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Abstract

Cooperative game theory studies multi-agent environments where agents are
able to make binding agreements. A lot has been written about dividing goods or
other positive gains among the agents. This study investigates ways to distribute
tasks with a negative utility in a strategyproof way. The intended application is
a group of people or companies who can distribute such tasks between them to
benefit from each other. The agents value tasks being done, but would rather
not do it themselves. They can however, distribute the tasks to mutually benefit.
Agents value tasks differently and also have different costs for them. This study
investigates the theoretical properties of this problem. Particularly, we look at
the Core, which is the set of solutions where agents have no incentive to form
coalitions between them and ignore the result of the mechanism. Then, two
algorithms are proposed to solve the problem. Finally, experiments are done to
predict what results would occur in practice.
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Chapter 1

Introduction

In this chapter, we introduce fair division problems. We discuss applications of
a task distribution problem, which we use to explain some assumptions in the
model we use in this research. Then, we state the research question and explain
its sub-questions. Finally, we provide an outline of this report.

1.1 Context

1.1.1 Fair division problems

Sometimes, multiple people or parties have to come to a general consensus on
how to solve a specific problem. For example, 3 people are hiking and have
collectively brought two apples, five cookies, and a sandwich to snack during
the hike. Since they all need something to eat, they need to find a way to share
these snacks among them. Of course, they can all just eat what they brought
themselves. But that may not be ideal. Maybe, one person who brought an
apple would rather eat a cookie, while another person who brought a cookie
would rather eat an apple. Clearly, it would make both of these persons hap-
pier if they would trade snacks. Maybe it could be even better if they would
just redistribute all snacks entirely. They can then find the ideal distribution
given the preferences of the people for certain snacks. These type of problems
are called fair division problems. This goods distribution problem is just one
example of a fair division problem. Other examples exist, such as how to share
rent in an apartment you share with several people who all have different room
sizes, or how to distribute tasks for a school project. Even for the goods dis-
tribution problem, there are different assumptions you can make which lead to
very different problems. For example, can we assume the individual snacks can
be split? Can we assume players value two cookies twice as much as one cookie?
Do we consider who brought what snacks in how good some distribution is?

Spliddit (A. Procaccia, Goldman, Shah, & Kurokawa, 2020) is an applica-
tion where you can add your data for one of the five available fair division
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problems (similar to the discussed goods distribution problem). The applica-
tion then solves that problem for you. Chevaleyre et al. (2006) mention four
application domains where fair division problems are relevant. One of those
is the exploitation of Earth Observation Satellites, where multiple countries or
companies fund a project together and share its exploitation. This shows that
fair division problems are relevant in both personal smaller scale situations as
well as economic larger scale situations.

Chevaleyre et al. (2006) discuss various fair division models. These models
vary in what questions about the problem are asked, and what assumptions can
be made. In this research, we consider a task distribution problem where not
all tasks have to be done, but players gain utility for each task that is done.

1.1.2 Applications

One example where tasks need to be distributed is in a committee with dif-
ferent members. A committee generally does tasks to accomplish something.
Each task contributes something to the project, which the committee members
value. However, the members of the committee rather have someone else do
it, because doing it themselves costs time. Therefore, they value a task being
done positively, but doing the task themselves negatively. Additionally, differ-
ent members of the committee might value the importance of each task and the
cost of doing that task differently, which makes the positive and negative gain
different for each member for each task.

A larger example could be different nations having multiple common goals,
like in NATO. The tasks could be military tasks or taking measures for climate
purposes. These tasks cost individual nations money, but the result has a pos-
itive value for all nations. Again, these costs and positive values can vary per
nation.

An example that is less professional, but one that might have more inter-
esting cases, is a group of friends organizing events for each other. The people
in the group like that there are events, but it costs them time to organize the
events themselves. In other examples, it makes sense to assign tasks to the peo-
ple who value the task the most. However, in this specific example, that might
not be optimal because if someone likes some event the most, say a scavenger
hunt, he might not want to actually organize it, because he cannot participate
as the organizer.

1.1.3 Task distribution

If the goal of a task distribution is to distribute the workload evenly, it can be
solved in a similar way as a goods distribution problem (Chevaleyre et al., 2006).
Instead of distributing goods with certain gains evenly, tasks with certain costs
are distributed evenly. However, distributing evenly is not always the goal. In
the applications above, certain parties might have way more to gain than other
parties if the tasks are done, so it might be reasonable that they carry more
workload. Besides that, parties in the applications can generally decide to not
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do their assigned tasks, making the proposed distribution useless. Therefore,
we would like a distribution where each party has an incentive to cooperate.
We call this strategyproofness. This is the main motivation for this research. It
studies a model where tasks need to be allocated to different parties. Different
parties can have different costs for these tasks. In addition, these parties all
gain something if tasks are done, and these gains can be different per party as
well.

1.2 Research questions

In this research, the main question we would like to answer is:

How can we optimally distribute a set of tasks among a set of parties in a
strategyproof way?

To answer this question, we need to answer the following sub-questions:

1. What guarantees can an algorithm give about the total welfare and the
strategyproofness of the task distributions it produces?

A distribution would be ideal if it had the maximum total welfare, and is
strategyproof. We would like to know if such a strategyproof distribution
always exists, and if it exists, what guarantees it can give us about the
total welfare.

2. Can the distribution with the optimal total welfare be found in a feasible
amount of time?

To determine if the optimal total welfare can be found in a feasible amount
of time, we prove whether this problem is efficiently solvable.

3. Can a strategyproof distribution be found in a feasible amount of time?

To determine if a strategyproof distribution can be found in a feasible
amount of time, we prove whether this problem is efficiently solvable and
we theoretically and experimentally investigate the running time of the
proposed algorithm.

1.3 Outline

This report is structured as follows. In Chapter 2, we give an overview of related
work, and introduce the formal notation of such problems. In Chapter 3, we
discuss the model, and introduce formal notation of this specific problem. In
Chapter 4, we discuss the theoretical properties of this model. In Chapter 5,
we propose two algorithms to solve the problem, a pseudo-polynomial exact
algorithm, and a polynomial approximation algorithm. In Chapter 6, we disucss
the results of the experiments with the implemented algorithms. Finally, in
Chapter 7, we answer the research question, and give suggestions for future
research.
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Chapter 2

Background and related
work

In Chapter 1, we introduced fair division problems in a non-technical way. In
this chapter, we discuss the theory behind those fair division problems. In
Chapter 3, we will use this to make a model for this research. This theory
includes the assumptions and way of modelling used in cooperative game theory,
the existing multi-agent resource allocation models, the different measures to
maximize in an optimal (fair) model, and the assumptions and definitions of
strategyproofness measures. Finally, we report on some relevant results for
related problems.

2.1 Cooperative game theory

In game theory, there is a distinction between cooperative and non-cooperative
game theory. What theory to use in a certain model very much depends on the
specific properties of the application. Chalkiadakis, Elkind, and Wooldridge
(2011) show this with a famous example of a non-cooperative game, namely the
Prisoner’s Dilemma.

It works as follows. Two players committed a crime and are held in two
separate cells for interrogation. Both players are now presented with the choice
to confess their crime, or stay silent. They know that if they both stay silent,
there is only enough evidence to jail them for 1 year each. However, if one
player confesses, that player will be freed while the other player will be jailed
for 3 years. If both players confess, both players will be jailed for 2 years each.

The trick of this game is that even though it seems best for both players to
stay silent, rational players will always confess. This is because the other player
will not know your decision before he makes his. Therefore, it is always best to
make the decision that is best for you. Say the other player confesses. In that
case, if you stay silent, you will be jailed for 3 years. However, if you confess,
you will only be jailed for 2 years, which is better. Now assume the other player
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stays silent. In that case, if you stay silent as well, you will be jailed for 1 year.
However, if you confess, you will be freed, which is also better. This means that
whatever the other player does, it is always best for you to confess. Since this
holds for both players, both players will confess, resulting in 2 years in jail for
both of them.

Now the question is, how can we change the rules of the game to make
sure both players will stay silent, which is the strictly better result? A possible
answer is binding agreements. If, before they are brought to their cells, the
players would be able to make a binding agreement that forces them to stay
silent, the game would have a different result. As a player, you know that if no
agreement is reached and the other player acts rationally, you will be in jail for
2 years. If however, an agreement is reached, both players have to stay silent,
and you will be in jail for only 1 year. Therefore, it is best for both players to
make this binding agreement.

These binding agreements are the distinction between cooperative and non-
cooperative game theory. In cooperative games, we assume there is a possibility
to make a binding agreement. Generally, we try to design algorithms that
produce those agreements. In the context of this research, those agreements are
called allocations. This is further discussed in Section 2.2. Of course, it should
be in a player’s interest to make a binding agreement. If a player or group of
players can achieve a better result without making the binding agreement, they
will not make the agreement at all, making it useless. Such an agreement is
unstable, which is further discussed in Section 2.4.

In cooperative games, players usually have to cooperate to gain value. Often,
we would like to find which players gain a high value by working together. These
groups of players are called coalitions. Each coalition has a certain value they
gain by cooperating. For example, a game might have players N1, N2 and N3

where N1 has a left glove, and N2 and N3 have right gloves, and the goal is to get
a set of gloves. In this case, the coalitions {N1, N2}, {N1, N3} and {N1, N2, N3}
can all make this pair, so they have a higher value than all other coalitions,
{N1}, {N2}, {N3} and {N2, N3}.

Chalkiadakis et al. (2011) define a cooperative game with an ordered pair
〈N, v〉, where N is the set of players and v is the characteristic function v :
2N −→ R. In such a game, v(P ) is the value a subset of players P can gain by
cooperating.

2.1.1 Non-transferable utility games

The description for a cooperative game 〈N, v〉 with the amount of players N
and the characteristic function v : 2N −→ R is used for games with transferable
utility. That is why the characteristic function only defines a utility for the
group. Because of the transferable utility, the utility can be split between the
group of players in any way. Therefore, the only relevant value of a coalition is
the maximum utility they can gain. For example, if in a certain coalition, N1

gains 12 utility and N2 gains 0 utility, it is never relevant that there is another
solution where N1 and N2 both gain 5 utility, as they could redistribute the
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first situation to both gain 6 utility. In games with non-transferable utility, this
redistribution is not possible. In this case, both situations from the example
may be relevant, so a characteristic function with for all coalitions one value
is insufficient. Instead, a characteristic function should contain all choices the
players can make.

Chalkiadakis et al. (2011) define a cooperative non-transferable utility game
with a structure G = (N,λ, v,�1, ...,�n), where N is the set of players, λ is a set
of choices, v : 2N −→ 2λ defines for every coalition the choices they can make,
and �1, ...,�n is the preference relation between the choices for each player.

2.2 Multi-agent resource allocation

Multi-agent resource allocation is an area of research that uses cooperative game
theory. It is relevant to both Computer Science and Economics (Chevaleyre et
al., 2006). In multi-agent resource allocation, there is a number of resources that
has to be distributed among several agents. Since we model this distribution as
a game, we will call these agents the players.

Resources can be a lot of different things, depending on the application.
Resources can be divisible or not. For example, money is generally assumed to
be a divisible resource, while houses are not. Also, costs can in a way also be
seen as resources. For example, an application might need to distribute tasks
in a certain way among players.

A certain distribution of resources among players is called an allocation.
Players have preference over these allocations. These preferences can be cardi-
nal or ordinal. In most applications, there is some form of structure in these
preferences. For example, if players have to divide a number of goods between
them, they are often indifferent about which goods another player gets, they
care only about their own goods.

2.3 Fairness

The question in multi-agent resource allocation is how to distribute resources
between players. This has to be done in the best way possible. In other words,
we have to find the best possible allocation. However, it is not immediately
clear what the best allocations are. Clearly, there is a best allocation for each
individual player, as they have preferences over allocations. But the question
remains what the best allocation is overall.

In cases where players have cardinal preferences, it is possible to make a
social welfare function. This is a function of the utility of each player for the
allocation. The allocation can be valued with this function. The two most
famous social welfare functions are the Utilitarian Welfare and the egalitarian
welfare (Grant, Kajii, Polak, & Safra, 2010; Harsanyi, 1975; Myerson, 1981).
The Utilitarian Welfare is the sum of the utilities of each player, while the
egalitarian is the minimum of the utilities of each player.
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The differences can be illustrated with an example. Say there are two play-
ers N1 and N2 and two allocations A and A∗, and let ui(X) denote the utility
of player Ni for allocation X. Given u1(A) = 3, u2(A) = 0, u1(A∗) = 1 and
u2(A∗) = 1. In this case, allocation A would be best from the utilitarian princi-
ple, because it gives the highest total utility, while allocation A∗ would be best
from the egalitarian principle, because the utility is distributed more evenly. An-
other social welfare function is the Nash Welfare (Kaneko & Nakamura, 1979),
which is the product of utilities of all players.

Particularly between the utilitarian and the egalitarian principle, there has
been a lot of discussion (Harsanyi, 1975; Myerson, 1981).

Besides these social welfare functions, there are a number of qualitative
criteria with which you can value an allocation. Which of them makes sense
depends on the specific problem. An example of such a criterion is envy-freeness.
Informally, an allocation is envy-free if no player prefers the allocation of another
player to his own allocation.

