
Faculty of Electrical Engineering, Mathematics and Computer Science

Signal Processing
Systems

Mekelweg 4,
2628 CD Delft

The Netherlands
https://sps.ewi.tudelft.nl/

SPS-2025

M.Sc. Thesis

End-to-End Embedded Machine Learning
for In-Ear PPG Peak Detection

Sebastian Speekenbrink

Abstract

Medical monitoring technologies have gained increasing importance in re-
cent years. Among emerging wearables, in-ear sensing offers a promising
alternative to wrist-based devices due to its stable environment and proxim-
ity to major arteries, with machine-learning (ML) models showing potential
to improve signal analysis performance in this domain, although their design
and implementation often lack systematic methodology and reproducibility.
This thesis aims to address these gaps by designing an end-to-end in-ear
cardiac monitoring system, from custom hardware and dataset collection
to the development of a reproducible machine-learning framework for peak
detection suitable for embedded deployment. A custom-fit, multi-location
in-ear photoplethysmography (PPG) sensing system was developed to col-
lect a multi-activity dataset with a ground-truth electrocardiogram (ECG)
reference, enabling systematic evaluation of different Convolutional Neural
Network (CNN) architectures for embedded purposes. Results show that
signal quality, and thus model performance, strongly depends on sensor
placement, with the deep external auditory meatus providing the best sig-
nals, followed by the concha. The systematic architecture exploration fur-
ther revealed consistent design patterns associated with higher accuracy,
enabling efficient peak detection with strong ECG correlation. Overall,
this work establishes a standardised framework for automatically identify-
ing optimal embedded model architectures for in-ear PPG analysis. Key
limitations include the single-subject dataset, computational constraints
during model training, and limited final on-device validation.

End-to-End Embedded Machine Learning for
In-Ear PPG Peak Detection

Thesis

submitted in partial fulfillment of the
requirements for the degree of

Master of Science

in

Embedded Systems

by

Sebastian Speekenbrink
born in Delft, Netherlands

This work was performed in:

Signal Processing Systems Group
Department of Microelectronics
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Delft University of Technology

Copyright © 2025 Signal Processing Systems Group
All rights reserved.

Delft University of Technology
Department of

Microelectronics

The undersigned hereby certify that they have read and recommend to the Faculty of
Electrical Engineering, Mathematics and Computer Science for acceptance a thesis
entitled “End-to-End Embedded Machine Learning for In-Ear PPG Peak
Detection” by Sebastian Speekenbrink in partial fulfillment of the requirements
for the degree of Master of Science.

Dated: 18 Dec, 2025

Chairman:
dr.ir. R.C. Hendriks

Advisor:
dr. ir. J.C. Haartsen

Committee Members:
dr. D.M.J. Tax

dr. C. Gao

ir. A. Boru

iv

Abstract

Medical monitoring technologies have gained increasing importance in recent years.
Among emerging wearables, in-ear sensing offers a promising alternative to wrist-
based devices due to its stable environment and proximity to major arteries, with
machine-learning (ML) models showing potential to improve signal analysis perfor-
mance in this domain, although their design and implementation often lack sys-
tematic methodology and reproducibility. This thesis aims to address these gaps
by designing an end-to-end in-ear cardiac monitoring system, from custom hard-
ware and dataset collection to the development of a reproducible machine-learning
framework for peak detection suitable for embedded deployment. A custom-fit,
multi-location in-ear photoplethysmography (PPG) sensing system was developed
to collect a multi-activity dataset with a ground-truth electrocardiogram (ECG) ref-
erence, enabling systematic evaluation of different Convolutional Neural Network
(CNN) architectures for embedded purposes. Results show that signal quality, and
thus model performance, strongly depends on sensor placement, with the deep ex-
ternal auditory meatus providing the best signals, followed by the concha. The
systematic architecture exploration further revealed consistent design patterns as-
sociated with higher accuracy, enabling efficient peak detection with strong ECG
correlation. Overall, this work establishes a standardised framework for automat-
ically identifying optimal embedded model architectures for in-ear PPG analysis.
Key limitations include the single-subject dataset, computational constraints during
model training, and limited final on-device validation.

v

vi

Acknowledgments

I would like to start by thanking my professor dr.ir. R.C. Hendriks for providing
the possibility to start a MSc. thesis under his guidance back in 2023 before my
exchange in Australia. After coming back from this exchange, he recommended
me to get in contact with dr. ir. J.C. Haartsen, something that proved to be very
valuable and arguably the most impactful decision in this whole thesis project.

Furthermore, I would like to acknowledge all the effort performed by dr. ir.
J.C. Haartsen, F. Hooijschuur and the other members of Dopple, the company
that provided support in designing and manufacturing of the in-ear sensing setup.
Without you, this thesis would not have been able to reach its current form.

Moreover, I would like to show gratitude to my colleagues at UbiOps for
giving me the freedom and flexibility to perform this research in parallel with my
professional work, as this support allowed me to finish this thesis successfully.

At last, I would like to extend my appreciation to my friends and family, the
people who stood by my side and showed support that kept me going.

Sebastian Speekenbrink
Delft, The Netherlands
18 Dec, 2025

vii

viii

Contents

Abstract v

Acknowledgments vii

1 Introduction 1

2 Methodology 7
2.1 Hardware . 7

2.1.1 Mechanical Design and Fabrication 7
2.1.2 Electronic Components and System Integration 7
2.1.3 Sensor Placements . 9

2.2 Data Acquisition and Processing 9
2.2.1 Sensor Configuration and Synchronisation 10
2.2.2 Data Transmission Protocol 11

2.3 Dataset . 12
2.3.1 Dataset overview . 12
2.3.2 PPG Signal quality measurement 13
2.3.3 Ground-truth acquisition 13
2.3.4 Automatic signal alignment 14
2.3.5 Visual refinement and frequency calibration 15
2.3.6 Signal validation and curation 16

2.4 Configurable Deep Learning Framework for PPG Peak Detection . 17
2.4.1 Data Preprocessing and Annotation 17
2.4.2 Model Architectures . 20
2.4.3 Model Training and Evaluation 25
2.4.4 Hyperparameter Optimization Strategies 28

2.5 Embedded model deployment . 29
2.5.1 Model conversion . 29
2.5.2 On-device deployment . 30
2.5.3 Performance validation procedures 30

2.6 Experimental Design . 31
2.6.1 Experiment 1: Sensor Signal Evaluation 31
2.6.2 Experiment 2: Comparative Model Analysis Across Sensor

Locations . 32
2.6.3 Experiment 3: Model Configuration and Parameter Sensitivity 32
2.6.4 Experiment 4: Embedded Validation 34

2.7 Evaluation Metrics and Visualisations 34

3 Results 37
3.1 PPG Sensor Results . 37

3.1.1 Visual Observation . 37
3.1.2 Skewness . 39

ix

3.2 Comparative Analysis . 40
3.2.1 Results . 41

3.3 Single-location in-depth analysis . 41
3.3.1 Standard CNN . 42
3.3.2 Dilated CNN . 48
3.3.3 Pre- and post-processing . 53

3.4 Embedded Validation . 55

4 Discussion 57
4.1 PPG Dataset . 57
4.2 Comparative analysis . 58
4.3 Standard CNN configuration parameters 59

4.3.1 Batch Normalisation . 59
4.3.2 Pooling strategies . 60
4.3.3 Channels . 61
4.3.4 Convolution layer . 62
4.3.5 Activation Layer . 63

4.4 Dilated CNN configuration parameters 63
4.4.1 Bottleneck Stage Parameters 63
4.4.2 Convolution layer parameters 64
4.4.3 Encoder architecture . 65
4.4.4 Decoder . 65
4.4.5 Performance vs. standard 66

4.5 Pre and Post-Processing Techniques 66
4.5.1 Peak refinement . 66
4.5.2 Non-Maximum Suppression (NMS) Effects 66

4.6 Embedded validation . 67
4.7 Total performance . 68
4.8 Limitations & Future research . 69

5 Conclusion 71

A Algorithms 77
A.1 Dynamic Encoder-Decoder CNN 77
A.2 Dilated Encoder-Decoder CNN . 78

B Search Space Configurations 79
B.1 Standard CNN . 79
B.2 Dilated . 80
B.3 Pre and post-processing . 81

C Figures 83
C.1 ECG Filtering . 83
C.2 Pooling strategies . 84
C.3 Standard CNN channels . 85
C.4 Standard convolution layer . 87
C.5 Dilated bottleneck stage . 89

x

C.6 Dilated convolution layer . 91
C.7 Dilated encoder architecture . 94

D Result Tables 99

xi

xii

List of Figures

1.1 Overview of the methodology used in this thesis 4

2.1 Main unit with connector for interchangeable earbud integrated into
wearable headband (developed by Dopple). 9

2.2 Overview of the four in-ear PPG sensor placements. 10
2.3 Annotated characteristic waveforms 14
2.4 ECG electrode sensor locations (from [37]) 14
2.5 Automatic alignment of two acceleration signals by their normalised

cross-correlation using the Euclidean metric (Equation 2.4) 15
2.6 Custom web-based visual alignment tool for PPG & ECG signals . 16
2.7 Frequency-domain comparison of the ECG signal before and after

50Hz and 100Hz notch filtering. 19
2.8 Architecture schematic of dynamic encoder-decoder CNN as outlined

in Algorithm 1 . 24
2.9 Architecture schematic of the Dilated Encoder-Decoder, as outlined

in Algorithm 2 . 25
2.10 Nucleo-H755ZI-Q development board (from [55]). 29

3.1 Sample 100-second PPG signal segments (200–300 s) recorded under
seated conditions across all sensor placements. 38

3.2 Sample 100-second PPG signal segments (200–300 s) recorded under
walking conditions across all sensor placements. 39

3.3 Sample 20-second PPG signal segments (240–260 s) recorded under
walking conditions for tragus and shallow external auditory ear mea-
tus with ECG R-peaks indicated by green crosses. 40

3.4 MCC box plots for different sensor locations 41
3.5 Heatmap for MCC win rates by ear location 42
3.6 Distribution of the change in Matthews Correlation Coefficient

(ΔMCC) between models trained with and without batch normali-
sation (BN). A total of 30 configurations (93.75%) achieved higher
MCC with BN, while only 2 configurations (6.25%) performed better
without BN. 43

3.7 Box plot showing the distribution of MCC scores across 192 trained
models for each pool_every configuration 44

3.8 Box plot showing the distribution of MCC scores across 256 trained
models for each different pooling layer 44

3.9 Box plot showing the distribution of MCC scores for each different
base_channel value across 360 total configurations 45

3.10 Box plot showing the distribution of MCC scores for each different
double_every value across 360 total configurations 46

3.11 Box plot showing the distribution of MCC scores for different kernel
sizes across 256 configurations . 47

xiii

3.12 Box plot showing the distribution of MCC scores for different dilation
factors across 256 configurations . 47

3.13 Distribution of the change in MCC between models trained with a
ReLU and SiLU activation layer. A total of 109 configurations (56.8%)
achieved higher MCC with the ReLU layer, while 83 configurations
(43.2%) performed better with the SiLU layer. 48

3.14 Box plot showing the distribution of MCC scores for different dilation
factors across 282 configurations . 49

3.15 Box plot showing the distribution of MCC scores for different
bottleneck_channel values across 282 configurations. 50

3.16 Box plot showing the distribution of MCC scores for different
base_dilation_dc values across 128 configurations. 51

3.17 Box plots showing the distribution of MCC scores across dilated CNN
models for varying encoder channel sizes. 52

3.18 Box plots showing the distribution of MCC scores across dilated CNN
models for varying encoder kernel sizes. 53

3.19 Histogram showing the MCC difference (∆MCC = MCCadjusted −
MCCoriginal) for all 96 configurations. Positive values indicate im-
proved performance when applying peak adjustment. 54

3.20 Distribution of MCC scores for models with NMS disabled, and with
NMS thresholds of 5 and 14. 54

4.1 NMS in action for sample model trained with 8 epochs 67
4.2 NMS in action for sample model trained with 100 epochs 68

C.1 Frequency response of the cascaded 50 Hz and 100 Hz IIR notch filters. 83
C.2 Comparison between the original ECG signal and the filtered ECG

signal. 83
C.3 Relationship between model size (KB) and MCC for different

pool_every values in CNN configurations. 84
C.4 Win rate matrices for pooling-related parameters in CNN configura-

tions. 84
C.5 Relationship between model size (KB) and MCC for different pooling

types in CNN configurations. 85
C.6 Win rate matrices for channel-related parameters in the standard

CNN encoder. 85
C.7 Box plots of model size distributions for different base_channel and

double_every configurations. 86
C.8 Relationship between model size (KB) and MCC for different

base_channel values in CNN configurations. 86
C.9 Relationship between model size (KB) and MCC for different

double_every values in CNN configurations. 87
C.10 Win rate matrices for different kernel_size and dilation parameters. 87
C.11 Box plot showing the distribution of model sizes (KB) for different

kernel_size values . 88
C.12 Relationship between model size (KB) and MCC for different

kernel_size values in standard CNN configurations. 88

xiv

C.13 Relationship between model size (KB) and MCC for different dilation
values in standard CNN configurations. 89

C.14 Relationship between model size (KB) and MCC for different number
of dilation layers in the Dilated CNN configurations. 89

C.15 Relationship between model size (KB) and MCC for different number
of bottleneck channels in the Dilated CNN configurations. 90

C.16 Win rate matrices for dilated CNN parameters: dilated layers and
bottleneck channels. 90

C.17 Box plots of model size distributions for dilated CNN configurations:
number of dilated layers and number of bottleneck channels. 91

C.18 Box plot showing the distribution of MCC scores for different kernel
window sizes across 128 configurations. 91

C.19 Win-rate matrices for kernel window size and base dilation parame-
ters in the Dilated CNN. 92

C.20 Box plot illustrating the distribution of model sizes as a function of
the kernel window size. 92

C.21 Relationship between model size and MCC for different kernel win-
dow sizes in the Dilated CNN. 93

C.22 Relationship between model size and MCC for different base dilation
values in the Dilated CNN. 93

C.23 Win-rate matrices for varying enc1_channels and enc2_channels
in the Dilated CNN architecture. 94

C.24 Relationship between model size and MCC for different
enc1_channels values in the Dilated CNN. 94

C.25 Relationship between model size and MCC for different
enc2_channels values in the Dilated CNN. 95

C.26 Model size distributions for varying enc1_channels and
enc2_channels values. 95

C.27 Win-rate matrices for varying enc1_kernel and enc2_kernel values
in the Dilated CNN encoder. 96

C.28 Relationship between model size and MCC for different enc1_kernel
values. 96

C.29 Relationship between model size and MCC for different enc2_kernel
values. 97

C.30 Model size distributions for varying enc1_kernel and enc2_kernel
values in the Dilated CNN encoder. 97

xv

xvi

List of Tables

2.1 Dataset composition across different recording locations with PPG
sensor at fs ≈ 100. 12

3.1 Summary of PPG signal skewness across sensor locations and ac-
tivity conditions. Values represent the median, mean, interquartile
range (IQR), and standard deviation (SD) computed over all analysis
windows. 40

3.2 Summary of MCC results for encoder-decoder similarity comparisons
across all 256 configurations. Similar configurations achieve slightly
higher mean and median MCC than non-similar ones. 53

3.3 Cross-validation results comparing the original model and the C-
model on both the host PC and the embedded target. 55

3.4 Embedded inference performance for both model families, reporting
individual CPU cycle measurements and their corresponding execu-
tion times at a 480 MHz clock, followed by the averaged values. . . 55

B.1 Standard CNN configuration grids used throughout the single-
location analysis. Columns list the values explored per experiment.
Parameters not listed under a column follow the common settings
detailed in the notes. Reported search-space sizes exclude configu-
rations whose model size exceeded 2 MB. 79

B.2 Dilated CNN configuration grids. Columns list the values explored
per experiment. Parameters not listed under a column follow the
common settings detailed in the notes. Reported search-space sizes
exclude configurations whose model size exceeded 2 MB. 80

B.3 Configuration overview for pre-/post-processing analysis, compara-
tive analysis across sensor locations, and embedded validation. . . . 81

D.1 Summary of the comparative experiment results with MCC values
across all 96 evaluated configurations for each sensor location. . . . 99

D.2 Summary of MCC results and model sizes across dynamic encoder-
decoder CNN for different configuration parameters. 99

D.3 Summary of MCC results and model sizes across dilated CNN models
for different configuration parameters. 100

xvii

xviii

Introduction 1
The significance and use of medical monitoring have surged in recent years,
enabling the early detection of health conditions by tracking various health indica-
tors. Consequently, developing systems that facilitate such monitoring is essential,
allowing for timely interventions with potentially improved patient outcomes and
reducing the burden on the healthcare system [1], [2].

Various methods have been developed to monitor a broad spectrum of health
indicators, among which vital signs. These vital signs, including body temperature,
pulse rate, respiratory rate and blood pressure, provide an objective measurement
of the essential physiological functions of the human body. By emphasizing
these vital signs, medical monitoring could be immensely valuable to monitor the
well-being of an individual [3].

One prevalent method of medical monitoring is wearables; sensors that one
can wear on their body that will monitor one or more health indicators. These
wearables differ on many different aspects, e.g. body location, measurements
performed and materials used [4], [5].

An interesting body location that has not been widely adopted yet for wearables
are inside the ear. In-ear wearables offer a unique opportunity due to their close
proximity to an artery and relatively stable environment. Wrist-worn wearables
are much more susceptible to motion artefacts and external temperature changes,
which makes in-ear measurements a rather interesting field of study. Despite these
important advantages, research and real-life appliances of in-ear wearables are still
in their early stages [6].

Among the physiological parameters accessible through in-ear sensing, cardiac
activity holds particular relevance. Cardiac activity can be evaluated through
several measurable metrics, including heart rate (HR) and heart rate variability
(HRV), which are key indicators of cardiovascular health and autonomic nervous
system balance. Accurately identifying these metrics under varying conditions
requires robust signal processing and reliable extraction methods, forming the
foundation for further developments in in-ear monitoring [7], [8].

Different sensing methods are available for extracting cardiac activity. The gold
standard for cardiac monitoring is the electrocardiogram (ECG), which records
the electrical potentials generated by the heart. In wearable systems, however,
photoplethysmography (PPG) is an accessible alternative due to its compact
optical setup and straightforward integration in miniature devices. PPG estimates

1

cardiac activity by measuring changes in light absorption related to blood volume
variations, enabling reliable heart rate estimation with minimal hardware complex-
ity. Other approaches, such as ballistocardiography, thermometry, or acoustic and
piezoelectric sensing, have also been explored for heart rate estimation, though
these approaches are generally less mature or more sensitive to motion artefacts
[9], [10].

However, despite promising results, the accuracy and robustness of in-ear cardiac
sensing are often hindered by motion artefacts, sensor placement variability, and
physiological differences among individuals. These limitations underline the need
for advanced signal-processing or learning-based methods capable of generalizing
across conditions [11], [12].

Artificial intelligence (AI) represents another important trend in healthcare
technology. Machine learning (ML) techniques are increasingly applied to tasks
such as medical diagnostics, predictive modeling, and personalised health monitor-
ing. Within the context of wearable devices, AI could play a crucial role in handling
noisy signals, extracting meaningful features, and enabling robust prediction of
health outcomes [13], [14].

Although these techniques offer significant potential, the process of designing
effective machine learning models for biomedical signals remains highly empirical.
Selecting appropriate architectures, kernel sizes, or dilation factors often depends
on prior experience or domain-specific heuristics rather than clear design prin-
ciples. This lack of systematic understanding can make it difficult to determine
which configurations are most suitable for specific hardware or signal conditions,
particularly when operating under resource constraints [15].

Several studies have attempted to address these limitations by exploring
resource-aware or automated model optimisation for physiological signal analy-
sis. However, many of these efforts still lack methodological transparency, with
datasets, model configurations, or training procedures not publicly released. More-
over, the depth of optimisation is typically restricted with grid search often applied
only to a limited set of hyperparameters, while the overall model architecture
remains fixed and cannot be systematically explored. As a result, it is difficult to
reproduce findings or to isolate which design decisions drive performance [16], [17].

Despite the potential of these approaches, the understanding and application of
machine learning remain challenging for many researchers and developers outside
the AI domain. Building, training, and validating ML models requires expertise
in data preprocessing, model design, and hyperparameter optimisation. These
skills are not always present among domain specialists in fields such as biomedical
engineering or healthcare technology. This knowledge gap often limits the adoption
of ML in applied research, even when the potential benefits are clear.

An additional consideration in the development of AI (for healthcare), is the

2

extent to which research, and the work behind this research, has been made
openly available. Historically speaking, AI research has not been providing enough
documentation for reproducibility. Open-source attempts, such as sharing datasets,
coding practices and engineering methods, enable other researchers to build upon
existing research, instead of spending time and effort in recreating systems. This
in turn could accelerate scientific progress with a range of benefits [18], [19].

Beyond its technical motivation, this research also carries broader societal
relevance. By enabling continuous, non-invasive monitoring of cardiac activity
in a compact and personally adaptable form factor, in-ear sensing can advance
preventive and personalised healthcare. Furthermore, developing reproducible
machine-learning frameworks for embedded health analytics supports transparent
and accessible digital health solutions.

Taking this all in, a clear gap emerges at the intersection of in-ear sensing and
machine learning. While in-ear PPG offers strong physiological advantages, its
practical use is limited by motion artefacts and variations in placement. Addressing
these issues requires robust ML methods, yet remain difficult to adopt in practice
due to the lack of a transparent, reproducible design framework taking in different
resource constraints. In particular, no accessible methodology is available that
enables researchers to systematically optimise models for the constraints of in-ear
hardware.

To address the gaps in the currently available research, the main aim of this
thesis is to investigate the feasibility of reliable cardiac activity estimation from
PPG signals acquired inside the ear canal and to develop a transparent, repro-
ducible framework for analysing and deploying ML models on embedded systems.
To achieve this, the following list of objectives was determined:

• Design and develop a custom-fit in-ear measurement system:

– Create a replaceable ear-shell design that can be detached from a separate
base unit containing the processing and communication electronics, with
the replaceable ear-shell integrating a fixed-placement acceleration sensor
and a repositionable PPG sensor at multiple ear locations (tragus, concha,
near- and inside the external auditory meatus).

– Ensure wireless data acquisition and multi-wavelength sensing.

• Collect and organise a physiological dataset:

– Record synchronised PPG, accelerometer, and ECG reference data under
varying activity conditions (seated, walking).

– Implement automated and manual alignment methods to accurately syn-
chronise sensor data and ECG ground truth.

– Evaluate signal quality across different in-ear placements using qualitative
and quantitative metrics.

• Develop a configurable and reproducible machine-learning framework:

3

– Build an automated pipeline for data preprocessing, annotation, and seg-
mentation of PPG signals.

– Implement multiple configurable 1D CNN architectures that support sys-
tematic hyperparameter and architectural exploration.

