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Abstract: Mapping corrosion depths along pipeline sections using guided-wave-based tomographic
methods is a challenging task. Accurate defect sizing depends heavily on the precision of the
forward model in guided wave tomography. This model is fitted to measured data using inversion
techniques. This study evaluates the effectiveness of a recursive extrapolation scheme for tomography
applications and full waveform inversion. It employs a table-driven approach, with precomputed
extrapolation operators stored across a spectrum of wavenumbers. This enables fast modelling for
extensive pipe sections, approaching the speed of ray tracing while accurately handling complex
velocity models within the full frequency band. This ensures an accurate representation of diffraction
phenomena. The study examines the assumptions underlying the extrapolation approach, namely,
the negligible reflection and conversion of modes at defects. In our tomography approach, we intend
to use multiple wave modes—A0, S0, and SH1—and helical paths. The acoustic extrapolation method
is validated through numerical studies for different wave modes, solving the 3D elastodynamic wave
equation. Comparison with an experimentally measured single-mode wavefield from an aluminium
plate with an artificial defect reveals good agreement.

Keywords: corrosion monitoring; extrapolation operators; acoustic formulation; tomography

1. Introduction

Accurately estimating corrosion rates in pipe networks is crucial for safe operations
within the petrochemical industry. However, the traditional method of inspecting large
structures to detect corrosion using conventional ultrasonic bulk wave techniques is time
consuming. Fortunately, ultrasonic-guided waves have emerged as a viable alternative.
These waves can be generated at a single point on the structure and propagate over rela-
tively long distances with minimal attenuation [1,2]. Guided wave testing can be a complex
process due to the presence of several potential wave modes, most of which are disper-
sive. This means that the velocity of these waves is dependent on the frequency chosen
and the local thickness of the waveguide [3]. In tomography, we exploit this dispersive
property to our advantage. Corrosion-induced variations in wall thickness lead to mea-
surable differences in the phase and amplitude of the signals received [4–9]. Subsequently,
these measurements are compared to a forward model, where the local wall thickness is
iteratively refined to minimise the difference between the modelled and observed signals.

Guided wave tomography (GWT) has primarily been applied to plates, enabling
comprehensive defect illumination from various angles using circular arrays. In practical
implementations, velocity inversion algorithms are employed to estimate velocities and
locate defects, often relying on ray theory [10,11]. While this approach provides valuable
insights, its applicability may be limited due to neglecting diffraction effects. Alternatively,
to improve resolution, one can use either diffraction tomography [12] or a combination
of both diffraction and ray-based tomography [5,8,13,14]. Beamforming algorithms can
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then be used to image the defects. Similarly, when sections of straight pipes are treated
as flat plates under the assumption that the wall thickness is much smaller than the pipe
radius [15–18], tomography can be applied to a pipe section delimited by two rings of
ultrasonic transducers, as depicted in Figure 1 [4,19–21].

Figure 1. Unwrapping of a pipe section. (a) Three wavepaths along a pipe section originating from
the same source and arriving at the same receiver. (b) Unwrapped geometry displaying the direct
path and two helical modes with replication values of n = [−1 0 1].

However, due to the limited-view geometry of the source–receiver pairs for pipes, the
problem becomes highly ill posed. Addressing this non-uniqueness is crucial, and it can
be achieved through various methods such as smarter parameterisation for travel time
tomography [6,22], incorporation of additional information by considering more helical
paths for illumination under higher angles [23], or leveraging all waveform information in
Full Waveform Inversion (FWI), as commonly applied in exploration seismology [24–26].
In recent years, FWI techniques have been adopted in guided wave tomography, both in
full-aperture scenarios [27,28] and limited-view applications [29,30]. The latter implementa-
tion still suffers from non-uniqueness, and achieving a reasonable thickness reconstruction
requires employing extremely high angles with a long sensor array placed close to the
defect. Additionally, strong regularisation must be applied, with the risk of over-smoothing.
Reconstructing a relatively simple defect shape like a Gaussian profile presents no signif-
icant challenges. Yet, when dealing with more complex defects, like a deep pit next to
moderate wall thickness loss, our objective is to restrict this form of regularisation. This is
to avoid smearing the overall wall thickness loss across the entire defect area.

In our research, we attempt to address this problem differently. Alongside employing
a phase and amplitude approach similar to an FWI implementation, complemented by
multiple helical paths, our intention is to establish a misfit through a joint inversion for
multiple wave modes. However, as a result, a significant challenge arises in selecting the
appropriate forward model to describe wave propagation behaviour. Ideally, a model
should accurately portray relevant physics, be computationally efficient, and be highly
sensitive to target property changes. As we intend to propagate multiple wave modes
in parallel during the inversion process, prioritising computational efficiency becomes
essential. This is especially true for parameterised guided wave tomography (GWT) [7,30],
where defining numerous parameter points to describe complex defect shapes is necessary.
Additionally, the iterative nature of inversion also necessitates careful consideration of the
computational complexity of the forward solver.

Although the 3D elastodynamic wave equation provides precise descriptions of guided
wave interactions with defects, their computational demands often render them impractical
for real-world applications. As a solution, many current GWT implementations employ 2D
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acoustic forward models [27,28,31,32]. These models simplify complexity by representing
the wavefield through a single scalar pressure field. This approach relies on Lamb wave
phase velocity dispersion curves, where the frequency–thickness product is important.
Defects affect guided wave propagation similarly to perturbations experienced by acous-
tic pressure waves in regions with nonuniform sound speeds. This establishes a direct
correlation between wall thickness in a plate and sound speed in an acoustic model.