2.4 Strategyproofness

In Section 2.3, we discussed what an optimal allocation would be. However, as
noted earlier, it is also important that the players are incentivized to make the
agreement for that allocation. If a player (or group of players) can be better off
without the agreement, it would not be rational to make it, making it useless to
calculate it. For example, say player N1 owns a book which gives him a utility
of 1, and another player N2 likes that book better, it would give him a utility
of 2. If we would like to maximize total welfare, in an optimal allocation N1

would give the book to N2. However, since N1 owns the book, he has the right
to not give the book. And since he has incentive to keep it, he would do so if
he is rational. He would just not participate in an agreement where he has to
give the book to N2.

This concept is formally known as the stable set or the Core. It was first used
by Von Neumann, Morgenstern, and Kuhn (1953). They defined a dominance
relation where some allocation A∗ dominates some allocation A if there is a
sufficient amount of players who prefers A∗ over A. They also mention a set of
allocations X (the Core) which contains two properties:

1. No A ∈ X is dominated by an A∗ ∈ X

2. Every A /∈ X is dominated by some A∗ ∈ X

They also note that the relation of dominance is not transitive. If an alloca-
tion A∗ dominates an allocation A and an allocation A′ dominates the allocation
A∗, that does not mean that A′ dominates A. Because of this, there may not
be an allocation that is in X. X can be empty.

Gillies (1959) first explicitly introduced the Core for games with transferable
utility. Aumann (1961) adjusted this definition for games without transferable
utility. He stated that an allocation A∗ dominates an allocation A if:
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1. there is a coalition P that prefers A∗ to A, and

2. this preference is ”not idle,” i.e. P can actually achieve at least its portion
of A∗

The Core is the set of allocations that is not dominated by any other allo-
cation. Intuitively, we would like our algorithm to give an allocation A that is
in the Core as otherwise, if all players in P are rational, they would not follow
allocation A, but instead the allocation A∗ that dominates A.

2.5 Allocation problems

In the most intuitive allocation problem, some goods with a positive value have
to be distributed among several players. In most researches, it is assumed
these values are additive. In this setting, while it is not always possible to find
an envy-free allocation, Caragiannis et al. (2019) show that it is possible to
find an allocation that is envy-free up to one good, with the maximum Nash
Welfare solution. Ramezani and Endriss (2009) show that in general, finding
this maximum Nash Welfare solution is NP-hard. It is also possible to compare
utilities of players with the utility they would have gotten if they would be able
to partition the goods in n bundles and receive the lowest valued bundle. In this
case, A. D. Procaccia and Wang (2014) show that it is always possible to find
an allocation where each player gains at least 2/3 of that value, and that this
allocation can be found in polynomial time, given that the amount of players is
constant.

In some models, players already own goods and an allocation needs to re-
distribute those goods. In these models, strategyproofness has to be taken into
account. Allocations where a player is worse off than what he started with, or
allocations where a coalition can redistribute goods on their own making them
all better off, will not work because some players will not participate in the
allocation. Shapley and Scarf (1974) show that in such markets, a non-empty
Core always exists. Ma (1994) relates this Core property with the assumptions
of individual rationality, Pareto optimality and strategyproofness.

Airiau and Endriss (2014) study a multiagent resource allocation model
where resources can be shared among several players. They show several prop-
erties of specific instances of their model.

Weber and Wiesmeth (1991) use an allocation problem to model decisions
in NATO. They model the problem more specifically with additional variables,
and propose an efficient allocation.

2.6 Conclusion

Using the theory from this chapter, we will formalize the model introduced in
Chapter 1, and propose measures to value an allocation.
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Chapter 3

Model and definitions

Using the applications from Chapter 1 and the theory from Chapter 2, in this
chapter, we propose a model and the measures we want to optimize. Firstly,
we formalize the model in an abstract way. Secondly, we define the Utilitarian
Welfare and the Core, the two optimization measures we study in this research.

3.1 Model

The problem we study in this research consists of a set of tasks T and a set
of players N with t = |T | and n = |N |. Each player i has a gain for each
task j, denoted as gij , and a cost for each task j, denoted as cij . We assume
valuations are additive, so ux =

∑
j∈T |j is done gxj −

∑
j∈T |x does j cxj . Also,

we assume all gains gij and costs cij are non-negative integers. An allocation
A = (A1, ..., An) is a list of disjoint subsets of T , where Ai is the set of tasks
player i is allocated. This means a task can only be done by one player, and not
all tasks need to be distributed. The utility of each player i is his gain for all
tasks that are allocated to anyone minus his cost for all tasks allocated to him,
ux =

∑
i∈N

∑
j∈Ai

gxj −
∑
j∈Ax

cxj . The goal is to find an allocation where the
utility of the players is as high as possible. Since there are multiple players, this
is a multi-objective problem. In Section 3.2, we explain the measures which we
use to value such an allocation.

The data of the model consists of 2 tables. The first table G contains gij
for each i ∈ N and j ∈ T . The second table C contains cij for each i ∈ N and
j ∈ T . Note that these costs are visualized as negative numbers for readability.
In this report, we will write this in the format as shown in Table 3.1.

Example An example of an instance can thus look like Table 3.2.
An example of an allocation could be A = (A1, A2) where:

A1 = {T1, T4}
A2 = {T2}
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Table 3.1: Format of the model

Utility from task done

T1 ... Tt

N1 g1,1 ... g1,t
... ... ... ...
Nn gn,1 ... gn,t

Disutility for doing task

T1 ... Tt

N1 c1,1 ... c1,t
... ... ... ...
Nn cn,1 ... cn,t

Table 3.2: Example of an instance

Utility from task done

T1 T2 T3 T4

N1 12 1 1 2
N2 1 7 6 2

Disutility for doing task

T1 T2 T3 T4

N1 -2 -6 -4 -8
N2 -1 -8 -5 -6

To calculate the utility for player N1, we have to look at the value he
gains for the tasks that are done and subtract the cost for doing tasks
himself. Since tasks T1, T2 and T4 are done (they are in A1 ∪ A2),
player N1 gains value for those, and since N1 does T1 and T4 (they
are in A1), player N1 pays the cost for those. This gives them a
utility of:

u1(A) =
∑
i∈N

∑
j∈Ai

g1,j −
∑
j∈A1

c1,j

= g1,1 + g1,2 + g1,4 − c1,1 − c1,4
= 12 + 1 + 2− 2− 8 = 5
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Similarly,

u2(A) =
∑
i∈N

∑
j∈Ai

g2,j −
∑
j∈A2

c1,j

= g2,1 + g2,2 + g2,4 − c2,2
= 1 + 7 + 2− 7 = 3

Note that this is not an optimal allocation. How to value such an al-
location and what optimal allocations are is explained in Section 3.2.

3.2 Optimization measures

It is not immediately clear what an optimal allocation is. For this research, we
will use the Utilitarian Welfare as well as a measure for stability, as defined by
Von Neumann et al. (1953), as criteria.

3.2.1 Utilitarian Welfare

The Utilitarian Welfare is the sum of the utility of all players.

Definition 3.2.1. The Utilitarian Welfare of an allocation A is defined as
UW (A) =

∑
i∈N ui(A).

Example For example, the Utilitarian Welfare in the example
allocation above is UW (A) =

∑
i∈N ui(A) = u1(A) + u2(A) = 5 +

3 = 8. The allocation that maximizes this measure is A = (A1, A2)
where:

A1 = {T2, T3}
A2 = {T1}

This gives the players a utility of

u1(A) = g1,1 + g1,2 + g1,3 − c1,2 − c1,3
= 12 + 1 + 1− 6− 4 = 4

u2(A) = g2,1 + g2,2 + g2,3 − c2,1
= 1 + 7 + 6− 1 = 13

That gives a Utilitarian Welfare of UW (A) = u1(A) + u2(A) =
4 + 13 = 17.
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3.2.2 The Core

As discussed in Section 2.4, the Core is the set of allocations that is not domi-
nated by another allocation. An allocation A∗ dominates an allocation A if:

1. there is a coalition P that prefers A∗ to A, and

2. this preference is ”not idle”, i.e. P can actually achieve at least its portion
of A∗

In the model studied in this research, the first condition means that all
players in P prefer A∗ to A. The second condition means that the players in P
do not need any help from players outside P to achieve A∗. In other words, all
players outside the coalition P do no tasks in A∗. This can be summarized in
the following two definitions.

Definition 3.2.2. An allocation A∗ dominates an allocation A if there exists
a coalition P ⊆ N where ui(A

∗) > ui(A) for each i ∈ P and A∗i = ∅ for each
i ∈ N \ P .

Definition 3.2.3. The Core consists of all allocations A which are not domi-
nated by any other allocation A∗.

Example The example allocation as well as the allocation that
maximized the Utilitarian Welfare are not in the Core. This is be-
cause there exists an allocation A∗ = (A∗1, A

∗
2) where:

A∗1 = {T1}
A∗2 = ∅

In this allocation u1(A∗) = g1,1−c1,1 = 12−2 = 10. Since u1(A∗) >
u1(A) and A∗2 = ∅, it holds for each i ∈ N that either ui(A

∗) > ui(A)
or A∗i = ∅. Thus, A∗ dominates A, which means A is not in the
Core.

3.2.3 The Epsilon Core

The ε-Core is similar to the Core, but a weaker criterion. The idea is that it
costs players a value ε to collude. Therefore, if an allocation A∗ dominates an
allocation A but there is a player i that gains at most ε, A∗ does not ε-dominate
A. So although A is not in the Core, it might be in the ε-Core.

Definition 3.2.4. An allocation A∗ ε-dominates an allocation A if there exists
a coalition P ⊆ N where ui(A

∗)− ε > ui(A) for each i ∈ P and Ai = ∅ for each
i ∈ N \ P .

Definition 3.2.5. The ε-Core consists of all allocations A which are not ε-
dominated by any other allocation A∗.
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Example Since u1(A∗)−u1(A) = 6, the allocation A∗ ε-dominates
the allocation A for ε < 6. If ε ≥ 6, ui(A

∗)− ε > ui(A) is not true,
so A∗ doesn’t ε-dominate A for ε ≥ 6. Since there is no allocation
that ε-dominates A for ε ≥ 6, A is in the ε-Core for ε ≥ 6.

3.3 Conclusion

We have formalized the model, and defined optimization measures to value an
allocation. We can now reason about how well an algorithm can guarantee an
allocation to be, and whether it is possible to find such an allocation efficiently.
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Chapter 4

Properties of the problem

Using the model from Chapter 3, in this chapter, we answer the research ques-
tions theoretically. First, we show maximizing the Utilitarian Welfare can be
done efficiently. We then show that a solution in the Core does not always exist,
and finding a solution in the Core is NP-hard. We also show a lower and an
upper bound on the minimum ε for which an ε-Core always exist. Finally, we
show that when we optimize the Utilitarian Welfare, no guarantee can be given
for the stability and vice versa.

4.1 Maximizing Utilitarian Welfare

Since each player’s utility is a sum of gains and costs for individual tasks, max-
imizing the Utilitarian Welfare can be done by maximizing the Utilitarian Wel-
fare for each task. The Utilitarian Welfare of task j is

∑
i∈N gij − ckj when it

is assigned to player k (each player gains the value, and player k pays the cost)
and 0 if it is not assigned (nobody gains the value, and nobody pays the cost).
For each task, there are n + 1 choices we can make. We can assign the task
to any of the players, or we can decide not to assign the task. If we decide to
assign the task, since

∑
i∈N gij is not dependent on the player we assign it to

k, we can maximize the Utilitarian Welfare by minimizing the cost ckj . This
is done by assigning it to the player who has the lowest cost for that task. If
that makes the Utilitarian Welfare bigger than 0, assigning it to that player
gives us the maximum Utilitarian Welfare. If it isn’t, it gives more Utilitarian
Welfare to not assign the task. Doing this for each task gives the solution with
the maximum Utilitarian Welfare. This algorithm is formalized in Algorithm 1.

Theorem 1. Maximizing the Utilitarian Welfare can be done in O(n · t) time.

Proof. This proof will show that Algorithm 1 maximizes the Utilitarian Welfare
in O(n · t) time. We will first prove that the algorithm is optimal. Then, we
will prove that it runs in O(n · t) time.
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Algorithm 1 Maximize Utilitarian Welfare

Make a list, A, of empty sets with size n
for all j ∈ T do

minCost← mini∈N cij
totalV alue←

∑
i∈N gij

if totalV alue > minCost then
k ← arg mini∈N cij .
Add j to Ak

end if
end for

The Utilitarian Welfare is defined as

UW (A) =
∑
x∈N

ux

where the utility of a player is defined as

ux =
∑
i∈N

∑
j∈Ai

gxj −
∑
j∈Ax

cxj

This means, using substitution, the Utilitarian Welfare can be written as

UW (A) =
∑
x∈N

∑
i∈N

∑
j∈Ai

gxj −
∑
j∈Ax

cxj


By rewriting further, we have

UW (A) =
∑
x∈N

∑
i∈N

∑
j∈Ai

gxj −
∑
j∈Ax

cxj


=
∑
x∈N

∑
i∈N

∑
j∈Ai

gxj −
∑
x∈N

∑
j∈Ax

cxj

=
∑
x∈N

∑
i∈N

∑
j∈Ai

gxj −
∑
i∈N

∑
j∈Ai

cij

=
∑
i∈N

∑
j∈Ai

(∑
x∈N

gxj − cij

)

Since A is a list of disjoint subsets of T , we have

UW (A) =
∑
i∈N

∑
j∈Ai

(∑
x∈N

gxj − cij

)

≤
∑
j∈T

max

((∑
x∈N

gxj −min
i∈N

cij

)
, 0

)
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Let A∗ be the allocation given by Algorithm 1. In such an allocation A∗,
j ∈ Ak if and only if

∑
i∈N gij > mini∈N cij and k = arg mini∈N cij . This means

that Algorithm 1 will give a Utilitarian Welfare of

UW (A∗) =
∑
i∈N

∑
j∈Ai

(∑
x∈N

gxj − cij

)

=
∑

j∈T |
∑

i∈N gij>mini∈N cij

(∑
x∈N

gxj −min
i∈N

cij

)

=
∑
j∈T

max

((∑
x∈N

gxj −min
i∈N

cij

)
, 0

)

Since the Utilitarian Welfare cannot be higher than this, Algorithm 1 gives
the maximum Utilitarian Welfare.

