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Abstract
Inverse Reinforcement Learning (IRL) aims to re-
cover a reward function from expert demonstrations
in a Markov Decision Process (MDP). The objec-
tive is to understand the underlying intentions and
behaviors of experts and derive a reward function
based on their reasoning, rather than their exact ac-
tions. However, expert demonstrations can be in-
fluenced by various types of noise (e.g., from ran-
dom behavior) which can affect their accuracy and
effectiveness in solving the MDP. This research in-
vestigates the capability of IRL to recover reward
functions from noisy demonstrations. Three types
of noises, namely Random Action Noise, Random
Bias Noise, and Sparse Noise, are introduced and
modeled. Demonstrations are generated with these
noises, and the corresponding reward functions are
recovered. Comparisons are made between the
noisy and optimal recovered rewards using vari-
ous metrics. The results indicate that IRL exhibits
certain tolerance level against Random Events and
Sparse Noise, while being more vulnerable to Ran-
dom Bias Noise.

1 Introduction
Reinforcement Learning (RL) [6] is a dynamic and promising
field of machine learning that focuses on training agents using
a predefined reward function to generate a policy and solve a
problem. Inspired by how humans learn from trial and error,
RL aims to create an optimal policy that learns from received
feedback, which either rewards or punishes an action. At its
core, RL involves an agent taking actions in an environment
with a set of states and possible actions per state, called a
Markov Decision Process (MDP), where actions and resulting
states elicit positive or negative feedback.

Inverse Reinforcement Learning (IRL) [11] takes an in-
verse approach by inferring the underlying reward function
from observed behavior. Creating a reward function, as in RL,
can be challenging for complex scenarios were the path of
solving a problem is not strictly defined. Hence, IRL extracts
implicit knowledge from expert demonstrations to generate a
reward function. The goal is to understand the reasoning be-
hind the actions taken by experts and derive a reward function
based on their intentions rather than their exact actions. This
approach enables an agent to solve a problem differently from
the expert but with the same objective in mind.

Typically, the expert demonstrations that will be fed in an
IRL are disturbed by some kind of noise originating from hu-
man error, biased behavior, sensor measurement error, and so
on [10]. These noises might cause the generation of an un-
reliable reward function that does not yield optimal behavior.
Previous studies have explored the impact of noise on IRL al-
gorithms, shedding light on the challenges and potential solu-
tions. Chen et. al. [3] investigated the effects of sparse noise
in the IRL process and proposed a method to handle noise
by devising an Expectation-Maximization algorithm, which
can automatically identify and remove behavior noise in re-
ward learning. Another study [5] examined IRL that derives

the reward from imperfect demonstrations. They introduced
a unified RL algorithm that can learn robustly and outperform
existing baselines.

While the aforementioned studies have explored the im-
pact of noise on IRL algorithms, certain questions regarding
noisy demonstrations in IRL remain unanswered. Firstly, the
combined effects of multiple sources of noise on the IRL pro-
cess require further exploration. Secondly, existing research
has primarily focused on specific types of noise, such as sen-
sor noise or environmental variability, without considering
the impact of expert suboptimality. Lastly, the types of noise
can occur in demonstration data and their possible impact on
the learning process. How can different noise characteristics
(e.g., random noise) affect the performance of IRL.

This research paper aims to investigate the extent to which
IRL can learn rewards from noisy demonstrations. By eval-
uating and analyzing the impact of various types of noise on
reward function generation, we contribute to a deeper under-
standing of IRL’s robustness while also identifying the lim-
itations of specific IRL algorithms when faced with noisy
demonstrations.

The structure of this paper is as follows: Section 2 con-
tains the necessary backround theory and knowledge to help
understand the paper, and Section 3 provides an explanation
of the chosen IRL algorithm, and the methodology used for
this research. Section 4 presents an experimental setup for
evaluating the impact of different types of noise on the IRL
algorithm. Section 5 contains the results obtained from the
experiments and analyses them. Section 6 discusses responsi-
ble research aspects pertaining to this study. Section 7 which
has an in-depth discussion of the results. Finally, Section 8
summarizes the main contributions, outlines future research
directions, and concludes the paper.

2 Backround
In this section, we will introduce and explain some concepts
and preliminaries required for the understanding of this paper
and research.

2.1 Markov Decision Process
A Markov Decision Process (MDP) [8] is a mathemati-
cal framework used to model decision-making in situations
where outcomes are influenced by both stochastic (random)
events and the actions taken by an agent. A MDP is repre-
sented as a tuple of components e.g., (S, A, T, R, γ):

• States (S): The set of all possible states in the system.