In this study, we develop an alternative, faster acoustic forward model, specifically,
one that describes one-way wave propagation. The efficacy of this forward model has
been previously established in seismic applications [33–41]. Protzgen et al. employed
wavefield extrapolation in the space–frequency domain (FX) for conventional ultrasonic
imaging [42]. Subsequently, the recursive scheme was utilised for corrosion mapping,
leveraging phase information [6]. Although the method can be extended for the use of
anisotropic materials [7], our current focus is solely on isotropic metals. In our forthcoming
inversion algorithm, we aim to incorporate both phase and amplitude information to define
the misfit function. Consequently, this paper seeks to extend the validation of the recursive
extrapolation model by assessing its accuracy in the presence of realistic corrosion defects.
The realistic complex defects are provided by the industry and have been studied by other
research groups [8,13]. They primarily exhibit extensive corrosion larger than 10 cm but
with significant spatial variation due to local pitting within the defect. This validation
study comprises two parts: firstly, comparing the FX method with 3D elastic benchmark
models featuring a complex defect, and, secondly, comparing it with measured data using
a simpler machined defect.

2. Background
2.1. Guided Waves

Guided waves exhibit dispersive behaviour, characterised by the dependency of their
phase velocity on frequency and thickness. This dispersion phenomenon is illustrated in
Figure 2 for a steel plate.

Figure 2. Dispersion curves for a steel plate. The phase velocity is plotted as a function of the
frequency–thickness product for multiple wave modes. This study focuses on the S0, A0, and
SH1 modes.

While originally defined for flat plates, the negligible impact of wall curvature in
thin-walled pipes allows for a reasonable approximation of Lamb wave behaviour. When
propagated through pipelines, these waves follow helical paths, enabling the same mode
to reach the receiver at different times (see Figure 1b). In guided wave tomography system
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design, mode selection impacts sensitivity to experimental uncertainties like noise and
attenuation. Multiple dispersive Lamb modes in pipes of varying thickness complicate
matters, causing interference at the receiver. Therefore, efforts usually prioritise lower
frequencies, focusing on fundamental Lamb modes like the symmetric (S0) and asymmetric
(A0) modes due to their manageable dispersion [3,27,43].

Recently, the utilisation of shear horizontal (SH) guided waves, particularly the SH1
mode, has offered enhanced resolution compared to the fundamental Lamb modes [8].
However, the SH1 mode does not exist below the cut-off frequency, which, in the case
of the steel plate in Figure 2, is at 1.6 MHz-mm. This limits the frequency range since
increasing to higher frequencies would introduce higher-order modes. Due to the practical
challenges of exciting them purely using omnidirectional transducers, higher-order Lamb
modes are not considered. Instead, we focus on investigating the S0, A0, and SH1 modes.
Each of these modes has its advantages and disadvantages in tomography, as explained
by previous authors [3,8]. In future research, we intend to use all three modes in a joint
inverse scheme. Therefore, we need to validate the FX performance for all three modes
against the elastodynamic case in our numerical studies. However, in our experiments,
we only focus on the A0 mode. This mode is the only one radiating into the air within the
sensitive frequency range that we can record with our contact-free measurement set-up.
This is due to its strong out-of-plane component.

The dispersion curves in Figure 2 form the basis for the velocity model used in wave-
field extrapolation. Given a thickness profile, a wavefield is calculated for each frequency
in the space–frequency domain. The time signal at any location can be reconstructed by
multiplying the frequency domain wavefield data by the frequency domain source wavelet
and applying an inverse Fourier transformation. This allows comparison with the synthetic
data of the elastic model or experimental data. In this comparison, differences may still
exist due to numerical errors. However, the crucial point that should emerge from this
study is that these errors must be small compared to the defect response used to define
misfits in the tomographic reconstruction.

2.2. Wavefield Extrapolation

For tomographic purposes, a variety of different forward models exists. The fastest
among these is the ray-tracing technique utilising the high-frequency approximation of
arrival times. Another approach to handling complex velocity models is employing a
method operating within the frequency band rather than relying on a high-frequency
approximation. The most comprehensive and accurate modelling methods fall under the
category of computing the full wavefield using the two-way wave equation. Notably,
the finite difference method [44] is applicable to both the acoustic and elastic two-way
wave equations. The significant advantage lies in obtaining the entire wavefield alongside
arrival times, facilitating its use in full waveform inversion. However, these two-way wave
equation methods tend to be computationally demanding.

Alternatively, methods based on the one-way wave equation are often more com-
putationally efficient compared to their two-way counterparts. These methods share
similarities with seismic migration techniques. A one-way wavefield can be propagated in
a homogeneous media using an extrapolation operator in the wavenumber domain [33].
Variations like Phase Shift Plus Interpolation [45] can address lateral velocity variations,
though only approximately. To explicitly handle lateral velocity variations, multiplication
in the wavenumber domain is substituted by spatial convolution in the space–frequency
domain [35], as implemented by Holberg [36] and Blacquiere et al. [46]. This section
serves as a detailed discussion of this method, referred to as the FX method, following
Thorbecke et al. [47], since it is often unknown within the field of NDT. The tomography
algorithm utilises the FX method alongside weighted least-squares operator optimisation.
We have multiple reasons for its use. Firstly, the technique correctly handles frequency-
dependent propagation effects, such as diffraction. However, the method models acoustic
wave equations exclusively, without any elastic effects. Transmission effects and multiple
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scattering are not considered due to the one-way nature of the method. Secondly, in theory,
it can handle propagation angles up to 90◦. Still, in practice, the range is typically limited
to around 60◦. The weighted least-squares optimisation can decrease the operator size,
boosting the computation speed. Finally, the implementation can be easily parallelised for
each frequency.

To derive the FX method, let us consider the following acoustic wave equation in the
frequency domain:

∇2P(⃗r, ω) +
ω2

c2 P(⃗r, ω) = −S(⃗r, ω) (1)

where P(⃗r, ω) is the Fourier transform of the pressure field, r⃗ is the position vector
r =

√
x2 + y2 + z2, and S is the source term. Furthermore, ω is the angular frequency, and

c is the propagation velocity. The FX method relies on Huygens’ principle, which states that
a wave’s propagation through a medium can be understood by considering contributions
from all secondary sources along its wavefront. Mathematically, this principle is formalised
by the Kirchhoff–Helmholtz integral, which calculates the wavefield at a point within a
volume V by integrating contributions from the wavefield and its normal derivative over
the boundary surface Σ.

