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Abstract

This thesis is devoted to the class of Max-Plus Linear Parameter Varying (MP-LPV) systems.
Recently, this class is introduced as an extension of the class of Max-Plus-Linear (MPL)
systems in the field of max-plus algebra. The MPL framework is useful when modeling
Discrete Event Systems (DES). Describing DES in conventional algebra results in nonlinear
system descriptions, but when described as a max-plus linear system, the model becomes
’linear’ in max-plus algebra. The extension class of MP-LPV systems is introduced as a tool
for parametric modeling, providing the possibility to model uncertain and nonlinear dynamics
in a parameterized linear system structure. MP-LPV systems are the max-plus algebraic
analogue to the conventional class of Linear Parameter Varying systems. The system matrices
of MP-LPV systems can depend on the varying parameter in different manners. Problems
arise when the varying parameter depends on the state vector itself. The resulting system
description is then implicit. Due to properties of max-plus algebra, it cannot always be
guaranteed that such implicit MP-LPV systems have a solution. This leads to the solvability
problem. In this thesis, we first define different levels of implicitness in MP-LPV systems,
and present frameworks for each level to solve these solvability problems. The results will
thereafter be illustrated with a case study that describes an urban railway system. Then, we
will present a first model predictive controller for a MP-LPV system with the urban railway
system as application. Research about MP-LPV systems has so far been about modeling and
system analysis, and little research has been done in control approaches. This model predictive
controller can therefore be considered as a first step in controller design for MP-LPV systems.
Lastly, the foundation is laid for analyzing closed-loop stability of MP-LPV systems subject
to model predictive control.
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Chapter 1

Introduction

This chapter provides a thorough introduction of the research topic covered in this thesis.
In section 1-1 we present the background information relevant for this thesis. In section 1-2,
we present the motivation for this research based on the literature research [4] prior to this
thesis, out of which the research questions will arise. We furthermore present the approach
implemented in this thesis to investigate these research questions. Finally in section 1-3 we
present the outline of the thesis.

1-1 Background

Everywhere around us, we can find implementations of systems and control theory, and the
importance of the world of systems and control is bigger than most of us realise. It can be
found in many different areas; wherever feedback occurs, control can be used. Examples are
energy delivery, computer engineering, transportation, manufacturing, medical engineering
and many more. In order to use and implement control, mathematical models of such systems
are a necessity. These models capture the dynamics of the control systems, and provide tools
to simulate and investigate these systems. Most of these mathematical models are described
with differential equations in conventional algebra and can deal with systems which evolve
in time due to the influence of various phenomena such as physical, chemical or biological
phenomena [5].

There is however a subclass of systems for which it is of great interest to describe it in another
type of algebra, namely in max-plus algebra. These types of systems, referred to as ’man-
made’ systems, are defined as Discrete Event Systems (DES) and evolve along the occurrence
of events instead of time. Examples of DES are manufacturing systems, railway networks,
logistic systems and many more [6].

Modeling general DES in conventional algebra results almost always in a nonlinear system
description. Control techniques for such complex, nonlinear mathematical models are however
more difficult to implement and less general than methods for linear systems. Linear systems
are the simplest abstraction on which the classical systems and control theory is based [5]. This
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2 Introduction

gives rise to the motivation of this thesis; there exists a subclass of DES that becomes ’linear’
when described in max-plus algebra [6]. The systems in this subclass of DES are generally
referred to as Max-Plus-Linear (MPL) systems, and are characterized by synchronization and
no concurrency or choice. The combination of synchronization and no concurrency means that
a new event can only start as soon as all preceding events have finished. No choice means that
the system does not contain steps in which a choice must be made between possible events.

Max-plus algebra distinguishes itself from conventional algebra by replacing the ’classical’ op-
erations addition and multiplication with the operations maximization and addition, respec-
tively. In DES, the maximization operation corresponds to the property of synchronization,
and the addition operation to the duration of events [6].

Recently, an extension of MPL systems has been introduced [7]: MPL systems of which the
system matrices depend on an exogenous parameter. Systems with such a linear parameter
varying structure are known in conventional algebra as Linear Parameter Varying (LPV)
systems, but are now translated to their max-plus analogue. The resulting systems are referred
to as Max-Plus Linear Parameter Varying (MP-LPV) systems [8]. Because of the varying
parameter structure, nonlinear dynamics can be captured in a model in which the signal
relations remain linear. The parameter itself can be nonlinear, but the structure of these
systems ensures that the system is still linear ín the parameter [9]. The introduction of this
class of MP-LPV systems enables the possibility to obtain clear models of a broad selection
of systems that up until now resulted in highly nonlinear descriptions. This gives rise to the
motivation for investigating MP-LPV systems; if we can obtain clear model descriptions, we
can implement controller design and model analysis on these systems.

There is however a downside of modeling systems in max-plus algebra: there does not exist
an inverse operation to the maximization operation. To illustrate, in conventional algebra
one can always remove a multiplication on one side of an equation, with a division on the
other side. Division can be seen as the inverse operator of multiplication, and vice versa.
Such an inverse does not exist for the maximization operation. This absence may cause the
occurrence of implicitness in the MP-LPV system description. This implicitness gives rise to
a solvability problem; we can not always guarantee existence of a solution to the MP-LPV
system.

This solvability problem is earlier investigated by the thesis [10], and is therefore the founda-
tion for this current thesis. Let us summarize the current status of research on MP-LPV sys-
tems and the solvability problem. In [10] the property of structural solvability is investigated
for different levels of implicitness in MP-LPV systems. Based on graph-theoretical methods,
this thesis concludes that for implicit MP-LPV systems, it is impossible to conclude struc-
tural solvability. The thesis approaches the solvability problem furthermore by comparing
the (implicit) MP-LPV system to the hybrid system class of Max-Min-Plus-Scaling (MMPS)
systems. From this, conditions arise which ensures solvability of the concerning systems. Fi-
nally, this thesis presents a case study concerning an Urban Railway System (URS), which
proves itself to be useful as implementation for analyzing solvability of (implicit) MP-LPV
systems. However, this URS still is subject to several unrealistic assumptions, of which the
most significant assumption is assuming an unlimited capacity of seats in the trains. The
concept of the URS is furthermore studied in [8]. Here, the solvability problem is proposed as
a general framework compared to the framework proposed in [10]. This framework is however
still under strict assumptions and does not guarantee solvability for all levels of implicitness
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1-2 Problem Description 3

at all times. The question therefore arises whether we can construct a general solvability
framework for MP-LPV systems with all levels of implicitnes and if so, whether we can test
this framework with a realistic URS model.

