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Abstract
Technological and economic opportunities, alongside the apparent ecological benefits, point to biodesign as a new industrial 
paradigm for the fabrication of products in the twenty-first century. The presented work studies plant roots as a biodesign 
material in the fabrication of self-supported 3D structures, where the biologically and digitally designed materials provide 
each other with structural stability. Taking a material-driven design approach, we present our systematic tinkering activities 
with plant roots to better understand and anticipate their responsive behaviour. These helped us to identify the key design 
parameters and advance the unique potential of plant roots to bind discrete porous structures. We illustrate this binding 
potential of plant roots with a hybrid 3D object, for which plant roots connect 600 computationally designed, optimized, 
and fabricated bioplastic beads into a low stool.

Keywords Plant roots · Biodesign · Digital biofabrication · Material-driven design · Living organisms

Introduction

The cross-fertilization of biology with design and engineer-
ing offers new sustainable solutions and diverse forms of 
expressions for product design and fabrication [1–4]. This 
emerging practice suggests that the product is a co-creation 
of humans and living organisms, such as algae, fungi, bac-
teria and plants, in which the organisms might contribute 
as building blocks, material sources, energy generators 
and more [1]. Technological and economic opportunities, 
alongside its ecological benefits, point to biodesign as a new 

industrial paradigm for the fabrication of products in the 
twenty-first century [5–8].

Biodesign, within the context of product design, builds 
upon the relatively established field of biofabrication, which 
has a long history in biomedical science and engineering 
[5, 9–12].

Researchers have achieved to embed cells of microorgan-
ism, animal and plant origins into a variety of scaffold using 
digital fabrication technologies (e.g. [4, 13–18]). Today, 
potential applications of biodesign vary from biological 
energy sources (e.g. microbial fuel cells) to bio (-degrada-
ble) materials, such as fungi-based leather (e.g. https ://www.
mycow orks.com) and oil-free plastic and foam alternatives 
(e.g. https ://www.bloom tread well.com).

While the majority of the biodesign projects are still at 
an experimental scale, recent initiatives of biodesign com-
panies such as Ecovative, MycoWorks, MOGU and Modern 
Meadow for scaling-up are promising. In the fabrication of 
sustainable material alternatives for product design, many 
of the current initiatives focus on bacteria and fungi. An 
exception to this is a UK-based company, Fullgrown, which 
cultivates trees into wooden furniture by a self-developed 
process relying on traditional horticultural techniques such 
as grafting, pruning and espaliering. Fullgrown’s commis-
sion-based business model allows them to deliver the grown 
products by trees in 6–10 years.
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For thousands of years, plants have been (cultivated 
and) used as material sources by humans, resulting in a 
well-established repertoire of techniques and tools. Nev-
ertheless, when it comes to biodesign—as also evident 
from the Fullgrown example—the transformation of plant 
or plant parts into products can be very lengthy. There-
fore, despite the familiarity of the organism for humans, 
plants and plant parts have been less explored in biode-
sign, compared to other organisms. Addressing this gap, 
in this paper, we explore the potentials of plant roots for 
product design. In particular, we demonstrate the possibil-
ity of creating self-standing 3D structures by integrating 
computational design tools in designing with plant roots.

The potentials of living plants as (inter)active beings in 
the design of interactive products have long been explored 
by human–computer interaction (HCI) communities as 
[19–27]. In particular, the ability of plants to respond to 
the changes in the environment has inspired scholars to 
incorporate them in sensing devices [28–30], information 
outputs [31–35] and self-nurturing systems [36–39].

Embarking on a more artistic endeavour and fascinated 
by the intelligence and behaviour of plant roots, Diana 
Scherer has explored the material ability of plant roots at 
the seedling stage to create an unprecedented textile-like 
material, Interwoven. Through a self-developed technique, 
aided by digital fabricated templates which guides the 
growth of plant roots (patent pending), the artist directs 
plant roots into geometric patterns found in nature, like 
honeycomb structures, or foliate designs reminiscent of 
Middle Eastern arabesques, shown in Fig. 1. The process 
takes 1–2 weeks to complete.

Scherer’s work illustrates that roots are not only produc-
tive means but also intelligent agents that respond to and 
adapt actively and dynamically to their environment. Yet, in 
order to further advance their applications in product design, 
there is a need to systematically understand plant root behav-
iour and explore new fabrication parameters. For instance, 
the digitally fabricated piece, which is used primarily to cre-
ate templates for controlling the organism’s growth, can be 
a part of the final artefact, a direction that has not yet been 
explored.