– Facilitate re-use for future research/reproducibility.

• Evaluate and analyse model performances:

– Quantify performance of different models.
– Investigate the influence of different model parameters on peak detection

accuracy.
– Examine PPG sensor location impact on model performance.

• Deploy and validate the optimised model on an embedded microcontroller:

– Convert the selected model to an embedded-compatible format.
– Validate functional equivalence and benchmark performance.

In line with these objectives, this thesis delivers an end-to-end in-ear monitor-
ing system, comprising custom sensor hardware, a reproducible machine-learning
framework for cardiac peak detection with systematic model analysis, and embed-
ded validation of the trained model for deployment on resource-constrained devices.
Rather than prescribing a single model, this thesis introduces a configurable frame-
work that automatically selects the most suitable architecture for the available
dataset and specified hardware constraints. As PPG characteristics and embedded
constraints vary across applications, this adaptive approach ensures that each re-
sulting model is optimised for the specific sensing conditions instead of relying on
a one-size-fits-all design. A preliminary overview of the research methodology can
be seen in Figure 1.1.

In-Ear System
PPG

Data Transmission
Bluetooth

Reference System
ECG

(Ground Truth)

1. Data Acquisition

Data Processing
Alignment & Windowing

Model Training
Machine Learning

Selection
Pareto Front Search

2. ML Framework

Model Conversion
Embedded format

Deployment
STM32

Validation
Execution & Accuracy

Verification

3. Embedded Device

Figure 1.1: Overview of the methodology used in this thesis

The remainder of this thesis is structured as follows. chapter 2 outlines the
methodology used to realise the objectives. Chapter 3 presents the corresponding

4

obtained results. Chapter 4 discusses the results, interprets their implications, con-
siders the limitations of this research and explores directions for future research. At
last, chapter 5 summarises the main contributions and concludes the thesis.

All relevant code will be published to the corresponding GitHub repository.

5

https://github.com/sspeekenbrink/embedded-ml-ear-ppg

6

Methodology 2
This chapter describes the methodology used to design and develop the hardware
and its corresponding software, the dataset collected using this hardware, the gener-
ation of different machine learning models, and their deployment on an embedded
device for validation. The chapter is therefore divided into multiple subsections,
each addressing a specific part of the process, and is concluded with an overview of
the different experiments performed.

2.1 Hardware

To quantify cardiac activity, an experimental hardware setup was developed to-
gether with Dopple [20]. The core of this setup is a custom-fit in-ear module in-
corporating a photoplethysmography (PPG) sensor. This sensor measures blood
volume fluctuations in the ear’s vasculature, from which cardiac activity can be de-
rived. PPG was selected as the sensing modality because it can be easily integrated
into an in-ear system, requiring only a single measurement site and offering a much
smaller form factor compared to ECG sensors. The hardware system is composed
of two primary elements: the custom-fit ear shell and the integrated electronics.

2.1.1 Mechanical Design and Fabrication

The custom-fit ear shell was fabricated using two distinct methodologies to ensure
an optimal and secure fit for the user. As both approaches resulted in equivalent
fit characteristics, the fabrication method was selected based on availability and
convenience, with no comparative analysis performed.

The first method involved the direct digital acquisition of the ear’s geometry
using an Otoscan handheld 3D ear scanner developed by Natus Medical [21]. This
process generated a precise 3D digital model of the ear canal and concha, which
could directly be used to create a new 3D model in which the PPG sensor could be
integrated into the surface of the ear shell for optimal sensor-to-skin contact. This
new 3D model could then be used in a future 3D printing stage.

The second method utilised a traditional physical impression technique. An ear
impression was created using Otoform, a two-component silicone casting compound
developed by Dreve Otoplastik [22]. This physical mould, which accurately captures
the topology of the ear, was subsequently digitised using a 3D scanner. The final
custom-fit shell was then manufactured based on this digital model.

2.1.2 Electronic Components and System Integration

To ensure reliable signal acquisition and experimental flexibility, several key re-
quirements were defined for the sensing system. These requirements guided both

7

the hardware design and component selection for the in-ear measurement setup:

• Interchangeable earbud design: The earbud must be swappable to facil-
itate measurements at multiple in-ear locations, allowing for a comparison of
different sensor placements across ear positions.

• Multi-wavelength PPG: The system should support multiple optical wave-
lengths to allow the usage of different wavelengths (if needed) for different ear
sensor locations. The green colour with a wavelength of around 525 nm must
be included, as it has been shown that this wavelength is affected by motion
artifacts to a lesser degree than other commonly used wavelengths for PPG
and is applicable for different skin types [23], [24].

• PPG sampling rate: A minimum sampling rate of 100 Hz is required when
no interpolation is used to ensure accurate pulse timing, while 50 Hz is only
feasible when applying interpolation to refine pulse locations, as shown in [25].

• Compact form factor: A compact form factor is required for the PPG and
acceleration sensor to fit within the custom-made ear mould, with the exact
allowable dimensions depending on the resulting ear mould.

• Acceleration sensing: An integrated accelerometer is required for motion
tracking, signal alignment, and potential artefact analysis, operating at a sam-
pling frequency at least equal to that of the PPG sensor.

• Wireless data transmission: The system must support wireless communi-
cation to allow freedom of movement during recordings while maintaining data
integrity.

• Recording duration: The system should support continuous data acquisition
for a minimum of two hours to capture extended physiological sessions without
interruption.

These requirements resulted in a modular electronic system, consisting of a main
unit and a swappable ear sensor piece. The main unit houses the central processing
and communication components, while the ear sensor piece contains the sensing
elements, enabling the testing of different sensor placements within the same system
architecture.

The main unit is powered by a rechargeable battery and is controlled by a Re-
nesas DA14695 System-on-Chip (SoC) [26]. This microcontroller was selected due
to its integrated Bluetooth functionality, adequate processing capabilities and its
availability from a previous project iteration, which streamlined the development
process. The main unit can be seen in Figure 2.1. The main unit is integrated into a
headband for easy wearability, with the connector for attaching the interchangeable
earbud clearly visible.

The interchangeable earbud integrates two key sensors:

• PPG Sensor: A Maxim Integrated MAXM86161 optical sensor is used for
PPG. This sensor was chosen for its optimisation for in-ear applications [27].
Its compact form factor (2.9 mm x 4.3 mm x 1.4 mm), three programmable

8

Figure 2.1: Main unit with connector for interchangeable earbud integrated into wearable head-
band (developed by Dopple).

green, IR and red LED drivers with centroid wavelengths of 520-535, 880 and
660 nm, respectively and a sampling frequency range between 8 and 4096 sps
satisfied all requirements. Furthermore, its low power consumption and error
rejection characteristics made it an ideal sensor for integration into the in-ear
device.

• Accelerometer: A BMA580 3-axis accelerometer [28] is included for motion
tracking. This acceleration sensor has the ability to use sample rates from
1.5625 Hz to 6.4 kHz and an extremely compact form factor (1.2 mm x 0.8 mm
x 0.55 mm), which makes it a perfect fit for the set requirements.

2.1.3 Sensor Placements

The PPG sensor in the earbud is placed in one of four different locations, de-
pending on the specific module being tested. These four locations are against the
tragus (Figure 2.2b), deep inside the external auditory meatus facing the eyes (Fig-
ure 2.2d), the concha (Figure 2.2a) and shallow inside the external auditory meatus
(Figure 2.2c). The performance associated with each placement will be analysed in
detail in later sections, followed by recommendations regarding the most suitable
location for different goals.

2.2 Data Acquisition and Processing

The system employs an event-driven architecture to minimise power consumption.
Rather than continuously polling the sensors, the MCU remains in a low-power state
until it is awakened by a hardware interrupt. This process is initiated by the PPG
sensor’s internal First-In, First-Out (FIFO) buffer, which sends an interrupt after
a sample has been collected. After an interrupt has been received from the PPG

9

(a) Sensor placed in the concha (b) Sensor placed at the tragus

(c) Sensor placed shallowly in the external au-
ditory meatus

(d) Sensor placed deeply in the external audi-
tory meatus

Figure 2.2: Overview of the four in-ear PPG sensor placements.

sensor, the system retrieves the measured values from the PPG and acceleration
sensor. These values are then sent over a Bluetooth connection.

The corresponding firmware implementation was developed in collaboration with
Dopple [20]. The codebase was largely based on existing internal examples from
their library, which were adapted for the current setup. As a result, certain imple-
mentation shortcuts were retained to enable fast integration and prototyping.

2.2.1 Sensor Configuration and Synchronisation

The sensors are configured with specific sampling rates to capture relevant physio-
logical and motion data effectively.

• The PPG sensor (MAXM86161) is configured to sample its four channels

10

(Green, IR, Red, and Ambient) at a rate of 100 Hz. Each reading is a 19-
bit value (stored in a 32-bit unsigned integer), with the maximum value corre-
sponding to a software-set maximum photodiode input current. The maximum
is set in this research to 16µA.

• The accelerometer (BMA580) operates at 400 Hz with a range of ±2g. Each
axis is represented as a signed 16-bit value in the range [−32,768, 32,767].

The decision on the specific sampling rate of the acceleration sensor relative to
the PPG sensor can be guided by the maximum allowable temporal offset between
samples of both signals. This offset is fully determined by the acceleration fre-
quency, with the formula shown in Equation 2.1. In this scenario, as the PPG
signal is sampled at 100 Hz, each PPG sample must have a temporally correspond-
ing acceleration value. An acceleration sampling rate lower than the PPG sampling
rate could introduce uncertainty during signal alignment, where multiple PPG sam-
ples might correspond to a single acceleration measurement. Therefore, a minimum
acceleration sampling frequency of 100 Hz is required to ensure temporal correspon-
dence between PPG and acceleration data, which is essential for stages discussed
later in this work.

∆tmax =
1

facc
(2.1)

2.2.2 Data Transmission Protocol

To facilitate the ability to measure in different environments, the data will be trans-
mitted wirelessly.

2.2.2.1 Packet Structure.

The data is formatted into a custom packet structured as an ASCII string of comma-
separated values (CSV), terminated by a newline character (\n). This human-
readable format allows easy and direct inspection of the individual values when
received, without requiring custom software to unpack the data. Each packet con-
tains seven fields, representing a single measurement:

[Green PPG],[IR PPG],[Red PPG],[Ambient Light],[Accel X],[Accel
Y],[Accel Z]\n

An example packet could thus be:

4140,5371,9886,175,2374,-11626,-11619\n

While another viable approach would be to transmit the raw byte structure di-
rectly over the Bluetooth connection, this option was not implemented, as it would
complicate direct readability and verification during data acquisition. The chosen
ASCII-based representation thus prioritises transparency and ease of debugging dur-
ing development and testing, at the cost of a slightly higher transmission overhead,
which is more than acceptable given the current size of the data stream relative to
the available bandwidth.

11

2.2.2.2 Batched Transmission.

To improve system efficiency and power usage, individual data packets are transmit-
ted in batches of 4 (or when the transmission buffer is full) instead of individually.
For data reception and logging, the Renesas SmartConsole mobile application was
used on a smartphone to receive the data from the sensing system.

2.3 Dataset

Using the developed experimental in-ear measurement system, a dedicated dataset
was recorded to evaluate the performance of the PPG signals obtained from dif-
ferent ear sensor locations against a reliable cardiac ground truth. The dataset
was specifically designed to enable both quantitative and qualitative analyses of
signal quality, temporal alignment, and model development between different sen-
sor locations. Each recording session comprised synchronised PPG, acceleration,
and ECG data streams, acquired under controlled and repeatable conditions. Dif-
ferent activity scenarios were included to capture the influence of motion on signal
characteristics, while repeated recordings across different placements provided com-
parative measurements. The following subsections describe the dataset structure,
signal quality evaluation, ground-truth acquisition, alignment procedures, valida-
tion process and final data storage format.

2.3.1 Dataset overview

For each sensor location, two distinct activity conditions were measured, each with
a minimum total recording duration accumulated over a single or multiple sessions:
a seated condition of approximately 20 minutes, and a motion condition (walking
back and forth in a straight line) of approximately 10 minutes. Recordings were
obtained at four different sensor locations (outlined in 2.1.3) within the ear to en-
able a comparative analysis of location-dependent PPG performance. For the deep
external auditory ear meatus sensor location, additional recordings were collected
to enable a more comprehensive analysis and improve robustness when evaluating
those specific placements. These recordings were not used in the comparative anal-
ysis between different ear locations, but only for a single-sensor model performance
analysis. An overview of the dataset composition is given in Table 2.1.

Table 2.1: Dataset composition across different recording locations with PPG sensor at fs ≈ 100.

Location Seated samples Moving samples
Tragus [135564] [66184]
External auditory meatus (Deep) [321598] [66264]
External auditory meatus (Shallow) [135552] [67582]
Concha [121940] [63732]

12

2.3.2 PPG Signal quality measurement

In order to quantify the signal quality of a measured PPG signal, the Skewness
factor is used. [29] identified this metric as a reliable indicator of PPG waveform
quality, where a positive skewness value (> 0) typically corresponds to a proper
PPG signal. The formula for the skewness factor is outlined in Equation 2.2(from
[30]).

g1 =
m3

m
3/2
2

(2.2)

where

mi =
1

N

N∑
n=1

(x[n]− x̄)i (2.3)

2.3.3 Ground-truth acquisition

To establish a ground-truth heart activity reference, an electrocardiogram (ECG)
was used as the ground-truth signal. The ECG provides a direct and well-established
measurement of the heart’s electrical activity and therefore serves as an accurate
temporal reference for identifying individual cardiac cycles.

An ECG records the electrical activity of the heart as it contracts and relaxes. Its
characteristic waveform, illustrated in Figure 2.3a, consists of several distinct com-
ponents. Among its characteristic waveform components, the R-peak corresponds
to the moment when the heart’s ventricles are electrically activated to contract and
pump blood into the arteries. This electrical activation causes the heart to contract
and results in the physical ejection of blood from the heart to the arteries [31].

The ejected blood generates a pressure pulse wave that propagates through the
arteries until it reaches peripheral sites such as the ear in this case. These waves
can be optically captured by a PPG sensor, where the characteristic waveform of
a PPG signal is shown in Figure 2.3b. When this pressure wave arrives at the
measurement location, it causes a brief increase in local blood volume, which is
observed as the systolic peak in the PPG waveform. Consequently, each PPG
systolic peak originates from a cardiac contraction initiated at the corresponding
ECG R-peak, but appears after a characteristic time delay. This delay, known as
the pulse transit time (PTT), represents the time required for the pressure wave to
travel from the heart to the peripheral measurement site [32].

By temporally aligning the ECG and PPG recordings, the ECG R-peaks provide
a reliable reference for labelling the corresponding PPG (systolic) peaks [33]. This
enables accurate mapping of the peripheral optical pulse to its underlying cardiac
origin and allows for constructing a labelled ground-truth dataset.

To measure the ECG activity, a Byteflies ECG recording system [36] was used
concurrently while the ear module was recording. This system was chosen as this
was the only readily available ECG system. The Byteflies ECG recording system
used was of model type 1.0.6, which comprised a Sensor Dot Model 1.0.1 and a dock
of model 1.0.1. The ECG electrodes were placed in a single-lead configuration. One
electrode was placed in the left parasternal region, approximately at the 3rd/4th

13

(a) ECG waveform (from [34]) (b) PPG waveform (from [35])

Figure 2.3: Annotated characteristic waveforms

Figure 2.4: ECG electrode sensor locations (from [37])

intercostal space. The second electrode was placed on the left lateral thoracic wall,
inferior to the pectoralis major muscle, near the 6th/7th rib at the mid-axillary line.
This placement was the recommended placement by the ECG recording system and
resulted in an ECG recording with minimal distortions. Figure 2.4 showcases a
visual representation of the placement. This ECG system operated with a set
sampling frequency of 250 Hz.

2.3.4 Automatic signal alignment

As the PPG and ECG systems operated asynchronously, the corresponding record-
ings required temporal alignment. Both devices contained a tri-axial accelerometer,
which was leveraged to determine the relative time offset between systems caused by
differing start-up times. During data collection, the subject performed between 3 to
7 jumps to create distinct acceleration peaks visible in both recordings. To ensure
comparability between sensors that might be oriented differently, the three acceler-
ation axes (x,y,z) were combined into a multiple orientation-independent metrics:

1. Euclidean acceleration:

aeucl =
√

a2x + a2y + a2z (2.4)

14

2. Sum of absolute accelerations:
asum = |ax|+ |ay|+ |az| (2.5)

3. Jerk-based acceleration:

ajerk =

√(
dax
dt

)2

+

(
day
dt

)2

+

(
daz
dt

)2

(2.6)

Each acceleration metric was normalised to the [0, 1] range and cross-correlated
between the two systems to identify the optimal temporal shift to align both accel-
eration metrics. The time offset ∆t was determined as the lag corresponding to the
maximum of the normalised cross-correlation function:

∆t = argmax
τ

∑
t

(a1(t)− ā1)(a2(t+ τ)− ā2) (2.7)

where in Equation 2.7, a1(t) and a2(t) denote an acceleration metric magnitudes
from the ear and chest acceleration sensors at time t respectively and ā1 and ā2
represent the mean values of each corresponding signal.

This process was fully automated to provide the relative offset between the PPG-
system and the ECG-system efficiently. The resulting offset differences between
different metric types typically fell within 0–50 ms, indicating that any metric could
be used to achieve sufficient alignment accuracy. Minor errors introduced at this
stage are corrected during the subsequent visual refinement step. In Figure 2.5,
the results of the automatic alignment of the moving dataset of the shallow sensor
placement in the external auditory meatus are outlined.

(a) Unaligned signals (b) Aligned signal with offset=6.2050s

Figure 2.5: Automatic alignment of two acceleration signals by their normalised cross-correlation
using the Euclidean metric (Equation 2.4)

2.3.5 Visual refinement and frequency calibration

After automatic general alignment, a custom web-based visualisation tool was used
to fine-tune both the temporal offset and sampling frequency. The tool contains in-
teractive controls for offset adjustment, normalisation, peak adjustment, and result

15

saving. This web tool is depicted in Figure 2.6. Small deviations in the sampling
frequency were corrected by comparing two reference peaks in both signals that
experienced a consistent temporal drift over time. The derivation of the corrected
sampling frequency is depicted in Equation 2.8.

fnew = fold ×
tref,2 − tref,1

tmeas,2 − tmeas,1

(2.8)

In Equation 2.8, tref,1 and tref,2 denote the expected time interval between two
peaks in the reference ECG, and tmeas,1 and tmeas,2 represent the corresponding
interval in the measured PPG. This correction ensured alignment consistency over
long recordings where clock drift or sampling rate inaccuracies might otherwise
accumulate.

Figure 2.6: Custom web-based visual alignment tool for PPG & ECG signals

2.3.6 Signal validation and curation

The same visualisation interface was also used to inspect signal quality. Recordings
exhibiting no identifiable PPG waveform were excluded from the final dataset. In
cases where the lack of a usable PPG signal could be attributed to transient factors
such as motion artefacts, sensor detachment, or external interference, an additional
recording session was conducted to replace the corrupted one. However, if the
signal degradation originated from an inherently poor sensor placement, such as
an insufficient fit or limited optical coupling, no new recording was taken, as this
reflected a realistic limitation of that particular configuration. These instances were
documented and excluded from further analysis.

Similarly, corrupted ECG segments were identified and excluded from the cor-
responding data sources. These corrupted segments typically resulted in missing
or distorted R-peak detection, which in turn led to incorrect or absent labeling of
the associated PPG data. Only the affected portions of the ECG recordings were
removed, while the remaining valid segments from the same session were retained
for further analysis to preserve as much usable data as possible.

16

2.4 Configurable Deep Learning Framework for PPG Peak
Detection

To optimise machine learning models for PPG peak detection, a specialised frame-
work was developed to automate the complete pipeline, from data ingestion to
embedded deployment. The framework was designed with a configurable architec-
ture, allowing for the systematic comparison of configurations to identify optimal
models, while ensuring adaptability for future applications.

2.4.1 Data Preprocessing and Annotation

The initial phase of the pipeline involves transforming raw sensor data into a format
suitable for training neural networks. This process includes data discovery, signal
standardisation, ground truth annotation using a reference ECG signal and data
segmentation.

2.4.1.1 Data Ingestion and Organisation

The framework is designed to automatically detect data from multiple data sources
and transform this into a single dataset. It operates on a structured top-level
directory where each subdirectory represents a unique data source. Each data source
is required to contain four files:

• ppg.txt: Raw packet output from the PPG measurement setup.

• ecg.csv: Reference ECG signal and its timestamps.

• acc.csv: Reference ECG system acceleration data.

• data.json: Metadata file containing necessary parameters about the data sets:
PPG signal sampling frequency fPPG, ECG signal sampling frequency fECG,
temporal offset toff and optionally excludable time windows.

2.4.1.2 Signal Standardisation and Resampling

Both ECG and PPG signals contain slightly varying sampling rates. To ensure a
consistent temporal resolution across all data sources with correct peak timings, the
framework implements a 1/2-stage resampling process on the raw PPG signal.

1. Uniform Grid Alignment: All PPG signals are resampled to a common tar-
get frequency fstarget (default 100 Hz) using polyphase filtering [38]. Given an
input sampling rate fsin, the rational factors are chosen as p/q ≈ fstarget/fsin.
The resampled signal is defined as

y[m] =
∑
k

x[k]h(mq − kp) (2.9)

where h[·] is a FIR low-pass filter to remove aliasing artefacts.

17

2. Optional Downsampling: To analyse the effects of different frequency rates
lower than the original sampling rate, signals can be further resampled to
fsfinal using the same logic implemented in Equation 2.9 to achieve a new,
lower frequency.

This standardisation ensures that all subsequent operations are performed on a
consistent time base across the multiple data sources.

2.4.1.3 Ground Truth Generation via ECG Alignment

The core task is framed as a binary segmentation problem: classifying each time
point in the PPG signal as either a ”peak” (class 1) or ”non-peak” (class 0). To
generate accurate labels for the PPG signal, the synchronised ECG signal is used
as a reference standard to create ground-truth labels. The process of using the syn-
chronised ECG signal to construct ground-truth labels for the PPG signal involves
multiple steps:

1. R-Peak Detection: The ECG signal must first be cleaned of power-line har-
monics to ensure reliable R-peak extraction. Given the 250 Hz sampling rate,
only interference components below the Nyquist frequency of 125 Hz can ap-
pear in the digitised signal. Consequently, the 50 Hz fundamental and its first
harmonic at 100 Hz need to be removed.
To suppress these components, two cascaded 2nd-order IIR notch filters with
a quality factor of Q = 30 are applied at 50 Hz and 100 Hz. The quality factor
relates the notch’s centre frequency ω0 to its −3 dB bandwidth bw as shown
in Equation 2.10.