The solvability property is one of the building blocks in the field of system analysis for
MP-LPV systems. But as this class is only introduced recently, there are still many topics in
different directions open for further research. Such a direction is the field of controller design.
Thorough research has been done in the method of Model Predictive Control (MPC) for MPL
systems [11]. As MP-LPV systems are an extension of MPL systems, it seems only logical
to investigate whether we can extend the tools obtained so far. MPC is a popular control
approach, as it can handle constraints on the in- and outputs easily and it can be used to
track reference signals. All this background information builds up the interest in defining the
research topics of this thesis, and therefore gives rise to the following section.

1-2 Problem Description

Now that we have dived into the background of MP-LPV systems and its status of research
at the start of this thesis, we can describe the motivation for the research topics that will be
discussed. We have seen that there is a downside to modeling systems as MP-LPV systems,
as it gives rise to a certain solvability problem. We have furthermore seen that first steps have
been taken in obtaining a solvability framework for such systems. However, the framework
obtained so far is subject to many assumptions, and is therefore far from ideal.

The solvability framework is up until now tested with a URS that can be modeled as an
MP-LPV system. Again, this system is subject to several unrealistic assumptions and there-
fore gives rise to the interest in obtaining a more realistic model.

Finally we have seen the motivation for obtaining an MPC approach for MP-LPV systems,
as such an approach is already designed for the predecessor class of MPL systems and the
MPC approach is a useful and applicable control technique.

We are now ready to formally introduce the research questions that will be answered in the
remaining of this thesis.

1-2-1 Research Questions

In this work, we focus on three main research questions, which give rise to several subquestions.
Let us present these research questions, after which we will define the approach to answer
these questions.

1. How can we define a solvability framework for general implicit MP-LPV systems?

(a) What is the definition of solvability for MP-LPV systems?
(b) What levels of implicitness can we define for MP-LPV systems?
(c) Which problems arise due to the different levels of implicitness?
(d) What are the assumptions in the current solvability framework?
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4 Introduction

(e) How can we relax these assumptions, resulting in a new and more general solvability
framework?

2. How can we maintain solvability of the Urban Railway System, while considering a
limited capacity of the trains?

(a) How can we include a limited capacity in the system description of the URS?
(b) What assumptions of the current URS description can furthermore be relaxed,

resulting in a more realistic URS?
(c) How can we analyze the solvability of the new URS?

3. What conditions on MP-LPV systems are necessary such that we can design an MPC
controller?

(a) Which existing MPC strategies can be extended to the application of MP-LPV
systems?

(b) How can we implement an MPC control design with the updated URS as the
concerning system?

(c) What different disturbances can be added to the system, to investigate if the MPC
works properly?

(d) What conditions are necessary to obtain a stabilizing controller?

1-2-2 Approach

In the first subsection of this chapter, we have seen the motivation and the global background
of the research questions. However, before we can answer the research questions, we need a
more complete overview of the mathematical background of max-plus algebra and MP-LPV
systems in general. We furthermore analyze several structures of hybrid systems, which will
show its relevance during the remaining of the thesis. From this mathematical foundation,
we can start analyzing the current URS system. For this, we will start by analyzing the
URS as an MPL system. As the class of MP-LPV systems are an extension of the class of
MPL systems, we can build on from this initial simplified model. By relaxing assumptions
step by step, we obtain the URS model with limited capacity, answering research questions
2.(a) and 2.(b). After we obtain this model, we will proceed with the first research question.
We implement this order of research, because the step by step formulation of the URS as
an MP-LPV model provides us with great insight and knowledge of the MP-LPV system
structure. This knowledge is necessary before we can move to a next step in MP-LPV system
analysis. For research question 1., the subquestions 1.(a) until 1.(e) provide us a systemic
manner in answering the main question. We will approach the solvability problem in a set-
theoretical way. The goal of research question 1. is to obtain conditions that can guarantee
solvability for all levels of implicitness. After we have obtained the new and more general
solvability framework, we can analyze solvability of the updated URS, which answers question
2.(c). After finalizing the solvability analysis we arrive at the phase of implementation. We
will use the discussed classes of hybrid systems to develop an MPC approach for the URS in
MATLAB using GUROBI and YALMIP, answering question 3.(a) and 3.(b). Thereafter, we
will simulate several scenarios to investigate the controllers’ performance and its resistance
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1-3 Outline 5

to different disturbances, answering question 3.(c). Finally, we will prove that under mild
assumptions, we can prove closed-loop stability for the MP-LPV system answering the final
subquestion 3.(d).

1-3 Outline

This thesis is organized as follows. Chapter 2 is devoted to the mathematical background of
max-plus algebra and hybrid systems. This chapter furthermore introduces the first version
of the URS, here considered in the MPL framework. Chapter 3 focuses on LPV systems
in the conventional and the max-plus algebraic sense, and introduces the different levels of
implicitness that are considered in the rest of the thesis. This chapter furthermore provides
two case studies, both providing a more elaborate model of the URS, now in the MP-LPV
framework as well as in a hybrid model format. Chapter 4 is devoted to the updated solvability
framework. Per level of implicitness, a solvability framework is described. In Chapter 5, the
MPC design for the URS is described, including the simulations of the different scenarios.
Finally, we conclude on the thesis work in Chapter 6, and suggestions for future work are
collected in Chapter 7.
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Chapter 2

Max-Plus Algebra and Hybrid Systems

In this chapter we introduce several important definitions and properties of max-plus algebra
and some important classes of hybrid systems. Max-plus algebra is introduced as a tool for
Discrete Event Systems (DES) in the early 1980’s [12]. The motivation for max-plus algebra
originates from the synchronization property in DES, which means that a new event can
only start as soon as all preceding events are finished. This property is a non smooth and
nonlinear phenomenon when modeled in the ’standard’ system theory, but when modeled in
a max-plus algebraic structure, this property can be defined by equations linear in max-plus
algebra. This chapter contains all important max-plus algebraic mathematical notions and
definitions that will be used in the chapters hereafter. This chapter furthermore describes
three classes of hybrid systems. Hybrid system theory is introduced to model systems that
involve both continuous as discrete dynamics and it can describe time-driven as well as event-
driven systems. The last decades, multiple model structures have been designed to model
different types of hybrid systems, each structure with its own benefits. The classes that will
be presented in this chapter, will be relevant for the remainder of this thesis. The max-plus
algebraic part of this chapter is mostly based on [13], unless stated otherwise. The hybrid
system theory is based on [14]. We therefore recommend these references if additional reading
and understanding is desired. This chapter is organized as follows. In the first section 2-1
the basic concepts, definitions and algebraic properties of max-plus algebra are introduced.
Section 2-2 introduces max-plus algebraic matrices and operations with max-plus algebraic
matrices. Thereafter in section 2-3 spectral theory is extended to max-plus matrices. Section
2-4 introduces a special type of systems, namely Max-Plus-Linear (MPL) systems. Section
2-5 is devoted to the hybrid system theory. Finally in section 2-6 an example of an MPL
system is given.