Making a list of size n of empty sets costs O(n) time. The for loop has t
iterations. Calculating the minimum of n items, calculating the sum of n items
and comparing those two costs O(n) time. Adding j to a set takes O(1) time.
Since this is done t times, this takes O(n · t) time. This means that in total,
Algorithm 1 takes O(n · t) time.

Since Algorithm 1 maximizes the Utilitarian Welfare and takes O(n · t) time,
the Utilitarian Welfare can be maximized in O(n · t) time.

4.2 Finding an allocation in the Core

Finding an allocation in the Core is a lot harder than finding the allocation with
the maximum Utilitarian Welfare. First, we show that the Core can be empty.
Then, we show that finding the Core is NP − hard.

4.2.1 Existence of the Core

Problem with 1 player

For the 1-player problems, it is trivial to see the Core is non-empty. The al-
gorithm that maximizes the Utilitarian Welfare can optimize the utility of the
player. Since the utility of the only player cannot be improved, there cannot
exist a coalition that improves the utility of a subset of the players. Because of
that, the algorithm always finds an allocation in the Core efficiently.

Theorem 2. For problems where n = 1, there is always a solution in the Core.

Proof. This proof will show that Algorithm 1 finds a solution that is in the Core.
We assume to the contrary that Algorithm 1 finds an allocation A that is

dominated by another allocation A∗, and show a contradiction. Since there is
only one player, there is only one possible coalition {N1}. Since A is dominated
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by A∗ with coalition {N1}, we know that u1(A) < u1(A∗). Since there is only
one player, UW (A) =

∑
x∈N ux(A) = u1(A) and similarly, UW (A∗) = u1(A∗).

This means UW (A) < UW (A∗). Since this means that the Utilitarian Welfare
of A is smaller than the Utilitarian Welfare of A∗, this contradicts Theorem 1,
which states that Algorithm 1 finds an optimal allocation. Therefore, A is in
the Core, so Algorithm 1 finds a solution in the Core.

Problem with 2 players

Before we go further, it is good to realize some general properties of the problem.
Firstly, any allocation where one player receives less than 0 utility can not

be in the Core. If a player does not like an allocation, that player could easily
not do any tasks (other players can’t do anything about that), which improves
their utility to 0.

Lemma 3. Any allocation A where for some j ∈ N , uj < 0, is not in the Core.

Proof. Consider the allocation A∗ = (A∗1, ..., A
∗
n) where for all i ∈ N , A∗i = ∅.

Since no tasks are done, ui(A
∗) = 0 for all i. Now, because uj(A) < 0 and

uj(A
∗) = 0 there exists a coalition {j} ⊆ N where uj(A

∗) > uj(A), and A∗i = ∅
for each i ∈ N \ {j}. This means A∗ dominates A, so A is not in the Core.

Secondly, if there exists an allocation A where the only allocations that
dominate A are with the coalition that contains all players N , then there exists
an allocation in the Core. This is because in the allocations that dominate A,
everyone’s utility improves. Since there were already no possibilities to form a
coalition smaller than N , that will definitely still be true. Now, there might be
more allocations that improve the utility of all players, but since there is a finite
amount of allocations, there has to be one where it is not possible anymore to
improve everyone’s utility. Since the smaller coalitions could also not form, no
coalition can form, so that allocation is in the Core.

Lemma 4. If there exists an allocation A that is not dominated by any allocation
A∗ with coalition P ⊂ N , then the Core is non-empty

Proof. Consider the allocation A. A can either be in the Core or not. If A is in
the Core, the Core is non-empty. If A is not in the Core, then some allocations
dominate A. Since we assumed there was no allocation that dominates A with
coalition P ⊂ N , the allocations that dominate A do so with coalition N .

Consider the allocation A∗ that dominates A with coalition N with the
highest total utility

∑
i∈N ui. We show A∗ is in the Core by showing A∗ can

neither be dominated by another allocation with a coalition N nor by another
allocation with coalition P ⊂ N .

If there would exist an allocation A′ which dominates A∗ with coalition
P = N , then ui(A

′) > ui(A
∗) for each i ∈ N . This would mean

∑
i∈N ui(A

′) >∑
i∈N ui(A

∗). Since A∗ dominates A with coalition P = N ,
∑
i∈N ui(A

∗) >∑
i∈N ui(A), which means

∑
i∈N ui(A

′) >
∑
i∈N ui(A). Now, A′ dominates A

with coalition N , and
∑
i∈N ui(A

′) >
∑
i∈N ui(A

∗), which contradicts the fact
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that A∗ is the allocation that dominates A with coalition N with the highest
total utility. By this contradiction A′ cannot exist.

If there existed an allocation A′ which dominates A∗ with coalition P ⊂ N ,
then ui(A

′) > ui(A
∗) for all i ∈ P and A′i = ∅ for all i ∈ N \ P . Since A∗

dominates A with coalition N , we know ui(A
∗) > ui(A) for all i ∈ N . This

means ui(A
′) > ui(A) for all i ∈ P and A′i = ∅ for all i ∈ N \P . Because of this,

A′ dominates A with coalition P ⊂ N , which is a contradiction to the original
assumption that such a coalition did not exist. By this contradiction A′ cannot
exist.

By these contradictions, we have shown either A is in the Core, or an al-
location A∗ that dominates A with coalition N is in the Core, so the Core is
non-empty.

The 2-player problem is a bit more difficult than the 1-player problem. Al-
gorithm 1 can optimize the utility of each player with the restriction that the
other player does no tasks. Now, there exists an allocation where for each task,
it is allocated to the player that it was allocated to in the individual optimiza-
tions of the players, or to an arbitrary player if it was allocated to both players.
In this outcome, both players gain at least as much utility as they did in their
individual optimization. That means that the coalitions that consist of 1 player
cannot achieve a higher utility where the other player performs no tasks. And
by Lemma 4, this means that there exists an allocation in the Core.

Theorem 5. For problems where n = 2, there is always a solution in the Core.

Proof. This proof will show that in a two player problem, there always exists a
solution in the Core.

Consider the two allocations A1 = (A1
1, A

1
2), where u1(A1) is optimized with

the restriction that A1
2 = ∅, and A2 = (A2

1, A
2
2), where u2(A2) is optimized with

the restriction that A2
1 = ∅. Now consider the allocation A = (A1, A2) where

for each j ∈ T , j ∈ A1 if j ∈ A1
1, and j ∈ A2 if j /∈ A1

1 and j ∈ A2
2. We now

know

u1(A1) =
∑
j∈A1

1

g1,j +
∑
j∈A1

2

g1,j −
∑
j∈A1

1

c1,j

=
∑
j∈A1

g1,j + 0−
∑
j∈A1

c1,j

≤
∑
j∈A1

g1,j +
∑
j∈A2

g1,j −
∑
j∈A1

c1,j = u1(A)
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u2(A2) =
∑
j∈A2

1

g2,j +
∑
j∈A2

2

g2,j −
∑
j∈A2

2

c2,j

= 0 +
∑
j∈A2

2

g2,j −
∑
j∈A2

2

c2,j

≤
∑

j∈A1∪A2

g2,j −
∑
j∈A2

c2,j = u2(A)

Since u1(A1) was the highest utility for N1 given that A1
2 = ∅, for any

allocation A∗ where A∗2 = ∅, we know u1(A∗) ≤ u1(A1) ≤ u1(A). This means
there does not exist an allocation A∗ that dominates A with coalition {N1}.
Similarly, there does not exist an allocation A∗ that dominates A with coalition
{N2}. Since {N1} and {N2} are the only strict subsets of N , by Lemma 4, there
exists a solution in the Core.

Problem with more than 2 players

Tasks that cannot be done by a certain player For simplicity, some
instance examples are missing some values cij for some players i and tasks j.
This means that player i cannot be assigned task j. Note that this simplification
does not change the results. If there would have to be values there, the missing
values could just be very large negative numbers. That would mean that if
player i was assigned task j, player i would have a negative utility, which means
such an allocation is not in the Core (by Lemma 3). We denote those missing
values with a ”−”.

An allocation is in the Core if there does not exist a coalition where all
players in the coalition can improve their utility without the help of the rest of
the players. This means that in order for a Core not to exist, all allocations need
to have a coalition where all players in the coalition can improve their utility
without the rest of the players. You can visualize all possible allocations as
nodes in a graph, where directed edges represent allocations dominating other
allocations. Sink nodes then correspond to allocations in the Core. If there
do not exist sink nodes, then there has to be at least 1 directed cycle. These
cycles are pretty unintuitive. As seen in Theorem 5, an algorithm can combine
the optimal allocations for individual players to make an allocation where no
individual player can improve upon. If you improve upon that allocation, no
individual, but also not the full group can improve upon that allocation, so it
is in the Core. The only potential problem lies in the fact that there could still
be coalitions with a size bigger than 1 and smaller than n.

Intuitively, you could think you would always be able to find an allocation
in the Core with a recursive strategy. For 2 players, you could combine optimal
allocations for both players individually. For 3 players, you could combine the
allocations in the Core for each group of 2 players, and so on. Since your
utility cannot decrease if more tasks get done, it does not seem to be a problem.
However, there is one problem that the example from Table 4.1 shows.
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Table 4.1: Combining trades does not work

Utility from task done

T1 T2 T3

N1 3 0 0
N2 0 3 0
N3 0 0 3

Disutility for doing task

T1 T2 T3

N1 − −2 −2
N2 −2 − −
N3 −2 − −

The allocation in the Core for N1 and N2 is that N1 performs T2 and N2

performs T1. They both gain 3 and pay 2 with that, gaining a net utility of
1. The allocation in the Core for N1 and N3 is that N1 performs T3 and N3

performs T1. Similarly, they both gain a net utility of 1. In this example
specifically, combining these allocations doesn’t give a satisfying result as N1

cannot get the value for T1 twice. In the allocations with 2 players, T1 kind of
trades tasks with the other player, both gaining 1 in the process. However, with
3 players, T1 cannot gain from more than 1 trade because N2 and N3 both offer
the same task. Because of this, the combined allocation is not in the Core.

In this example, there is a different allocation that is in the Core, but it does
show that combining doesn’t work if 2 players can do the same task. The actual
example with an empty Core is similar to an unstable example in social choice.
Say three people N1, N2 and N3 have to choose between three alternatives
A1, A2 and A3, and the ability to form a coalition and change the outcome if 2
players would rather have a different outcome, with preferences as the following.

A1 �N1
A2 �N1

A3

A2 �N2 A
3 �N2 A

1

A3 �N3
A1 �N3

A2

In this example, if the outcome is A1, N2 and N3 would rather have A3. If
the outcome is A2, N1 and N3 would rather have A1. If the outcome is A3, N1

and N2 would rather have A2. This means that for each outcome, there is a
coalition that wants another outcome and is able to get it (because they are the
majority). If a similar example exists in the model of this research, then the
Core can be empty. The example in Table 4.2 is such a similar example.

Again, the allocation in the Core for N1 and N2 is that N1 performs T2 and
N2 performs T1. This gains N1 a net utility of 2 and N2 a net utility of 1. The
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Table 4.2: Example of an instance with allocations forming a cycle

Utility from task done

T1 T2 T3

N1 101 0 0
N2 0 101 0
N3 0 0 101

Disutility for doing task

T1 T2 T3

N1 − −99 −100
N2 −100 − −99
N3 −99 −100 −

allocation in the Core for N1 and N3 is very similar and gains N1 a net utility
of 1 and N3 a net utility of 2. And finally, the allocation in the Core for N2 and
N3 gains N2 a net utility of 2 and N3 a net utility of 1. The effect of this is that
N1 would rather trade with N2, N2 would rather trade with N3 and N3 would
rather trade with N1. However, because of the symmetry, there exists another
allocation where N1 performs T2, N2 performs T3 and N3 performs T1, gaining
them all 2, making that the allocation in the Core.

To finally construct the problem with the empty Core, we have to break
the symmetry and make the values of the tasks different. To make the trades
fair again, we have to introduce tasks that act as side payments. Such tasks
effectively allow a player i to pay a player k x utility.

Definition 4.2.1. We say that player i can pay player j x utility if there exists
a task t for which gj,t = x, gk,t = 0 for each k ∈ N \ j, ci,t = x and ck,t = − for
each k ∈ N \ i.

If we make the values of the tasks different, and introduce the ability for
each player to give exactly the difference between the value of their task and
the task of another player to that other player, the symmetry is broken, and
there will not exist an allocation in the Core.

Theorem 6. For instances with n ≥ 3, the Core can be empty.

Proof. This proof uses an example of an instance, with some observations that
show the instance has an empty Core.

The instance from Table 4.3 has an empty Core. This can be verified with
a few observations.

