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Abstract
Modern building facades and indoor partition walls feature large amounts of transparency for sufficient light-
ing and social safety. However, this transparency leads to concerns about privacy invasion, as sensitive ob-
jects, such as computer monitors, are exposed to onlookers. The advent of advanced screen technology has
introduced VideowindoW, a smart installation capable of adjusting the transparency of its pixels to create
a self-fading window, potentially addressing these privacy concerns. This thesis investigates the combined
use of these smart windows together with mmWave radar technology, as a non-intrusive method to perform
human posture estimation among multiple people. It develops a real-time system that detects passersby,
localizes their head/eyes and obstructs their line-of-sight to sensitive indoor content, by projecting opaque
squares on the smart screen. A notable gap in the mmWave literature is the insufficient handling of posture
estimation challenges posed by multiple and dynamically moving targets. To address this gap, we propose
the first, to our knowledge, mmWave-based Multi-Person Pose Estimation (MPPE) system. This system com-
bines and improves two state-of-the-art methods for tracking and posture estimation and introduces a novel
dataset for dynamic targets, including ground truth data for 19 human joints. Our solution demonstrated a
20% improvement in joint localization Mean Average Error (MAE) over the baseline system, in offline exper-
iments with a single dynamic target. Furthermore, it achieved a mean blocking accuracy of 92% in online
evaluations involving multiple people and varying environment. These results highlight a promising applica-
tion in privacy shielding and lay the groundwork for further research in mmWave posture estimation in more
unconstrained scenarios.
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1 | Introduction
In modern architectural design, facades of buildings and indoor partition walls are often kept transparent to
ensure sufficient lighting, thermal comfort and enhance social safety [32]. However, this transparency might
lead to privacy concerns for the people inside, as passersby can view sensitive areas and objects, such as
monitor screens. Permanently and completely blocking the transparency of facade windows or interior glass
partitions would defeat their intended purpose and therefore, a more adaptive solution is needed; a solution
that detects the presence of people and temporarily obscures their view of the sensitive object. This thesis
addresses this problem and breaks it down to two main challenges. First, how to detect the people passing
outside the transparent surface and second, how to block their sight, ensuring privacy over the sensitive
interior content.

VideowindoW [45] has introduced a line of smart window products that offers a great solution to our
second challenge; to block the view of onlookers. These smart windows are capable of projecting media on
their surface by controlling the opacity of individual pixels. In other words, they can display videos, similarly
to conventional computer monitors, however, their darkest pixels become opaque and the lightest pixels
remain transparent. By utilizing their capability to make regional adjustments to their material’s opacity, we
can use these screens to interactively and locally project fading squares, obscuring the view of passersby over
sensitive interior content, while maintaining the transparency of the rest of the window intact.

Additionally, in order to detect the people passing by, a human sensing technology is required. Human
sensing refers to detecting, tracking and interpreting human presence, characteristics, postures and activities.
For instance, a system that identifies a person from their walking pattern or another that detects falls in elderly
homes are both examples of human sensing applications. Technologies exploited to perform human sensing
include the conventional RGB cameras, RGB-D systems, such as the Microsoft Kinect sensor [49] and RF
radars. Recent years have also witnessed the emergence of new sensing technologies such as LIDAR [29] and
mmWave radars [48].

So far, optical sensing through cameras has been the most prevalent technology in human sensing ap-
plications and its widespread use has led to the establishment of computer vision as a dedicated field. The
extensive use of cameras, however, has raised some notable privacy concerns for a wide range of use-cases,
especially the ones intended for indoor areas. Their capability to capture identifiable characteristics of a per-
son, beyond mere presence, posture or activity, poses a substantial privacy risk and as a result, people are
willing to switch to alternative, privacy-preserving technologies [38]. Moreover, the General Data Protection
Regulation (GDPR) poses restrictions over capturing identifiable personal information [26], encouraging the
use of more privacy friendly technologies.

mmWave radar technology appeared on the foreground of technological advances during the last decade
[48] and successfully addressed the concern of privacy intrusion. Operating on the RF spectrum with wave-
length less than a centimeter, mmWave sensors are radar devices that abstract scenes in the form of point-
clouds (Figure 1.1). As mmWave generated pointclouds are generally sparse, with resolution lower than that
of cameras, they do not portrait faces or distinctive characteristics of individuals, making them better suited
for a wide range of human-sensing applications. Additionally, mmWave shows notable advantages against
other competitive technologies, as its is more cost-effective and environmentally resilient than LIDAR and
provides better resolution than RF-WiFi sensors.

Current research on mmWave based human sensing has already reached some important milestones. By
incorporating a variety of refined signal processing principles and prediction models, research has managed
to create dependable human tracking systems for human presence and people counting applications [51]
[44] [19]. Models targeting close range interaction have been developed to perform gesture recognition [33]
and achieve seamless human-computer interaction. Intrusion detection systems able to identify individu-
als through their gait patterns [24] shed light on the classification challenges of the mmWave pointclouds.
Extended research focused on human-joint (keypoint) detection [39] [5] [40] [9] has managed to estimate hu-
man posture with mean average error of only a few centimeters. Finally, various benchmarking datasets have
been proposed [11] [5] [39] [28] addressing three major human sensing fields; human identification, posture
estimation and activity recognition, allowing researchers to compare their results to other existing models
and state-of-the-art research.

Through this thesis we will attempt to solve the problem at hand by investigating the potential of mmWave
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2 1. Introduction

Figure 1.1: Representation of a mmWave pointcloud frame

technology in estimating the posture of multiple people in the scene. Since the intended application focuses
on maintaining most of the smart window surface area transparent, we aim to keep the fading squares size
as small as possible. Challenges that arise, such as varying individual heights, leaning, waving or ducking
movements, require more than merely tracking the human targets. We aim to localize the head/eyes of the
over-lookers and accurately block their line-of-sight, therefore transitioning the problem into the field of
Multi-Person Posture Estimation (MPPE). The concept of this research is portrayed in Figure 1.2.

Figure 1.2: Representation of this paper’s concept. A mmWave sensor captures the multiple people in scene and localizes their head/eyes.
A smart window installation then projects fading squares at the appropriate position to block the line-of-sight between the target eyes
and the sensitive object.

1.1. Research Challenges
The realisation of the proposed application comes with a variety of challenges that current state-of-the-art
research fails to address.
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• Real time system: The first challenge appears due to the need of our system to operate in real time.
The real time constraints imposed by potential swift human movements require an approach that is
lightweight in terms of memory and with low computational load, for faster execution. As we will see
in Section 2.3.1, many of the proposed approaches in current literature follow processing methods that
introduce heavy computational load, as they focus in optimizing performance for offline scenarios.

• Dynamic movements: Current research in pose estimation focuses predominantly on stationary tar-
gets performing static movements1, while our application heeds the need of detecting the posture of
individuals moving freely in the scene. This introduces challenges associated with varying and some-
times insufficient pointcloud density when people move further from the sensor, as well as noise in-
terference in the target’s localization. Additionally, most of the publicly available datasets also lack
dynamic movements in their samples, revealing the need for more complete and extended training
sets.

• Multiple Targets: Finally, so far there have been no known attempts to create a mmWave-based posture
estimation system for multiple targets. The significant difference in resolution between camera-based
and mmWave systems raises questions about the transferability of existing methods and techniques
used in optical systems to mmWave technology. Handling multiple people simultaneously presents
additional challenges, such as human-to-human occlusions and point clouds from multiple individ-
uals merging into a single cluster. Moreover, the increased number of points in the point cloud and
human joints requires precise resource management, as the computational intensity and memory re-
quirements escalate.

1.2. Problem Statement
In order to sufficiently address the concept’s challenges through the proposed solution, we restate them into
this thesis problem statement. Through this research we aim to:

"Develop a real-time mmWave-based system, able to perform pose estimation on multiple, dy-
namic targets, in order to localize their heads and obscure their view over privacy sensitive con-
tent through the use of self-fading VideowindoW smart windows."

1.3. Thesis Contributions
The major contributions of this thesis are threefold and listed below:

• We present a fully integrated system for the intended application of privacy shielding. It successfully
blocks the gaze of passers-by over sensitive objects by utilizing a self-fading smart window and non-
intrusive mmWave sensing. Through online evaluation, the system achieved 92% mean blocking ac-
curacy for scenarios involving up to three people in the scene and opaque blocks with dimensions
20cm x 20cm. It still managed to maintain acceptable accuracy upon increasingly challenging scenar-
ios.

• We introduce the first, to the best of our knowledge, real-time top-down MPPE system operating on
mmWave radar pointclouds, achieving precise positioning and posture estimation over multiple dy-
namic targets. It seamlessly combines and modifies two existing systems for tracking and posture esti-
mation to predict the targets pose (Section 3.1) and improves upon the system’s localization accuracy,
posture estimation ability and pointcloud sparsity (Section 4). System testing reports a mean average
joint localization error (MAE) of 13.1cm, outperforming the selected baseline approach by approxi-
mately 20% on a single dynamic target.

• We establish a new dataset including highly dynamic and weakly supervised movements. The dataset
is focused on posture estimation performed by 16 individuals of varying height, gender, body types and
clothing. It comprises 88.851 labeled frames containing 5D mmWave point vectors and ground truth
data for 19 human joints. The mmWave point vectors are detected through a IWR1443 mmWave sensor
and include the 3D position, velocity and intensity information of the captured pointcloud. The dataset

1Static movements involve posture changes without resulting in changes of the overall location of the person in space. Examples
of static movements are waving motions, in-position jumps, squatting and leaning motions. Dynamic movements on the other hand
involve disposition, including movements such as walking and running.
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will be made available to the public to promote further research on mmWave posture estimation over
freely moving targets.

1.4. Thesis Outline
This thesis is structured as follows: In Chapter 2 we will explore the state-of-the-art (SoA) relevant technolo-
gies and methodologies, their principles, and perform research comparison. Furthermore, we will present
the related work that will be used as a starting point for this research and identify the research gaps in their
practises. In Chapter 3 we will delve into the design and implementation details of the proposed solution’s
fundamental structure and explore the role of each module in its chain. In Chapter 4 we will analyze the in-
novative improvements made over the proposed system and describe the motivation behind them. Chapter
5 will introduce our new dataset which includes dynamic and free human movements and will go through
the data collection procedure, as well as the necessary preprocessing steps, before training the system. In
Chapter 6 we will present the experimental results, ablation studies and the full system evaluation, followed
by a discussion of their impact. The thesis concludes with Chapter 7, where we summarize the work and sig-
nificant contributions, as well as suggestions for future work, limitations and potential fields of improvement.



2 | Theoretical Background

2.1. Introduction to mmWave radar technology
mmWave radar sensing is a recent radar technology with various advantageous characteristics. An mmWave
radar typically operates in the high-frequency band between the ranges of 30 GHz and 300 GHz and utilize
wavelengths of less than a centimeter. The short wavelength allows for significantly shorter antennas com-
pared to other RF radar systems [2], making the design of mmWave hardware compact and cheap, as well
as improving the accuracy of the system. Indeed, with the right configurations a mmWave sensor is able to
detect movements of size less than a millimeter [23].

Additionally, mmWave maintains privacy due to the nature of its captured data. The received signals
appear in the form of vectorized points in space, and a collection of those points is called pointcloud. Point-
clouds typically capture the rough silhouettes and external contours of objects in the scene. Apart from posi-
tional data, mmWave pointclouds include attributes such as radial velocity and signal-to-noise (SNR) ratio.

mmWave technology has been embraced in applications across a wide variety of fields. Healthcare and
in-house monitoring applications such as elderly critical movement recognition and rehabilitation move-
ments correction [4] [3] [25] are already migrating to mmWave for non-intrusive solutions. Its robustness in
various environmental conditions like poor lighting, fog and dust interference makes it an appealing solu-
tion for future Advanced Driver-Assistance Systems (ADAS) in autonomous vehicles [15]. The low device and
installation cost1 of mmWave allow its easy adaptation to industrial applications for material and object de-
tection [16], to security applications such as identification, user authentication [24], human activity [11] and
posture recognition [5] [1]. Finally, the increasing needs of occupancy detection for public and private smart
applications [47] [44] deem the mmWave versatile nature a perfect fit.

Figure 2.1: Top view of IWR1443-BOOST mmWave device by Texas Instruments

2.1.1. Why mmWave? - A comparative analysis
mmWave offers various advantages, but it is important to assess it against other sensing technologies and
their respective benefits. In this section we perform a comparative analysis between mmWave and tech-
nologies such as RGB and RGB-D cameras, LiDAR, RF-WiFi sensors and wearable device-based systems for
posture estimation applications.

Traditional Optical Cameras
Conventional cameras which include RGB, monochromatic and depth sensors have defined the field of com-
puter vision, where a significant amount of progress has already been achieved. This technology’s abundance
of visual information has lead to the development of new human sensing methods, efficiently utilizing AI

1The price of a commercial mmWave radar sensor typically ranges between 10-50 euros, depending on its intended application and
quality. Evaluation boards from Texas Instruments, designed for developers, are naturally more expensive, with prices varying signifi-
cantly between automotive and industrial-specific sensors. [43]

5



6 2. Theoretical Background

state-of-the-art models and yielding highly accurate results. Furthermore, the conventional use of cameras
naturally led to a plethora of labeled datasets [10] [7] [36] which further boosts future research endeavors.