2-1 Basic Concepts and Definitions

In this section multiple properties and concepts of max-plus algebra are introduced, including
some max-plus analogues of basic properties as known in conventional algebra. This section is
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8 Max-Plus Algebra and Hybrid Systems

completely based on [13, paragraph 1.1]. Max-plus algebra is characterized by the use of only
two binary operations, namely maximization and addition. These operations are represented
by ⊕ (pronounced as ’oplus’) and ⊗ (pronounced as ’otimes’) respectively:

x⊕ y
def= max(x, y) x⊗ y

def= x + y (2-1)

With x, y ∈ Rε and Rε defined as the set R ∪ {−∞} and R the set of real numbers. This
notation is adopted from [15] and is different than the notation used in the book [13], which
uses the notation Rmax = R ∪ {−∞}. It will be clear that the operators ⊕ and ⊗ have a
remarkable resemblance with + and × in the conventional algebra.
Just as in conventional algebra, ⊗ has priority over ⊕. Furthermore max-plus algebra defines
a zero element as ε

def= −∞ and a unit element as e
def= 0. One can easily observe that

max(x,−∞) = x⊕ ε = x and x + (−∞) = x⊗ ε = ε ∀x ∈ Rε. For ⊗ this means that the zero
element ε is absorbing for ⊗.
Moreover, it clearly holds that max(x, y) = max(y, x) and thus x ⊕ y = y ⊕ x ∀x, y ∈ Rε.
Similarly it holds that x + y = y + x and also x ⊗ y = y ⊗ x ∀x, y ∈ Rε for both ⊕ and
⊗. This property for both ⊕ and ⊗ is called commutativity. Furthermore we can extend
the property of associativity in conventional algebra to max-plus algebra. This property is
characterized in conventional algebra by the condition that x + (y + z) = (x + y) + z and
x · (y · z) = (x · y) · z ∀ x, y, z ∈ R. In max-plus algebra, we equivalently have x ⊕ (y ⊕ z) =
(x⊕y)⊕z or max(x, max(y, z)) = max(max(x, y), z) and furthermore x⊗(y⊗z) = (x⊗y)⊗z
or x+(y+z) = (x+y)+z ∀ x, y, z ∈ Rε. Finally it can be observed that max(x, x) = x⊕x = x
∀x, y ∈ Rε, which is called idempotency of ⊕. Combining the nonempty set Rε and the binary
operations ⊕ and ⊗ defines the commutative and idempotent max-plus semiring Rmax:

Rmax = (Rε,⊕,⊗) (2-2)

From [13, Lemma 1.2] we see that idempotency of ⊕ implies that there does not exist an
inverse element with respect to ⊕. This can be visualized with the use of an example:
Example 2.1. We try to find the solution x in the following equation:

4⊕ x = 2 (2-3)

But as Equation 2-3 reads as max(4, x) = 2, it can be concluded that there exists no number
x ∈ Rε that this equation holds; if x ≤ 4, 4⊕ x = 4, and if x > 4, 4⊕ x = x > 4.

There does however exist an inverse element for x ∈ R with respect to ⊗ in the same manner
as in conventional algebra. An example of this is 3⊗ x = 3 + x = 1 in which x = (−2) ∈ R.
There does not exist an inverse element for ε with respect to ⊗ as ε is absorbing for ⊗.
Finally we introduce a definition for max-plus algebraic powers. Let x ∈ Rε, then we define
for r ∈ R:
Definition 2.1 (Max-Plus Algebraic Power).

x⊗r def= x⊗ x⊗ . . .⊗ x︸ ︷︷ ︸
r times

= x + x + . . . + x︸ ︷︷ ︸
r times

(2-4)

Notice that the algebraic power x⊗r reads as r× x in conventional algebra. Furthermore, we
define x⊗e def= e = 0 ∀x ∈ Rε and therefore also by definition ε⊗e = e. Finally we say that
ε⊗r = ε for r > e since ε is absorbing for ⊗, and ε⊗r with r < e not defined.
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2-2 Max-Plus Algebraic Matrices 9

2-2 Max-Plus Algebraic Matrices

In this section the max-plus operations ⊕ and ⊗ are extended to matrix operations. This
section is completely based on [13, Paragraph 1.2]. Let us define a n × m matrix ∈ Rn×m

ε

with n, m ∈ Z+ and Z+ the set of positive integers. This matrix A can be written as:

A =


a11 a12 . . . a1m

a21 a22 . . . a2m
...

... . . . ...
an1 an2 . . . anm

 with element aij = [A]ij , i ∈ n, j ∈ m (2-5)

The ⊕ and ⊗ operations are extended to matrices in the following manner:

[A⊕B]ij = aij ⊕ bij

= max(aij , bij),

[A⊗ C]ij =
m⊕

k=1
aik ⊗ ckj

= max
k=1,...,m

(aik + ckj),

(2-6)

With matrices A, B ∈ Rn×m
ε , matrix C ∈ Rm×l

ε and i ∈ n, j ∈ m and k ∈ l and n, m, l ∈
Z+. These max-plus matrix operations are analogue to the matrix sum and multiplication
respectively in conventional algebra, which is illustrated in the following example:

Example 2.2. Let A =

 1 2 ε
e 3 4
−5 ε 6

 and B =

4 ε 5
6 −7 e
ε −1 2

. Using Equation 2-6 gives the

following result:

A⊕B =

 1⊕ 4 2⊕ ε ε⊕ 5
e⊕ 6 3⊕−7 4⊕ e
−5⊕ ε ε⊕−1 6⊕ 2

 =

 max(1, 4) max(2, ε) max(ε, 5)
max(e, 6) max(3,−7) max(4, e)

max(−5, ε) max(ε,−1) max(6, 2)


=

 4 2 5
6 3 4
−5 −1 6


(2-7)
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10 Max-Plus Algebra and Hybrid Systems

A⊗B =

 1⊗ 4⊕ 2⊗ 6⊕ ε⊗ ε 1⊗ ε⊕ 2⊗−7⊕ ε⊗−1 1⊗ 5⊕ 2⊗ e⊕ ε⊗ 2
e⊗ 4⊕ 3⊗ 6⊕ 4⊗ ε e⊗ ε⊕ 3⊗−7⊕ 4⊗−1 e⊗ 5⊕ 3⊗ e⊕ 4⊗ 2
−5⊗ 4⊕ ε⊗ 6⊕ 6⊗ ε −5⊗ ε⊕ ε⊗−7⊕ 6⊗−1 −5⊗ 5⊕ ε⊗ e⊕ 6⊗ 2