Q =
ω0

bw
(2.10)

The notch filters were applied using a forward–backward zero-phase filtering
approach, in which the signal is filtered once in the forward direction and then
again in reverse. This cancels the phase response of the filter, ensuring that
no phase distortion or temporal shifting of the R-peaks occurs. The impact
of the notch filtering is visible in a frequency domain representation shown in
Figure 2.7, where the 50 Hz and 100 Hz power-line components are effectively
attenuated. The corresponding time-domain signals are provided in Figure C.2
in the Appendix for completeness. The frequency response of the cascaded
notch filters is shown in Figure C.1.
After filtering, the ECG is normalised using Equation 2.11 to stabilise the
subsequent processing stages.

x̂i =
xi −min(x)

max(x)−min(x)
, i = 1, . . . , N (2.11)

Finally, the XQRS algorithm [39] is applied to the cleaned ECG signal to
identify the exact time indices of the R-peaks.

18

Figure 2.7: Frequency-domain comparison of the ECG signal before and after 50Hz and 100Hz
notch filtering.

2. Temporal Mapping: The timestamps of the detected R-peaks are mapped
onto the PPG signal’s timeline by applying the earlier determined temporal
offset specified in the metadata.

3. Peak Adjustment: As an optional refinement step, the peak indexes in the
PPG signal are adjusted to ensure that each identified ECG R-peak correctly
corresponds to its matching PPG peak. This step does not serve to reduce
noise but rather to compensate for temporal mismatches between ECG and
PPG peaks, primarily caused by minor differences in sampling frequencies and
timing offsets in the experimental measurement setup.
For each mapped R-peak time, the sample with the highest amplitude within
a small symmetric local window of the PPG signal is selected. In a perfect
scenario, this ensures that the ground truth label corresponds precisely to the
local maximum of the PPG pulse wave, rather than the initial ECG-derived
time point. In theory, the width of this window could be derived from the
physiological limits of the human heart rate by using the relationship for the
maximal heart rate per minute in healthy adults [40], which is shown in 2.12.

HRmax = 208− 0.7× age (2.12)

Dividing a minute by the absolute maximum value from this formula would
correspond to a minimal inter-beat interval of 60.0 s ∗ 103/208 ≈ 288 ms.
Using this value as the window range is however not advisable in practice, as
in practice signal noise and motion artefacts may introduce local maxima with
amplitudes larger than the PPG peaks present in the signal window. Instead,
a window size of 20 ms was used. This value was empirically derived from
recordings around 60 BPM (�1 s per cardiac cycle). While effective for this
dataset, the choice remains empirical and warrants further validation across
different conditions.
For each mapped R-peak time ti, the sample with the highest amplitude within
a local window Wi = [ti−∆, ti +∆] of the PPG signal is selected as shown in

19

Equation 2.13.

t̂i = arg max
t∈Wi∩{tk}

s(t), (2.13)

In Equation 2.13, s(t) denotes the PPG amplitude at time t.

4. Label Caching: To speed up subsequent experiments, the framework can
cache these final refined peak locations in a specific optional file, bypassing the
need for re-computation and ensuring consistency.

2.4.1.4 Windowing and Normalisation

The continuous annotated PPG signals are segmented into fixed-length windows
with a pre-defined time step, the stride, between consecutive windows to provide
input samples for the machine learning models. For each signal window, a corre-
sponding binary label mask of the same length is generated, with a value of 1 at
the locations of the peaks and 0 elsewhere. This windowing approach reflects how
data would be received in a real-time scenario, where the model processes short
segments of the incoming signal to detect peaks as they occur. A window length of
4 seconds with a stride of 1 second was selected based on preliminary evaluations,
which showed a decent trade-off between sufficient temporal context and compu-
tational efficiency. Although the developed framework allows the window size and
stride to be adjusted, a detailed analysis of its influence lies outside the scope of
this research.

Furthermore, each window is independently min-max normalised to the range
[0, 1] following Equation 2.11. This local normalisation makes the model robust to
variations in signal amplitude across different recordings or over time due to factors
like sensor placement and subject movement.

2.4.2 Model Architectures

Two different CNN architectures were selected to introduce diversity in the model
design and to assess how architectural choices influence performance in a temporally
periodic task such as PPG peak detection. By including one model with standard
convolutional layers and another incorporating dilated convolutions, the framework
enables a more detailed investigation into how an increased receptive field affects the
detection of periodic features. Since heart rate varies only gradually under normal
physiological conditions, an architecture capable of integrating information over a
longer temporal context may better capture the underlying periodic structure of
the signal and improve the performance of its predictions.

2.4.2.1 Dynamic Encoder-Decoder CNN

The first model family is a standard, dynamically constructed encoder-decoder
CNN. The network consists of an encoder, a decoder, and an output projection.

20

The architecture can be dynamically configured, allowing for systematic exploration
of hyperparameters and different model configurations. Let the input signal be

x(0) ∈ R1×T , (2.14)

where T denotes the temporal length.

Encoder The encoder applies B successive convolutional blocks, where each block
comprises a convolutional layer, an optional batch normalisation layer, a non-linear
activation function and an optional pooling layer. For block i ∈ {1, . . . , B} with in-
put x(i−1) ∈ RCi−1×Ti−1 , the convolutional layer in the convolutional block computes
an output feature map z as in Equation 2.15.

z(i) = W (i) ∗ x(i−1) + b(i), z(i) ∈ RCi×Ti , (2.15)

In Equation 2.15, W (i) ∈ RCi×Ci−1×k are the convolutional kernels of size k,
b(i) ∈ RCi are the bias terms, and Ci denotes the number of output channels of
the layer. In this context, each channel acts as an independent filter with its own
randomly initialized weights. During training, these weights are iteratively updated
through gradient descent, allowing each channel to ideally capture a distinct tempo-
ral or morphological pattern that contributes to an optimal prediction of the target
output.

However, since dilation also play a factor, Equation 2.15 turns into Equation 2.16
in its discrete form with dilation implemented. Note that zero padding has been
implemented to correct the input size for the specified kernel size and dilation.

z
(i)
c,t =

Ci−1∑
c′=1

k−1∑
m=0

W
(i)
c,c′,m x

(i−1)
c′, t+d·m + b(i)c , z(i) ∈ RCi×Ti , (2.16)

where in Equation 2.16, the output is calculated for each channel c, with kernel
size k ∈ Z>0 and dilation factor d ∈ Z>0. Note that this expression uses the
cross-correlation operator rather than the mathematically flipped convolution. This
follows modern implementations, which implement cross-correlation for efficiency to
avoid filter reversal during training when using convolution [41].

After the convolutional layer, an optional batch normalisation [42] stage is po-
tentially applied for improved learning rates. Theoretically speaking, by reducing
internal covariate shift in the output of different layers, batch normalisation could
stabilise training, enable higher learning rates, and promote more consistent fea-
ture learning across the PPG sequences in the dataset. Batch normalisation is
implemented with Equation 2.17 (from [43]).

y =
x− E[x]√
Var[x] + ϵ

∗ γ + β (2.17)

where x denotes the input to batch normalisation (e.g. the output of a convolu-
tional layer), E[x] and Var[x] are the mean and variance computed per channel over
the mini-batch, ϵ is a small constant added for numerical stability to avoid division
by zero, and γ and β are learnable scale and shift parameters, respectively.

21

Activation layer After the optional Batch Normalisation stage, an activation layer
is applied to introduce non-linearity. Two activation functions were considered:

1. SiLU (Sigmoid Linear Unit): The SiLU activation function is defined as

SiLU(x) = x · σ(x) (2.18)

where x is the output of the previous layer and σ(x) is the logistic sigmoid
function from Equation 2.19.

σ(x) =
1

1 + e−x
(2.19)

2. ReLU (Rectified Linear Unit): The ReLU activation function is defined
as

ReLU(x) = max(0, x) (2.20)
The ReLU activation zeroes out all negative values while keeping positive values
unchanged.

Pooling Layers After a predefined number of convolutional blocks, a pooling layer
is optionally applied to reduce the temporal dimension of the feature maps. Pooling
operations aggregate local activations within a fixed or adaptive window, thereby
improving translation invariance and reducing computational complexity in sub-
sequent layers [44]. In this research, only fixed window pooling layers have been
considered that could readily be implemented into the developed framework.

For a one-dimensional input feature map x ∈ RC×T , pooling is applied indepen-
dently per channel c over non-overlapping or adaptive windows of length p (in the
code set to a constant of 2 for reduced complexity), producing an output y ∈ RC×T ′ .
The general formulation can be expressed as shown in Equation 2.21.

yc,t = f
(
xc,τ | τ ∈ [tp, (t+ 1)p)

)
, (2.21)

In Equation 2.21, f(·) denotes a local aggregation function. Depending on the
pooling type, this function takes different forms:

1. Max-Pooling:
yc,t = max

τ∈[tp,(t+1)p)
xc,τ (2.22)

Retains the largest value in the pooling window

2. Average-Pooling:
yc,t =

1

p

∑
τ∈[tp,(t+1)p)

xc,τ (2.23)

Computes the mean value within each window

3. Lp-Pooling:

yc,t =

1

p

∑
τ∈[tp,(t+1)p)

|xc,τ |p
 1

p

(2.24)

22

A generalisation of Max- and Average-Pooling. For p = 1, it reduces to mean
pooling; for p → ∞, it approaches Max-Pooling. While many different values
are possible for p, only p = 2 was realised in this research to include the
Lp-pooling concept without shifting the primary focus of this research.

Decoder If the encoder reduces the temporal resolution of the feature maps
through pooling operations, a decoder stage restores the original temporal scale
to enable correct per sample predictions for peak detection. The decoder per-
forms a simple nearest-neighbour upsampling operation with a total scale factor s
of s = 2Np , where Np is the number of preceding pooling layers. Mathematically, for
a one-dimensional feature map x ∈ RC×T and upsampling factor s, the upsampled
output y ∈ RC×sT is given by Equation 2.25.

yc,t = xc,⌊t/s⌋ (2.25)

In Equation 2.25, ⌊·⌋ denotes the floor operation. At last, a final convolutional
layer transforms the upsampled multi-channel representation to a single output
channel. This output channel contains the raw predictions of the model, commonly
referred to as the model logits.

Network construction overview A high-level overview of the dynamic encoder-
decoder CNN is shown in Figure 2.8, with the complete construction logic provided
in pseudocode in Algorithm 1. This pseudocode summarises the structural logic,
including the progressive channel expansion, pooling, and decoder upsampling.

2.4.2.2 Dilated Encoder-Decoder CNN

A second model family was developed to extend the encoder-decoder design. This
model family first compresses the temporal resolution of the signal, after which con-
volution blocks with exponentially increasing dilation in the convolution layer are
implemented. These convolution blocks (with the exponentially increasing dilation
factor) combined will be referred to as the bottleneck stage, the stage where the
network processes the features in their most compressed form, hence the term bot-
tleneck. This architecture is more commonly known as a U-net architecture [45].
Concretely, the network comprises an encoder with two convolutional blocks, each
containing a pooling layer, a bottleneck stage, and two convolutional blocks, each
containing a nearest-neighbour upsampling layer instead of pooling layer. At last,
an output projection is performed to obtain a single-channel output.

Encoder The encoder consists of two sequential stages, each performing downsam-
pling. Each stage applies a 1D convolution (Equation 2.16), batch normalisation
(Equation 2.17) and an activation layer (Equation 2.18 or Equation 2.20), followed
by a pooling layer (Equation 2.22 to Equation 2.24). This encoder stage downsam-
ples the signal to be used by the later bottleneck stage, which will perform most of
the computations and is the core of this architecture.

23

En
co

de
r

Lo
op Decoder

Input Signal
x(0) ∈ R1×T Initialisation Config parameters

More Blocks?

1. Calculate Channels
2. Convolution

BN enabled? BatchNorm

Activation

Pool iteration? Pooling

Next Block

Yes

Yes

No

Yes

No

Pooling performed?
No Upsample

2count

Convolution
(Final projection)

Output Signal
ŷ ∈ R1×T

Yes

No

Figure 2.8: Architecture schematic of dynamic encoder-decoder CNN as outlined in Algorithm 1

Bottleneck with Dilated Convolutions After the initial downsampling, a bottleneck
stage is introduced where the convolutional blocks each increase their dilation factor
exponentially. This design allows the convolutional blocks to capture more signal
context per convolutional layer, while keeping the number of parameters manageable
for an embedded model. For the j-th convolutional block in the bottleneck, where
j ∈ {0, . . . , Nd − 1} and Nd is the number of convolutional blocks in the bottleneck
stage, the dilation factor dj of each convolutional layer inside the block is given by
Equation 2.26.

dj = djbase, (2.26)
In Equation 2.26, dbase is a user-defined base dilation factor (e.g. dbase = 2). This

exponential growth of the receptive field enables the model to efficiently integrate
information over a bigger time frame than would be possible with the aforemen-
tioned encoder-decoder CNN architecture (subsubsection 2.4.2.1).

Decoder The decoder reconstructs the original temporal resolution through two
nearest-neighbour upsampling stages (Equation 2.25), each followed by a convolu-
tional block to refine the enlarged feature maps. This interleaving of upsampling
and convolution enables the network to regain finer temporal structure after the
dilated bottleneck. After the final upsampling and convolution stage, a conclud-
ing convolution is applied to project the multi-channel feature maps down to a

24

single-channel output signal ŷ ∈ R1×T .
The decoder stage symmetrically mirrors the encoder to restore the original tem-

poral resolution of the input signal. It consists of two upsampling stages. Unlike the
encoder-decoder CNN architecture’s single upsampling step, this decoder interleaves
nearest-neighbour upsampling (Equation 2.25) with a ‘ConvBlock‘. This approach
allows the model to refine the upsampled features and learn to reconstruct finer
details of the signal, which could help in producing a more precise peak-likelihood
output. After the final upsampling and convolution stage, a concluding convolu-
tional layer is implemented to obtain a single-channel output signal (ŷ ∈ R1×T .)
from the multi-channel feature maps.

Network construction overview A high-level overview of the dilated encoder-
decoder CNN is shown in Figure 2.9, with the pseudocode provided in Algorithm 2.

En
co

de
r

B
ot

tle
ne

ck

D
ec

od
er

Input Signal
x(0) ∈ R1×T

Config Params

ConvBlock

Pooling

ConvBlock

Pooling

More blocks?

Calculate dilation

Dilated ConvBlock
Set calculated dilation

Next block

Upsample

ConvBlock

Upsample

ConvBlock

Convolution
(Final projection)

Output Signal
ŷ ∈ R1×T

ConvBlock Structure:

Conv BN Act

Yes

No

Figure 2.9: Architecture schematic of the Dilated Encoder-Decoder, as outlined in Algorithm 2
.

2.4.3 Model Training and Evaluation

The framework provides different options for training models and evaluating their
performance using different metrics.

25

2.4.3.1 Training Procedure

For training the weights and biases, the AdamW optimiser is used [46]. Although
alternative optimisation algorithms (e.g., SGD, RMSProp, or Adam) could have
been considered, a comparative analysis of different optimisers falls outside the scope
of this work and is therefore not explored further. Since the nature of determining
PPG peaks leads to class imbalance between the R-peak and non-R-peak samples,
with the severity of the class imbalance directly related to the sampling frequency,
two different loss functions have been integrated in the framework for which the
models aim to reach a minimum.

1. Binary Cross Entropy: Binary Cross Entropy (BCE) is the standard loss
for binary classification tasks. Simply put, it penalises the difference between
a predicted sample (ŷ) and the actual value (y). The equation can be seen in
Equation 2.27 (from [47]).

ln = −wn [yn · log σ(ŷn) + (1− yn) · log(1− σ(ŷn))] , (2.27)

In Equation 2.27, ln is the loss for a sample in the array, wn is a weight sample,
yn is the actual sample value, ŷn is the predicted sample value and σ is the
sigmoid function as in Equation 2.19.

2. Focal Loss: An implementation of Focal Loss [48] is provided as an alternative
to the standard BCE loss (Equation 2.27). By adding a modulating factor
(1 − pt)

γ, Focal Loss dynamically down-weights the loss contribution from
easy, well-classified examples, thereby focusing the training process on harder-
to-classify samples. The focal loss for a binary classification task can be defined
as in Equation 2.28.

ln = −αn (1− pt,n)
γ log(pt,n),

pt,n =

{
σ(ŷn), yn = 1,

1− σ(ŷn), yn = 0,

(2.28)

and p ∈ [0, 1] is the model’s estimated probability for the class with label y = 1.
Here, αt ∈ [0, 1] is a weighting factor that addresses class imbalance, and γ ≥ 0
is the focusing parameter that controls the strength of down-weighting for
easy examples. Setting γ = 0 reduces Focal Loss to standard BCE. Although
implemented in the framework, only BCE is used in the experiments, as this
proved to be the best-performing loss function in preliminary evaluations.

2.4.3.2 Post-Processing and Inference

The standard approach to obtaining binary predictions from a model’s raw output
(logits) is to apply a sigmoid activation function (Equation 2.19) and classify sam-
ples as positive when the resulting probability exceeds a predefined threshold. This
straightforward method already produces valid binary outputs and is therefore used
as the default inference procedure.

26

In addition to this standard method, two optional post-processing steps have
been implemented to further refine the model’s predictions:

1. Thresholding: Logits are first passed through a sigmoid function (Equa-
tion 2.19) to obtain probabilities. A tunable decision threshold is then deter-
mined to maximise the correct binary outputs. The framework automatically
tunes this threshold on a validation set to maximise the MCC score (explained
in Equation 2.30).

2. Non-Maximum Suppression (NMS): To prevent the detection of multi-
ple peaks for a single cardiac event, a 1D NMS algorithm is applied, more
commonly used in 2D image detection [49]. This technique takes the list of
predictions, selects the elements that have a predicted probability higher than
a threshold τ and sorts the positive predicted samples by their probability
prediction in descending order. Iteratively, the highest-scoring candidate is
selected as a peak, and all neighbouring samples within a fixed suppression
window are discarded. Equation 2.29 shows mathematically how a peak is se-
lected. This process continues until no candidates remain which have not been
selected or suppressed.

m[i] =

{
1, s[i] ≥ τ and s[i] = max{s[j] | j ∈ [i− w, i+ w]},

0, otherwise.
(2.29)

Although any window size can theoretically be chosen, in practice it should be
selected in accordance with the temporal interval corresponding to the maximum
expected heart rate (Equation 2.12).

2.4.3.3 Evaluation Metrics

The performance of the model is assessed using two complementary sets of metrics.
• Sample-Level Metrics: These metrics evaluate the model’s performance at

the level of individual time samples and include standard classification metrics
such as precision, recall, macro F1-score, and the Matthews Correlation Co-
efficient (MCC). As [50] demonstrated that the MCC score provides a more
reliable and informative measure for binary classification than accuracy or F1-
score, MCC was selected as the primary metric to evaluate model performances.
The MCC is defined as shown in Equation 2.30:

MCC =
TP · TN − FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
, (2.30)

where TP , TN , FP , and FN denote the number of true positives, true nega-
tives, false positives, and false negatives, respectively. The result of the MCC
calculation is in the range [−1, 1], with −1 implying complete misclassifica-
tion and 1 implying perfect classification. An MCC value of 0 corresponds to
random classification.

27

• Event-Level Metrics:
Strict sample-level metrics could sometimes be too restrictive for certain ap-
plications. A more forgiving evaluation is achieved by assessing peaks within
a configurable temporal window. In this metric, true and predicted peaks are
paired together in a way that minimises the total matching error, essentially
finding the most reasonable mapping between true and predicted peaks. This
is achieved by using a linear sum assignment solver [51], with the underly-
ing algorithm being a modified Jonker-Volgenant algorithm [52]. This event-
based approach provides more flexibility to minor temporal deviations in the
predicted peaks, without immediately classifying them as false positives. Al-
though event-level metrics are implemented in the developed framework, they
are not used in the experiments and for the reported results to ensure con-
sistency and objectivity across model comparisons. However, their inclusion
allows future studies to perform event-based evaluation when desired.

2.4.4 Hyperparameter Optimization Strategies

A key feature of the framework is its ability to perform automated hyperparameter
searches to identify optimal configurations.

2.4.4.1 Grid Search

The framework can execute a grid search over a predefined hyperparameter space for
the defined model architectures. It systematically trains and evaluates a model for
each combination of parameters (e.g. number of layers, kernel size, specific pooling
layer). The configuration resulting in the best performance on the validation set,
determined by the MCC score, is identified as the optimal model.

2.4.4.2 Pareto Front Analysis

For a more complete understanding of model trade-offs, the framework implements
a Pareto front search. This multi-objective optimisation approach seeks to find a set
of models that represent the best possible compromise between different objectives.
The objectives for this analysis are:

1. MCC Score: To be maximised.

2. Model Size (in Kilobytes): To be minimised.

The result of this search is a Pareto front [53], a set of non-dominated models
where no single model can be improved in one objective without degrading its
performance in another. This allows for an informed selection of a model that best
fits specific deployment constraints, namely prediction accuracy with model size.
The discovered optimal models, along with their configurations and performance
metrics, can be saved for further analysis.

28

2.4.4.3 Model Size Exclusion Criterion

To ensure fair and practically relevant comparisons, all models exceeding a size
of 2 MB were excluded in the training process from further analysis. This limit
reflects the memory constraints of the embedded platform targeted in this work,
2 MB is the maximum flash capacity available in the STM32H7 microcontroller
used in this research (section 2.5) for embedded validation experiments. Although
the framework allows this threshold to be adjusted, it was fixed to 2 MB for this
study.

2.5 Embedded model deployment

Since this research aims to create a model that can perform PPG peak detection on a
resource-constrained embedded device, the final phase of the methodology involves
deploying the trained model onto an embedded device. The STM32H755ZIT6U
MCU [54] integrated on the Nucleo-H755ZI-Q development board [55], shown in
Figure 2.10, has been used to test the model’s validity and performance metrics.
This device was selected because its architecture is representative of embedded sys-
tems suitable for in-ear PPG applications, while still providing sufficient resources
to support a wide range of tests. Although its form factor (20x20x1.4 mm) does
not allow for direct integration into an in-ear sensing device, it offers an accessible
and practical platform for comprehensive evaluation. This embedded validation
process is divided into three stages: model conversion, on-device deployment and
performance validation procedures.

Figure 2.10: Nucleo-H755ZI-Q development board (from [55]).

2.5.1 Model conversion

As a first step, the developed models need to be converted to a format that is suitable
for microcontrollers. LiteRT (or more commonly known as TFLite) [56] has been

29

selected due to its widespread support and optimisation for edge devices. This
toolset allows for conversion of different machine learning models to an embedded-
optimised ‘.tflite‘ format [57], which can be used in later stages.

2.5.2 On-device deployment

The generated .tflite model is integrated into the STM32H7 firmware using the
STM32Cube.AI toolchain provided by STMicroelectronics [58]. This software tool
analyses the TFLite model and automatically generates an optimised C-code library
for the STM32 architecture. This library includes functions to initialise the model,
handle memory allocation for input/output tensors and activations, and execute
the inference part.

