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Abstract

In the context of designing a real-time brain-computer interface for playing a game using the OpenBCI
Ultracortex ”Mark IV” headset, this paper focuses on the work of the decoding subgroup. The primary
responsibility is to analyse EEG data retrieved from the OpenBCI headset and classify the intention
of the user. Our objective is to achieve a high-accuracy classification of the EEG signals. The paper
is structured into three main sections: preprocessing, feature extraction, and classification. Multiple
methods for preprocessing and classification of motor execution EEG signals will be analysed, striving
to contribute to the real-time implementation of the project. The results of our work provides valuable
insights for future research and development in this field.
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Preface

This paper is part of a Bachelor’s graduation project, of which the goal is to develop a real-time BCI to
play a game using EEG signals. The project consists of three groups: decoding, measurements and
interface. Our group is the decoding group.

Our subgroup specifically is responsible for the decoding of EEG signals and providing an output to the
interface group based on the user’s intention. Numerous methods for preprocessing and classification
are considered in the paper.

We would like to express our deepest gratitude to our daily supervisor, Prof. Dr. Borbála Hunyadi, for
her guidance and support. We also extend our thanks to Prof. Dr. Ir. Leon Abelmann for his invaluable
insights and advice throughout the project. Furthermore, we would like to thank appreciation the PhD
students for their assistance. Finally, we are grateful to Ing. Martin Schumacher, who was willing to be
a test subject for EEG data collection.

We hope that this project will be picked up and further developed after the completion of this thesis, as
it is a fascinating subject with significant potential for future exploration and development.

Anthony Dai (4866592)
Joris van de Weg (5174821)

Delft, July 2023
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1
Introduction

Brain Computer Interfaces (BCI) are a popular research topic for scientists and researchers. BCI is a
system that is able to decode brain waves into a function for an external device such as a computer,
exoskeleton, assistive technology etc. Electroencephalography (EEG) equipment is the most common
way for recording brain signals in BCI systems, the main reasons being the relatively low cost, ease
of use, and non-invasive implementation. They are mainly used for research and clinical applications
now, but there are other non-biomedical applications too such as, gaming, art, transport, safety and
control.

There are multiple ways to evoke brain signals, while some types are easier to extract, others are more
difficult and require additional preprocessing. These so-called brain control signals are categorized into
three classes: evoked signals, spontaneous signals, and hybrid signals.
This paper focuses exclusively on spontaneous signals. These signals are brain signals produced by
a person with no external cues at their own will. Motor imagery (MI) is of this type and is widely used
as the control signal for classification [15]. MI is imagining movements of the limbs without actually
moving them.

The popularity of MI is due to its high potential in neurorehabilitation and neuroprosthetics. However,
MI based BCI still has limitations and challenges due to the complex nature of EEG signals. EEG sig-
nals generally suffer from high dimensionality due to the number of channels used. EEG signals are
non-Gaussian, non-stationary and non-linear. There are also a lot of different preprocessing methods
that could be applied, each of which has its own advantages and disadvantages. The relationship
between the neuroanatomical state of the user and the BCI’s performance is still unclear [10]. The psy-
chological state of the user especially affects the performance of MI based classification. Due to these
problems, classifications can be complex and suffer from poor accuracy [13]. The biggest weakness
of non-invasive BCI implementations compared to invasive implementations are the substantially poor
signal-to-noise ratio. Mainly due to the electrodes being on the scalp, it does not only measure brain
waves, but it also senses muscular artefacts, has a lower resolution, and is more susceptible to noise
from outside the body. For these reasons, one of the challenges is creating MI based datasets that are
well representative of the motor imagery that was imagined.

As a first step instead of using purely motor imagery, the decoder should be able to classify actual
movements of the limbs (motor execution, ME). The goal of this paper is to develop a decoder that
can accurately classify between two classes, based on the limb that is moved, to be used for real-time
implementation. Motor execution has an overlap between movement and imagery of the same type
and has the same spatial distributions [14]. Motor execution shows also shows higher activation levels
compared to motor imagery in low frequency bands (<30Hz) [14]. So it is expected that classification
with motor execution will have the same if not better results compared to motor imagery with the same
model.
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1.1. General Structure 2

The main reason for using motor related brain activity as a control signal is that in the end a game has
to be played that uses EEG as a controller. It will most likely involve controlling something that should
move on the computer screen, such as a cursor or a character. For example, intuitively it would make
more sense to move the left arm for a left-related movement in the game.

The problem with the acquired EEG signals is that they often contain a lot of information that needs
to be processed and have a poor signal to noise ratio. Therefore preprocessing is crucial in analyzing
EEG. Furthermore for real-time implementation, the algorithms and techniques used also need to be
computationally efficient to prevent a noticeable delay and a bad experience when playing the game.
However, a shorter delay means less time to analyze the data and therefore a simpler, less complex
analysis model which can be detrimental to the accuracy. Therefore a lot of considerations need to be
taken into account between satisfactory accuracy and a short delay in the design.

1.1. General Structure
In order to generate an output from the brain while using the BCI, several steps are involved in the
processing of the EEG signals. The framework and total overview from the raw EEG signals measured
with, for example, the OpenBCI to decode it to a certain label that can be used for the game is discussed
here.

Figure 1.1: Overview of the decode framework

The general structure of the BCI from the brain to controlling a game is as follows:

1.1.1. Signal acquisition
Raw EEG signals are measured with the electrodes on the scalp at a frequency of 250Hz. It has to be
ensured that the measured data has a high signal to noise ratio. Themeasurement group is responsible
for this part of the project. The electrode placement layout used for our own recordings on the OpenBCI
headset is based on the 10-20 International system. In Figure 1.2 the possible electrode placement
with a top view can be seen.
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Figure 1.2: Electrode layout of OpenBCI Ultracortex Mark IV headset (In orange) 1

It is decided by the measurement group that only for 8 positions the EEG signals are recorded. In
Table 1.1 the chosen electrodes for EEG recordings can be seen.

Table 1.1: Electrodes used in the OpenBCI headset

Channel Position
1 Fp1
2 Fp2
3 Fz
4 Cz
5 C3
6 C4
7 P3
8 P4

The channel order is chosen arbitrarily. The position name will be called when referring to a specific
electrode in this paper.

1.1.2. Pre-processing
Raw EEG signals contain a lot of noise and other components which can interfere with the extraction
of meaningful information. Therefore, the incoming data must be pre-processed to remove much noise
as possible without removing the signal of interest. Multiple techniques will be discussed which try to
achieve this.

1.1.3. Feature extraction
By only looking at the EEG signals itself it is hard to see what the user’s intention is. That is why different
algorithms need to be applied to extract features from the data that is discriminatory and related to the
user’s intention.

1.1.4. Classification
The features are then used as input for a model to decode the user’s intention. This model has to be
trained and validated.

1https://shop.openbci.com/products/ultracortex-mark-iv
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1.1.5. Computer Interface
After the user’s intention has been decoded, it can then be used to control something in the game.

1.2. Dataset description
Several datasets are used in this paper. One online dataset obtained from the BCI competitions: BCI
competition II dataset III [2]. A blinking dataset created by Mohit Agarwal and Raghupathy Sivakumar
[1]. And several datasets were measured from our own OpenBCI headset.

1.2.1. BCI competition II dataset III
To test the framework for training a model, a public dataset was selected. The dataset is provided by the
Department of Medical Informatics, Institute for Biomedical Engineering at the University of Technology
Graz. The dataset consists of recordings from one subject who performed a task while seated in a re-
laxing chair. The task involved manipulating a bar in the direction of the arrow displayed on the screen.
The arrow, indicating left or right, appeared at the 3-second mark of the video. Electroencephalogram
(EEG) measurements were collected from three bipolar channels, specifically C3, Cz, and C4, as illus-
trated in the figure 1.3. The sampling rate used was 128Hz, and the data underwent filtering between
0.5 and 30Hz. This dataset is chosen due to the task of decoding the actions left and right, which has
a similar measurement process to the data recorded using the OpenBCI headset.

(a) Placement of electrodes used in the Graz Dataset
(b) The timeline of one recording containing timing beep and

arrow.

Figure 1.3: Characteristics of the Graz dataset; BCI competition II dataset III

1.2.2. Online blinking dataset
The blink data are collected based on the OpenBCI headset. The dataset used is called EEG-IO and
consists of voluntary single eye-blinks with external stimulation. The EEG is recorded for the frontal
electrodes (Fp1, Fp2) with an OpenBCI headset for 20 subjects. Electrode gel is used to ensure contact
between the electrodes and the skin. The left and right earlobes are used as references. Each subject
is asked to sit in a front of computer and perform a single eye blink when a green plus appears on the
computer screen. Each session that is conducted includes around 25 blinks per subject

1.2.3. Own measured data
Several datasets are created with our own OpenBCI headset, measured by the measurements group.

• Own dataset A: This dataset consists of motor execution tasks performed by one subject (middle-
aged, male, healthy). Each measurement contains 10 trials (5 right and 5 left), with a 10 second
rest period before the trials. At the beginning of each trial, a cross is shown on the screen and
after 2 seconds an audio cue is played to attend the subject that stimulation is coming. One
second later either a left or right arrow is shown on the screen for 2 seconds. The subject then
clenches his left or right hand depending on the direction of the arrow shown. Afterwards, a final
5 seconds of black screen will be shown as a rest period. After that, the same trial is repeated.
In total 100 trials are measured.



1.3. Evaluation metrics 5

• Own dataset B: This dataset contains blinking. One subject (21-year-old, male, healthy) was
asked to stay still and not blink for the first 10 seconds. At the 10-second mark, a sound cue is
played and the subject has to blink once. This is done every other 3 seconds after the 10-second
mark. The plots start from the 10-second mark. The plots are ranked from left to right on the
distance between the electrode and the eyes. In total 10 trials have been run and 100 blinks with
ground truths are recorded.

1.3. Evaluation metrics
In order to interpret the results a well-established set of evaluation metrics need to be defined. Different
evaluations may be used for different types of implementation.