On the other hand, optical cameras hold the risk of privacy intrusion due to their detailed scene repre-
sentation. Studies performed on individuals reveal lower user acceptance to camera based applications in
comparison to their radar based alternatives [38]. Additionally, GDPR regulations on gathering identifiable
personal data introduce legal limitations to the use of camera systems for indoor applications. Finally, unlike
mmWave sensors, optical cameras are highly dependent on lighting conditions, while their performance can
also be negatively affected by environmental interference such as dust or fog.

Light Detection And Ranging (LIDAR)

LIDAR sensors are devices that transmit laser signals and use the principles of Time of Flight (TOF) or FMCW
to abstract the scene in the form of a pointcloud. Their laser-based technology allows for higher resolution
due to its significantly denser pointclouds compared to those produced by mmWave sensors. They are al-
ready heavily endorsed in automotive systems [29], achieving a precise, yet non-intrusive sensing solution.

The use of laser as an operating signal, however, comes with some concerning limitations. Its high cost
and computational requirements for data processing makes this solution unsuitable for most indoor applica-
tions. Texas Instruments reported that the cost of a complete LIDAR module was estimated to be just under
10,000 USD. They predicted that with advances in technology, this price will drop to a few hundred dollars in
the coming years [21]. Additionally, laser can be significantly affected by environmental conditions like fog
and rain, which trigger scattering to the light beam and introduce noise to the system. Millimeter waves are
generally more robust to interference and can penetrate through adverse weather conditions [15].

WiFi radar systems

Radio Frequency (RF) Wi-Fi systems developed for human sensing possess some interesting abilities. Re-
searchers have proposed a system that is able to recreate a human’s skeleton through heatmaps of received
signal intensity [50]. This system is robust to environmental interference and can even detect a human pos-
ture by penetrating through walls. While this feature might unlock possibilities for novel applications, it in-
volves the risk of becoming privacy intrusive. Furthermore, the high frequency of WiFi signals, at around 2.4G
Hz, limits the system’s available bandwidth and thus hinders its resolution. Alternatively, the system’s large
wavelength requires the use of large antennas for sufficient resolution, introducing spatial limitations. On the
contrary, mmWave sensors are more compact with size of only a few centimeters. During the last years they
have also become more accessible to the public with various manufacturers providing standardized designs
for a variety of applications [43].

Wearable and personal sensing systems

Wearable systems rely on devices either owned by the user, such as personal cellphones, or provided by the
application, such as wearable Inertial Measurement Unit (IMU) sensors. Systems providing the user with
wearable devices come with the downside that their applicable use-cases are limited. They can not perform
sensing on non-involved passersby and their scalability to multiple people depends on hardware availability.
On the other hand, personal device dependent sensing systems assume that every person entering the scene
bears a personal cellphone or smart-watch device. This assumption makes such systems unreliable sensing
approaches, especially for indoor applications. Additionally, these systems are mostly suited to positioning
and tracking [46] rather than human activity or posture recognition.

Table 2.1: Comparison of proposed human sensing technologies. NOTE: The operation requirements field refers to all the environmental
(e.g. lighting condition, fog, dust) and hardware (e.g. wearables, phones) requirements of the technologies

Camera LiDar WiFi Wearables mmWave
Resolution High High Low - Medium
Operation requirements High Medium Low High Low
Privacy-Intrusive High Medium Medium Low Low
Cost Low High Low - Low
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2.1.2. Methodology of mmWave
In this section we delve into the principles behind the operation of mmWave technology. We present the
procedures used in mmWave radars to capture and process data to set the fundamental knowledge and later
discuss about the challenges that this technology introduces in the context of our application.

Frequency Modulated Continuous Waves (FMCW)
mmWave’s detection capabilities lie on its ability to both transmit and receive reflected signals, carrying use-
ful information. mmWave radars continuously transmit radar signals of modulating frequency to embed
range and velocity information in the phase and velocity of the reflected signal. These radar signals are called
Frequency Modulated Continuous Waves (FMCW) and an isolated FMCW segment of increasing frequency
is known as a chirp (Figure 2.2a).

A chirp signal is characterized by its starting frequency fc which is the lowest transmitted frequency, the
signal’s bandwidth B and period Tc (Figure 2.2b). The bandwidth-to-duration ratio gives the chirp’s slope S
which determines the rate of increase in frequency. mmWave radar devices use these characteristics, collec-
tively known as the chirp profile, to determine attributes such as the maximum detectable range and velocity,
as well as the system’s resolution.

(a) (b)

Figure 2.2: (a) FMCW chirp’s amplitude as a function of time, (b) chirp signal’s frequency as a function of time [23]

Analog Data processing
To extract useful information from the transmitted and received chirps, an mmWave device performs analog
processing on the two signals. It first mixes them into an intermediate frequency (IF) signal, with frequency
and phase equal to the difference between the instantaneous frequencies and phases of the transmitted and
received signals. The IF signal is then processed through a low-pass filter (LPF) and an ADC converter (Figure
2.3). Excluding the angle information, which is determined through multiple antennas, the range and velocity
information can now be extracted by the digitized IF signal.

Figure 2.3: High-Level overview of the mmWave analog processing path [23]

Digital Data processing
The digital data processing stage is responsible for extracting all the useful information from the detected
signals, and outputting the complete pointcloud data frame. As shown in Figure 2.4, the system first detects
the range and velocity of objects by performing two Fast Fourier Transforms (FFT), one over the frequency
and the second over the phase of the signals, respectively.

Then, Constant False Alarm Rate (CFAR) filtering and a collection of other post-processing methods are
performed to eliminate unimportant, noisy or abundant data. The CFAR method is applied to filter out points
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with low signal-to-noise (SNR) ratio. CFAR imposes a dynamic filter around a set threshold, effective main-
taining a constant noise level to the pointcloud. Other post-processing methods include static clutter re-
moval, which filters out the signal from static objects and peak grouping, which clusters points that appear
very close to each other.

Finally, we combine the signal from different antennas to estimate the objects’ angle and therefore have
sufficient information on the objects’ range, radial velocity, azimuth and/or elevation angles. Some mmWave
devices further transform these angles and range into Cartesian 3D coordinates, while others use the raw
values as outputs to their interface. In the next section we will analyze how the methods used in the analog
and digital processing can introduce limitations to the design of our system.

Figure 2.4: High-Level overview of the IWR1443 digital data path [23]

2.2. Challenges of mmWave
After setting the foundation on the methods used in mmWave technology, we discuss potential limitations
and challenges of mmWave sensing for our intended application. We detect trade-offs between system con-
figurations and identify potential weaknesses such as the sensor’s inability to detect static points.

2.2.1. The trade-off between range and resolution
To acquire point clouds that are sufficiently dense to extract meaningful posture estimation, good spatial res-
olution is essential. The resolution of a mmWave sensor is defined by its ability to detect reflected signals
from objects that are very close to each other. Objects are only separable if their frequency difference exceeds
a specific threshold. This threshold is called unambiguous range and, as shown in Figure 2.5, it is only deter-
mined by the chirp bandwidth B. Therefore, in theory, setting a high bandwidth should provide our system
with enough points to estimate a human silhouette.

Figure 2.5: Comparison between two systems with low and high bandwidth. The first column demonstrates the frequency representation
of multiple received signals over time, the second column demonstrates the chirp’s amplitude over time and the last column shows the
FFT result, after the signals’ analog processing. NOTE: The time difference between the two received chirps stays the same in both
scenarios.



2.3. The step after sensing: Utilizing pointcloud data 9

A challenge arises when the application demands detection over larger ranges. The Low Pass Filter (LPF)
cutting frequency and the digitization sampling frequency of the IF signal in the analog processing stage,
impose constraints on the maximum allowed bandwidth by introducing a trade-off between the system’s
maximum detection range and its spatial resolution. In other words, to detect objects farther from the sensor,
we must sacrifice some point cloud density. In our case, where we aim to detect people at over a few meters
range, there is a need to look for alternative ways to enhance the pointcloud density.

2.2.2. The trade-off between noise interference and pointcloud density
Another trade-off targeting the pointcloud density can be found in the digital data processing stage (Section
2.1.2), at the CFAR filter setting. CFAR accepts a parameter to adjust the noise filtering level, which allows us
to enhance the pointcloud density by also introducing more noise to the scene. However, phenomena such as
multi-path might have a large negative impact on the system by introducing ghost targets and interfering with
the detected target pointclouds. A careful adjustment of CFAR is necessary to avoid diminishing performance.

2.2.3. The challenge of static points detection
In the same chain of operations with CFAR, we mentioned the static clutter removal procedure. This filter
detects the points with zero Doppler velocity (velocity on the radial axis of the sensor) and removes them
from the scene. Unless static clutter removal is performed, static objects such as furniture and walls would
appear in the pointcloud, making the detection of people a significantly harder task. The challenge that
appears due to static clutter removal in our intended application is, therefore, the detection of static people.
We can not depend on sufficient reflections of the targets at every frame instant and certainly, the pointcloud
density of static people is expected to be considerably sparser, even temporarily non-existent.

2.3. The step after sensing: Utilizing pointcloud data
At this point we have analyzed most of the major methods and principles of mmWave radars. The next step for
a mmWave-based system is to efficiently use the pointcloud information and perform some analysis, which
in our case is posture estimation. In this section, we present the prominent methods through which systems
process the pointcloud information.

2.3.1. Heat map and regression-based approaches
Two of the most commonly used approaches for handling the incoming pointcloud are the heat map and the
regression based methods (Figure 2.6). Regression based systems follow an end-to-end approach using the
detected pointclouds as direct vector inputs to the posture estimation models. Deep learning architectures
such as Graph Neural Networks (GNNs) are developed to directly handle the radar points for feature extrac-
tion, while other techniques aim to make regression compatible to Convolutional Neural Networks (CNN),
by reshaping the data into a matrix.

Radar heat map based approaches do not directly use the pointcloud vectors, but they first generate 2D
or 3D heat maps instead. These heat maps depict local instances of point density, concentrated signal inten-
sity or other metrics such as mean average velocity. Since the heat maps are graphic representation of fixed
resolution, they are ideal inputs for CNN models. AI models have generally shown better performance on
heat map based methods [7] as it is proven easier for them to learn from a map-image rather than from raw
information.

On the other hand, heat map processing comes with some significant shortcomings in inference speed
and computational resources. Since they abstract the scene in fixed size images, they introduce a quantiza-
tion error, affecting the system’s resolution [41]. To improve the resolution, we need to reduce the size of the
heat-map’s pixels, quadratically increasing the system’s memory and computational requirements. Moreover,
a 2D heat-map can represent only three attributes at once, so a typical mmWave system would further require
three heat-maps per frame to include the position, velocity ṙ and signal intensity i pointcloud information
(One approach for the three heat-maps would be: x − y − z, x − y − ṙ , x − y − i )

Due to these large delays introduced by heat map generation, the increased memory and computational
intensity, regression based approaches are preferred for real time and embedded applications, offering high
inference speed and limited hardware demands. Since a large constraint for our application is its real-time
operation, we will therefore base our solution only on regression-based approaches.
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Figure 2.6: Comparison between regression and heat map based methods on pointcloud data

2.4. Related Work
Having established some of the fundamental methods used in mmWave sensing and pointcloud processing,
we can now broaden our perspective and examine the state-of-the-art research over human sensing, that
will serve as a starting point for this thesis. Since our proposed solution is the first attempt of a mmWave-
based Multi-Person Posture Estimation (MPPE) system, our literature study first explores the MPPE methods
already used in computer vision, in order to identify which of these methods can transfer to mmWave-based
systems. Then, it addresses the state-of-the-art research in mmWave Single-Person Pose Estimation (SPPE)
and Multiple Target Tracking (MTT) systems, in an attempt to combine the two into an integrated system able
to track and estimate the pose of multiple people.

2.4.1. Advances in computer vision
Latest advances in AI have significantly contributed to the evolution of human posture estimation systems,
particularly in computer vision. Recent findings have evolved past performing posture and activity detec-
tion in monitored environments to what is known as human sensing applications "in the wild". They have
successfully addressed the challenges introduced by multiple targets and unforeseen objects in the scene,
occlusions, varying body shapes, clothing, etc. [36] Two dominant approaches categorizing the existing work
on MPPE systems are the top-down [34] [17] [12] and the bottom-up methods [37] [20] [8] [50].