STM32Cube.AI also includes an analysis mode that estimates the model’s com-
putational and memory requirements before deployment. It reports metrics such
as the number of multiply–accumulate operations (MACs), Flash and RAM usage,
and activation size for the selected embedded device. Although it does not provide
exact runtime values, this analysis offers a reliable indication of model complexity
and can be used to estimate the inference speed on the target device.

2.5.3 Performance validation procedures

To ensure that the conversion and deployment process did not introduce errors and
to accurately measure on-device performance, a verification procedure was estab-
lished. This verification procedure makes a direct comparison between the original
developed ML model running on a PC and the converted embedded model running
on the STM32H7.

The verification workflow is as follows:

1. Prepare Input: A standard PPG signal window is selected and pre-processed
(min-max normalized, following Equation 2.11).

2. PC Inference: The script loads the original model and performs inference on
the prepared input window. The raw output vector (logits) and the execution
time in milliseconds are recorded.

3. Embedded Inference: The script transmits the normalised input window to
the STM32H7 device over a serial (UART) connection.

4. Device Execution and Reporting: The STM32H7 firmware receives the
data, runs a single inference using the integrated embedded model, and mea-
sures the exact number of CPU cycles consumed during the execution. It then
transmits the resulting logit vector and the cycle count back to the PC.

5. Comparative Analysis: The script compares the logit vector from the PC
against the one received from the microcontroller. To quantify the numerical
equivalence, several metrics are computed:

• Mean Squared Error (MSE) and Root Mean Squared Error
(RMSE) measure the average squared deviation between predicted and

30

true outputs (Equation 2.31).

MSE =
1

N

N∑
i=1

(yi − ŷi)
2, RMSE =

√
MSE. (2.31)

• Mean Absolute Error (MAE) quantifies the average absolute difference
between the predicted and true values (Equation 2.32).

MAE =
1

N

N∑
i=1

|yi − ŷi|. (2.32)

• Cosine Similarity evaluates the directional similarity between two out-
put vectors in Equation 2.33, where a value of 1.0 indicates perfect align-
ment between the predicted and true vectors.

Cosine Similarity(y, ŷ) =
y · ŷ
∥y∥ ∥ŷ∥

=

∑N
i=1 yiŷi√∑N

i=1 y
2
i

√∑N
i=1 ŷ

2
i

, (2.33)

This comparison validates that the embedded model is an (almost) exact rep-
resentation of the original model before deployment on an embedded device. Fur-
thermore, the reported CPU cycle count provides a precise and reliable benchmark
of the model’s computational cost on the embedded device, allowing for a direct
assessment of its suitability for real-time applicability.

Alternatively, a full PC-based validation can be performed, following the evalu-
ation methodology and metric definitions outlined by STMicroelectronics [59]. In
this approach, both the original model and its equivalent embedded model are exe-
cuted on a PC, allowing a direct numerical comparison between the two frameworks
under identical software conditions, although not as applicable as the real embedded
verification.

2.6 Experimental Design

Different experiments were performed to evaluate the developed in-ear sensing sys-
tem and its corresponding machine learning models. Each experiment focused on
a distinct stage of the pipeline: signal acquisition, model comparison, model con-
figuration optimisation, and embedded deployment. Together, these experiments
provide concrete results for assessing both sensing performance and model feasibility
on embedded hardware from the developed framework.

2.6.1 Experiment 1: Sensor Signal Evaluation

The first experiment aimed to assess the quality and stability of the PPG signals
obtained from the four in-ear sensor placements: tragus, concha, shallow external
auditory meatus, and deep external auditory meatus. Using the dataset described

31

in section 2.3, both seated and walking conditions were analysed to quantify the
effect of motion on signal integrity.

The analysis consisted of two parts. First, a qualitative visual inspection was
performed to evaluate the signal quality. Second, a quantitative assessment was
conducted using the skewness factor (Equation 2.2) as an objective indicator of
PPG waveform quality. A positive skewness value (> 0) was used as an indication
for well-formed, physiologically plausible signals.

The results of this experiment established the baseline signal characteristics for
each ear location and provided initial results on which placement offers the most re-
liable signal morphology for subsequent machine learning experiments. The results
are presented in section 3.1, with the results interpreted and discussed in section 4.1.

2.6.2 Experiment 2: Comparative Model Analysis Across Sensor Loca-
tions

The second experiment evaluated how sensor placement affects the predictive per-
formance of a representative subset of machine learning models trained for PPG
peak detection. The different models were trained on their respective dataset ((sec-
tion 2.3), with the models corresponding to the configuration space outlined in
Table B.3 under the Comparative column. The results are presented in section 3.2,
with the results interpreted and discussed in section 4.2.

2.6.3 Experiment 3: Model Configuration and Parameter Sensitivity

After identifying the most suitable sensor placement, a detailed analysis was con-
ducted on a single location. The deep external auditory meatus was selected as this
proved to be the best performing placement from the previous experiment. This ex-
periment aimed to assess how individual model configuration parameters influence
predictive performance and model size.

To ensure generalisable insights, the configuration space was designed to vary
not only the parameter under investigation but also other parameters within repre-
sentative bounds. This approach prevents the analysis from depending on a single
fixed model setup and instead captures the averaged effect of each parameter across
a broad range of configurations. The complete parameter spaces used for this anal-
ysis are outlined in Table B.1 and Table B.2, corresponding to the standard and
dilated CNN families, respectively. Models exceeding the 2 MB memory threshold
were excluded from further analysis.

Both model families are evaluated, with the following sections describing each
model family and the parameters examined in detail.

2.6.3.1 Dynamic Encoder–Decoder CNN.

The first part of the experiment focused on the dynamic encoder–decoder CNN ar-
chitecture (Algorithm 1). The following configuration parameters were investigated
individually:

32

• Batch Normalisation:
Compared models trained with and without batch normalisation to quantify
its effect.

• Pooling frequency and type (pool_every, fpool):
The downsampling interval was analysed with intervals of 1,2,4,8 and the im-
pact of the pooling function used (max, average, Lp).

• Base channel width and scaling factor (base_channels, double_every):
Analysed the effects of the initial number of channels (8, 16, 32 and 64) and
the number of blocks after which the number of channels are doubled (1, 2, 4
and 8).

• Kernel size and dilation factor (kernel_size, dilation):
Investigated the impact of increasing the kernel width (3, 5, 7 and 9) and
spacing between kernel elements (1, 2, 4 and 8) in the convolution layer.

• Activation function: Compared the use of ReLU and SiLU as an activation
layer.

The results are presented in section 3.3, with the results interpreted and discussed
in section 4.3.

2.6.3.2 Dilated Encoder–Decoder CNN.

In the second part, the Dilated Encoder–Decoder CNN (Algorithm 2) was examined.
Within this model family, the following configuration parameters were explored:

• Number of dilated layers (num_dilated_layers): The number of layers in
the bottleneck stage (3, 5 and 7) were varied to evaluate their influence.

• Bottleneck channel width (bottleneck_channels): Analysed the impact
of increasing the internal channel width (16, 32, 64 and 128).

• Bottleneck stage kernel size and base dilation factor (kernel_size,
base_dilation_dc): Explored how the kernel size (3, 5, 7 and 9) and the
base dilation factor (1, 2, 3 and 4) in the bottleneck stage influence the model
characteristics.

• Encoder channel and kernel size (enc1/enc2_channels,
enc1/enc2_kernel): Investigated how varying the number of channels
and kernel widths in the encoder stages affects performance and model
compactness.

• Decoder similarity: Evaluated whether maintaining parameter symmetry
between encoder and decoder (matching channels and kernel sizes) improves
performance, or whether independently configured encoder/decoder parame-
ters are better.
In this experiment, a symmetric design leads to the best performance (subsub-
section 3.3.2.4). Therefore, no further analysis of the independent parameters
are performed.

33

The results are presented in subsection 3.3.2, with the results interpreted and
discussed in section 4.4.

In addition to the architectural parameters, this experiment also examined
the influence of pre- and post-processing steps, namely peak refinement and non-
maximum suppression (NMS). The corresponding configuration settings are listed
in Table B.3, with the results presented in subsection 3.3.3, with the discussion
taking place in section 4.5.

2.6.4 Experiment 4: Embedded Validation

The final experiment validated the developed embedded model, ensuring that the
methodology resulted in numerically correct embedded models that were also exe-
cutable within embedded hardware and timing constraints. Characteristic models
from the previous experiments were converted to an embedded format and de-
ployed on a STM32H755 microcontroller. In this experiment, the Mean Squared
Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and
Cosine Similarity were computed to ensure numerical equivalence (Equation 2.31-
2.33).

Two complementary analyses were performed:

1. Host/PC validation: The embedded-format models were first executed on
a PC to verify that the conversion process preserved numerical correctness.

2. Embedded validation: The same embedded-format models were then de-
ployed on the STM32H755 microcontroller to evaluate their numerical be-
haviour on-device. Additionally, the execution time of each model was mea-
sured.

This final experiment ensured that the selected models were not only accurate
but also executable within the hardware and timing constraints of an embedded
in-ear sensing platform.

The results are presented in section 3.4 and discussed in section 4.6. The config-
uration space used is outlined in Table B.3 under the Embedded column.

2.7 Evaluation Metrics and Visualisations

The following visualisation types are used throughout the result chapter of this the-
sis (chapter 3) to summarise and compare model performance across configurations.

• Box plots: These plots summarise the distribution of MCC values by showing
the median and the interquartile range (IQR). The whiskers extend to the most
extreme data points that lie within 1.5 × IQR from the quartiles, indicating
the range of typical values. Any data points beyond this limit are plotted
individually as outliers. See Figure 3.4 as an example.

• Pairwise win-rate matrices: These heatmaps show, for every pair of pa-
rameter settings, the proportion of configurations in which one setting yields
a higher MCC than the other. See Figure 3.5 as an example.

34

• Histograms of ∆MCC: These histograms present the distribution of MCC
differences between paired configurations for binary parameter choices, such
as models trained with or without peak adjustment. See Figure 3.6 as an
example.

• Scatter plots (MCC vs. model size): These plots illustrate the relation-
ship between MCC values and model size across different configurations. See
Figure C.3 as an example.

35

36

Results 3
In this section, the results from the different experiments (section 2.6) are presented.
First, the PPG measurements from all four in-ear sensor locations are shown, includ-
ing qualitative waveform evaluations and skewness statistics. Second, the outcomes
of the comparative analysis are reported, summarising model performance across
sensor placements. Third, the detailed results of a single-location parameter study
of both architecture families are shown, with the effects of pre- and post-processing
steps. Last, the results of the embedded validation are reported. The results are
solely presented in this section, the discussion of these results can be found in chap-
ter 4.

3.1 PPG Sensor Results

In this section, the PPG measurements from the in-ear PPG sensor, placed in the
four different locations (as outlined in subsection 2.1.3), will be visually inspected
in both seated and walking condition.

3.1.1 Visual Observation

The visual analysis begins with the seated measurements, followed by the walking
condition.

3.1.1.1 Seated condition

Figure 3.1 illustrates the PPG waveforms recorded during seated measurements
across all sensor placements. Each graph shows a 100-second segment (200–300 s
in the recording), normalised to the range [0, 1] for comparability.

In all locations, a periodic, sinusoid-like pattern corresponding to the expected
behaviour of PPG-signal, with approximate frequencies between approximately
1− 1.2 Hz (≈ 60− 70 bpm) can be seen. Furthermore, the timing of these periodic
fluctuations aligns with the peaks in the simultaneously recorded ECG. Moreover,
small variations in waveform amplitude and baseline drift are visible between loca-
tions.

3.1.1.2 Walking condition

Figure 3.2 presents PPG segments acquired while the subject was walking. Un-
der these conditions, motion artefacts become prominent, and the amount of signal
distortion varies considerably between sensor placements. The concha signal (Fig-
ure 3.2b) contains a recognisable PPG morphology throughout most of the segment,
although mild amplitude differences and baseline fluctuations are present. The deep

37

200 220 240 260 280 300

0.3

0.4

0.5

0.6

0.7

0.8

Signals
LED Green (PPG)

Aligned PPG, ECG, and Acceleration (Accel method: Euclidean)

Time (s)

A
m

pl
itu

de

(a) Deep meatus

200 220 240 260 280 300
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6
Signals

LED Green (PPG)

Aligned PPG, ECG, and Acceleration (Accel method: Euclidean)

Time (s)

A
m

pl
itu

de

(b) Concha

200 220 240 260 280 300

0.5

0.52

0.54

0.56

0.58

0.6
Signals

LED Green (PPG)

Aligned PPG, ECG, and Acceleration (Accel method: Euclidean)

Time (s)

A
m

pl
itu

de

(c) Tragus

200 220 240 260 280 300

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Signals
LED Green (PPG)

Aligned PPG, ECG, and Acceleration (Accel method: Euclidean)

Time (s)

A
m

pl
itu

de

(d) Shallow meatus

Figure 3.1: Sample 100-second PPG signal segments (200–300 s) recorded under seated conditions
across all sensor placements.

meatus signal (Figure 3.2a) shows more frequent distortions and irregular loss of
periodicity, particularly between 240–260 s, yet partial waveform structure remains
visible. In contrast, the tragus and shallow meatus signals (Figure 3.2c and Fig-
ure 3.2d, respectively) display severe artefacts that obscure the underlying cardiac
rhythm, making individual pulses visually indistinguishable in several intervals (e.g.
240–270 s for the tragus). To illustrate this effect, ECG R-peaks were overlaid on
the 240-260 s time frame in Figure 3.3, showing that the temporal correspondence

38

between cardiac events and optical PPG peaks is largely lost for these locations.

200 220 240 260 280 300

0.25

0.3

0.35

0.4

0.45

0.5

0.55 Signals
LED Green (PPG)

Aligned PPG, ECG, and Acceleration (Accel method: Euclidean)

Time (s)

A
m

pl
itu

de

(a) Deep meatus

200 220 240 260 280 300
0

0.2

0.4

0.6

0.8

Signals
LED Green (PPG)

Aligned PPG, ECG, and Acceleration (Accel method: Euclidean)

Time (s)

A
m

pl
itu

de

(b) Concha

200 220 240 260 280 300

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Signals

LED Green (PPG)

Aligned PPG, ECG, and Acceleration (Accel method: Euclidean)

Time (s)

A
m

pl
itu

de

(c) Tragus

200 220 240 260 280 300

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Signals

LED Green (PPG)

Aligned PPG, ECG, and Acceleration (Accel method: Euclidean)

Time (s)

A
m

pl
itu

de

(d) Shallow meatus

Figure 3.2: Sample 100-second PPG signal segments (200–300 s) recorded under walking conditions
across all sensor placements.

3.1.2 Skewness

Table 3.1 summarises the skewness characteristics of the PPG signals for all evalu-
ated sensor locations and activity conditions. For each recording, the median, mean,
interquartile range (IQR), and standard deviation (SD) were computed across all
analysis windows to quantify the distribution of skewness values.

39

240 245 250 255 260

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Signals
LED Green (PPG)

ECG R-Peaks (on PPG) - Green

Aligned PPG Signals, ECG, and Acceleration (Signals: PPG, Accel: Euclidean)

Time (s)

A
m

pl
itu

de

(a) Tragus

240 245 250 255 260

0.4

0.5

0.6

0.7

0.8

0.9
Signals

LED Green (PPG)

ECG R-Peaks (on PPG) - Green

Aligned PPG Signals, ECG, and Acceleration (Signals: PPG, Accel: Euclidean)

Time (s)

A
m

pl
itu

de

(b) Shallow Meatus

Figure 3.3: Sample 20-second PPG signal segments (240–260 s) recorded under walking conditions
for tragus and shallow external auditory ear meatus with ECG R-peaks indicated by green crosses.

Skewness
Location Condition Median Mean IQR SD
External auditory meatus (deep) Non-moving 0.092 0.111 0.591 0.539
External auditory meatus (deep) Moving 0.099 0.123 0.640 0.557
External auditory meatus (shallow) Non-moving −0.030 −0.065 0.658 0.497
External auditory meatus (shallow) Moving −0.117 −0.140 0.725 0.563
Concha Non-moving 0.260 0.201 0.334 0.311
Concha Moving −0.024 −0.047 0.924 0.598
Tragus Non-moving 0.085 0.117 0.800 0.780
Tragus Moving 0.065 0.073 0.800 0.620

Table 3.1: Summary of PPG signal skewness across sensor locations and activity conditions. Values
represent the median, mean, interquartile range (IQR), and standard deviation (SD) computed
over all analysis windows.

3.2 Comparative Analysis

Following the qualitative assessment of PPG signal quality, this subsection presents
a quantitative comparison of the ear sensor locations. For the locations, the tra-
gus, deep inside the external auditory meatus, shallow inside the external auditory
meatus and the concha will be evaluated (as outlined in subsection 2.1.3). The
evaluation will be performed based on the performance of machine learning mod-
els trained on the location-specific datasets. The goal is to determine how sensor
placement affects model performance and identify the location(s) providing the
most reliable cardiac signal for automated PPG peak detection. Performance was
quantified using the Matthews Correlation Coefficient (MCC, Equation 2.30), which
quantifies the accuracy of cardiac peak detection.

40

3.2.1 Results

Figure 3.4 presents the distribution of MCC scores across the four sensor locations.
In total, 96 configurations were evaluated for each placement. A clear upward
trend is noted in both the mean/median MCC and the maximum values when
ordering locations from Tragus→ External auditory meatus (Shallow)→ Concha→
External auditory meatus (Deep). The corresponding numerical results are provided
in Table D.1.

The pairwise comparison matrix in Figure 3.5 supports these results, with the
deep external auditory meatus placement achieving win rates, the percentage of
configurations achieving a higher MCC than the other, of 92.2%, 100.0%, and
100.0% over the concha, shallow external auditory meatus, and tragus placement,
respectively. The concha sensor location similarly outperforms the shallow exter-
nal auditory meatus and tragus placements, with win rates of 98.9% and 100.0%,
respectively.

Figure 3.4: MCC box plots for different sensor locations

3.3 Single-location in-depth analysis

In this section, a detailed analysis is conducted for a single sensor location to evalu-
ate the influence of different parameter settings for both model architecture families.
The objective is to identify viable configurations and gain insights into the effect
of different parameters. As a location, the deep external auditory meatus is used.
While any different location could be chosen, this location proved to be the most
viable location in earlier results.

41

Figure 3.5: Heatmap for MCC win rates by ear location

3.3.1 Standard CNN

In this analysis, the following configuration parameters of the standard CNN are
evaluated individually: batch normalisation, pooling frequency and type, base chan-
nel width and scaling factor, convolutional kernel size and dilation, and activation
function (subsubsection 2.6.3.1). The subsequent subsections present the corre-
sponding results, with an overview of the numerical results provided in Table D.2.

3.3.1.1 Batch Normalisation

Initially, the effect of batch normalisation (BN) on model performance is presented.
The results, presented in Figure 3.6, demonstrate a consistent improvement in per-
formance when BN was applied. Specifically, 30 configurations (93.75%) achieved a
higher MCC with batch normalisation enabled, while only 2 configurations (6.25%)
performed better without batch normalisation. Based on these findings, batch nor-
malisation was included by default in all subsequent experiments to reduce the
search space and focus computational resources on more influential architectural
and training parameters.

3.3.1.2 Pooling strategies

Another important aspect concerns the pooling frequency and type, defined by the
pool_every and pooling parameter in Algorithm 1 respectively. These parameters
determine after how many convolutional blocks a pooling layer is applied and of
what type.

42

Figure 3.6: Distribution of the change in Matthews Correlation Coefficient (ΔMCC) between
models trained with and without batch normalisation (BN). A total of 30 configurations (93.75%)
achieved higher MCC with BN, while only 2 configurations (6.25%) performed better without BN.

Pool_every Figure 3.7 shows the distribution of MCC scores for different
pool_every values.

As visible in the figure, increasing the pooling interval from 1 to 2 improved
the mean and median MCC values, while further increases to 4 and 8 led to only
minor variations. The total number of parameters and resulting model sizes re-
mained consistent across configurations (mean/median of 67.5 kB/11.7 kB, range:
1.9–857.1 kB), given that all other parameters were held constant, which is to be
expected.

Furthermore, Figure C.3 illustrates the relationship between pool_every, model
size, and the resulting MCC across configurations. Complementarily, Figure C.4a
presents a pairwise comparison matrix of pool_every values, where each cell indi-
cates the proportion of configurations in which one setting achieved a higher MCC
than another (the win rate).

Pooling type Figure 3.8 shows the distribution of MCC scores for the three eval-
uated pooling types (max, avg,lp_2).

As observed from the figure, all pooling methods resulted in comparable perfor-
mance, with mean/median MCC values around 0.20/0.22. The MCC range across
models remained consistent, spanning approximately from 0.02 to 0.28. The corre-
sponding win-rate matrix can be observed in Figure C.4b.

3.3.1.3 Channels

Another aspect of the model is the number of channels and the increase thereof, set
by the base_channels and double_every parameters in Algorithm 1.

43

Figure 3.7: Box plot showing the distribution of MCC scores across 192 trained models for each
pool_every configuration

Figure 3.8: Box plot showing the distribution of MCC scores across 256 trained models for each
different pooling layer

Base channels Figure 3.9 presents the distribution of MCC scores across differ-
ent base_channels values. The mean/median MCC values showed a consistent
upward trend with increasing channel width, ranging from 0.230/0.236 at 8 chan-
nels to 0.243/0.251 at 64 channels. Across all configurations, MCC scores spanned
approximately from 0.100 to 0.292.

Model size increased substantially with higher base_channels values, ranging
from a mean of 27.43 kB at 8 channels to 380.47 kB at 64 channels, with the cor-

44

responding box plot of model sizes shown in Figure C.7a. The pairwise comparison
matrix in Figure C.6a confirms that higher base_channels settings achieved higher
win rates, with the 64-channel configuration outperforming the 8, 16, and 32 config-
urations in 71.1%, 59.7%, and 55.7% of pairwise comparisons, respectively. Finally,
Figure C.8 shows the relationship between model size and MCC scores for different
base_channels values.

Figure 3.9: Box plot showing the distribution of MCC scores for each different base_channel
value across 360 total configurations

Double every Figure 3.10 presents the distribution of MCC scores across different
double_every values. The mean/median MCC values were similar across all set-
tings, ranging from 0.236/0.244 at 8 to 0.239/0.249 at 2. Across all configurations,
MCC scores spanned approximately from 0.10 to 0.29. As can be seen in Figure C.9,
the maximum MCC value of 0.292 was obtained for a model of approximately
1.2 MB, representing the largest model within the dataset. For double_every=1,
the best-performing model reached an MCC of 0.284 with a model size of about
200 kB.