In collaboration with Diana Scherer, our work contrib-
utes to the understanding of plant root in designing and 
fabricating 3D objects with the aid of computational tools. 
The potential lies in the following aspects: (1) speed: In 1 
or 2 weeks, oat roots are able to grow to around 120 mm 
according to our experiment. Therefore, we argue that plant 
roots have the potential to fabricate a number of low-height 
products at a high efficiency (compared to a tree stem). (2) 
3D-form ability: we show the potential of plant roots for fab-
ricating 3D forms. (3) glue-ability: Our work demonstrates 
the potential of roots to connect discrete computationally 
designed, optimized and fabricated beads into a 600 mm by 
600 mm 3D mass. In this project, rather than creating bound-
aries between the living organisms and manmade materials, 
we progressively explored a symbiotic approach where the 
biologically and digitally designed materials provide each 
other with structural stability.

Background

Digital biofabrication

In engineering, computational design methods such as topol-
ogy optimization have been developed to create lightweight 
and biomimetic structures [40–45] in a manner analogous 
to bone remodelling. Furthermore, parametric design allows 
to create materialized patterns that vary in structural proper-
ties, i.e. functionally graded meta-materials. In biodesign, 
coupling biological principles with advanced computa-
tional technologies, i.e. digital biofabrication [4], can help 
stretch the possibilities of what living organisms can offer 
for design. For example, digital fabrication has proved to 
be useful in producing detailed structures and thus creat-
ing a fine-tuned habitat for living organisms in a number of 
projects, e.g. 3D-printed irrigated green wall (https ://arche 
llo.com/news/the-world s-first -3d-print ed-irrig ated-green 
-wall) where agent-based modelling [46] is used to design 
the geometry of the habitat of plants. Another example to 
this is the Mycelium Chair, by designer Eric Klarenbeek, 
who 3D-printed straw (where mycelium grows) and a PLA 

Fig. 1  Interwoven, plant roots 
are grown into intricate, textile-
like materials (Diana Scherer: 
http://diana scher er.nl. Accessed 
9 June 2020)

https://archello.com/news/the-worlds-first-3d-printed-irrigated-green-wall
https://archello.com/news/the-worlds-first-3d-printed-irrigated-green-wall
https://archello.com/news/the-worlds-first-3d-printed-irrigated-green-wall
http://dianascherer.nl
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shell as a house for mycelium growth (https ://www.dezee 
n.com/2013/10/20/mycel ium-chair -by-eric-klare nbeek -is-
3d-print ed-with-livin g-fungu s/).

Other researchers have looked into the possibilities of 
computational design tools, in particular digital fabrication, 
to achieve nature-inspired and hybrid (of artificial and liv-
ing) scaffolds. In the example of “Silk Pavilion” [47], the 
skeleton has been created with CNC and robotic arm, and 
silkworms were then placed onto the skeleton and produce 
silk on the existing structure (Fig. 3 Silk Pavilion made 
with silkworms (left), by MIT Media Lab; silkworm fabri-
cating silk on the CNC scaffold (right) (https ://www.dezee 
n.com/2013/06/03/silkw orms-and-robot -work-toget her-to-
weave -silk-pavil ion/). The behaviour of silkworms has been 
studied systematically for the fabrication of Silk Pavilion 
[48]. Likewise, the BioLogic project by the MIT Tangible 
Media Group [49] explores responsive clothing, enabled by 
dozens of tiny triangular flaps that react to heat and humidity 
due to the single-cell organisms 3D-printed on the fabric.

In the case of Interwoven by Diana Scherer, the digi-
tal tools are used to design and fabricate the 2D templates 
which direct the root plants to form a predefined patterns and 
a textile-like material. Thus, the digitally fabricated parts are 
only used to give the plant root material its final shape, while 
they could support the structural stability of the material if 
they were integrated into the material composition, as shown 
in Mycelium Chair and Silk Pavilion. In both examples, the 
resulting artefacts are hybrid/composite assemblies of living 
organisms and digital technologies. However, both of the 
cases have self-standing scaffolds that contain the organ-
isms. On the contrary, our design utilizes the glue-ability of 
plant roots to bind discrete computationally optimized and 
fabricated beads and compound a stable structure.