• Actions (A): The set of all the agent’s possible actions.

• Transition probabilities (T): The transition function
specifies the probability of moving from one state to an-
other when a particular action is taken.

• Rewards (R): The reward function assigns a numerical
value to each state or state-action pair.

• Discount factor (γ): Value between 0 and 1 that de-
termines the importance of immediate versus future re-
wards.



The agent’s goal in an MDP is to find an optimal policy,
denoted as π∗, which is a set of state-action pairs (s, a), that
specifies the action to take in each state to maximize the ex-
pected cumulative rewards over time. The policy can be de-
terministic (e.g., always choosing the same action in each
state) or stochastic (e.g., selecting actions with probabilities
based on a distribution).

2.2 Maximum Entropy Inverse Reinforcement
Learning

Maximum Entropy Inverse Reinforcement Learning (Max-
Ent IRL) [18] is a method used to infer the underlying re-
ward function in a Markov Decision Process (MDP) based on
observed expert behavior using feature-expectation matching
[1]. Unlike traditional IRL approaches that seek a single re-
ward function to explain the expert’s behavior, MaxEnt IRL
takes a different approach. It aims to find a reward function
that not only replicates the observed behavior but also max-
imizes the entropy or uncertainty of the expert’s actions. By
maximizing entropy, MaxEnt IRL allows for a broader range
of possible policies that could explain the expert’s demon-
strated actions. This approach captures the idea that the ex-
pert’s behavior might not be uniquely determined by a single
reward function, but rather by a set of reward functions that
exhibit similar behavior. MaxEnt IRL offers flexibility in cap-
turing the expert’s preferences and decision-making patterns,
even in situations where there may be multiple valid interpre-
tations of the observed expert behavior.

2.3 Optimal Policy Using Bellman Optimality
Equation

The Bellman Optimality Equation [17] provides a recursive
relationship between the value function V (s) and the ex-
pected returns Q(s, a) for each state-action pair, allowing for
the computation of the optimal policy through iterative up-
dates. By iteratively improving the value function V (s) and
selecting actions that maximize the expected return, the op-
timal policy π∗ can be derived and used for decision-making
in the MDP. This process is refer to as Value Iteration [2] and
calculates the optimal policy π∗, which indicates the best ac-
tion selection in each state of the MDP.

3 Methodology
To address the research question, the following procedure was
established. The following is a step-by-step overview:

1. Select an appropriate IRL algorithm and MDP environ-
ment for the study.

2. Conduct a thorough review of existing literature to iden-
tify and characterize the types of noise that may be
present in expert demonstrations.

3. Generate the Optimal Policy and corresponding optimal
demonstrations for the chosen MDP.

4. Model each identified noise type and generate noisy
demonstrations for the MDP.

5. Utilize the optimal and noisy demonstrations as input for
the IRL algorithm to obtain both the optimal and noisy
recovered rewards.

6. Establish metrics to facilitate a comparative analysis be-
tween the noisy recovered rewards and the optimal re-
covered reward.

7. Analyze the obtained metrics and data, and derive mean-
ingful conclusions based on the results.

By following this methodology, we aim to gain insights
into the impact of different noise types on the recovery of
rewards from expert demonstrations.

It was crucial to select an appropriate IRL algorithm to
evaluate the extent to which IRL can learn rewards from noisy
demonstrations. Several potential approaches were consid-
ered: Maximum Entropy Inverse Reinforcement Learning
(MaxEnt IRL) [18], which utilizes the principle of maximiz-
ing entropy to determine the recovered reward, Adversarial
Inverse Reinforcement Learning (AIRL) [4], employing an
adversarial reward learning formulation to recover robust re-
ward functions capable of accommodating changes in dy-
namics, and Nonlinear Inverse Reinforcement Learning with
Gaussian Processes [8], which employs Gaussian processes
to learn the reward as a nonlinear function, departing from
the linear feature-based representation. Given the substan-
tial amount of literature and supporting material available, we
opted to employ MaxEnt IRL for our research, as this choice
provided us with a higher confidence level in completing the
study within the given time constraints.

A certain implementation of MaxEnt IRL was used in this
reasearch to conduct the necessary experiments [9]. This im-
plementation follows the maximum entropy algorithm of [18]
with exponentiated gradient descent [7].

