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Detecting Socially Significant Music Events using
Temporally Noisy Labels

Karthik Yadati, Martha Larson, Cynthia C. S. Liem and Alan Hanjalic

Abstract—In this paper, we focus on event detection over the
timeline of a music track. Such technology is motivated by the
need for innovative applications such as searching, non-linear
access and recommendation. Event detection over the timeline
requires time-code level labels in order to train machine learning
models. We use timed comments from SoundCloud, a modern
social music sharing platform, to obtain these labels. While
in this way the need for tedious and time-consuming manual
labeling can be reduced, the challenge is that timed comments
are subject to additional temporal noise, as they occur in the
temporal neighborhood of the actual events. We investigate the
utility of such noisy timed comments as training labels through
a case study, in which we investigate three types of events in
Electronic Dance Music (EDM): drop, build and break. These
socially significant events play a key role in an EDM track’s
unfolding and are popular in social media circles. These events
are interesting for detection, and here we leverage the timed
comments generated in the course of the online social activity
around them. We propose a two-stage learning method that
relies on noisy timed comments and, given a music track, marks
the events on the timeline. In the experiments, we focus in
particular on investigating to which extent noisy timed comments
can replace manually acquired expert labels. The conclusions
we draw during this study provide useful insights that motivate
further research in the field of event detection.

Index Terms—EDM, event, break, build, drop, SoundCloud,
timed comments.

I. INTRODUCTION

Event detection in multimedia is an important field of
research and has many applications, especially with the fast
growing popularity of multimedia on the web. It has been
extensively studied in the context of videos, where currently
a broad set of event categories at various levels of semantic
complexity can be detected [1]. Research on event detection
in music has, however, so far focused mainly on topics like
onset detection [2], music structure segmentation [3] and auto-
tagging [4]. In this paper, we look at the problem of event
detection in music from a different perspective, guided by two
fundamental questions:

1) What events are most interesting to detect?
2) How to detect these events effectively?

Answering these questions can be approached guided by
the following consideration. A machine learning approach to
event detection typically requires a large number of labels in
order to train machine learning models [5]. Acquiring these
labels can be an expensive and time consuming process. We
can, however, benefit from the increasing contextualisation
of music in online social communities in order to address
this problem. Users listen to music on different social music
sharing platforms, such as SoundCloud or YouTube, which

allow them to express their opinions/reactions to the music
in the form of comments. SoundCloud, for example, offers
the possibility to its users to insert timed comments while
listening to a music track. These comments are similar to
usual user comments, however, with an associated timestamp
so that they refer to a particular part of the music track.
Not only could such timed comments serve as training labels,
reducing the need for dedicated manual annotation, but they
also allow us to identify the types of events that are interesting
for detection in the first place. We refer to such events as being
socially significant: as a consequence of their recognisability,
popularity and anticipation. Listeners talk frequently about
them in their comments. In this paper, we choose to focus on
detecting these socially significant events. Examples of such
events, used as a case study in this paper, are presented in
Section II. For detecting these events, we choose to deploy
timed comments as training labels in order to improve the
training efficiency.
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Fig. 1. Timed comments can have temporal noise. A timed comment can be
in the temporal neighborhood of the actual event or precisely at the location
of the actual event. Event/timed-comment pairs are in the same color.

Usage of timed comments as training labels, however,
comes with its own challenges, in particular, the noisy nature
of these comments: temporal noise. The timed comment
(referring to an event) can occur precisely at the location of
the actual event, in the temporal neighbourhood, or far away
from the location of the actual event. Figure 1 illustrates a few
possibilities of the distances between the actual event and the
corresponding timed comment. Because of their noisy nature,
we consider timed comments to be weak labels.

Considering the above-mentioned challenges, we propose
an approach using timed comments independently as well
as in combination with manually acquired expert labels to
build robust machine learning models for detecting socially
significant events. Specifically, we aim to answer the following
research questions:

1) (RQ1) Are timed comments helpful in detecting socially
significant events?

2) (RQ2) How helpful are timed comments in reducing the
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number of expert labels needed to train detectors?
To the best of our knowledge, our work is one of the first

to use timed comments as a source of training labels for event
detection in music. In this paper, we focus on the domain
of electronic dance music (EDM) as a testbed for developing
and evaluating our approach. This domain is interesting for
investigation due to a number of socially significant event
categories, as elaborated in more detail in Section II. After
stating our contribution in Section III and discussing the
related work in Section IV, we explain our approach and its
methodological steps in Section V. We present an analysis
of our dataset and evaluation metrics in Section VI. The
experimental setup and results for the baseline method are
described in Section VII and Section VIII presents the overall
results. We then explain how the model generalised in Section
IX and evaluate our method from the perspective of a user
application in Section X. Finally, we summarise our findings
and provide an outlook for further research in Section XI.

II. CASE-STUDY: EVENTS IN EDM

Electronic Dance Music (EDM) is an umbrella term for
different genres of electronic music, like Techno, Dubstep,
House, Electro. Producers of EDM tracks use different musical
elements, like beat, tempo, sound energy or loudness, to shape
the music tracks and the events occurring in them. For the
purpose of this paper, we use the following set of events:
Break, Drop and Build. They are defined as follows [6]:

• Break: A section in an EDM track with a significantly
thinner texture, usually marked by the removal of the
bass drum.

• Drop: A point in the EDM track, where the full bassline is
re-introduced and generally follows a recognisable build
section.

• Build: A section in the EDM track, where the intensity
continuously increases and generally climaxes towards a
drop.

These events can be considered to form the basic set of
events used by the EDM producers [6]. They have a certain
temporal structure internal to themselves, which can be of
varying complexity. Their social significance is apparent from
the presence of a large number of timed comments, related to
these events, on SoundCloud. Listeners react to these events
after they occur, or anticipate these events and react to them
even before they occur. As an example of the latter case, the
timed comment in this track1 with the text “Here comes the
drop” comes at the timestamp 00:50, while the actual drop
happens at 01:00. While the presence of the event-related
keywords in the timed comments enables us to utilise them
as training labels, as it will be explained in Section V-B, their
noisy distribution along the timeline, as previously mentioned,
makes it an open question how useful they actually are.

III. CONTRIBUTION

As reflected by our research questions in Section I, the
main goal of this paper is to investigate the usefulness of

1Link active if viewed online.

timed comments as labels for training event detection models
in the music audio domain. In order to provide answers to
these questions, a framework is needed in which a music
track is analysed for the presence of events for which timed
comments are available. There, we first identify candidate start
points and then select a candidate as the predicted start point
of the event using a machine learning step that is trained
with noisy timed comments independently. We also combine
the timed comments with expert labels. The framework uses
music structure segmentation [7]. We build our framework
by drawing on previous work where possible and proposing
innovations where needed. The link between the previous
work and the realisation of our event detection framework is
explained in Section IV.

The framework serves as a vehicle for obtaining insight
on the helpfulness of timed comments for event detection.
Our findings are communicated in the analysis and discussion
of our experimental results in Sections VII and VIII. The
framework design choices, such as filtering social data based
on expert labels, described in Section V-B, are made in order
to make it possible to answer our research questions.

Timeline 

Actual event 

Predicted event 
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Fig. 2. Visualisation of the event anticipation distance (ea dist) metric
useful to evaluate jump-in points provided to the listener in a non-linear access
scenario.