P(⃗rA, ω) = −
∮

Σ
(P∇G − G∇P) · n⃗dS, r⃗A ∈ V (2)

The Green’s function G describes the wavefield due to a point source in A as follows:

∇2G(⃗r, r⃗A, ω) +
ω2

c2 G(⃗r, r⃗A, ω) = −δ(⃗r − r⃗A)

G(⃗r, r⃗A, ω) =
e−iω |⃗r−⃗rA |/c

4π |⃗r − r⃗A|

(3)

Rayleigh II — Integral

In tomography, sources are often located on one side of an infinite flat plane Σ0. In-
tegrating Σ0 into a closed surface Σ establishes a boundary where energy enters V solely
through Σ0 and exits through the closing part Σ1 in the lower hemisphere (see Figure 3).
Here, we focus on forward wavefield extrapolation away from the sources using the causal
form of the Kirchhoff integral. Leveraging the knowledge that all sources are above an
infinite flat plane achieves two objectives: avoids the need to measure along a closed surface
and eliminates one term from the Kirchhoff integral. To eliminate the second term, A′ is
assumed to be a negative point source that forms the mirror image of A, rendering G = 0
over Σ0. Next, we can put Σ1 at infinity and obtain the general formulation of the Rayleigh
II integral.

P(⃗rA, ω) = 2
∫

Σ0

P(⃗r, ω)
∂G
∂n

dS (4)

When substituting the Green’s function from Equation (3), we obtain

P(⃗rA, ω) =
zA − z0

2π

∫ ∞

−∞

∫ ∞

−∞
P(⃗r, ω)

1 + j ω
c ∆r

∆r3 e−j ω
c ∆rdxdy (5)

This representation corresponds to the one-way Rayleigh II integral. Now, we choose
an arbitrary propagation distance zi+1 for point A, as depicted in Figure 3. Note that, for
the purpose of this theoretical derivation, we choose the propagation direction to be z in
order to be consistent with the seismic literature. According to the Rayleigh II integral, a
pressure field at the propagation level zi+1 can be synthesised through a dipole distribution
at level z0, weighted with the pressure wavefield at level z0 [41].
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Figure 3. This configuration is used to derive the Rayleigh II integral. This integral describes the
pressure field in the lower half-space as reconstructed by a dipole source at zi = z0.

3. Extrapolation Operators

For each propagation level zi, Equation (5) can now be rewritten as a convolution
operation in Cartesian coordinates [48,49] as

P(x, y, zi+1, ω) = W(x, y, zi+1, zi, ω) ∗ P(x, y, zi, ω) (6)

with

W(x, y, zi+1, zi, ω) =
∂G(x, y, zi+1, z = zi, ω)

∂z
(7)

where W(zi+1, zi) is a propagation operator that describes propagation from level zi to level
zi+1. The convolution in the space–frequency domain corresponds to a multiplication in
the wavenumber–frequency domain.

P̃
(
kx, ky, zi+1, ω

)
= W̃

(
kx, ky, zi+1, zi, ω

)
P̃
(
kx, ky, zi, ω

)
(8)

where kx and ky are the lateral wavenumbers. The tilde symbol (∼) denotes the wavenumber–
frequency domain. For a homogeneous medium, the extrapolation operator W̃ becomes

W̃
(
kx, ky, zi+1, zi, ω

)
= exp(−jkz∆z), (9)

with

kz =


√

k2 −
(

k2
x + k2

y

)
for k2

x + k2
y ≤ k2,

−j
√(

k2
x + k2

y

)
− k2 for k2

x + k2
y > k2,

(10)

where kz is the wavenumber in the propagation direction, and ∆z = zi+1 − zi is the
extrapolation distance. This is the phase-shift operator described by Gazdag [33]. Thus,
in the homogeneous case, wavefield extrapolation from one propagation level to the next
can be simply performed by multiplication with this phase-shift operator. Note that, for(

k2
x + k2

y

)
> k2, the wavefield becomes evanescent (i.e., exponentially decaying).

We have been examining the general formulation in 3D so far. However, since we are
solving a 2D problem for an unwrapped pipe, we omit the term ky in Equation (9). The
extrapolation operator for a 2D medium becomes

W̃(kx, ∆z, ω) = exp(−jkz∆z). (11)

This operator is only valid for a homogeneous medium. To allow for medium varia-
tions in the lateral direction, it is necessary to return to the space–frequency domain and
perform the convolution operation. Convolution with a spatial operator is used at each
spatial grid point and frequency component, assuming local homogeneity.
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Figure 4 illustrates the use of space-variant convolution operators in recursive wave-
field extrapolation within an unwrapped pipe. Based on the local velocity, another operator
is used at every lateral position. To obtain the space–frequency expression, one can perform
an inverse Fourier transform of Equation (9), which becomes a scaled Hankel function [35]:

W(x, ∆z, ω) = −jk
∆z
2r

H(2)
1 (kr) (12)

where r =
√
(x2 + ∆z2) and H(2)

1 (kr) = J1(kr)− jY1(kr), and J1 and Y1 are the first-order
Bessel functions of the first and second kind, respectively.

Figure 4. Recursive wavefield extrapolation, as per [47], uses a different operator for extrapolating
the pressure field at every lateral position with varying velocities from one propagation level, z, to
the next. A shorter operator is preferred due to the assumption of medium homogeneity within
its length.