To utilize the aforementioned MaxEnt IRL implemen-
tation, we generated demonstrations that simulated ex-
pert/agent behavior in solving a Grid World MDP. Initially,
we employed the Bellman Optimality Equation and Value It-
eration to construct the optimal policy, which was then used
to generate the optimal demonstrations. Subsequently, we fed
these demonstrations into MaxEnt IRL to obtain the optimal
recovered reward, allowing us to compare it with other recov-
ered rewards from the noisy demonstrations.

Next, we proceeded to create the noisy demonstrations to
simulate potential data noise. We will consider three types
of noise: Random Events Noise, Random Bias Noise, and
Sparse Noise. The selection of the noise types we modelled
was made based on the most understandable and feasible lit-
erature references that were found.

Starting with Random Events Noise, inspired by [12], this
type of noise refers to unexpected and unpredictable events
that could occur during the execution of actions in each task
or environment. These events introduce variations and devia-
tions from the intended behavior, resulting in noisy demon-
strations. In a Grid World MDP context, Random Event
Noise could arise due to external disturbances, system fail-
ures, human error, or uncontrollable environmental condi-
tions that cause the experts to select a random action instead
of the optimal one. Accounting for noise that introduces ran-
domness in demonstrations is crucial for robustly estimating
the agent’s true intentions and effectively applying IRL tech-
niques.

Continuing with Random Bias Noise, influenced by [13],



it refers to the introduction of random behavior observed in
all demonstrations in a similar way, resulting in a form of
bias. In the Grid World environment, this type of noise is
observed in distorted choices made in specific states on the
grid. The cause of this random bias can be noisy or imprecise
control actions, imperfect sensing or observation, problems in
the environment itself, or even cognitive bias shared among
the experts attempting to solve the problem. By considering
and addressing random bias noise in a Grid World environ-
ment, we can build reliable models robust to random biases
from either the environment or the expert’s behavior or have
a threshold of biased distortion allowed.

Lastly, Sparse Noise [16] describes demonstrations where
most of them are considered to have an optimal behavior,
meaning they were created according to the optimal policy,
while some demonstrations have significant anomalies. This
noise was considered due to it being frequently observed in
real-world applications [15]. It occurs when the experts are
not manually filtered, therefore, some experts might make er-
rors or attempt to solve the problem using approaches that
differ from the optimal one. Examining the effects of Sparse
Noise can be quite beneficial as it indicates what percentage
of the population of demonstrations can have significant er-
rors without affecting the recovered behavior and outcome.

Using the generated demonstrations as input for the Max-
Ent IRL algorithm, we obtained the recovered rewards, which
we compared using various metrics. Firstly, Reward Devia-
tion measured the discrepancy between the recovered reward
from the noisy demonstrations and the reward recovered from
the optimal demonstrations. In addition to directly compar-
ing rewards, we aimed to assess whether the recovered noisy
reward exhibited the desired behavior. To accomplish this,
we executed a deterministic policy on the noisy recovered re-
ward, generating noisy trajectories that reflected the behav-
ior of the noisy demonstrations in solving the MDP. To an-
alyze these trajectories, we employed more metrics such as
Goal Achieved, which checked if the goal was reached, Path
Length Similarity, indicating similarity in the number of vis-
ited states compared to the optimal path, and Trajectory Sim-
ilarity, which measured the resemblance between the noisy
trajectories of the recovered noisy and recovered optimal re-
wards. These metrics will be discussed in detail in the subse-
quent section.

4 Experiments
4.1 Environment
To investigate the extent to which IRL can learn rewards from
noisy demonstrations, we conducted experiments using an
implementation of a 5x5 Grid World [9]. The Grid World
represents a Markov Decision Process (MDP) in which each
cell of the grid corresponds to a state with a predefined re-
ward. The agent can take one of four possible actions (up,
down, right, left) from each state. By selecting actions, the
agent interacts with the environment, transitioning between
states and receiving rewards based on these transitions. The
objective of the agent is to discover a policy that maximizes
the expected cumulative reward over a finite time horizon. In
our experiments, we employed a discount factor (γ) of 0.9,

which determines the trade-off between immediate and fu-
ture rewards. A higher discount factor emphasizes long-term
rewards, while a lower discount factor prioritizes immediate
rewards. The starting state of the agent was set to (0,0), and
the terminal state was (4,4).