Top-down and Bottom-up systems
The top-down method first tracks the human targets and creates bounding boxes around them, effectively
isolating them from their surrounding environment. Then, it applies pose estimators at each one of them in-
dividually and re-positions their predictions back to the scene. On the other hand, the bottom-up approach,
which is gaining increasing attention in recent work, first detects all the key-point proposals (joints) in the
scene and then connects them into potential human-target instances. A representation and comparison of
both methods over optical inputs is made in Figure 2.7

Both methods have their advantages and disadvantages, depending on the system’s setting and require-
ments. Bottom-up methods outperform the ones utilizing the top-down method in popular datasets like
COCO [30] [10]. They also appear to be less computationally intense and faster than top-down methods,
since they avoid iterating the posture estimator model over every single detected target. On the other hand,
top-down methods have the ability to predict the movement of targets, since they use a tracking system to
create bounding boxes. Tracking systems typically use motion models and can therefore continue estimating
the targets’ position during large scale occlusions. More importantly, top-down approaches do not require
high sensing resolution because they provide a rough pose estimate over the entirety of the target’s figure,
compared to bottom-up that identify every human joint separately.
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Figure 2.7: Comparison of (a) top-down approach and (b) bottom-up approach for Multi-Person Pose Estimation

Transitioning to mmWave technology
The top-down method appears best for mmWave-based applications. Compared to the abundance of infor-
mation in image or video frames obtained through commercial cameras, the radar pointcloud frames typ-
ically face the problem of sparsity. For example, the limited antennas on commercial mmWave PCBs only
allow up to a total of hundreds of points per frame [6] and are limited even further due to the datapath fil-
tering. This sparsity, together with the lack of significant distinguishing features, such as color, and the low
resolution (joints like wrists or ankles are really hard to tell apart) in mmWave pointclouds, make the imple-
mentation of a bottom-up system considerably challenging. Therefore, given these constraints, the top-down
method proves to be the most viable option for mmWave point cloud data.

2.4.2. Advances in radar technologies
The only approach, so far, for radar-based MPPE has been made through WiFi radar. In the field of mmWave,
attempts have been made to combine tracking with activity recognition [25] [3] and human identification
[24], yet, to the best of our knowledge, there has been no related work in the field of MPPE. Moreover, research
in mmWave-based SPPE primarily focuses on static targets, neglecting the challenge of localization in human
sensing. By examining the mmWave literature over SPPE and tracking systems, we envision combining the
most appropriate findings into a fundamental MPPE system over which we will improve in this thesis. Finally,
we will examine the existing datasets and identify shortcoming for their use in our application.

WiFi Multi-Person Pose Estimation
The first attempts of detecting the posture of people through radar technology have been focused on WiFi
signals. In [2] the researchers managed to capture the silhouette of a human target, even behind a wall, by
using a modified WiFi antenna setup. The authors in [50] built upon the previous findings and proposed
a bottom-up MPPE, heat-map based system, utilizing the same WiFi setup and a teacher-student network
where a camera provided the ground truth of the joint’s location during training. The system was able to
detect a human with an accuracy of 83%, but since no tracking was performed, the errors were mainly caused
by false key point detection and low capacity in dealing with occlusions. Furthermore, the system was able to
gain sufficient resolution for a bottom-up approach through the use of a large setup with multiple antenna
arrays, which raised the question of deployment suitability for such a device.

mmWave Single-Person Pose Estimation
mmPose [39] was proposed in 2020 and was the first mmWave based system able to detect more than 15
human keypoints from a single target. The researchers used two mmWave radars to address the sparsity of



12 2. Theoretical Background

information and enhance the resolution in both axes. mmPose followed the heat map method by generating
two 2D range maps, one for each sensor with different orientation, and then incorporated a forked-CNN ar-
chitecture to fuse them and perform joint localization. The model came with high computational cost and
storage requirements due to the large CNN model and the projection of point cloud data into two different
planes. Furthermore, their dataset was inaccessible to the public, leading to further needs for public bench-
marking sets.

More heat map based approaches followed right after. mPose [40] first performed human detection to
remove environmental noise and introduced a domain discriminator to remove subject-specific characteris-
tics. HuPR [28] proposed a novel model as well as a new preprocessing approach at the on-chip data path to
better extract velocity information. It used cross and self attention modules for data fusion and downsam-
pling and finally a GCNN to estimate the pose. The authors in [9] introduced a model architecture of two
streams combining temporal and spatial data, one learning the joint constraints and the other finding pat-
terns of joint movements between frames. The results from all approaches were robust but they still did not
manage to address the high computational intensity of the heat map approach and the complexity of model
architecture.

In order to solve this problem for real time applications, researchers developed MARS [5], a simple yet
effective baseline model which operates on raw pointcloud data. MARS used sorting of the 3D coordinates
as a way to spatially align them and eventually pass them through a CNN-based estimator. Moreover, a raw
pointcloud data benchmark dataset was released, but as its use case was rehabilitation exercise, it referred
only to a single person performing static movements. FUSE [6] built upon MARS and was the first paper that
addressed the sparsity of information by merging consecutive frames into a single pointcloud. The results
showed that in a system operating at 10 fps, the combination of approximately three frames yields the best
results. Due to its regression-based approach and architecture simplicity, we choose the MARS model as the
posture estimation foundation of our system and we set the frame combination approach of FUSE as one of
the baselines for the evaluation of our system (Section 6).

Human Detection and Tracking
mID [51] first presented a comprehensive Multiple Target Tracking (MTT) system for mmWave, which made
use of DBSCAN clustering and a Kalman Filter (more in Appendix A.1 and A.2). It proposed an altered Eu-
clidean distance metric to better detect human silhouettes and performed a cluster-driven temporal track
association. It reapplied the clustering algorithm on every frame and used the Hungarian algorithm, an op-
timization algorithm, to associate the detected clusters to the existing system tracks by minimizing the com-
bined distance loss. This approach put too much trust on the cluster detection, expecting that in the majority
of pointcloud frames there will be sufficient information to re-detect the clusters. In reality, occlusions, sig-
nal loss, even the increasing detection range can negatively impact the density of the received signal and the
signal-to-noise ratio, resulting in performance loss.

Another approach [19] attempted to provide a high performing tracking system by enhancing its clus-
tering detection ability. The researchers proposed two alternatives to the DBSCAN algorithm together with
a recursive estimation method utilizing a Kalman Filter. They still did not address the cases of insufficient
pointcloud data as they based their results on a mmWave sensor able to generate denser pointclouds at the
expense of lower processing speed. To address the problem of occlusion, the same research group later pro-
posed adding a second sensor to the system with an almost perpendicular Field of View (FOV) and perform-
ing data fusion [18]. Despite their results demonstrating great performance, their multi-sensor system setup
raises questions about its suitability for different applications.

Other tracking approaches appearing in the literature try to approach the detection component of the
system through different technologies. Researchers developed a system that performs tracking through the
radar method CA-CFAR [24]. CA-CFAR tracks a target by comparing its reported signal’s energy to the in-
stantaneous CFAR threshold, removing noise and other interference. Apart from not addressing the problem
of occlusions, this method solely operates on SNR heat maps, losing a lot of information from the point-
cloud data. Finally, [35] proposed a robust Single Person Tracking system using an end-to-end Deep Neural
Network for detection and tracking. It outperformed other SoA approaches and managed to deal with hard-
to-model radar reflections and sources of noise. The system’s ability, however, to adapt to new environments,
generalize to different users and most importantly scale to a MTT system is not evaluated and would require
extensive training resources.

Eventually, the Texas Instruments team introduced GTRACK [44], a tracking algorithm well adapted for
some of the TI mmWave sensors. It used a vanilla DBSCAN algorithm for clustering but proposed a funda-
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mentally different approach on tracking through gating. Instead of re-discovering all the clusters in the scene
at every iteration, the already observed tracks formed ellipsoid gates in the 3D space and the points that fell
within them were assigned to their respective track. This means that even a small amount of detected points
could keep a track active and provide feedback to its motion model. This gating system manages to address
a big challenge in our intended application; the pointcloud sparsity caused by human-to-human occlusions,
large detection range and static people. Thus, we choose GTRACK as our baseline system for people tracking.

Figure 2.8: GTRACK’s point-to-track association through gating. Point (a) is ambiguous between the two gates and we be associated to
the track with the lowest distance metric score. Point (b) will be associated to track A without any ambiguities. Point (c) is not included
in any gate, so it will be labeled as unassigned and passed through DBSCAN clustering to detect new clusters in the scene.

Pose Estimation Datasets
In the context of dataset creation, as mentioned in Section 2.4.2, mmPose was the first approach that pro-
vided a model and dataset including more than 15 human joints, however their resources remained unavail-
able to the public. HuPR [28] followed up and provided a publicly available dataset with generated heat maps
for posture estimation, at the same time expanding the scope of research to movements featuring global
displacement. It included the action of walking, introducing the concept of positioning error in the model
benchmarking. However, it focused only on the velocity information of the dataset, excluding attributes like
range and signal intensity. Furthermore, the real-time limitations of its heat map approach make it an un-
suitable set for our intended application.

MARS suggested a dataset of raw pointcloud data, focusing on rehabilitation exercises and notably in-
creasing the number of distinct actions performed by the participants. However, these actions were per-
formed in a strictly static manner, where the participants had to stand within a fixed circle of 1m diameter
for all the experiments. The mRI dataset [4] attempted to include multiple technologies in synergy in their
dataset to address different applications. They extended the MARS dataset activities to include some very ba-
sic dynamic movement and the increased dataset size allowed for more thorough training. Finally, MiliPoint
[11] attempted to establish a benchmark which addressed not only posture estimation but other human sens-
ing tasks too. It provided a dataset with significantly larger size than that found in the existing related work,
and incorporated a wide variety of 49 human movements. Unfortunately, this research was once again con-
ducted in a relatively stable indoor environment and focused on static movements, capturing data over a
strictly designated area.

For our privacy-shielding application, the appropriate dataset would require raw point cloud data to fa-
cilitate regression-based processing and include dynamic movements, such as walking, which is the primary
action of interest. However, the proposed benchmark datasets either utilize heat-map formatting or fail to
address dynamic movements adequately. Moreover, an additional limitation of the proposed datasets is
that they consist of sanitized frames with minimal environmental noise and multi-path phenomena. Con-
sequently, issues such as environmental noise, multipath, human-to-human occlusions, and foreign objects
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are rarely addressed and their impact is hardly evaluated. These observations highlight the necessity for a new
dataset that addresses these shortcomings and broadens the scope of existing literature. Table 2.2 provides a
comparative overview of all the proposed posture estimation datasets, including our own.

Table 2.2: Comparison of existing mmWave datasets for the task of posture estimation. (*) In the mRI dataset only 1 of the 12 movements
features global displacement in a strictly straight line (**) Our dataset includes 11 distinct actions at different orientations, as well as
unsupervised, free movements.

Movement Type Movements Processing Type Participants Size (frames) Publicly Available
mmPose STATIC 4 heat map 2 15k No
MARS STATIC 10 regression 4 40k Yes
MiliPoint STATIC 49 regression 11 213k Yes
mRI STATIC* 12 regression 20 160k Yes
HuPR DYNAMIC 3 heat map 6 141k Yes
Our dataset DYNAMIC 11** regression 16 89k Yes
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The proposed solution for the top down MPPE system combines and improves upon two of the existing
systems described in the literature analysis, the G-Track algorithm proposed by Texas Instruments [44] for
tracking applications and the MARS model [5] for posture estimation. In this chapter we will describe the de-
sign and implementation details of the baseline system that integrates these two approaches into a seamless
MPPE pipeline. The code base of this project is publicly available at github.com/AsteriosPar/mmWave_MSc.

3.1. System Overview
The full pipeline of the system consists of four basic modules:

• Interface Processing Module: This subsystem handles the mmWave radar configurations and outputs,
applying post-processing to transform the data into state vectors.

• Tracking Module: This module integrates GTRACK to detect and track the targets in the scene, out-
putting a target list with their attributes to the next stage.

• Posture Estimation Module: Utilizing the MARS model, this module receives the target list and pro-
duces a list of 3D estimated coordinates for all detected human joints.

• Visualization Module: This final module uses the list of 3D coordinates to determine the sizing and
position of fading square blocks on the screen.

A high-level overview of the entire system, as well as the hardware chain, is shown in Figure 3.1.

Figure 3.1: Overview of the hardware setup and software pipeline of the proposed system.
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3.2. Interface Processing Module
3.2.1. Choice of mmWave sensor
The selected mmWave sensor for this thesis is the IWR1443 by Texas Instruments [43]. IWR1443 operates in
the 76 GHz to 81 GHz range and features 3 transmitting and 4 receiving antennas arranged both horizontally
and vertically. Unlike most devices in the adjacent production series, IWR1443 does not own a dedicated on-
chip DSP, which introduces hardware limitations on the maximum FFT size and decreases resolution [22].
However, it compensates with much lower processing latency and power consumption, making it ideal for
embedded, real time applications.

An additional difference appears in the processing datapath stage of the IWR1443, particularly in its out-
put formatting. The IWR1443 converts the typical mmWave outputs—range, azimuth, and elevation val-
ues—into Cartesian coordinates. Such changes might impact the transferability of systems between different
sensors. In Section 3.3.2, we will address significant modifications needed to adapt a system designed for a
different interface to our application platform.

3.2.2. Radar setup and configurations
Starting with the first module in the system’s pipeline, it is crucial to provide the appropriate configurations
for the sensor, clearly defining the constraints and scope of the target application.

To sufficiently monitor the area of interest, the sensor should have a wide Field of View (FOV) and be
capable of operating over larger ranges. The antenna configuration on the IWR1443 sensor allows for higher
angle resolution along one axis. Given that the main activity of interest involves horizontal motion, we assign
the highest resolution to azimuth angle detection. Additionally, considering the limits of human vision, we
assume that a maximum range of 8-10 meters is appropriate for the application.