In this paper, we consider the helpfulness of timed com-
ments from two different perspectives, which correspond
to two different evaluation scenarios. The first is the sig-
nal perspective and this is represented by the conventional
performance metric: f-score. We analyse changes in f-score
to determine whether we have improved the ability of our
approach to detect and exactly localise an event. The second
is a user perspective and this reflects the ability of an event
detector to support user-facing applications. We choose the
application of non-linear access to represent this perspective.
A non-linear access system places markers for predicted events
on a timeline, which allows a user to jump into the content at
a particular time point. The key quantity impacting the user
perception of the helpfulness of the event detection is the
amount of time a user, who clicks on the marker, must wait
in order to encounter an occurrence of the event. We refer
to this distance as the event anticipation distance (ea dist)
and use it as an evaluation metric reflecting how users would
experience the predicted start points (Figure 2). Section X
further discusses how timed comments and very few expert
labels can enable non-linear access.

https://soundcloud.com/spinninrecords/ummet-ozcan-lose-control-original-mix
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IV. RELATED WORK

In this section, we provide an overview of the previous work
related to our approach: audio event detection, usage of timed
comments and machine learning with noisy labels. For each
category, we explain to which extent we rely on the state-of-
the-art, and what is new in our approach.

A. Audio event detection

Research related to audio event detection can broadly be
divided into three categories: environmental sound recognition,
music event detection and music structure analysis. Environ-
mental sounds that can be detected in a given audio stream
include, for example, bell ringing, applause, footsteps or rain.
Various features and learning methods have been proposed
to model the typically non-stationary characteristics of the
environmental sounds [8]. We mention here as an example
the usage of image processing techniques on a spectrogram
image, as proposed in [9], for this purpose. These events
typically come from a different acoustic source other than
the background audio, while in our case, the musical events
in question are part of the continuous music stream. In our
paper, we use the same spectrogram image to extract features.
In addition to the spectrogram image, we also explore other
image representations: self-similarity matrix, auto-correlation
matrix. Some other methods look specifically for the presence
of speech in a given audio stream [10]. Given an audio stream,
such methods also try to locate segments that contain speech
and also identify attributes of speech like fricatives or non-
fricatives [11], [12]. Speech related event detection in audio
supports automatic speech recognition.

Event detection in music has generally focused on detecting
low-level events like onsets [2]. Music onset detection is a
well-studied problem in music information retrieval (MIR)
and it serves as a task in the MIREX benchmark evaluation
every year. Another way of approaching music event detection
is music auto-tagging [4], which assigns descriptive tags to
short segments of music. It is also addressed by a task in
MIREX, under the name Audio Tag Classification2, where
descriptive tags needs to be associated with 10-second music
segments. These tags generally fall into three categories:
musical instruments (guitar, drums, etc.), musical genres (pop,
electronic, etc.) and mood based tags (serene, intense, etc.).

In music structure analysis [7], the objective is to divide a
given piece of music into its various sections and later group
them based on their acoustic similarity. It is an important
task since structural elements give to a piece of music its
identity. For example, in popular music tracks these structural
elements could be the intro, the chorus, and the verse sections.
Different aspects of musical expression have been deployed
for analysing the musical structure, such as homogeneity
(e.g., in instrumentation), repeating patterns (e.g., in rhythm
or melody) and novelty (e.g., through a change in tempo or
tonality).

Regarding temporal analysis of the music track and event
modelling using audiovisual features, in our approach we

2http://www.music-ir.org/mirex/wiki/2015:Audio Tag Classification

largely build on the state-of-the-art methods discussed above,
as explained in more detail in Section V-C. Specifically, we
deploy existing structure segmentation methods that give us
an indication of the probable position of events and we use
this information to distinguish between event and non-event
segments. For feature extraction and event modelling, we build
on spectrogram-based signal representation and on a number
of proven audio features.

B. Usage of timed comments

Timed comments have been explored in [13] to obtain shot-
level tagging of videos. In this work, a topic model is built that
can link the audiovisual content of a video shot to the topic of a
timed comment. The main difference with our method is that
we investigate the association between the timed comments
and the signal, while the authors of [13] only analyse the timed
comments to achieve video shot-level tagging. A thorough
investigation was conducted on timed tags used on an online
video platforms in [14], where the authors investigate the
differences between timed and timeless tags.

YouTube allows users to mention a timestamp in a comment,
which is then converted into a link to that particular part of
the video. These comments are called deep–link comments
and have been exploited to provide non-linear access to videos
[15]. To the best of our knowledge, however, these comments
have not yet been deployed for video event detection. The
first attempt to do so in the music domain, which used the
timed comments on the SoundCloud platform, was reported
in our previous work [16] for the case study of drop event
detection. The method presented in this paper, explained in
detail in Section V, is an extended and improved version of the
work presented in [16]. We note that it was observed in [14]
that timed tags for videos are characterised by a phenomenon
of temporal noise, which can considered to be comparable to
the temporal noise of the timed comments in our music dataset
(Figure 1).

C. Machine learning with noisy labels

Finding effective ways of dealing with noisy labels is a
critical aspect of our machine learning approach. As already
mentioned, a segment containing a timed comment referring to
an event might not actually coincide with the actual occurrence
of that event. Consequences of this temporal noisiness of the
labels could be diverse. Noisy labels could decrease classifi-
cation performance, increase the complexity of the learning
models or cause difficulties in identifying relevant features. A
detailed survey of different techniques to address the challenge
of developing machine learning algorithms in the presence of
noisy labels is provided in [17]. We address the issue of noisy
labels in two ways. We use different sources of features and
also propose strategies to filter the noisy labels.

V. PROPOSED FRAMEWORK FOR EVENT DETECTION

We propose a machine learning algorithm that learns a
model per event category, which will later be used to detect
the event in a new track. We apply this algorithm to our
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three events of interest: drop, break and build. In addition to
predicting whether an event occurs in a music segment, we
also locate the start point of the event.

Figure 3 illustrates our approach and its main methodolog-
ical steps. The stage of “Filters” in the highlighted part of
Figure 3 is to filter the noisy timed comments and pass only the
selected timed comments to the training stage. In the following
sub-sections, we describe the different steps and explain in
detail how we utilise the two different sources of labels.

Feature 
Extraction 

Model 
Training 

Timed 
comments 

Expert 
labels 

Classification Evaluation 

Training Data 

Test Data 

Segment 
extraction 

Feature 
Extraction 

Segment 
extraction 

Filters 

Fig. 3. A schematic view of the different steps in our approach. Note the
two different sources of labels: timed comments and expert labels. Changes
occur within the part of the model enclosed by the dashed line depending on
the source of training labels used.

A. Segment extraction

In this step, we use two different strategies used to to
obtain a unit of classification: Music structure segmentation
(MSS) and Fixed-length segmentation (FLS). For MSS, we
perform music structure segmentation on the music track and
then extract fixed length classification windows centered at the
segment boundaries. These windows are the unit that is used
further for feature extraction, training, and prediction. The
motivation behind choosing to perform structure segmentation
is that the structural boundaries in a track can potentially give
us start point of the events. For example, a break is a part of an
EDM track where the texture is considerably thinner compared
to the rest of the track. We hypothesise that the point where
the texture becomes thin will be associated with a structural
boundary, and for this reason we take our unit of classification
to be a window around this boundary. This hypothesis that
music events occur at or near boundaries is validated later
with an analysis of the dataset in Section VI-A. Exploratory
experiments indicated that the music structure segmentation
method proposed in [3] gives a good first approximation of
the event positions in an EDM track, when compared to other
segmentation methods proposed in [18] and [19]. For this
reason, we use the method of [3] for MSS.

For FLS, we divide the track into fixed length segments of
duration t seconds with an overlap of t/2 seconds between
successive segments. Here, we use the full segment of t
seconds as the classification unit, unlike MSS where we extract

a classification window after segmentation. For this strategy,
we do not have the prior knowledge provided by MSS, which
means that when we use it our event detection approach
becomes comparable to music auto-tagging.

