  TEquests payload LF COo2 dist tjj
0 0 107 MEX GDL 6 9 [4, 5] 46712 0.349 30405 458 1.01
1 0 137 GDL MEX 9 12 [1,3] 44130 0.329 29287 458 1.01
20 320 MEX LAX 24 30 [3,8,9,10,12] 112832 0.842 117868 2500  3.28
3 0 404 LAX SEA 33 39 12,17, 18, 21, 22, 24] 129700 0.968 75094 1537  2.21
4 0 483  SEA YYC 39 42 [12, 21, 22, 24, 25] 117662 0.878 39886 727 1.31
5 0 524 YYC LAX 42 48 [27, 28, 29] 71125 0.531 85627 1943  2.66
6 0 584 LAX SEA 48 54 [19, 20, 27, 28, 29] 126896 0.947 74798 1537  2.21
7 0 662  SEA LAX 54 60 1 0 0.000 62070 1537  2.21

Table D.9: Request set available for Network 3: NA.

orig dest weight  to;  fque Sr  Servedin wcp, =0  Servedin wco, =0.55

0 GDL MEX 27566 48 72 1 no no
1 GDL  MEX 19762 0 30 1 yes yes
2 GDL DFW 25989 6 51 1 yes no
3 GDL LAX 24368 0 48 1 yes yes
4 MEX GDL 27662 0 39 1 yes yes
5 MEX GDL 19050 6 33 1 yes yes
6 MEX DFW 15520 18 42 1 yes no
7 MEX DFW 22669 48 72 1 no no
8 MEX  LAX 23955 24 57 1 yes yes
9 MEX  LAX 20224 21 57 1 yes yes
10 MEX LAX 21467 9 39 1 yes yes
11 MEX  SEA 16102 6 42 1 no no
12 MEX YYC 22818 18 57 1 yes yes
13 DFW MEX 28474 36 60 1 no no
14 DFW LAX 19980 0 24 1 no no
15 LAX GDL 20387 0 24 1 yes no
16 LAX MEX 19513 0 24 1 yes no
17 LAX SEA 19309 6 45 1 yes yes
18 LAX SEA 18419 9 45 1 yes yes
19 LAX SEA 25912 45 72 1 yes yes
20 LAX SEA 29859 21 60 1 yes yes
21 LAX YYC 28615 18 48 1 yes yes
22 LAX YYC 18183 12 42 1 yes yes
23 LAX YYC 15593 3 30 1 no no
24 LAX YYC 22356 30 72 1 yes yes
25 SEA YYC 25690 30 57 1 yes yes
26 YYC LAX 26541 3 30 1 no no
27  YYC SEA 24140 30 54 1 yes yes
28 YYC SEA 19599 33 57 1 yes yes
29  YYC SEA 27386 27 54 1 yes yes
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