The sensor should also be able to capture and keep track of swift human movement, as well as detect
minor movements of static people. These call for a sensing frequency high enough to not miss significant
changes in postures, yet, accounting for the full system’s computational delay. Furthermore, the CFAR set-
ting, which sets a dynamic threshold to the noise, should be adjusted low enough for the sensor to capture
sufficient data even from minor movements, while maintaining the environmental interference to moderate
levels. Finally, the system should enable the static clutter and peak grouping functions to avoid processing
irrelevant and abundant data and adhere to its real time constraints. Table 3.1 shows some major configura-
tions for the mmWave sensor used in our application.

Table 3.1: List of major configuration parameters related to mmWave in this work.

Description Values
Range Resolution (m) 0.044
Max. unambiguous Range (m) 8.02
Max. Radial Velocity (m/s) 1
Radial velocity resolution (m/s) 0.13
Frame Duration (msec) 100
CFAR threshold scale 1130
Range Peak Grouping enabled
Doppler Peak Grouping enabled
Static clutter removal enabled

3.2.3. Radar’s Interface
With the right configurations passed into the radar, an interface is now needed to transfer the detected point-
clouds from the sensor to our system. The sensor’s output including positional information together with
radial velocity and signal intensity data is being temporarily placed in an on-chip buffer. The rest of the sys-
tem can extract this information through a UART port. In our system we use the API provided by [13] to
communicate with the buffer and handle cases like packet loss. We have, furthermore, adjusted the system’s
reading frequency through timing functions, in order to avoid overflows in the buffer.

3.2.4. Point cloud data Post-Processing
The final step of the interface processing module includes some layers of data processing to format the point-
cloud data into appropriate state vectors. The post-processing chain begins with decomposing the radial ve-



3.2. Interface Processing Module 17

locity ṙ into Cartesian velocities vx , vy and vz . The pointcloud’s default format is [x y z ṙ i ], where x, y , z
are the point coordinates, ṙ the radial velocity and i the signal intensity. The tracking system will be operat-
ing only on Cartesian coordinates and thus the modules output needs to be formatted accordingly. Applying
the Equation 3.1 for all axes, the module’s output formatting will be [x y z vx vy vz ṙ i ], including sufficient
information for all the next sub-systems.

vi = ṙ · i√
x2 + y2 + z2

for i = {x, y, z} (3.1)

The next stage in the post-processing chain includes translating and performing axis normalization (ro-
tation) to the pointcloud’s positional and velocity information. The pointcloud’s Cartesian coordinates are
representing the scene with the sensor as the origin point. Scene dependencies like the sensor’s height and
tilt should be removed to utilize a ground-referenced coordinate system which will provide ease of use for
the next subsystems. Figure 3.2 provides a comprehensive representation of the points’ translation and axis
systems normalization.

Figure 3.2: Removing scene constraints from pointcloud data

To remove scene dependencies from the pointcloud data, we translate and rotate the axis system associ-
ated with it. We utilize a Translation Matrix T to account for the sensor height offset and a Rotation Matrix
Ri nv to rotate (roll) the axis system over the x-axis. If hsensor is the sensor’s height and tsensor is the tilt of
the sensor in radians, the new coordinates and velocities of the system are derived in Equations 3.4 and 3.5
respectively. The normalization results will be arrays of 4 elements, where only the first 3 elements represent
the normalized coordinates and velocities.

Translation Matrix (T ) =


1 0 0 0
0 1 0 0
0 0 1 hsensor

0 0 0 1

 (3.2)

Rotation Matrix (Ri nv ) =


1 0 0 0
0 cos(tsensor ) −sin(tsensor ) 0
0 sin(tsensor ) cos(tsensor ) 0
0 0 0 1

 (3.3)

Normalized Coordinates (coordsnor m) = T ·Rinv ·


x
y
z
1

 (3.4)

Normalized Velocities (velnor m) = T ·Rinv ·


vx

vy

vz

0

 (3.5)
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3.3. Tracking Module
The tracking module is one of the most important parts of the system as it is responsible for detecting and
tracking the position of all people in the scene. It receives the state vectors formatted by the interface pro-
cessing stage and returns a list of all targets with their attributes. The implementation of the tracking system
begins by integrating the GTRACK algorithm to the system requirements introduced by the IWR1443 sensor
and then continues to improve certain aspects of it considering the application use case.

3.3.1. GTRACK overview
GTRACK is a system that follows a standard high level tracking approach shown in Figure 3.3. It tracks already
seen targets through gate association and detects new targets through basic DBSCAN clustering over the
remaining points. It goes on to update an Extended Kalman Filter to deduct the tracks’ true position and
handles unseen tracks through a maintenance step. Finally, it predicts the targets’ next position through
a constant acceleration motion model. These predictions are used over the next frame to drive the EKF’s
output.

Figure 3.3: Overview of the GTRACK system pipeline

3.3.2. GTRACK adaptation
Transferring to the IWR1443
GTRACK was originally designed as an embedded demo application over the xWR68xx series of mmWave
sensors. These provide higher pointcloud resolution and contain an on-chip DSP board at the expense of
processing speed and power consumption. Their original data processing path also varies from the one found
on IWR1443 which translates the spherical point coordinates to Cartesian. As a result, the TLV (Type Length
Value) items 1 exchanged through the UART port are also inherently different. For the above reasons, adjust-
ments focused on GTRACK’s input formatting and data sparsity should be made.

Modifying the GTRACK to accept Cartesian coordinates as input, allows for a major simplification over its
Kalman filter. The purpose of an Extended Kalman Filter is to approximate a non-linear relationship between
the filter’s measurement inputs and internal state vectors through a linear function. This non linearity in the
case of GTRACK appears due to the spherical-to-Cartesian positional transformations as well as the radial
velocity decomposition. In our approach, these transformations have already been performed during the on-
chip data processing and the interface post-processing. We can thus simplify the system by using a classic
Kalman filter, reducing the computational intensity and the system’s complexity.

Redefining the Measurement Matrix
In our system, the input measurement and the state vectors of the Kalman filter share similar values. The
measurement matrix H (more in Section A.2) can thus be simplified. It can take the form of an identity matrix
for all the measurement data that remains identical to the state vectors. In our case, the input measurement
vector u(n) has the format of six values [ x y z ẋ ẏ ż ], which is extracted from the interface module’s output
[ x y z ẋ ẏ ż ṙ i ]. The state vector s(n) is also defined in Cartesian coordinates and for a constant acceleration

1TLV items allow for optional information to be exchanged in data communication protocols.
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filter it also includes the target’s acceleration data, resulting in a vector with 9 attributes: [ x y z ẋ ẏ ż ẍ ÿ z̈ ].
Equation 3.6 shows the relationship between the input and the state vectors through the measurement matrix
H and through the interference of measurement noise v . The new measurement matrix for the Kalman filter
has dimensions 6x9 and is:

u(n) = H(s(n))+ v(n) (3.6)

H =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0

 (3.7)

Choosing a Motion Model
The state vector is dependent on the type of motion model used and the choice of that model is associated
to the nature of the problem we try to solve. In our application, we expect people to move in arbitrary tracks
with different speeds and accelerations. They might even stay still in an attempt to outsmart the system’s
fading squares blocking their sight.

Considering this, we choose the constant acceleration model to better approximate the human move-
ments. The constant acceleration model will converge faster during changes in velocity and avoid lagging
behaviour that would otherwise appear through a constant velocity model. A comparative analysis of the
constant velocity and constant acceleration motion models is performed in Section 6.3.1.

In order to incorporate the motion model to the Kalman filter, we need to define the respective State
Transition Matrix F (more on Section A.2). The State Transition matrix constitutes the prediction ŝ for the
state at time n using the state of time n − 1 and we can calculate it through the state transition kinematic
equations:

x̂ = 1x +0y +0z +∆t ẋ +0ẏ +0ż +0.5∆t 2ẍ +0ÿ +0z̈ (3.8)

ˆ̇x = 0x +0y +0z +1ẋ +0ẏ +0ż +∆t ẍ +0ÿ +0z̈ (3.9)

ˆ̈x = 0x +0y +0z +0ẋ +0ẏ +0ż +1ẍ +0ÿ +0z̈ (3.10)

The same equations apply for both the y and z axis predictions and thus, transforming them into matrix-
vector format we can derive the State Transition Matrix F in equation 3.11.

ŝ(n) = F s(n −1)+w(n) =>



x̂
ŷ
ẑ
ˆ̇x
ˆ̇y
ˆ̇z
ˆ̈x
ˆ̈y
ˆ̈z


=



1 0 0 ∆t 0 0 0.5∆t 2 0 0
0 1 0 0 ∆t 0 0 0.5∆t 2 0
0 0 1 0 0 ∆t 0 0 0.5∆t 2

0 0 0 1 0 0 ∆t 0 0
0 0 0 0 1 0 0 ∆t 0
0 0 0 0 0 1 0 0 ∆t





x
y
z
ẋ
ẏ
ż
ẍ
ÿ
z̈


+w(n) (3.11)

Fine-tuning the filter
The final tuning of the Kalman filter requires the definition of the noise matrices in the system. In Equa-
tion 3.11 we add a vector of process noise w which has a 9x9 covariance matrix Q(n). This noise represents
the uncertainty of the motion model, in other words, it provides an approximation of how much the true
motion will deviate from its prediction. In our solution we estimate this noise through a discrete constant
white noise model with a set variance. Moreover, the noise introduced by the sensor itself during the detec-
tion phase (Equation 3.6) is called measurement noise v and it has a covariance matrix R(n). In our filter
implementation, R(n) has dimensions 6x6, corresponding to the measurement vector sizing. We assume in-
dependent noise between the measurement vector’s variables and as such, we calculate R(n) by scaling the
identity matrix with a standard deviation set value. Both the variances from matrices Q and R are empirically
chosen.
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3.4. Posture Estimation Module
The third basic subsystem of the proposed solution is that of posture estimation. Some of the major contribu-
tions of this thesis lie in the way the tracking and posture estimation modules are structured to compliment
each other, as well as in the posture estimation model itself. The baseline model architecture will be the one
proposed by MARS [5], operating on raw pointcloud data following a regression-based approach.

3.4.1. MARS model overview
MARS utilizes a unique regression approach to pass the raw track pointcloud data as input into the first CNN
layer. It follows a preprocessing method which sorts the point vectors according to their spatial coordinates.
It first sorts the vectors over the x-axis coordinate values and in the case where points share the same x-axis
value, it proceeds to sort these by their y and z-axis coordinates. To maintain a constant input size, it adjusts
the pointcloud data vectors to 64, either randomly removing points if they exceed the threshold or padding
zeros to reach it. Finally, it reshapes the 64-entry array into an 8x8 matrix which is used as the input to the
CNN.

The architecture of MARS maintains a straightforward structure, following a sequential execution of lay-
ers. It first passes the preprocessed 8x8 matrix input through two stages of CNN with 16 and 32 output chan-
nels and intermediate dropout layers. It then applies Batch Normalization (BN) and flattens the CNN’s out-
put. The flattened vector goes through two Fully Connected (FC) layers, reducing the vector’s size to 512 and
57 neurons respectively. Each FC layer also includes intermediate dropout layers and Batch Normalization
to avoid internal covariate shift and achieve more robust training. The model’s output corresponds to the
estimated 3D coordinates of 19 human joints with format [ x1, x2, ... xn , y1, y2, ... yn , z1, z2, ... zn ]. The
total number of parameters in the model is 1,095,115 which is approximately half of the ones appearing in
the mmPose model, further emphasizing its computational and performance gains.

Figure 3.4: MARS pointcloud pre-processing and CNN architecture

3.4.2. Combining MARS and Tracking module
For the combination of the tracking and posture estimation systems, we follow the top-down approach. We
perform posture estimation by creating point clusters for each track and then iteratively applying the MARS
model to each of those clusters. Unlike the standalone MARS, which operates on the full point cloud, the
integrated MARS model focuses on pointclouds for each individual track.

Isolating track point clouds improves the baseline model’s accuracy by filtering out noise. In the base-
line MARS approach, the model processes the full point cloud, including environmental interference and
multipath noise. By using the tracking system, we can isolate surrounding noise from the active track, effec-
tively filtering the model’s input and enhancing accuracy, as shown in Figure 3.5. Additionally, combining
the model with the tracking system enables posture estimation for multiple people. The top-down approach
allows for simple training by abstracting the scene to a single person, enabling the same model architecture
to be reused for an arbitrary number of targets and use single-person dataset samples to train the model.
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Figure 3.5: Representation of the noise filtering introduced by the tracking system.

3.5. Visualization Module
The visualization module handles the logic of creating the fading blocks that is critical for this application.
It interacts with the smart screen as the end node of the system and handles parameters like the number of
fading squares, their position and size. To operate properly, it requires sufficient information over the scene
setup and the location of the eyes of all targets in the scene.

3.5.1. Configuring the scene
In order for the system to adapt to new setups and environments, we have featured a configuration file in-
cluding all the required scene dependencies. The system needs these configurations to create spatial relations
between the individual components of the scene; the sensor, the smart screen and the sensitive object. The
scene configuration parameters are listed in Table 3.2 and a comprehensive representation of the scene is
provided in Figure 3.7.