B. Strategies for deploying training labels

We have the timestamps of our three events of interest
from two different sources: experts and timed comments (the
procedure to acquire these labels is explained in detail in
Section VI). Each segment coming from the segment extrac-
tion algorithm is given two labels depending on whether the
timestamp given by an expert or a timed comment falls within
the segment. We use four different strategies to obtain a trained
model: training using expert labels (EL), training using timed
comments (TC), training after combining expert labels with
timed comments (CELTC) and training after combining expert
labels with filtered timed comments (CELFTC). Expert labels
are gold standard labels that can be relied upon and timed
comments serve as weak labels. The part of Figure 3 enclosed
by the dashed line changes based on which of the above
strategies we use for training.

In the EL strategy, we label a segment as a positive example
for an event if an expert label falls within the segment,
while the other segments are taken as negative examples.
Recall that segments here refer to the classification window
extracted around the structural boundary for MSS and the
whole segment of t seconds for FLS. We consider this strategy
(EL) to be the best possible scenario because we have labels
given by experts and the model trained on these labels should
be able to make a reliable prediction. We take the performance
of this strategy as an upper limit and refer to the EL strategy
as the baseline event detector (Section VII-C). Other strategies
(TC, CELTC and CELFTC) are deemed successful if their
performance is close to the performance of the baseline event
detector.

In the second strategy (TC), we label a segment as a positive
example for an event if a timed comment referring to that
event falls within the segment and the other segments are
taken as negative examples. In the other two strategies, we
divide the training data into two subsets of m and N − m
tracks, where N is the total number of tracks in the training
set and m = p × N represents a proportion of N for
p = {20%, 40%, 60%, 80%}. For example, if p = 20% then
m = 0.2 × N and N − m = 0.8 × N represents a portion
of the training data. We use expert labels for the m tracks
and use timed comments as labels for the remaining N −m
tracks. In CELTC, we directly combine expert labels for the
m tracks and timed comments for the N −m tracks to train a
model. For CELFTC we use a different approach that includes
a step of filtering the noisy timed comments (Figure 4). More
specifically, we train a model using expert labels for m tracks
and test if the timed comments from the N−m tracks actually
refer to the event. We then take positively classified examples
from the N −m tracks and add them to the existing training
data labelled with expert labels i.e., m tracks. The training
procedure applied to all four strategies using the corresponding
sets of training labels is explained in Section V-D. In all the
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Expert labels  
(m songs) Train classifier 

Classify social 
comments 

(N-m) songs 

Positive 
segments 

(Low fidelity) 

Trained model 

Fig. 4. CELFTC: Pipeline for combining expert labels with timed comments.
This strategy involves the step of verifying the timed comments before adding
them to the training data. The thicker, green arrows refer to the training after
filtering the timed comments.

four proposed strategies: EL, TC, CELTC, and CELFTC, we
use all the positive and negative examples for training i.e., we
do not take an equal number of positive and negative examples
for training.

C. Feature extraction

The input to the feature extraction module is a fixed-length
music segment (obtained from the following two strategies:
MSS and FLS) and the output is a feature vector, which
is then used for training a model. We explored image and
audio information to choose what features to extract. Here,
we provide details about the features from different sources
and their corresponding dimensionality.

Spectrum 

Time (seconds) 

Fr
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y 
(H

z.
) 

Fig. 5. Spectrogram of a segment containing a drop. One can observe a
sweep-like structure on the left side of the figure. The red vertical line indicates
the position of the drop.

1) Image features: The time-frequency representation of
the music signal (spectrogram) has been used in sound event
recognition [20]. Figure 5 shows the pattern representing a
drop in the spectrogram. Observing Figure 5, we can see a
sweeping structure indicating the buildup of intensity followed
by a sudden drop (red vertical line). We are interested in
capturing such patterns, which are unique for certain events
in the music. We are not looking for specific frequency
values, but rather for patterns that can help us distinguish
between music segments containing the event and segments
not containing the event. In addition to the spectrogram, we

also explore other image representations of an audio signal:
auto-correlation and the self-similarity matrix, visualised as
images.

In order to calculate image features, we divide each image
into rectangular cells of equal size and extract second- and
third-order statistical moments from these cells. We divide an
image of size 738 × 927 into 9 × 9 rectangular cells of size
82×103 to compute the features. We compute the second and
third order moments for all three channels: red, green and blue.
Moments from cells of each channel are then concatenated to
construct a feature vector with a dimensionality of 486 (9 ×
9× 2× 3), which is further used to train a model. The central
moment of order k (mk) of a distribution is defined as follows:
mk = E(x− µ)k.

We use the following sets of features with the specified
dimensionality: second and third central moments with rect-
angular cells on spectrogram (486), second and third central
moments with rectangular cells on auto-correlation (486),
second and third central moments with rectangular cells on
self-similarity matrix from spectrogram (486), second and
third central moments with rectangular cells on self-similarity
matrix from auto-correlation (486).

2) Audio features: When choosing a set of audio features
that will help in distinguishing a segment containing an
event and a segment not containing the event, we consider
the general characteristics of an audio event and focus on
rhythm, timbre and dynamics as feature categories. We use
the following features to capture the component of rhythm
as explained in [21]: rhythm patterns (RP), rhythm histogram
(RH), temporal rhythm histogram (TRH) and statistical spec-
trum descriptors (SSD)3. In addition to these, we also use
other features: tempo (measured in beats per minute), number
of beats in a segment, average and standard deviation of the
difference between the locations of successive beats4. In order
to capture the timbral variations, we compute the statistics
from the frame-wise MFCC and frame-wise zero-crossing rate
(ZCR). The dynamics of the signal change over the course
of the build-up towards the drop. To capture these dynamics,
we use the statistics (mean, std, var, average of first order
derivative, average of second order derivative) computed from
the frame-wise RMS energy.

In summary, we use the following set of features with the
corresponding dimensionality: RMS energy (5), MFCC (65),
ZCR (5), RP (1440), RH (60), TRH (168) and SSD (420).

D. Feature selection and Training

As observed in the previous section, the dimensionality of
the features is high and this in-turn could lead to problems
like over-fitting or longer training times. In order to avoid
such problems, we perform feature selection on the combined
features from each of the two modalities (audio and image).
We use a feature ranking method, where a score is computed
for each dimension of the feature vector and the features
are ranked based on this score. We compute the score by

3http://www.ifs.tuwien.ac.at/mir/musicbricks/index.html#RPextract
4https://acousticbrainz.org/static/download/essentia-extractor-v2.1 beta2-1-

ge3940c0-win-i686.zip
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measuring the statistical dependency (SD) of the feature values
on the corresponding class labels as done in [22]. SD is
a measure that quantifies whether the feature values are
dependent on the class labels or they co-occur by chance.
Since we obtain a ranking of the features using this method,
we need to determine which of the top-k features need to be
included and we use cross-validation to make this choice.

Another important choice to make is the type of model
to use. We choose a Support Vector Machine with a Radial
Basis Function kernel because of its discriminative nature,
simplicity and wide applicability. Here, we say a few words
about why Hidden Markov Models, a common model used
for time series data, are inappropriate for our problem. Hidden
Markov Models work well for tasks like speech recognition
and phonetic segmentation [23]. The strength of HMMs for
these tasks is twofold: their ability to predict in the face of the
uncertainty of event boundaries (word and phone boundaries)
in the speech signal and their ability to model sequence
information. In contrast, for our music event detection task,
we have a high degree of certainty that an event will be
located around a structural boundary. The challenge we face
is uncertainty with respect to identification, rather than with
respect to segmentation. In our problem, the amount of se-
quential information is limited to the fact that non-events
alternate with events. This information is well captured by our
segmentation approach, which also enforces constraints with
respect to how closely two detected events can occur to each
other. Although HMM architectures can be designed to capture
long-distance dependencies, such designs, would come at the
cost of an explosion in the number of parameters. Apriori we
can anticipate such architectures to be ineffective since they
ignore the constraints inherent to the structure of our problem.