First of all, the maximum Utilitarian Welfare is 6, which can be verified
with Algorithm 1. This means that whenever a player receives more than 6 in
an allocation, someone else in that allocation receives less than 0. From this
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Table 4.3: Instance with an empty Core

Utility from task done

T1 T2 T3 T4 T5 T6

N1 121 0 0 0 0 0
N2 0 111 0 10 0 0
N3 0 0 101 0 10 20

Disutility for doing task

T1 T2 T3 T4 T5 T6

N1 − −109 −100 −10 − −20
N2 −120 − −99 − −10 −
N3 −119 −110 − − − −

follows that any allocation that gives more than 6 or less than 0 utility to any
player is not in the Core by Lemma 3.

Let’s first look at all possible allocations that can give N1 a utility of at least
0 and at most 6. This can be done in 3 ways.

Somebody else does T1, N1 does T2 and T4 In this case, let’s look at
what utility N2 receives. Since N1 does T2 and T4, N2 gains 121 utility. The
only way to have at least 0 and at most 6 utility is by doing only T1. Since
T3, T5 and T6 cannot be done by N3, N3 gains no utility, so the only way
to gain at least 0 utility is by doing no task. This leaves only the allocation
A1 = ({T2, T4}, {T1}, ∅).

Somebody else does T1, N1 does T3 and T6 In this case, let’s look at
what utility N3 receives. Since N1 does T4 and T6, N3 gains 101 utility. The
only way to have at least 0 and at most 6 utility is by doing only T1. Since
T2 and T4 cannot be done by N2, N2 gains no utility, so the only way to
gain at least 0 utility is by doing no task. This leaves only the allocation
A2 = ({T3, T6}, ∅, {T1}).

Nobody does T1, N1 does no task In this case, let’s look at what utility
N2 receives. Since N1 was the only player able to do task T4 and did not do it,
N2 either only gains 111 from T2 or noting at all.

If N2 gains 111 from T2, the only way to have at least 0 and at most 6 utility
is by doing T3 and T5. In that case, N3 gains 111 utility, so the only way to
gain at least 0 and at most 6 utility is by doing task T2. This leaves only the
allocation A3 = (∅, {T3, T5}, {T2}).

If N2 does nothing at all, the only way to have at most 6 utility is if nobody
does T2. Since T1 and T2 are done by nobody and N3 cannot do T3, T4, T5
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and T6, N3 also does no task in this case. This leaves only the allocation
A4 = (∅, ∅, ∅).

The utilities for each player for each allocation are shown in Table 4.4.

Table 4.4: Utilities for each allocation

A1 A2 A3 A4

N1 2 1 0 0
N2 1 0 2 0
N3 0 2 1 0

Since N2 and N3 have a higher utility in A3 than in A4, and N1 does no task
in A3, A3 dominates A4. Also, N1 and N3 have a higher utility in A2 than A3

and N2 does no task in A2, so A2 dominates A3. Similarly, A1 dominates A2 and
A3 dominates A1. Since every allocation is dominated by another allocation,
the Core is empty.

4.2.2 Complexity of finding the Core

Since we would like an algorithm that finds an allocation in the Core, we need
to know how hard the problem is to find an allocation in the Core. However, we
will first look at an intuitively easier problem. Given an allocation, we would
like to know if it is in the Core.

Definition 4.2.2. Given an instance with gain table G, cost table C and an
allocation A, the Allocation-In-Core problem (G,C,A) is to determine if the
given allocation is in the Core.

To prove this is an NP-hard problem, we reduce the Subset-Sum problem
to this problem in polynomial time. The idea is that in allocation A, N1, N2

and N3 cooperate with each other to all gain utility. Now, N1 and N2 can also
cooperate together to gain more utility between them in another allocation A∗.
However, this utility is not fairly distributed for N1, so N1 has no incentive to
do this. There is also a number of tasks with which N2 can pay N1. Only if
there exists a set of those tasks that allows N2 to pay exactly some value to
N1 can they redistribute utility such that A∗ dominates A. This is essentially
the Subset-Sum problem, and since that is an NP-hard problem, this problem
is NP-hard as well.

Theorem 7. For instances with n ≥ 3, the Allocation-In-Core problem is NP-
hard.

Proof. This proof is by reduction from the Subset-Sum problem. We reduce the
Subset-Sum problem in polynomial time to this Allocation-In-Core problem.
If the Allocation-In-Core problem would not be NP − hard, the Subset-Sum
problem would then also not be NP − hard. Since that is a contradiction, the
Allocation-In-Core problem must also be NP − hard.
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Reduction

Given an instance of the Subset-Sum problem I = (S,W ) = ({w1, ..., wn},W )
withW and all w ∈ S natural numbers. Construct the instance of the Allocation-
In-Core problem f(I) = (G,C,A) with G and C according to Table 4.5, and
A = (A1, A2, A3) where:

A1 = {tn+1}
A2 = {tn+2}
A3 = {tn+3}

Table 4.5: Reduced instance to prove determining if an allocation is in the Core
is NP-hard

Utility from task done

T1 ... Tn Tn+1 Tn+2 Tn+3

N1 w1 ... wn 0 0 W + 2
N2 0 ... 0 0 0 W + 2
N3 0 ... 0 W + 2 W + 2 0

Disutility for doing task

T1 ... Tn Tn+1 Tn+2 Tn+3

N1 − ... − −(W + 1) − −2 ∗W
N2 −w1 ... −wn − −(W + 1) −
N3 − ... − − − −2 ∗W

We can calculate the utilities of each player for allocation A:

u1(A) = g1,n+1 + g1,n+2 + g1,n+3 − c1,n+1 = 0 + 0 + (W + 2)− (W + 1) = 1

u2(A) = g2,n+1 + g2,n+2 + g2,n+3 − c2,n+2 = 0 + 0 + (W + 2)− (W + 1) = 1

u3(A) = g3,n+1 + g3,n+2 + g3,n+3 − c3,n+3 = (W + 2) + (W + 2) + 0− (2 ·W ) = 4

Correctness of the reduction

We will prove the reduction is correct by showing that I has a subset that sums
to W if and only if A from f(I) is not in the Core.

If I has a subset that sums to W then allocation A from f(I) is not in
the Core Let I = (S,W ) be an arbitrary instance of Subset-Sum where there
exists a subset X ⊆ S which sum is W . Consider the instance f(I) = (G,C,A)
of Solution-In-Core. We show that A is not in the Core by constructing an
allocation A∗ that dominates A.
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Consider the allocation A∗ = (A∗1, A
∗
2, A

∗
3) where:

A∗1 = {tn+3}
A∗2 = {tj ∈ T | wj ∈ X}
A∗3 = ∅

The utilities of N1 and N2 for allocation A∗ are:

u1(A∗) =
∑

j∈[1,n],wj∈X

g1,j + g1,n+3 − c1,n+3 = W + (W + 2)− (2 ·W ) = 2

u2(A∗) =
∑

j∈[1,n],wj∈X

−c2,j + g2,n+3 = −W + (W + 2) = 2

Since u1(A∗) > u1(A), u2(A∗) > u2(A) and A∗3 = ∅, it holds for each player
i ∈ N that either ui(A

∗) > ui(A) or A∗i = ∅. Because of this A∗ dominates A,
so A is not in the Core.

If allocation A from f(I) is not in the Core then I has a subset that
sums to W Let f(I) = (G,C,A) be an instance of Solution-In-Core reduced
from an arbitrary instance I = (S,W ) of Subset-Sum, where A is not in the
Core. Since A is not in the Core, there exists an allocation A∗ that dominates
A. We are going to show with which coalition A∗ dominates A, and that this
means there exists a X ⊆ S that sums to W .

There has to be a coalition A∗ that dominates A. We are going to look at
all possible coalitions and check what allocations can exist.

• For the coalition {N1}: if N2 and N3 do no tasks, the maximum utility N1

can get is when W = 1 with the allocation A∗ = ({tn+3}, ∅, ∅): u1(A∗) =
g1,n+3 − c1,n+3 = (W + 2)− (2 ·W ) = 2−W = 1. Since u1(A∗) ≤ u1(A),
A∗ does not dominate A.

• For the coalition {N2}: if N1 and N3 do no tasks, the maximum utility
N2 can get is with the allocation A∗ = (∅, ∅, ∅): u2(A∗) = 0. Since
u2(A∗) ≤ u2(A), A∗ does not dominate A.

• For the coalition {N3}: if N1 and N2 do no tasks, the maximum utility
N3 can get is with the allocation A∗ = (∅, ∅, ∅): u3(A∗) = 0. Since
u3(A∗) ≤ u3(A), A∗ does not dominate A.

• For the coalition {N1, N3}: if N2 does no tasks, the maximum total
utility N1 and N3 can get is when W = 1 with the allocation A∗ =
({tn+1}, ∅, {tn+3}): u1(A∗) +u3(A∗) = g1,n+1 + g1,n+3 + g3,n+1 + g3,n+3−
c1,n+1− c3,n+3 = 0+(W +2)+(W +2)+0− (W +1)− (2 ·W ) = 3−W =
2. Since u1(A∗) + u3(A∗) ≤ u1(A) + u3(A), either u1(A∗) ≤ u1(A) or
u3(A∗) ≤ u3(A), so A∗ does not dominate A.
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• For the coalition {N2, N3}: if N1 does no tasks, the maximum total
utility N2 and N3 can get is when W = 1 with the allocation A∗ =
(∅, {tn+2}, {tn+3}): u2(A∗) +u3(A∗) = g2,n+2 + g2,n+3 + g3,n+2 + g3,n+3−
c2,n+2− c3,n+3 = 0+(W +2)+(W +2)+0− (W +1)− (2 ·W ) = 3−W =
2. Since u2(A∗) + u3(A∗) ≤ A(u2) + A(u3), either u2(A∗) ≤ u2(A) or
u3(A∗) ≤ u3(A), so A∗ does not dominate A.

• For the coalition {N1, N2, N3}: the maximum total utility N1, N2 and N3

can get is with the allocation A∗ = ({tn+1}, {tn+2}, {tn+3}): u1(A∗) +
u2(A∗) + u3(A∗) = g1,n+1 + g1,n+2 + g1,n+3 + g2,n+1 + g2,n+2 + g2,n+3 +
g3,n+1 + g3,n+2 + g3,n+3− c2,n+2− c3,n+3 = 0 + 0 + (W + 2) + 0 + 0 + (W +
2) + (W + 2) + (W + 2) + 0 − (W + 1) − (W + 1) − (2 ·W ) = 6. Since
u1(A∗)+u2(A∗)+u3(A∗) ≤ u1(A)+u2(A)+u3(A), either u1(A∗) ≤ u1(A)
or u2(A∗) ≤ u2(A) or u3(A∗) ≤ u3(A), so A∗ does not dominate A.

Since an A∗ that dominates A did not exist with all other possible coalitions,
it has to exist with the coalition {N1, N2}. That means there has to exist an
allocation A∗ where u1(A∗) > 1, u2(A∗) > 1 and A∗3 = ∅. Since all numbers are
natural, that has to mean u1(A∗) ≥ 2 and u2(A∗) ≥ 2, which means u1(A∗) +
u2(A∗) ≥ 4. This can only happen if tn+3 ∈ A∗1, tn+1 /∈ A∗1 and tn+2 /∈ A∗2.
Since that gives a maximum total utility of 4, we know u1(A∗) = u2(A∗) = 2.
Then, we can formulate the next equation:

u1(A∗) =
∑

j∈[1,n],tj∈A∗2

g1,j + g1,n+3 − c1,n+3 =
∑

j∈[1,n],tj∈A∗2

g1,j + (W + 2)− (2 ·W ) = 2

∑
j∈[1,n],tj∈A∗2

g1,j = W

By the construction of the reduction, that means ∑
j∈[1,n],tj∈A∗2

wj = W

Now, we can construct X = {wj ∈ S | tj ∈ A∗2} where
∑
wj∈X wj = W .

Because of this, X is a solution to the Subset-Sum problem.

Polynomial time

Creating 3 players and n+ 3 tasks takes O(|S|) time. Assigning gains and costs
for all tasks t1, ..., tn takes O(|S|) time. Assigning gains and costs for tasks
tn+1, tn+2, tn+3 takes O(1) time. Creating the allocation takes O(|S|) time. In
total, this takes O(|S|) time, which is polynomial.

Now, we will look at the problem to determine if an instance has a non-empty
Core.
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Definition 4.2.3. Given an instance with gain table G and cost table C, the
Non-Empty-Core problem (G,C) is to determine if the instance has a non-empty
Core.

To prove this is an NP-hard problem, we reduce the Subset-Sum problem
to this problem in polynomial time. The reduced instance is very similar to the
instance from Table 4.3. There are three allocations where in each allocation,
two players can collude to improve their utility, decreasing the utility of the
third. However, there is a fourth player N4 who can cooperate with N1. This
cooperation would mean that N1 has no incentive anymore to collude with N3,
which means the allocation where that happens is in the Core. This cooperation
is only possible if N4 can pay some exact value to N1. Similar to the proof of
Theorem 7, this makes it so that you essentially solve a Subset-Sum problem to
solve this, meaning the Non-Empty-Core problem is NP-hard.

Theorem 8. For instances with n ≥ 4, the Non-Empty-Core problem is NP-
Hard.

Proof. This proof is by reduction from the Subset-Sum problem. We reduce
the Subset-Sum problem in polynomial time to this Non-Empty-Core problem.
If the Non-Empty-Core problem would not be NP − hard, the Subset Sum
problem would then also not be NP − hard. Since that is a contradiction, the
Non-Empty-Core problem must also be NP − hard.