Table 1.2: Confusion Matrix

Predicted Class
Class 1 Class 2

True Class
Class 1 True Negative (TN) False Positive (FP )

Class 2 False Negative (FN) True Positive (TP )

The computed models are tested by making predictions on the test data, where these results can
be viewed as shown in Table 1.2. The negative class, class 1, in the case of the Graz dataset, is the
action left and the positive class, class 2, is the action right. To assess and evaluate the results and the
effectiveness of these models, multiple performance measures are used, including model accuracy,
balanced accuracy, F1-score, and Kappa. Model accuracy provides an overview of the overall perfor-
mance in terms of predictions and is simply calculated by dividing the correct predictions by the total
number of predictions. Looking at Table 1.2 the accuracy is defined as shown in Equation 1.1. The
balanced accuracy is similar to accuracy but can be very useful for unbalanced datasets. Although the
classes are balanced in the datasets that are used in this project, the split of training and testing the data
is random. The true positive rate and the true negative rate are combined and averaged. This balanced
accuracy provides, calculated as shown in Equation 1.2 a more reliable measure of performance.

Accuracy =
TP + TN

TP + FP + TN + FN
(1.1)

Balanced Accuracy =

(
TP

TP + FP
+

TN

TN + FN

)
· 0.5 (1.2)

The third measure of performance is the f1-score which is calculated using the precision and recall
of the model. Precision is the rate of correctly predicted positive instances, true positives, out of the
total instances predicted as positive, true positives plus false positives, shown in Equation 1.3. Where
recall is the ratio between correctly predicted positive instances, true positives, and all actual positive
instances, true positives plus false negatives, shown in Equation 1.4. Precision is important to optimize
if false positives should be avoided. Recall, on the other hand, is important to optimize when the
false negatives have to be avoided. The f1-score combines these measures to provide a balanced
estimation of the model’s performance that takes into account both false positives and false negatives.
For this project, the cost of the FNs and FPs can be considered the same. Therefore the models are
not optimized for this measure of performance, but it can be useful to understand the division in the
predictions.

Precision =
TP

TP + FN
(1.3)

Recall = TP

TP + FP
(1.4)

F1-score =
2

1
Recall +

1
Precision

(1.5)



2
Program of Requirements

In this chapter, the requirements for the design are stated, providing a detailed outline of the essential
criteria and specifications that should be met. The following requirements serve as a foundation for
the design phase, helping to define the system’s functionality, performance objectives and operational
constraints.

Must:

• Must use the Graz dataset subsection 1.2.1, to test and evaluate the framework of the decoding
before applying it to the OpenBCI dataset. The classification model, which distinguishes between
two classes, must have an accuracy of at least 80 %.

• Must make a classification model to distinguish between 2 classes, with an accuracy of at least
60 percent based on measurements from the OpenBCI dataset.

• Multiple preprocessing must be considered and evaluated for removing potential artefacts and
noise.

– Must be able to detect and remove eye blink artefacts from EEG.

• The computation must have a maximum latency of 500 ms. In other words, the preprocessing
and feature extraction combined computation time must not exceed this value.

Should:

• The project should assess different classification algorithms and compare their performances on
the dataset.

• Should make a model to distinguish between 3 classes. Where the third class represent no action.
• Make a model to distinguish eye blinks in EEG, with an accuracy of at least 90% percent based
on own measurements.

• The product should be ready for integration with the other subgroups. Therefore it should also
work for a continuous input signal and must provide a continuous output signal

Could:

• Could make a model to distinguish between 5 classes, implementing the cursor characteristics.
• The product could have high compatibility, meaning the model should give an accuracy of 70
percent for every person for own recorded data.

6



3
Preprocessing

Raw EEG signal readings are very sensitive and are often contaminated with artefacts. EEG is af-
fected by artefacts both from biological and environmental sources. Biological artefacts are sources
from within the body and environmental from outside. Some biological artefacts are: eye blinking,
heartbeats, and muscular movement and some environmental artefacts are: the 50Hz power line inter-
ference, movement of the electrodes, EM waves from other devices and so on.

Since EEG signals are already difficult to analyze due to their non-linear and non-stationary behaviour,
as much noise as possible should be removed in order to obtain clean EEG signals. This is especially
true if the signal of interest is weak like the sensorimotor rhythms (SMR), which are oscillatory events
in EEG signals from the motor cortex area of the brain [16], since other sources such as the visual
cortex or muscle artefacts produce strong signals in the same frequency band. Another reason why it
is needed is that the BCI we are designing should also work in real time. This means that the analysis
is based on single trials. The noise during the usage of the BCI may vary with each trial. So prepro-
cessing is needed to standardize it more and increase signal quality. However, with noise removal on
EEG signals, it is difficult to distinguish if the signal of interest has not also been removed. The way
to justify using a certain preprocessing technique in this chapter is to see whether or not it improves
on the classifier accuracy after adding it. Another requirement is that the preprocessing in its entirety
should not take too long since in the end the classifier should work in real-time.

This creates an additional consideration in the design where the combination of the preprocessing tech-
niques should not be too large. Again, the total delay of the entire classifier as stated in the programme
of requirements 2, should be smaller than 500ms. The reason for a delay of 500ms specifically is be-
cause all the groups decided that a game can still be built around this delay and be enjoyable. The
main evaluation metric for using a certain preprocessing method is mainly the accuracy that is gained
in comparison to without using it. This chapter discusses what preprocessing methods are chosen ini-
tially, without evaluating it. The results and evaluation of the preprocessing methods will be discussed
in the results section 6.

The preprocessing methods that will be considered are:

• Bandpass filter
• Eye blink detection with thresholding
• Eye blink detection with random forest (RF) classification
• Eye blink removal with Independent Component Analysis (ICA)
• Common Spatial Patterns (CSP)

These preprocessing methods are chosen mainly due to their popularity in EEG preprocessing. Among
these techniques, 22% use independent component analysis (ICA), 14% use common spatial patterns
(CSP)[15].

7
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3.1. Bandpass filter
Since motor imagery is the control signal for our feature extraction and classification, unwanted signals
present in the EEG should be removed. One of the signals related to motor imagery is sensorimotor
rhythm (SMR). Brain activity recorded via EEG is typically classified into different types depending on
the predominant frequency content, f , which can be seen in Table 3.1.

Table 3.1: Frequency range for each type of brain activity

Type Frequency range
Delta activity f <4Hz
Theta activity 4Hz <f <7Hz
Alpha activity 7Hz <f <12Hz
Beta activity 12Hz <f <30Hz
Gamma activity f >30Hz

In the literature, alpha activity recorded from the sensorimotor region is known as mu activity. Changes
in the mu and beta activity are used to classify the type of motor imagery task [16]. Gamma activity
could also be used to classify MI tasks, however, gamma signals do not reach the scalp with high
enough resolution [16]. So gamma activity will not be considered in our design. The frequency range
of interest for MI is mainly in the alpha and beta activities.

A 4th-order butterworth bandpass filter will be used in our design to include these frequencies and filter
out the unnecessary frequencies. The bandpass filter is between [7Hz 30Hz]. In chapter 6 how we
came to this interval is explained.

3.2. Eye blink artefacts
The most common biological artefacts in EEG signals are blinking artefacts. The EEG is measured
on the scalp with the electrodes. So blinking can be seen in the EEG signals as very high amplitudes
relative to the normal EEG signals because they show propagation over the anterior scalp regions.
This interference overlaps with the motor imagery frequency range of interest [5]. These amplitude
spikes should be the most noticeable in the Fp1 and Fp2 electrodes, based on the International 10–20
system electrode placement, since they are placed nearest in distance to the eyes. After a test with the
OpenBCI headset with blinking where the voltage versus time is plotted, this statement is confirmed.
Figure 3.1 shows a comparison of several electrodes during a segment in an EEG recording with
blinking where the exact time stamps are known when the subject has blinked, ranked from left to right
on its distance to the eyes.

(a) EEG of Fp1 (b) EEG of C3 (c) EEG of P3

Figure 3.1: Own dataset B 1.2.3

From Figure 3.1 it can be seen that on Fp1, the amplitudes due to blinking are orders of magnitudes
higher than the segments with no blinking. In C3 and P3, the blinking artefacts can still be distinguished
but are now significantly lower in amplitude compared to Fp1. From these plots, it can be concluded that
blinking affects every electrode and that it gradually gets weaker in amplitude the farther the electrode
is placed from the eyes. It affects C3 and C4 which are crucial for motor imagery/execution classifica-
tion. So we should expect an increase in classification accuracy after trying to remove these blinking
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artefacts, since these they are not related to motor imagery/execution.

While some biological artefacts like muscular artefacts can be minimized by training the user to relax
and to avoid facial expressions, it is unrealistic to expect the user to stop blinking every time when
imagining for classification. Therefore, removing eye blink artefacts should be beneficial for the accu-
racy of the classifier since blinking will occur during usage. In order to remove eye blinks, it has to be
detected in the first place. Therefore eye blink artefact removal is done in two steps. First, an algorithm
to detect the eye blink needs to be implemented. After the identification of eye blinks in an EEG seg-
ment, another algorithm is implemented for the removal of the artefact. Another reason to have eye
blink detection as a feature is that it can potentially be used as an additional control signal if needed.
A top-level overview of the blinking removal model can be seen at 3.2.

Figure 3.2: Block diagram of blinking removal model

3.3. Eye blink detection
In recent years there are emerging works that try to implement real-time EEG applications. However,
these works have a large computational waste and have an oversimplified blink modelling problem [20].
A high detection accuracy can be achieved with a complex blinking detection model, but that will have
as cost a higher delay. On the other hand, a simpler model can be used but then the detection accuracy
will be lower.

Two methods for detecting eye blinks will be considered: thresholding and random forest classifier.

• Detection with thresholding will serve as a basic way of detecting eye blinks. Depending on the
results we can justify if a more complex method has to be implemented.

• Zhang et al. [20] proposes a short-windowed and random forest-based method for real-time
blink detection, which they call RT-Blink. It balances the computation complexity while also being
computationally efficient enough to work in real time. The algorithm uses a sliding window and
a random forest-based blink detection method which balances the computation complexity and
processing speed.

3.3.1. Eye blink detection with thresholding
A very simple model but computationally efficient method for eye blink detection is to use thresholding.
Thresholding is done by calculating the mean of an EEG segment and then setting the threshold to
n ∗ SD + µ, where n can be any positive number, and SD is the standard deviation and µ is the mean.
If any value in the EEG segment exceeds this value then an eye blink is detected.