Efficiency is a key consideration in the implementation of spatial convolution op-
erators. Utilising the full-length operator is computationally expensive. Therefore, it is
essential to seek the most efficient implementation method, often resulting in the creation
of extrapolation operators that are as short as possible. This can be achieved by truncating
the operators to a finite number of points in the space domain. The accuracy of these
truncated operators is typically evaluated by comparing their wavenumber spectra to
ensure they adequately preserve evanescent energy. The recursive application of explicit
extrapolation operators from one level to the next underscores the importance of stability in
their design. To ensure stability, it is advisable to limit all amplitudes of the operator in the
wavenumber domain so that they do not exceed unity. This practice often leads to stable
outcomes even in laterally inhomogeneous media scenarios. Numerous techniques have
been developed to enhance the accuracy and efficiency of the FX method [36–40]. These
methods can be extended for anisotropic media using Thomsen parameters [31,50–52]. We
adopt the weighted least-squares method [47,53], which involves determining suitable
weighting factors for components both within and outside the propagation region. This
optimisation process provides an efficient and stable solution because it aims to construct
a short convolution operator with a wavenumber spectrum closely resembling the exact
formulation in a specified wavenumber range. This problem is typically formulated as

W̃(kx, ∆z, ω) =
∫ x2

x1

exp(jkxx)W(x, ∆z, ω)dx (13)

for kx,1 ≤ kx ≤ kx,2,
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where W(x, ∆z, ω) is the operator to be determined. For more details on this optimisation
procedure, the reader is referred to Thorbecke et al. [47]. The maximum propagation angle
is an important input parameter for the operator optimisation. In our current validation
study, we set the maximum allowable angle at 90 degrees. However, for longer pipelines
being studied for tomography, this angle will be reduced to 60 degrees. This reduction in
angle allows for a substantially shorter operator length. The tomographic algorithm allows
the pre-calculation of operators, which are subsequently stored in a table for a range of
wavenumbers [54]. This step is performed only once, and the calculated operators can be
reused multiple times, making the method highly efficient for multiple source positions
and inversion iterations.

4. Methods
4.1. Numerical Validation

For the numerical validation of the FX method, we utilise full three-dimensional
elastodynamic simulation to fully capture the complexity of guided wave scattering. We
employ two distinct methods for this purpose. Firstly, Finite Element Modelling (FEM) in
the frequency domain using commercial software (COMSOL). This method enables realistic
defect modelling through CAD by resolving complex geometries with unstructured meshes.
We primarily employ FEM in the frequency domain to gain insight into the scattering
pattern caused by the defect and to identify any mode conversions that occur. However,
FEM faces scalability challenges, particularly when generating synthetic measurements for
very large models and across an entire frequency bandwidth, which is crucial for testing
tomography in future applications. To address this limitation, we also develop a finite
difference method in the time domain (FDTD). The results obtained from the FDTD are
used to evaluate the accuracy of the FX method in terms of arrival times and amplitudes.

4.1.1. Finite Element Modelling in the Frequency Domain

The FEM study considers corrosion patches in a 10 mm thick steel plate (z-direction)
with material properties E = 200 GPa, ν = 0.3, ρ = 7850 kg/m3. The plate measures
1.5 m (y-direction) in length and 0.6 m (x-direction) in width. From now on, the z-direction
is reserved for sample thickness, and the wavefield propagates in the x–y direction, con-
trary to the theoretical derivation of the FX method in Section 2.2. The corrosion shape
illustrated in Figure 5 is obtained via laser scanning with a minimum depth set at half the
nominal thickness.

Figure 5. In numerical validation, a laser-scanned defect patch is used. (a) The dimensions of the
defect shape. (b) A cross-sectional view along the deepest part of the defect. (c) Distribution of the
wall loss values.

The model is replicated two times to account for helical modes n = −1, 1 (as shown in
Figure 1). Additionally, a perfectly matched layer (PML) boundary is implemented around
the plate to mitigate reflections originating from its edges. For excitation, a source with
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a frequency of f = 50, 150, 300 kHz is used for the A0, S0, and SH1 modes, respectively.
We utilise a combination of a tetrahedral mesh around the defect and the source and a
hexahedral structured mesh for the remaining areas. For discretisation, we use quadratic
shape functions. After conducting a convergence study, we find that 16 grid points per
wavelength are required.

4.1.2. Finite Difference Modelling in the Time Domain

Our 3D finite difference implementation relies on a rotated staggered grid. This grid
structure allows us to simulate elastic wave propagation within a medium with free surfaces
without applying explicit boundary conditions at the solid–vacuum interface [55,56]. Our
investigation focuses on analysing a corrosion patch, depicted in Figure 5, embedded
within a 10 mm thick steel plate. The corrosion patch’s maximum depth is set to cover
half the nominal thickness for the S0 and A0 modes and 80% of the nominal thickness for
the SH1 mode. For excitation, we define a cosine spectrum source wavelet with a centre
frequency of 100 kHz for the A0 mode, as shown in Figure 6, 180 kHz for the S0 mode,
and 250 kHz for the SH1 mode and a bandwidth of 120 kHz. Also for this method, after a
convergence study, it is found that 16 points per wavelength are required for meshing.

Figure 6. The cosine spectrum source wavelet for FDTD modelling of the A0 excitation characterised
by (a) its time domain representation obtained through an IFFT of the frequency spectrum, (b) the
defined frequency spectrum with a centre frequency of 100 kHz and a bandwidth of 120 kHz.