Model sizes decreased systematically with increasing double_every values, rang-
ing from a mean/median of 287.4 kB/167.4 kB at 1 to 65.7 kB/23.5 kB at 8, ob-
servable in Figure C.7b. The pairwise comparison matrix in Figure C.6b shows
that lower double_every settings achieved slightly higher win rates, with the
double_every=1 configuration outperforming the configuration with a value of 8
in 55.0% of pairwise comparisons and the configuration with a value of 2 outper-
forming the double_every=8 configuration in 55.9% of cases. Finally, Figure C.9
illustrates the relationship between model size and MCC scores across the different
double_every values.

45

Figure 3.10: Box plot showing the distribution of MCC scores for each different double_every
value across 360 total configurations

3.3.1.4 Convolution Layer

The convolution layer contains two important parameters, namely the kernel size
and the dilation factor. The kernel size defines the width of the convolutional sliding
window, while the dilation factor specifies how many zeros are inserted between
adjacent kernel elements, effectively expanding the receptive field. The effect of
both parameters will be presented in this subsection.

Kernel size Figure 3.11 presents the distribution of MCC scores across different
kernel_size values. The mean/median MCC values increased slightly with kernel
size, ranging from 0.224/0.233 at a kernel size of 3 to 0.255/0.256 at a kernel size of
9. The maximum MCC increased accordingly across kernel sizes as well from 0.264
at 3 to 0.283 at 9. Across all configurations, MCC scores spanned from 0.094 to
0.283

Furthermore, model size increased almost proportionally with kernel size, as
shown in Figure C.11, from mean model sizes of 12.8 kB at a kernel size of 3 to
36.5 kB at 9. The pairwise win-rate matrix in Figure C.10a shows that higher kernel
sizes achieved higher win rates in most pairwise comparisons, with the kernel_size
of 9 outperforming sizes 3, 5, and 7 in 83.6%, 72.5%, and 58.8% of comparisons,
respectively. Figure C.12 illustrates the relationship between model size and MCC
across the different kernel_size values.

Dilation Figure 3.12 presents the distribution of MCC scores across different
dilation values. The mean and median MCC values were highest for dilation
values of 2 and 4, reaching 0.249/0.251 and 0.250/0.250, respectively. Across all
configurations, MCC scores ranged from 0.094 to 0.283, with the maximum MCC
increasing from 0.275 at dilation 1 to 0.283 at dilation 2.

46

Figure 3.11: Box plot showing the distribution of MCC scores for different kernel sizes across 256
configurations

Model sizes were identical across all dilation values. The pairwise win-rate
matrix in Figure C.10b shows that models with dilation values of 2 and 4
achieved higher win rates in most pairwise comparisons, with dilation 2 out-
performing dilation 1 and 8 in 64.4% and 65.6% of comparisons, respectively.
Figure C.13 illustrates the relationship between model size and MCC across the
different dilation configurations.

Figure 3.12: Box plot showing the distribution of MCC scores for different dilation factors across
256 configurations

47

3.3.1.5 Activation Layer

Figure 3.13 presents the distribution of the change in MCC between models trained
with a ReLU and a SiLU activation layer. Out of the 192 analysed configurations,
109 configurations (56.8%) achieved higher MCC with the ReLU activation, while
83 configurations (43.2%) achieved higher MCC with the SiLU activation. The
difference in MCC between the two activations (SiLU − ReLU) ranged from −0.0266
to 0.0259, with a mean/median difference of −0.0018/−0.0015.

Figure 3.13: Distribution of the change in MCC between models trained with a ReLU and SiLU
activation layer. A total of 109 configurations (56.8%) achieved higher MCC with the ReLU layer,
while 83 configurations (43.2%) performed better with the SiLU layer.

3.3.2 Dilated CNN

Second, the parameters of the dilated CNN model family are discussed, as outlined
in subsubsection 2.6.3.2.

In this analysis, the following configuration parameters of the dilated encoder–
decoder CNN are evaluated individually: the number of dilated layers, bottleneck
channel width, bottleneck kernel size and base dilation factor, encoder channel
widths and kernel sizes, and the degree of encoder–decoder parameter similarity
(subsubsection 2.6.3.2). The subsequent subsections present the corresponding re-
sults for each parameter, with performance reported in terms of MCC distributions,
model sizes, and pairwise win-rate comparisons. An overview of the numerical re-
sults is provided in Table D.3.

3.3.2.1 Bottleneck stage

This part presents the results for the bottleneck stage of the Dilated CNN. The
influence of the number of dilated layers and the bottleneck channel width is outlined
in this subsection.

48

Number of dilated layers Figure 3.14 shows the influence of the number of dilated
layers on model performance within the dilated model family. The mean/median
MCC values increased from 0.294/0.292 for three dilated layers to 0.315/0.307 for
five layers, after which a slight decline, 0.308/0.307, was observed for seven layers.

The relationship between model size and MCC, shown in Figure C.14, indicates
a consistent increase in model size with a higher number of dilated layers, with
mean model size rising from 209 kB for three layers to 380 kB for five layers and
452 kB for seven layers. Since configurations exceeding 2 MB were excluded, the
model size distribution for seven layers is truncated, as illustrated in Figure C.17a,
and therefore cannot be directly compared to the smaller architectures.

Pairwise comparisons in the win-rate matrix (Figure C.16a) confirm that models
with five dilated layers outperform both smaller and deeper configurations. Win
rates of 76.9% were achieved against three-layer models and 57.4% against seven-
layer models, while seven-layer models outperformed three-layer models in 71.3% of
comparisons.

Figure 3.14: Box plot showing the distribution of MCC scores for different dilation factors across
282 configurations

Channel amount Figure 3.15 shows the results for varying bottleneck channel
widths within the dilated CNN family. The mean/median MCC values consistently
increased with larger bottleneck widths, ranging from 0.288/0.288 at 16 channels
to 0.327/0.328 at 128 channels. Correspondingly, the model size increased from a
mean of 31 kB at 16 channels to 1017 kB at 128 channels, as shown in Figure C.15
and Figure C.17b.

Pairwise win-rate comparisons in Figure C.16b indicate that models with higher
bottleneck widths consistently achieve higher MCC values across comparisons.
Models with 128 bottleneck channels outperformed all smaller configurations,
achieving win rates of 93.9%, 85.5%, and 72.5% against models with 16, 32, and 64

49

bottleneck channels, respectively.

Figure 3.15: Box plot showing the distribution of MCC scores for different bottleneck_channel
values across 282 configurations.

3.3.2.2 Convolution block

This part presents the results for the convolution block parameters within the di-
lated CNN architecture. The influence of kernel size and base dilation is shown.

Kernel Size Kernel size results are in accordance with the observations from the
classic CNN family, showing no notable deviations in performance trends. For
completeness, the corresponding figures are included in Figure C.18 to Figure C.20.
As these results are largely consistent with previous findings, no further analysis is
provided.

Base Dilation Figure 3.16 presents the distribution of MCC scores across differ-
ent base_dilation_dc values. The mean/median MCC values were highest for
base_dilation_dc = 2 (0.301/0.300), while the remaining configurations achieved
slightly lower results, ranging from 0.290/0.288 at 1 to 0.296/0.296 at 3 and
0.294/0.296 at 4. Across all configurations, MCC values spanned approximately
from 0.27 to 0.32.

Model sizes remained identical across all dilation settings, with mean/median
of 75.8 kB/57.0 kB and a total range of 18.0–177.0 kB. The win-rate matrix in
Figure C.19b furthermore shows that base_dilation_dc = 2 outperformed the
other configurations in the majority of pairwise comparisons, 63–78% win rate.
Finally, Figure C.22 illustrates the relationship between MCC and model size across
different base_dilation_dc values.

50

Figure 3.16: Box plot showing the distribution of MCC scores for different base_dilation_dc
values across 128 configurations.

3.3.2.3 Encoder architecture

This part presents the results for the encoder architecture of the dilated CNN model
family. Two components are evaluated in the two convoltuional layers in the encoder
stage: the number of channels and the kernel window.

Number of channels Figure 3.17 summarises the performance results for varying
encoder channel sizes in the first and second encoder convolutional layers.

For the first encoder stage (enc1_channels), the mean/median MCC values
remained constant across all settings at 0.307/0.306, with minimum and maximum
values ranging from 0.276 to 0.331. Model sizes increased with the number of
channels, with mean/median values of 63.8/57.3 kB, 70.0/63.3 kB, and 82.4/77.2 kB
for enc1_channels = 8, 16, and 32, respectively.

For the second encoder stage (enc2_channels), a slight upward trend was ob-
served in mean/median MCC values, increasing from 0.303/0.303 at 8 channels to
0.310/0.310 at 32 channels. Across all configurations, MCC values spanned approx-
imately from 0.276 to 0.331. Model sizes followed a similar trend with increasing
channels, with mean/median values of 55.1/50.1 kB, 67.8/63.8 kB, and 93.4/91.0 kB
for enc2_channels = 8, 16, and 32, respectively. The total range of model sizes
was 19.4–172.4 kB.

Pairwise comparisons in Figure C.23a and Figure C.23b show the relative win
rates between configurations. For enc1_channels, win rates remained close to equal
across all comparisons (47–53%), while for enc2_channels, higher channel counts
achieved increasing win rates (up to 71%) against lower settings. Figure C.24 and
Figure C.25 further visualise the relationships between MCC and model size for
different encoder channel amounts.

51

(a) Distribution of MCC scores for different
enc1_channels values.

(b) Distribution of MCC scores for different
enc2_channels values.

Figure 3.17: Box plots showing the distribution of MCC scores across dilated CNN models for
varying encoder channel sizes.

Encoder kernel window Figure 3.18 displays the performance results for varying
encoder kernel sizes in the first and second encoder convolutional layer.

For the first encoder stage (enc1_kernel), the mean/median MCC values re-
mained constant across kernel sizes, with values of 0.306/0.306 at 3, 0.306/0.306 at
5, and 0.308/0.307 at 7. Minimum and maximum MCC values ranged from 0.276
to 0.331, with a tiny increase observed in the maximum values from 0.324 at kernel
size 3 to 0.331 at kernel size 7. Model sizes were highly similar across settings, with
mean/median values of 71.9/65.5 kB, 72.1/65.6 kB, and 72.2/65.8 kB for kernel
sizes 3, 5, and 7, respectively.

For the second encoder stage (enc2_kernel), the mean/median MCC values
showed minimal variation across kernel sizes, with 0.306/0.306 at 3, 0.307/0.306
at 5, and 0.307/0.307 at 7. The minimum and maximum MCC values ranged
from 0.276 to 0.331, with the maximum values remaining rather constant across
kernel sizes. Model sizes increased slightly with kernel size, with mean/median
values of 69.4/62.9 kB, 72.1/66.6 kB, and 74.8/68.9 kB for kernel sizes 3, 5, and 7,
respectively. Model size values ranged from 19.4 kB to 172.4 kB.

Pairwise comparisons in Figure C.27a and Figure C.27b show balanced win rates
across different configurations. For the first encoder stage, win rates ranged from
44–56% between kernel sizes, while in the second encoder stage they ranged from
45–55%. Figure C.28 and Figure C.29 illustrate the relationships between MCC
and model size for different encoder kernel sizes, and Figure C.30a–Figure C.30b
show the corresponding model size distributions.

3.3.2.4 Decoder

Table 3.2 summarises the results for the different decoder configurations, comparing
models in which the decoder was constructed symmetrically to the encoder against
models using independently selected decoder parameters. Across the 256 evalu-
ated configurations, using decoder parameters that matched the encoder resulted in
slightly higher MCC values than non-similar settings. Kernel similarity increased
the mean/median MCC from 0.3066/0.3066 to 0.3079/0.3080, channel similarity

52

(a) Distribution of MCC scores for different
enc1_kernel values.

(b) Distribution of MCC scores for different
enc2_kernel values.

Figure 3.18: Box plots showing the distribution of MCC scores across dilated CNN models for
varying encoder kernel sizes.

from 0.3065/0.3068 to 0.3082/0.3073, and full (kernel & channel) similarity from
0.3067/0.3068 to 0.3103/0.3077.

Table 3.2: Summary of MCC results for encoder-decoder similarity comparisons across all 256
configurations. Similar configurations achieve slightly higher mean and median MCC than non-
similar ones.

MCC
Similarity Type Mean Median Min Max
Kernel Similar 0.3079 0.3080 0.2911 0.3284
Kernel Not Similar 0.3066 0.3066 0.2806 0.3282
Channel Similar 0.3082 0.3073 0.2883 0.3231
Channel Not Similar 0.3065 0.3068 0.2806 0.3284
Both Similar 0.3103 0.3077 0.3001 0.3230
Not Both Similar 0.3067 0.3068 0.2806 0.3284

3.3.3 Pre- and post-processing

In this subsection, the effects of peak refinement and non-maximum suppression
(NMS) are presented.

3.3.3.1 Peak Refinement

Figure 3.19 illustrates the performance difference in MCC between models trained
and evaluated with and without peak refinement. Each bar represents a matched
configuration pair, showing the change in MCC (∆MCC = MCCadjustment −
MCCoriginal).

Across all analysed configurations, peak adjustment consistently improved model
performance. The mean/median MCC increased from 0.269/0.262 without adjust-
ment to 0.417/0.404 with adjustment. The corresponding standard deviations were
0.0259 and 0.0645, indicating slightly increased variability among adjusted results.

53

The improvement was observed in all 96 pairs, with positive ∆MCC values ranging
from 0.04 to 0.29.

Figure 3.19: Histogram showing the MCC difference (∆MCC = MCCadjusted−MCCoriginal) for all
96 configurations. Positive values indicate improved performance when applying peak adjustment.

3.3.3.2 Non-Maximum Suppression (NMS)

Figure 3.20 presents the distribution of MCC scores for configurations without NMS,
and with NMS thresholds of 5 and 14.

For the case without NMS, the mean/median MCC was 0.2690/0.2617, ranging
from 0.2249 to 0.3148. With NMS set to 5, the mean/median MCC decreased to
0.1604/0.1573, spanning 0.1072–0.2066. Similarly, for NMS set to 14, the mean/-
median was 0.1611/0.1564, ranging between 0.1073 and 0.2077. The corresponding
standard deviations were 0.0259, 0.0308, and 0.0311, respectively.

Figure 3.20: Distribution of MCC scores for models with NMS disabled, and with NMS thresholds
of 5 and 14.

54

3.4 Embedded Validation

To ensure the correctness of the converted models, validation was performed both on
a PC and directly on the embedded target. The evaluation compares the numerical
outputs of the original model, the generated embedded model executed on the host
PC, and the embedded model running on the embedded device. The results are
summarised in Table 3.3. For the embedded system, inference was executed at a
clock frequency of 480 MHz. The measured CPU cycle counts are stated in Table 3.4.

Table 3.3: Cross-validation results comparing the original model and the C-model on both the
host PC and the embedded target.

PC Embedded
(×10−6) (×10−6)

Configuration MAE RMSE CS MAE RMSE CS
Standard CNN 0.678 0.888 1.000000 0.980 1.232 1.000000
Dilated CNN 1.018 1.384 1.000000 0.877 1.171 1.000000

Table 3.4: Embedded inference performance for both model families, reporting individual CPU
cycle measurements and their corresponding execution times at a 480 MHz clock, followed by the
averaged values.

Model Cycles Time [ms]
Standard CNN
Run 1 45,161,538 94.087
Run 2 45,149,343 94.061
Run 3 45,154,339 94.072
Average 45,155,073 94.073
Dilated CNN
Run 1 95,203,877 198.341
Run 2 95,222,106 198.379
Run 3 95,194,127 198.321
Average 95,206,703 198.347

These error rates resulted in no differences between the identified peaks on the
original model and the embedded model executed on an embedded device.

55

56

Discussion 4
4.1 PPG Dataset

The collected PPG dataset forms the foundation of this research. It includes mea-
surements from multiple anatomical ear locations and activity conditions, resulting
in a diverse dataset suitable for detailed analysis. This subsection focuses on de-
scribing and visually interpreting the dataset characteristics, highlighting differences
in signal quality across locations and conditions. No machine learning results are
included here, these will be discussed in the the comparative section (section 4.2).
Instead, the discussion in this section is limited to qualitative waveform observations
and statistics (skewness) to provide an initial assessment of signal behaviour.

First of all, one of the most obvious observations from Figure 3.1 and Figure 3.2
is the clear difference in signal quality between different in-ear sensor locations. For
instance, the deep meatus (Figure 3.1a) and concha (Figure 3.1b) show relatively
clean PPG waveforms, where most distortions are of a low-frequency nature, visible
as gradual baseline drifts. In contrast, the tragus and shallow meatus locations
(Figure 3.1c and Figure 3.1d) show a combination of both low- and high-frequency
distortions, resulting in slow baseline shifts, combined with jagged, irregular fluc-
tuations in the signal.

Moreover, noticeable differences in peak-to-peak amplitudes are observed be-
tween locations, indicating variations in the signal-to-noise ratio (SNR). These ef-
fects become even more pronounced under dynamic (walking) conditions. While
the deep meatus and concha signals still retain a recognisable PPG-like waveform,
the signals from the tragus and shallow meatus degrade substantially, making the
underlying cardiac waveform no longer identifiable.

The skewness summary in Table 3.1 only partially supports the visual observa-
tions. [29] suggested a fixed threshold at 0 to seperate ”excellent” waveforms from
”unacceptable” PPG waveforms, with positive skewness indicating good-quality sig-
nals and negative skewness indicating poor quality. However, our results show that
this criterion is not enough in practice. Several locations exhibit skewness values
close to zero or even clearly positive while still producing visually degraded or un-
stable PPG waveforms. This illustrates that this binary threshold alone does not
reliably determine overall signal quality.

For the deep meatus locations, median/mean skewness values are positive and
consistent in both seated (0.092/0.111) and moving (0.099/0.123) conditions. In-
terestingly enough, the moving condition results in more right-skew than the seated
condition, although IQR and SD is higher. While this is not expected, these changes
could be attributed to a different fitting of the sensor module inside the ear and
should not directly lead to the conclusion that the moving condition is preferred to
the seated condition. These positive and consistent skewness values are furthermore

57

expected by our visual interpretation of this sensor location.
Continuing to the shallow external auditory meatus location, the mean/median

skewness is negative in both seated (−0.030/−0.065) and moving (−0.117/−0.140)
condition, with the moving condition significantly more negative than the seated
condition, which aligns with our visual observation.

The concha location is quite inconsistent between non-moving and moving
conditions. Where the seated condition results in the most right-skewed medi-
an/mean values (0.260/0.201) with the lowest variability in the dataset (IQR/SD
of 0.334/0.311), the moving condition results in a slight left-skewed signal (
−0.024/− 0.047), where the IQR value becomes the highest in the dataset (0.924),
with the standard deviation staying a bit more stable compared to the other sensor
locations (0.598). It can be noted that motion-induced distortions have a signifi-
cant effect on this location, both from visual interpretation as well as the skewness
factor.

At last, the tragus location results in inconsistencies between our visual inter-
pretations and the results from the skewness factor. Both non-moving and moving
signals are right-skewed, with median/mean values of 0.085/0.117 and 0.065/0.073,
respectively. In essence, taking the > 0 skewness threshold should imply this is
a good signal. Although this appears true for the non-moving condition, where a
recognisable PPG waveform can still be observed, the moving condition does not
show a clear PPG-like structure despite maintaining a positive skew. Moreover,
the variability values are notably high, with an IQR of 0.800 for both conditions
and standard deviations for non-moving and moving of 0.780 and 0.620, respec-
tively. These relatively large spreads indicate substantial variability across analysis
windows, suggesting that the waveform morphology is unstable and inconsistent.
Therefore, while the positive skewness values might initially suggest acceptable sig-
nal quality, the accompanying large variance contradicts this interpretation. This
highlights that skewness alone cannot reliably characterise signal quality at the tra-
gus, particularly under motion, and that additional metrics are needed for a more
accurate assessment.

All in all, taking the visual observations and skewness factors into account, the
following hierarchy of sensor placement can be derived:

1. Deep Meatus: Consistent PPG waveform at rest and during movement

2. Concha: Excellent waveform at rest, discernible PPG waveform during move-
ment, negative skew during movement

3. Tragus: Decent PPG waveform at rest, major distortions during movement

4. Shallow Meatus: Low- and high-frequency noise at rest, minor discernible
PPG waveform at rest, unrecognisable waveform during movement, with sig-
nificant negative skewness

4.2 Comparative analysis

The comparative results in Figure 3.4 and Figure 3.5 confirm the impact of sen-
sor placement on model accuracy. A clear performance increase is observed from

58

the tragus location to the deep external auditory meatus. These results mir-
ror the earlier signal quality findings shown in section 3.1 and discussed in sec-
tion 4.1. The deep external auditory meatus achieved the highest mean/median
MCC (0.3041/0.3078), followed by the concha (0.2567/0.2598), shallow external
auditory meatus (0.1612/0.1690), and tragus (0.0646/0.0621).

The pairwise win rate matrix further supports this ranking, with the deep ex-
ternal auditory meatus outperforming all other locations (92–100% win rates), and
the concha consistently surpassing the shallow external auditory meatus and tragus
locations.

From these results, assumptions could be drawn that the deeper regions of the
external auditory meatus provide greater mechanical stability, leading to cleaner
PPG measurements, more consistent feature extraction, and consequently higher
model performance. Furthermore, sub-optimal signal acquisition at the tragus and
shallow external auditory meatus locations result in poorer outcomes, which could
be the result of a lesser secure fit. This emphasises that fundamental factors such as
a secure sensor fit still remain important for reliable model inference. Although the
deep external auditory meatus location provides the best performance, the concha
could be used a an practical alternative location when a custom-fit deep insertion
is not feasible, though with some loss in accuracy.

Overall, model outcomes strongly correlate with the qualitative and statistical
dataset analyses. The resulting performance ranking is summarised as follows:

1. External auditory meatus (Deep)

2. Concha

3. External auditory meatus (Shallow)

4. Tragus

4.3 Standard CNN configuration parameters

Section 3.3 introduces different results for the range of configuration parameters
available for the machine learning models. In principle, exploration of all parameter
combinations would provide the most comprehensive understanding of model be-
haviour. However, such an approach is computationally infeasible due to the expo-
nential growth of the search space. Consequently, this section focuses on analysing
the results from a controlled subset of configurations to identify parameter settings
that result in promising performance. The insights obtained can be used to limit the
subsequent search space, thereby improving the efficiency of computational resource
utilisation in later experiments.

4.3.1 Batch Normalisation

The first configuration parameter to be analysed is the batch normalisation. This
parameter proved to have a direct, significant impact on the performance of the
resulting ML model. Out of the 32 tested models, only two models achieved a

59

marginally higher MCC without batch normalisation, while all other models bene-
fited from minor to substantial improvements with the application of batch normal-
isation. From these results, it can be assumed that batch normalisation enhances
training stability and reduces internal covariate shift, which proves to be benefi-
cial in almost all configurations. The few configurations that did not improve with
batch normalisation may be attributed to stochastic factors such as suboptimal
weight initialisation or insufficient training epochs rather than an actual disadvan-
tage obtained from batch normalisation. Overall, the inclusion of batch normalisa-
tion is strongly recommended in the model architecture, given its consistent positive
impact on predictive performance across nearly all tested configurations.