=

 max((1 + 4), (2 + 6), (ε + ε)) max((1 + ε), (2 +−7), (ε +−1))
max((e + 4), (3 + 6), (4 + ε)) max((e + ε), (3 +−7), (4 +−1))

max((−5 + 4), (ε + 6), (6 + ε)) max((−5 + ε), (ε +−7), (6 +−1))
max((1 + 5), (2 + e), (ε + 2))
max((e + 5), (3 + e), (4 + 2))

max((−5 + 5), (ε + e), (6 + 2))


=

 5⊕ 8⊕ ε ε⊕−5⊕ ε 6⊕ 2⊕ ε
4⊕ 9⊕ ε ε⊕−4⊕−3 5⊕ 3⊕ 6
−1⊕ ε⊕ ε ε⊕ ε⊕−5 e⊕ ε⊕ 8

 =

 8 −5 6
9 −4 6
−1 −5 8


(2-8)

Furthermore, we can define a max-plus algebraic null matrix E and a max-plus algebraic
identity matrix E:

E =


ε ε . . . ε
ε ε . . . ε
...

... . . . ...
ε ε . . . ε



E =


e ε . . . ε
ε e . . . ε
...

... . . . ...
ε ε . . . e


(2-9)

It can be seen that for any matrix A ∈ Rn×m
ε with n, m ∈ Z+ we have, equivalently to

conventional algebra, the following:
A⊕ En×m = A = En×m ⊕A

A⊗ Em×m = A = En×n ⊗A
(2-10)

We finally define the max-plus algebraic power for a matrix A ∈ Rn×n
ε with n, k ∈ Z+ as:

A⊗k def= A⊗A⊗ . . .⊗A︸ ︷︷ ︸
k times

= A⊗A⊗k−1 (2-11)

And we furthermore define A⊗0
n×n

def= En×n.

2-3 Spectral Theory

In this section the spectral theory of max-plus matrices is discussed. The section is organized
as follows. First, we shortly introduce the basic notions of graph theory in subsection 2-3-1
based on [13, paragraph 2.1]. These notions are necessary for understanding the next subsec-
tion, subsection 2-3-2, which introduces eigenvalues and eigenvectors of max-plus matrices,
based on [13, paragraph 2.2].
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2-3 Spectral Theory 11

2-3-1 Graph Theory

A graph is defined as G = (N ,D), with N the set of nodes (or vertices) and D ⊂ N × N
the set of links. A graph can be directed or undirected, and the links can be either weighted
or unweighted. A path is defined as a sequence of nodes i0, i1, ..., il with all nodes in N , for
which holds that ih ̸= ik for all 0 ≤ h < k ≤ l, but possibly i0 = il. If indeed i0 = il, the
path is called a circuit. A graph G is called strongly connected if for any two nodes i, j ∈ N ,
there exists a path from node i to j. The average weight of a path is defined by the sum of
the weights of all links constituting the path, divided by the length of this path. The average
weight of a circuit is defined equivalently.
For every square matrix A ∈ Rn×n

ε , a graph can be constructed, which then is called the
communication graph of matrix A, defined as G(A) = (N ,D). The numerical value of entry
aji ∈ A represents the weight of the link from node i to j, and if there is no link we have that
aji = ε. Matrix A ∈ Rn×n

ε is called irreducible if its communication graph G(A) is strongly
connected. Analogously, matrix A is called reducible if G(A) is not strongly connected. In
that case, we can often transform A ∈ Rn×n

ε intro the Frobenius normal form Ã [16]:

P ⊗A⊗ P ⊗−1 = Ã =


A11 ε . . . ε
A21 A22 . . . ε

...
... . . . ...

Ar1 Ar2 . . . Arr

 (2-12)

In which P ∈ Rε is a suitable max-plus permutation matrix and A11, ..., Arr are irreducible
square submatrices of A. This transformation is not always possible, as not all matrices are
max-plus invertible (a matrix is max-plus invertible if in each row an column a single finite
element is present). We summarize the definitions stated in this subsection with the use of
an example:
Example 2.3. Let matrix A ∈ Rn×n

ε be defined as:

A =

2 1 ε
ε ε 4
6 e ε

 (2-13)

The communication graph G(A) associated with matrix A can be found in Figure 2-1, with
node set N = {1, 2, 3} and link set D = {(1, 1), (1, 3), (2, 1), (2, 3), (3, 2)}. As there is a weight
and a direction associated to each link, we have a directed, weighted graph. It can furthermore
be observed that as for any two nodes i, j ∈ N , a path exists from node i to j, and therefore
the graph is strongly connected. Because of this, the matrix A is irreducible.

1

3

2

1

e

46

2

Figure 2-1: Communication Graph of Equation 2-13
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12 Max-Plus Algebra and Hybrid Systems

2-3-2 Eigenvalues and Eigenvectors

One of the remarkable analogue properties of max-plus algebra in comparison with conven-
tional algebra is the existence of an eigenvalue and eigenvector. We use [13, Definition 2.4]
to state the following:

Definition 2.2 (Max-Plus Algebraic Eigenvalue and Eigenvector). Let matrix A ∈ Rn×n
ε . If

there exist scalar λ ∈ Rε and vector v ∈ Rn
ε that contains at least one finite (not equal to ε)

entry such that
A⊗ v = λ⊗ v, (2-14)

then λ is the max-plus algebraic eigenvalue and v the corresponding max-plus eigenvector of
matrix A.

Using the definitions stated in the previous subsection, we can analyze the meaning of a
max-plus eigenvalue. For this, we state the following theorem, based on [12, paragraph 3.2.4]:

Theorem 2.1. If A is irreducible (and thus communication graph G(A) is strongly connected),
there exists one and only one eigenvalue λ and at least one associated eigenvector v. This
eigenvalue λ is equal to the maximum average weight over all elementary circuits.

In the proof of this theorem, [12, paragraph 3.2.4] also proves the general existence of (nonzero)
λ and v. The proof furthermore states that if matrix A is not irreducible and therefore G(A)
not strongly connected, the eigenvalue λ is not unique and there can be multiple eigenvalues.
In this reducible case, each (finite) eigenvalue still represents the average weight of some
circuit of the communication graph. In [15] it is stated that the total number of eigenvalues
of A ∈ Rn×n

ε , including multiplicities, is often less than n. This is in contrast to the eigenvalue
problem known in conventional algebra, for which holds that the total number of eigenvalues
(including multiplicities) is always equal to the dimension of the matrix.