4.2 Optimal Behavior
To establish a baseline, we defined the ground-truth reward
function for the 5x5 Grid World (see Figure 1). Utilizing
this ground-truth reward function in the Bellman Optimal-
ity Equation, we used value iteration to compute a stochas-
tic policy indicating the probability of selecting each action
for every state, enabling the agent to achieve the goal of the
Grid World MDP. This optimal policy is represented as π∗.
We then generated a set of 200 trajectories, denoted as T ∗,
representing the optimal behavior that the experts should ex-
hibit when solving the problem. Subsequently, we fed these
optimal trajectories T ∗ into our Max Ent IRL algorithm and
obtained an optimal recovered reward function R∗.

Figure 1: The ground-truth reward function of the 5x5 Grid World
environment used in our experiments. The color bar indicates the
reward that will be awarded to the agent for visiting that tile, with
dark blue being 0 and bright yellow being 1.

4.3 Noisy Behavior
To investigate the impact of noise, we modeled the noises
discussed in Section 3 and generated trajectories accordingly.

We defined Random Events Noise with probability p, indi-
cating the probability of the expert selecting a random action.
To simulate Random Events Noise, we first created the opti-
mal policy π∗ using Value Iteration. Then, using this policy,
we started generating a set of 200 noisy trajectories Tn that
correspond to experts solving the problem. To incorporate
Random Events Noise during the generation of the trajecto-
ries, we used a uniform distribution X ∼ U(a, b) that gen-
erates a value of X between the range [a, b]. For every step
in the trajectory generation procedure, if p ≥ X ∼ U(0, 1),
then the optimal policy would not be followed, and instead,
a random action would be taken in the current state. This
means that for every trajectory and every decision/step made
in the generation of the trajectory, there is a probability p of
taking a random action.



Moving to Random Bias Noise with probability p, we gen-
erated the optimal stochastic policy π∗ using Value Iteration
and modified it to create the noisy policy πn. The mod-
ification was made based on a uniform distribution X ∼
U(a, b) that generates a value of X between the range [a, b].
For every state-action pair (s, a) in π∗, if p ≥ X ∼
U(0, 1), then the probability of (s, a) in πn will be equal to
1/NumberOfPossibleActions (e.g., for our environment’s
case 1/4), otherwise, (s, a) in πn will have the same proba-
bility as in π∗. In the end, we normalized the noisy policy
πn to make sure all probabilities of all actions per state, sum
up to 1. This results in a noisy policy with some distortion in
random state-action pairs. After constructing the noisy policy
πn, we generated a set of 200 trajectories, denoted as Tn, rep-
resenting the behavior exhibited by experts in the presence of
Random Bias Noise with probability p.

Finally, the Sparse Noise is defined with an influence fac-
tor q, indicating what percentage of the expert’s trajectories
will have significant error, and with probability p, indicating
how severe the error will be. To generate trajectories contain-
ing this noise we started by creating the optimal policy π∗

(similar to the Optimal Behaviour subsection). Then we gen-
erated 200 ∗ (1 - q) trajectories using the optimal policy π∗,
and 200 ∗ q trajectories with significant error. For the anoma-
lous trajectories, we used a uniform distribution X ∼ U(a, b)
that generates a value of X between the range [a,b] and set
p = 0.5. For every step in the trajectory generation proce-
dure, if p ≥ X ∼ U(0, 1), then the optimal policy will not
be followed and instead a random action will be made from
the set of actions that does not contain the optimal one. This
means that unlike the technique used for the Random Events
Noise, here for every trajectory and every decision/step made
in the generation of the trajectory, there is a probability p of
taking a random action that will not be the optimal one. By
adding the two sets of trajectories together we created the Tn
which contains both optimal and significantly anomalous tra-
jectories.

After obtaining the noisy trajectories Tn of every noise
type we utilized them as input for our Maximum Entropy IRL
algorithm, resulting in noisy recovered rewards Rn for reach
noise. It should be noted that the trajectory generation proce-
dure has an upper limit of iterations, specifically 25000 steps,
which can be considered infinite in the context of a 5x5 Grid
World scenario.

4.4 Metrics of Comparison

We defined several metrics to draw meaningful conclusions
by comparing the optimal recovered reward R∗ with the noisy
recovered reward Rn of each noise type. The metric selection
was determined to enable direct comparison of the recovered
rewards while also assessing whether the recovered reward
can effectively lead to a successful solution of the defined
MDP environment. To ensure robust results, we repeated the
process of creating a noisy policy πn, generating trajectories
Tn, and obtaining the recovered reward Rn a total of 100 times
per noise. The data obtained from these 100 iterations were
used to compute the following metrics:

Reward Deviation
Firstly, we employed the reward deviation metric, which mea-
sures the disparity between the recovered noisy reward Rn
and the optimal recovered reward R∗. We modeled the re-
ward deviation in two ways:

• We computed an element-wise absolute difference of the
two recovered reward matrices, followed by summing up
the differences:

Optimal Reward : R∗ = ρ0, ρ1, ρ2, . . . , ρ23, ρ24

Noisy Reward : Rn = r0, r1, r2, . . . , r23, r24

Deviation : Di = |R∗ −Rn|
= |ρ0 − r0|, . . . , |ρ24 − r24|
= δ0, . . . , δ24

Total Deviation : Dtotal =

24∑
i=0

Di = δ0 + δ1 + . . .+ δ24

• We computed an element-wise absolute difference of the
two recovered reward matrices, resulting in an element-
wise fraction when divided by the optimal recovered re-
ward matrix. Finally, we computed the average of these
fractions:

Optimal Reward : R∗ = ρ0, ρ1, ρ2, . . . , ρ23, ρ24

Noisy Reward : Rn = r0, r1, r2, . . . , r23, r24

Deviation : Di = |R∗ −Rn|
= |ρ0 − r0|, . . . , |ρ24 − r24|
= δ0, . . . , δ24

Fractions of Deviation : Fi =
Di

R∗
i

=
δ0
ρ0

,
δ1
ρ1

, . . . ,
δ24
ρ24

= f0, f1, . . . , f24

Total Deviation (%) : Dtotal =

(∑24
i=0 Fi

24

)
× 100%

Failure to Achieve Goal
This metric measures whether or not the recovered noisy re-
ward Rn allows reaching the final state of the Grid World. To
determine this, we execute a deterministic optimal policy on
the recovered noisy reward, which provides the sequence of
actions to be taken for each state. Starting from the initial
state of the Grid World, we iterate until we reach the terminal
state. The maximum number of iterations allowed is 25000,
which, as mentioned earlier, can be considered infinite for this
Grid World MDP. If the terminal state is not reached within
these iterations, it indicates a significant issue with the gener-
ated deterministic policy and, consequently, with the recov-
ered noisy reward.

Path Length Similarity
Path Length Similarity metric measures the number of steps
made from the initial state to the terminal state. Similarly
with the Failure to Achieve Goal metric we execute a deter-
ministic optimal policy on the recovered noisy reward Rn, and
then starting from the initial state we count how many states



we visit until we reach the terminal one. Then we compare
this path length with the path obtained by following the same
procedure on the optimal recovered reward R∗ and log the
difference. This metric is used only if the terminal state of
the Grid World is reached.

Trajectory Similarity
Our final metric, Trajectory similarity, calculates the Eu-
clidean distance between the path generated from the recov-
ered noisy reward Rn and the recovered reward R∗ (as de-
scribed in the aforementioned metrics). This calculation is
performed by summing the Euclidean distances between each
visited state, step by step. If the length of the path generated
using the noisy reward Rn is longer than that of the optimal
recovered reward R∗ or vice versa, we repeat the procedure
using the final step of the path from the optimal recovered re-
ward until the computation is complete. It’s important to note
that this metric is applicable only if the terminal state of the
Grid World is reached. The following enumerated procedure
outlines the calculation of the Trajectory Similarity metric:

1. Let P1 be the optimal path consisting of states
S1, S2, . . . , Sn, and P2 be the noisy path consisting of
states S′

1, S
′
2, . . . , S

′
m.

2. Convert the grid coordinates of each state to their cor-
responding Euclidean coordinates. Let C(Si) represent
the Euclidean coordinates of state Si and C(S′

j) repre-
sent the Euclidean coordinates of state S′

j .

3. Calculate the Euclidean distance between points (Si, S′
j)

starting from i = 1 and j =1 of corresponding states in the
two paths:√

(C(Si)x − C(S′
j)x)

2 + (C(Si)y − C(S′
j)y)

2

4. Record the distance in a variable TotalEuclideanDis-
tance = TotalEuclideanDistance + distance(Si, S′

j)

5. If index i ̸= n then increase i by 1

6. If index j ̸= m then increase j by 1

7. Repeat from step 3 until i = n and j = m

After following these steps TotalEuclideanDistance contains
the total distance difference of the optimal and the noisy path.
Then obtain the AverageEuclideanDistance by dividing with
the number of iterations.

5 Results and Analysis
After conducting experiments on the three noise types de-
scribed in Section 3 and defined in Section 4, we have ob-
tained results and measurements that are crucial for address-
ing the research questions. These results will be presented
and interpreted to shed light on the research objectives.