4.3.2 Pooling strategies

Following subsections will discuss the configuration parameters that are related
to different pooling strategies, namely the pooling frequency, determined by a
pool_every value, and the pooling type. The corresponding results have been
outlined in subsubsection 3.3.1.2.

4.3.2.1 Pooling frequency

From the results, it can be observed that increasing the pooling interval from one
to two convolutional blocks resulted in a clear performance improvement. A likely
explanation is that pooling after every block reduces the temporal resolution too
quickly/aggressively, causing the model to lose relevant details that are important
for identifying PPG peaks. Using a slightly larger interval (pool_every = 2) could
allow the network to first extract a more complete representation before reducing
the feature map length, leading to better overall performance.

Further increases of the pooling interval to four or eight blocks did not result in
additional improvements, but results in a higher variability. A number of models
with pool_every values of four and eight result in substantially lower MCC scores
compared to the mean, resulting in a larger spread and low-performing outliers.
This could however be the result of the corresponding architectures not contain-
ing any pooling layers, as the pooling frequency could have exceeded the number
of convolutional blocks in the architecture. This does however lead to the same
conclusion that pooling frequency is still an important factor that should not be
overlooked. A pool_every value of two demonstrates a minor increase in mean/-
median than the values of four and eight and fewer low outliers, suggesting more
consistent convergence across configurations. It should also be noted that lower
pooling frequencies (so higher pool_every values) leads to higher computational
cost, as the temporal length of the intermediate feature maps is not decreased,
resulting in significantly more computational operations performed during convo-
lution. Therefore, it is recommended to use the highest pooling frequency that
does not compromise performance, as this provides the most computationally effi-
cient configuration, an important factor in embedded environments. In this case, a
pool_every value of 2 offers the best trade-off between performance and efficiency.

60

4.3.2.2 Pooling type

For the different pooling layer types, average, Lp-norm, and max pooling, only mi-
nor variations in performance were observed. All methods achieved comparable
mean/median MCC values, as shown in Table D.2. While slight differences can
be seen in the minimum and maximum MCC values across pooling types, these
deviations are relatively small and likely reflect normal variability between configu-
rations rather than a systematic performance effect. This interpretation is further
supported by the win rate matrix in Figure C.4b, where none of the pooling types
consistently outperforms the others (all win rates remain close to 50%). Overall,
the results indicate that the choice of pooling type has no substantial influence on
model performance in this context.

Although performance differences between pooling types are negligible, their
computational costs differ. Since the window length of the pooling layer is set to 2,
each pooling operation cost is as follows:

• Max pooling: 1 comparison (Equation 2.22).

• Average pooling: 1 addition and 1 bit shift (Equation 2.23).

• Lp-norm pooling: 2 elementwise power operations 1 addition, 1 multiplica-
tion/division (depending on the implementation) and 1 p-th root calculation;
for p=2, with compiler optimisation, this could reduces to 2 multiplications 1
addition, 1 bit shift and 1 square root. (Equation 2.24).

Instruction-level costs are processor-dependent, but for embedded-class micro-
controllers such as the ARM Cortex-M0, both addition (ADD) and comparison (CMP)
operations are executed in a single clock cycle [60], with multiplication, division and
square root operations usually taking up much more cycles. While different archi-
tectures have changes in implementation, one can assume that most competitive
microcontrollers on the market all have single clock cycle ADD and CMP instructions,
with the other relevant arithmetic operations taking up more time. Given that all
pooling types achieved comparable MCC performance, but differ substantially in
computational cost, max pooling would be the most suitable choices when compu-
tational efficiency or energy consumption is a priority.

4.3.3 Channels

Channel configuration defines the model’s representational capacity and size. This
section discusses how the number of initial channels (base_channels) and their
growth rate (double_every) affect performance, while identifying balanced settings
for accuracy and efficiency in embedded use.

4.3.3.1 Base Channels

Increasing base_channels result ins small but consistent MCC gains. The mean/-
median MCC increases from 0.230/0.236 at 8 channels to 0.243/0.251 at 64 channels
(Table D.2, Figure 3.9). The best single model (MCC 0.292) appears in the widest

61

group. These gains, however, require a much larger footprint, mean model size in-
creases from 27.4 kB (8 channels) to 380.5 kB (64 channels), roughly a 14× increase.
The relatively small increase in MCC shows that increasing the base_channel can
certainly be a viable option to increase performance, but must be balanced with its
size increase, especially in an embedded environment where memory is scarce.

4.3.3.2 Channel growth frequency

More frequent growth (smaller double_every) shows a small advantage in pairwise
comparisons, while average performance remains similar across settings. Specifi-
cally, the 1 configuration beats 8 in 55.0% of pairs and 2 beats 8 in 55.9% (Fig-
ure C.6b). Furthermore, mean/median MCC values remain close, 0.236/0.244 to
0.239/0.249 across double_every=1,2,4,8 (Table D.2, Figure 3.10). The best MCC,
0.292, is reached by a 1.2 MB model within the double_every=2 set, while for
double_every=1 the best is 0.284 at 200 kB (Figure C.9).

At the same time, model size decreases systematically with less frequent scal-
ing (Figure C.7b), creating a clear trade-off between minor performance improve-
ments and model size. The results suggest that overly aggressive scaling shows
decreasing returns relative to the corresponding increase in model size. Conse-
quently, double_every=2 offers a practical balance between maintaining strong
performance while avoiding unnecessary growth in parameter count. In more con-
strained environments, higher double_every values may be preferred to minimise
memory usage, at the expense of a small reduction in accuracy.

4.3.4 Convolution layer

The convolution layer determines how temporal features are captured across the
PPG signal. Key parameters such as kernel_size and dilation are discussed in
this subsection.

4.3.4.1 Kernel Size

Larger kernel_size values result in small but consistent performance gains. The
mean/median MCC increased from 0.224/0.233 at size 3 to 0.255/0.256 at size 9,
with the latter outperforming smaller kernels in up to 83.6% of pairwise compar-
isons (Figure C.10a). This indicates that broader receptive fields certainly improve
temporal feature extraction and is therefore one of the key components in improving
the model performance. Moreover, model sizes rose proportionally from 12.8 kB to
36.5 kB (Table D.2), implying a clear trade-off between accuracy and model size.
It must further be noted that a kernel_size value of 3 exhibits many outliers
beyond the 1.5∗ IQR range in the MCC distribution (Figure 3.11), indicating in-
consistent performance across configurations. In contrast, larger kernel sizes show
more compact distributions, suggesting greater stability in model behaviour. All in
all, kernel sizes of 5–7 offer a practical balance for most embedded deployments with
respect to performance, stability and model size, where higher values could be used
in environments with more memory capacity than commonly found in embedded
devices.

62

4.3.4.2 Dilation

Performance peaked for moderate dilation factors. Mean/median MCC values
reached 0.249/0.251 and 0.250/0.250 for dilation=2 and 4, outperforming both
smaller and larger values (Figure C.10b). This suggests that moderate dilation ef-
fectively extends temporal context without excessively spacing sampling and in turn
losing important characteristics. As model size and computational complexity stay
constant with different dilation values, moderate dilation factors are recommended
with values of 2 and 4.

4.3.5 Activation Layer

Figure 3.13 shows that the performance differences between ReLU and SiLU in the
activation layer are relatively small. Across the 192 paired configurations, differing
only in activation, ReLU resulted in a higher MCC in 109 cases (56.8%), while SiLU
was better in 83 cases (43.2%). The pairwise MCC differences (SiLU − ReLU) ranged
from −0.0266 to 0.0259, with a mean/median of −0.0018/−0.0015. In other words,
while pairwise differences in the MCC can make a small difference, the mean/median
values of the difference is incredibly close to zero.

Technically speaking, these results indicate a minor advantage for ReLU (both in
win rate and average pairwise difference), but the magnitude of the advantage is
extremely modest. Moreover, SiLU does attain the higher MCC in still a substantial
fraction of cases (43.2%), implying that either activation can be part of a competitive
configuration depending on the remaining hyperparameters.

From an embedded deployment perspective, because the two activations produce
almost similar MCCs on average while ReLU is computationally simpler to evaluate,
a reasonable strategy is to choose a ReLU activation layer when compute budget
is a primary concern. If the goal is to maximise absolute peak performance and
hyperparameter search compute budget permits, including both ReLU and SiLU in
the search remains justified, as SiLU is occasionally the best-performing choice for
specific configurations.

4.4 Dilated CNN configuration parameters

This section discusses the configuration parameters specific to the dilated CNN
model family, including the bottleneck depth and width, base dilation factor, en-
coder settings, and decoder structure.

4.4.1 Bottleneck Stage Parameters

For the bottleneck stage, the number of layers and their corresponding channel
width will be discussed.

4.4.1.1 Number of layers

A clear performance optimum is observed at num_dilated_layers=5, achieving
a mean/median MCC of 0.315/0.307 and a maximum of 0.373 (Figure 3.14). As

63

model size increases with network depth, configurations with seven layers offer no
benefit, being larger yet slightly less accurate. This behaviour is fully expected given
the 4-second window, 100 Hz sampling frequency, and the encoder downsampling
factor of 4, which together reduce the temporal input length of the bottleneck
stage to 100 samples. The dilation grows exponentially, making the effective kernel
window quickly exceed this available temporal context. At five layers, the dilation
has already expanded to 25 = 32, and with a kernel size of 3, the receptive window
becomes 3 × 32 = 96 samples, already covering nearly the entire input length.
Adding further layers increases the receptive field of the kernel far beyond the
100-sample input, making additional dilated convolutions ineffective. In memory-
constrained environments, three layers remain a viable lightweight alternative, but
five layers provide the best trade-off between performance and model size, indicating
that capturing the full temporal context does lead to improved performance. This
conclusion is further supported by the win rate matrix (Figure C.16a), where the
five-layer models outperform both smaller and deeper configurations.

4.4.1.2 Amount of channels

Figure 3.15 perfectly shows the trade-off for the amount of channels
(bottleneck_channels) in the model. Higher channel widths improve performance
with the mean/median MCC rising from 0.288/0.288 at 16 channels to 0.327/0.328
at 128 channels. The pairwise win rate matrix in Figure C.16b confirms this trend,
showing consistently higher win rates with increasing channel counts. This per-
formance increase does however come at the cost of substantially larger models,
increasing from 31 kB to over 1 MB on average with maximum model sizes for a
channel width of 128 reaching past the 2 MB cutoff. Overall, this parameter has
a clear and direct impact on model performance, with wider bottlenecks providing
measurable gains that must be balanced against the corresponding growth in model
size, especially under embedded memory constraints.

4.4.2 Convolution layer parameters

As the influence of kernel_size in the Dilated CNN family aligns with the findings
discussed for the standard CNN models in subsubsection 4.3.4.1, only the effect of
the base dilation factor is examined here.

4.4.2.1 Base dilation factor

As for the base dilation factor (base_dilation_dc), a value of 2 demonstrates a
clear performance advantage over the other analysed settings. This is observable
from the MCC distributions shown in Figure 3.16, where models with a base dilation
of 2 achieve consistently higher median values. The win rate matrix in Figure C.19b
further supports this trend, showing that base_dilation_dc=2 outperforms the
other configurations in the majority of pairwise comparisons, with win rates ranging
from 63.3% (versus 3) to 78.1% (versus 1). Importantly, modifying the base dilation
factor does not change model size or computational complexity, making a setting
of 2 the clear choice for optimising model performance.

64

4.4.3 Encoder architecture

The evaluation of the encoder architecture reveals that variations in both channel
width and kernel size have only a minor influence on model performance, indicating
that the dilated models predictive capability is largely impacted by later architec-
tural components instead of by the complexity of the initial downsampling stage.

For the first encoder stage (enc1_channels), performance remains stable across
all tested configurations, as illustrated in Figure 3.17 and summarised in Table D.3.
The almost identical MCC distributions and balanced win rates (47%–53%) in Fig-
ure C.23a suggest that smaller channel counts already provide sufficient capacity for
initial feature extraction. Increasing enc1_channels beyond this minimum value
therefore mainly increases model size without measurable accuracy gains. There-
fore, a channel amount of 8 is recommended for the initial layer.

In contrast, the second encoder stage (enc2_channels) exhibits a small but con-
sistent trend favouring larger channel widths. As shown in Table D.3, mean/median
MCC values rise slightly from 0.303/0.303 to 0.310/0.310 with channel count, while
Figure C.23b confirms that higher configurations achieve clear pairwise advantages,
with up to 71% win rates against smaller settings. This behaviour suggests that
the second encoder layer benefits from additional feature channels. However, the
improvements remain limited in their effect, and the increase in model size from
roughly 55 kB at 8 channels to over 90 kB at 32 channels does have an impact in
embedded contexts. A configuration of 16 channels therefore represents a balanced
trade-off between performance and computational complexity.

The kernel size experiments (Figure 3.18) show that all tested configurations
perform nearly identically across both convolutional layers in the encoder stage. The
distributions of MCC values and pairwise win rates (Figure C.27a and Figure C.27b)
are mostly similar, with win rates remaining within 44%–56% across all kernel sizes.
As summarised in Table D.3, mean/median MCC values vary by less than 0.002
between kernel sizes 3, 5, and 7, while model sizes increase only marginally from
approximately 69 kB at kernel size 3 to 75 kB at kernel size 7 for both stages. These
small differences indicate that all kernel configurations extract comparable features,
and that expanding the receptive field at the encoder level results in almost no
measurable benefit. The similarity across settings suggests that temporal features
are already well captured by smaller kernels.

4.4.4 Decoder

The evaluation of encoder–decoder similarity shows that matching the decoder pa-
rameters to those of the encoder provides a marginal performance benefit (Ta-
ble 3.2). Across all 256 configurations, symmetric designs achieve slightly higher
mean and median MCC values than independently configured decoders in all cases,
with kernel similarity, channel similarity, and kernel & channel similarity.

Given these results, adopting a symmetric decoder is the most practical choice.
Besides offering slightly better performing configurations, it also substantially re-
duces the dimensionality of the search space, simplifying optimisation and decreas-
ing the computational effort required for the search space traversal. This makes
similarity the preferred design.

65

4.4.5 Performance vs. standard

Although no explicit combined comparison between the two architecture families
was included in the results section, the distributions reported for their different pa-
rameters shows that the dilated CNN performs better in most cases. Across com-
parable model sizes and parameter ranges, the dilated CNN consistently achieves
higher mean and median MCC values than the standard CNN (easily compara-
ble between Table D.2 and Table D.3). This indicates that the dilated bottleneck
structure, which captures a larger temporal context, does provide improved peak
detection in most configurations.

4.5 Pre and Post-Processing Techniques

This section discusses the effects of peak refinement and non-maximum suppression
(NMS).

4.5.1 Peak refinement

The results in Figure 3.19 show a clear improvement in classification performance
when peak refinement is applied during dataset preparation and evaluation. Across
the configuration pairs, the MCC increased from a mean/median of 0.269/0.262 to
0.417/0.404, with all pairs demonstrating a positive ∆MCC. This indicates that
a small, local correction of the label position around the ECG-derived timing can
improve the learnability of the task by aligning labels more precisely to the local
maxima of the peak-aligned PPG signal.

However, the improvement must be contextualised. Refining the peaks is a
dataset-side operation and thus does not have direct effect at inference. Further-
more, choosing maximum values in specific windows around the ECG peaks may
also set labels to artefactual maxima (motion, noise, or other error artefacts) rather
than physiological peaks, which helps reported metrics yet risks teaching the model
incorrect patterns.

Moreover, window size is an important control factor with significant effects. A
narrow window limits artefact capture but may miss true peaks due to changing
temporal factors. A wider window tolerates more severe misalignment but increases
artefact inclusion risk. In this study, a small window (20 ms) offered a pragmatic
balance, though the optimal choice is dataset- and hardware-dependent.

Altogether, while peak refinement is theoretically an efficient implementation for
discarding inferior peaks around superior peaks, more research is needed to tune
the window size and see its effect in practice on the performance.

4.5.2 Non-Maximum Suppression (NMS) Effects

As shown in Figure 3.20, enabling non-maximum suppression (NMS) results in a
clear degradation in performance. The mean/median MCC values decrease substan-
tially from 0.2690/0.2617 without NMS to 0.1604/0.1573 with NMS applied. This
indicates that, under the evaluated conditions, the inclusion of NMS negatively
affects overall model performance.

66

In the main grid search, all models were trained for 8 epochs due to computational
constraints. To assess whether the observed degradation was influenced by the
limited training duration, a single model was subsequently trained for 100 epochs
and analysed in more detail. Figure 4.1 and Figure 4.2 show five representative
signal windows from this model, comparing predictions with and without NMS.
The NMS window spans 280 ms in total (fs = 100 Hz, covering 14 samples before
and after each detected peak).

At 8 epochs, several correctly identified peaks are suppressed because their pre-
dicted values are not the highest within the defined window. However, at 100
epochs, the opposite trend emerges, with false detections removed in favour of true
positives. This suggests that models with higher predictive performance can poten-
tially benefit from NMS to refine detections.

These findings imply that although the grid search results indicate superior per-
formance without NMS, this outcome may depend on the model’s predictive accu-
racy and the constraints imposed on the grid search due to computational feasibility.
For less well-trained models, NMS tends to remove correct detections, whereas more
accurate models may benefit from it by suppressing incorrectly predicted peaks.
Further evaluation at extended training durations could provide additional insight,
but was unfortunately not feasible within the current computational limits.

Figure 4.1: NMS in action for sample model trained with 8 epochs

4.6 Embedded validation

The embedded validation results demonstrate that the deployed models reproduce
the behaviour of the original reference models with near similar results. As shown in
Table 3.3, the MAE and RMSE values for both architectures remain in the order of
10−6, and the cosine similarity consistently equals 1.0 across all comparisons. The

67

Figure 4.2: NMS in action for sample model trained with 100 epochs

remaining differences likely originate from floating-point precision changes intro-
duced during the conversion process, non-identical machine code after compilation
for different architectures (x64 vs ARM), or different hardware-specific implemen-
tations of arithmetic operations.

While the execution-time results in Table 3.4 are based on a single representa-
tive configuration per model family, meaning no general conclusions can be drawn,
they do provide an indication of the achievable performance. This specific model
of the standard CNN family completes inference in approximately 94,ms, while the
dilated CNN instance requires around 198,ms. Given that inference operates on a
4,s window, these latencies are well within real-time requirements, and higher infer-
ence rates remain feasible for more extensive pipelines that may benefit subsequent
processing stages.

4.7 Total performance

When looking at the results provided in chapter 3, one might raise the question of
whether the obtained performance is adequate, as the reported MCC values remain
relatively low. However, it should be noted that these results were obtained using a
limited training duration of only eight epochs due to computational constraints and
without the implementation of peak adjustment. When extending the training to
100 epochs and enabling peak adjustment, a specific model configuration achieved
a significantly higher MCC of 0.96 compared to its previously reported 0.29. Fur-
thermore, while the differences between individual models may appear minor in
the presented results, these minor differences could amplify substantially in final
performance once models are trained for a sufficient number of epochs, highlighting
the importance of adequate training duration in fair model comparison.

68

4.8 Limitations & Future research

Although the presented research demonstrates promising results, this research, how-
ever, is subject to several limitations.

First, the limited computational resources available constrained the training du-
ration per model. Each model was trained for only eight epochs. While this is
generally sufficient to observe general learning trends, it is typically insufficient for
achieving full convergence to the optimal model parameters. Consequently, the ob-
tained results may not reflect the true performance potential of the corresponding
model. Future work could include extended training in order to adequately research
the performance differences of different models under full training convergence.

Second, all experiments were conducted on a single subject, a white male, due
to time constraints and limited access to participants and compatible hardware. As
such, the results may not generalise across individuals, given physiological, anatomi-
cal, and skin-tone differences. Future research could therefore include a more diverse
participant pool to assess variability between individuals and improve generalisabil-
ity.

Third, recordings were performed under controlled activity conditions to enable
fair comparisons between sensor placements. While this approach ensured consis-
tency, it also limits the applicability of the results to real-world scenarios. Variabil-
ity introduced by spontaneous movements, more intense activities than currently
measured (e.g., running or jumping), sweating, and environmental changes was
not represented in the current dataset. Expanding the dataset to include these
real-world conditions would provide valuable insights into model robustness under
practical use.

Fourth, the evaluation in this thesis relied solely on sample-level metrics to ensure
objectivity and reproducibility across experiments. However, this approach enforces
a strict temporal boundary, where even small temporal shifts in predicted peaks
are directly classified as errors. Future research could therefore explore the use
of event-level metrics implemented in the framework to provide a more nuanced
assessment that better captures clinically relevant performance, quantifying the
potential improvements introduced by the temporal tolerance.

Fifth, small temporal alignment errors were introduced by the asynchronous
measurement setup between the PPG and ECG systems. Although post-processing
methods such as visual alignment and peak adjustment were applied to correct these
offsets, minor inaccuracies and potential user-induced biases may remain. Future
work could address this by developing fully synchronised multi-sensor acquisition
systems, ensuring a temporally consistent dataset.

Finally, although the embedded validation confirmed that the converted models
execute correctly on the STM32H7 microcontroller, the evaluation was limited to
a single representative model per architecture. As a result, the effect of architec-
tural choices on execution speed remains largely unexplored. Future research could
therefore systematically benchmark a broader set of model configurations to char-
acterise how parameter variations influence execution performance, and to identify
opportunities for further optimisation of embedded performance.

69

70

Conclusion 5
This thesis presented the design, development and evaluation of an in-ear cardiac
monitoring system, combining hardware prototyping, dataset creation, systematic
machine-learning exploration, and embedded validation. The primary goal was
to investigate the feasibility of reliable cardiac activity estimation from photo-
plethysmography (PPG) signals acquired inside the ear canal and to develop a
transparent, reproducible framework for analysing and deploying machine learning
(ML) models on embedded systems.

The results demonstrated that in-ear PPG sensing is a promising method for
cardiac monitoring. Among the investigated sensor placements, the deep ear
meatus consistently provided the highest signal quality under both static and
dynamic conditions, followed by the concha, whereas the tragus and shallow
meatus locations were more susceptible to motion artefacts. These findings, further
confirmed by the resulting ML-model performances, demonstrate that the inner
ear offers physiologically and mechanically favourable conditions for optical cardiac
sensing, with the concha a practical alternative when deep insertion of the PPG
sensor is not achievable, though with accuracy loss.

On the machine-learning side, systematic exploration of convolutional architectures
revealed several key design insights. Batch normalisation and moderate pooling
frequency consistently improved performance and convergence stability. Kernel size
and dilation were shown to play important roles in determining temporal receptive
fields, with moderate values (5–7 for kernel size and 2–4 for dilation) providing
the best trade-off between performance and efficiency. For dilated architectures,
the optimal configuration comprised five dilated layers with moderate bottleneck
width, achieving the best balance between model complexity and accuracy. These
findings contribute to a more structured understanding of how architectural choices
affect model performance in the context of physiological signal analysis.