It remains to show how to obtain max-plus algebraic eigenvalues and eigenvectors. There are
multiple algorithms to obtain the eigenvalues. A first one can clearly be found in Theorem 2.1,
which implies that to obtain the eigenvalue of an irreducible matrix, the maximum average
weight over all elementary circuits needs to be obtained. To obtain this weight, Karp’s
Algorithm can be used, which can be found in [17]. This algorithm however does not provide
the corresponding max-plus algebraic eigenvector. [13, Lemma 2.7] provides a method to
obtain a corresponding eigenvector to a max-plus algebraic eigenvalue. This method makes
use of multiple definitions, which will be introduced shortly as they will be useful later on.
First of all, this method makes use of the Kleene star operator ∗:

Definition 2.3. [Kleene star operator ∗] Let matrix A ∈ Rn×n
ε and E the max-plus algebraic

identity matrix of corresponding size. Then the Kleene star operator ∗ for A is defined as A∗:

A∗ = E ⊕A⊕ . . .⊕An ⊕An+1 ⊕ . . . =
⊕
k≥0

A⊗k (2-15)

The entries of [A∗]ij are equal to the maximum weight of any path between node j and i of
arbitrary length. Based on the Kleene star operator, we define the following:
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Definition 2.4.
A∗ = E ⊕A+

A+ = A⊕ . . .⊕An ⊕An+1 ⊕ . . .

= A⊗ (E ⊕A⊕ . . .⊕An ⊕An+1 ⊕ . . .)
= A⊗A∗

(2-16)

Furthermore, we define the normalized matrix of matrix A with finite non−ε eigenvalue λ as
Aλ with [Aλ]ij = aij − λ. The maximum average weight of the normalized matrix is clearly
equal to e. The Kleene star operator can be applied to the normalized matrix in the following
manner:

A∗
λ = E ⊕A+

λ and A+
λ = Aλ ⊗A∗

λ (2-17)

With these definitions, the steps prior to [13, Lemma 2.7] can be followed, such that the
following is obtained:

Definition 2.5. Let matrix A ∈ Rn×n
ε with communication graph G(A) with finite maximal

average circuit weight λ. Then λ is an eigenvalue of A and the column [A∗
λ]·η is an eigenvector

of A associated with λ, for any node η in Gc(A).

In which the graph Gc(A) = (N c,Dc) is defined as the critical graph of matrix A, containing
all critical circuits. A circuit of G(A) is critical if its average weight is maximal. Another
algorithm that yields directly both the max-plus algebraic eigenvalue and the corresponding
eigenvector of an irreducible matrix, is the power algorithm which can be found extensively
in [18]. Finally Howard’s algorithm [13, Paragraph 6.1], or also known as the policy iteration
algorithm, can be used to obtain the generalized eigenmode of a max-plus algebraic matrix
that is not strongly connected.

2-4 Max-Plus Linear Systems

As previously mentioned a big advantage of formulating certain types of systems in max-
plus algebra, is that those models become "linear". This section describes this specific type
of systems, namely the Discrete Event Systems (DES) in which only synchronization and
no choice can occur. First, we will explain more extensively this type of systems and its
characteristics. Thereafter we will introduce two types of systems of MPL equations, after
which we will formulate a DES in max-plus algebra, resulting in a state-space description of
an MPL system.

2-4-1 Discrete Event Systems

As mentioned before, we are looking at Discrete Event Systems (DES) in which only syn-
chronization and no choice can occur. A DES is a dynamic, event-driven system, thus the
state of the system is based on the occurrence of discrete events. Synchronization means that
a new event can only start as soon as all preceding events have been finished. No choice
clearly means that the system cannot contain a step in which a choice must be made between
possible events. This particular class of DES is only a small subclass of all DES, but it will
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14 Max-Plus Algebra and Hybrid Systems

follow that there are many interesting methods available to analyze and control such systems.
Examples of this subclass of DES are manufacturing systems such as production systems,
railroad networks, queuing systems and legged robots ([12], [19], [13] and [20] respectively).

2-4-2 Systems of Max-Plus Linear Equations

There are many different types of systems of MPL equations. In this subsection, we will
discuss the solution of two types of systems, which will be useful later on in the analysis of
different types of system models. It will be clear that, in contrast with their conventional
analogue, these systems of max-plus linear equations not always has a solution. This is due
to the absence of the inverse of the maximization operation. The two types of systems that
we will discuss are A⊗ x = b and x = A⊗ x⊕ b, based on [12].

A ⊗ x = b

Let matrix A ∈ Rn×n
ε and vector b ∈ Rn

ε . One can observe that the system of linear equations
A ⊗ x = b does not always have a solution x ∈ Rn

ε . This can be shown with the use of an
example:

Example 2.4. Let A =
[
1 2
3 4

]
and b =

[
ε
e

]
=
[
−∞

0

]
. Then we have for A⊗x = b, following

the matrix operations as in section 2-2:
[
1 2
3 4

]
⊗
[
x1
x2

]
=
[
1⊗ x1 ⊕ 2⊗ x2
3⊗ x1 ⊕ 4⊗ x2

]
. One can see that

there exists no x ∈ Rn
ε such that this is equal to

[
ε
e

]
.

It can however be observed that there can be found a so called subsolution, which is defined
as the following:

Definition 2.6 (Subsolution). Let matrix A ∈ Rn×n
ε and vector b ∈ Rn

ε . The solution x ∈ Rn
ε

is called a subsolution of the system of max-plus linear equations A ⊗ x = b if it holds that
A⊗ x ≤ b.

In Example 2.4, a subsolution is given by x = [ε ε]T , such that we obtain for the system
of linear equations A ⊗ x = [ε ε]T ≤ [ε e]T . It is always possible to determine the largest
subsolution which is given by [12, Theorem 3.21]:

Definition 2.7 (Largest subsolution). Let matrix A ∈ Rn×n
ε and vector b ∈ Rn

ε with Rε =
Rε ∪ {+∞}. The largest subsolution to the system of max-plus linear equations A ⊗ x = b
exists and is given by:

− xj = max
i

(−bi + Aij) =
n⊕

i≥1
(−bi ⊗Aij) (2-18)

Ruby E.S. Beek Master of Science Thesis



2-4 Max-Plus Linear Systems 15

x = A ⊗ x ⊕ b

Let again matrix A ∈ Rn×n
ε and vector b ∈ Rn

ε . We will now consider an implicit form of a
system of MPL equations, namely x = A⊗ x⊕ b. Based on [12, Theorem 3.17] we define the
following solution x ∈ Rn

ε :

Lemma 2.1. Let A ∈ Rn×n
ε be a matrix of which the communication graph G(A) only has

circuits of non-positive weight. Then the solution x of x = A⊗ x⊕ b is given by:

x = A∗ ⊗ b (2-19)

In which A∗ is defined as in Equation 2-15. Furthermore, if the circuit weights are negative
instead of non-positive, this solution x is unique.