3.3.2. Eye blink detection with random forest
RF is chosen as one possibility for eye blink detection due to its high speed and accuracy. RF elimi-
nates overfitting and can achieve generalization for small training samples.

The random forest classifier is an ensemble of decision trees. A decision tree is a flowchart-like struc-
ture where each internal node represents a feature or attribute, each branch represents a decision rule,
and each leaf node represents the outcome or class label.
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The random forest classifier combines the predictions of multiple decision trees to make a final pre-
diction. The random forest algorithm begins by randomly selecting a subset of the training data (with
replacement) to build each decision tree. When selecting a subset of the training data with replacement,
it means that during the random sampling process, each data point is chosen independently, and it has
the possibility of being selected multiple times or not at all. In other words, for each decision tree in the
random forest classifier, the same data point may appear multiple times in the bootstrap sample, while
other data points may be excluded.
In classification tasks, each tree votes for a class label, and the class with the majority of votes is
selected as the final prediction. In Figure 3.3 the general structure of the random forest classifier is
visualized.

Figure 3.3: General structure of random forest classifier. 1

3.3.3. Features for Random forest classifier
From Figure 3.1 it can be seen that Fp1 has the most distinguished amplitudes compared to the other
channels so this electrode is used as a reference to get the features for blinking detection. Three
features are chosen for RF: standard deviation, range of amplitude, and range of grade.
1) SD: Standard deviation is an indicator of how much a signal deviates from its mean and is calculated
as the square root of the variance.

SD =

√
ΣN

i |Xi − µ|2
N − 1

(3.1)

Where N is the length of the EEG data X and µ is the mean of the EEG data. The standard deviation
of an EEG segment with blinking would be expected to be higher than one with no blinking since the
amplitudes of blinking as mentioned before are orders of magnitudes higher. The range of amplitude
and range of grade tell the outline of the blink itself.
2) RA: The range of amplitude is defined as the difference in amplitude between the maximum and
minimum values.

RA = Dmax −Dmin (3.2)
Where Dmax and Dmin is the maximum and minimum value respectively. 3) RG: The rate of grade
indicates the steepness of the data, which is calculated as:

RG =
Dmax −Dmin

imax − imin
(3.3)

Where Dmax and Dmin is again the maximum and minimum value, and imax and imin are the index
positions of these values respectively.

1https://www.tibco.com/reference-center/what-is-a-random-forest
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The detection of eye blinks follows the diagram in Figure 3.4.

Figure 3.4: Detection of eye blink with random forest

3.4. Eye blink removal
After detecting the eye blinks, its artefacts have to be removed. In this design, independent component
analysis (ICA) is considered for eye blink removal. This is chosen due to their success in eye blink
removal in other papers [5]. Independent Component Analysis is a method used to estimate indepen-
dent signal sources from a mixed signal using a multichannel signal. ICA is mainly used for audio blind
source separation. For ICA to work best the signal should consist of signal sources that are indepen-
dent in relation to each other. Since the interference due to blinking does not come from the brain itself,
it should be independent of the EEG signals of interest. Therefore ICA is a great tool to remove it. ICA
algorithms follow one of two general principles: maximization of non-Gaussianity and minimization of
mutual information [19].

All ICA algorithms begin by whitening the data to eliminate any existing correlation. In the case of EEG
signals, which consist of a mixture of brain activity and various noise components, whitening ensures
that the variance is equal on both axes, and there is no correlation in the projection of the data on any
axis. Following the whitening phase, the algorithm involves rotating the resulting axis of the matrix to
minimize the Gaussianity of the projection on all axes. The complete transformation from the original
space is represented by the weight matrix.

S = W ∗X (3.4)

The equation describes the transformation, where X is the data in the original space, W is the weight
matrix, and S represents the different independent sources. The goal of the ICA algorithm is to deter-
mine the weight matrix W that decomposes the EEG signals into independent components (ICs). There
are several variants on ICA. In this paper, the FastICA variant is chosen since it is a computationally
efficient algorithm to perform ICA[19].

How the blink is removed with ICA is by first extracting the independent components (ICs) from all the
channels. Then the average cross correlation is calculated between each IC squared and the Fp1 and
Fp2 electrodes time series squared. If the average cross correlation exceeds a certain threshold then
the respective IC will be zeroed out, otherwise nothing is done. After each IC is checked, reverse ICA
is performed by applying WT to S to obtain X with eye blinks removed. This process is described in a
block diagram in Figure 3.5.
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Figure 3.5: Remove eye blink block worked out in detail

3.5. Common Spatial Patterns
Common Spatial Patterns (CSP) is a commonly used spatial filter for transforming EEG signals. It is
mostly used to extract frequency band variances as features by spatially transforming a multichannel
EEG signal. The transformed signal will have a maximum variance for one class and a minimum for
the other[3].

SupposeX ∈ RNxT , whereX is your EEG signal in matrix form with N channels and T time samples.
X is also assumed to be centered and scaled. CSP transforms this matrix into: Xcsp(t) = WTX(t)),
where W ∈ RNxN is a matrix of which its column vectors is composed of spatial filters. Each row Xcsp

is then one CSP component in the filtered domain. The spatial filters are chosen such that for each
CSP component, the variance should be maximal for one class and minimal for the other. So as a
feature, the variance is taken for each CSP component and used for model training. To compute W
the following simultaneous diagonalization of two covariance matrices are solved:

WTΣ+W = Λ+,

WTΣ−W = Λ−,with Λc diagonal
(3.5)

Where Σc is the covariance matrix of class c. And Λc is the diagonal matrix of class c. The scaling of
W is fixed with the constraint:

Λ+ + Λ− = I (3.6)

The simultaneous diagonalization is solved by finding the solution to the following general eigen-
value problem:

Σ+w = λΣ−w (3.7)

Then Eq. 3.5 is satisfied with the generalized eigenvectors wj(j = 1, ..., N) obtained from Eq. 3.7.
Notice from Eq. 3.5 and Eq. 3.7 that by left multiplying Eq. 3.7 with wT , the equation can be rewritten
to λ =

λ+
j

λ−
j

. So λ in Eq. 3.7 is not the same as in Eq. 3.5. The numerator and denominator is one
entry in the diagonal matrix in Eq. 3.5 corresponding to its class. λc

j is the variance in class c due to
spatial filter wj . Due to the constraint in λ+

j − λ−
j = 1, a large value λ+

j corresponds to a small value
in λ−

j and vice versa. So in order to discriminate the best between the two classes, the generalized
eigenvector from Eq. 3.7 should be chosen such that its corresponding eigenvalue λ is as large or as
small as possible.

Finally after transforming X to Xcsp the log variance of each row in is taken as feature. It is calculated
as:

log(WTXXTW ) (3.8)



4
Feature Extraction

This chapter will illustrate and elaborate on the framework for feature extraction methods. Various
features can be used to represent the properties of the EEG signal, enabling the extraction of relevant
information. The effectiveness and the elaboration of the chosen features will be discussed in the
following sections.

4.1. Segmentation
In the scope of this project, the features are computed for different sizes of the EEG signal in order to find
the most ideal sample window. The ideal sample window should be a balance between classification
accuracy and time accuracy. Before the features are extracted from the time window, the window is
multiplied by a function. The rectangular, Hamming and Hanning functions were considered and their
time domain representation is shown in Figure 4.1. These functions are used to mitigate the spectral
leakage that can occur when a portion or segment of data after fragmentation is transformed from the
time domain to the frequency domain. The Hanning and Hamming functions decrease the influence of
boundary data and therefore change the signal to a more periodic one. [17] An often-used overlapping
percentage of 50% was applied for the segmentation of the dataset.[6]

Figure 4.1: Hanning, Hamming and the rectangular window. N is the window size in samples.

Figure 4.2 displays a recording of the Graz dataset. As described in chapter 1, the first three
seconds of the recording contain no action of the user. Therefore the first three seconds are removed
to classify the signal for 2 classes, left and right. Consequently, the remaining portion will be subjected
to fragmentation and then feature extraction. The figure shows the fragmentation achieved using a
time window of 1 second and a 50% overlap, indicated by the broken lines.

13
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Figure 4.2: Example

4.2. Features
Time domain features represent the temporal characteristics of EEG signals by analyzing the time
series of the EEG data. When examining the time domain signal, the first features used are statistical
features, mean, median, variance, skewness, and kurtosis. The mean is calculated over the absolute
values of the signal, which will represent the average magnitude of the signal. The variance quantifies
the amount of variation in the signal and the median is the middle value of the data.

Mean =
1

N − 1

N∑
i=1

abs(x[i]) = x (4.1)

Variance =
1

N − 1

N∑
i=1

(x[i]− x)2 = σ2 (4.2)

Skewness provides insights into the asymmetry of the data distribution, indicating whether it is
skewed to the left or right. Kurtosis can be used as a measure of the distribution’s tail behaviour,
indicating the degree to which it deviates from a Gaussian distribution. A non-statistical feature that
can have importance in classifying the signal is the energy. It is computed by squaring the whole signal
and thus can emphasize amplitude dynamics that vary from the usual amplitude range. [4]

Skewness =
1

N − 1

N∑
i=1

(x[i]− x)3

σ3
(4.3)

Kurtosis =
1

N − 1

N∑
i=1

(x[i]− x)4

σ4
(4.4)

Energy =

N∑
i=1

(x[i]2) (4.5)

In addition to the statistical features, more advanced techniques are used for extracting information
from EEG signals. One such measure is Shannon entropy, which provides a measure of the signal’s
complexity and unpredictability. It ranges between 0 and 1, where the higher the value the higher the
disorder and unpredictability. This feature can add value for capturing complex patterns and variations
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within the data. [4] Equation 4.6 shows the formula to calculate the Shannon entropy, where pi is the
probability of an occurrence of each sample.