Table 3.2: List of scene configuration parameters.

Scene parameters Description
hsensor Sensor installation height (m)
tsensor Sensor down tilt (degrees)
hscr een Smart screen installation height (m)
si zescr een Smart screen height & width (m)
xo , yo , zo Sensitive objects coordinates (m)

3.5.2. Projecting the fading squares
The posture estimation module outputs the location estimates of every human joint. Using this information,
the visualization module combines the head coordinates with the scene parameters to calculate each person’s
gaze vector. This gaze vector represents the line extending from an individual’s eyes to the sensitive object
behind the smart window. The visualization module then employs trigonometric equations to determine the
points where these gaze vectors intersect with the smart window. These points will serve as the centers of the
projected fading squares.

The visualization module also handles the sizing of the fading squares to ensure privacy. To address the
risk of inaccurate square positioning when a target is too close to the window, a responsive sizing system has
been developed. While we aim to keep the original size of the squares as small as possible for practicality and
overall solution elegance, this system adjusts the size of the squares based on the target’s distance from the
sensor. The closer the target is to the window, the larger the squares become. We set a minimum si zemi n and
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maximum si zemax threshold for the size of the squares, a distance threshold dmi n that defines the furthest
distance where we require the maximum square size and a size reduction rate β, ensuring a smooth size
change for the squares. If yhead is the y-coordinate of the head joint, the square size is derived by Equation
3.12. This approach limits the square size between the two upper and lower thresholds as shown in Figure
3.6. The constant values chosen for our application will be discussed later, in Chapter 6.

si zer ect = max


si zemi n

min

{
si zemax

si zemax −β∗ (yhead −dmi n)

(3.12)

Figure 3.6: Square size over a target’s distance from the sensor. The square sizing is always limited between si zemi n and si zemax .

Figure 3.7: Representation of the gaze vector and the scene configuration parameters involving the sensitive object and the smart window
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In this section we demonstrate the improvements made over the baseline system, developed during the pre-
vious chapter. The improvements made are targeting the clustering logic of GTRACK, the localization error
introduced by the MARS model and the posture estimation learning capabilities.

4.1. Improving the clustering logic
The first improvement we performed addresses the target detection capability of the GTRACK algorithm.
GTRACK utilizes a clustering algorithm almost identical to the DBSCAN, with the only difference that the
cluster creation is not only dependent on spatial constraints, but also on signal intensity and radial velocity
thresholds. We will attempt to increase the effectiveness of DBSCAN by making modifications to the distance
metric, and therefore, redefining the clustering neighbourhood of points.

One of the most commonly used metrics for measuring the spatial proximity in DBSCAN is the Euclidean
distance. The Euclidean distance is defined as the square root of the the sum of squared differences between
corresponding elements from each axis. In a 3D coordinate system, the Euclidean distance formula between
two points A, and B is:

d =
√

(xA −xB )2 + (y A − yB )2 + (zA − zB )2 (4.1)

Differences along different axes impact the Euclidean distance metric equally and result in a spherical
geometric locus when a maximum threshold is set. This sphere represents the clustering neighbourhood of
the central point, in other words, the DBSCAN algorithm counts all points within this sphere to determine if
a cluster should be initialized. However, in our intended application where the interest is people detection,
the sensed pointclouds will rarely resemble spherical clusters. Instead, using a distance metric specialized
in detecting clusters exhibiting characteristics similar to an average human body, would be a better suited
approach.

The average human silhouette generally appears more compact in the horizontal plane, while the height
proportion appears noticeably larger. In that line, we will follow the approach of [51] and alter the Euclidean
distance to represent a vertically stretched ellipsoid geometric locus. We can achieve that by introducing a
diminishing weight zwei g ht over the z-axis’ contribution, where zwei g ht ∈ (0,1). All the constant values we
choose for our application will be presented in Chapter 6.

d =
√

(xA −xB )2 + (y A − yB )2 + zwei g ht (zA − zB )2 (4.2)

Another challenge that the Euclidean clustering metric fails to address is the effect of a pointcloud’s range
on its density. As a target moves further from the sensor, the sensor’s resolution decreases, resulting, in a
proportionally sparser pointcloud [6]. An adaptive metric is necessary to allow for more relaxed constraints
when the combined range of two points gets larger. We introduce the damping factor α(yµ) to adjust the
clustering neighbourhood taking into consideration the mean range value yµ of the two points. α(yµ) is
limited at the range (0,1) and the further the two points are from the sensor, the smaller its value, allowing
for a larger point neighbourhood. The derived distance metric is presented in Equation 4.3. Finally, a visual
comparison between the three described metrics are shown in Figure 4.1.

d =α(yµ)
√

(xA −xB )2 + (y A − yB )2 + zwei g ht (zA − zB )2 (4.3)

4.2. Position vector elimination
The second improvement aims to keep the localization and posture estimation functionalities clearly sepa-
rated. To explain the improvement we provided, we first need to identify the errors in the system. The system’s
absolute error is a combination of two distinct factors:

• Localization error ϵl : This is the error between the estimated and actual skeletal position, measured
as a difference between the estimated and true position of the spine base of a person. In other words,
when the spine base between the prediction and ground-truth is aligned, that is assuming ϵl to be zero.

23
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Figure 4.1: Representation of clustering neighborhoods of different points. The neighbourhood of point A is acquired through the classic
Euclidean distance metric, the neighbourhood of point B through the Euclidean distance with diminishing weight on the z-axis and
the neighbourhood of point C through the addition of a range-based damping factor over the metric of B. The neighbourhood of C is
larger than the one from B because yC > yB . NOTE: A clustering neighborhood differs from its final cluster. Once a cluster is initiated,
it expands by iteratively including all adjacent points found within the neighborhoods of any associated points. Therefore, the initial
clustering neighborhood may be just a small subset of the final cluster.

• Posture estimation error ϵp : This error captures the difference between the true and estimated posture
of a person. total deviation of the joint localization estimates when the spine bases are aligned.

Figure 4.2: Representation of (a) localization error and (b) posture estimation error

As per the original work, MARS did not differentiate between the two errors as it was designed for op-
erating on static movements. Thus, in our baseline design, despite localizing the tracks through the track-
ing system, MARS would still attempt to re-position their estimated posture in space. This unnecessary re-
positioning incorrectly attributes the localization error ϵl to MARS rather than the dedicated tracking algo-
rithm, GTRACK.

Localization through MARS has a lot of limitations. First, it highly depends on the model’s prior training.
If MARS has not been trained for certain scenarios or locations, there is a risk it might not generalize properly
and diminish the system’s performance. Secondly, it does not handle cases of occlusion and temporal signal
loss as well. The model’s architecture lacks memory and would fail to operate in these cases, compared to the
tracking system which would continue to perform localization through the motion prediction model.

Our proposed approach tackles this problem by clearly separating between the systems that perform lo-
calization and posture estimation. The localization error is attributed solely to the sensor resolution and the
GTRACK system, while MARS is only responsible for the posture estimation error. We achieve this by repo-
sitioning the center of mass of every pointcloud to the origin, and thus eliminating their position vector. As
shown in Figure 4.3, we translate the track centroid to the coordinate system origin to remove any position
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information. The translated data is then passed through the posture estimator to deduct only the human
pose and finally the created human skeleton is re-positioned back to its original position.

Figure 4.3: Comparison of the localization errors between the MARS baseline and our proposed approach. The proposed approach
eliminates the position vector of the pointcloud before estimating its posture.

This method yields a number of benefits. A comparative analysis (Section 6.4.2) shows that by removing
the localization error factor ϵl ,M ARS , this method provides better accuracy. It also eliminates the need of
exhaustive training, as the model does not need to generalize to unforeseen locations. Finally, the model’s
decision complexity is reduced by having the clear objective of sole posture estimation.

4.3. Creating temporal connections
The third and final improvement we implemented on the baseline system aims to:

• Address the sparsity problem of the mmWave pointcloud by efficiently combining frames to improve
signal density.

• Use these frames to improve the posture estimation accuracy and introduce temporal learning in the
MARS model architecture.

Interestingly, the steps we took to achieve this improvement had positive impact in other parts of the
system, such as the clustering and the track maintenance components of GTRACK.

4.3.1. Addressing the sparsity problem
To address pointcloud sparsity we will combine multiple consecutive frames. In our implementation we
make use of two different frame combination methods; frame fusion and frame stacking. Frame fusion
refers to the integration of multiple frames into a single frame entity. It yields the benefit of higher pointcloud
density and given that the frames are observed in short time indices, it does not introduce significant noise.
On the contrary, frame stacking handles multiple frames as an ensemble of layers, preserving their distinct
characteristics. This approach can be efficiently used in combination with a Deep Neural Network (DNN) ca-
pable of learning temporal associations. We will later see that we utilize frame fusion for improved clustering,
while we perform frame stacking over the CNN model’s input for improved posture estimation.
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Our proposed solution suggests a Ringbuffer class to temporally store the new frames while overwriting
the outdated ones. The class is equipped with methods to perform both frame fusion and frame stacking over
the buffer’s effective data and a method to adjust the inner buffer’s size. The frames in the Ringbuffer are being
stored as separate entities and are only combined (fused or stacked) upon retrieval by other fuctions. Given
our system’s sensing frequency (10fps), the optimal number of frames to combine is 3 [6] to avoid introducing
significant noise due to human movement. Every detected track owns their respective Ringbuffer instance,
while a universal Ringbuffer for the unassigned points of each frame is also being used.

Figure 4.4: Representation of different Ringbuffers updated after Tracking

Increasing density for clustering performance
The system’s clustering performance is positively affected by the Ringbuffers, as performing frame fusion
over the unassigned points from each frame can be quite beneficial. The accuracy of mmWave is high, so
the targets in the scene will continuously spawn points at approximately the same location through their
presence. Even at larger ranges where the pointcloud tends to be sparser, merging those points from different
frames should result in sufficiently dense clusters for the system to detect. Furthermore, noise interference
which tends to appear at random, does not accumulate into clusters and thus is filtered out.

Maintaining stationary tracks
mmWave pointcloud density is significantly diminished during the observation of static points. To address
this problem we have included a lifetime scheme allowing the tracks to remain undetected for short periods
of time without being discarded as inactive. Each track is being labeled as STATIC or DYNAMIC depending
on the absolute velocity of their centroid and they are assigned a maximum lifetime accordingly. The lifetime
assigned to STATIC tracks is typically larger than that of the DYNAMIC targets to allow for greater detection
probability. Furthermore, the size of the Ringbuffer associated with STATIC tracks increases too, allowing
more frames to merge and eventually leading to a more substantial pointcloud scene. The detailed pointcloud
can be later used for recognizing static human postures.

4.3.2. Learning temporal constraints
FUSE [6] was the first system that addressed the problem of signal sparsity through combining frames. It fol-
lowed the method of frame fusion to merge frames, acquire a pointcloud with more distinct human charac-
teristics and pass it into the CNN model for posture estimation. In our approach we follow the frame stacking
approach instead, in order to maintain the order of the consecutive frames and learn from their temporal
connections.

The critical part of this improvement modifies the architecture of MARS. It aims to use the frames in the
track Ringbuffers to train and learn temporal associations amongst them. As such, the system extracts the
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three latest frames of the track’s Ringbuffer and performs frame stacking. After removing the position vector
(Section 4.2), we limit or pad the stacked frames to 64 points each and reshape the resulting arrays into a
8x8x3 vortex. The vortex will eventually serve as the model’s new input with 5 channels [ x y z ṙ i ].

The architecture changes involve primarily the convolutional layers of the CNN. In order to learn the
temporal associations between the stacked frames, a sliding 3D kernel of dimensions 3x3x3 is utilized at each
convolutional layer. The kernel’s two first dimensions refer to the spatial characteristics of the frames while
the third is used to extract temporal connections from the data. The convolutional layer output channel
dimensions are kept at 16 and 32 in sequential order, while the output size of the flattening layer and the first
Fully Connected (FC) layer is tripled to handle the data of all frames. A full overview of the posture estimation
system including the 3D kernel modifications on MARS is provided in Figure 4.5

Figure 4.5: Track multi-frame pointcloud pre-processing and MARS architecture with 3D kernels for temporal connections

Finally, we want to emphasize this improvement’s contribution in the bigger picture. In our intended
application it significantly improves the consistency of blocking people’s gaze, without interruptions. The
instantaneous sparsity and irregular shape of the mmWave point cloud were issues that the baseline MARS,
operating on a single frame, could not address and led to large variations between consecutive predictions.
Our proposed solution links information from consecutive frames, making it resilient to such irregularities.
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A big part of this project is the creation of a new dataset that addresses the challenge of real time posture
estimation over dynamic targets. So far, HuPR [28] has been the only publicly available dataset that included
a noticeable share of dynamic movements, yet, the heat-map representation of the mmWave data hinders
its usability for real time applications. By maintaining the raw pointclouds, we propose a novel dataset tar-
geted for real time applications, with sufficient size and diverse samples of highly dynamic targets performing
weakly supervised movements.