2-4-3 Max-Plus Linear State Space Description

Based on [6], we see that we can model a DES with only synchronization and no choice by a
max-plus algebraic model in the following manner:

Definition 2.8 (Max-Plus Linear State-Space Description).

x(k) = A⊗ x(k − 1)⊕B ⊗ u(k)
y(k) = C ⊗ x(k)

(2-20)

In which A ∈ Rn×n
ε , B ∈ Rn×m

ε , C ∈ Rl×n
ε with m the number of inputs and l the number of

outputs. Furthermore, the vector x(k) ∈ Rn
ε represents the state, the vector u(k) ∈ Rm

ε the
input and vector y(k) ∈ Rl

ε the output. Finally it is important to note that x(k), y(k) and
u(k) are event times and k is an event counter. Note that this is different than the general
state-space description in conventional algebra, in which k represents a time variable. The
⊕ operator corresponds to the synchronization property, and the ⊗ operator corresponds to
the duration of events. As shown in section 2-2 and 2-3, there is a great analogy between the
conventional operations + and × and the max-plus algebraic operations ⊕ and ⊗ respectively.
Because of this, it can clearly be seen that this state space model Equation 2-20 "looks" linear.
We will show in the following example based on [21] how a DES can be written in max-plus
equations, resulting in an MPL system:

P1

P2

P3
u(k)

y(k)

t2 = 0

t1 = 2

d2 = 12

d1 = 11

t4 = 0

t3 = 1 d3 = 7
t5 = 0

Figure 2-2: Production system of Example 2.5.
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Example 2.5. Figure 2-2 shows a production system containing three processing steps P1,
P2 and P3. The system works in batches, with one batch one finished product. The time units
d1, d2 and d3 represent the processing times of each processing step. The time units t1, t2, ...,
t5 represent the time it takes for the material to go from one process to another. A processing
step can only start working on a new product if it is finished with the previous product. Each
processing step starts working as soon as all parts are available. The input u(k) represents the
k-th time raw material is fed into the system. The states xi(k) will represent the k-th time
that process Pi is executed. The output y(k) represents the k-th time that a finished product
is delivered. We can represent this production system by the following max-plus equations:

x1(k) = max(x1(k − 1) + 11, u(k) + 2)
x2(k) = max(x2(k − 1) + 12, u(k) + 0)
x3(k) = max(x1(k) + 11 + 1, x2(k) + 12 + 0, x3(k − 1) + 7)

= max(x1(k) + 12, x2(k) + 12, x3(k − 1) + 7)
y(k) = x3(k) + 7 + 0

(2-21)

Or equivalently in max-plus notation:

x1(k) = 11⊗ x1(k − 1)⊕ 2⊗ u(k)
x2(k) = 12⊗ x2(k − 1)⊕ u(k)
x3(k) = 23⊗ x1(k − 1)⊕ 24⊗ x2(k − 1)⊕ 7⊗ x3(k − 1)⊕ 14⊗ u(k)
y(k) = 7⊗ x3(k)

(2-22)

We can rewrite this into the MPL state space description as defined in Definition 2.8:

x(k) =

11 ε ε
ε 12 ε
23 24 7

⊗ x(k − 1)⊕

 2
e
14

⊗ u(k)

y(k) =
[
ε ε 7

]
⊗ x(k)

(2-23)

The state space model in Definition 2.8 is an explicit model; the state vector x(k) is only
depending on past state values x(k − 1). However, we have seen in subsection 2-4-2 that
there also exist systems written in an implicit form. We can generalize the MPL state space
description defined in Definition 2.8 as an implicit system. The state vector of such a system
is represented as [13]:

x(k) =
M⊕

i=0
(Ai ⊗ x(k − i))⊕B ⊗ u(k), (2-24)

with M ≥ 0 the recurrence order, representing the number of past cycles that are contained
in the state vector. It can be seen that the state vector x(k) now not only can depend
on previous cycles such as x(k − 1), but it also depends on x(k), the current cycle. When
applying control to such implicit systems computational difficulties can occur, as you have to
iterate multiple times in order to determine the event times x(k) correctly [22]. However, if
we approach this implicit model form similarly as the system of MPL equations presented in
Lemma 2.1, we can rewrite the state vector into the explicit model as in Equation 2-20. We
will follow the steps of [13, Paragraph 4.5], which makes use of the Kleene star:
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2-5 Hybrid Systems 17

We start with the definition of A+, as given in Definition 2.4 and [13, Lemma 2.2], which
states that if the communication graph G(A) of A ∈ Rn×n

ε has maximal average circuit weight
≤ e, it holds that:

A+ = A⊕A⊗2 ⊕ . . .⊕A⊗n ∈ Rn×n
ε , (2-25)

Which implies that then:

A∗
0 =

n−1⊕
i=0

A⊗i
0 . (2-26)

We now reduce Equation 2-24 to:

x(k) =
M⊕

i=0
(Ai ⊗ x(k − i))⊕B ⊗ u(k)

= A0 ⊗ x(k)⊕
M⊕

i=1
(Ai ⊗ x(k − i))⊕B ⊗ u(k)︸ ︷︷ ︸

b(k)

= A0 ⊗ x(k)⊕ b(k).

(2-27)

Now using Lemma 2.1, we can say that:

x(k) = A∗
0 ⊗ b(k) = A∗

0 ⊗
M⊕

i=1
(Ai ⊗ x(k − i))⊕B ⊗ u(k). (2-28)

Clearly, this equation does not contain the current cycle x(k) on the right hand side, meaning
that we transformed the implicit model Equation 2-24 into an explicit model.

2-5 Hybrid Systems

In this section we discuss the general definitions of three hybrid system model structures,
namely Max-Min-Plus-Scaling (MMPS), Piecewise Affine (PWA) and Mixed Logical Dynam-
ical (MLD) systems, as defined in [14]. As stated in the introduction of this chapter, these
classes will be relevant for the chapters hereafter. Hybrid system theory covers modeling
frameworks for systems that contain both continuous and discrete dynamics. The model
techniques can furthermore be implemented on systems that are time as well as event driven.
As max-plus algebra is introduced as a tool to model event-driven systems, we will see some
remarkable equivalences between the max-plus system structures and the hybrid system struc-
tures later on. Each hybrid model structure has its own advantages and can be implemented
depending on the characteristics of the concerning system. After we introduced the three
modeling frameworks, we will show that the frameworks are equivalent to one another under
some mild assumptions. We will finally present optimization strategies that are useful when
optimizing the concerning hybrid systems.