Entropy = −
∑
i

pilog(pi) (4.6)

Line length, sometimes referred to as the curve length, is the total vertical length of the signal.
It has been suggested as a relevant feature for tasks such as seizure detection, as it captures the
characteristic abrupt changes and fluctuations associated with epileptic events. Although the effect of
motor control and imagery does not cause major changes, the line length can still be used to determine
subtle changes. [7]

Line Length =

N−1∑
i=1

|x[i]−x[i−1]| (4.7)

Another feature which can be used for the classification is the nonlinear energy (NE). It extends
on the concept of energy, mentioned earlier. To generate an oscillating signal it can be assumed that
energy is the squared product of the signal’s amplitude and the signal’s frequency. A high NE can thus
represent high-frequency components and amplitudes there is a high. This feature which takes the
oscillation into account is shown in Equation 4.8. [11]

Non-Linear Energy =

N−2∑
i−1

(x2[i]−x[i+ 1]x[i−1]) (4.8)

Changes in the EEG signal due tomotor imagery or control can be observed both in the power frequency
spectrum and the time domain. Features derived from these domains, such as the relative power
spectral density (PSD) of the theta, alpha, and beta frequency bands, are often chosen for analysis
[18]. During motor imagery, event-related desynchronization (ERD) typically occurs in the alpha band
(7-12 Hz), contrary to the notion of increased activity. Other frequencies can also reveal valuable
information. To calculate these features, the power spectral density for all frequencies in the band is
added up together and divided by the total power of all the signals. This division ensures compatibility
across recordings with different characteristics, enabling them to be compared during classification. It’s
also worth noting that other methods for feature extraction from EEG signals, such as time-frequency
analysis, can provide more information but will not be used in this project.

Statistical features can also be computed for the power spectral density of EEG signals. The first
feature used is the weighted mean frequency, WMeanF, also known as the mean frequency, which
can give a good measure of the average frequency of the EEG signal. It computes the mean of the
frequency distribution, using the normalized PSD as the weight for each frequency, Sn. The weighted
variance of the frequency or the standard deviation of the frequency squared, the WVarF, assesses the
spread or variability of the frequency components around the mean frequency. A higher variance of
frequency can indicate a larger range and greater variability in the EEG signal. The mode frequency,
or the frequency with the highest power in the PSD, is also used as a feature.

WMeanF =
∑
k

Sn[k] · f [k] (4.9)

WVarF =
∑
k

Sn[k](f [k]−WMeanF)2 (4.10)

Using the found mean frequency and standard deviation of the frequency, the skewness and kurto-
sis can be calculated according to Equation 4.11 and Equation 4.12. These measures could provide
insights into the shape of the frequency distribution. The last feature applied for the classification is
the spectral entropy. The spectral entropy can be calculated using the formula shown in Equation 4.6
where x is in this case the normalized PSD.

WSkF =

N∑
k

(Sn[k]−WMeanF)3

(N − 1) ∗WVarF1.5 (4.11)

WKF =

N∑
k

(Sn[k]−WMeanF)4

(N − 1) ∗WVarF2 (4.12)



5
Classification

In this chapter, the classification process will be discussed. This includes the distribution of the test
and training data and the diverse classifiers to compare the different methods.

The classification is the last step of the decoding of the EEG signals. For classifying the signals, a
machine learning algorithm or model is used, referred to as a classifier. This classifier is trained where
it analyzes patterns and relationships, to assign and predict a label for every fragment. To train and test
the effectiveness of the model, features, computed for all the recordings/fragments of recordings, have
to be divided into a train and test set. The most common method is K-fold cross-validation, which can
also be used as Leave One Subject Out (LOSO). K-fold cross-validation splits the fragments, where for
every fragment features were computed, in k number of train and test groups. Therefore, the model is
trained and then tested k times with a different division of the data. A visualization is given in Figure 5.1.
For LOSO this k value is the number of fragments or samples available, and therefore all but one
fragment is used for training the model, and one is used for testing. The division of the dataset is only
done with respect to the recordings and therefore not on all different segments generated. Otherwise,
the model can be trained with data similar to the test data.

Figure 5.1: K-fold cross-validation for the total data. Picture from:
https://www.philschmid.de/k-fold-as-cross-validation-with-a-bert-text-classification-example

For this project, 10-fold cross-validation is used. This will result in 10 different sets of training and
test data with a corresponding ratio of 90% and 10%. This methodology is employed to evaluate the
model. Furthermore, on the training set, 9-fold cross-validation is applied. This will further divide the
training data into a smaller training dataset, referred to as the validation training set, and a separate
validation test dataset. This process is shown in Figure 5.2. This further cross-validating is done
to prevent overfitting and determine appropriate parameters for the model. The subset enables fine-
tuning of the models and parameters of the models and dimension reduction will be tuned according to
these validation datasets. Before the features are used as training data for the classifier, they undergo
dimensionality reduction. Principle Component Analysis (PCA) is chosen for this task, because of
its efficient performance.[8] PCA is a procedure that reduces the dimensionality while preserving the
variance of the original feature space, This technique is employed in the validation process, where it
will be tested for different hyper-parameters. This will allow for comparing and investigating the impact
of varying the dimensionality on the performance of the computed models. For every number of the

16
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components, PCA is applied to the training data, which will result in reduced feature space. This
reduced feature set is used in the grid search technique given by the sklearn package. Grid search is a
method for performing hyper-parameter optimization and thus finding the parameters of the classifiers
that will result in the highest accuracy. After the 9-fold cross-validation, the average is taken over the
obtained accuracies for all different numbers of components. The highest accuracy value and the most
used parameter configuration are then used for evaluating the model using the test set.

Figure 5.2: K-fold cross-validation for the parameter optimization. Picture from:
https://www.philschmid.de/k-fold-as-cross-validation-with-a-bert-text-classification-example

5.1. Classifiers
In this paper, the performance of the preprocessing and features extraction mentioned in the previous
chapter is compared with multiple classifiers: Logistic Regression (LR), Linear Discriminant Analysis
(LDA), K-Nearest Neighbours (KN), Decision Tree, Gaussian, and Support Vector Machine. The LDA
will be used for the evaluation of selecting the best preprocessing techniques to obtain the highest
accuracy. The classifiers will then be compared to one other, with the optimal techniques.

Linear Discriminant Analysis
Linear discriminant analysis (LDA) is a dimensionality reduction and classification algorithm that learns
the most discriminative axes between the classes. LDA aims to find the best linear projections to
maximise the distance between the mean and minimize the scattering, the standard deviation, of the
class. This relation is called Fisher’s criterion and showed in equation 5.1.

J(W ) =
(µ1 − µ2)

s21 + s22
=

Between-class variance
Within-class variance

(5.1)

LDA reduces the dimensionality of the dataset until the dimensions are equal to the unique classes
minus 1. Important to mention is that the features whose dimensions are reduced are approximated
by a Gaussian distribution. LDA has the hyper-parameter ’solver’, which indicates which algorithmic
approach is used to find the projections. There are three solver types where one will be chosen for the
evaluation of the test set, i.e., Singular Value Decomposition, Least Squares Solution and Eigenvalue
Decomposition. For example, eigenvalue decomposition extracts the eigenvectors associated with the
largest eigenvalues. These eigenvectors define the directions in the feature space along which the
data will be projected. [9]

https://www.philschmid.de/k-fold-as-cross-validation-with-a-bert-text-classification-example
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Figure 5.3: Two different LDA axes and their sketches. The axis, seen as the y-axis, is not maximized by the Fisher Criterion
and the other axis, the x-axis, is.

5.1.1. Logistic Regression
Logistic regression is a binary classifier that estimates the probability, by evaluating a logistic function to
model the relationship between the features and their corresponding labels. If the estimated probability
is greater than 50%, the model predicts the positive class, in the other case the model predicts the
negative class.

Figure 5.4: The concept of Linear Regression versus Logistic Regression on a binary dataset. Picture from:
https://towardsdatascience.com/

Where linear regression uses the ’least squares’ method that minimizes the error of the relationship,
logistic regression uses the maximum likelihood which will act as its cost function to determine a rela-
tionship with the labels. For every sample, the likelihood is computed and summed together, which will
give the likelihood of the data given the relationship. To optimize and find the highest likelihood, the
logistic regression uses regularization a penalty term to the loss functions. Logistic regression can use
Lasso regularization (l1) and Ridge regularization (l2) as its hyper-parameter ’penalty’. Lasso regres-
sion adds a penalty term to the loss function that is proportional to the sum of the absolute values of
the coefficients, the parameters or the weights assigned to each feature variable. This means that the
size of the penalty is determined by the total magnitude of the coefficients. This penalty promotes the
model to select a few features by changing some coefficients to zero. In other words, Lasso regres-
sion performs feature selection by shrinking less important coefficients to zero, effectively removing
those features from the model, which can be useful for high-dimensional datasets. Ridge regression
on the other hand adds a penalty term that is proportional to the sum of the squared values of the
coefficients. This penalty term encourages the model to spread the weight across all the features and
avoids extreme or large coefficient values. [9]

K Nearest Neighbors
K-nearest neighbours classifier (KN) is a rather simple classifier, that is a type of instance-based or
memory-based learning. KNN compares the new data points which have to be classified, to the training
data points and finds the k nearest neighbouring points. Majority voting is then used on these k nearest

https://towardsdatascience.com/
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neighbouring points to determine the class label. The value k is a hyperparameter, which causes
overfitting when chosen too low, and underfitting when chosen too high. Therefore multiple values
for k are evaluated to obtain the highest accuracy. ’Weights’ is another hyper-parameter that will be
tuned for the KN classifier. It can be set to uniform where every point is weighted equally, or distance,
where the weight is higher when the points are close. Another parameter is ’algorithm’, which indicates
which algorithm is used to find the closest data points. This will be set on ’auto’, which will attempt to
decide the most appropriate algorithm based on the values to the fit method. Brute force for example
computes the distances between the new point and all training points but is not used in the parameter
search process.

Decision Tree
One of the few classifiers that do not need feature scaling or centring is the decision tree classifier.
The classifier builds a tree where every node contains conditions or features that split the data. The
classifiers can have different ways of feature selection and assessing the quality of the node split. Also,
there are some stopping criteria like the maximum depth of the tree (the maximum number of levels
in the tree), the minimum samples needed for a split and more to prevent the tree from growing and
overfitting. The decision tree is a classifier where a lot of hyperparameters can be defined by the user,
but in this project, only the first two hyperparameters will be used and optimized. On the end of the tree,
the location of the leaves, the labelling takes place. One more advantage of the decision tree is the
fact that the model is not a black box model but a white box model and therefore the labelling can be
explained if needed. A disadvantage of this classifier is the need for orthogonal decision boundaries
to an axis, thus they are sensitive to data rotations. This issue can be limited by applying PCA, which
can result in a better rotation of the data.