Reduction

Given an instance of the Subset Sum problem I = (S,W ) = ({w1, ..., wn},W )
with W and all w ∈ S natural numbers. Construct the instance of the Non-
Empty-Core problem f(I) = (G,C) according to Table 4.6.

Correctness of the reduction

We will prove the reduction is correct by proving that if and only if I has a
subset that sums to W , then f(I) has a non-empty Core.

If I has a subset that sums to W then f(I) has a non-empty Core Let
I = (S,W ) be an arbitrary instance of Subset-Sum where there exists a subset
X ⊆ S which sum is W . Consider the instance f(I) = (G,C) of Non-Empty-
Core. We show that there exists an allocation in the Core A.

Consider the allocation A = (A1, A2, A3, A4) where:

A1 = {Tn+7}
A2 = {Tn+3, Tn+5}
A3 = {Tn+2}
A4 = {Tn+1} ∪ {Tj ∈ T | wj ∈ X}
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Table 4.6: Reduced instance to prove determining if the Core is empty is NP-
hard

Utility from task done

T1 ... Tn Tn+1 Tn+2 Tn+3 Tn+4 Tn+5 Tn+6 Tn+7

N1 w1 ... wn 121 0 0 0 0 0 0
N2 0 ... 0 0 111 0 10 0 0 0
N3 0 ... 0 0 0 101 0 10 20 0
N4 0 ... 0 0 0 0 0 0 0 W + 120

Disutility for doing task

T1 ... Tn Tn+1 Tn+2 Tn+3 Tn+4 Tn+5 Tn+6 Tn+7

N1 − ... − − −109 −100 −10 − −20 −
N2 − ... − −120 − −110 − −10 − −
N3 − ... − −119 −110 − − − − −
N4 −w1 ... −wn −120 − − − − − −

This means:

u1(A) =
∑

j∈[1,n],wj∈X

g1,j + g1,n+1 − c1,n+7

= W + 121− (W + 120) = 1

u2(A) = g2,n+2 − c2,n+3 − c2,n+5

= 111− 99− 10 = 2

u3(A) = g3,n+3 + g3,n+5 − c3,n+2

= 101 + 10− 110 = 1

u4(A) = g4,n+7 −
∑

j∈[1,n],wj∈X

c4,j − c4,n+7

= W + 120−W − 120 = 0

We are going to show that there exists no allocation A∗ that dominates A
via every possible coalition.

In an allocation A∗, a coalition P must exist where for each i ∈ P , ui(A
∗) >

ui(A) and for each i ∈ N \P , A∗i = ∅. Since all values are natural numbers, the
first condition means that ui(A

∗) ≥ ui(A) + 1 for each i ∈ P , which also means
that

∑
i∈P ui(A

∗) ≥ ui(A) + |P |.
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With the algorithm to find the maximum Utilitarian Welfare, we can find
the maximum

∑
i∈P ui(A

∗) given that A∗i = ∅ for every i ∈ N \ P .
As shown in Table 4.7,

∑
i∈P u

∗
i �

∑
i∈P ui+ |P | for every possible coalition.

Therefore, we know A∗ cannot exist, so A is in the Core.

Table 4.7: Comparison of the utility of players in a coalition for allocation A
and any other allocation

Coalition Maximum total utility in coalition Total utility of coalition in A
P Maximum

∑
i∈P u

∗
i

∑
i∈P ui + |P |

{N1} 0 1 + 1 = 2
{N2} 0 2 + 1 = 3
{N3} 0 1 + 1 = 2
{N4} 0 0 + 1 = 1

{N1, N2} 3 3 + 2 = 5
{N1, N3} 3 2 + 2 = 5
{N1, N4} 1 1 + 2 = 3
{N2, N3} 3 3 + 2 = 5
{N2, N4} 0 2 + 2 = 4
{N3, N4} 0 1 + 2 = 3

{N1, N2, N3} 6 4 + 3 = 7
{N1, N2, N4} 3 3 + 3 = 6
{N1, N3, N4} 3 2 + 3 = 5
{N2, N3, N4} 3 3 + 3 = 6

{N1, N2, N3, N4} 6 4 + 4 = 8

If f(I) has a non-empty Core then I has a subset that sums to W Let
f(I) = (G,C) be an instance of Non-Empty-Core reduced from an arbitrary
instance I = (S,W ) of Subset-Sum, which has a non-empty Core. This means
there exists an allocation in the Core A. We show that there exists a subset
X ⊆ S which sum is W .

First of all, the maximum utilitarian utility is 6. This means that whenever
a player (or a combination of players) receive(s) more than 6 in an allocation,
someone else in that allocation receives less than 0, which means that allocation
is not in the Core by Lemma 3.

Let’s first look at all possible allocations A that can give N2 a utility of at
least 0 and at most 6. This can be done in 3 ways.

Somebody else does Tn+2 and Tn+4, and N2 does Tn+1 but doesn’t
do Tn+3 and Tn+5 In this case, let’s look at what utility N1 and N4 combined
receive. Since N2 does Tn+1, N1 and N4 combined gain 121 utility. Since only
N1 can do Tn+4, and we assumed Tn+4 is done, the only way to have at least
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0 and at most 6 utility is if N1 does Tn+2 and Tn+4 and doesn’t do Tn+3 and
Tn+6. Since Tn+3 is neither done by N1 nor by N2, N3 gains no utility, so the
only way to gain at least 0 utility is by doing no task. Since we established the
assignments of Tn+1, ..., Tn+6 and the other tasks don’t influence N2 and N3,
we can already determine their utilities:

u2(A) = g2,n+2 + g2,n+4 − c2,n+1

= 111 + 10− 120 = 1

u3(A) = 0

Now consider the allocation A∗ = (∅, {Tn+3, Tn+5}, {Tn+2}, ∅). In this allo-
cation,

u2(A∗) = g2,n+2 − c2,n+3 − c2,n+5

= 111− 99− 10 = 2

u3(A∗) = g3,n+3 + g3,n+5 − c3,n+2

= 101 + 10− 110 = 1

The utilities of N2 and N3 are higher, and N1 and N4 perform no tasks,
so the allocation will not be in the Core. That means that there cannot be an
allocation in the Core under this assumption, which means this assumption was
incorrect.

Nobody does Tn+2 nor Tn+4, N2 does no task In this case, let’s look
at what utility N3 receives. Since N2 was the only player able to do task Tn+5

and did not do it, N3 either gains 121 from Tn+3 and Tn+6 while costing 119
from Tn+1 or gains nothing at all while also not doing a task.

In the first case, since we established the assignments of Tn+1, ..., Tn+6 and
the other tasks don’t influence the utility of the combination N1 and N4, we
can already determine their total utility:

u1(A) + u4(A) = g1,n+1 − c1,n+3 − c1,n+6

= 121− 100− 20 = 1

In the second case, since we established the assignments of Tn+2, ..., Tn+6 and
the other tasks except for Tn+1 don’t influence the utility of the combination N1
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and N4, their utility is only dependent on if Tn+1 is done by N4 or unassigned.
Their combined utility is respectively:

u1(A) + u4(A) = g1,n+1 − c4,n+1

= 121− 120 = 1

u1(A) + u4(A) = 0

In all these cases, their combined utility is at most 1, which means that
u1(A) is at most 1 in any allocation in the Core by Lemma 3. Also, since no
task was done that gained N2 anything and N2 did no task,

u1(A) ≤ 1

u2(A) = 0

Now consider the allocation A∗ = ({Tn+2, Tn+4}, {Tn+1}, ∅, ∅). In this allo-
cation,

u1(A∗) = g1,n+1 − c1,n+2 − c2,n+4

= 121− 109− 10 = 2

u2(A∗) = g2,n+2 + g2,n+4 − c2,n+1

= 111 + 10− 120 = 1

The utilities of N1 and N2 are higher, and N1 and N4 perform no tasks,
so the allocation will not be in the Core. That means that there cannot be an
allocation in the Core under this assumption, which means this assumption was
incorrect.

Somebody else does Tn+2, nobody does Tn+4, and N2 does Tn+3 and
Tn+5 In this case, let’s look at what utility N3 receives. Since N2 does Tn+3

and Tn+5, N3 gains 111 utility. The only way to have at least 0 and at most
6 utility is by doing Tn+2 while nobody does Tn+6. Since we established the
assignments of Tn+1, ..., Tn+6 and the other tasks don’t influence N3, we can
already determine their utility:
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u3(A) = g3,n+3 + g3,n+5 − c3,n+2

= 101 + 10− 110 = 1

Now consider the allocation A∗ = ({Tn+3, Tn+6}, ∅, {Tn+1}, ∅). In this allo-
cation,

u1(A∗) = g1,n+1 − c1,n+3 − c1,n+6

= 121− 100− 20 = 1

u3(A∗) = g3,n+3 + g3,n+6 − c3,n+1

= 101 + 20− 119 = 2

Since we know the allocation is in the Core, it cannot be dominated by this
allocation. Since u3(A∗) > u3(A), and N2 and N4 perform no tasks, u1(A∗)
cannot be higher than u1(A). Therefore, u1(A) ≥ 1.

By Lemma 3, we also know u4(A) ≥ 0. Therefore, u1(A) +u4(A) ≥ 1. Since
only Tn+1 increases the utility of N1 and N4 combined, and Tn+1 is not done
by N2 and N3, it must be done by N4. Since that costs N4 utility and u4 ≥ 0,
Tn+7 must be done by u1. Now,

u1(A) + u4(A) = g1,n+1 − c4,n+1

= 121− 120 = 1

Since u1(A) ≥ 1 and u4(A) ≥ 0 we know u1(A) = 1 and u4(A) = 0. The
only thing we haven’t established is the assignments of T1, ..., Tn. Since only N4

can do these, N4 does some subset Y ⊆ {T1, ..., Tn}. We can now establish

u4(A) = g4,n+7 −
∑

j∈[1,n],Tj∈Y

c4,j − c4,n+1

= (W + 120)−
∑

j∈[1,n],Tj∈Y

wj − 120 = 0

∑
j∈[1,n],Tj∈Y

wj = W

Now, we can construct X = {wj ∈ S | Tj ∈ Y } where
∑
wj∈X wj = W .

Because of this, X is a solution to the Subset Sum problem.
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Polynomial time

Creating 4 players and n + 7 tasks takes O(|S|) time. Assigning gains and
costs for all tasks t1, ..., tn takes O(|S|) time. Assigning gains and costs for
tasks tn+1, ..., tn+7 takes O(1) time. In total, this takes O(|S|) time, which is
polynomial.

Finally, we will prove that finding the Core is also NP-hard. This follows
trivially from Theorem 8

Definition 4.2.4. Given an instance with gain table G and cost table C, the
Find-Core problem (G,C) is to find an allocation A in the Core.

Corollary 8.1. For instances with n ≥ 4, the Find-Core problem is NP-hard.

Proof. This proof is by contradiction. We assume finding a solution in the Core
can be done in polynomial time, and find a contradiction.

Let M be the algorithm that finds a solution in the Core in polynomial time.
Now, Algorithm 2 is a polynomial time algorithm that determines if the Core is
non-empty. It is correct because it outputs Y ES if and only if there is a solution
in the Core. It runs in polynomial time, because M runs in polynomial time.
Since this contradicts Theorem 8, the assumption cannot be true, so finding a
solution in the Core is also NP-hard.

Algorithm 2 Determine if Core is non empty

Run M on I = (G,C)
if M finds a solution then

return Y ES
else

return NO
end if

4.3 The Epsilon Core

Now we know there might not be a Core, we cannot avoid a situation where
players have an incentive to form a coalition. What we can do however, is
to minimize that incentive. In other words, we want to minimize the utility
players gain by joining a coalition. Since a coalition only works if all players in
the coalition agree to it, we only have to minimize the difference in utility for
one of the players, the player with the lowest difference. If this difference in an
allocation is at most some value ε, we say the allocation is in the ε-Core (see
Section 3.2.3). In this section, we discuss a bound on ε for which there always
exists an ε-Core.
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4.3.1 A bound on Epsilon

We would like to find a bound for this ε. However, we will never be able to find
such a bound because by scaling the instance (multiplying all values of G and C
with some constant), the maximum ε for which there exists a non-empty ε-Core
scales the same way. Therefore, ε can become arbitrarily large.

We can also relate the epsilon to the utility a player already receives. How-
ever, with example from Table 4.8, we can establish that we will never find a
bound this way as well. This can be seen as follows.

Table 4.8: Example showing that there is no bound on an epsilon relative to
the utility of the player

Utility from task done

T1 T2 T3 T4 T5 T6

N1 120 ∗X + 1 0 0 0 0 0
N2 0 110 ∗X + 1 0 10 ∗X 0 0
N3 0 0 100 ∗X + 1 0 10 ∗X 20 ∗X

Disutility for doing task

T1 T2 T3 T4 T5 T6

N1 − −109 ∗X −100 ∗X −10 ∗X − −20 ∗X
N2 −120 ∗X − −99 ∗X − −10 ∗X −
N3 −119 ∗X −110 ∗X − − − −

If any player gains a negative utility, they can increase their utility infinitely
much by doing nothing. Therefore, such allocations are never in the Core for
a certain bound. Like in the example from Theorem 6, the only allocations
that give all players a non-negative value are A1 = ({T2, T4}, {T1}, ∅), A2 =
({T3, T6}, ∅, {T1}), A3 = (∅, {T3, T5}, {T2}) and A4 = (∅, ∅, ∅). The utilities of
the players in these allocations are as shown in Table 4.9.