For each noise type, we computed both the noisy and op-
timal trajectories and subsequently employed the Maximum
Entropy IRL algorithm to derive the optimal and noisy recov-
ered rewards. This process was repeated 100 times per noise
type to ensure reliable and representative results, allowing us
to draw meaningful conclusions. To assess the disparity be-
tween the optimal and noisy recovered behaviors, we utilized

the metrics outlined in Section 4. After generating the neces-
sary graphs, we conducted a detailed analysis of the results,
categorized by noise type, which are presented below. Note
that Figures 8-16 are in Appendix A.

5.1 Random Events Noise
For demonstrations containing Random Events noise, we ob-
served interesting patterns. In Figures 2 and 8, it is evident
that the reward deviation increases more steadily up to noise
probabilities of 0.4 and 0.5, after which the rate increase
rapidly. Additionally, Figure 8 shows that the percentage
of reward deviation is relatively low in the early stages of
the noise, but significantly higher in the later stages reaching
120% of deviation for the largest noise probability.

Considering the standard deviation among the 100 itera-
tions, depicted by the red lines in Figure 2, we find that the
deviation between iterations remains relatively insignificant
even at high probabilities of the noise. This suggests that the
total reward deviation metric provides a representative mea-
sure of the deviations.

Moving on to the analysis of the Failure to Achieve Goal
metric, as illustrated in Figure 3, we observed that the goal
is reached for every noise probability up to 0.7. This indi-
cates that although the reward may deviate from the optimal
recovered reward, it is still sufficient to successfully reach the
terminal state of the Grid World problem. For probabilities
0.7 there are only 2 cases in which re goal was not reached
and for 0.8 they increase to 17.

Next, we examined the Path Length and the Euclidean Dis-
tance, presented in Figures 9 and 10, respectively. Interest-
ingly, all recovered paths have the same length as the optimal
path, indicating that the noisy recovered trajectories maintain
a similar trajectory length to the optimal one. However, a
slight deviation in the path is observed when the noise reaches
its highest value of 0.8.

Figure 2: Total reward deviation of recovered rewards with Random
Events Noise compared to optimal recovery, with standard deviation
for 100 iterations.

5.2 Random Bias Noise
Moving on to Random Bias Noise, we analyzed the results
presented in Figures 4 and 11. It is evident that the reward
deviation caused by this noise is relatively small, with the
highest percentage being around 35%, displaying an upward



Figure 3: Frequency of noisy recovered rewards with Random
Events Noise failing to reach terminal state with deterministic op-
timal policy, for 100 iterations.

trend. However, it is worth noting that the standard deviation
depicted in Figure 4 is large, indicating that the deviations
from the optimal reward were scattered. This suggests that
relying solely on the reward deviation metric may not be suf-
ficient to draw conclusive insights from these results.

Examining the Failure to Achieve Goal metric in Figure
5, we observed a significant impact of Random Bias Noise
on the problem-solving ability in the Grid World scenario.
Even at the lowest introduced probability of 0.05, there were
instances where the terminal state and the goal were not
reached. This highlights the severe impact of this noise
source. As the noise probability increased to 0.15 and be-
yond, the number of times the optimal deterministic policies
failed to achieve the goal increased, reinforcing the signifi-
cance of the reward deviation observed in Figures 4 and 11.

Lastly, we analyzed the difference in Path Length and Eu-
clidean Distance, as depicted in Figures 12 and 13, respec-
tively. These results indicate that when the recovered reward
was able to successfully solve the problem and reach the ter-
minal state, the path used resembled the optimal path, with
some difference in the states visited when the noise reached
its peak at 0.4. An average Euclidean distance of 1.4 is not
significant but suggests that a slightly different route was used
to reach the terminal state.

Figure 4: Total reward deviation of recovered rewards with Random
Bias Noise compared to optimal recovery, with standard deviation
for 100 iterations.

Figure 5: Frequency of noisy recovered rewards with Random Bias
Noise Failing to reach terminal state with deterministic optimal pol-
icy, for 100 iterations.

5.3 Sparse Noise
After analyzing the graphs generated for demonstrations af-
fected by Sparse Noise, we observed a clear linear upward
trend in the reward deviation, as depicted in Figures 6 and 14.
Interestingly, even at the highest influence factor, the percent-
age of deviation is not excessively large, hovering just above
60%. Additionally, considering the standard deviation among
the 100 iterations, represented by the red lines in Figure 6,
we found that the deviations between iterations remained rel-
atively insignificant, even at high noise probabilities. This in-
dicates that the total reward deviation metric effectively cap-
tures the extent of the deviations.