4.2. Mode Excitation

A challenge in 3D elastodynamic simulations is exciting pure single-wave modes. This
is relatively straightforward for the A0 mode. We only need a single node on the centre line
of the plate where we excite a normal force for finite element (FEM) simulations and excite
a velocity node in the z-direction for finite difference time domain (FDTD) simulations.
Exciting the S0 and SH1 modes is more complex, so we employ a linear combination of
point sources in the x- and y-direction. The excitation nodes are illustrated in Figure 7.
In the FEM simulation, the S0 mode is excited on the centre line as a radially divergent
excitation. In contrast, the SH1 mode is excited on the top and bottom as a torsional
excitation in opposite directions. Nodes are excited throughout the entire thickness profile
to excite the modes in FDTD simulations effectively. For the SH1 mode, the through-
thickness displacement curves are calculated. Subsequently, all nodes of excitation at each
thickness level are coupled with the respective mode displacement. For both the FE and
FD implementations, we excite a secondary source at a grid point distance with all vectors
in the opposite direction. This is to simulate an equivalent source to the FX method, which
effectively acts as a dipole, as described by the Rayleigh II integral (Equation (5)). On the
receiver side, we receive the x, y, and z components of the velocity of the wavefield. For
the A0 mode, we examine the z component. All received components of the wavefield for
the S0 and SH1 excitations are decomposed into their curl- and divergence-free potentials,
representing the radial and transverse wavefield components, respectively. These are then
compared with the FX wavefield.



Sensors 2024, 24, 3750 10 of 21

Figure 7. The excitation of a single-wave mode. (a) Excitation of the S0 mode using four diverging
vectors at each depth level. (b) Excitation of the SH1 mode by rotating vectors along a thickness level.
Each node is weighted with a calculated displacement curve through the thickness. (c) Excitation
of the A0 mode using a perpendicular vector on the centre line. In order to create a dipole, these
excitations are doubled at a grid point distance with opposite signs in all simulations.

4.3. Experimental Set-Up

The experimental validation is conducted using an 8 mm thick aluminium sample
containing a machined defect measuring 130 mm in diameter and reaching a maximum
depth of 6.7 mm. The machined defect intentionally extends to a depth exceeding 80%
of the nominal wall thickness, aiming to challenge the FX method by introducing high
velocity gradients. For the measurement of the full wavefield, a contact-free inspection
technique is utilised, the details of which are described by Volker et al. [57]. A schematic
overview of the acquisition workflow is shown in Figure 8.

Figure 8. Use of a microphone array at a 20 cm distance to scan the full wavefield. By backpropagating
the wavefield, we retrieve it back at the plate’s surface. Using the DVM technique, we can reconstruct
a thickness map and a dispersion curve. This, along with a selected source wavelet, forms the input
data for the FX model.

Leaky Lamb waves are detected with a microphone array at a 20 cm stand-off distance
from the plate surface. Any Lamb wave mode can be employed, provided it exhibits
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sufficient out-of-plane displacement to generate a strong signal in the air. Here, we focus
solely on the A0 mode. The source transducer consists of two piezo elements stacked
together, each 12 mm in diameter and 2 mm thick, with the active sides facing each other
and the grounds on the outside. At the bottom of the plate, the transducer is driven with
a 2 ms linear chirp signal to enhance the signal-to-noise ratio (SNR). This eliminates the
need for additional measurement averaging. The microphone array, comprising 128 MEMS
sensors, has a sensor spacing of 3 mm and spans 384 mm in total length. The scanning
system operates in an interleaved mode to achieve a spatial sampling of 1 mm. Measuring
at a non-zero stand-off distance introduces complexity due to the frequency dependence of
the refraction angle in accordance with Snell’s law. To address this, the measured wavefield
is backpropagated to the surface, eliminating the refraction effect. This backpropagation,
achieved through inverse wavefield extrapolation in the wavenumber–frequency domain
as detailed in Equation (9) in Section 2, calculates the wavefield as if measured directly at
the plate’s surface. After backpropagation, the surface wavefield of the aluminium plate
can be used to retrieve the local wave velocity for specific frequencies. Termed Direct
Velocity Mapping (DVM) [57], this approach converts the wavefield into a velocity map,
similarly to techniques like estimating local wavenumbers for laser Doppler vibrometer
measurements [58,59]. A local phase velocity for each frequency component is determined
by measuring local wavenumbers at different frequency slices from the data cube. A
dispersion curve is estimated from the measurements using the known nominal thickness.
The local thickness is obtained by mapping phase velocity to thickness. Each frequency
component provides a thickness measurement which is then averaged to provide the
thickness map of the sample, as shown in Figure 9. The obtained thickness map and the
calculated dispersion curve create the input velocity model for the FX simulation. Also,
for the simulation, we define a cosine spectrum source wavelet with a central frequency
of 120 kHz and a bandwidth of 100 kHz. Finally, we perform wavelet shaping on the
backpropagated measured wavefield by means of deconvolution with this source wavelet.
This allows us to directly compare the modelled data with the measured data.

Figure 9. (a) Aluminium specimen with the machined defect. (b) Reconstructed thickness map with
the DVM technique. (c) The thickness profile used for the model validation is indicated in black.

5. Results
5.1. Frequency Domain Modelling

After performing FE modelling, our aim is to examine the scattering and diffraction
pattern resulting from the realistic defect that is illustrated in Figure 5. In Figure 10, we
present the monochromatic wavefield at 50 kHz, including the first-order helical modes for
an A0 source positioned at the centre of the domain. This is similar to Figure 1b, where we
display three times 2πR (60 cm), resulting in a total width of 180 cm. The amplitudes are
normalised between minus one and one. A notable observation from the visualisation is
the strikingly similar diffraction pattern characterised by the focusing of energy behind the
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defect. This observation is consistent with our theoretical expectations for the A0 mode.
This is because the presence of the defect induces a decrease in phase velocity, as depicted
in Figure 2. What is not evident in the wavefield is the presence of backscatter or reflections.
This is because of the one-way wave equation modelling method used in this approach. In
contrast, the elastic FE model does consider backscatter, but the relatively smooth corrosion
defect does not create enough medium contrast for reflection. Additionally, there is no sign
of any mode conversion. To assess the scattering in more detail, we analyse the wavefield
in the wavenumber–frequency domain using a spatial 2D Fourier transformation, as shown
in Figure 11. In the wavenumber domain, the expected velocity for the excited mode is
observed. The amplitude of the excited mode is normalised to 1, allowing other present
modes to be read as relative amplitudes in decibels. In the figure for the A0 mode, the
imprint of the three defects at angles of [−45 0 45] degrees from the origin is visible for
both modelling schemes. No energy is observed in the negative wave numbers in the
ky-direction, indicating no backscatter. Also, no other wave modes are present. Similarly,
for the S0 and SH1 excitation models, no backscatter is observed for the primary excited
mode. However, for the S0 mode, two other modes emerge in the elastic model, still with
very weak amplitudes.