With an RBF kernel, there are two parameters, which need
to be optimised in an SVM: C and γ. The cost parameter
C controls the trade-off between complexity of the decision
rule and the frequency of error, while γ is the Gaussian kernel
parameter [24]. We perform a grid-search for these parameters
using cross-validation and obtain the parameters that give the
best performance. We use the cross-validation data set (80%
of the data) for this experiment. We carry out a nested cross-
validation, which first determines the k to use for selecting the
top-k features, and the determines C and γ.

1) Compute SD score for each feature dimension.
2) Pick k = 50, 100, 150, 200, 250, 300, 350, 400, where k

indicates how many of the top-k ranked features are to
be picked for training.

3) For each value of k, follow these steps:
• Pick the top-k features.
• Randomly split the cross-validation data into two

sets: Xtrain (90%) and Xval (10%).
• Take Xtrain as the new training set and perform

cross-validation (grid-search for C and γ) to obtain
the best performing model. Use this model to predict
labels in Xval.

• Repeat these steps ten times to obtain average
validation performance.

4) Choose the k with the best average validation perfor-

mance.
5) Select the top-k features and perform 10-fold cross-

validation on the cross-validation data to obtain the best
parameters: C and γ. Now train an SVM on the actual
training set using these parameters, which is further used
for evaluation.

This procedure is followed while training a model for
the four different strategies (EL, TC, CELTC, CELFTC), as
explained earlier.

E. Classification

While testing, we follow the same procedure: we first create
classification units (using FLS and MSS), which yields a set
of segments. We then extract features, and represent each
segment using the k features that were obtained while training
the model. Using the trained model, we predict labels for the
segments. Since we have three events of interest: drop, break,
and a build we use three binary classifiers, one for each event.
The choice of having three binary classifiers, rather than a
single classifier which can predict three classes of events, was
made so that we can investigate the utility of timed comments
as training labels for each event individually. We train models
with four different strategies as explained in Section V-D, and
predict labels for each test segment. For the models that use
MSS, we predict the location of the event to be the mid-point
of the segment, which corresponds to a structural boundary in
the original segmentation. As we will see in Table II, majority
of the events start at a segment boundary and hence we use
the segment boundary as the start point of the event.

VI. DATASET AND ANALYSIS

Traditional music tagging datasets like MajorMiner5 use
short music clips and collect labels through crowdsourc-
ing/gamification, while other datasets, like the million song
dataset [25], consist of whole tracks and tags collected in
the wild on social networks. The focus of this paper is
to build a machine learning model that can localize events
on the timeline and we want to achieve this goal while
minimizing the labeling effort. In contrast to the existing auto-
tagging datasets (mentioned above), we need data that provides
time-code level labels generated by listeners through social
participation. In our work, we therefore rely on SoundCloud
as a source of music and the corresponding social data in
the form of timed comments. SoundCloud is an online social
music sharing platform that allows users to upload, record
and share their self-created music. Our goal is to exploit
timed comments, which refer to a particular time-point in the
track, and could contain useful information about the presence
of events. Specific examples of comments from SoundCloud
that refer to musical phenomena are given in Table I. Using
timed comments on SoundCloud as a source also provides an
additional advantage over independent labeling of segments:
the user has more context to listen to before they react to
certain parts of the music track.

5http://majorminer.org/info/intro
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Timestamp Comment
00:32 That vocal is great.. give everyone

goosebump
01:01 Amazing melody
01:28 loved the drop

TABLE I
EXAMPLES OF TIMED COMMENTS ON SOUNDCLOUD: TEXT AND

TIMESTAMP.

We deploy the SoundCloud API6 to collect our data. Via
the search functionality we search for tracks during the year
2014 that have a Creative Commons license, which results in
a list of tracks with unique identification numbers. We search
the timed comments of these tracks for the keywords: drop,
break and build. We keep the tracks whose timed comments
contain a reference to these keywords and discard the other
tracks.

We use the resulting 500 music tracks to evaluate our
proposed method. Most commonly occurring genres in our
dataset are the following: dubstep, electro and progressive
house. We have a total of 640 drops, 760 builds and 550 breaks
in our dataset. These numbers indicate the actual number of
events in our dataset i.e., the events are counted based on
the expert labels (procedure to obtain expert labels explained
later in this section). Associated with the dataset , there are
720 comments with the word “drop”, 750 comments with the
word “build” and 600 comments with the word “break”. Note
that the statistics indicate the number of timed comments that
have a reference to the specific events, meaning that there
could be multiple timed comments for a single event posted
by different users. We use the timestamps of these timed
comments, containing reference to our events of interest, as
training labels in the following strategies: TC, CELTF, and
CELFTC.

To create the expert labels, we ask a panel of 3 experts
to listen to the tracks in the dataset and mark our three
events of interest on the timeline of the music track. Each
expert marks the events on the timeline of a subset of the
music tracks individually. In order to make sure that all the
experts have a common understanding of the events and the
annotation procedure, we gave them a set of 20 music tracks
that are not part of this dataset, but are from the same source
(SoundCloud). We ask the experts to mark the events for these
20 tracks and we find that the three experts agree on more
than 90% of the annotations. After this check we then ask the
experts to mark the timestamps of the events on the timeline of
the music tracks. After this process, we have timestamps from
two different sources: experts and timed comments, which we
employ in our experiments. The dataset, containing the mp3
files, timestamps of the events (both expert labels and timed
comments), is hosted on the Open Science Framework and
can be accessed here: https://osf.io/eydxk/.

A. Structure segmentation

As indicated earlier, we hypothesize that the events would
happen in the vicinity of the structural boundaries. In order to

6https://developers.soundcloud.com/docs/api/guide

Event 0 sec 1 sec 2 sec 3 sec 4 sec 5 sec 6 sec
Drop 80% 1% 0% 1% 1% 0% 1%
Build 56% 4% 6% 2% 2% 3% 10%
Break 60% 10% 5% 2% 4% 6% 2%

TABLE II
PERCENTAGE OF DIFFERENT EVENTS THAT ARE t = 0,1,2,3,4,5,6

SECONDS CLOSE TO STRUCTURE SEGMENT BOUNDARIES.

validate our hypothesis, we look at the distance between the
timestamps of the boundaries and the events in our training
set. The training set constitutes 60% of the whole dataset and
contains 411 drops, 567 builds and 345 breaks. We perform
MSS on the tracks in the training set and obtain the timestamps
of the boundaries. On an average, there are 13.6 segments per
track in our training set.

The segment boundaries can exactly coincide with the event
or can occur in the vicinity of the event. In order to have an
estimate of the distance between the event and the segment
boundary, we count the number of events at a fixed distance
of s seconds, where s = {0, 1, 2, 3, 4, 5, 6} and report our
observations in Table II. For example, if s = 0 seconds then we
count the number of events which coincide with the segment
boundaries. Similarly, if s = 3 seconds we count the number
of events that are 3 seconds away from a segment boundary.
Examining Table II, we see that a large portion of the events
(≥ 80%) are within a distance of 6 seconds from segment
boundaries. It is also interesting that 80% of the drops actually
coincide with segment boundaries. These statistics support our
hypothesis that the events occur within striking distance (≤ 6
seconds) of the structural boundaries.