5.1. Dataset Overview
5.1.1. Hardware and Devices
For the pointcloud collection we use the IWR1443 mmWave sensor with the configurations provided in Sec-
tion 3.2.2 to capture the pointcloud data. The mmWave sensor is connected to a Linux operating laptop
through the UART port, where the data is processed and stored. The joint location ground truth of the system
is captured by a Microsoft Kinect v2 sensor, a device able to capture color and depth information through an
RGB and a laser-based Time-of-Flight (ToF) sensor (more on section 5.2.2). The Kinect is attached to a second
laptop running on a Windows operating system, providing support for the sensor.

5.1.2. Participants and experimental process
The dataset creation process involved 16 volunteering participants, where 10 of them were males and 6 fe-
males. The participants represented different body types, heights and displayed diverse clothing and acces-
sories. The mean height among the participants was 177 cm, with a standard deviation of 8.6 cm, while the
total range of heights was 35 cm, indicating sufficient variation to avoid overfitting. Every participant had vol-
untarily consented to contribute towards data collection by signing a personal data consent form approved
by the TU Delft Ethics committee.

Since the data is meant for a top-down MPPE application, the dataset’s scope is limited to capturing one
person at a time, in the premise that the trained model can be iteratively used to estimate the postures of
all targets in the scene. Moreover, the dataset aims to capture people at different ranges and orientations to
include pointclouds of different sparsity and body part occlusions.

Towards this, each participant was asked to participate alone in 5 experiments, which represented differ-
ent sets of movements. Each experiment lasted for approximately 2 - 2.5 minutes, and the mean duration for
completing all the experiments between the participants was approximately 12 minutes. Before every exper-
iment, the participants received a brief explanation over the details entailing the area of operation and the
desired movements.

The five experiments are divided into distinct movement sets:

• Static Waving: Participants performed static waving with the right arm, left arm, and both arms.

• Normal Walking: Participants walked continuously in various directions relative to the sensor—parallel,
perpendicular, and along two diagonal lines.

• Combined Walking and Waving: Participants walked in the same directions as the previous experiment
while waving their arms.

• Static Movements: Participants performed static movements, including leaning to the right, leaning to
the left, and leaning forward into a squat.

• Free Movement: Participants had a 2-minute window to move freely in space, combining elements
from the previous experiments. The specific combination of movements was left to the participants’
judgment.

5.1.3. Environment setup
In order to capture data from people at different ranges and orientations we set an environment with 9 des-
ignated markers on the floor. We asked the participants to navigate between those markers when walking,
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(a) Experimental scene defined by
markers

(b) mmWave and Kinect v2 (c) Top view of experiment room

Figure 5.1: Environment setup

while all the static movements were repeated over all markers for the completion of the experiments. Specifi-
cally for the static movements, the participants were also randomly asked to face at different orientations for
a better capture of different orientations.

The Kinect sensor’s limited field of view (FOV) defined the setup of the rest of the experimental environ-
ment. We placed the Kinect sensor at the height of 1m with no tilt and after performing some FOV analysis we
decided that the optimal range for the closest marker would be at 2m, in order to fully capture the silhouette
of people in the scene. Given that the Kinect has a maximum detection range at 4.5-5 meters, we spread the
rest of the markers accordingly. The mmWave sensor was mounted at the height of 165cm with a down-tilt of
5 degrees and was positioned at the same vertical plane as the Kinect, with a small offset of 5cm in the x-axis
which will be accounted for in the dataset pre-processing stage. The environment setup is clearly visualized
in Figure 5.1.

5.2. Capturing the Dataset
The data gathering process uses the mmWave and Kinect sensors only as front-end devices. The observed
data from the two sources had to be synchronized and saved in a way that would be useful for later processing.
In this section we will explain all the methods and techniques used to gather the data for the dataset creation.

5.2.1. Logging mmWave frames
In order to save the observed mmWave frame pointclouds, we created a lightweight frame logging module
for offline processing. The logging system consists of two main threads for reading and writing. The reading
thread has the task of reading the latest observed pointcloud. It periodically retrieves the data from the UART
port through the use of the API and publishes it into an internally shared queue. The writing thread reads the
contents of the queue and when the frames exceed a certain number, it writes the data into a .csv file.

Through that approach, the logging system is able to maintain a consistent reading frequency equal to
the radar’s sensing frequency, which is 10fps, and introduce minimal jitter through its computational delay.
Additionally, a file manager ensures that the frame data of an experiment is split and saved in .csv files of
relatively small, fixed size in order to avoid later parsing delays.

Each line in the saved files contains 7 attributes for a single point. The first attribute is the point’s frame-
number, which is shared across all the points of the same pointcloud. Then, the 5D point vector is listed,
encapsulating the point’s position, radial velocity and signal intensity information. The last attribute con-
tains the timestamp from when the point was observed and follows the POSIX formatting in the scale of
milliseconds1. This timestamp will later be used to couple the pointclouds to their ground truth.

1A POSIX timestamp represents the number of seconds that have elapsed since the Unix epoch, which is defined as January 1st, 1970,
at 00:00:00 UTC



30 5. Introducing a new dataset

5.2.2. Capturing and localizing joints through Kinect
Microsoft Kinect v2 [49] is a system that utilizes multiple sensors to capture information. To estimate depth it
uses a Time of Flight system comprised of three lasers and a monochrome camera with resolution of 512 × 424
pixels and FOV of 70°x 60°. It can extract spatial information of the scene either through the monochrome
channel or through an equipped RGB camera. For the experiments we will only utilize the monochrome
camera.

The Kinect v2 poses as a cheap, yet accurate solution for capturing the ground truth of human posture.
Compared to its predecessor, the Kinect v1, the newer version appears to be more robust in diverse lighting
conditions and its accuracy is almost double in applications like object identification [27]. The sensor comes
together with an SDK containing tools to visualize and perform accurate real-time posture estimation for 25
human joints in the scene, through a computer vision model.

For the ground truth logging we used the system developed by [42], which captures the depth stream of
the sensor and extracts an accurate skeleton with the 3D locations of the multiple human joints. The system
is run through the Visual Studio 2015 tool and saves the joint coordinates of each frame into a .csv file. We
added a POSIX timestamp entry for each frame and removed the unnecessary joints’ data to limit them to the
19 relevant ones for our application. The frame rate of this system is 30fps.

Figure 5.2: Experiment’s data logging system

5.2.3. Devices synchronization
Synchronizing the device clocks and acquiring the frames’ timestamp is important for coupling the point-
cloud observations to their posture ground truth. We achieved the synchronization of the clocks of the two
laptops through the use of the Network Time Protocol (NTP). We setup the laptop connected to the mmWave
device to be a NTP server, broadcasting its system clock status and the one connected to the Kinect to func-
tion as an NTP client. We established a connection between the two and proceeded to synchronize the two
clocks before every experiment session. Figure 5.2 shows the experiment logging setup and synchronization
system between the hardware components of the system.

5.3. Dataset processing
To transform the unrelated files of point cloud data and keypoint ground truth into a comprehensive dataset,
several steps are required. These steps include associating the frames, cleaning the data, and performing
various preprocessing and formatting tasks. In this section, we will describe each of these stages the dataset
goes through to become suitable for model training.
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5.3.1. Data pairing
In order to pair the frames of the two sources we use the POSIX timestamps found in the logged files of both
systems. We parse through all the frames and create 1-on-1 associations between the frames that have the
smallest absolute time difference between the timestamps. We also set a maximum threshold of 20ms to
prevent the connection of frames with larger time difference. This process outputs the synchronised pairs
of frames and at the same time filters out the abundance of frames occurring due to the different sensing
frequencies of the two systems.

5.3.2. Data pre-processing
Since the mmWave and the Kinect sensors did not capture the targets from the same perspective, the logged
files of the two systems contain data that relate to coordinate systems with different origin points. Our pre-
processing algorithm aligns both of the system axes and removes their spatial offset to correspond to the
ground-referenced coordinate system.

Secondly, in order to bring the pointcloud to the appropriate format for the posture estimation model,
the system needs to isolate the track associated pointclouds. For that it utilizes the tracking module of the
proposed system pipeline. The tracking system detects the cluster associated to the person in the scene and
tracks it, also removing excessive noise from the background. The tracking module’s output should be a single
track and its points are preserved as the only valid points of the frame.

Finally, the pre-processing system performs signal intensity normalization, which is essential for limiting
the impact of arbitrarily large intensity values on the model’s training and predictions. To achieve this, we
first measured the mean and standard deviation of the signal intensity from a set covering the entire area
of interest, providing a clear overview of the values’ distribution. Using these two constants, we apply the

normalization formula inor m = i −mean

std
to limit most of the intensity values between (-1, 1).

5.3.3. Data cleaning
In order to ensure that all the frame pairs contain the desired information and not faulty measurements, we
perform a stage of manual data cleaning. We remove the pairs of which the ground truth skeletal reconstruc-
tion shows anomalies or does not represent a human silhouette. The posture ground truth captured by Kinect
appeared sensitive to the colors of the scene and resulted in errors when the clothing of the participants was
of similar color to the walls or floor of the experiment room. Furthermore, we remove the pairs in which we
observe clustering or tracking errors. In a few frames, the tracking module had misclassified noise as a human
cluster which led to a completely irrelevant part of the pointcloud being preserved for training.

5.3.4. Data partitioning
After the abovementioned steps, the dataset includes 88,851 labeled frames, which need to be divided into
training, validation, and testing sets. We split the dataset approximately into a 60/20/20 ratio, ensuring that
individual participants are kept separate across the sets. This approach ensures that the testing and validation
sets will include different individuals from the training set, which will help prevent overfitting, enhance the
model’s ability to generalize and eventually provide more representative testing results.
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Figure 5.3: Overview of the dataset processing system



6 | Results
In this section we will discuss how the proposed solution is a better fit for the intended application compared
to its baseline by performing analysis on results and metrics. We will also justify the use or rejection of specific
methods and techniques (Section 6.3) and study their impact through thorough ablation studies (Section 6.4).

6.1. Training Tools and Details
For the creation of our system we used Python version 3.10 and implemented all the baseline approaches, the
improvements and the ablation studies of the posture estimation model using Tensorflow and Keras versions
2.15.0. The quantitative analysis of the results was performed while using the proposed dataset for training
and testing. For the experimentation we utilized the cloud-based resources provided by Google Colab Pro
[14], taking advantage of the Nvidia A100 GPU.

We configured the tracking system by empirically optimizing its detection and tracking performance. For
the DBSCAN algorithm we chose the eps to be 0.3, almost an order of magnitude higher than the sensor’s
unambiguous range detection and the minimum number of points to form a cluster at 40. We also used
the the proposed altered Euclidean Distance as the distance metric and set its parameter zwei g ht to be 0.4.
Finally, the Kalman standard deviations for the measurement and process noise are set at 0.1 and 1.

For the posture estimation training we adopted many of the parameters used for training the MARS CNN
model. Specifically, we used the Adam optimizer with a learning rate of 0.001, a batch size of 128, and ran
the training for 150 epochs. On average, the validation loss converged to 0.01 after the 130th epoch for the
proposed model, and a little later for the MARS baseline. The function used to define validation loss of the
system is the Mean Squared Error (MSE), Equation 6.1. We chose to validate our system through a metric
where all 19 human joints have equal impact on the loss -and not applying more weight to the head which
is our primary target- to achieve fair comparison between the MARS model and to provide a new general
purpose benchmark for dynamic target posture estimation.

l ossMSE =
∑18

i=0(xi − x̂i )2 + ∑18
i=0(yi − ŷi )2 + ∑18

i=0(zi − ẑi )2

3 ∗ 19
(6.1)

To obtain representative results, we finally utilized a method similar to 10-fold cross validation. We per-
formed 10 full training iterations for every baseline and improvement implementation, using 10 different
instances of the dataset with the sets randomly split. The same 10 dataset split instances were used for every
training case to ensure consistency. The combined loss is calculated as the average of all the iterations and
the trained parameters achieving the highest accuracy are kept as the model’s default.

6.2. System Evaluation
To thoroughly evaluate our proposed solution’s performance, we followed an approach of two steps. In the
first step we evaluated its posture estimation capabilities over a single dynamic target. We performed an
offline analysis over the proposed dataset and compared the results against the baseline of MARS to have
a clear overview of our system’s improved modular performance. The second step focused on scaling the
system’s evaluation by testing the performance of its complete pipeline in an online, multi-person scenario.

6.2.1. Offline Evaluation over a Single Person
Following the top-down principle, our posture estimator is iterated over multiple targets in the scene, thus
we can evaluate its performance only over a single one.

At a first glance, the proposed system, trained on the new dataset, has been able to identify multiple poses
appearing in the proposed testing sets. Figure 6.1 visualizes the model’s posture predictions in comparison
to their ground truth, as well as it provides the track pointcloud serving as the input of the model.