2-5-1 Max-Min-Plus-Scaling Systems

In this subsection, we introduce the class of MMPS systems based on [14, paragraph 2.5].
MMPS systems are of great use as its model can be considered as a generalized framework
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18 Max-Plus Algebra and Hybrid Systems

covering many subclasses of DES and hybrid systems. After we have stated the formal
definitions, it will be clear that MPL systems as defined in Definition 2.8 are actually a
subclass of MMPS systems. The MMPS framework is therefore able to model many different
applications. We define an MMPS function as:

Definition 2.9 (Max-Min-Plus Scaling Function). An MMPS function Rn → Rm is given by
the following recursive definition:

f : xi|α|max(fk, fl)|min(fk, fl)|fk + fl|βfk, (2-29)

for i = 1, ..., n, α, β ∈ R scalars, fk : Rn → Rm and fl : Rn → Rm again MMPS functions.
The operation | stands for "or" here, and the max and min operations are executed entry-wise.

As can be seen in the definition and as the name states, an MMPS function is only allowed
to use the operations maximization, minimization, addition and multiplication (scaling). It
can therefore be seen as a (less strict) extension on max-plus algebra, in which strictly maxi-
mization and addition is allowed. We now define an MMPS system as:

Definition 2.10 (Max-Min-Plus Scaling System). A constrained MMPS system is defined
by the following state-space model:

x(k) =Mx(x(k − 1), u(k))
y(k) =My(x(k), u(k)),

(2-30)

with the constraint:
Mc((x(k), u(k)) ≤ c (2-31)

with Mx,My and Mc MMPS functions, x(k) ∈ Rn, u(k) ∈ Rm and y(k) ∈ Rl the state,
input and output vector and k an event counter. If the constraint in Equation 2-31 is absent,
we have an unconstrained MMPS system.

Remark 1. In this thesis, we will only consider MMPS systems that are structurally finite,
which ensures that the system remains bounded for bounded initial states (and thus cannot
become ε). This is a safe assumption as physical (real) systems are generally structurally
finite [8].

One can observe that MPL systems indeed are a (strict) subclass of the framework defined
in Equation 2-30; MPL systems are only allowed to use the operations maximization and
addition, which are included in the MMPS operations in Definition 2.9.

2-5-2 Piecewise Affine Systems

In this subsection we introduce the class of PWA systems, based on [14, paragraph 2.1]. PWA
systems can be considered as the ’simplest’ extension of linear systems that can model hybrid
as well as nonlinear dynamics with arbitrary accuracy. PWA systems are very popular, since
a rich class of hybrid systems can be described in the PWA framework and the framework is
of great use for stability analysis. Before we can formally define PWA systems, it is necessary
to introduce the following concepts:
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2-5 Hybrid Systems 19

Definition 2.11 (Convex Set). A subset C ⊂ Rn is a convex set if the following holds:

C = {c | c = αx + (1− α)y, ∀x, y ∈ C, ∀α ∈ [0, 1]} (2-32)

Furthermore we have:

Definition 2.12 (Halfspace). A set (closed and convex) V ⊂ R is a closed halfspace if it is
of the form:

V = {x | aT x ≤ b} (2-33)

with nonzero vector a and scalar b. In other words: a closed halfspace is a linear inequality.
A halfspace is considered open if the inequality in Equation 2-33 is a strict inequality with <.

We can now introduce a polyhedral set:

Definition 2.13 (Polyhedral Set). A nonempty set X ⊂ R is a polyhedral set if it is con-
structed by the intersection of a finite number of halfspaces:

X = {x | aT
i x ≤ bi, i = 1, . . . , n} (2-34)

with a1, . . . , an vectors and b1, . . . , bn scalars. In other words, a set of linear inequalities.

And finally we can give the definition of a polytope:

Definition 2.14 (Polytope). A polytope is a bounded polyhedral set.

We can now state the formal definition of a continuous PWA function:

Definition 2.15 (Continuous Piecewise Affine Function). Let f : Rn → R be a scalar-valued
function. This function is a continuous PWA function if and only if the following conditions
hold:

1. The domain space Rn is divided into a finite number of polyhedral regions R1, . . . , RN ,
with a polyhedral region defined as in Definition 2.13.

2. For each i ∈ {1, . . . , N}, the function f can be expressed as an affine function f(x) =
αT

i x + βi, ∀x ∈ Ri with vector αi ∈ Rn and scalar βi ∈ R.

3. The function f is continuous on any boundary between two regions.

A vector-valued function is a continuous PWA function if each of its components are contin-
uous PWA.

And finally, we can introduce (continuous) PWA systems:

Definition 2.16 ((Continuous) Piecewise Affine System). Piecewise Affine Systems are for-
mulated as:

x(k) = Px(x(k − 1), u(k))
y(k) = Py(x(k), u(k))

(2-35)
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20 Max-Plus Algebra and Hybrid Systems

In which Px and Py are vector-valued PWA functions. Or equivalently, in a more general
state space description:

x(k + 1) = Aix(k) + Biu(k) + fi,

y(k) = Cix(k) + Diu(k) + gi,
(2-36)

for
[
x(k)
u(k)

]
∈ Ωi, i = 1, ..., n, and Ωi convex polyhedra in input/state space defined as in

Definition 2.13. The vectors x(k) ∈ Rn, u(k) ∈ Rm and y(k) ∈ Rl represent the state, input
and output respectively, with k representing the time. Furthermore the system matrices are
defined as Ai ∈ Rn×n, Bi ∈ Rn×m, Ci ∈ Rl×n and Di ∈ Rl×m. The values fi ∈ Rl and gi ∈ Rn

represent scalar offsets ∀i = 1, ..., N , making the state and output equations affine. If Px and
Py are continuous, or if the affine equations in Equation 2-36 are continuous, we speak of a
continuous PWA system.

2-5-3 Mixed Logical Dynamical Systems

The third and final hybrid system class we introduce, is the class of MLD systems based on
[14, paragraph 2.2]. This class provides a framework to present hybrid systems described by
linear dynamic equations subject to linear inequalities involving real and integer variables.
Many applications include parts described by logic, such as on and off switches. Such parts
will be presented as integer or binary variables. Before we introduce the MLD framework, we
introduce some necessary tools to transform logical statements involving continuous variables
into mixed-integer linear inequalities with the use of logical variable δ ∈ {0, 1} and linear
function f : Rn → R. Let X be a bounded with x ∈ X such that:

M = max
x∈X

f(x) m = min
x∈X

f(x) (2-37)

We can define following statements concerning δ and f :

[f(x) ≤ 0] ∧ [δ = 1] true iff f(x)− δ ≤ −1 + m(1− δ)
[f(x) ≤ 0] ∨ [δ = 1] true iff f(x) ≤Mδ

∼ [f(x) ≤ 0] true iff f(x) ≥ ϵ (with ϵ a machine error)
[f(x) ≤ 0]⇒ [δ = 1] true iff f(x) ≥ ϵ + (m− ϵ)δ