The mode-converted A0 mode propagates in the positive direction with an amplitude
of approximately −40 dB. The SH0 mode-converted wave with an amplitude of −30 dB is
only slightly stronger. However, it propagates laterally, which means it does not affect our
pipe experiments. This is because we take measurements up to an angle of approximately 60
degrees at the farthest receiver location from the source. The SH1 excited mode also excites
other modes; only the presence of the SH0 mode is visible at −30 dB. At this frequency, the
SH1 mode shows conversion to the A1 mode but with an amplitude of −50 dB, indicating
a minimal signal strength.

Figure 10. Real part of the complex wavefield of an A0 mode excitation at 50 kHz showing the direct
path and two helical modes. (a) The out-of-plane velocity component for the 3D elastic model using a
dipole source to ensure an equal directivity with the FX method. (b) The pressure level for the 2D
acoustic model. Note that both the velocity and pressure scale linearly, and, although we are looking
at different physical quantities, this does not affect the relative (normalised) amplitude and phase
differences used in tomography.
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Figure 11. Wavenumber spectra of both the FE method and FX model. (a) The A0 mode does not
show any mode conversions or backscatter. In (b), the S0 mode converts into the SH0 and A0 mode,
but with very low amplitudes. In (c), the SH1 mode shows some minor mode conversion into the
SH0 mode due to the defect. (d–f) The spectra for the FX method exhibit the same scattering profiles
minus the mode conversions.



Sensors 2024, 24, 3750 14 of 21

5.2. Arrival Time and Amplitude Differences

Now that we have observed that our model adequately describes the physics for
tomographic purposes, we aim to quantitatively determine whether the differences between
an elastic model and our acoustic implementation are sufficiently small in both amplitude
and phase. In Figure 12, we present the results of the elastic finite difference simulations on
the rotated scattered grid compared to the FX method.

Figure 12. Similarity between modelling methods. (a) FDTD wavefield recorded at a receiver line
at y = 400 mm with tapered edges. (b) FX wavefield recorded at y = 400 mm. (c) Snapshot of the
FX wavefield showing the energy focusing of the A0 mode behind the defect. (d) Time trace for
both methods at y = 400 mm and x = 300 mm. (e) Shown by the black dashed line is the time
difference between the two records (a,b), and, in blue, for reference, is the difference between a
modelled pristine case and the defect case.
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Again, we observe the energy focusing behind the defect in (a). When we select
a receiver line at 400 mm, we obtain (a & b), and, when we take a trace aligned with
the source, we obtain Figure 12d. The two recorded wavelets are almost identical, with
slightly more significant differences in amplitude than in phase. To assess accuracy more
comprehensively, it is interesting to observe changes with offset. Therefore, we perform a
cross-correlation on the corresponding records in (a) and (b). We then identify the maxima
for each offset to determine the time differences at each receiver position. These arrival
time differences are represented by the black dashed line in Figure 12e. Noticeably, there
is slightly more fluctuation around the focal point of the defect position between x = 200
and x = 300 mm. Moreover, with larger offsets, the differences tend to increase somewhat.
This aligns with our observation of accumulating numerical dispersion, particularly from
the FD method. In order to assess whether the difference between FX and 3D modelling
is acceptable, a comparison is made with a defect-free response. The requirement is that
the differences between modelling schemes should be significantly smaller than between a
defect and a defect-free response. The latter difference is called the misfit.

To illustrate the differences between the models in contrast to the misfit, we choose
to plot all the differences as distributions, as shown in Figure 13. Upon examining the
figure, we can observe that the distributions of the model differences have a mean of zero,
which indicates there is no bias. Furthermore, we notice that the width is significantly
smaller in comparison to the misfit. For instance, if we consider the time differences
for the A0 mode, we can see that the model error, represented in blue, is approximately
0.25 microseconds. In contrast, the misfit time difference, depicted in red, amounts to a
maximum of 7 microseconds. While there is a disparity between the 2D FX model and
the benchmark 3D FDTD, indicating an error, it is much smaller than the misfit. The
question remains: what kind of misfit is needed to push the optimisation problem in the
right direction and converge towards the actual defect? To this end, we conduct some
preliminary tests with our frequency domain tomography algorithm, and these initial tests
show that we need a minimum phase angle difference of approximately 0.35 radians. In
comparison to the misfit distributions shown in Figure 13, at least an arrival time difference
of approximately 0.5, 0.3, and 0.2 microseconds is required for the S0, A0, and SH1 modes,
respectively, at the given centre frequencies. The analysis can also be conducted for the
amplitudes, as depicted in (d–f). Here, we take the absolute values of the wavefield at
the centre frequency and examine the ratio between the two. In terms of amplitude, the
absolute model error is approximately 2 dB, whereas the misfit can reach up to 8 dB. We
repeat this analysis for the S0 and SH1 modes, although, for the SH1 mode, we limit the
maximum wall thickness loss to 20% instead of 50%. We observe similar model errors for
the modes. For the SH1 mode, we anticipate comparable performance given the significant
time and amplitude misfits. However, due to the lower sensitivity of the S0 mode, as
inferred from the dispersion curve gradient in Figure 2, the spread of time and amplitude
differences is notably smaller. Therefore, this mode will be more affected by the model
error as well as other forms of noise. Adding the amplitude information for the S0 mode to
the total misfit function appears to provide limited value.
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Figure 13. For different wave modes, the distribution of the model errors is shown in blue, and
the misfit between the pristine and defect cases is shown in red. (a–c) Arrival time differences in
microseconds; (d–f) amplitude ratios in decibels.
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5.3. Experimental Results

We have confirmed through numerical simulations that the FX method is an adequate
way to describe the physics of guided waves. Now, we aim to demonstrate this through
measured data. Figure 14 shows two snapshots that compare the two models. The first
snapshot captures the moment of encountering the defect, while the second one shows the
diffraction pattern after the wave has passed through the defect.