Of particular interest is the fact that for every influence fac-
tor, the terminal state is consistently reached, as illustrated in
Figure 7. This implies that despite the presence of reward
deviation, the recovered reward still leads to successful solu-
tions to the Grid World problem.

Finally, examining Figures 15 and 16, which showcase the
Path Length and Euclidean Distance from the optimal path,
respectively, we can conclude that the paths generated from
the noisy recovered reward are nearly identical to the opti-
mal path, except when the influence factor of Sparse Noise is
relatively high (e.g., 0.8).

Figure 6: Total reward deviation of recovered rewards with Sparse
Noise compared to optimal recovery, with standard deviation for 100
iterations.



Figure 7: Frequency of noisy recovered rewards with Sparse Noise
failing to reach terminal state with deterministic optimal policy, for
100 iterations.

6 Discussion
After conducting a thorough analysis of the results for each
type of noise, several noteworthy conclusions can be drawn
and further discussion can be undertaken.

Let us begin with Random Events Noise, where it is evident
that MaxEnt IRL shows resilience and is not significantly im-
pacted by noise probabilities below 0.7. Even when higher
probabilities are introduced, only 17 iterations out of the to-
tal failed to reach the terminal state, indicating that the effect
is not particularly detrimental. Consequently, based on our
findings, it can be asserted that a certain level of randomness
(below 70% per action) in expert demonstrations is accept-
able without compromising the retrieval of a representative
reward function and the attainment of the terminal state in a
Markov Decision Process (MDP). This finding holds signif-
icant implications for MaxEnt IRL, as disturbances and ran-
dom behavior are often unavoidable to some extent due to
human errors, sensor limitations, and interactions with other
agents in the MDP.

In contrast, Random Bias Noise yields unsatisfactory re-
sults. Even at low probabilities, there remains a chance of not
achieving the goal and reaching the terminal state, signify-
ing poor performance of MaxEnt IRL in the presence of this
type of noise. Although the recovered rewards do not deviate
significantly from the optimal recovered reward, like with the
other types of noise, they fail to produce the correct behav-
ior required to solve the given MDP. Furthermore, the high
standard deviation of the recovered rewards suggests consid-
erable variation in rewards across different iterations for the
same noise probabilities. This instability in reward recovery
is to be expected since randomness is introduced in the policy,
however, there was hope that the recovered rewards would
still enable MDP solutions, which is not the case. Thus, it
can be concluded that the presence of random bias in expert
policies leads to trajectories that hinder MaxEnt IRL from re-
covering a reward that facilitates successful solutions of the
MDP. These findings underscore the importance of consider-
ing and addressing biased suboptimal behaviors when utiliz-
ing MaxEnt IRL in practice.

Finally, MaxEnt IRL demonstrates remarkable resilience
to Sparse Noise. Regardless of the proportions of anomalous

trajectories introduced, MaxEnt IRL consistently recovers a
reward with some deviation that solves the MDP in a simi-
lar manner to the optimal reward. Notably, the extent of re-
ward deviation appears to have a linear relationship with the
proportion of anomalous trajectories. Consequently, Sparse
Noise does not significantly impede the reward recovery ca-
pability of MaxEnt IRL, and even having only 20% of ex-
pert trajectories being optimal is sufficient. This finding is
particularly encouraging since Sparse Noise is prevalent in
real-world scenarios, as discussed in [16]. However, it is im-
portant to interpret these results cautiously since the Sparse
Noise we modeled assumes a constant error probability for
the anomalous trajectories. Therefore, further research could
be conducted to increase the error and obtain more compre-
hensive results for more confident conclusions.

In addition to considering reward deviation and goal
achievement in our MDP, the quality of the generated path
based on the recovered reward also warrants discussion. It is
noteworthy that across all three types of noise, when reaching
the terminal state of the MDP, the path taken closely resem-
bles the optimal one. The only exception occurs when the
highest introduced probability is utilized to generate noisy
demonstrations, where Random Bias Noise exhibits a slightly
different path to reach the goal.

7 Responsible Research
In this research, the collection of primary data or the involve-
ment of human subjects was not conducted. Instead, the ex-
pert demonstrations were synthesized rather than gathered
from actual human experts. Therefore, no approvals were
necessary for this study. However, we have made efforts
to ensure the reproducibility [14] of our research by provid-
ing commented code 1 and instructions for generating expert
demonstrations and calculating meaningful metrics. The code
can be utilized for future investigations focused on the topic
of noisy demonstrations in IRL, enabling researchers to repli-
cate and build upon our findings.