Gaussian Naive Bayes
Gaussian Naive Bayes (GNB), is a classifier that assumes the features can be explained as a Gaussian
distribution and are independent from each other. The classifier is trained by estimating the mean and
variance of each feature. When classifying new data, the Gaussian NB classifier applies Bayes’ theo-
rem to calculate the posterior probability of each class. The posterior can be calculated by multiplying
the class prior with the class-conditional probabilities for each feature value. The predicted class is the
one with the highest posterior probability. Only the hyper-parameter ’var smoothing’ is optimized for
this classifier, which adds a value to the variance. This variance is calculated for the training data and
can be very small in some cases. The hyper-parameter prevents the Gaussian formula can have a
very large output.

Support Vector Machine
A support vector machine (SVM) is one of the most popular models in machine learning. This classi-
fication algorithm will try to find the optimal separation between different classes of data points. The
algorithm is based on the concept of maximizing the margin between the so-called hyperplane that
separates the classes and the nearest data points from each class, known as support vectors. This
classifier is, however, sensitive to different feature scales, in order to get the best-performing model.
For this final classifier, 3 hyper-parameters are used to optimize the accuracy C, kernel and degree.
A kernel is the most important parameter of the classifier because it transforms the data into a space
where it can more easily be separated. The degree represents the order of the polynomial of the kernel
function. A high degree can cause overfitting. To prevent the model to overfit, for example for outliers,
the SVM does not have to separate all the data from the classes. This is called soft margin classifi-
cation. C will determine how much miss classification is to be avoided, which is shown in Figure 5.5.
[9]

Figure 5.5: The concept of Support Vector Machine with the hyper-parameter [9]



6
Results

The chapter presents the findings and analyses derived from the data collected during the study. The
primary objective of this section is to provide a comprehensive overview of the outcomes and observa-
tions obtained through research and analysis. By presenting the results, we aim to address the program
of requirements outlined in chapter 2. It is crucial to acknowledge the limitations and potential sources
of error, and we will address these in the discussions in chapter 7.

6.1. Eye blink detection and removal
The main metric used to evaluate eye blink detection is the F1-score. This is because it is important
for the model’s ability to both capture blinks and be accurate with the blinks it does capture. First, the
results of eye blink detection with thresholding are shown in Table 6.1 with different threshold values.
The results are obtained with EEG segments of one second with both datasets filtered with a 4th-order
bandpass filter [7Hz 30Hz]. Both datasets (detailed description in section 1.2) are segmented such
that there is an equal amount of blinks and no blinks. Dataset B contains 100 blinks and 100 no blinks.
EEG-IO contains 468 blinks and 468 no blinks.

Table 6.1: Average scores with thresholding for eye blink detection

Threshold Dataset Recall Precision F1 score

1.5SD + µ
EEG-IO 1.00 0.50 0.66
own dataset B 1.00 0.50 0.66

3SD + µ
EEG-IO 0.92 0.53 0.67
own dataset B 1.00 0.53 0.70

3.5SD + µ
EEG-IO 0.70 0.58 0.64
own dataset B 0.98 0.67 0.80

4.5SD + µ
EEG-IO 0.19 0.58 0.29
own dataset B 0.39 0.79 0.52

It can be seen that for a standard deviation of 1.5 the recall is 1.0 for both datasets while the precision is
0.5. This indicates that the threshold is too low and that every EEG segment is predicted as containing
a blink. For 4.5 SD the recall score for both datasets is on the lower end. This indicates that now the
threshold is too high and that most EEG segments is predicted as containing no blinks. The threshold
value with the best scores for both datasets is 3.5 SD +µ, since these have on average the best F1
score.

In Table 6.2, the average score for random forest eye blink detection in a 10-fold cross-validation with
the same conditions as eye blink detection with thresholding can be seen. Comparing this to Table 6.1
the value for each score for the random forest is better. So, random forest will be used to detect eye
blinks for removal.

20
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Table 6.2: Average scores of 10-fold cross-validation for random forest for eye blink detection for EEG segments of 1 second.
Both datasets are filtered with a 4th-order bandpass filter [7Hz 30Hz].

Dataset Recall Precision F1 score
EEG-IO 0.83 ± 0.15 0.83 ± 0.06 0.84 ± 0.09
Own dataset B 0.97 ± 0.06 0.97 ± 0.04 0.97 ± 0.04

In Figure 6.1, two blinks are removed in an EEG segment of own dataset B. This shows that the
blink removal does work. Additional examples of blink removals can be seen in section A.5

(a) EEG before blink removal (b) EEG after blink removal

Figure 6.1: Example of blink removal for the Fp1 electrode with the algorithm

6.2. Classification
In the following sections, observations regarding the results will be discussed for the different datasets
mentioned chapter 1. Tomaintain clarity and an organized results section, specific results are presented
in this chapter. All results containing more detailed performance metrics are shown in the Appendix A.
The tables shown contain performance measures in the format of mean± standard deviation.

6.2.1. Graz dataset
Raw data
In the case of the Giraz dataset, the raw data has been pre-processed using a bandpass in the range
from 0.5 to 30 Hz. Looking at the accuracies shown in Figure 6.2, a few things are noteworthy. Firstly,
when a time window applied of 6 seconds, the accuracy is higher for the Hanning and Hamming window
in comparison with the rectangular window. For smaller time windows, the rectangular window performs
better or the same as the two other windows. The rectangular window especially performs better than
the other window functions when a 3 seconds time window is used. Examining the tables shown in
subsection A.1.1, the standard deviation remains relatively stable across different window functions.
The behaviour of the balanced accuracy is roughly comparable to the accuracy, although the Hanning
window displays a slightly lower extreme, shown in Figure 6.3.

Table 6.3: Accuracy for raw Graz dataset for all window sizes.

Time window [s] Rectangular window Hanning window Hamming window
0.5 0.65± 0.05 0.65± 0.05 0.65± 0.05
1 0.68± 0.05 0.66± 0.05 0.67± 0.05
2 0.74± 0.05 0.72± 0.05 0.72± 0.05
3 0.78± 0.04 0.73± 0.05 0.74± 0.04
6 0.82± 0.06 0.85± 0.10 0.85± 0.08
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(a) Rectangular window (b) Hanning window (c) Hamming window

Figure 6.2: Accuracy for different window sizes

(a) Rectangular window (b) Hanning window (c) Hamming window

Figure 6.3: Balanced accuracy for different window sizes

Filtered data
This section shows and compares the results for different window functions when the data is filtered
using a 7-30 Hz bandpass filter. As depicted, in the accuracy plots of Figure 6.2, both the data when
multiplied by Hanning and Hamming windows show increased accuracies in comparison with the raw
or partially filtered data, shown in Figure 6.2 and Table 6.4. This can also be confirmed by the tables
presented in subsection A.1.2. The accuracy is still higher for the Hanning and Hamming window in
comparison when the rectangular window for the 6 seconds window. Moreover, their accuracies are
higher for all time windows, whereas the rectangular window accuracies remained about the same.
The Principal Component Analysis parameter that yields the highest accuracy in the validation process
becomes lower the higher the time window. In this case, Hanning and Hamming applied the dimension
feature space remains bigger, in comparison when the rectangular window is employed.

Table 6.4: Performance measures for a window size of 0.5 seconds

Time window [s] Rectangular Window Hanning Window Hamming Window
0.5 0.65± 0.04 0.65± 0.05 0.65± 0.05
1 0.69± 0.05 0.67± 0.058 0.69± 0.05
2 0.74± 0.07 0.71± 0.06 0.73± 0.06
3 0.79± 0.04 0.77± 0.06 0.77± 0.05
6 0.84± 0.07 0.88± 0.06 0.88± 0.06

(a) Rectangular window (b) Hanning window (c) Hamming window

Figure 6.4: Accuracy for different window sizes



6.2. Classification 23

Comparing Classifiers
The previous subsection showed that the highest performances were obtained using the Hanning win-
dow and applying the extra filter. Therefore these attributes will be used to compare how other clas-
sifiers perform and if they can increase the accuracy. These results are shown in Figure 6.5. The
highest accuracies are obtained using the classifiers: Logistic Regression and Linear Discriminant Anal-
ysis. Applying PCA seems to have the most impact on the accuracy for Logistic Regression, Gaussian
Naive Bayes, Support Vector Machine and especially Linear Discriminant Analysis. For the classifiers
K-Nearest Neighbours and Decision Tree, the accuracy does change that much when applying different
numbers of components for the dimensionality reduction.

Table 6.5: Performance measures for a window size of 6 seconds with different classifiers on Hanning window

Accuracy Balanced Accuracy
LR 0.87± 0.05 0.89± 0.06
DTree 0.84± 0.08 0.85± 0.09
KN 0.83± 0.11 0.83± 0.14
GNB 0.80± 0.10 0.81± 0.13
SVC 0.85± 0.07 0.87± 0.07
LDA 0.87± 0.06 0.89± 0.07

(a) Accuracy (b) Balanced accuracy

Figure 6.5: Accuracy’s for different classifiers obtained using the Hanning window function

6.2.2. Classification of OpenBCI dataset
In this subsection the performance of the OpenBCI dataset is discussed. Important to note is that the
dataset contains 3 recordings of 12 actions.

Raw
Figure 6.6 shows the accuracies for the different time functions and for the time windows of 0.5 and 1
second. The accuracies when a time window of 0.5 second is used around 50 percent. A time window
of 1 second, gives a higher accuracy overall. The results show a high variance.

(a) Rectangular window (b) Hanning window (c) Hamming window

Figure 6.6: Accuracy for different window sizes



6.2. Classification 24

Table 6.6: Accuracy for all time windows

Time window [s] Rectangular Window Hanning Window Hamming Window
0.5 0.56± 0.20 0.62± 0.16 0.62± 0.19
1 0.65± 0.14 0.57± 0.07 0.61± 0.09

Filtered
Filtering the OpenBCI data improves the accuracy for all function windows, but the magnitude of the
change varies. The rectangular window function, shows the highest accuracy and increase of accuracy
for both time window sizes. The other windows increase but not as much. The results are shown in
Figure 6.7 and subsection A.2.2.