Table 4.9: Utilities for each allocation

A1 A2 A3 A4

N1 X+1 1 0 0
N2 1 0 X+1 0
N3 0 X+1 1 0

For each allocation, there is another allocation where 2 players can increase
their utility with some constant that cannot be bounded as X becomes infinitely
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large, while the other player does nothing. Therefore, no bound can be found
in this example.

In order to give such a bound, there has to be some maximum in the value a
player can gain from the tasks. So given MaxUtil is the maximum utility any
player can get MaxUtil = maxi∈N

∑
j∈T Gij , we would like to find an allocation

in the ε-Core where ε/MaxUtil is as low as possible.

Bounds on epsilon with respect to the maximum utility

A lower bound on the minimum ε/MaxUtil for which an ε-Core always exists
can be proven with an example of an instance where there is no ε-Core for a
certain ε/MaxUtil. The example is very similar to the example from Theorem 6.

Theorem 9. If ε/MaxUtil < 1/15, the ε-Core can be empty.

Proof. This proof uses an example of an instance. In this instance, for each
ε < MaxUtil/15, the ε-Core is empty. Because of this, the minimum ε/MaxUtil
for which there always exists an ε-Core is 1/15.

The example from Table 4.10 has an empty ε-Core for each ε < MaxUtil/15.
Since MaxUtil = 15, we have to proof each allocation is ε-dominated by another
allocation for each ε < 1. This can be verified with a few observations.

Table 4.10: Example showing the lower bound on epsilon with respect to the
maximum utility

Utility from task done

T1 T2 T3 T4 T5 T6

N1 12 0 0 0 0 0
N2 0 7 0 5 0 0
N3 0 0 4 0 3 8

Disutility for doing task

T1 T2 T3 T4 T5 T6

N1 − −5 −3 −5 − −8
N2 −11 − −2 − −3 −
N3 −10 −6 − − − −

First of all, any allocation that gives at most -1 utility to any player is not
in the ε-Core, because the allocation where nobody does any task ε-dominates
it. This is because that player could form a coalition and its utility would be 0,
which is more than ε higher than -1, for each ε < 1.

Let’s first look at all assignments of task T1.

N2 does T1 In this case, N2 pays 11 utility. The only way to have more than
-1 utility is if T2 and T4 are done, and N2 does only T1. Now, since N1 has to
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do T4, he cannot do both T3 and T6. Since N2 does not do T3 and T5, only one
of T3, T5 and T6 gets done. This means N3 cannot do T2. Therefore, N1 has to
do T2. Since N1 now does T2 and T4, he cannot do any other task. This leaves
only the allocation A1 = ({T2, T4}, {T1}, ∅).

N3 does T1 In this case, N3 pays 10 utility. The only way to have more than
-1 utility is if T6 is done, and N3 does not do T2. Now, since N1 has to do T6,
he cannot do T2 or T4. Since T2 and T4 are not done, N2 can do no tasks. This
means that for N3 to get more than -1 utility, N1 needs to do T3. This leaves
only the allocation A2 = ({T3, T6}, ∅, {T1}).

Nobody does T1 In this case, N1 gains no utility, so N1 cannot do any task.
Now, either N3 does T2 or nobody does T2.

If N3 does T2, the only way for N3 to gain more than -1 utility is for N2 to
do T3 and T5. This leaves only the allocation A3 = (∅, {T3, T5}, {T2}).

If nobody does T2, N2 gains no utility, so N2 cannot do any task. That
means N3 also gains no utility, so N3 cannot do any task as well. This leaves
only the allocation A4 = (∅, ∅, ∅).

The allocations where each player has more than -1 utility areA1 = ({T2, T4}, {T1}, ∅),
A2 = ({T3, T6}, ∅, {T1}), A3 = (∅, {T3, T5}, {T2}) and A4 = (∅, ∅, ∅). The utili-
ties of the players are shown in Table 4.11. Each allocation is dominated by an
allocation via a coalition where all players can improve their utility by 1. There-
fore, the smallest ε for which their exists an ε-Core is 1. Since MaxUtil = 15
(for player N3), ε/MaxUtil = 1/15. This means that if ε/MaxUtil < 1/15, the
ε-Core can be empty.

Table 4.11: Utilities for each allocation

A1 A2 A3 A4

N1 2 1 0 0
N2 1 0 2 0
N3 0 2 1 0

An upper bound of 1/2 on the minimum ε/MaxUtil for which an ε-Core
always exist can be proven with some observations. Any instance without an
ε-Core needs a cycle of dominating allocations. In this cycle, one player needs
to be in two coalitions that are adjacent in this cycle. Otherwise, we would be
able to combine the dominating allocations in the way discussed in Theorem 5
to get an allocation that would replace both allocations in the cycle. Since one
player needs to increase his utility in both dominating allocations with ε, his
utility in the last allocation must be at least 2∗ ε. That means 2∗ ε ≤MaxUtil.

Theorem 10. If ε/MaxUtil ≥ 1/2, there exists an ε-Core.
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Proof. This proof is by contradiction. We assume there exists an instance for
which the ε-Core for ε/MaxUtil = 1/2 is empty and show a contradiction.

Given an arbitrary instance with an empty ε-Core for ε/MaxUtil = 1/2. In
the allocation A = (∅, ..., ∅), since nobody does any tasks, the utility of each
player i ∈ N is ui(A) = 0. Since the ε-Core is empty, there has to exist an
allocation that ε-dominates A. Let A∗ be the allocation that ε-dominates A via
the largest coalition P ∗. Now, for each i ∈ P ∗, ui(A∗) > MaxUtil/2.

Now assume to the contrary that there does not exist an allocation A′ that
ε-dominates A∗ with a coalition P ′ where there exists a player i that is both
i ∈ P ′ and i ∈ P ∗. Since the ε-Core for ε = MaxUtil/2 is empty, there has
to exist an allocation that ε-dominates A∗. Let A′ be any allocation that ε-
dominates A∗ via coalition P ′. Now, let A′∗ be the allocation where for each
i ∈ P ∗ and j ∈ T , j ∈ A′∗i if j ∈ A∗i and where for each i ∈ P ′ and j ∈ T ,
j ∈ A′∗i if j ∈ A′i and j /∈ ∪k∈P∗A∗k. Now, because P ∗ and P ′ are disjoint, for
each i ∈ P ∗

ui(A
′∗) =

∑
j∈∪k∈P∗∪P ′A

′∗
k

gi,j −
∑
j∈A′∗i

ci,j

=
∑

j∈∪k∈P∗A
∗
k

gi,j +
∑

j∈∪k∈P ′A
′
k|j /∈∪k∈P∗A

∗
k

gi,j −
∑
j∈A∗i

ci,j

≥
∑

j∈∪k∈P∗A
∗
k

gi,j −
∑
j∈A∗i

ci,j = ui(A
∗) > MaxUtil/2

and for each i ∈ P ′

ui(A
′∗) =

∑
j∈∪k∈P∗∪P ′A

′∗
k

gi,j −
∑
j∈A′∗i

ci,j

=
∑

j∈∪k∈P∗A
∗
k

gi,j +
∑

j∈∪k∈P ′A
′
k|j /∈∪k∈P∗A

∗
k

gi,j −
∑
j∈A′i

ci,j

≥
∑

j∈∪k∈P ′A
′
k|j /∈∪k∈P∗A

∗
k

gi,j −
∑
j∈A′i

ci,j = ui(A
′) > MaxUtil/2

Now, since ui(A
′∗) > MaxUtil/2 for each i ∈ P ∗ ∪ P ′ and A′∗i = ∅ for each

i ∈ N \ P ∗ \ P ′, A′∗i ε-dominates A with ε = MaxUtil/2 via coalition P ∗ ∪ P ′.
This contradicts the fact that P ∗ is the largest coalition that ε-dominates A,
which means the assumption that there does not exist an allocation A′ that ε-
dominates A∗ with a coalition P ′ where there exists a player i ∈ P ′ and i ∈ P ∗
is incorrect.

Now, there exists an allocation A′ that ε-dominates A∗ with a coalition P ′

where there exists a player i ∈ P ′ and i ∈ P ∗. This means that for the player
i ∈ P ′ where i ∈ P ∗ that ui(A

′) > ui(A
∗) +MaxUtil/2 > MaxUtil. This con-

tradicts the fact that MaxUtil is the maximum utility of any player. Therefore,
the original assumption that there exists an instance for which the ε-Core for
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ε/MaxUtil = 1/2 is empty is incorrect. This proves that if ε/MaxUtil ≥ 1/2,
an ε-Core exists.

4.4 Trade-off between Utilitarian Welfare and
stability

Now that we know the limitations of the Utilitarian Welfare and the Core in-
dividually, we would like to know if we can find an allocation that performs
decent in both measures. In this section, we show that when we maximize the
Utilitarian Welfare, we cannot give a non-trivial bound on the minimum ε for
which an ε-Core exists. Additionally, we show that when we find an allocation
in the Core, we cannot give a non-trivial bound on the minimum Utilitarian
Welfare.

We can show this with the instance from Table 4.12. In this instance, the
allocation with the maximum Utilitarian Welfare is not in ε-Core for ε < Y .
Since Y is unbounded, no guarantee for ε can be given. The allocation in
the Core has 0 Utilitarian Welfare while another allocation has Y Utilitarian
Welfare. Since Y is unbounded, the Utilitarian Welfare can be arbitrarily worse
if we require an allocation in the Core.

Table 4.12: Tradeoff between Utilitarian Welfare and stability

Utility from task done

T1

N1 X + Y
N2 0

Disutility for doing task

T1

N1 −
N2 −X

Theorem 11. The lower bound on the minimum ε/MaxUtil for which the
maximum Utilitarian Welfare allocation is in the ε-Core is 1.

Proof. This proof uses the example of an instance from Table 4.12. In this in-
stance, only 2 allocations exist, A = (∅, {T1}) and A∗ = (∅, ∅). A is ε-dominated
with coalition {N2} by A∗ for any ε < X. Since MaxUtil = X + Y and X can
be arbitrarily large, a maximum Utilitarian Welfare allocation can be outside
an ε-Core for any ε/MaxUtil < 1. Thus, the lower bound on the minimum
ε/MaxUtil for which the maximum Utilitarian Welfare allocation is in the ε-
Core is 1.
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Theorem 12. The maximum Utilitarian Welfare allocation in the Core can
have an arbitrarily worse Utilitarian Welfare than the maximum Utilitarian
Welfare allocation.

Proof. This proof uses the example of an instance from Table 4.12. In this
instance, only 2 allocations exist, A = (∅, {T1}) and A∗ = (∅, ∅). Maximizing
the Utilitarian Welfare gives A, which gives a Utilitarian Welfare of Y . Since
this allocation is dominated with coalition {N2} by allocation A∗, it is not in
the Core. A∗ is in the Core, so it is the maximum Utilitarian Welfare allocation
in the Core, with a Utilitarian Welfare of 0. Since Y can be arbitrarily large,
the maximum Utilitarian Welfare allocation in the Core can have an arbitrarily
worse Utilitarian Welfare than the maximum Utilitarian Welfare allocation.

4.5 Conclusion

To conclude, we have proven there does not always exist a solution in the Core.
We might need to settle for a solution in some ε-Core. We know we can always
find such a ε-Core for ε ≥MaxUtil/2, and that we cannot guarantee a solution
in the ε-Core for ε < MaxUtil/15. Whether it is possible to guarantee solutions
in the ε-Core for an ε between those values is a question for future work.

We have also concluded that the minimum ε/MaxUtil for which the max-
imum Utilitarian Welfare allocation is in the ε-Core can be arbitrarily close to
1, and that the Utilitarian Welfare of the maximum Utilitarian Welfare allo-
cation in the Core can be arbitrarily worse than the Utilitarian Welfare of the
maximum Utilitarian Welfare allocation.

Finally, we have concluded that maximizing Utilitarian Welfare can be done
efficiently, but finding a solution in the Core cannot be done efficiently. There-
fore, we will present a pseudo-polynomial algorithm and an approximation al-
gorithm in Chapter 5.
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Chapter 5

Algorithms

Now that we have shown that finding the Core is NP − hard, we know it is
impossible to find a polynomial algorithm to find the Core. In this chapter, we
propose two algorithms for finding the allocation in the Core with the maxi-
mum Utilitarian Welfare, and compare them to a brute force approach. One
of the proposed algorithms is a pseudo-polynomial algorithm, the other is an
approximation algorithm. Their advantages and limitations will be discussed,
such as theoretical complexity and approximation bounds.

5.1 Brute force approach

A brute force approach to find the allocation in the Core with the maximum
Utilitarian Welfare would be to check for each possible allocation whether it is
in the Core. Since an allocation A is in the Core if there is no allocation that
dominates it, we have to check that no allocation dominates A. Algorithm 3
shows this approach in an algorithm.

Algorithm 3 Brute force algorithm to find an allocation in the Core

MaxUWAllocation← null
for all A do

for all A∗ do
if A∗ dominates A then

Continue with the next A
end if

end for
if UW (A) > UW (MaxUWAllocation) then

MaxUWAllocation← A
end if

end for
return MaxUWAllocation
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In an allocation, each task can be assigned to any player, or be left unas-
signed. This means there are n+1 choices for each task. Since there are t tasks,
that makes (n+ 1)t possible allocations. Checking whether an allocation dom-
inates another allocation can be done by checking each player’s utility, which
takes O(n · t). Since that is done in a nested for loop that loops over all possible
alloctions, this brute force approach takes O(n · t · (n+ 1)2·t) time.