Furthermore, it is important to acknowledge the limita-
tions inherent in this study. The main limitation stems from
the use of constructed demonstrations instead of real data
from human experts. While this approach eliminates ethical
concerns, it introduces a potential limitation in terms of the
representativeness and reliability of the results. Constructed
demonstrations may not fully capture the noisy behaviors and
decision-making processes of real human experts. As a result,
the generalizability and practical applicability of the findings
may be reduced.

Additionally, another limitation relates to the choice of the
environment. The utilization of the 5x5 Grid World MDP
as the experimental environment facilitated obtaining initial
results. However, it is important to note that increasing the
complexity or realism of the environment could potentially
reveal additional behavioral issues that the constructed ex-
pert demonstrations may not fully account for. Therefore,
it is important to interpret the findings within the context of

1https://gitlab.tudelft.nl/lcavalcantesie/rp irl human behavior/-/
tree/NoisyDemonstrations

https://gitlab.tudelft.nl/lcavalcantesie/rp_irl_human_behavior/-/tree/NoisyDemonstrations
https://gitlab.tudelft.nl/lcavalcantesie/rp_irl_human_behavior/-/tree/NoisyDemonstrations


the chosen environment and consider the potential impact of
environment-specific factors.

By acknowledging these limitations, we provide a compre-
hensive assessment of the study’s scope and potential impli-
cations. It is important for future research to address these
limitations by incorporating real human expert data and con-
sidering more diverse and challenging environments. This
would enhance the reliability, validity, and applicability of
the findings, and contribute to the advancement of the field of
study.

8 Conclusion and Future Work
This study aimed to investigate the influence of noisy demon-
strations on the learning capability of Inverse Reinforcement
Learning (IRL), specifically focusing on the recovery of re-
wards using the Maximum Entropy IRL (MaxEnt IRL) algo-
rithm in the presence of Random Events Noise, Random Bias
Noise, and Sparse Noise.

Our findings demonstrate the robustness of MaxEnt IRL in
the face of Random Events Noise with probabilities below
0.7. Additionally, the algorithm proves resilient to Sparse
Noise, accommodating up to 80% anomalous expert trajec-
tories. However, it demonstrates instability and inadequacy
in handling Random Bias Noise, even at low probabilities.
Therefore, biased suboptimal behavior exhibited in the expert
policy has a negative influence on the learning capability of
MaxEnt IRL. These challenges in reward recovery highlight
the need for caution and further investigation when applying
MaxEnt IRL in real-world scenarios.

For future research, there are several potential avenues for
improvement and expansion. Firstly, incorporating additional
noise types found in expert demonstrations would provide
further insights into the behavior of MaxEnt IRL. Further-
more, mixing noise types might wield interesting results, of
noise canceling out or amplifying one another. Additionally,
exploring alternative IRL algorithms such as AIRL or Non-
linear Inverse Reinforcement Learning with Gaussian Pro-
cesses could behave differently with noisy demonstrations.
Another suggestion is to introduce greater complexity to the
environment by incorporating negative rewards and obstacles,
thereby creating a more realistic setting to investigate the ef-
fects of noise on IRL.
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A Appendix A

Figure 8: Percentage deviation of recovered rewards with Random
Events Noise compared to optimal recovery, for 100 Iterations.

Figure 9: Average path length of deterministic optimal policy on
noisy recovered reward with Random Events Noise for each noise
probability, for 100 iterations.



Figure 10: Average Euclidean distance between paths of noisy re-
covered reward with Random Events Noise and optimal recovered
Reward, for 100 iterations.

Figure 11: Percentage deviation of recovered rewards with Random
Bias Noise compared to optimal recovery, for 100 iterations.

Figure 12: Average path length of deterministic optimal policy on
noisy recovered reward with Random Bias Noise for each noise
probability, for 100 iterations.

Figure 13: Average Euclidean distance between Paths of noisy re-
covered reward with Random Bias Noise and optimal recovered re-
ward, for 100 iterations.

Figure 14: Percentage deviation of recovered rewards with Sparse
Noise compared to optimal recovery, for 100 iterations.

Figure 15: Average path length of deterministic optimal policy on
noisy recovered reward with Sparse Noise for each noise probability,
for 100 iterations.



Figure 16: Average Euclidean distance between paths of noisy re-
covered reward with Sparse Noise and optimal recovered reward,
for 100 iterations.
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