Table 6.7: Performance measures for a window size of 1 second

Time window [s] Rectangular Window Hanning Window Hamming Window
0.5 0.66± 0.14 0.57± 0.07 0.60± 0.09
1 0.76± 0.16 0.65± 0.14 0.65± 0.14

(a) Rectangular window (b) Hanning window (c) Hamming window

Figure 6.7: Accuracy for different window sizes

Filter and blink removal
Adding the blink removal to the pre-processing process gives a small increase in the accuracy for all
window functions in comparison when only a bandpass filter is applied. The use of the blink removal
does not always result in a higher accuracy for a time window of 0.5 seconds, but it does for the 1
second window.

(a) Rectangular window (b) Hanning window (c) Hamming window

Figure 6.8: Accuracy for different window sizes

Comparing Classifiers
The previous subsection showed that the highest performances were obtained using the rectangular
window and applying next to the bandpass filter a blink artefact removal. These attributes will be used to
compare how other classifiers perform and if they can increase the accuracy. These results are shown
in Figure 6.9. The highest accuracies are obtained using the classifiers: Logistic Regression, Support
Vector Machine and Linear Discriminant Analysis. Applying PCA seems to have the least impact on
the accuracy of the classifier K-Nearest Neighbours. The plots are shown in subsection A.2.4
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Table 6.8: Performance measures for a window size of 1 second

Time window [s] Rectangular Window Hanning Window Hamming Window
0.5 0.66± 0.14 0.57± 0.07 0.60± 0.09
1 0.76± 0.16 0.65± 0.14 0.65± 0.14

Figure 6.9: Accuracy for different classifiers

Figure 6.10: Balanced accuracy for different classifiers

6.3. Time delay
The average computing times for both the features and eye blink removal algorithm can be seen in
the following two tables. The average calculation time for the eye blink removal algorithm does not
increase significantly even when the window size goes up to 1500 samples. It is assumed that the
average calculation time is around 24.4ms for every window size below 1500 samples. The longest
delay recorded on average is 26.79ms. The longest delay in the feature calculation time is 7.42ms for
a window size of 768 samples. Then the longest delay combining the feature extraction and eye blink
removal is 34.21ms.
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Table 6.9: Time delay of the feature calculation for different window sizes

Window size [samples] Average feature calculation time [ms]
64 4.67
128 6.09
256 6.40
384 5.64
768 7.42

Table 6.10: Average time delay random forest blink removal for different window sizes

Window size [samples] Time [ms]
125 24.77
250 22.98
375 23.22
500 26.79
1500 24.47
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Discussion

As discussed in chapter 6, the blink removal algorithm gives an increase in accuracy. But it can most
likely still removes signals that could be of interest. The EEG signal shape after blink removal in the
regions between blinks is clearly different, which is shown in section A.5. It was assumed that the eight
electrodes used in our OpenBCI only picked up eight independent sources, but in reality, there are
most probably more independent sources at play. A requirement for ICA to work is that the amount of
observations (channels) is equal to the number of independent sources. It is hard to tell exactly how
many independent sources there are. Therefore it could be argued that ICA is not the perfect solution
for blink removal. We have also not tested the extent to which the relevant signals have been removed.

Only the Butterworth filter was considered for a bandpass filter. Other types of filters could have been
considered, which might have improved the overall accuracy. Furthermore, the cut-off frequencies of
the bandpass filter were determined by the alpha- and beta-band frequency ranges. However, there
is variation between studies about the frequency range of the alpha activity. In a study by Kirar, Jyoti
Singh and Agrawal, R. K.[12], it is mentioned that alpha activity lies between 7-12Hz, however in a
study by Padfield, N.[16] it states that it lies between 8 and 12 Hz. We have found more studies that
either use the 7-12 or 8-12 range for the alpha band. So it is not entirely clear which frequency range
is correct for the alpha band.

All training and validation data for random forest eye blink detection are based on voluntary blinks.
There was not enough time to set up a validation set with involuntary blinks (natural blinks), which
could have led to a different accuracy.

In the analysis of the results of the Graz dataset, it was observed that the use of the Hanning window
function with a size of 6 seconds resulted in the highest accuracy. Applying the Hamming window gave
a little lower but close accuracy, which can be expected due to the similar behaviour of the two functions.
Rectangular function on the other hand gives for the same window size a significantly lower accuracy.
It could be speculated that the boundary data, therefore, is not so useful. The Graz dataset consists
of recordings of 9 seconds, where the last 6 seconds are supposed to be action. The documentation
does not really give clarity if those 6 seconds could still contain some periods, most likely located at
the edges, where the subject did not perform an action. This could mean that the segmentation of the
data will cause incorrect labels for the segment placed at the edges, and smaller time windows are not
useful for comparison. For lower window sizes, the rectangular window function has about the same
accuracy or even higher than the other two functions. So, it is uncertain which time window function
performs the best when applied to another dataset. On this dataset, the Hanning function gave the
highest performance, with the Hamming function as a close second.

Applying the bandpass filter causes an increase in the accuracy of all time windows, which can sug-
gest that those lower frequencies still contain components that are not beneficial for classifying motor
imagery or motor executions. This is in line with the literature, which states that these activities are
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more noticeable in the alpha band, after 7 Hz and before 12 Hz.

In the classification process, the PCA has a high impact on the accuracy. Overall, larger time windows
resulted in more distinct features, allowing the training data to be reduced to a smaller number of fea-
ture spaces to achieve higher accuracy. Contrarily, smaller time windows showed a higher number
of components or feature spaces to achieve the highest accuracy. This could be due to the fact that
smaller windows contain less data, and therefore needs more features for effective analysis.

The last point of discussion for the Graz dataset is about the results of the different classifiers. The Lin-
ear Discriminant Analysis and Logistic Regression gave the best-performing models for the 6-second
Hanning window. The pre-processing methods are selected using the LDA classifier, therefore it is
expected that the model works relatively well and so other models have a disadvantage. The results
also indicate that LR could be a possible alternative for this type of analysis.

In the analysis of the results of the OpenBCI dataset, and the recordings made by the measurement
group, it can directly be seen that the variance is very high. This is due to the small amount of data
these recordings consist of. Although the mean accuracy can give an intuition of the performance of
the model, it is hard to say which model and methods will work better when more data is recorded and
added to the training set.



8
Conclusion

The goal of this subgroup is to develop a decoder of EEG signals that can accurately produce outputs
based on the limb that is moved to be used in real time. In order to realize this goal several require-
ments are set as stated in chapter 2.

Firstly, a framework for a model is developed based on the Graz dataset. This model can distinguish
between two classes with an accuracy of at least 80%. Classification of the data for three classes can
be accomplished, but the results were not made due to limited time.

A 4th-order Butterworth is used to filter out frequencies outside the interval of [7Hz 30Hz]. After apply-
ing this filter to the Graz dataset for the Hanning and Hamming window both the data show increased
accuracies in comparison with the raw or partially filtered data of the Graz dataset. The average accu-
racy in classification between two classes for the Hanning window on a window size of 6 seconds is
the best with the LDA classifier, with an accuracy of 0.88± 0.06.

Another requirement met, is that eye blink artefacts have to be removed. In order to be able to remove
eye blinks it has to be detected first. By using a random forest classifier, eye blinks that are present in
EEG from the OpenBCI headset can be detected with an f1-score of 97%. Using ICA it is then possible
to remove these eye blinks.

The last requirement is that the decoder has to be developed that can distinguish between two classes
on our own OpenBCI dataset, with an accuracy of at least 60%. After employing both the Butterworth
bandpass filtering and eye blink removal algorithm with an LDA classifier. An average accuracy can
be achieved 0.76%± 0.16 on a rectangular window of one second.

Since the decoder is going to be used in real-time a requirement is that the decoder must have a max-
imum latency of 500ms. The latency is defined as the combined computation time of preprocessing
and feature extraction. The longest delay for the eye blink removal algorithm is 26.79ms. The biggest
delay for feature calculation on average was 7.24ms for a window size of 768 samples. Then the total
contribution to the time delay on a window size of 768 for a single classification is 34.21ms. Any window
size lower than 768 will have a lower time delay. So the decoder is suitable for real-time application
but this has not been demonstrated.

The main requirements have been met and it is possible to continue with this model for integration with
the other subgroups and implement it in an actual real-time BCI. The other ’side’ requirements (shoulds
and coulds), can be finished when there are more recordings given from the measurement group.

8.1. Future Work
Other preprocessing methods such as CAR and Surface Laplacian which are also popular methods
have been considered in this paper to implement, however, the requirements for these methods to work
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properly were not met so they were not tested. Common average referencing (CAR) is mostly used
as a basic dimensionality reduction technique. This method decreases noise across all electrodes by
computing the average of the signal of all electrodes and then subtracting it from the EEG at every
electrode for every sample. The motivation behind using this method is that the head can be assumed
as a sphere and assuming that the potential recorded on the whole sphere due to current sources is
zero. However, in practice, to achieve such an ideal reference one would require a large number of
electrodes that cover the whole head uniformly, which is not the case in our implementation where 8
channels are used and are not distributed uniformly. This method could be attempted if more elec-
trodes are available.

Surface Laplacian (SL) refers to a method of displaying EEG with a high spatial resolution. The EEG
scalp potential of SL is generally measured based on two main assumptions: 1) the electrodes are
equidistant, and 2) the surface of the scalp in the near-electrode region is as flat as possible. The new
value for each electrode is the average of the sum of four electrodes in the near region. The reason
this was not tested is that our layout with eight electrodes could not meet the two assumptions. Again
this is mainly due to not having enough electrodes. This method could be attempted if more electrodes
are available.