To quantify the system’s accuracy we calculate the Mean Average Error (MAE) (6.2) and Root Mean Squared
Error (RMSE) (6.3), averaged across the entire testing set. We use the combination of the MAE and RMSE met-
rics to assess the variance between the errors of the frames within the set. The closer the values of RMSE and
MAE are, the more consistent the magnitude of error between the samples and the lower the error of the
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Figure 6.1: Final solution’s pose prediction samples. The movements presented are a) walking, b) waving arms, c) squatting, d) leaning
sideways

worst-case predictions. We especially care about keeping the MAE and RMSE values close, as this also indi-
cates how "smoothly" the estimations of posture change over time. This smoothness can eventually translate
in consistent movement of the fading blocks on the smart screen.

lossM AE = 1

N

N∑
i=1

|yi − ŷi | (6.2)

lossRMSE =
√√√√ 1

N

N∑
i=1

(yi − ŷi )2 (6.3)

In Figure 6.3 we visualize the MAE error measured at every joint index, comparing the results of our pro-
posed solution against the MARS baseline. The connection between the joint indexes and the unique joints
are indicated in Figure 6.2. Finally, the overview of the average errors measured in both systems can be found
in Table 6.1. A separate field focusing on the errors of the head joint in both approaches evaluates the system’s
ability to accurately estimate the location of the eyes which will then be used to block the target’s line-of-sight.

Overall, our system outperforms the baseline by approximately 20%, achieving a mean average error of
13.1cm for all 19 joints and 13cm for the human joint representing the head. One significant improvement
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Figure 6.2: Skeleton diagram illustrating the mapping between indexes and corresponding joints

Table 6.1: Average MAE and RMSE error (in cm) for the combined 19 joints and the head joint. The analysis is over the baseline MARS
model and the final proposed solution.

All joints Head
MAE RMSE MAE RMSE

Baseline MARS 16.43 251.87 17.26 279.32
Our approach 13.15 16.21 13.00 15.74

is also noted in the RMSE error, with our system managing to reduce it by an order of magnitude, drastically
decreasing the worst-case prediction error and ensuring consistency between the frames. Through the abla-
tion study in section 6.4.1 we show that the baseline’s poor RMSE performance is mainly caused due to noise
interference, leading to large instantaneous errors in both localization and posture estimation.

6.2.2. Online Evaluation
After evaluating the posture estimation capabilities of the system over a single, dynamic target, we proceeded
to test the whole pipeline with the smart screen as the system’s end node, shielding the privacy of a sensitive
object. To conclude into realistic results, we performed an online evaluation, in real time and in a different
environment from the one the dataset was created in. In the evaluation experiments we had multiple people
simultaneously at a scene larger than the 3m x 2m space we used at the dataset capture.

The goal of the evaluation was to determine the smart screen’s successful visual blocking rate of a marker
placed at 1m distance behind the smart screen. We performed experiments with volunteering participants
who were instructed to move freely into space and try to see the marker which was hidden behind the fading
squares. Every experiment lasted 3 minutes and it was repeated over different people or combinations of
them to ensure consistent results.

We defined the system’s accuracy as the average percentage of time the marker was blocked for the people
in the scene. At every instant, each person was assigned a binary state; BLOCKED or NOT BLOCKED, depend-
ing on whether they were able to see the marker. We then measured the average duration each person spent
in BLOCKED state and compared it against the fixed experiment duration of 3 minutes. To determine the
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Figure 6.3: MAE comparison between the end-to-end baseline MARS and the proposed system approach over a single dynamic target.

participants’ state, each person was given a smartphone with an application that allowed them to switch
between states with a simple touch in real time.

The parameters we experimented upon where the number of people in the scene and the size of the fading
squares used to block the line-of-sight. Given the size of the smart screen installation, we decided to limit the
number of people moving simultaneously in the scene to no more than 3. This decision was made to prevent
the spawning of too many squares that would result in an overcrowded screen. Additionally, we set a lower
bound to the size of the fading squares to 15cm x 15cm, as we deemed any size smaller than this, incapable
of physically blocking a sensitive object like a computer’s monitor.

Table 6.2: Accuracy of the system based on square size and number of people in the scene.

Size of squares 1 person 2 persons 3 persons
30cm 96% 95% 98%
20cm 93% 92% 90%
15cm 88% 81% 79%

The evaluation results are presented in Table 6.2. The general trend was that the larger the size of the
squares, the higher the system’s accuracy, which was expected since larger squares allow for larger margin of
error in the localization and posture estimation system. In the extreme case were the squares would cover
the whole screen, the system’s accuracy would be 100%. On the contrary, the more the number of people
increased, the more the accuracy dropped. That is because the system’s load became more computationally
intense and occurrences like human-to-human occlusions appeared, negatively affecting the tracking sys-
tem. In the outlier case of 30cm squares tested with 3 people, the large squares covered a major percentage
of the screen’s surface. The significant coverage blocked people’s sight, even when the originally assigned
squares failed to do so themselves. Through the experiments we decided that the fading squares of size 20cm
x 20cm provide a good trade-off between accuracy, system’s practicality and elegance of design.

The major causes of system inaccuracies included lagging behaviour, tracks becoming undetected and
incorrect square positioning. The system’s computational procedures introduced jitter in real time operation,
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(a) Evaluation area with two participants in the scene (b) mmWave and smart screen setup

Figure 6.4: Online evaluation setup

especially when there were multiple people in the scene. The multiple presences spawned more data points,
created multiple tracks and eventually caused the jitter to grow, which led to lagging behaviour of the squares.
The rest of the issues were primarily linked to the natural limitations of the tracking and posture estimation
systems to accurately handle static targets and temporal signal loss from the sensor.

6.3. Intermediate Design Choices
In this section we justify some of the design choices we made on the system and the dataset. We delve into
the reasoning behind choosing constant acceleration as a motion model for our Kalman Filter (Section 3.3.2)
and present an attempt of ours to augment the proposed dataset.

6.3.1. Motion Model: Constant velocity vs constant acceleration
One of first challenges that appeared while designing the MPPE system was the choice of the most appro-
priate motion model. We performed an analysis between the constant velocity model and the constant ac-
celeration model to identify which of the two yields the best results over the intended application. The main
difference between the two is that the state vector of the filter using constant velocity, includes only the posi-
tion and velocity information of points, while the one using constant acceleration also includes the accelera-
tion vectors. As a result, the first assumes constant speed between two consecutive frames while the second
assumes constant acceleration.

To compare the two models we used samples from the created dataset. More specifically, we used the dy-
namic experiment where all participants performed plain walking to evaluate the motion models. We avoided
mixing in the experiment where waving movements were involved, to avoid shifting the pointcloud’s center
of mass which would introduce noise to our study. We measured the motion model’s performance over the
x and y axes to focus on the target’s horizontal disposition and measured each motion model’s error by com-
paring the coordinates of the target’s waist (ground truth keypoint with index 0) against the Kalman filter’s
output.

Table 6.3: Comparison of mean average errors between the constant velocity and the constant acceleration model. The errors are defined
by the difference between the Kalman filter output and the ground truth coordinates of the target’s waist (keypoint index 0).

Constant Velocity Model Constant Acceleration Model
X-axis MAE: 12.79 cm 10.17 cm
Y-axis MAE: 11.53 cm 6.13 cm

Average MAE: 12.17 cm 8.15 cm

Upon observing the behaviour of the Kalman model’s prediction, we noticed that the constant velocity
motion model appeared to lag and overshoot more than the constant acceleration model, especially in swift
movement changes. Furthermore, in some cases, the constant velocity model lost track of the target, forcing
the system to detect the track from scratch through the DBSCAN algorithm. The results show a clear accuracy
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boost when using the constant acceleration model, which reduced the mean tracking error by approximately
4cm. Consequently, we choose the constant acceleration model as our proposed system default approach.

6.3.2. Data Augmentation: Introducing Noise
An attempt to improve our solution had the goal to strengthen the proposed dataset by performing data
augmentation. We placed the data augmentation module after the dataset partitioning stage (see Section
5.3), right before the model’s training. In this approach we introduced noise to the training set by randomly
dispositioning the points of its pointclouds. We generated random offsets in all three axes by using a Normal
distribution with a mean value of 0 and a standard deviation of 0.02m, which is half of the unambiguous range
specified in the radar configurations. We performed this procedure once for every frame, effectively doubling
the size of the training set.

We assumed that introducing this variation in the dataset would allow the CNN model of our proposed
system to generalize better in scenarios that it had never seen before. On the contrary, the system’s per-
formance did not gain any notable improvement and at specific joints at even appeared to perform slightly
worse. We speculate that the great sparsity of data and the overall random shapes of the pointclouds have
resulted in low sensitivity of the trained model over slight changes in the data point coordinates. Due to the
results of this study we refrain from using this augmentation method in our dataset.

6.4. Ablation Studies
In this section we perform an isolated evaluation of the improvements of their impact to the system’s perfor-
mance. The design choices that will be discussed include:

• The baseline MPPE system design, combining MARS and GTRACK (Chapter 3). For simplicity we will
refer to this system as "MARS w/ Tracking".

• The elimination of the position vector from the CNN model’s input (Section 4.2), referred to as "Im-
provement 1".

• The addition of temporal connections between stacked frames in the posture estimation model (Sec-
tion 4.3), referred to as "Improvement 2".

We will not analyze the modification of the DBSCAN distance metric improvement, because it does not aim
to increase the system’s accuracy, rather to recover from tracking losses faster. Finally, the last two improve-
ments will be evaluated against our baseline MPPE system design (MARS w/ Tracking) as both depend on the
existence of a Tracking system.

6.4.1. Impact of the Baseline MPPE system
As described in Section 3.4.2, incorporating the tracking system in posture estimation results in isolated track
pointclouds that are also filtered from noise. This functionality should allow the CNN based estimator to
perform better and more consistently without the influence of phenomena such as multi-path which creates
ghost targets in the scene.

We compared the baseline top-down MPPE system we developed against the baseline of MARS, essen-
tially comparing the performance of MARS over filtered and unfiltered input sets. Table 6.4 reveals that the
Tracking system significantly lowers the RMSE error of the system and thus improves the accuracy of the
worst case predictions. The filtered input allows the CNN model to perform more consistent localization
without identifying noise interference as a human target.

Table 6.4: MAE and RMSE comparison between the baseline MARS model and our proposed baseline MPPE system.

Baseline MARS MARS w/ Tracking
All joints Head All joints Head

MAE RMSE MAE RMSE MAE RMSE MAE RMSE
16.43 251.87 17.26 279.32 14.55 19.08 15.51 20.03



6.4. Ablation Studies 39

Figure 6.5: Comparison of the chain of modules between the baseline MARS model and the proposed baseline MPPE system

6.4.2. Improvement 1: Eliminating the position vector
The first improvement that we performed on top of the fundamental top-down structure utilizing MARS w/
Tracking, was eliminating the position vector from the track pointclouds and in this section we will present
its isolated impact on the system’s accuracy. Eliminating the position vector allows us to clearly separate the
functions of localizing a target and estimating their posture between different dedicated systems. In our case
we exclusively assign the Tracking system to perform localization and MARS to estimate posture. As a result,
the errors due to these functions, namely ϵl and ϵp are discrete between the tracking and posture estimation
system components.

The accuracy gained by this improvement and through the localization capabilities of the tracking system
is presented in Table 6.5. Indeed, the tracking system was able to perform better localization than the CNN
model from MARS, reducing the mean average error by 1.1cm and the RMSE error by 2.4cm, which is a re-
duction of approximately 10%. We expect this accuracy gap to widen in real-world scenarios with larger area
of interest, where MARS generalization capability would have a more significant effect on the results.

Table 6.5: Comparison of errors between MARS combined with the Tracking module and the improvement achieved by removing the
position vector.

All joints Head
MAE RMSE MAE RMSE

MARS w/ Tracking 14.55 19.08 15.51 20.03
Removing Position Vector 13.42 16.68 13.52 16.37

6.4.3. Improvement 2: Adding Temporal Learning
The second improvement we implemented was to combine consecutive track frames and pass them as a
vortex into a modified MARS model, which utilized 3D convolution. Since all the previous improvements
and system modifications were implemented on stages prior to the module of posture estimation, we will
evaluate the contribution of this improvement both on top of Improvement 1 and individually.
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Frame Stacking vs Frame Fusion
First, we want to investigate the impact of stacking consecutive frames over Improvement 1. FUSE [6] pro-
posed the approach of fusing frames to enhance the pointcloud density and has already performed an anal-
ysis that 3 frames give the best results without introducing noise. Along those lines, we will compare:

• the proposed approach of FUSE, fusing 3 frames into a single entity

• our approach of stacking 3 frames while maintaining their order and identities to learn from their tem-
poral connections.

Since Improvement 1 removes the localization function from MARS, the impact of MARS to the full system
includes only the posture estimation error ϵp and the differences of accuracy in the results account only for
that error. Table 6.6 provides both the results of the total system error as well as the isolated ϵp .

Table 6.6: MAE and RMSE comparison between the FUSE approach and our proposed frame stacking approach. The second large
column indicates the isolated posture estimation error ϵp for both approaches.

System’s error (ϵl +ϵp ) Isolated ϵp

MAE RMSE MAE RMSE
FUSE approach
(frame fusion)

13.37 16.64 6.34 8.77

Our approach
(frame stacking)

13.15 16.21 5.96 8.20

The comparative results of this study are graphically presented in Figure 6.6. We observe that the ap-
proach of FUSE does not give much improvement compared to the baseline. It exhibits a drop in MAE of only
a few millimeters, indicating that after filtering environmental noise from the scene, a frame carries suffi-
cient information for the CNN model to extract a representative instantaneous human posture. On the other
hand, adding temporal learning through frame stacking and usage of 3D kernel layers in the CNN improves
more accurate predictions of continuous movements. It drops both the MAE and RMSE errors of the FRAME
approach by approximately 0.4cm and 0.6cm respectively.