In this paper, we focus on the design and optimization 
of the templates to create 3D structures, either by giving 
emphasis to the “process” design (e.g. turning the mould 
during the growth), or reinterpreting the template as a 
3D-printed structure which ultimately builds a composite 
material together with plant roots. Hence, 3D form-ability 
and structural stability lead our tinkering activities through-
out the design process. Our work is a first step towards 
understanding the behaviour of roots for design.

Root behaviour in response to environmental 
stimuli

The successful development of a plant depends on the cor-
rect positioning of the seedling organs towards gravity, 
ensuring that the plant anchors its roots in the soil (pro-
viding nutrients and water) and adjusts light-harvesting 
shoot organs optimally above ground [50]. Roots do not 
passively grow, but move and observe [51]. Their move-
ments allow them to better search for food and space to 

live and adapt intelligently to their environment [52]. In 
order to anchor the plant deeper underground through root 
movement, a type of tissue covering the tip of roots, called 
the root cap or calyptra, perceives gravity and direct root 
growth and development with regulatory processes of hor-
mone network [53]. “Artificial gravity” [51], for instance 
caused by centrifugal force, determines the root direction 
in the same way as natural gravity does [54].

Moreover, roots twist their forms in response to the 
form and direction of the barriers faced in the growing 
direction. For instance, a tilted barrier leads to an in-plane 
coiling of the root, like waving, through actively twisting 
and passively directed by gravity [55].

Other important variables influencing the root behav-
iour and the properties of the final outcome (e.g. Inter-
woven) are type and amount of growing media and water 
[56]. As observed by Scherer and emphasized in the lit-
erature, a certain level of drought helps roots elongation 
[56, 57], while too much water slows down their process, 
“making the roots lazy” [Scherer, personal communica-
tion]. In order to create intricate and delicate patterns from 
roots, Scherer would leave the growing media (coco coir or 
soil) relatively dry to have longer roots (Fig. 2).

As presented above, a lot is known about how the 
plant root behaviour changes in response to environmen-
tal stimuli. Nevertheless, it remains unclear how and to 
what extent the root growth can be intentionally steered 
towards expressive and functional 3D forms/products. It is 
envisioned that digital design tools that support the crea-
tion of dedicated habitat for plants would facilitate this 
investigation.

Fig. 2  Intricate and delicate patterns grown by plant roots in coco 
coir in a relatively drier condition to achieve longer roots (Diana 
Scherer: http://diana scher er.nl. Accessed 9 June 2020)

https://www.dezeen.com/2013/10/20/mycelium-chair-by-eric-klarenbeek-is-3d-printed-with-living-fungus/
https://www.dezeen.com/2013/10/20/mycelium-chair-by-eric-klarenbeek-is-3d-printed-with-living-fungus/
https://www.dezeen.com/2013/10/20/mycelium-chair-by-eric-klarenbeek-is-3d-printed-with-living-fungus/
https://www.dezeen.com/2013/06/03/silkworms-and-robot-work-together-to-weave-silk-pavilion/
https://www.dezeen.com/2013/06/03/silkworms-and-robot-work-together-to-weave-silk-pavilion/
https://www.dezeen.com/2013/06/03/silkworms-and-robot-work-together-to-weave-silk-pavilion/
http://dianascherer.nl
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Designing with plant roots: a case study

In this section, we will present a case study focusing on 
plant roots. The design project was conducted at Material 
Experience Lab in Faculty Industrial Design Engineering 
in Delft University of Technology, in collaboration with the 
artist, Diana Scherer to address the identified knowledge gap 
in the literature concerning the creation of 3D structures. 
Accordingly, the aim of the project was set to “explore the 
potentials of plant roots for product design, with a particular 
emphasis to the structure stability and 3D-form ability of 
root materials”.

Research methodology

The paper explains our material-driven design approach 
[58], combining systematic tinkering and sample creation, 
and elaborates on our findings in terms of (novel) affor-
dances/potentials [59] of plant roots for digital biofabrica-
tion. Material-driven design (MDD) is a design approach 
to the exploration and capitalization of materials potential 
[58], which extends beyond the possibilities of materials for 
intended form, function and experience, to process-abilities 
that are perceived when tinkering with the material [59]. In 
working with plant roots, tinkering helped us to reduce the 
degree of uncertainty, which mainly derives from unpredict-
ability and context dependency of living organisms [4, 60]. 
By mapping out our findings of the root behaviour under 
various growing conditions to biological and computational 
design parameters in the growing design space, our work 

provides practical insights on creating 3D products with 
plant roots.