In this paper only ICA is considered for blink removal. Other algorithms exist, such as an algorithm
based on empirical mode decomposition (EMD) whichmaywork better in retaining the signals of interest
after removing blinks.
There is still a lot of room for improvement in the feature extraction. Firstly, the paper does not evaluate
the different features that are implemented, apart from the literature. Therefore, it is not known whether
some features actually add information to the model. By comparing the feature and their impact on the
model the best features can be selected and the worst-performing ones can be left out. The second
revision that could be done is adding features from the time-frequency domain, especially wavelets,
which are very powerful according to the read literature.
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A
All Results

Please note that there are a few typographical errors present in the plots presented in this appendix.
However, these errors do not affect the content or findings of the paper, and they are correctly referred
to and discussed in the accompanying text. We apologize for any confusion that these typos may cause.
In some plots where the hamming time window is used to obtain the results, the label incorrectly reads
’humming’ instead of ’hamming.’ This is purely a typographical mistake and does not alter the method
or results. In the plots comparing classifiers, the x-label is mislabeled as ’fragment size [s],’ while it
should correctly be labelled as ’classifier.’
The measure of evaluating the model is Cohen’s Kappa coefficient. Kappa is a statistical measure
which is used to assess the agreement between two raters. To be clear, the agreements are the true-
positive and negative Table 1.2. The coefficient gives an indication of how much better the agreement
is compared to what would be expected by chance alone. The calculation of Cohen’s Kappa involves
the observed agreement, Po, and expected agreement Pe. The observed agreement is defined as the
total number of agreements divided by the total number of observations, which is the same as overall
accuracy. The expected agreement represents the agreement that would be expected by chance. It
is calculated as the total number of class one predictions divided by the total number of observations
multiplied by the number of actual class one’s divided by the total number of observations. The same
is done for class two and then added together. The formula for the expected agreement is shown in
Equation A.1. The Cohen Kappa coefficient is calculated as shown in Equation A.2. Cohen’s Kappa
coefficient ranges from -1 to 1, where the value 1 implies a perfect agreement, 0 indicates agreement
by chance, and negative values indicate agreement worse than chance. It provides a valuable measure
of the model’s reliability and the quality of its predictions compared to the ground truth.

Pe =
(TN + FN) · (TN + FP )

TP + FP + TN + FN
+

(TP + FP ) · (TP + FN)

TP + FP + TN + FN
(A.1)

κ =
Po − Pe

1− Pe
(A.2)

A.1. Graz dataset
A.1.1. Raw

Table A.1: Performance measures for 0.5 sec window

Rectangular window Hanning window Hamming window
Accuracy 0.6516± 0.0456 0.6543± 0.0481 0.6506± 0.0499
Balanced Accuracy 0.6685± 0.0410 0.6729± 0.0414 0.6680± 0.0446
Kappa 0.3044± 0.0878 0.3126± 0.0913 0.3040± 0.0957
F1-Score 0.6370± 0.0768 0.6412± 0.0749 0.6376± 0.0781
Matthew Correlation Coef 0.3208± 0.0827 0.3295± 0.0849 0.3201± 0.0902
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(a) Rectangular window (b) Hanning window (c) Hamming window

Figure A.1: Accuracy for different number of components used for PCA, on a time window of 0.5 seconds

Table A.2: Performance measures for 1 seconds window

Rectangular window Hanning window Hamming window
Accuracy 0.6825± 0.0544 0.6662± 0.0512 0.6760± 0.0467
Balanced Accuracy 0.6994± 0.0503 0.6870± 0.0420 0.6957± 0.0348
Kappa 0.3644± 0.1117 0.3384± 0.0929 0.3544± 0.0834
F1-Score 0.6683± 0.1005 0.6547± 0.0898 0.6645± 0.0790
Matthew Correlation Coef 0.3825± 0.1067 0.3576± 0.0857 0.3740± 0.0729

(a) Rectangular window (b) Hanning window (c) Hamming window

Figure A.2: Accuracy for different number of components used for PCA, on a time window of 1 second

Table A.3: Performance measures for 2 seconds window

Rectangular window Hanning window Hamming window
Accuracy 0.7371± 0.0520 0.7214± 0.0492 0.7214± 0.0516
Balanced Accuracy 0.7436± 0.0687 0.7407± 0.0540 0.7307± 0.0518
Kappa 0.4534± 0.1377 0.4365± 0.1010 0.4280± 0.1122
F1-Score 0.7073± 0.1264 0.7060± 0.0881 0.7005± 0.0943
Matthew Correlation Coef 0.4690± 0.1391 0.4589± 0.1046 0.4425± 0.1077

(a) Rectangular window (b) Hanning window (c) Hamming window

Figure A.3: Accuracy for different number of components used for PCA, on a time window of 2 seconds
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Table A.4: Performance measures for 3 seconds window

Rectangular window Hanning window Hamming window
Accuracy 0.7833± 0.0445 0.7381± 0.0476 0.7405± 0.0360
Balanced Accuracy 0.7825± 0.0827 0.7584± 0.0463 0.7619± 0.0356
Kappa 0.5331± 0.1505 0.4719± 0.1069 0.4762± 0.0796
F1-Score 0.7494± 0.1538 0.7229± 0.1014 0.7265± 0.0848
Matthew Correlation Coef 0.5496± 0.1561 0.4953± 0.1012 0.5014± 0.0746

(a) Rectangular window (b) Hanning window (c) Hamming window

Figure A.4: Accuracy for different number of components used for PCA, on a time window of 3 seconds

Table A.5: Performance measures for 6 seconds window

Rectangular window Hanning window Hamming window
Accuracy 0.8214± 0.0659 0.8500± 0.0929 0.8571± 0.0845
Balanced Accuracy 0.8510± 0.0586 0.8478± 0.1218 0.8607± 0.0904
Kappa 0.6389± 0.1345 0.6677± 0.2351 0.6933± 0.1831
F1-Score 0.8148± 0.0803 0.8197± 0.1794 0.8402± 0.1211
Matthew Correlation Coef 0.6712± 0.1242 0.6802± 0.2364 0.7035± 0.1813

(a) Rectangular window (b) Hanning window (c) Hamming window

Figure A.5: Accuracy for different number of components used for PCA, on a time window of 6 seconds

(a) Rectangular window (b) Hanning window (c) Hamming window

Figure A.6: Accuracy for different window sizes
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(a) Rectangular window (b) Hanning window (c) Hamming window

Figure A.7: Balanced accuracy for different window sizes

A.1.2. Filtered

Table A.6: Performance measures for a window size of 0.5 seconds

Rectangular Window Hanning Window Hamming Window
Accuracy 0.6543± 0.0440 0.6503± 0.0506 0.6478± 0.0506
Balanced Accuracy 0.6793± 0.0326 0.6709± 0.0370 0.6680± 0.0387
Kappa 0.3201± 0.0771 0.3086± 0.0889 0.3029± 0.0903
F1-Score 0.6377± 0.0682 0.6299± 0.0751 0.6247± 0.0760
Matthew Correlation Coef 0.3419± 0.0667 0.3271± 0.0780 0.3209± 0.0803

(a) Rectangular window (b) Hanning window (c) Hamming window

Figure A.8: Accuracy for different number of components used for PCA, on a time window of 0.5 seconds

Table A.7: Performance measures for a window size of 1 second

Rectangular Window Hanning Window Hamming Window
Accuracy 0.6896± 0.0512 0.6727± 0.0579 0.6838± 0.0495
Balanced Accuracy 0.7157± 0.0406 0.6938± 0.0482 0.7086± 0.0429
Kappa 0.3867± 0.0948 0.3508± 0.1077 0.3735± 0.0906
F1-Score 0.6723± 0.0753 0.6636± 0.0793 0.6772± 0.0697
Matthew Correlation Coef 0.4115± 0.0836 0.3698± 0.0991 0.3960± 0.0831

(a) Rectangular window (b) Hanning window (c) Hamming window

Figure A.9: Accuracy for different number of components used for PCA, on a time window of 1 second
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Table A.8: Performance measures for a window size of 2 seconds

Rectangular Window Hanning Window Hamming Window
Accuracy 0.7357± 0.0715 0.7143± 0.0575 0.7286± 0.0553
Balanced Accuracy 0.7535± 0.0751 0.7413± 0.0480 0.7540± 0.0491
Kappa 0.4645± 0.1534 0.4344± 0.1095 0.4581± 0.1050
F1-Score 0.7157± 0.1138 0.7042± 0.0853 0.7177± 0.0747
Matthew Correlation Coef 0.4868± 0.1513 0.4615± 0.0998 0.4841± 0.0965

(a) Rectangular window (b) Hanning window (c) Hamming window

Figure A.10: Accuracy for different number of components used for PCA, on a time window of 2 seconds

Table A.9: Performance measures for a window size of 3 seconds

Rectangular Window Hanning Window Hamming Window
Accuracy 0.7857± 0.0398 0.7714± 0.0555 0.7690± 0.0465
Balanced Accuracy 0.8047± 0.0368 0.7874± 0.0576 0.7861± 0.0460
Kappa 0.5609± 0.0905 0.5298± 0.1193 0.5266± 0.0895
F1-Score 0.7688± 0.0858 0.7544± 0.0885 0.7559± 0.0684
Matthew Correlation Coef 0.5853± 0.0833 0.5492± 0.1185 0.5464± 0.0850

(a) Rectangular window (b) Hanning window (c) Hamming window

Figure A.11: Accuracy for different number of components used for PCA, on a time window of 3 seconds

Table A.10: Performance measures for a window size of 6 seconds

Rectangular Window Hanning Window Hamming Window
Accuracy 0.8429± 0.0700 0.8786± 0.0643 0.8786± 0.0643
Balanced Accuracy 0.8561± 0.0751 0.8927± 0.0664 0.8927± 0.0664
Kappa 0.6679± 0.1560 0.7417± 0.1490 0.7417± 0.1490
F1-Score 0.8250± 0.1102 0.8616± 0.1097 0.8616± 0.1097
Matthew Correlation Coef 0.6897± 0.1548 0.7632± 0.1391 0.7632± 0.1391
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(a) Rectangular window (b) Hanning window (c) Hamming window

Figure A.12: Accuracy for different number of components used for PCA, on a time window of 6 seconds

(a) Rectangular window (b) Hanning window (c) Hamming window

Figure A.13: Accuracy for different window sizes

(a) Rectangular window (b) Hanning window (c) Hamming window

Figure A.14: Balanced accuracy for different window sizes

A.1.3. Comparing classifiers

Table A.11: Performance measures for a window size of 6 seconds with different classifiers