Figure 14. Snaphots of modelled and measured wavefield: (a–c) at t = 140 µs, observing a focusing
effect while passing the defect; and (b–d) at t = 180 µs diffraction after the defect, showcasing a
similar interference pattern. At the microphone array, we measure a pressure level. Similarly, the
modelled wavefield also represents pressure.

Some minor differences can be observed. A faint source ringing imprint is still dis-
cernible in the measurement, which can be filtered out. Additionally, for the representation
of the amplitude in the snapshot at 140 µs, we apply a weighting of 1/

√
Drel , where Drel

represents the relative thickness at the defect position. This adjustment accounts for the
increased out-of-plane displacement resulting from the thinning of the plate in the mea-
surement, which is not captured in a 2D model. However, this discrepancy is negligible for
wavefronts measured at a receiver line behind the defect. Furthermore, the interaction with
the defect and its associated diffraction pattern seems identical. Once again, no backscat-
tering or mode conversion can be observed. Thus, these results are consistent with the
expectation of the numerical experiment. When we extract a receiver line at x = 1 m, we
obtain Figure 15.
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Figure 15. Single shot gather with a receiver line at x = 1 m for both the measurement (a) and the FX
model (b), showcasing a similar interference pattern. (c) Time trace at x = 1 m and y = 0.62 m. The
measured wavefield exhibits lower amplitude, primarily due to source directivity. Additionally, the
tail of the measured wavelet is influenced by a source ringing effect.

We observe a resemblance in the interference pattern, and the arrival times are nearly
identical. However, upon closer examination of the time trace, we notice that, initially, the
phases of the wavelets neatly overlap. Around 250 µs, however, the ringing effect begins
to interfere with the wavelet. Additionally, there is a difference in amplitude, most likely
stemming from the difference in source directivity. Specifically, the modelled dipole differs
from the measured monopole, with the dipole concentrating its energy more along the axial
propagation line. Consequently, for these small offsets, we observe a higher amplitude
with the FX method.

6. Conclusions

This paper presents the recursive wavefield extrapolation method and its modelling
performance for further use in corrosion mapping. Our 2D acoustic model (FX) simulates
the behaviour of A0, S0, and SH1 waves interacting with defects. To obtain a numerical
benchmark solution of the full 3D elastic wave equation, we used commercially available
finite element (FE) software and an in-house finite difference (FDTD) code based on a
rotated staggered grid. Both the elastic and acoustic numerical methods produced highly
consistent results. Through numerical and experimental testing, we confirmed that the
results had no significant backscatter and minimal mode conversions. We evaluated both
the time and amplitude differences between the elastic and acoustic methods, which are
useful for a full waveform inversion implementation with a parameterised defect. The
results also show which modes are relevant for considering amplitudes in the joint inverse
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scheme. Given the model errors, it became clear that including the amplitude information in
the misfit for the S0 mode will not contribute significantly to the convergence of the inverse
problem. Our findings affirm the viability of our one-way acoustic model for tomographic
applications, emphasising its efficiency and accuracy. Finally, the measured results also
indicate that source directivity is significant for amplitude accuracy. Therefore, the correct
directivity of transducers should be included in the model. Depending on the transducers
used in the tomographic set-up, this can be achieved with the FX method by employing
a combination of multiple point source positions. Further improvements can be made by
extending the method to address anisotropic cases and accommodate complex geometries
such as pipe bends. By enhancing this methodology, we aim to improve corrosion mapping
capabilities, providing more accurate and comprehensive insights into pipeline integrity.

Author Contributions: Conceptualization, E.H. and A.V.; methodology, E.H. and A.V.; simulations
and data acquisition, E.H.; experimental set-up and software, E.H. and A.V.; writing—original
draft preparation, E.H.; writing—review and editing, E.H., A.V. and M.V.; project administration
and funding acquisition, A.V. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by the European Union’s Horizon 2020 Research and Innovation
Program under grant agreement No. 860104, project GW4SHM (Guided Waves for Structural Health
Monitoring).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The authors can provide the measurement data upon request.

Acknowledgments: We would like to express our gratitude to Peter Huthwaite for providing the
laser scan defect shape. Additionally, we extend our thanks to Arno Duijster for his assistance with
the single-mode excitation in the elastic models.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Rose, J.L. Ultrasonic Guided Waves in Solid Media, 1st ed.; Cambridge University Press: Cambridge, UK, 2014. https://doi.org/10

.1017/CBO9781107273610.
2. Cawley, P.; Alleyne, D. The use of Lamb waves for the long range inspection of large structures. Ultrasonics 1996, 34, 287–290.

https://doi.org/10.1016/0041-624X(96)00024-8.
3. Huthwaite, P.; Ribichini, R.; Cawley, P.; Lowe, M.J.S. Mode selection for corrosion detection in pipes and vessels via guided wave

tomography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2013, 60, 1165–1177. https://doi.org/10.1109/TUFFC.2013.2679.
4. Leonard, K.R.; Hinders, M.K. Lamb wave tomography of pipe-like structures. Ultrasonics 2005, 43, 574–583. https://doi.org/10.1