Before starting the tinkering activities, following the 
material-driven design method [58] we first created a tax-
onomy [60] which maps the key elements and relationships 
in growing plant roots (see Fig. 3).

The taxonomy consists of four main sections that include 
but not limited to the listed adjustable parameters: (1) Mate-
rial ingredients, which are elements in the composition of 
the resulting material, including the organism used for the 
fabrication (different types of plants and roots), composi-
tion concerning what other materials (e.g. algae, hemp, etc.) 
are used in the growing process, and the template material 
(organic and non-organic) is used for guiding the growth. 
(2) Growing conditions encompass growth boosting nutri-
ents (e.g. fertilizer and hormone), gravitropism (influencing 
growing direction), the type and amount of growing media 
and the form and direction of barriers roots face in their 
growing direction. (see “Root intelligence” section) (3) 
Material structure can have variables in dimension (2D to 
4D), composition heterogeneity (density, local microstruc-
ture and layering structure) and geometry (biomimetic, algo-
rithmic). (4) Material processing refers to the post-process-
ing of the harvested biomass, including dyeing, compositing 
with other bio-based materials, transforming and surface 
treatment like coating. The above sections and parameters 
are closely interlinked with each other. For instance, the 
manipulation of barriers might lead to change in compo-
sition heterogeneity. Through manipulating one or more 
parameters, the resulting material sample may have different 
technical properties and experiential qualities.

Fig. 3  Taxonomy to support 
tinkering activities with plant 
roots
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The first set of tinkering activities

We started tinkering with the roots to get insights on 
what they can afford and how they behave. We used oat 
seeds, because of their growing speed and compliance to 

the predefined grow patterns. Our taxonomy served as a 
compass to navigate through the most influential material 
design parameters. We selected, potentially, the most influ-
ential parameters for our design purpose in consultancy 
with Scherer, who had experimented with different roots 
and growing media. Table 1 provides an overview of the 
tinkering activities.

The first experiment was conducted to investigate the 
influence of growing media on roots, which has proved to 
have a major effect on the optimal strength of the material. 
Coco coir, water and agar gel are common growing media 
and have been used by Scherers in her practice.

The next experiment explored root behaviours and mor-
phologies when roots meet different barriers (see “Back-
ground” section). In earlier experiments, Scherer had 
observed that roots grow into fabrics that were incorporated 
into the template. The ability of roots to grow through a 
barrier (in this case a piece of fabric) triggered us to explore 
this potential of roots further, for instance, in building a 3D 
structure. We documented the results of our observations 
through mapping the root–barrier interactions, according to 
the form and direction of the barrier.

In the last experiment, we explored root behaviour when 
subject to centrifugal force. Scherer had previously tried to 
grow roots on curved surfaces by growing two halves of a 
vase separately. But she found that the roots gathered at the 
bottom of each half, leaving the side parts less colonized. 
We tested whether centrifugal force would help roots grow 
towards the side of the vase, creating a 3D seamless form, 
rather than two separate pieces to be connected afterwards.

Experimental set‑up

The experiments were conducted between April and 
August 2019 at the Material Experience Lab. Between 
April and May, due to insufficient natural light, additional 

Table 1  Tinkering activity overview

Growing media, gravitropism and barrier are potentially the most influ-
ential parameters for our design purpose in consultancy with Scherer

Growing media Gravitropism Barrier

Coco coir Gravity Form
Deep water Centrifugal force Direction
Shallow water Openness
Agar gel

Fig. 4  Additional growing light set-up for growing between April and 
May

Fig. 5  Centrifugal force experi-
ment set-up (left); 3D-printed 
moulds for making growing 
vessels for barrier experiments 
(right)
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growing light (Fig. 4) (Mars Hydro Pro II Epistar 80, 165 
Watt) was used between 6 am and 8 pm to speed up grow-
ing; between June and August, and the natural lighting 
condition and the temperature (20–30 °C) required no 
additional lighting or air conditioning. The basic set-up 
included a template, a container where the growing media 
was placed, and a proper amount of oat seeds (per square 
millimeter) were sown in the growing container. Whenever 
agar gel or water was used as the growing media, the root 
part of the container was covered in darkness [61]. After 
7 days, the roots can be harnessed.