The embedded validation further confirmed that the conversion and deployment
pipeline preserves model functionality, with numerical equivalence between the
original model reference and its embedded conversion.

Although the final peak detection accuracy depends on the selected architecture
and available hardware resources, the results demonstrate that high MCC values
can be achieved when models are trained sufficiently and peak adjustment is
applied. This indicates that the explored configurations are capable of providing
reliable heart beat detection suitable for integration into a heart-rate estimation
pipeline, with performance levels that can be matched to the constraints of the

71

available computational capacity on the embedded device.

Several limitations should be acknowledged. The dataset was obtained from a single
subject under controlled activity conditions, which limits the generalisability of the
results. Broader validation across multiple participants and more diverse move-
ment scenarios is needed to assess inter-subject variability and model robustness.
Furthermore, the current measurement setup lacked full hardware synchronisation
between PPG and ECG sensors, and embedded validation was performed on a
small configuration space. Fully synchronised acquisition and direct on-device
testing would improve temporal precision and provide more representative insights
into real-time performance and energy efficiency.

In summary, this work provides a comprehensive and reproducible foundation for
in-ear cardiac monitoring. Its contributions can be summarised as follows:

• A custom-fit, modular in-ear hardware system capable of multi-location PPG
and acceleration measurements.

• A synchronised dataset with automated and manual alignment procedures for
reliable cardiac reference generation.

• A configurable and open machine-learning framework that enables systematic
exploration of CNN and Dilated CNN architectures.

• Empirical insights into model design trade-offs between accuracy, efficiency,
and embedded feasibility.

• A validated end-to-end deployment pipeline from model training to embedded
implementation.

Collectively, these contributions demonstrate the feasibility and potential of in-ear
sensing as a robust platform for future health-monitoring wearables. Beyond the
technical results, this work carries important societal implications. Among these,
enabling non-invasive and continuous monitoring of cardiac activity in a compact
and personally customisable form factor contributes to more accessible preventive
healthcare and long-term physiological monitoring. The automatic model selection
framework allows for optimal architecture selection under embedded constraints and
supports personalised monitoring, as new subject-specific models can be trained
when individual data is available, enabling more objective, transparent, and user-
specific solutions. Together, these aspects promote more accurate and personalised
on-device health analytics and lower the threshold for clinical and consumer adop-
tion, representing a meaningful step toward accessible, precise, and personalised
digital health technologies.

72

Bibliography

[1] C. Virginia Anikwe et al., “Mobile and wearable sensors for data-driven health monitoring
system: State-of-the-art and future prospect,” Expert Systems with Applications, vol. 202,
p. 117 362, 2022, issn: 0957-4174. doi: https : / / doi . org / 10 . 1016 / j . eswa . 2022 .
117362. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S095741742200714X.

[2] J. Dunn, R. Runge, and M. Snyder, “Wearables and the medical revolution,” Personalized
Medicine, vol. 15, no. 5, pp. 429–448, Sep. 2018. doi: 10.2217/pme-2018-0044.

[3] A. Sapra, A. Malik, and P. Bhandari, Vital sign assessment, https://www-ncbi-nlm-nih-
gov.tudelft.idm.oclc.org/books/NBK553213/, [Updated 2023 May 1]. In: StatPearls
[Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-, 2024.

[4] A. K. Yetisen, J. L. Martinez-Hurtado, B. Ünal, A. Khademhosseini, and H. Butt, “Wearables
in medicine,” Advanced Materials, vol. 30, no. 33, p. 1 706 910, 2018. doi: https://doi.
org/10.1002/adma.201706910. eprint: https://onlinelibrary.wiley.com/doi/pdf/
10.1002/adma.201706910. [Online]. Available: https://onlinelibrary.wiley.com/doi/
abs/10.1002/adma.201706910.

[5] P. Mao, H. Li, and Z. Yu, “A review of skin-wearable sensors for non-invasive health monitor-
ing applications,” Sensors, vol. 23, no. 7, 2023, issn: 1424-8220. doi: 10.3390/s23073673.
[Online]. Available: https://www.mdpi.com/1424-8220/23/7/3673.

[6] J.-Y. Choi et al., “Health-related indicators measured using earable devices: Systematic
review,” JMIR Mhealth Uhealth, vol. 10, no. 11, e36696, Nov. 2022, issn: 2291-5222. doi:
10.2196/36696. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/36239201.

[7] E. Mejía-Mejía, J. M. May, R. Torres, and P. A. Kyriacou, “Pulse rate variability in cardio-
vascular health: A review on its applications and relationship with heart rate variability,”
Physiological Measurement, vol. 41, no. 7, 07TR01, 2020. doi: 10.1088/1361-6579/ab998c.

[8] K. Fox et al., “Resting heart rate in cardiovascular disease,” JACC, vol. 50, no. 9, pp. 823–
830, 2007. doi: 10.1016/j.jacc.2007.04.079. eprint: https://www.jacc.org/doi/pdf/
10.1016/j.jacc.2007.04.079. [Online]. Available: https://www.jacc.org/doi/abs/10.
1016/j.jacc.2007.04.079.

[9] C. K. H. Ne, J. Muzaffar, A. Amlani, and M. Bance, “Hearables, in-ear sensing devices
for bio-signal acquisition: A narrative review,” Expert Review of Medical Devices, vol. 18,
no. sup1, pp. 95–128, 2021, PMID: 34904507. doi: 10.1080/17434440.2021.2014321.
eprint: https://doi.org/10.1080/17434440.2021.2014321. [Online]. Available: https:
//doi.org/10.1080/17434440.2021.2014321.

[10] M. Masè, A. Micarelli, and G. Strapazzon, “Hearables: New perspectives and pitfalls of in-ear
devices for physiological monitoring. a scoping review,” Frontiers in Physiology, vol. Volume
11 - 2020, 2020, issn: 1664-042X. doi: 10.3389/fphys.2020.568886. [Online]. Available:
https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2020.
568886.

[11] S. Ismail, U. Akram, and I. Siddiqi, “Heart rate tracking in photoplethysmography signals
affected by motion artifacts: A review,” EURASIP Journal on Advances in Signal Processing,
vol. 2021, no. 1, p. 5, 2021, issn: 1687-6180. doi: 10.1186/s13634-020-00714-2. [Online].
Available: https://doi.org/10.1186/s13634-020-00714-2.

[12] A. Ferlini, A. Montanari, C. Min, H. Li, U. Sassi, and F. Kawsar, “In-ear ppg for vital
signs,” IEEE Pervasive Computing, vol. 21, no. 1, pp. 65–74, 2022. doi: 10.1109/MPRV.
2021.3121171.

[13] M. Chustecki, “Benefits and risks of AI in health care: Narrative review,” Interactive Journal
of Medical Research, vol. 13, e53616, 2024. doi: 10.2196/53616. [Online]. Available: https:
//www.i-jmr.org/2024/1/e53616.

[14] H. Habehh and S. Gohel, “Machine learning in healthcare,” Current Genomics, vol. 22,
no. 4, pp. 291–300, 2021, issn: 1875-5488. doi: https : / / doi . org / 10 . 2174 /

73

https://doi.org/https://doi.org/10.1016/j.eswa.2022.117362
https://doi.org/https://doi.org/10.1016/j.eswa.2022.117362
https://www.sciencedirect.com/science/article/pii/S095741742200714X
https://www.sciencedirect.com/science/article/pii/S095741742200714X
https://doi.org/10.2217/pme-2018-0044
https://www-ncbi-nlm-nih-gov.tudelft.idm.oclc.org/books/NBK553213/
https://www-ncbi-nlm-nih-gov.tudelft.idm.oclc.org/books/NBK553213/
https://doi.org/https://doi.org/10.1002/adma.201706910
https://doi.org/https://doi.org/10.1002/adma.201706910
https://onlinelibrary.wiley.com/doi/pdf/10.1002/adma.201706910
https://onlinelibrary.wiley.com/doi/pdf/10.1002/adma.201706910
https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201706910
https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201706910
https://doi.org/10.3390/s23073673
https://www.mdpi.com/1424-8220/23/7/3673
https://doi.org/10.2196/36696
http://www.ncbi.nlm.nih.gov/pubmed/36239201
https://doi.org/10.1088/1361-6579/ab998c
https://doi.org/10.1016/j.jacc.2007.04.079
https://www.jacc.org/doi/pdf/10.1016/j.jacc.2007.04.079
https://www.jacc.org/doi/pdf/10.1016/j.jacc.2007.04.079
https://www.jacc.org/doi/abs/10.1016/j.jacc.2007.04.079
https://www.jacc.org/doi/abs/10.1016/j.jacc.2007.04.079
https://doi.org/10.1080/17434440.2021.2014321
https://doi.org/10.1080/17434440.2021.2014321
https://doi.org/10.1080/17434440.2021.2014321
https://doi.org/10.1080/17434440.2021.2014321
https://doi.org/10.3389/fphys.2020.568886
https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2020.568886
https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2020.568886
https://doi.org/10.1186/s13634-020-00714-2
https://doi.org/10.1186/s13634-020-00714-2
https://doi.org/10.1109/MPRV.2021.3121171
https://doi.org/10.1109/MPRV.2021.3121171
https://doi.org/10.2196/53616
https://www.i-jmr.org/2024/1/e53616
https://www.i-jmr.org/2024/1/e53616
https://doi.org/https://doi.org/10.2174/1389202922666210705124359
https://doi.org/https://doi.org/10.2174/1389202922666210705124359

1389202922666210705124359. [Online]. Available: https : / / www . benthamdirect . com /
content/journals/cg/10.2174/1389202922666210705124359.

[15] G. Nie et al., A review of deep learning methods for photoplethysmography data, 2024. arXiv:
2401.12783 [cs.AI]. [Online]. Available: https://arxiv.org/abs/2401.12783.

[16] J. Xu, Y. Zhang, M. Xie, W. Wang, and D. Zhu, “Real-time intelligent on-device monitor-
ing of heart rate variability with ppg sensors,” Journal of Systems Architecture, vol. 154,
p. 103 240, 2024, issn: 1383-7621. doi: https://doi.org/10.1016/j.sysarc.2024.
103240. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1383762124001772.

[17] N. Q. Mahardika T, Y. N. Fuadah, D. U. Jeong, and K. M. Lim, “Ppg signals-based blood-
pressure estimation using grid search in hyperparameter optimization of cnn–lstm,” Diagnos-
tics, vol. 13, no. 15, 2023, issn: 2075-4418. doi: 10.3390/diagnostics13152566. [Online].
Available: https://www.mdpi.com/2075-4418/13/15/2566.

[18] O. E. Gundersen, Y. Gil, and D. W. Aha, “On reproducible ai: Towards reproducible re-
search, open science, and digital scholarship in ai publications,” AI Magazine, vol. 39, no. 3,
pp. 56–68, Sep. 2018. doi: 10.1609/aimag.v39i3.2816. [Online]. Available: https://ojs.
aaai.org/aimagazine/index.php/aimagazine/article/view/2816.

[19] F. Bildirici, “Open-source ai: An approach to responsible artificial intelligence development,”
Reflektif Sosyal Bilimler Dergisi, pp. 73–81, 2024.

[20] Dopple, https://www.dopple.nl/, Accessed: 2025-10-11, Dopple, Inc., 2023.
[21] Natus Sensory, Otoscan® – 3d ear scanning solution, https : / / natussensory . com /

products/otoscan/, Accessed: 2025-10-12.
[22] Dreve Otoplastik Shop, Otoform®, https://otoplastikshop.dreve.de/otoplastiken/

catalog/category/view/s/otoformr/id/169/, Accessed: 2025-10-12, 2025.
[23] D. Ray, T. Collins, S. Woolley, and P. Ponnapalli, “A review of wearable Multi-Wavelength

photoplethysmography,” en, IEEE Rev Biomed Eng, vol. 16, pp. 136–151, Jan. 2023.
[24] B. A. Fallow, T. Tarumi, and H. Tanaka, “Influence of skin type and wavelength on light

wave reflectance,” Journal of Clinical Monitoring and Computing, vol. 27, no. 3, pp. 313–
317, 2013, issn: 1573-2614. doi: 10.1007/s10877-013-9436-7. [Online]. Available: https:
//doi.org/10.1007/s10877-013-9436-7.

[25] M. D. Peláez-Coca, A. Hernando, J. Lázaro, and E. Gil, “Impact of the ppg sampling rate
in the pulse rate variability indices evaluating several fiducial points in different pulse wave-
forms,” IEEE Journal of Biomedical and Health Informatics, vol. 26, no. 2, pp. 539–549,
2022. doi: 10.1109/JBHI.2021.3099208.

[26] Renesas Electronics Corporation, DA14695 - multi-core bluetooth 5.2 soc with system power
management unit, https://www.renesas.com/en/products/da14695, Accessed: 2025-10-
12, 2025.

[27] Analog Devices, Inc., Maxm86161 single-supply integrated optical module for hr and spo� mea-
surement - data sheet, https://www.analog.com/media/en/technical-documentation/
data-sheets/maxm86161.pdf, Rev. 1, 4/23. Accessed: 2025-10-01, 2023.

[28] Bosch Sensortec GmbH, BMA580 - acceleration sensor, https://www.bosch-sensortec.
com/products/motion-sensors/accelerometers/bma580/, Accessed: 2025-10-12, 2025.

[29] M. Elgendi, “Optimal signal quality index for photoplethysmogram signals,” en, Bioengi-
neering (Basel), vol. 3, no. 4, Sep. 2016.

[30] The SciPy community, Scipy.stats.skew - scipy v1.16.2 manual, https://docs.scipy.org/
doc/scipy/reference/generated/scipy.stats.skew.html, Accessed: 2025-10-08, 2025.

[31] J. Wasilewski and L. Poloński, “An introduction to ecg interpretation,” in ECG Signal
Processing, Classification and Interpretation: A Comprehensive Framework of Computational
Intelligence, A. Gacek and W. Pedrycz, Eds. London: Springer London, 2012, pp. 1–20,
isbn: 978-0-85729-868-3. doi: 10.1007/978-0-85729-868-3_1. [Online]. Available: https:
//doi.org/10.1007/978-0-85729-868-3_1.

[32] J. Allen, “Photoplethysmography and its application in clinical physiological measurement,”
Physiological Measurement, vol. 28, R1–39, Apr. 2007. doi: 10.1088/0967-3334/28/3/R01.

74

https://doi.org/https://doi.org/10.2174/1389202922666210705124359
https://www.benthamdirect.com/content/journals/cg/10.2174/1389202922666210705124359
https://www.benthamdirect.com/content/journals/cg/10.2174/1389202922666210705124359
https://arxiv.org/abs/2401.12783
https://arxiv.org/abs/2401.12783
https://doi.org/https://doi.org/10.1016/j.sysarc.2024.103240
https://doi.org/https://doi.org/10.1016/j.sysarc.2024.103240
https://www.sciencedirect.com/science/article/pii/S1383762124001772
https://www.sciencedirect.com/science/article/pii/S1383762124001772
https://doi.org/10.3390/diagnostics13152566
https://www.mdpi.com/2075-4418/13/15/2566
https://doi.org/10.1609/aimag.v39i3.2816
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2816
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2816
https://www.dopple.nl/
https://natussensory.com/products/otoscan/
https://natussensory.com/products/otoscan/
https://otoplastikshop.dreve.de/otoplastiken/catalog/category/view/s/otoformr/id/169/
https://otoplastikshop.dreve.de/otoplastiken/catalog/category/view/s/otoformr/id/169/
https://doi.org/10.1007/s10877-013-9436-7
https://doi.org/10.1007/s10877-013-9436-7
https://doi.org/10.1007/s10877-013-9436-7
https://doi.org/10.1109/JBHI.2021.3099208
https://www.renesas.com/en/products/da14695
https://www.analog.com/media/en/technical-documentation/data-sheets/maxm86161.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/maxm86161.pdf
https://www.bosch-sensortec.com/products/motion-sensors/accelerometers/bma580/
https://www.bosch-sensortec.com/products/motion-sensors/accelerometers/bma580/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.skew.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.skew.html
https://doi.org/10.1007/978-0-85729-868-3_1
https://doi.org/10.1007/978-0-85729-868-3_1
https://doi.org/10.1007/978-0-85729-868-3_1
https://doi.org/10.1088/0967-3334/28/3/R01

[33] Q. Zhu, X. Tian, C.-W. Wong, and M. Wu, “Learning your heart actions from pulse:
Ecg waveform reconstruction from ppg,” IEEE Internet of Things Journal, vol. 8, no. 23,
pp. 16 734–16 748, 2021. doi: 10.1109/JIOT.2021.3097946.

[34] S. Mohapatra, H. Palo, and M. Mohanty, “Detection of arrhythmia using neural network,”
Jan. 2018, pp. 97–100. doi: 10.15439/2017KM42.

[35] Analog Devices. “Using reflectometry for a ppg waveform.” Accessed: 2025-10-12, Analog
Devices. [Online]. Available: https://www.analog.com/en/resources/design-notes/
using-reflectometry-for-a-ppg-waveform.html.

[36] “Byteflies: Certified telemonitoring solutions for hospitals, clinical trials & research.” Ac-
cessed: 2025-10-07, Byteflies. [Online]. Available: https://www.byteflies.com/.

[37] Byteflies NV, Byteflies kit manual, User manual, Byteflies, May 2020.
[38] The SciPy Community, Scipy.signal.resample_poly - scipy v1.16.2 manual, https://docs.

scipy.org/doc/scipy/reference/generated/scipy.signal.resample_poly.html,
Accessed: 2025-10-12, 2025.

[39] C. Xie, L. McCullum, A. Johnson, T. Pollard, B. Gow, and B. Moody, Waveform database
software package (wfdb) for python (version 4.1.0), https://doi.org/10.13026/9njx-
6322, RRID:SCR_007345, 2023. doi: 10.13026/9njx-6322.

[40] H. Tanaka, K. D. Monahan, and D. R. Seals, “Age-predicted maximal heart rate revisited,”
JACC, vol. 37, no. 1, pp. 153–156, 2001. doi: 10.1016/S0735-1097(00)01054-8. eprint:
https://www.jacc.org/doi/pdf/10.1016/S0735- 1097%2800%2901054- 8. [Online].
Available: https://www.jacc.org/doi/abs/10.1016/S0735-1097%2800%2901054-8.

[41] M. Jorda, P. Valero-Lara, and A. J. Pena, “Performance evaluation of cudnn convolution
algorithms on nvidia volta gpus,” IEEE Access, vol. 7, no. 8721631, pp. 70 461–70 473, 2019.
doi: 10.1109/ACCESS.2019.2918851.

[42] S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training by reducing
internal covariate shift, 2015. arXiv: 1502.03167 [cs.LG]. [Online]. Available: https://
arxiv.org/abs/1502.03167.

[43] PyTorch Team, Torch.nn.batchnorm1d - pytorch documentation, https://docs.pytorch.
org/docs/stable/generated/torch.nn.BatchNorm1d.html, Accessed: 2025-10-04, 2025.

[44] H. Gholamalinezhad and H. Khosravi, Pooling methods in deep neural networks, a review,
2020. arXiv: 2009.07485 [cs.CV]. [Online]. Available: https://arxiv.org/abs/2009.
07485.

[45] O. Ronneberger, P. Fischer, and T. Brox, U-net: Convolutional networks for biomedical image
segmentation, 2015. arXiv: 1505.04597 [cs.CV]. [Online]. Available: https://arxiv.org/
abs/1505.04597.

[46] I. Loshchilov and F. Hutter, Decoupled weight decay regularization, 2019. arXiv: 1711.05101
[cs.LG]. [Online]. Available: https://arxiv.org/abs/1711.05101.

[47] Bcewithlogitsloss - pytorch documentation, PyTorch. Accessed: Sep. 30, 2025. [Online].
Available: https : / / docs . pytorch . org / docs / stable / generated / torch . nn .
BCEWithLogitsLoss.html.

[48] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, Focal loss for dense object detection,
2018. arXiv: 1708.02002 [cs.CV]. [Online]. Available: https://arxiv.org/abs/1708.
02002.

[49] J. Hosang, R. Benenson, and B. Schiele, Learning non-maximum suppression, 2017. arXiv:
1705.02950 [cs.CV]. [Online]. Available: https://arxiv.org/abs/1705.02950.

[50] D. Chicco and G. Jurman, “The advantages of the matthews correlation coefficient (mcc)
over f1 score and accuracy in binary classification evaluation,” BMC Genomics, vol. 21,
no. 1, p. 6, 2020, issn: 1471-2164. doi: 10.1186/s12864-019-6413-7. [Online]. Available:
https://doi.org/10.1186/s12864-019-6413-7.

[51] SciPy Community, Scipy.optimize.linear_sum_assignment, https://docs.scipy.org/
doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html,
Accessed: 2025-10-13, SciPy version 1.16.2, 2025.

75

https://doi.org/10.1109/JIOT.2021.3097946
https://doi.org/10.15439/2017KM42
https://www.analog.com/en/resources/design-notes/using-reflectometry-for-a-ppg-waveform.html
https://www.analog.com/en/resources/design-notes/using-reflectometry-for-a-ppg-waveform.html
https://www.byteflies.com/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.resample_poly.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.resample_poly.html
https://doi.org/10.13026/9njx-6322
https://doi.org/10.13026/9njx-6322
https://doi.org/10.13026/9njx-6322
https://doi.org/10.1016/S0735-1097(00)01054-8
https://www.jacc.org/doi/pdf/10.1016/S0735-1097%2800%2901054-8
https://www.jacc.org/doi/abs/10.1016/S0735-1097%2800%2901054-8
https://doi.org/10.1109/ACCESS.2019.2918851
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167
https://docs.pytorch.org/docs/stable/generated/torch.nn.BatchNorm1d.html
https://docs.pytorch.org/docs/stable/generated/torch.nn.BatchNorm1d.html
https://arxiv.org/abs/2009.07485
https://arxiv.org/abs/2009.07485
https://arxiv.org/abs/2009.07485
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://docs.pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html
https://docs.pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html
https://arxiv.org/abs/1708.02002
https://arxiv.org/abs/1708.02002
https://arxiv.org/abs/1708.02002
https://arxiv.org/abs/1705.02950
https://arxiv.org/abs/1705.02950
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.1186/s12864-019-6413-7
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html

[52] D. F. Crouse, “On implementing 2d rectangular assignment algorithms,” IEEE Transactions
on Aerospace and Electronic Systems, vol. 52, no. 4, pp. 1679–1696, 2016. doi: 10.1109/
TAES.2016.140952.

[53] D. A. Van Veldhuizen, G. B. Lamont, et al., “Evolutionary computation and convergence to
a pareto front,” in Late breaking papers at the genetic programming 1998 conference, 1998,
pp. 221–228.