016/j.ultras.2004.12.006.
5. Huthwaite, P.; Simonetti, F. High-resolution guided wave tomography. Wave Motion 2013, 50, 979–993. https://doi.org/10.1016/

j.wavemoti.2013.04.004.
6. Volker, A.; van Zon, T. Guided wave travel time tomography for bends. AIP Conf. Proc. 2013, 1511, 737–744. https:

//doi.org/10.1063/1.4789119.
7. Volker, A. Guided wave tomography in anisotropic media using recursive extrapolation operators. AIP Conf. Proc. 2018, 1949,

090001. https://doi.org/10.1063/1.5031564.
8. Zimmermann, A.A.E.; Huthwaite, P.; Pavlakovic, B. High-resolution thickness maps of corrosion using SH1 guided wave

tomography. Proc. R. Soc. A Math. Phys. Eng. Sci. 2021, 477, 20200380. https://doi.org/10.1098/rspa.2020.0380.
9. Huthwaite, P. Evaluation of inversion approaches for guided wave thickness mapping. Proc. R. Soc. A Math. Phys. Eng. Sci. 2014,

470, 20140063. https://doi.org/10.1098/rspa.2014.0063.
10. Belanger, P.; Cawley, P.; Thompson, D.O.; Chimenti, D.E. Lamb Wave Tomogrpahy to Evaluate the Maximum Depth of Corrosion

Patches. AIP Conf. Proc. 2008, 975, 1290–1297. https://doi.org/10.1063/1.2902582.
11. Belanger, P.; Cawley, P. Feasibility of low frequency straight-ray guided wave tomography. NDT & E Int. 2009, 42, 113–119.

https://doi.org/10.1016/j.ndteint.2008.10.006.
12. Belanger, P.; Cawley, P.; Simonetti, F. Guided wave diffraction tomography within the born approximation. IEEE Trans. Ultrason.

Ferroelectr. Freq. Control 2010, 57, 1405–1418. https://doi.org/10.1109/TUFFC.2010.1559.
13. Huthwaite, P. Guided wave tomography with an improved scattering model. Proc. R. Soc. A Math. Phys. Eng. Sci. 2016,

472, 20160643. https://doi.org/10.1098/rspa.2016.0643.

https://doi.org/10.1017/CBO9781107273610
https://doi.org/10.1017/CBO9781107273610
https://doi.org/10.1016/0041-624X(96)00024-8
https://doi.org/10.1109/TUFFC.2013.2679
https://doi.org/10.1016/j.ultras.2004.12.006
https://doi.org/10.1016/j.ultras.2004.12.006
https://doi.org/10.1016/j.wavemoti.2013.04.004
https://doi.org/10.1016/j.wavemoti.2013.04.004
https://doi.org/10.1063/1.4789119
https://doi.org/10.1063/1.4789119
https://doi.org/10.1063/1.5031564
https://doi.org/10.1098/rspa.2020.0380
https://doi.org/10.1098/rspa.2014.0063
https://doi.org/10.1063/1.2902582
https://doi.org/10.1016/j.ndteint.2008.10.006
https://doi.org/10.1109/TUFFC.2010.1559
https://doi.org/10.1098/rspa.2016.0643


Sensors 2024, 24, 3750 20 of 21

14. Huthwaite, P. Improving accuracy through density correction in guided wave tomography. Proc. R. Soc. A Math. Phys. Eng. Sci.
2016, 472, 20150832. https://doi.org/10.1098/rspa.2015.0832.

15. Li, J.; Rose, J.L. Excitation and propagation of non-axisymmetric guided waves in a hollow cylinder. J. Acoust. Soc. Am. 2001,
109, 457–464. https://doi.org/10.1121/1.1315290.

16. Li, J.; Rose, J.L. Natural beam focusing of non-axisymmetric guided waves in large-diameter pipes. Ultrasonics 2006, 44, 35–45.
https://doi.org/10.1016/j.ultras.2005.07.002.

17. Luo, W.; Zhao, X.; Rose, J.L. A Guided Wave Plate Experiment for a Pipe. J. Press. Vessel. Technol. 2005, 127, 345–350.
https://doi.org/10.1115/1.1989351.

18. Velichko, A.; Wilcox, P.D. Excitation and scattering of guided waves: Relationships between solutions for plates and pipes. J.
Acoust. Soc. Am. 2009, 125, 9.

19. Brath, A.J.; Simonetti, F.; Nagy, P.B.; Instanes, G. Guided Wave Tomography of Pipe Bends. IEEE Trans. Ultrason. Ferroelectr. Freq.
Control 2017, 64, 847–858. https://doi.org/10.1109/TUFFC.2017.2683259.

20. Wang, Z.; Huang, S.; Shen, G.; Wang, S.; Zhao, W. High resolution tomography of pipeline using multi-helical Lamb wave based
on compressed sensing. Constr. Build. Mater. 2022, 317, 125628. https://doi.org/10.1016/j.conbuildmat.2021.125628.

21. Druet, T.; Tastet, J.L.; Chapuis, B.; Moulin, E. Guided Wave Tomography for Corrosion Monitoring in Planar Structures. In
Proceedings of the Structural Health Monitoring 2017; Stanford, USA, 2017. https://doi.org/10.12783/shm2017/14049.

22. Volker, A.; Bloom, J.; Thompson, D.O.; Chimenti, D.E. Experimental Results of Guided Wave Travel Time Tomography. AIP Conf.
Proc. 2011, 1335, 215–222. https://doi.org/10.1063/1.3591859.

23. Willey, C.; Simonetti, F.; Nagy, P.; Instanes, G. Guided wave tomography of pipes with high-order helical modes. NDT & E Int.
2014, 65, 8–21. https://doi.org/10.1016/j.ndteint.2014.03.010.

24. Virieux, J. (Ed.) An Introduction to Full Waveform Inversion; Society of Exploration Geophysicists: Encyclopedia of Exploration
Geophysics, SEG, R1-1–R1-40, 2014. https://doi.org/10.1190/1.9781560803027.
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