In order to explore the impact of barriers on root behav-
iour, we designed different growing containers and fabri-
cated combining 3D printing and vacuum forming (Fig. 5, 
right). We also used some existing objects like beads, to 
place in the container as barriers for quick prototyping. 
For experimenting with centrifugal force, we created a 
centrifugal force set-up (Fig. 5, left). We used the vase 
made by Scherer as two halves with patterns in their inner 
surface. In our set-up, the two-half of the vase is connected 
to one container which is fixed on a turning wheel with a 
spinning motor (spinning speed = 180 rpm). Oat seeds are 
planted in the spinning container with inner patterns filled 
with agar gel and harvested after 7 days (valid spinning 
time around 3 days).

We screened the processes by observations, taking 
notes on a material diary, photographs, videos of the pro-
cess and results. We mapped out the root behaviours and 

morphologies and teased out the most promising direc-
tions for 3D-form creation and structural stability.

Results

Mapping the root behaviour

To show root behaviours as the results from our tinkering 
activities, for each experiment we present a photograph 
taken in the tinkering process and a schematic representa-
tion depicting the local behaviour, and a description of the 
root behaviour (Figs. 6, 7, 8).

Root potential for 3D forms

These first activities showed that roots do behave very sensi-
tively and adapt to the growing environment. Learning that 
roots can be directed through the means of placing barriers 
in the growing direction, we have unveiled the root potentials 
for building 3D forms through binding different elements 
on their way.

The potentials are twofold. Roots not only are able to 
not only make a composite with the dried agar membranes, 
when grown in agar medium (Fig. 9, left), but also can bind 
the 3D porous barriers in their growing direction (Fig. 9, 
right). The “glue-ability” affordances of roots in relation to 
porous structures lead to binding them into 3D massive form 
with high compressive strength.

Fig. 6  Root behaviour in different growing media. a Roots grow 
through coco coir fibres and particles, winding down, elongating fast. 
b Roots grow to the bottom of the container, elongating more slowly, 
compared to growing in coco coir. c Roots stay at a certain length, 

elongating more slowly, compared to growing in coco coir. d Roots 
consume water in agar gel and leave a dry membrane to embrace 
roots
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Herein, we question: how do we design a porous struc-
ture to elevate the roots’ glue-ability potential to create a 
product? In the next section, we will present the digitally 
designed and engineered beads to further explore roots’ 
affordances and take a closer look at the micro-interactions 
between roots and the porous structure.

Designing the bead: digital biofabrication 
with plant roots

According to the presented root behaviour, if we could 
design proper barriers for roots to grow through, roots can 
build a composite 3D form together with agar gel and the 
porous barriers. In order to design and optimize the bar-
rier, we picked a possible design direction for the ultimate 

product: a low stool, which provided us with a specific 
material performance we expect from the grown compos-
ite structure to fulfil. In the related work, we have seen 
designers 3D print scaffolds and boundaries to enhance 
the strength of mycelium chair. Here, we explored 3D 
printing and parametric design of the single unit that roots 
are going to connect. In the end, a low sitting stool has 
been collectively made from the growing of roots and 600 
porous beads. The stool is fully functional with load bear-
ing, proving a fabrication technique with roots for creating 
3D massive products.

The design requirements for the beads included: (1) to be 
light enough for the roots to hold together; (2) to be porous; 
and (3) to be bio-based to be compliant with “root” material, 
leading to the final stool that withstands the weight of an 
average person while providing basic comfort for sitting on.

Fig. 7  Root behaviour when they meet barriers, of different shapes, 
angles and dimensions (3D beads). a When roots grow and meet hori-
zontal barrier, they grow in all directions until they reach the edge 
and find the way down again; when they meeting tilted barrier, they 
meander downwards until finding the edge. b When roots meet closed 
barrier with flat bottom, they go straight to the surface of the barrier 
and then go from the touching point to the edge, forming the perim-

eter of the barrier shape. c When roots meet closed barrier with round 
bottom, they form concentric circles and 3D form. d When roots meet 
closed barrier of sharp bottom, they get stuck at the tip of the barrier 
and then pushed back, becoming a curved slim form. e When roots 
meet 3D barrier, they grow in between the 3D beads or through the 
holes in the axis of the beads; in the end, roots connect all the beads 
together
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To make the bead lightweight and robust, we have 
focused on porous structures that are commonly seen in 
nature, such as trabecular bone. Bone-like structure has been 
an appealing option as infill for additive manufacturing [45]. 
The spongy trabecular bone adapts itself to the mechanical 
load [40] from a natural optimization process. The resulting 
composition is lightweight, resistant, robust with respect to 
force variations and damage-tolerant [45].