[54] STMicroelectronics, Stm32h755zi – high-performance arm® cortex®-m7 + m4 mcu, Ac-
cessed: 2025-11-30, 2025. [Online]. Available: https://www.st.com/en/microcontrollers-
microprocessors/stm32h755zi.html#overview.

[55] STMicroelectronics, Nucleo-h755zi-q – stm32 nucleo-144 development board, Accessed: 2025-
11-30, 2025. [Online]. Available: https://www.st.com/en/evaluation-tools/nucleo-
h755zi-q.html.

[56] Google AI Edge / Google AI for Developers, Litert overview, https://ai.google.dev/
edge / litert, Last updated 2025-05-19 UTC, 2025. [Online]. Available: https : / / ai .
google.dev/edge/litert.

[57] google-ai-edge, Ai edge torch: Supporting pytorch models with the google ai edge tflite runtime,
https://github.com/google-ai-edge/ai-edge-torch, Accessed: 2025-09-30, 2025.

[58] STMicroelectronics, Stm32cube.ai, https://stm32ai.st.com/stm32-cube-ai/, Accessed:
2025-10-14, 2025.

[59] STMicroelectronics, Evaluation report and metrics — st edge ai core technology 2.2.0, https:
//stedgeai-dc.st.com/assets/embedded-docs/evaluation_metrics.html, Accessed:
2025-10-29, 2025.

[60] A. Ltd., Cortex-m0 technical reference manual, Rev. 3, Document ID: ARM DDI 0432I,
30 Nov 2009, Cambridge, UK, Nov. 2009. [Online]. Available: https://documentation-
service.arm.com/static/5e8e294afd977155116a6a5b.

76

https://doi.org/10.1109/TAES.2016.140952
https://doi.org/10.1109/TAES.2016.140952
https://www.st.com/en/microcontrollers-microprocessors/stm32h755zi.html#overview
https://www.st.com/en/microcontrollers-microprocessors/stm32h755zi.html#overview
https://www.st.com/en/evaluation-tools/nucleo-h755zi-q.html
https://www.st.com/en/evaluation-tools/nucleo-h755zi-q.html
https://ai.google.dev/edge/litert
https://ai.google.dev/edge/litert
https://ai.google.dev/edge/litert
https://ai.google.dev/edge/litert
https://github.com/google-ai-edge/ai-edge-torch
https://stm32ai.st.com/stm32-cube-ai/
https://stedgeai-dc.st.com/assets/embedded-docs/evaluation_metrics.html
https://stedgeai-dc.st.com/assets/embedded-docs/evaluation_metrics.html
https://documentation-service.arm.com/static/5e8e294afd977155116a6a5b
https://documentation-service.arm.com/static/5e8e294afd977155116a6a5b

Algorithms A
This section contains the algorithms for building the different ML-models.

A.1 Dynamic Encoder-Decoder CNN

Algorithm 1 Dynamic encoder-decoder CNN construction
Require: Input signal x(0) ∈ R1×T

▷ Configuration parameters:
1: B: number of convolutional blocks in the encoder
2: k: convolutional kernel size
3: d: dilation factor controlling kernel spacing
4: pool_every: number of blocks after which pooling is applied
5: double_every: number of blocks after which channels are doubled
6: Cbase: base number of channels in the first block
7: fpool: pooling function (max, avg, etc.)
8: fact: activation function (SiLU or ReLU)

▷ Initialization:
1: C0 ← 1 ▷ initial number of channels (input has one channel)
2: T0 ← T ▷ initial temporal length (outlined for clarity)
3: upscaler_count← 0

▷ Encoder:
4: for i = 1 to B do
5: Ci ← Cbase × 2⌊(i−1)/double_every⌋ ▷ double channels
6: Cin ← Ci−1, Cout ← Ci ▷ Set input and output channels
7: z(i) ← Conv1D(x(i−1), Cin, Cout, k, d) ▷ Eq. 2.16
8: if Batch Normalisation enabled then
9: z(i) ← BatchNorm(z(i)) ▷ Eq. 2.17

10: end if
11: x(i) ← fact(z

(i)) ▷ apply non-linearity, Eq. 2.18 or Eq. 2.20
12: if i mod pool_every = 0 then
13: x(i) ← fpool(x

(i), p = 2) ▷ Eqs. 2.22–2.24
14: Ti ← Ti/2
15: upscaler_count← upscaler_count + 1
16: end if
17: end for

▷ Decoder:
18: if upscaler_count > 0 then
19: x(B+1) ← Upsample(x(B), s = 2upscaler_count) ▷ Eq. 2.25
20: else
21: x(B+1) ← x(B)

22: end if
23: ŷ ← Conv1D(x(B+1), C(B), Cout = 1, k = 1, d = 0) ▷ final 1×1 projection
24: return ŷ ∈ R1×T ▷ predicted peak-likelihood signal

77

A.2 Dilated Encoder-Decoder CNN

Algorithm 2 Dilated Encoder-Decoder CNN construction (Consolidated Config)

Require: Input signal x(0) ∈ RCin×T

▷ Configuration parameters:
1: Cenc1, Cenc2, Cb, Cdec1, Cdec2, Cout: Channels for encoder, bottleneck, decoder, and output
2: kenc1, kenc2, kd, kdec1, kdec2: Kernel sizes for encoder, dilated bottleneck, and decoder layers
3: Nd: number of layers in the bottleneck
4: dbase: base dilation factor
5: fpool: pooling function (max, avg, etc.)
6: fact: activation function (SiLU or ReLU)

procedure ConvBlock(xin, Cin, Cout, k, d, fact)
1: p← ⌊d · (k − 1)/2⌋ ▷ Calculate padding to maintain size
2: z ← Conv1D(xin, Cin, Cout, k, d, p) ▷ Eq. 2.16
3: z ← BatchNorm(z) ▷ Eq. 2.17
4: return fact(z) ▷ Eq. 2.18 or 2.20

▷ Encoder:
5: x(1) ← ConvBlock(x(0), Cin, Cenc1, kenc1, d = 1, fact)
6: x(1,pool) ← fpool(x

(1), p = 2) ▷ Eqs. 2.22–2.24
7: x(2) ← ConvBlock(x(1,pool), Cenc1, Cenc2, kenc2, d = 1, fact)
8: x(2,pool) ← fpool(x

(2), p = 2) ▷ Eqs. 2.22–2.24
▷ Bottleneck (Dilated Convolutions):

9: z(0) ← x(2,pool)

10: for j = 0 to Nd − 1 do
11: Cprev ← Cenc2 if j = 0 else Cb

12: dj ← djbase ▷ Eq. 2.26
13: z(j+1) ← ConvBlock(z(j), Cprev, Cb, kd, dj , fact)
14: end for

▷ Decoder:
15: y(1) ← Upsample(z(Nd), s = 2) ▷ Eq. 2.25
16: y(1,conv) ← ConvBlock(y(1), Cb, Cdec1, kdec1, d = 1, fact)
17: y(2) ← Upsample(y(1,conv), s = 2) ▷ Eq. 2.25
18: y(2,conv) ← ConvBlock(y(2), Cdec1, Cdec2, kdec2, d = 1, fact)

▷ Output Projection:
19: ŷ ← Conv1D(y(2,conv), Cdec2, Cout, k = 1) ▷ Final 1×1 projection
20: return ŷ ∈ RCout×T

78

Search Space Configurations B
This chapter contains all the different search space configurations used to create
results and graphs.

B.1 Standard CNN

Table B.1: Standard CNN configuration grids used throughout the single-
location analysis. Columns list the values explored per experiment. Parame-
ters not listed under a column follow the common settings detailed in the notes.
Reported search-space sizes exclude configurations whose model size exceeded
2 MB.

Parameter BatchNorm Pooling Channels Convolution

base_channels {8,16} {8,16} {8,16,32,64} {8,16}
num_blocks {3,5} {3,5} {3,5} {3,5}
kernel_size {3,5} {3,5} {3,5} {3,5,7,9}
dilation {1,2} {1,2} {1,2,5} {1,2,4,8}
use_batchnorm {True, False} True True True
pool_every {1,2} {1,2,4,8} {2,4} {2,4}
pooling max {max, avg, lp_2} max max
double_every {1,2} {1,2,4,8} {1,2,4,8} {2,4}
activation silu silu silu silu

Search space 32 768 384 → 360 (<2MB) 256

Parameter Activation

base_channels {8,16,32}
num_blocks {3,5}
kernel_size {3,5,7,9}
dilation {2,4}
use_batchnorm True
pool_every {2,4}
pooling max
double_every {2,4}
activation {silu, relu}

Search space 384

Common settings:
tune_threshold=enabled, NMS=disabled, event toleration=disabled, epochs=8, loss=BCE

79

B.2 Dilated

Table B.2: Dilated CNN configuration grids. Columns list the values explored
per experiment. Parameters not listed under a column follow the common set-
tings detailed in the notes. Reported search-space sizes exclude configurations
whose model size exceeded 2 MB.

Parameter Bottleneck / Dilation Conv Block Encoder Decoder

enc1_channels {8,16} {8,16} {8,16,32} {8,16}
enc1_kernel 5 5 {3,5,7} 5
enc2_channels {8,16,32} {8,16} {8,16,32} 16
enc2_kernel 3 3 {3,5,7} 5
bottleneck_channels {16,32,64,128} {16,32} {16,32} {32,64}
num_dilated_layers {3,5,7} 5 5 {3,5}
dilated_kernel {3,5} {3,5,7,9} {3,5} {3,5}
base_dilation {2,3} {1,2,3,4} 2 2
dec1_kernel 5 5 5 {3,5,7}
dec2_kernel 5 5 5 {3,5,7}

Search space 288 → 282 (<2MB) 128 128 144

Parameter Similarity

enc1_channels {8,16}
enc1_kernel {3,5}
enc2_channels {16,32}
enc2_kernel {3,5}
dec1_channels {16,32}
dec1_kernel {3,5}
dec2_channels {8,16}
dec2_kernel {3,5}
bottleneck_channels 32
num_dilated_layers 5
dilated_kernel 3
base_dilation 2
activation silu
pooling avg

Search space 96

Common settings:
tune_threshold=enabled, NMS=disabled, event toleration=disabled, epochs=8,
pooling=max, use_batchnorm=True, loss=BCE

Unless otherwise specified:
enc1_channels = dec2_channels, enc2_channels = dec1_channels

80

B.3 Pre and post-processing

Table B.3: Configuration overview for pre-/post-processing
analysis, comparative analysis across sensor locations, and
embedded validation.

Standard CNN
Parameter Pre/Post Comparative Embedded

base_channels {8,16} {8,16,32} 16
num_blocks {3,5} {3,5} 5
kernel_size {5,7} {5,7} 7
dilation 2 2 2
pool_every {2,4} {2,4} 2
double_every {2,4} 2 2
activation silu {silu,relu} silu

Total Configurations 32 48 1

Complex Dilated CNN
Parameter Pre/Post Comparative Embedded

enc1_channels 8 {8,16} 16
enc1_kernel {3,5} 5 5
enc2_channels 16 {8,16} 16
enc2_kernel {3,5} 5 5
bottleneck_channels {16,32} {8,16,32} 64
num_dilated_layers 5 5 5
dilated_kernel {3,5} {3,5} 5
base_dilation 2 2 2
activation silu {silu,relu} silu

Total Configurations 16 48 1

Common settings:
tune_threshold=enabled, NMS=disabled, event toleration=disabled,
epochs=8, pooling=max, use_batchnorm=True, loss=BCE

81

82

Figures C
C.1 ECG Filtering

This section presents Figures C.1–C.2, which illustrate the effects of ECG filtering.

Figure C.1: Frequency response of the cascaded 50 Hz and 100 Hz IIR notch filters.

Figure C.2: Comparison between the original ECG signal and the filtered ECG signal.

83

C.2 Pooling strategies

Figure C.3: Relationship between model size (KB) and MCC for different pool_every values in
CNN configurations.

(a) Win rate matrix for different pool_every con-
figurations. (b) Win rate matrix for different pooling types.

Figure C.4: Win rate matrices for pooling-related parameters in CNN configurations.

84

Figure C.5: Relationship between model size (KB) and MCC for different pooling types in CNN
configurations.

C.3 Standard CNN channels

(a) Win rate matrix for different base_channel val-
ues.

(b) Win rate matrix for different double_every val-
ues.

Figure C.6: Win rate matrices for channel-related parameters in the standard CNN encoder.

85

(a) Box plot showing the distribution of model sizes
(KB) for different base_channel values.

(b) Box plot showing the distribution of model sizes
(KB) for different double_every values.

Figure C.7: Box plots of model size distributions for different base_channel and double_every
configurations.

Figure C.8: Relationship between model size (KB) and MCC for different base_channel values
in CNN configurations.

86

Figure C.9: Relationship between model size (KB) and MCC for different double_every values
in CNN configurations.

C.4 Standard convolution layer

(a) Win rate matrix comparing different
kernel_size values on MCC performance.

(b) Win rate matrix comparing different dilation
values on MCC performance.

Figure C.10: Win rate matrices for different kernel_size and dilation parameters.

87

Figure C.11: Box plot showing the distribution of model sizes (KB) for different kernel_size
values

Figure C.12: Relationship between model size (KB) and MCC for different kernel_size values
in standard CNN configurations.

88

Figure C.13: Relationship between model size (KB) and MCC for different dilation values in
standard CNN configurations.

C.5 Dilated bottleneck stage

Figure C.14: Relationship between model size (KB) and MCC for different number of dilation
layers in the Dilated CNN configurations.

89

Figure C.15: Relationship between model size (KB) and MCC for different number of bottleneck
channels in the Dilated CNN configurations.

(a) Win rate matrix comparing the number of di-
lated layers on MCC performance.

(b) Win rate matrix comparing the number of bot-
tleneck channels on MCC performance.

Figure C.16: Win rate matrices for dilated CNN parameters: dilated layers and bottleneck chan-
nels.

90

(a) Box plot illustrating the distribution of model
sizes as a function of the number of dilated layers.

(b) Box plot illustrating the distribution of model
sizes as a function of the number of bottleneck
channels.

Figure C.17: Box plots of model size distributions for dilated CNN configurations: number of
dilated layers and number of bottleneck channels.

C.6 Dilated convolution layer

Figure C.18: Box plot showing the distribution of MCC scores for different kernel window sizes
across 128 configurations.

91

(a) Win-rate matrix comparing different kernel
window sizes in the Dilated CNN.

(b) Win-rate matrix comparing different base dila-
tion factors in the Dilated CNN.

Figure C.19: Win-rate matrices for kernel window size and base dilation parameters in the Dilated
CNN.

Figure C.20: Box plot illustrating the distribution of model sizes as a function of the kernel window
size.

92

Figure C.21: Relationship between model size and MCC for different kernel window sizes in the
Dilated CNN.

Figure C.22: Relationship between model size and MCC for different base dilation values in the
Dilated CNN.

93

C.7 Dilated encoder architecture

(a) Win-rate matrix comparing different
enc1_channels values.

(b) Win-rate matrix comparing different
enc2_channels values.

Figure C.23: Win-rate matrices for varying enc1_channels and enc2_channels in the Dilated
CNN architecture.

Figure C.24: Relationship between model size and MCC for different enc1_channels values in
the Dilated CNN.

94

Figure C.25: Relationship between model size and MCC for different enc2_channels values in
the Dilated CNN.

(a) Distribution of model sizes for different
enc1_channels values.

(b) Distribution of model sizes for different
enc2_channels values.

Figure C.26: Model size distributions for varying enc1_channels and enc2_channels values.

95

(a) Win-rate matrix comparing different
enc1_kernel values.

(b) Win-rate matrix comparing different
enc2_kernel values.

Figure C.27: Win-rate matrices for varying enc1_kernel and enc2_kernel values in the Dilated
CNN encoder.

Figure C.28: Relationship between model size and MCC for different enc1_kernel values.

96

Figure C.29: Relationship between model size and MCC for different enc2_kernel values.

(a) Distribution of model sizes for different
enc1_kernel values.

(b) Distribution of model sizes for different
enc2_kernel values.

Figure C.30: Model size distributions for varying enc1_kernel and enc2_kernel values in the
Dilated CNN encoder.

97

98

Result Tables D
Table D.1: Summary of the comparative experiment results with MCC values across all 96 evalu-
ated configurations for each sensor location.

Location Mean Median Std Max
Tragus 0.0646 0.0621 0.0171 0.1202
Ear Canal (Shallow) 0.1612 0.1690 0.0284 0.2079
Concha 0.2567 0.2598 0.0241 0.3167
Ear Canal (Deep) 0.3041 0.3078 0.0239 0.3609

Table D.2: Summary of MCC results and model sizes across dynamic encoder-decoder CNN for
different configuration parameters.

MCC Model size (kB)
Configuration Mean Median Min Max Mean Range
pool_every
1 0.127 0.126 0.022 0.207 67.5 1.9–857.1
2 0.233 0.239 0.158 0.276 67.5 1.9–857.1
4 0.223 0.237 0.090 0.282 67.5 1.9–857.1
8 0.220 0.230 0.089 0.284 67.5 1.9–857.1
Pooling type
Average (avg) 0.202 0.225 0.046 0.275 67.5 1.9–857.1
Lp-norm (lp_2) 0.200 0.224 0.022 0.284 67.5 1.9–857.1
Max (max) 0.200 0.224 0.042 0.280 67.5 1.9–857.1
base_channels
8 0.230 0.236 0.100 0.284 27.43 1.9–216.1
16 0.238 0.244 0.110 0.276 107.61 6.8–857.1
32 0.240 0.250 0.108 0.271 96.52 25.6–304.9
64 0.243 0.251 0.112 0.292 380.47 99.3–1209.8
double_every
1 0.238 0.245 0.110 0.284 287.37 8.4–857.1
2 0.239 0.249 0.102 0.292 194.54 2.8–1209.8
4 0.237 0.245 0.101 0.272 76.61 1.9–406.3
8 0.236 0.244 0.100 0.273 65.75 1.9–325.3
kernel_size
3 0.224 0.233 0.094 0.264 12.78 1.9–47.3
5 0.244 0.245 0.208 0.274 13.57 3.0–77.4
7 0.251 0.252 0.221 0.275 18.69 4.0–107.6
9 0.255 0.256 0.222 0.283 23.82 5.1–137.7
dilation
1 0.232 0.241 0.094 0.275 13.74 1.9–137.7
2 0.249 0.251 0.182 0.283 13.74 1.9–137.7
4 0.250 0.250 0.223 0.279 13.74 1.9–137.7
8 0.242 0.243 0.214 0.274 13.74 1.9–137.7

99

Table D.3: Summary of MCC results and model sizes across dilated CNN models for different
configuration parameters.

MCC Model size (kB)
Configuration Mean Median Min Max Mean Range
num_dilated_layers
3 0.294 0.292 0.247 0.339 208.99 11.6–786.0
5 0.315 0.307 0.276 0.373 380.40 18.0–1429.0
7 0.308 0.307 0.276 0.364 452.16 24.4–1998.3
bottleneck_channels
16 0.288 0.288 0.247 0.307 31.36 11.6–60.8
32 0.299 0.302 0.274 0.322 88.46 33.2–168.1
64 0.310 0.310 0.274 0.353 298.67 112.3–562.8
128 0.327 0.328 0.283 0.373 1017.33 414.6–1998.3
dilated_kernel
3 0.288 0.290 0.269 0.307 42.38 18.0–69.0
5 0.295 0.294 0.279 0.317 64.63 27.0–105.0
7 0.297 0.298 0.275 0.323 86.88 36.0–141.0
9 0.301 0.300 0.279 0.321 109.13 45.0–177.0
base_dilation
1 0.290 0.288 0.270 0.320 75.75 18.0–177.0
2 0.301 0.300 0.282 0.323 75.75 18.0–177.0
3 0.296 0.296 0.269 0.317 75.75 18.0–177.0
4 0.294 0.296 0.273 0.316 75.75 18.0–177.0
enc1_channels
8 0.307 0.306 0.276 0.330 63.81 19.4–135.1
16 0.306 0.306 0.285 0.324 70.01 21.8–147.5
32 0.307 0.307 0.286 0.331 82.43 26.4–172.4
enc2_channels
8 0.303 0.303 0.285 0.322 55.06 19.4–105.8
16 0.307 0.306 0.276 0.331 67.83 25.6–128.0
32 0.310 0.310 0.288 0.330 93.37 38.0–172.4
enc1_kernel
3 0.306 0.306 0.276 0.324 71.94 19.4–171.9
5 0.306 0.306 0.286 0.330 72.08 19.5–172.1
7 0.308 0.307 0.285 0.331 72.23 19.6–172.4
enc2_kernel
3 0.306 0.306 0.276 0.329 69.36 19.4–156.4
5 0.307 0.306 0.285 0.331 72.08 19.9–164.4
7 0.307 0.307 0.287 0.330 74.81 20.4–172.4

100

	Abstract
	Acknowledgments
	Introduction
	Methodology
	Hardware
	Mechanical Design and Fabrication
	Electronic Components and System Integration
	Sensor Placements

	Data Acquisition and Processing
	Sensor Configuration and Synchronisation
	Data Transmission Protocol

	Dataset
	Dataset overview
	PPG Signal quality measurement
	Ground-truth acquisition
	Automatic signal alignment
	Visual refinement and frequency calibration
	Signal validation and curation

	Configurable Deep Learning Framework for PPG Peak Detection
	Data Preprocessing and Annotation
	Model Architectures
	Model Training and Evaluation
	Hyperparameter Optimization Strategies

	Embedded model deployment
	Model conversion
	On-device deployment
	Performance validation procedures

	Experimental Design
	Experiment 1: Sensor Signal Evaluation
	Experiment 2: Comparative Model Analysis Across Sensor Locations
	Experiment 3: Model Configuration and Parameter Sensitivity
	Experiment 4: Embedded Validation

	Evaluation Metrics and Visualisations

	Results
	PPG Sensor Results
	Visual Observation
	Skewness

	Comparative Analysis
	Results

	Single-location in-depth analysis
	Standard CNN
	Dilated CNN
	Pre- and post-processing

	Embedded Validation

	Discussion
	PPG Dataset
	Comparative analysis
	Standard CNN configuration parameters
	Batch Normalisation
	Pooling strategies
	Channels
	Convolution layer
	Activation Layer

	Dilated CNN configuration parameters
	Bottleneck Stage Parameters
	Convolution layer parameters
	Encoder architecture
	Decoder
	Performance vs. standard

	Pre and Post-Processing Techniques
	Peak refinement
	Non-Maximum Suppression (NMS) Effects

	Embedded validation
	Total performance
	Limitations & Future research

	Conclusion
	Algorithms
	Dynamic Encoder-Decoder CNN
	Dilated Encoder-Decoder CNN

	Search Space Configurations
	Standard CNN
	Dilated
	Pre and post-processing

	Figures
	ECG Filtering
	Pooling strategies
	Standard CNN channels
	Standard convolution layer
	Dilated bottleneck stage
	Dilated convolution layer
	Dilated encoder architecture

	Result Tables