VII. EXPERIMENTAL SETUP AND BASELINE

In this section, we explain the experimental setup and
report the results of our baseline event detector. Recall that
the baseline event detector is trained on expert labels and
serves as a comparison for other proposed strategies (Section
V-B). We first explain how we split our dataset for the
different experiments. We then explain how we tune different
parameters in our approach. As explained in Section III, we
evaluate our method from two different perspectives: signal
and user. This requires different evaluation metrics and we
explain our choice of metrics in this section.

We split our data at the track level into three sets: 60%
training data (already mentioned), 20% development data and
20% test data. We do it this way in order to ensure that we do
not draw the training and testing material from the same track.
This split is used for most experiments. In Sections V-D and
IX, cross-validation is performed on the combined training and
development set (80% of the original data), which we refer to
as the cross-validation set.

A. Parameters

In this sub-section, we look at how we choose values for
different parameters in our method. We have two different
strategies: MSS and FLS. For MSS, we first segment the
track and then extract a classification window centered at the
segment boundary for feature extraction. The parameter that

https://osf.io
https://osf.io/eydxk/
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must be set for MSS is the size of the classification window.
We explore the following values: 5, 10, 15, and 20 seconds for
the size of the classification window. For each value, we follow
the procedure of feature selection and training as explained in
Section V-D. Using this trained model, we predict the events
for tracks in development set and compute the f-scores. By
following this procedure, we obtain an optimal performance
with 15 seconds as the size of the classification window. For
FLS, we divide the track into fixed length segments of duration
t seconds and use the entire segment as the classification
window. We follow a similar procedure, as discussed for MSS,
and obtain an optimal performance on the development data
at t = 15 seconds.

For the audio features, we use the standard configuration
provided by the tools we use for feature extraction. For the
image features, we extract the spectrogram for a 15-second
music segment by dividing it into 50 ms frames with no
overlap. We cap the frequency at 1500 Hz, since we find a clear
visible pattern for our musical events below this frequency
level. Using MIRToolbox [26], we compute the spectrogram
with the above-mentioned parameters and save the result as an
RGB image that is further used for feature extraction. Please
recall that we divide the image into 9×9 rectangular cells [9],
with a cell size of 82×103 and ignore the border pixels on
all 4 sides (Section V-C1). We compute the second and third
order moments from the RGB pixel values of each cell and
concatenate them to obtain a single feature vector, which is
further used in the classification procedure.

B. Evaluation metrics

We use different evaluation metrics to understand vari-
ous aspects of the proposed approach. As indicated earlier
(Section III), we use two different scenarios: the traditional
classification and a use case (non-linear access). For the
traditional classification, we use f-score for the positive (fs+)
and negative class (fs−) as well as the average f-score (fsavg).
Since we are also marking the events on the timeline, we assess
jump-in points by measuring the distance between start point
of the actual event and the predicted event. For this we use two
different distance measures: 1. Absolute distance (abs dist),
measured as the difference in timestamps of predicted position
and ground-truth; 2. Event anticipation distance (ea dist),
measured as the difference in timestamps of ground truth and
the most recent preceding prediction. The distance metric,
ea dist, indicates the usefulness of our method in applications
like non-linear access (Figure 2), where the user would like
to skip to the next event (see Section III). If there is no
previously predicted event, ea dist chooses the beginning of
the track. However, because of the length of EDM tracks
and the distribution of events, this situation does not occur
in practice. The other distance metric, abs dist, is only used
for the purpose of comparison across the different strategies.

C. Baseline event detector

We now report the results of our baseline event detector that
uses only expert labels for the entire dataset. Tables IV and V
report the f-scores: fs+, fs−, fsavg . Similar results are also

reported for MSS in tables VI and VII. Observing the scores,
we can say that the features extracted from the three image
representations (Table IV and VI) perform better than the
audio features (Table V and VII). Of all three events, the scores
for detecting the build are lower, which is understandable
because it is quite difficult, even for human listeners, to locate
the start point of a build.

Here, we also report the number of features that were
selected for each event. Table III lists the number of features
selected and the top features. We observe that the rhythm-
related features dominate the audio features while spectrogram
and similarity matrices dominate the image features.

In addition to the f-scores, we also report two other metrics,
abs dist and ea dist (Tables VI and VII). We report these
metrics only for MSS and not for FLS, because the 15-second
segments in FLS do not hold any specific meaning while the
structural segments in MSS are hypothesized to be the start
points of our events of interest (due to Table II). Here, it
is important to note that ea dist considers predictions that
precede the actual events on the timeline i.e., the predicted
start point of the event comes before the actual start point.
After manual inspection, we observe that a majority of the
detected events precede the actual events. We use the ea dist
metric in order to quantify how close the detection is to the
actual event. The values of ea dist and the above findings
suggest that we can direct the listener to a few seconds before
the actual event is heard. Further analysis and discussion on
the significance of ea dist is presented in Section X.

VIII. EXPERIMENTAL RESULTS

In this section, we report the results of the experiments that
help us in addressing the two research questions as introduced
in Section I. We also introduce a naive event detector that
randomly picks segment boundaries as start points of our
events of interest.

A. Naive detector

In this sub-section, we describe a naive detector which picks
x number of events from each tracks where x is the average
number of events in the training set. In our training set, we
have 1.4 drops, 1.6 builds and 1.5 breaks per track, on average.
We follow these steps for the naive classifier:

• Perform MSS on each track. Recall that there are 13.6
segments, on an average, per track (Section VI-A).

• Randomly pick x number of segment boundaries as the
start points of our three events of interest, where x is as
explained above for each event.

• Repeat the above step 10 times to reduce the effect of
biases.

• Compute all the evaluation metrics as explained in VII-B
The performance of the naive detector is reported in Table

VIII and we observe that the average f-scores are very low. We
consider the performance of this naive detector as the lower
bound and that of the baseline event detector (Section VII-C)
as the upper bound for comparing the proposed strategies (TC,
CELTC, and CELFTC).
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Event Image features Audio features
Drop 150, Auto-correlation, Spectrogram, Similarity matrix from spectrogram 200, RP, ZCR, RMS, SSD, MFCC
Break 100, Spectrogram, Similarity matrix from spectrogram 150, MFCC, SSD, RMS, RP
Build 200, Similarity matrices from auto-correlation and spectrogram, Spectrogram 200, SSD, RP, BPM,

TABLE III
NUMBER OF SELECTED FEATURES AND THE TOP SELECTED FEATURES.

fs+ fs− fsavg
Drop 70.3 96.1 83.2
Break 71.6 94.2 82.9
Build 69.8 89.9 79.8

TABLE IV
F-SCORES FOR THE BASELINE EVENT DETECTOR EL: FLS USING IMAGE

FEATURES.

fs+ fs− fsavg
Drop 68.2 92.3 80.2
Break 69.8 93.1 81.4
Build 67.9 92.4 80.1

TABLE V
F-SCORES FOR THE BASELINE EVENT DETECTOR EL: FLS USING AUDIO

FEATURES.

fs+ fs− fsavg abs dist ea dist
Drop 73.7 97.4 85.5 2.8 2.6
Break 74.4 96.5 85.4 3.1 2.9
Build 70.2 93.1 81.6 3.4 2.9

TABLE VI
F-SCORES AND DISTANCE METRICS FOR THE BASELINE EVENT DETECTOR

EL: MSS USING IMAGE FEATURES.

fs+ fs− fsavg abs dist ea dist
Drop 71.3 94.6 82.9 4.1 3.0
Break 71.1 95 83 4.8 3.9
Build 69.8 87.1 78.4 4.5 3.7

TABLE VII
F-SCORES AND DISTANCE METRICS FOR THE BASELINE EVENT DETECTOR

EL: MSS USING AUDIO FEATURES.

fs+ fs− fsavg abs dist ea dist
Drop 5.9 71.4 38.6 29.1 32.6
Build 4.9 61.4 37.6 28.7 33.4
Break 6.5 68.7 37.6 31.4 34.9

TABLE VIII
F-SCORES AND DISTANCE METRICS FOR THE NAIVE CLASSIFIER: RANDOMLY PICK x NUMBER OF EVENTS FROM EACH TRACK.