Figure 6.6: MAE comparison between the baseline, the FUSE approach and our proposed frame stacking approach.



6.4. Ablation Studies 41

Isolating the impact of 3D convolution

Our second study on the improvement of temporal learning focuses on its individual impact over the system’s
accuracy. To measure the isolated accuracy of this improvement we will remove the Improvement 1 from the
system, effectively allocating both of the localization and posture estimation tasks to the CNN model.

The results of this approach (Table 6.7) appear really interesting. This approach, when isolated, drops the
total system MAE to approximately 10cm, which is even better than the MAE measured in our final solution.
It also succeeds in reducing the localization error at the x-axis, where the tracking module was suffering most,
down to half. The high x-axis error in the proposed solution is mainly caused due to the shift of the track’s
centroid when a person is performing movements that include waving. Moreover, the isolated improvement
appears to be more robust in the RMSE field as well, indicating that the temporal misjudgements, from which
the CNN model used to suffer when localizing a target, have been drastically reduced.

Table 6.7: Comparison of the per-axis MAE and RMSE errors over the Improvement 2 and the Final Approach of the system.

Improvement 2 Final Approach
All joints Head All joints Head

MAE RMSE MAE RMSE MAE RMSE MAE RMSE
X axis 9.29 12.69 9.95 13.40 18.51 22.01 18.31 21.86
Y axis 13.56 19.40 12.62 18.41 9.30 14.83 10.66 13.19
Z axis 7.47 10.44 9.23 12.59 11.66 11.80 10.03 12.17

Average Error 10.10 14.17 10.60 14.80 13.15 16.21 13.00 15.74

Since the isolated approach yields better localization results than the tracking system, the question that
is raised is why don’t we use this approach on our final solution. Upon performing online tests we came
across some limitations on the sole use of CNN for localization. First, when the system is operating in real
time, it introduces Jitter due to its computational intensity. This jitter slows down the sensing frequency and
eventually prolongs the duration between the stacked frames (Figure 6.7), introducing prediction errors.

Secondly, localization through a CNN is highly affected by the sparsity or absence of points. When the
track’s associated points are below 5-10, the CNN struggles to localize the target as much as it struggles to
estimate its posture. Moreover, its brief memory of 30 ms (it only takes into account 3 frames through this
improvement) makes it sensitive to human-to-human occlusions in a multi-person scenario. Finally, since
the dataset was captured strictly in a designated area of 2m x 3m, we question the model’s ability to generalize
in really close or larger ranges.

Figure 6.7: Stacked frame period differences between the training set and online operation. Jitter t j i t ter is introduced in the second case
due to computational delays.

In conclusion, we choose to limit the impact of this improvement to affect only the posture estimation
error, by combining it with Improvement 1. Figure 6.8 presents the total system’s error including both ϵl and
ϵp and the isolated ϵp drop that we gain through our final solution. Through the observation of its promising
results, though, we acknowledge the possibilities of using an end-to-end NN approach for localization and
posture estimation and we leave it as a proposal for future work.
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Figure 6.8: Separation of the gained posture estimation accuracy ϵp observed in the final solution. NOTE: The posture estimation error
at keypoint-index 0 is zero.

6.5. Results Summary
In this section we summarize all the results and graphs from the proposed approaches and improvements.
Table 6.8 includes the average MAE and RMSE errors of all 19 human joints as well as separated the ones for
associated with the head to assess its usability for the full system. Figure 6.9 shows the MAE error of every
posture estimation approach followed during the ablation studies.

Table 6.8: Average MAE and RMSE error (in cm) for the combined 19 joints and the head joint over all the analyzed approaches.

All joints Head
Approaches MAE RMSE MAE RMSE

Baseline MARS 16.43 251.87 17.26 279.32
MARS w/ Tracking 14.55 19.08 15.51 20.03

Improvement 1 13.42 16.68 13.52 16.37
Improvement 2 10.10 14.17 10.60 14.80

Proposed System
(Improvements 1 & 2)

13.15 16.21 13.00 15.74
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Figure 6.9: MSE comparison of all analyzed approaches. NOTE: The improvements 1 and 2 have been made over the MARS w/ Tracking
approach.



7 | Discussion
The aim of this thesis was to investigate and design a real-time MPPE system that is able to detect dynamic
targets, in order to achieve privacy shielding. On the basis of this, we performed multiple evaluations, com-
paring approaches by analyzing their individual impact on the system’s performance. We decided to elimi-
nate some proposed approaches such as augmenting the dataset through noise addition and made decisions
with due consideration over which motion model and which frame combination method to use in the sys-
tem. Overall, our final solution outperformed the baseline of MARS end-to-end approach by 20% in MAE for
posture estimation on a single, dynamic target and achieved a mean accuracy of 92% when it was blocking
the view of multiple targets over a sensitive object.

The results show that integrating tracking into posture estimation yields more consistent predictions by
significantly reducing the baseline’s RMSE error. We found out that filtering the input of the CNN model from
noise interference really improves its worst case predictions. Additionally, the introduction of the two im-
provements of position vector elimination and temporal learning over stacked frames, result in more robust
and accurate predictions by avoiding generalization problems and temporal pointcloud issues. Combined,
the two improvements produce better results than the baseline MPPE system design, reducing the MAE by
2.50cm and the RMSE by 4.50cm.

Figure 7.1: Final MPPE system’s tracking and posture predictions over multiple people.

Our research contributes insights with regard to methods and techniques for mmWave-based posture
estimation system designs. Most importantly, this research extends the literature of mmWave by proposing
the first top-down MPPE system for privacy shielding applications. Previous studies had only focused on
single targets, making their findings applicable to only a limited range of applications. Additionally, through
this thesis we facilitate research on dynamic target posture estimation which was inadequately addressed by
previous mmWave-based single-person posture estimation studies. The practical implications of this thesis
in this area, lie in the separation of localization and posture estimation as two different functionalities and
the proposal of the new dataset which includes highly dynamic and weakly supervised movements.

Apart from its impact on research, this thesis delivers a complete system-application for privacy shielding.
Achieving high real-time accuracy for multiple people in a scene with considerable noise interference, it poses
as a suitable solution for a variety of indoor and possibly outdoor spaces. The system’s inherent ability to filter
out noise and isolate the targets’ "bounding boxes" allow it to adapt into different environmental conditions,
while its installation becomes effortless through scene configuration parameters.
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7.1. System Limitations
Of course, the proposed system comes with its limitations. The shortcoming of mmWave technology over
capturing stationary targets impacts our system’s robustness in scenarios where the passersby briefly remain
perfectly still. In that case, after the track lifetime times out, the tracking system will assume the track inac-
tive and will remove the fading square associated with it, exposing the sensitive object. Additionally, since we
approach the problem at hand through a top-down MPPE approach, the computational demands of the full
pipeline increase proportionally with the number of people in the scene. Additionally, in cases of multiple
people, the system’s performance deteriorates as it introduces jitter. The jitter affects the temporal associa-
tions of frames, as discussed in Section 6.4.3, interfering with the accuracy of posture estimation and intro-
ducing lag to the projections on the smart window. If the fading square size is not large enough to account for
that lag, the system might instantaneously reveal the shielded object. We currently attribute this issue to the
computational resources of the machine running our system, which are responsible for the amount of jitter
introduced.

Finally, a limitation that appeared during the dataset creation phase revealed that the static movements
performed during the data collection spawned less points than the dynamic ones. As a result, frames with
insufficient points were discarded, causing occasional imbalances in the number of data samples associated
with every movement. Our model trained on the created dataset, although reporting great accuracy, tends to
have higher success rate in predicting walking or waving motions than sideways leaning or squatting static
positions.

7.2. Future Work
During the development of our system, we identified several potential areas for future work that could signif-
icantly enhance and complement our efforts, as well as those of related research.

• System Optimization: First, optimizing the system at a firmware level could result in significant ben-
efits. By improving memory allocation, reducing the use of dynamic-length lists and utilizing multi-
threading and multi-processing capabilities for parallel execution of tasks, we could reduce system
delays and jitter, as well as facilitate the system’s software on embedded platforms, offering a more
integrated solution.

• Static Target Sensing: Secondly, research on detecting static targets through mmWave technology is
still insufficiently addressed. We encourage endeavours that focus on combining other non-intrusive
technologies, such as thermal sensing, with mmWave to complement each other’s limitations. Addi-
tionally, we wish to highlight the potential benefits of dynamically changing the sensor’s configurations
mid-operation. With appropriate firmware flexibility, we assume that online configuration changes of
the chirp’s profile could be catalytic for static target sensing and tracking.

• AI in posture estimation: Lastly, we wish to recognize the potential of using Deep Neural Networks. We
are confident that with appropriate foundational research on the application of AI in mmWave tech-
nology, end-to-end approaches could outperform state-of-the-art methods in both dynamic and mul-
tiple target posture estimation. It would be particularly interesting to see efforts aimed at developing a
bottom-up approach over mmWave pointcloud.



8 | Conclusion
Through this thesis we developed a novel application for shielding sensitive objects from the sight of passersby,
through the use of a smart window which projects fading squares, aligned with their gaze vectors. The privacy
shielding functionality was achieved using of a mmWave-based Multi-Person Posture Estimation (MPPE) sys-
tem, alongside the proposal of a new associated dataset. Building on top of the foundational systems GTRACK
and MARS, the research investigated improvements for posture estimation on dynamic targets. Finally, it suc-
cessfully achieved high overall performance in shielding sensitive objects from the sight of multiple people,
providing a complete, non-intrusive and appealing solution for privacy protection applications.

To conclude, this paper innovates by providing new insight on real-time and dynamic target posture es-
timation and sets the first baseline of mmWave-based MPPE systems for privacy shielding applications. The
findings of this study set the foundation for further progress in the field of mmWave human sensing and guide
the literature to explore more real-world applications, including multi-person and out-of-the-lab scenarios.
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A.1. DBSCAN Clustering
A large majority of the proposed mmWave Multiple Target Tracking (MTT) systems have been utilizing a clus-
tering algorithm called DBSCAN for human detection [51] [44] [25]. DBSCAN is a density-based algorithm
and it is preferred in tracking applications as it can handle a non-predefined number of noisy and non spher-
ical clusters, as well as outlier points. Figure A.1 shows the comparison of DBSCAN to the K-Means clustering
algorithm over arbitrary cluster shapes.

The algorithm requires no more than two parameters, the epsilon value (ϵ) and the minimum number of
points required to form a cluster. It starts by a random starting point and calculates the amount of points that
exist within the region dictated by ϵ. In the case that the number of points exceeds the minimum threshold,
a cluster is created. Otherwise it is considered noise unless it belongs in the region ϵ of another point that
has sufficiently dense neighbourhood. The ϵ region is calculated by a metric function such as the euclidean
distance and can thus become ellipsoid in the 3D space if weights are applied to certain axes.

(a) (b)

Figure A.1: Comparison of (a) K-means and (b) DBSCAN algorithms performed by [31]

A.2. Kalman Filters
A common approach for tracking systems is to utilize a Kalman filter for temporal target associations. A
Kalman filter is an estimation algorithm that predicts system parameters and is extensively used in systems
with inaccurate or inconsistent measurements. In human tracking, the filter employs a theoretical motion
model to predict the next position of targets. It then combines this prediction with the measured location,
along with estimation error and noise covariances, to update the filter’s gain and estimate the new state of
the targets.The new state s at time instant n is defined as

s(n) = F s(n −1)+w(n) (A.1)

where F is a transition matrix representing the motion model and w is a vector of process noise. Kalman
Filter produces estimates that tend to be more accurate than the measurements of a single, noisy sensor and
can additionally handle temporal signal loss, target occlusions and measurement noise.

A Kalman filter estimates a new state vector for the system that might be different from its input measure-
ment vector. For instance, a sensor might only be able to detect the position and velocity of an object, while
the system also predicts information about its acceleration state given some previous measurements. It is also
not uncommon for a system to perform transformations to the measurement vector like axis normalization.
Let the input measurement vector for instance n be u(n), there is a measurement matrix H:

u(n) = H(s(n))+ v(n) (A.2)
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Figure A.2: Kalman output over varying motion model predictions and sensor measurements. The difference might have occurred due
to swift target acceleration or noisy measurements affecting the cluster’s centroid.

where v is a vector of measurement noise.
There are cases when the relation between u(n) and s(n) is not linear, like when the system needs to

perform transformation from spherical to Cartesian coordinates. This non-linearity introduces complexity
to the system and in result, some Kalman Filter alterations have been proposed to simplify this problem.
Filters like the Extended Kalman (EKF) and Unscented Kalman (UKF) appear in the literature and propose
solutions such as approximating a linear behaviour to avoid more complexities.

Finally, for the robust operation of a Kalman Filter, a motion model that produces realistic predictions over
the system’s use case is needed. Approaches modeling targets with noticeable patterns in their movement
have incorporated constant velocity, acceleration or turning rate motion models to fit the system’s needs.
In this thesis we evaluate the constant velocity and constant acceleration motion models for unsupervised
human motion in Section 6.
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