5.2 Linear programming

Since the problem is to find an allocation that maximizes some function with
certain constraints, it is intuitive to think about an integer linear programming
solution. We find the allocation A that maximizes UW (A) =

∑
i∈N ui(A) =∑

i∈N

(∑
k∈N

∑
j∈Ak

gij −
∑
j∈Ai

cij

)
given that A is in the Core. The con-

straint thatA is in the Core can be formulated as ∪i∈N (ui(A) ≥ ui(A∗) ∩A∗i 6= ∅)
for all A∗. Intuitively, for all allocations A∗, there has to be some player that
does not prefer A∗ but is assigned a task in A∗.

Since an integer linear program cannot handle OR-constraints, we have to
rewrite the constraints with additional variables. This is shown in Algorithm 4.

Algorithm 4 Integer linear programming model

Maximize
∑
i∈N

(∑
k∈N

∑
j∈Ak

gij −
∑
j∈Ai

cij

)
where:

for all A∗ do
for all {i ∈ N |A∗i 6= ∅} do

ui(A) ≥ ui(A∗) · xi
end for∑
{i∈N |A∗i 6=∅}

xi ≥ 1

end for

The amount of possible A∗ is (n+ 1)t. The amount of constraints per A∗ is
O(n). Therefore, the amount of constraints is O((n + 1)t+1). Since solving an
integer linear program takes an exponential amount of time in itself, this will
still be a pretty slow algorithm.

5.2.1 Reducing the amount of constraints

The linear program from before was very complex with its O((n + 1)t+1) con-
straints. However, a lot of these constraints are actually unnecessary. For
example, if there is a constraint that u1(A) ≥ 3 ∪ u2(A) ≥ 5 ∪ u3(A) ≥ 4, then
the constraint that u1(A) ≥ 2 ∪ u2(A) ≥ 3 ∪ u3(A) ≥ 4 is unnecessary because
for any A where the first constraint is true, the second constraint is true as well
(given that A1, A2, A3 6= ∅). Basically, we only need the Pareto front. Since it
might be necessary if some Ai = ∅, we need to compute this Pareto front for
every possible coalition.
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Computing this Pareto front is a hard problem. However, given that n is
constant, we can do it with a pseudo-polynomial algorithm, or with a polynomial
approximation algorithm. Both algorithms consist of 2 parts. In the first part,
a set of outcomes will be found. In the second part, these outcomes will be
used as constraints in the discussed integer linear program to find the allocation
in the Core with the maximum Utilitarian Welfare. In the pseudo-polynomial
algorithm, the amount of constraints is dependent on the maximum gain and the
amount of players. In the approximation algorithm, the amount of constraints
is dependent on the precision of the approximation and the amount of players.
Both algorithms are not dependent on the number of tasks, which allows the
full algorithm to be (pseudo-)polynomial in the amount tasks.

Pseudo-polynomial algorithm

The first part of the pseudo-polynomial algorithm creates a set of outcomes,
where an outcome is the utility of each player. It starts with the outcome where
each player is assigned no task at all, which means each player gets 0 utility.
Then, it iteratively adds all tasks. For each possible player to add the task to, it
calculates the new utilities of all players if the task is added to that player based
on all outcomes in the set, and adds that outcome if it is not weakly dominated
by another already calculated outcome. This has to be done for each possible
set of players. This is shown in Algorithm 5.

Since the utility any player can have in an outcome is bounded by the min-
imum utility a player can have and the maximum utility a player can have,
the size of the set is bounded by Wn, where W is the difference between the
minimum utility a player can gain and the maximum utility a player can gain.

Given that P(N) has size O(2n), T has size O(t), S and U have size O(Wn),
C has size O(n), adding an element to a list takes O(1), and removing an element
from a linked list takes O(1) while looping through that list, the time complexity

of this algorithm is O(2n ·(t·(Wn ·n2+Wn2 ·n)+Wn)) = O(2n ·t·W 2·n ·n). That
means that for a given n, this algorithm is pseudo-polynomial, which makes the
problem weakly NP − hard.

Note that S and U are also bounded by O((n + 1)t), as the amount of
outcomes is bounded by the amount of allocations. This bounds the running
time by O(2n · t · (n+ 1)t ·n) as well. This is exponential in the amount of tasks,
but constant in W . This bound will be relevant if W is large relative to t.

Approximation algorithm

If the maximum and minimum utilities are very high, it could be infeasible to
find an allocation in the Core with the pseudo-polynomial algorithm. In that
case, we might like to approximate the exact solution with an allocation in the
ζ-Core. To guarantee a solution in the ζ-Core, we can replace dominates with
ζ/t-dominates. This limits the size of S and U to O((W · t/ζ)n). This makes
the time complexity of the algorithm O(2n · t · (W · t/ζ)2·n · n).
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Algorithm 5 Pseudo-polynomial algorithm to find relevant outcomes

ParetoFront← ∅
for all C ∈ P(N) do

S ← {(0, ..., 0)}
for all j ∈ T do

U ← ∅
for all s ∈ S do

for all i ∈ C do
o← s
for all k ∈ C do

ok ← ok + gk,j
end for
oi ← oi − ci,j
Add o to U

end for
end for
for all u ∈ U do

for all s ∈ S do
if s weakly dominates u then

Break
end if
if u weakly dominates s then

Remove s from S
end if
Add u to S

end for
end for

end for
Remove all s ∈ S where a player gains negative utility
for all s ∈ S do

Add s to ParetoFront
end for

end for
return ParetoFront
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Integer linear program

When (the approximation of) a Pareto Front is found, we can use the out-
comes in them as constraints for the integer linear program. This is shown in
Algorithm 6.

Algorithm 6 Find Allocation In The Core

Maximize
∑
i∈N

(∑
k∈N

∑
j∈Ak

gij −
∑
j∈Ai

cij

)
where:

for all p ∈ ParetoFront do
for all i ∈ C do

ui(A) ≥ pi · xi
end for∑
i∈C xi ≥ 1

end for
return A

Since the size of the Pareto Front is O(Wn) for the pseudo-polynomial algo-
rithm and O((W/ζ)n) for the approximation algorithm, the running time is not
dependent on the amount of tasks. Therefore, the k-player problem is polyno-
mial.

Approximation guarantee

If the approximation algorithm gives an allocation A, we know for all p ∈
ParetoFront that Ai ≥ pi for some i ∈ N . Also, there does not exist an
A∗ /∈ ParetoFront, where A∗i − ζ > pi for all i ∈ N and all p ∈ ParetoFront,
otherwise A∗ would have been added to ParetoFront. Therefore, we know there
does not exist an A∗ that ζ-dominates A, so A is in the ζ-Core.

We also know that if an outcome is in the ParetoFront of the approximation
algorithm, it will either also be in the ParetoFront of the pseudo-polynomial
algorithm, or it will be dominated by an outcome in the ParetoFront of the
pseudo-polynomial algorithm. Therefore, any allocation that satisfies the con-
straints of the pseudo-polynomial algorithm also satisfies the constraints of the
approximation algorithm, so the approximation algorithm always finds a maxi-
mum Utilitarian Welfare which is at least the maximum Utilitarian Welfare of
the exact solution.

5.3 Conclusion

To conclude, we have proposed a pseudo-polynomial algorithm that finds the
allocation in the Core with the maximum Utilitarian Welfare, and an approxima-
tion algorithm that finds an allocation in the ζ-Core with a Utilitarian Welfare
of at least the maximum Utilitarian Welfare in the Core. Chapter 6 discusses
the experimental results of these algorithms.
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Chapter 6

Experiments

In Chapter 5, we discussed two algorithms to solve the problem. In this chapter,
we report on the experiments with these algorithms. We aim to find out the
feasibility of the algorithms. To do this, we discuss the running times and
approximation ratios of the algorithms.

6.1 Experimental setup

To experimentally test the running time of the proposed algorithms, the al-
gorithms were implemented and run with randomly generated instances. The
algorithms were implemented in Java. Instances were generated with n players
and t tasks where each value of G and C has a random value from a uniform
distribution between (and including) 0 and an input variable W . The value of
n, t and W was varied to check the feasibility for different applications of the
problem. The tests were done on a Windows 10 (64 bit) machine with an Intel
Core i7-8750H of 2.20 GHz with 16.0 GB RAM.

For the algorithms that use Linear Programming, the Gurobi solver was
used.

6.2 The pseudo-polynomial algorithm

To value the running time of the pseudo-polynomial Linear Programming al-
gorithm that uses the Pareto Front, it was compared to the running time of
the Brute Force algorithm, and the Linear Programming algorithm that uses
all allocations. Each of the algorithms was tested on the same 50 instances.
The plot shows the mean running time of these runs and the 80% confidence
intervals. In each graph, the line shows the mean running time of the runs on
the 50 instances, and the area around the line contains the running time of all
instances except the 5 with the lowest and the 5 with the highest running time.
For each algorithm, when the running time becomes larger than 30 000 millisec-
onds, the algorithm was tested with only 1 instance. This is when the plot only
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shows a line without the area around it. After the running time becomes larger
than 100 000 milliseconds, experiments were stopped. Experiments were also
stopped after a set value.

6.2.1 Varied amount of tasks

We would like to know how feasible the pseudo-polynomial algorithm is for
different amount of tasks. Since the running time is bounded both by O(2n · t ·
W 2·n ·n) and by O(2n ·t·(n+1)t ·n), we expect that the running time will increase
exponentially with a low t, and linearly when t becomes high enough such that
the first bound becomes relevant. To test this, we evaluate the running time on
50 random instances for different values of t while keeping n and W constant.
Figure 6.1 shows the results of these experiments.
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Figure 6.1: Running time of different algorithms for n = 3 and W = 10 (mean
of 50 instances below dashed line, 1 instance above it)

As can be seen, the Brute Force algorithm and the Linear Programming
algorithm become infeasible after a very limited amount of tasks. The Linear
Programming algorithm using the Pareto Front does significantly better, but
the growth still looks exponential. Possibly, even the highest tested values of t
are not high enough that the linear bound becomes relevant. It could also be
that it is hard to see with the noise in the data.
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To be able to run with higher amounts of tasks, we make W dependent on
t. We let W be W = 100/t. This has the additional advantage that we now
expect a much slower growth, which is easier to see in a noisy plot. We use the
same setup as before, except that for each value of W , we run the algorithm for
a maximum of one value of t. Figure 6.2 shows the results of these experiments.
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Figure 6.2: Running time of different algorithms for n = 3 and W = 100/t
(mean of 50 instances below dashed line, 1 instance above it)

As can be seen, the Brute Force algorithm and the Linear Programming
algorithm have a very similar running time with a different value for W . The
Brute Force algorithm runs in around 2 000 000 milliseconds with 9 tasks, while
the Linear Programming algorithm runs in around 2 000 000 milliseconds with
7 tasks. For both algorithms, the value of W has little influence on the running
time. The Linear Programming algorithm using the Pareto Front grows quickly
with a low amount of tasks, and much slower after around 20 tasks. This can
be explained by the the fact that the bound O(2n · t ·W 2·n · n) becomes more
relevant and is less dependent on t. Clearly, W has a significant influence on
the running time of this algorithm.

6.2.2 Varied value of W

We would also like to know how feasible the pseudo-polynomial algorithm is for
different values ofW . Since the running time is bounded both byO(2n·t·W 2·n·n)
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and by O(2n ·t·(n+1)t ·n), we expect that the running time will increase linearly
with a low W , and stay constant when W becomes high enough such that the
second bound becomes relevant. To test this, we evaluate the running time on
50 random instances for different values of W while keeping n and t constant.
Figure 6.3 shows the results of these experiments.
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Figure 6.3: Running time of different algorithms for n = 3 and t = 5 (mean of
50 instances)

As can be seen, the Brute Force algorithm performed worse with a small W .
This can be explained by the fact that with a small W , there is a very limited
amount of variation in the value of the utility of the players. Because of this,
more allocations have the same value. This might result in allocations being less
likely to dominate other allocations. Since the Brute Force algorithm searches
a dominating allocation for each possible allocation, it is slower in finding these
for a low W , resulting in a higher running time.

The value of W has very little influence on the running time of the Linear
Programming algorithm. Since the amount of allocations is only dependent on
n and t, this is expected.

The running time of the Linear Programming algorithm that uses the Pareto
Front increases with a higher value of W , but only until some value of W , after
which it is constant. This is as expected.
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6.2.3 Varied amount of players

Finally, we would like to know how feasible the pseudo-polynomial algorithm
is for different amounts of players. Since the running time is bounded by n
exponentially, we expect that the running time will increase exponentially. To
test this, we evaluate the running time on 50 random instances for different
values of n while keeping W and t constant. Figure 6.4 shows the results of
these experiments.
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Figure 6.4: Running time of different algorithms for t = 5 and W = 10 (mean
of 50 instances below dashed line, 1 instance above it)

As can be seen, all algorithms grow exponentially, which makes the amount of
players for which the algorithms can feasibly compute the solution very limited.
The Brute Force algorithm and the Linear Programming algorithm that uses the
Pareto Front are significantly better than the Linear Programming algorithm.
However, because of the high spread in the Linear Programming algorithm that
uses the Pareto Front, it is unclear from these experiments which of those two
works better.
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6.3 The approximation algorithm

The approximation algorithm can be run with different values of the input pa-
rameter ζ. Recall that ζ/t was used to limit the size of the approximated Pareto
Front. If an allocation was ζ/t-dominated by an allocation in the Pareto Front,
it was removed from the Pareto Front. For a larger ζ, the running time becomes
lower, but the guarantee we can give about the approximation becomes worse.
Since we need to make a trade-off between running time and approximation
guarantee, we would like to know the running time and approximation for dif-
ferent values of ζ. Since we are more interested in allocations that are almost
in the Core, we vary ζ in a logarithmic scale. ζ/t is varied between 1 and 64.
Note that therefore, the tested approximation guarantees ζ are dependent on t.