B. Using timed comments as training data

We now investigate the utility of timed comments as training
labels, which helps us in addressing the first research question
(RQ1 from Section I). We follow the same procedure as in
the baseline event detector, except for the source of labels.
We use timed comments instead of expert labels for training
our models. Tables IX, X, XI, and XII report the results.
Observing the tables, we can say that the timed comments
perform very well in comparison to the naive classifier (Table
VIII), but not so well when compared to the baseline event
detector (Tables IV, V, VI, VII). We observe a significant
improvement in fs+, abs dist, and ea dist, when compared
to the naive classifier. However, we see a decline in f-scores
for the negative class. The classifier struggles to identify non-
events, which probably have less regularity than events. We
surmise that the noisy nature of timed comments makes it
even harder to learn non-events. In order to ensure that the
classifier is not over hypothesizing, we count the number of
events that the classifier hypothesizes per track. From Section
VI-A, we know that there are 13.6 segments, on average, per
track in our training set. Consider the drop event detector, we
use a classifier trained on timed comments alone to count the
number of segment boundaries that are classified as a drop,
in each track of the test set. Then we take an average of
the number of drops across all the tracks in the test set. By
repeating this process for the other two events, we observe
that the classifier hypothesizes 3.1 drops, 3.6 builds and 2.6
breaks per track on an average. These numbers are not overly

high compared to the actual average number of events per
track: 1.3 drops, 1.5 builds and 1.1 breaks. In an application
scenario in which the average number of events expected per
track is highly stable, the prior information that is used here
by our naive classifier could also be integrated into our event
detection models. However, here, we will continue to assume
a use scenario in which that information is not available, and
not add it to our models. We can see that the timed comments
are indeed useful in detecting socially significant events and
thus we have an answer for RQ1. Now, we will explore the
combination of timed comments and expert labels to address
the next research question, where we investigate whether the
presence of timed comments can reduce the number of expert
labels needed to detect socially significant events.

C. Combining expert labels and timed comments

The main contribution of this paper, as presented in Section
III, is the investigation of the utility of timed comments as
training labels. In the previous sub-section, we saw that using
timed comments alone as training labels yielded lower scores
because of the noisy nature of timed comments. Here, we
investigate how the addition of timed comments used as labels
can reduce the number of expert labels needed for detecting
socially significant events. We investigate this by performing
a series of experiments focusing on the strategies: CELTC and
CELFTC, introduced in Section V-B. In these strategies, we
divide the training data into two subsets of m tracks and N −
m tracks, N being the total number of tracks in the training
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fs+ fs− fsavg
Drop 29.4 60.1 44.7
Break 34.2 59.4 46.8
Build 27.9 58.6 43.2

TABLE IX
F-SCORES FOR THE STRATEGY TC: TIMED COMMENTS AS TRAINING

LABELS AND FLS USING IMAGE FEATURES.

fs+ fs− fsavg
Drop 27.2 61.5 44.3
Break 30.8 56.4 43.6
Build 29 58.4 43.7

TABLE X
F-SCORES FOR THE STRATEGY TC: TIMED COMMENTS AS TRAINING

LABELS AND FLS USING AUDIO FEATURES.

fs+ fs− fsavg abs dist ea dist
Drop 28.1 66.3 47.2 21.5 18.1
Break 33.2 52.1 42.6 24.3 21.2
Build 28.4 59.1 43.7 26.6 22.3

TABLE XI
F-SCORES AND DISTANCE METRICS FOR THE STRATEGY TC: TIMED

COMMENTS AS TRAINING LABELS AND USING MSS USING IMAGE
FEATURES.

fs+ fs− fsavg abs dist ea dist
Drop 23.1 61.2 42.2 29.4 24.6
Break 24.1 59.1 41.6 25.2 20.3
Build 31.1 56.1 43.6 31.2 29.4

TABLE XII
F-SCORES AND DISTANCE METRICS FOR THE STRATEGY TC: TIMED

COMMENTS AS TRAINING LABELS AND USING MSS USING AUDIO
FEATURES.

set and m = p% × N . We use the following values for p =
{20%, 40%, 60%, 80%}, which controls the proportion of the
training data (N ) that is used. In CELTC, we directly combine
the expert labels for the m tracks and timed comments for the
N −m tracks to train our model.

In CELFTC, we train a model using the expert labels on m
tracks and use the model to filter the timed comments on the
N −m tracks. It is important to note that CELFTC requires
more training time than the other strategies because it involves
a two-step process of first filtering the timed comments and
then re-training the model using the additional data from the
filtering step. Since we use the top-k features computed in
the first step of the algorithm (Section V-D), the additional
training time in the second step is not very high. For example,
when p = 60%, the overall training time of CELFTC is a
mere 6% more than that of CELTC. After filtering the timed
comments, we add the positively labelled examples from the
N−m tracks to the actual training set of m tracks to build the
final model (illustrated in Figure 4). For each value of m, we
repeat the experiment 10 times and report the average results
in order to minimize the chance of interference of incidental
characteristics of the data.

In order to provide a further basis for comparison, we report
the results of training with m tracks (EL@p) i.e., we use only
a part of the training data with expert labels corresponding to
the value of p = 20%, 40%, 60%, 80%. For example, if p=40%,
then we use 40% of the training data with expert labels to train
the model. This model then predicts the positions of the events
in the test set and we compute the f-scores as usual.

Tables XIII, XIV, XV and XVI report the average f-scores
(fsavg) for each of the strategies (CELTC, CELFTC and
EL@p) at different values of p. Similarly, Tables XVII and
XVIII report the distance metrics for each strategy. Observing
the tables, we can say that image features are more effec-
tive than audio features. Filtered timed comments (CELFTC)
perform better than the unfiltered timed comments (CELTC)
when combined with the expert labels. This can be observed
in the results for CELFTC and CELTC, where the f-scores
for CELFTC are higher than those for CELTC. When the
CELFTC’s performance is greater than that of EL@p, results
are highlighted in bold.

Filtering the timed comments (CELFTC) seems to improve
the performance beyond just using the expert labels (EL@p)
at certain proportions of the training data. For example, the
average f-score for detecting a drop using CELFTC, at p
= 60% and p = 80%, is greater than that of EL@60 and
EL@80% respectively (Table XIII). Similar observations can
be made for the break at 60% and 80% of the training data.
For the event build, the average f-scores of CELFTC come
very close to the f-scores of EL at 80% of the training data.
The distance metrics abs dist and ea dist reported in Tables
XVII and XVIII indicate that the scores for CELFTC at 60%
are very close those for EL at 60%.