An Ultimaker 3D printer with polylactic acid (PLA—a 
type of bioplastic derived from renewable resources) fila-
ment was used to fabricate the beads. The beads were then 

prepared in the agar gel where roots grew. The 3D-printed 
PLA structure was generated by a parametric modelling 
algorithm in Grasshopper (Fig. 11), the parametric design 
plugin of Rhinoceros (3D modelling software). We chose 
two types of porous structure: radiative (Fig. 10B(a)) and 
hollow (Fig. 10B(c)). The radiative porous structure was 
found to be too stiff, while the hollow structure was lighter 
and more flexible. In Fig. 12, the growing/binding process 
is shown through a photograph taken on the fourth day 
of growth. The agar gel was consumed where roots pre-
vailed and the porous PLA beads were occupied and sewn 

Fig. 8  Root behaviour when 
they are influenced by cen-
trifugal force. In the presence 
of centrifugal force, roots grow 
towards the sides of the vase. 
Without centrifugal force, roots 
grow only towards gravity

Fig. 9  3D forms grown by roots 
(left); 3D from co-created by 
roots and 3D barriers (right)
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Fig. 10  A Overview of the bead 
design and optimization pro-
cess. B (a) the radiative bone-
inspired porous structure; (b) 
roots grown into the radiative 
bone-inspired porous structure; 
(c) the hollow bone-inspired 
porous structure and (d) roots 
grown into the hollow bone-
inspired porous structure

Fig. 11  Screenshot of a parametric design process: to create the hollow porous structure
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together. Figure 13 shows the final low stool fabricated 
by roots.

Discussion

This research provides a systematic approach to under-
stand plant root behaviour in designing and fabricating 3D 
forms in product design. The material-driven design pro-
cess unveiled new affordances of roots in binding 3D-printed 
porous structure, supported by research on roots’ responsive 
behaviour and digital biofabrication. We showed that plant 
roots are able to bind together the growing media and the 
digital fabricated barriers in the growing process to build 
a predefined 3D form. This “glue-ability” affordance of 

roots, which has also been brought forth in designing with 
other living organisms such as mycelium [see, for exam-
ple, MycoTEX, Aniela Hoitink, NEFFA; Chair made with 
Mycelium by Officina corpuscoli], can be further explored 
in future studies to tailor material properties in a more con-
trolled manner through the designing and optimization of 
porous structures. For example, the mechanism of roots 
binding porous structures can be more accurately described 
with a mathematical model that may be useful for predict-
ing root path and the link in local microstructures created 
by roots and 3D-printed structures, to achieve well-defined, 
local material properties [48].

Looking at root behaviours and materials potential found 
in this research, we could further show the roots dynamic 
interactions and intelligent adaptation to the growing space, 
which will bring new challenges to design, for example, 
to think creatively for constructing a most optimum habi-
tat for the living [48]. Further implications for design and 
human–computer interaction research could expand on the 
affordances of root as an intelligent agent—e.g. by carrying 
information/signal according to environment changes, or act-
ing as “information” carriers according to their locomotion.

We hope that our work inspires and informs biodesigners 
towards pushing the boundaries between the living and non-
living, nature and manmade and computational and biologi-
cal intelligence.

Conclusion

This research systematically explores plant roots as produc-
tive and intelligent agents for fabricating 3D objects by cre-
ating hybrid materials of the living and non-living through 
digital biofabrication. Taking a material-driven design 
approach, the paper presents our tinkering activities with 
roots and points out the glue-ability potential of roots for 
building 3D structures through binding different elements 

Fig. 12  Glimpse into the growing process and glue-ability of roots

Fig. 13  Low stool grown by 
roots, connecting 600 hollow, 
parametrically optimized porous 
beads
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on their way. The presented mapping of the root behaviour 
and our systematic approach can serve as an initial guideline 
for biodesign communities interested in further explorations 
not only with plant roots but other living organisms. Future 
research is suggested on plant root behaviour to leverage on 
the uncovered affordances in creating an expanded range of 
material properties such as elasticity and designing interac-
tive systems, when they are kept alive.
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