6.3.1 Running time

First, we would like to know how feasible the approximation algorithm is for
different values of ζ. Since the running time is bounded byO(2n·t·(W ·t/ζ)2·n·n),
we expect the running time to scale inversely proportional to ζ. To test this, we
evaluate the running time on 50 random instances for each value of ζ. Figure 6.5
shows the results of these experiments. Again, the line shows the mean running
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Figure 6.5: Running time of the approximation algorithm for n = 3, t = 12 and
W = 64
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time of the runs on the 50 instances, and the area around the line contains the
running time of all instances except the 5 with the lowest and the 5 with the
highest running time.

As can be seen, the running time decreases significantly with a higher ζ.
This is as expected.

6.3.2 Approximation

Of course, we would also like to know how well the approximation algorithm
approximates a strategyproof allocation. To test this, we run the algorithm on
1000 random instances for each value of ζ. We then calculate the minimum ε
for which the found allocation is in the ε-Core. Figure 6.6 shows the results of
these experiments. The bar plot shows for each value of ζ how many experiments
found an allocation with a minimum ε in different ranges.
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Figure 6.6: Approximation of the approximation algorithm for n = 3, t = 5 and
W = 64

As can be seen, even though the algorithm does not guarantee a solution
in the Core, it often finds an allocation in the Core anyway. In 92.2% of the
instances, an allocation with the maximum Utilitarian Welfare is in the Core,
so the algorithm will almost always find such an allocation irrespective of ζ. If
the maximum Utilitarian Welfare allocation is not in the Core, the larger ζ, the
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less often it will find an allocation in the Core. This is as expected. Of these
1000 experiments, the algorithm with ζ = 1 found an allocation in the Core in
all but one case, the algorithm with ζ = 64 found an allocation in the Core in
926 cases. Also, if ζ is larger, the minimum ε for which the found allocation is
in the ε-Core is clearly higher.

6.4 Conclusion

The experiments show that the Linear Programming algorithm using the Pareto
Front has clearly lower running times than the Brute Force algorithm or the
Linear Programming algorithm. They show that the running time does not
scale well with the amount of players n, but that the algorithm is feasible if
either the amount of tasks t or the value of W is limited.

The experiments also show that the running time can be decreased signifi-
cantly by setting a higher approximation guarantee ζ. Even though the algo-
rithm does not guarantee an allocation in the Core, it still finds an allocation
in the Core in a lot of cases.
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Chapter 7

Conclusion

In the previous chapters, we gave proofs and did experiments to show the limi-
tations and possibilities for algorithms that solve the task distribution problem
of this research. In this chapter, we use these proofs and experiments to argue
when it is feasible to use the proposed algorithms for this problem. Additionally,
we discuss what knowledge this research contributed, and how future work can
use this research to gain more knowledge about this task distribution problem.

7.1 Conclusion

In this research, we studied a task distribution problem where multiple players
have to distribute tasks among them. Each player values tasks being done, but
has a cost to do a task himself. Since the players have different preferences, we
would like to find an algorithm with an optimal distribution.

Ideally, this is an efficient algorithm that finds an allocation in the Core with
a high Utilitarian Welfare. From this study, we can conclude that there exists
an algorithm that finds the maximum Utilitarian Welfare (Theorem 1). Finding
an allocation in the Core is the main problem.

First of all, we know that it is impossible for an algorithm to always find an
allocation in the Core (Theorem 6). Additionally, even if the instance has a non-
empty Core, requiring an allocation in the Core can give a Utilitarian Welfare
that is infinitely worse than the allocation with the maximum Utilitarian Welfare
(Theorem 12). Finally, it is an NP − hard problem to find an allocation in the
Core (Corollary 8.1).

However, we know there exists a pseudo-polynomial algorithm (Algorithm 5)
which uses a Linear Program (Algorithm 6) to find an allocation in the Core if
it exists. From the experiments, we can conclude that if the amount of players is
low, and either the amount of tasks or the maximum utility a player can achieve
is limited, this algorithm runs in a feasible amount of time. Also, there exists
an approximation algorithm that finds such an allocation in a feasible amount
of time if we scale the approximation guarantee with the maximum amount of
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utility a player can achieve. For applications where these limitations are not a
problem for the requirements, the proposed algorithms can be used to distribute
a set of tasks in an (almost) strategyproof way.

7.2 Future work

In this research, we studied a problem in the context of fair division problems.
To the best of our knowledge, this specific problem was not studied before. We
proposed a model for this problem, studied its theoretical properties, proposed
two algorithms to solve it, and did experiments to verify the performance of
these algorithms.

As this is the first research for this specific problem, there is a lot of further
research that can be done.

7.2.1 Properties of the problem

In this research, we proved that the Find-Core problem is NP − hard. With
that knowledge, we know finding a polynomial algorithm to find an allocation
in the Core is impossible. Future work could find the exact complexity class
of the problem, possibly using similar reductions to the reductions used in this
research. This would give us more knowledge about how feasible an algorithm
that finds the Core can be.

In this research we proved that the minimum ε for which an ε-Core always
exists lies between 1/15 and 1/2 of the maximum utility a player can achieve.
With that knowledge, we know we can guarantee that there is an allocation in
the MaxUtility/2-Core. Future work could find a tighter lower or upper bound
for this minimum ε. A tighter upper bound would show that we can give a
better guarantee, and a tighter lower bound would show that it is impossible to
give a better guarantee than the value of that bound.

In this problem, we want to find an allocation that has a Utilitarian Welfare
as high as possible, and is in the ε-Core for an ε as low as possible. These two
optimization measures make this a multi-objective problem. In this research,
we showed that maximizing one of the optimization measures cannot give any
nontrivial guarantee for the other. With that knowledge, we know it is impossi-
ble to find an algorithm that maximizes one of the optimization measures, and
gives some guarantee for the other. Future work could study whether it is pos-
sible to find an allocation which has some nontrivial suboptimal guarantee for
both optimization measures. This might be more desirable in some applications
than just optimizing one of the measures.

7.2.2 Algorithms

In this research, we studied linear programming as a solution technique. The
proposed algorithms had a decent theoretical bound on the running time. Future

58



work could investigate the performance of other algorithms, because they might
work better in practice. This includes heuristic approaches.

Specifically, we think evolutionary algorithms could work well for this prob-
lem. Since the valuation functions are additive, the tasks are independent of
each other. Also, assigning a task from one player to another only changes
the utilities of those players. This gives the problem a very structured relation
between the allocations and the outcomes. Evolutionary algorithms typically
work well for such structured problems.

7.2.3 Experiments

In this research, we did experiments with randomly generated data. These ex-
periments give a good picture of how the running time is dependent on the input
variables. They also show that the approximation algorithm finds a solution in
the Core very often for applications where the gains and costs look random. Fu-
ture work could additionally study how well the algorithm performs with other
data.

Specifically, it could be interesting to look at data where the Core is empty,
or consists of a very low amount of allocations. If the Core is small, that could
result in the algorithm finding an allocation in the Core less often. These results
could give a more complete picture of the performance of the algorithm.

Also, it could be interesting to look at data from practical applications.
Experiments with real data might be able to predict the results better for those
specific applications.

7.2.4 Optimization measures

In this research, we considered two optimization measures, the Utilitarian Wel-
fare and the Core. We found possibilities and limitations for algorithms that
maximize Utilitarian Welfare and find allocations in the Core. Future work
could also study properties of this problem for other optimization measures.
Chapter 2 already discusses the alternatives to Utilitarian Welfare, namely Egal-
itarian Welfare (Grant et al., 2010; Harsanyi, 1975; Myerson, 1981) and Nash
Welfare (Kaneko & Nakamura, 1979). But more qualitative measures are pos-
sible too. Envy-freeness is a measure which is often used when talking about
fairness. It means that each player likes their own allocated tasks better than
the allocated tasks of any of the other players. The question is how that would
exactly translate to this problem. For applications where those optimization
measures are relevant, it could be interesting to see what limitations exist and
what guarantees we could give about these individual measures, or a combina-
tion of them.

7.2.5 Variations in the model

Finally, there could be a variation on the used model. Additional assumptions
might make the problem easier. It is possible that algorithms could use those

59



assumptions to find a solution faster. An example of such a variation is the
ability for players to perform a task together, sharing the cost. This allows for
an infinite amount of possible allocations, and the possible values the utility of a
player can be becoming continuous rather than discrete. With this assumption,
the proofs in this research do not hold, which means it is possible that there
will always exist a Core, for example.

The model could also be more general. In this research, the valuation func-
tions were assumed to be additive. Of course, it is possible that in an applica-
tion, some player only values a certain task if another task is done too. In this
research, such applications cannot be modeled. It would be interesting to see
which results still hold under a more general model.

Of course, a lot of other variations of the model are possible too.

60



References

Airiau, S., & Endriss, U. (2014). Multiagent resource allocation with sharable
items [Journal Article]. Autonomous agents and multi-agent systems,
28 (6), 956-985.

Aumann, R. J. (1961). The core of a cooperative game without side payments
[Journal Article]. Transactions of the American Mathematical Society ,
98 (3), 539-552.

Caragiannis, I., Kurokawa, D., Moulin, H., Procaccia, A. D., Shah, N., & Wang,
J. (2019). The unreasonable fairness of maximum nash welfare [Journal
Article]. ACM Transactions on Economics and Computation (TEAC),
7 (3), 1-32.

Chalkiadakis, G., Elkind, E., & Wooldridge, M. (2011). Computational as-
pects of cooperative game theory [Journal Article]. Synthesis Lectures on
Artificial Intelligence and Machine Learning , 5 (6), 1-168.

Chevaleyre, Y., Dunne, P. E., Endriss, U., Lang, J., Lemaitre, M., Maudet, N.,
. . . Sousa, P. (2006). Issues in multiagent resource allocation [Journal
Article].

Gillies, D. B. (1959). Solutions to general non-zero-sum games [Journal Article].
Contributions to the Theory of Games, 4 , 47-85.

Grant, S., Kajii, A., Polak, B., & Safra, Z. (2010). Generalized utilitarianism
and harsanyi’s impartial observer theorem [Journal Article]. Economet-
rica, 78 (6), 1939-1971.

Harsanyi, J. C. (1975). Nonlinear social welfare functions [Journal Article].
Theory and Decision, 6 (3), 311-332.

Kaneko, M., & Nakamura, K. (1979). The nash social welfare function [Journal
Article]. Econometrica: Journal of the Econometric Society , 423-435.

Ma, J. (1994). Strategy-proofness and the strict core in a market with indivis-
ibilities [Journal Article]. International Journal of Game Theory , 23 (1),
75-83.

Myerson, R. B. (1981). Utilitarianism, egalitarianism, and the timing effect
in social choice problems [Journal Article]. Econometrica: Journal of the
Econometric Society , 883-897.

Procaccia, A., Goldman, J., Shah, N., & Kurokawa, D. (2020). Spliddit [Web
Page]. Retrieved from spliddit.org

Procaccia, A. D., & Wang, J. (2014). Fair enough: Guaranteeing approximate
maximin shares [Conference Proceedings]. In Proceedings of the fifteenth

61

spliddit.org


acm conference on economics and computation (p. 675-692).
Ramezani, S., & Endriss, U. (2009). Nash social welfare in multiagent resource

allocation [Book Section]. In Agent-mediated electronic commerce. design-
ing trading strategies and mechanisms for electronic markets (p. 117-131).
Springer.

Shapley, L., & Scarf, H. (1974). On cores and indivisibility [Journal Article].
Journal of mathematical economics, 1 (1), 23-37.

Von Neumann, J., Morgenstern, O., & Kuhn, H. W. (1953). Theory of games
and economic behavior [Book]. Princeton university press.

Weber, S., & Wiesmeth, H. (1991). Economic models of nato [Journal Article].
Journal of Public Economics, 46 (2), 181-197.

62


	Introduction
	Context
	Fair division problems
	Applications
	Task distribution

	Research questions
	Outline

	Background and related work
	Cooperative game theory
	Non-transferable utility games

	Multi-agent resource allocation
	Fairness
	Strategyproofness
	Allocation problems
	Conclusion

	Model and definitions
	Model
	Optimization measures
	Utilitarian Welfare
	The Core
	The Epsilon Core

	Conclusion

	Properties of the problem
	Maximizing Utilitarian Welfare
	Finding an allocation in the Core
	Existence of the Core
	Complexity of finding the Core

	The Epsilon Core
	A bound on Epsilon

	Trade-off between Utilitarian Welfare and stability
	Conclusion

	Algorithms
	Brute force approach
	Linear programming
	Reducing the amount of constraints

	Conclusion

	Experiments
	Experimental setup
	The pseudo-polynomial algorithm
	Varied amount of tasks
	Varied value of W
	Varied amount of players

	The approximation algorithm
	Running time
	Approximation

	Conclusion

	Conclusion
	Conclusion
	Future work
	Properties of the problem
	Algorithms
	Experiments
	Optimization measures
	Variations in the model