Next, we further investigate the performance of CELFTC,
at different proportions of expert labels, by comparing its
performance with that of the baseline event detector, which
represents an ideal situation. Recall that the baseline event
detector was trained with expert labels on the entire training
set (Section VII-C). For the baseline event detector, we choose
the following combination for all the events as it was shown to
result in the best performance: MSS and Image features. For
the same combination, we report the results of CELFTC and
also add results for EL@p at different proportions of expert
labels. The results are depicted in Figures 6 (drop), 7 (build),
and 8 (break). The blue horizontal line in the figures represents
the performance of the baseline event detector (Table VI).
Observing the figures, we can see that with 60% of the training
data labelled with expert labels we already achieve a perfor-
mance very close to the baseline event detector. For example,
observing Figure 8 at 60%, the performance of CELFTC and
the performance of the baseline break event detector are almost
the same. This indicates that with 60% expert labels and
the addition of freely available timed comments we obtain
a performance that is quite close to the performance of the
baseline event detector which uses 100% expert labels. In
other words, with a reduced number of expert labels (60%),
we obtain a performance closer to the baseline event detector.
From this result, we can conclude that if we have a training set
labeled with expert labels, then, it will improve our classifier
to add additional training data labeled with filtered timed
comments, so long as we have a minimum amount of expert-
labeled data. On this basis of this conclusion, we can say that
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Event 20% 40% 60% 80%
CELTC CELFTC EL@20 CELTC CELFTC EL@40 CELTC CELFTC EL@60 CELTC CELFTC EL@80

Drop 43.6 45.3 50.2 56.1 61.1 64.2 65.5 76.1 72.4 71.6 81 78.1
Break 44.2 47.2 58.7 61.7 65.8 69.5 72 80 77.8 73.6 82.6 81
Build 43.2 43.8 49.3 55.8 58.7 61.3 63.7 74.1 73.4 71 78.2 77.8

TABLE XIII
AVERAGE F-SCORES FOR TRAINING USING DIFFERENT PROPORTIONS OF EXPERT LABELS FOR THE THREE DIFFERENT STRATEGIES: CELTC, CELFTC

AND EL@P. RESULTS ARE FOR FLS USING IMAGE FEATURES.

Event 20% 40% 60% 80%
CELTC CELFTC EL@20 CELTC CELFTC EL@40 CELTC CELFTC EL@60 CELTC CELFTC EL@80

Drop 44.4 45.5 49.1 53.5 56.9 58.15 66.6 72.6 70 75.1 78.9 76.3
Break 47.2 48.3 52.2 59.3 59.7 61.5 70.3 77.8 76.4 76.3 80 79
Build 43.8 43.4 46.5 54.9 57.5 59.2 65.2 73.1 74 73 76.5 76.8

TABLE XIV
AVERAGE F-SCORES FOR TRAINING USING DIFFERENT PROPORTIONS OF EXPERT LABELS FOR THE THREE DIFFERENT STRATEGIES: CELTC, CELFTC

AND EL@P. RESULTS ARE FOR FLS USING AUDIO FEATURES.

Event 20% 40% 60% 80%
CELTC CELFTC EL@20 CELTC CELFTC EL@40 CELTC CELFTC EL@60 CELTC CELFTC EL@80

Drop 44.2 46.4 51 54 56.3 59.5 65 74.7 73 75 81.4 78.6
Break 52.2 52.4 54 60.1 61.6 62.5 69.9 79.4 78 74.6 81.7 79
Build 44.1 44 48.5 56.3 60.2 62.5 63.5 72.4 72 71.2 77.4 76

TABLE XV
AVERAGE F-SCORES FOR TRAINING USING DIFFERENT PROPORTIONS OF EXPERT LABELS FOR THE THREE DIFFERENT STRATEGIES: CELTC, CELFTC

AND EL@P. RESULTS ARE FOR MSS USING AUDIO FEATURES.

Event 20% 40% 60% 80%
CELTC CELFTC EL@20 CELTC CELFTC EL@40 CELTC CELFTC EL@60 CELTC CELFTC EL@80

Drop 47.6 48 52.2 62.5 64.9 65.9 73 75.9 73.8 81 83.4 81.6
Break 49.5 50.1 53.7 69.8 72.1 72.9 78.7 83.1 79.7 81.3 84 83
Build 44.3 44.6 49.4 59.6 63.8 65.5 70.6 72.8 74.5 75.1 81 80.1

TABLE XVI
AVERAGE F-SCORES FOR TRAINING USING DIFFERENT PROPORTIONS OF EXPERT LABELS FOR THE THREE DIFFERENT STRATEGIES: CELTC, CELFTC

AND EL@P. RESULTS ARE FOR MSS USING IMAGE FEATURES.

the timed comments are helping in reducing the number of
required expert labels, which represents a positive answer to
RQ2.

IX. GENERALIZATION OF THE MODEL

A. Cross-validation

A 5-fold cross-validation was performed on the cross-
validation data (80% of the entire dataset) and the average
f-scores and standard deviation are reported in Table XIX.
One of the reasons to perform a cross-validation experiment
is that the dataset is relatively small and we want to investigate
whether the trained model overfits. Results of the cross-
validation are good but lower when compared to the ones
reported in Tables IV, V, VI and VII.

This effect can be related to our sampling method. For
the purpose of cross-validation, the folds are created at the
track level, and not at the event level. This is necessary in
order to ensure that it is never the case that training and
testing material is drawn from the same track. However, the
track-level sampling makes the folds sensitive to the presence
of one or two tracks with a style of event that is overall
more “difficult” (applies in particular to short events). For this
reason, the variance between the folds is higher than expected

and the average is lower. The lower average raises a question
on the generalization capability of the model and in order to
answer this question, we turn to another dataset. Specifically,
we next report the results of the experiment on an unseen
dataset that provide an insight into the generalizability of the
model.

B. Performance on data from a new source

In order to check for the generalizability of the model, we
conduct another experiment where we take the test set from
another source. YouTube contains many EDM tracks and can
be used as another source of music data. We download 70
tracks from YouTube and manually marked the positions of
our three events in the tracks. We use this as the test set
and the corresponding ground-truth in order to evaluate the
performance of the detector. We chose our best model in order
to predict the events on the new test set. We use MSS and
image features for evaluation. We use two different trained
models that use 60% and 100% expert labels respectively.
Table XX presents the results of the event detection on the
YouTube test set. Please note that we use the same model
trained for CELFTC at 60% expert labels (Section VIII-C)
and EL with 100% expert labels (Section VII-C) for the two
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Event 20% 40% 60% 80%
CELTC CELFTC EL@20 CELTC CELFTC EL@40 CELTC CELFTC EL@60 CELTC CELFTC EL@80

Drop 19.1,16.2 19.2,15.9 17.4,14.3 14,12 13.7,12 13.4,12.1 14.2,12.2 11.5,9.6 11.1,9.1 10.4,8.3 8.0,6.1 8.3,6.4
Break 17.3,15.1 17.1,15.8 15.4,14.6 13,10.2 11.7,10 11.2,10.5 11.6,9.3 9.6,8.7 9.4,7.9 8.6,6.8 7.3,6.4 7.4,6.1
Build 16.1,15.5 16.3,14.6 17.8,16.3 15,13.3 14.4,13.8 13.6,11.8 14.5,12.6 13.6,11.5 11.4,9.5 11.5,9.3 10.6,8.7 8.6,6.3

TABLE XVII
DISTANCE METRICS (abs dist AND ea dist) FOR TRAINING USING DIFFERENT PROPORTIONS OF EXPERT LABELS FOR THE THREE DIFFERENT

STRATEGIES: CELTC, CELFTC AND EL. RESULTS ARE FOR MSS USING AUDIO FEATURES.