Accuracy Balanced Accuracy Kappa F1-Score Matthew Correlation Coef
LR 0.8786± 0.0558 0.8915± 0.0637 0.7404± 0.1350 0.8605± 0.1070 0.7613± 0.1292
DTree 0.8429± 0.0833 0.8572± 0.0896 0.6724± 0.1825 0.8200± 0.1347 0.6962± 0.1772
KN 0.8357± 0.1154 0.8381± 0.1411 0.6494± 0.2671 0.8081± 0.1988 0.6604± 0.2702
GNB 0.8000± 0.1050 0.8178± 0.1265 0.5895± 0.2422 0.7652± 0.1877 0.6267± 0.2407
SVC 0.8571± 0.0714 0.8759± 0.0661 0.7033± 0.1525 0.8400± 0.1074 0.7316± 0.1390
LDA 0.8786± 0.0643 0.8927± 0.0664 0.7417± 0.1490 0.8616± 0.1097 0.7632± 0.1391



A.1. Graz dataset 39

Table A.12: PCA Components and Classifier Parameters for Different Models

Model PCA N components Parameters classifier
LR 8 {’max_iter’: 10000, ’penalty’: ’l1’, ’solver’: ’saga’}
DTree 2 {’max_depth’: 1, ’min_samples_leaf’: 1}
KN 2 {’n_neighbors’: 9, ’weights’: ’uniform’}
GNB 3 {’var_smoothing’: 1.0}
SVC 14 {’C’: 0.1, ’degree’: 1, ’kernel’: ’linear’}
LDA 8 {’solver’: ’svd’}

(a) Logistic Regression (b) Decision Tree (c) K Nearest Neighbours

(d) Gaussian Naive Bayes (e) Support Vector Machine (f) Linear Discriminant Analysis

Figure A.15: Accuracy for different number of components used for PCA, for different classifiers

Figure A.16: Accuracy for different classifiers
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Figure A.17: Balanced accuracy for different classifiers

Figure A.18: F1-score for different classifiers
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A.2. Own OpenBCI dataset
A.2.1. Raw

Table A.13: Performance measures for a window size of 0.5 seconds

Rectangular Window Hanning Window Hamming Window
Accuracy 0.4722± 0.1912 0.5111± 0.1401 0.5056± 0.1124
Balanced Accuracy 0.5167± 0.1920 0.5583± 0.1410 0.5583± 0.1137
Kappa 0.0370± 0.3273 0.0989± 0.2246 0.0978± 0.1863
F1-Score 0.4747± 0.1901 0.5161± 0.1360 0.5026± 0.1014
Matthew Correlation Coef 0.0227± 0.3726 0.1094± 0.2904 0.1122± 0.2274

(a) Rectangular window (b) Hanning window (c) Hamming window

Figure A.19: Accuracy for different number of components used for PCA, on a time window of 0.5 seconds

Table A.14: Performance measures for a window size of 1 second

Rectangular Window Hanning Window Hamming Window
Accuracy 0.5667± 0.2015 0.6222± 0.1663 0.6222± 0.1937
Balanced Accuracy 0.5917± 0.2022 0.6417± 0.1446 0.6667± 0.1900
Kappa 0.1621± 0.3922 0.2690± 0.2667 0.2965± 0.3377
F1-Score 0.6038± 0.2075 0.6038± 0.1493 0.6070± 0.1743
Matthew Correlation Coef 0.1898± 0.4165 0.2847± 0.2903 0.3219± 0.3664

(a) Rectangular window (b) Hanning window (c) Hamming window

Figure A.20: Accuracy for different number of components used for PCA, on a time window of second
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(a) Rectangular window (b) Hanning window (c) Hamming window

Figure A.21: Accuracy for different window sizes

(a) Rectangular window (b) Hanning window (c) Hamming window

Figure A.22: Balanced accuracy for different window sizes

A.2.2. Filtered

Table A.15: Performance measures for a window size of 0.5 seconds

Rectangular Window Hanning Window Hamming Window
Accuracy 0.6556± 0.1423 0.5778± 0.0793 0.6111± 0.0930
Balanced Accuracy 0.6625± 0.1425 0.6083± 0.1041 0.6292± 0.1061
Kappa 0.3017± 0.2707 0.1802± 0.1731 0.2269± 0.1848
F1-Score 0.6285± 0.1910 0.5376± 0.1311 0.5909± 0.1469
Matthew Correlation Coef 0.3184± 0.2769 0.2123± 0.2055 0.2478± 0.2034

(a) Rectangular window (b) Hanning window (c) Hamming window

Figure A.23: Accuracy for different number of components used for PCA, on a time window of 0.5 seconds

Table A.16: Performance measures for a window size of 1 second

Rectangular Window Hanning Window Hamming Window
Accuracy 0.7667± 0.1606 0.6556± 0.1444 0.6556± 0.1444
Balanced Accuracy 0.7417± 0.1766 0.6917± 0.1446 0.6750± 0.1417
Kappa 0.4803± 0.3627 0.3345± 0.2648 0.3107± 0.2660
F1-Score 0.7104± 0.2735 0.6405± 0.1828 0.6075± 0.2270
Matthew Correlation Coef 0.5083± 0.3678 0.3847± 0.2667 0.3280± 0.2893
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(a) Rectangular window (b) Hanning window (c) Hamming window

Figure A.24: Accuracy for different number of components used for PCA, on a time window of 1 second

(a) Rectangular window (b) Hanning window (c) Hamming window

Figure A.25: Accuracy for different window sizes

(a) Rectangular window (b) Hanning window (c) Hamming window

Figure A.26: Balanced accuracy for different window sizes

A.2.3. Filtered and blink removal

Table A.17: Performance measures for a window size of 0.5 seconds

Rectangular Window Hanning Window Hamming Window
Accuracy 0.6667± 0.1427 0.5722± 0.0705 0.6000± 0.0923
Balanced Accuracy 0.6708± 0.1412 0.6000± 0.0878 0.6292± 0.1028
Kappa 0.3221± 0.2776 0.1688± 0.1443 0.2225± 0.1761
F1-Score 0.6402± 0.1888 0.5352± 0.1170 0.5762± 0.1392
Matthew Correlation Coef 0.3382± 0.2814 0.1936± 0.1715 0.2529± 0.2018
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(a) Rectangular window (b) Hanning window (c) Hamming window

Figure A.27: Accuracy for different number of components used for PCA, on a time window of 0.5 seconds

Table A.18: Performance measures for a window size of 1 second

Rectangular Window Hanning Window Hamming Window
Accuracy 0.7778± 0.1405 0.6889± 0.1474 0.6778± 0.1444
Balanced Accuracy 0.7583± 0.1685 0.7250± 0.1346 0.7083± 0.1502
Kappa 0.4988± 0.3341 0.3695± 0.2705 0.3695± 0.2705
F1-Score 0.7085± 0.2810 0.6405± 0.1828 0.6662± 0.1354
Matthew Correlation Coef 0.5194± 0.3480 0.3847± 0.2667 0.4040± 0.2847

(a) Rectangular window (b) Hanning window (c) Hamming window

Figure A.28: Accuracy for different number of components used for PCA, on a time window of 1 second

(a) Rectangular window (b) Hanning window (c) Hamming window

Figure A.29: Accuracy for different window sizes
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(a) Rectangular window (b) Hanning window (c) Hamming window

Figure A.30: Balanced accuracy for different window sizes

A.2.4. Comparing classifiers

Table A.19: Performance measures for a window size of 1 seconds with different classifiers

Accuracy Balanced Accuracy Kappa F1-Score Matthew Correlation Coef
LR 0.7444± 0.1575 0.7500± 0.1394 0.4839± 0.2791 0.7344± 0.1682 0.5205± 0.2762
DTree 0.6444± 0.2037 0.6917± 0.1828 0.3491± 0.3517 0.5873± 0.2500 0.3959± 0.3465
KN 0.5556± 0.1648 0.5833± 0.1394 0.1548± 0.2593 0.5495± 0.1833 0.1668± 0.2730
GNB 0.6556± 0.1528 0.6833± 0.1572 0.3217± 0.2944 0.6552± 0.1276 0.3567± 0.3339
SVC 0.7333± 0.2000 0.7000± 0.2179 0.3980± 0.4426 0.7372± 0.2107 0.4052± 0.4570
LDA 0.7778± 0.1405 0.7583± 0.1685 0.4988± 0.3341 0.7085± 0.2810 0.5194± 0.3480

Table A.20: PCA Components and Classifier Parameters for Different Models

Model PCA N components Parameters classifier
LR 28 {’max_iter’: 10000, ’penalty’: None, ’solver’: ’saga’}
DTree 17 {’max_depth’: 1, ’min_samples_leaf’: 1}
KN 6 {’n_neighbors’: 5, ’weights’: ’uniform’}
GNB 6 {’var_smoothing’: 1e-06}
SVC 34 {’C’: 1.0, ’degree’: 1, ’kernel’: ’linear’}
LDA 30 {’solver’: ’svd’}

(a) Logistic Regression (b) Decision Tree (c) K Nearest Neighbours

(d) Gaussian Naive Bayes (e) Support Vector Machine (f) Linear Discriminant Analysis

Figure A.31: Accuracy for different number of components used for PCA, for different classifiers
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Figure A.32: Accuracy for different classifiers

Figure A.33: Balanced accuracy for different classifiers

Figure A.34: F1-score for different classifiers



A.3. Different trees relevance in for random forest 47

A.3. Different trees relevance in for random forest

(a) EEG-IO average F-1 score in 10 fold cross validation for
different trees in a window size of 250 samples

(b) Own dataset B average F-1 score in 10 fold cross validation
for different trees in a window size of 250 samples

Figure A.35: Comparison different trees for F1-score

A.4. Feature relevance for random forest
In Figure A.36 the average value for each feature is shown in a bar plot for blinking and no blinking with
Own dataset B. The features are averaged over 100 trials of EEG with blinks and 100 trials of EEG with
no blinks. A clear difference can be seen between the value of the feature of no blinking and blinking.
This shows that these features are relevant for classification with random forest.

(a) Bar plot of average standard deviation
between EEG with no blinks and blinks

(b) Bar plot of average range of amplitude
between EEG with no blinks and blinks

(c) Bar plot of average range of grade
between EEG with no blinks and blinks

Figure A.36: Bar plots of the average value of each feature for EEG with no blinks and blinks.

A.5. Additional Figures blink removals

Figure A.37: Blink removal
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Figure A.38: Blink removal

Figure A.39: Blink removal

Figure A.40: Blink removal
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Figure A.41: Blink removal

Figure A.42: Blink removal
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