Event 20% 40% 60% 80%
CELTC CELFTC EL@20 CELTC CELFTC EL@40 CELTC CELFTC EL@60 CELTC CELFTC EL@80

Drop 17.4,15.3 16.8,14.9 15.3,12.4 15.6,12.9 13.7,11.1 12.4,9.9 10,8.5 8.1,7.9 9.5,8.6 6.3,5.1 5.9,4.9 6,5
Break 16.4,14.2 15.9,13.9 14.2,13.1 12.4,10.2 11.8,10.6 10.4,8.7 9,7.6 7.4,6.9 8.1,7.8 5.4,4.6 4.8,3.9 5.2,4.1
Build 18,15.2 17.8,15.6 16.4,12.8 15,12 14.2,11.9 11.4,10.6 12.4,10.6 10.8,7.1 9.6,6.8 10,8.2 7.9,6.0 7.6,6.4

TABLE XVIII
DISTANCE METRICS (abs dist AND ea dist) FOR TRAINING USING DIFFERENT PROPORTIONS OF EXPERT LABELS FOR THE THREE DIFFERENT

STRATEGIES: CELTC, CELFTC AND EL. RESULTS ARE FOR MSS USING IMAGE FEATURES.

fsavg(IM,FLS) fsavg(AU,FLS) fsavg(IM,MSS) fsavg(AU,MSS) abs dist(IM) ea dist(IM) abs dist(AU) ea dist(AU)
Drop 73.3 (±4.1) 72.2 (±3.2) 77 (±5.3) 74.4 (±4.2) 7.1 (±1.1) 5.2 (±1.2) 6.9 (±1.7) 5.4 (±3.2)
Break 73.2 (±3.1) 71.4 (±4.2) 76 (±4.1) 75.3 (±5.6) 7.2 (±2.8) 5.5 (±2.9) 7.1 (±2.1) 5.6 (±1.3)
Build 71.3 (±5.3) 72.7 (±3.6) 76.2 (±3.2) 74.4 (±5.7) 7.8 (±2.1) 5.7 (±3.0) 7.1 (±1.4) 5.8 (±4.2)

TABLE XIX
CROSS-VALIDATION RESULTS FOR OUR THREE EVENTS. IM: IMAGE FEATURES; AU: AUDIO FEATURES.
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Fig. 6. Average f-scores (fsavg) for detecting a drop for CELFTC: FLS
and image features at different proportions of expert labels. The horizontal
blue line indicates the performance of the baseline event detector with 100%
expert labels.

columns in Table XX.
Observing the scores, we can see that the performance of

the event detector is reasonable and similar trends can be
found when compared to the performance on the test set
from SoundCloud. For example, the f-scores for both 60%
and 100% expert labels are very close together.

X. EVALUATION WITH USER-PERSPECTIVE METRICS

In this section, we turn to a deeper discussion of the implica-
tion of our results for a real-world application. Specifically, we
consider a non-linear access system, i.e., a system that would
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Fig. 7. Average f-scores (fsavg) for detecting a build for CELFTC: MSS
and audio features at different proportions of expert labels. The horizontal
blue line indicates the performance of the baseline event detector with 100%
expert labels.

allow a listener to browse through the events in a track. Such
a system would involve a play bar in which music events are
marked, making it possible for listeners to listen specifically
to certain events, without having to listen to the track entirely.
For example, such a system would be useful to a DJ who is
interested in quickly reviewing all the drops in a particular
EDM track.

In order to understand the usefulness of our music event
detection approach to users of a non-linear access system, we
make use of the metric event anticipation distance, ea dist,
introduced in Section II, where it is illustrated in Fig. 2. Recall,
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Event F-score for 60% expert labels F-score for 100% expert labels
Drop 73.2 76.4
Break 74.9 77.1
Build 71.4 73.5

TABLE XX
AVERAGE F-SCORES FOR CELFTC ON DATA FROM A NEW SOURCE (YOUTUBE) FOR DIFFERENT PROPORTIONS OF EXPERT LABELS.
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Fig. 8. Average f-scores (fsavg) for detecting a break for CELFTC: MSS
and image features at different proportions of expert labels. The horizontal
blue line indicates the performance of the baseline event detector with 100%
expert labels.

that ea dist is the time that a listener would need to wait
before jumping into a music stream, and hearing the event that
is marked on the play bar. For comparison, we also discuss
the absolute distance, abs dist. Note that we do not consider
abs dist to be a user-perspective metric, since it has the same
value whether the listener is dropped into the stream before
or after the event. A music event that occurs before a user
jumps into a stream will be missed, and can, for this reason, be
considered useless in a non-linear access application scenario.

When we consider this application scenario, and ea dist,
the full potential of timed comments becomes clear in a way
not directly reflected by the f-score that has been the focus of
the previous sections. We would like to draw attention to the
condition in which the music event detector is trained only
with timed comments as training labels and in which MSS
with image features is used. This condition was presented in
Table XI (Section VIII-B). From Table XI we see that using
timed comments only, we can provide a jump-in point, on an
average, 18.1 seconds before the actual drop. We point out
that an error of 18.1 seconds may not be substantial enough
to impact user experience significantly. Statistics calculated
on our dataset as a whole reveals that a typical build-drop
combination can last somewhere between 6 and 20 seconds.
If we can direct the user to 18.1 seconds before the drop, there
is a good chance that the build will have already started and it
will be obvious to listeners that they are moving towards the
drop.

In the rest of this section, we make some other observations

about our results from the perspective of our distance-based
evaluation metrics abs dist and ea dist. These results are
reported in Tables XI and XII (training on timed comments
only) and Tables XVII and XVIII (mixing expert labels and
timed comments.) Note that in Tables XVII and XVIII results
are given in the order abs dist, ea dist, separated by a comma.
Overall, the image features are more effective than the audio
features. This observation is consistent with the observations
that we have made using the average f-score in previous
sections. Further, we note that ea dist is systematically smaller
than abs dist. This observation is interesting, since it means
that our approach to music event detection tends to detect an
event before it occurs, rather than after it occurs. In other
words, it shows a tendency away from the sort of error that
would be most detrimental to the user experience.

Finally, we make another observation about Tables XVII and
XVIII. We see that in general, if expert labels are available, it
is most advisable to train with expert labels. Adding examples
labeled with timed comments to the expert-labeled training
data can add another performance boost, or at least will not
hurt the performance substantially. It is interesting to consider
the implications of the performance that can be achieved with a
relatively limited number of expert labels. For example, using
60% expert labels we see that ea dist for the build reaches
a value of 8.6 seconds for image features (Table XVIII). This
value is very close to the minimum length of a build-drop
combination, again as estimated by statistics calculated on our
dataset as a whole. This example suggestions that listeners
might not notice further improvement of ea dist. It also sug-
gests that careful attention should be paid to whether further
improvements of ea dist actually hurt the user experience
by cutting off context that users need to fully recognize and
appreciate certain music events.

XI. CONCLUSION AND OUTLOOK

This paper has demonstrated the utility of timed comments
as a source of labels to train models to detect socially signifi-
cant music events. Through experiments, we show how timed
comments can be utilized as training labels independently
as well as in combination with expert labels. The important
conclusions of our paper are summarized here:

• Timed comments, on their own, can be used as training
labels to detect socially significant events. They perform
reasonably well in applications like non-linear access,
where the listener wants to jump through different events
in the music track without listening to it in its entirety.

• Adding expert labels improves the performance. Our
experiments demonstrate that with a combination of 60%
expert labels and 40% timed comments, we can poten-
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tially obtain a performance very close to the performance
when we have 100% expert labels for training data.

• The performance of the event detection is not dependent
on the source of data, as we obtain a good performance
on an unseen test set, from YouTube, by using a model
trained on SoundCloud data.

In this paper, we have presented an extended case-study on
using timed comments to detect events in the music signal.
Our work is one of the first to utilize timed comments as
training labels to develop an event detector. We hope that our
results would encourage researchers to explore the usefulness
of timed comments for other media. We do not claim that the
exact segment-based approach that we take here will transfer
directly to videos. However, we would like to point out that
our work has demonstrated that the impact of temporal noise
can be overcome and that the contribution of timed comments
to video event detection is worth investigating further.
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