[f(x) ≤ 0]⇔ [δ = 1] true iff
{

f(x) ≤M(1− δ)
f(x) ≥ ϵ + (m− ϵ)δ

(2-38)

Now let us define z = δf(x), which is equivalent to the following linear inequalities:

[z = δf(x)]⇔


z ≤Mδ

z ≥ mδ

z ≤ f(x)−m(1− δ)
z ≥ f(x)−M(1− δ)

(2-39)

We can now formally introduce the MLD framework:
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2-5 Hybrid Systems 21

Definition 2.17 (Mixed Logical Dynamic System). A MLD system is defined by the following
state-space model:

x(k + 1) = Ax(k) + B1u(k) + B2δ(k) + B3z(k)
y(k) = Cx(k) + D1u(k) + D2δ(k) + D3z(k)

(2-40)

Subject to the constraint:

E1x(k) + E2u(k) + E3δ(k) + E4z(k) ≤ g (2-41)

With state vector x(k) ∈
[
x⊤

r (k) x⊤
b (k)

]⊤
with xr(k) ∈ Rnr real states, xb(k) ∈ {0, 1}nb

binary states and n = nr +nb. Output y(k) ∈ Rny and input u(k) ∈ Rnu are defined similarly,
and z(k) ∈ Rnr and δ(k) ∈ {0, 1}nb auxiliary variables. The system matrices are defined as
A ∈ Rn×n, B1 ∈ Rn×nu, B2 ∈ Rn×nb, B3 ∈ Rn×nr , C ∈ Rny×n, D1 ∈ Rny×nu, D2 ∈ Rny×nb

and D3 ∈ Rny×nr . Furthermore we have E1 ∈ Rng×n, E2 ∈ Rng×nu, E3 ∈ Rng×nb, E4 ∈
Rng×nr and vector g ∈ Rng .

2-5-4 Class Equivalences

In this subsection, we will present the equivalences between the presented hybrid system
classes based on [14, paragraph 2.7]. Some equivalences go along with mild assumptions.
Figure 2-3 gives a graphical representation of the equivalences, in which the ∗ notations
indicate that an assumption is necessary. Let us present these equivalences by means of the
propositions stated in the figure.

MMPS

PWAMLD

Proposition 2.5*Proposition 2.4

Proposition 2.3*

Proposition 2.2*

Proposition 2.1*

Figure 2-3: Graphical representation of the equivalences between the three hybrid system classes
presented in the previous subsections. The ∗ notation indicates that a (mild) assumption is
necessary for the concerning equivalence.

Proposition 2.1. A PWA system can be written intro MLD format, provided that the PWA
system is well-posed. A PWA system is considered well-posed if, given x(k) and u(k), a unique
solution x(k + 1) and y(k) exists such that the dynamics of the state space description hold.
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22 Max-Plus Algebra and Hybrid Systems

Proposition 2.2. An MLD system can be written into an PWA system, given that the MLD
system is completely well-posed. An MLD system is completely well-posed, if x(k + 1), y(k),
δ(k) and z(k) are uniquely defined in their domain, given x(k) and u(k).

Proposition 2.3. MMPS systems can be written as an MLD system, given that g−E1x(k)−
E2u(k)− E3δ(k)− E4z(k) is bounded component wise.

Proposition 2.4. MLD systems can be written into MMPS format.

Proposition 2.5. PWA and MMPS systems are equivalent, provided that the PWA system
is continuous.

Details of the proofs of Proposition 2.5 until Proposition 2.3 can be found in [14, paragraph
2.7].

2-6 Case Study I: An Urban Railway System as Max-Plus Linear
System

In this section, we introduce an Urban Railway System (URS) as an MPL system. This
URS will be the running case study and will be expanded in every chapter throughout the
thesis. A similar description for a URS was firstly introduced by [19], and thereafter adopted
in [10] and [8]. The URS considered in this section will be a highly simplified version of a
real life URS such as metro systems or tram systems, in order to fit it into the MPL system
framework.

2-6-1 System Description and Assumptions of the Urban Railway System

To fit the URS into the MPL framework, we will consider only two stations:

Assumption 2.1. The route of the URS consists out of two stations.

Note that the system can easily be expanded to more stations, but for simplicity and read-
ability of the expressions, we only consider such a small system. Figure 2-4 visualizes the
railway route that is considered.

P1 P2 P3 P4

t2t1

t3

t7
t5

t6

t4

S2S1

u(k) y(k)

Figure 2-4: Case Study: two-station URS as an MPL system.

Station 1 is represented as S1 and station 2 equivalently as S2. Pi with i = 1, ..., 4 represent
the execution of events which can be defined in the following manner:

• P1 = a1(k): arrival time of the k-th train at station 1;
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• P2 = d1(k): departure time of the k-th train from station 1;

• P3 = a2(k): arrival time of the k-th train at station 2;

• P4 = d2(k): departure time of the k-th train from station 2.

The time units t1, t2, ..., t7 represent the time it takes for a train to go from one event to
another. Let us specify these time units:

• t1: number of time units it takes for a new train to enter the route, or the entering
running time;

• t2: number of time units a train must wait on the platform of S1 before it can depart,
or the minimum dwell time S1;

• t3 = τdwell,1: number of time units it takes for passengers to disembark and board, or
actual dwell time S1. The actual dwell time at S1 can vary per train, and is therefore
not specified exactly;

• t4: number of time units it takes for a train to travel from S1 to S2, or the running
time;

• t5: number of time units a train must wait on the platform of S2 before it can depart,
or the minimum dwell time S2;

• t6 = τdwell,2: number of time units it takes for passengers to disembark and board, or
actual dwell time S2. The actual dwell time at S2 can vary per train, and is therefore
not specified exactly;

• t7: number of time units it takes for a train to leave the route, or the leaving running
time.

Let us furthermore define input u(k) as the time instant a k-th train is ’fed’ into the two-
station route. Finally we define output y(k) the time instant a k-th train completes and leaves
the train route. We will consider the following assumptions for the two-station URS route:

Assumption 2.2. The URS is assumed to be uni-directional.

Assumption 2.3. The URS operates without a timetable which is usually the realistic case.
Trains should come at a high frequency (every few minutes), but will not be scheduled to
arrive or depart on the minute precise.

Assumption 2.4. Each train is assumed to have an infinite capacity, in order to prevent any
situation in which the train is full and passengers cannot board.

Assumption 2.5. Each train leaves as soon as possible, resulting in the highest frequency
possible.

Assumption 2.6. Trains cannot overtake one another.

Assumption 2.7. Each station only has one platform, ensuring that there can only be one
train present at the time.
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24 Max-Plus Algebra and Hybrid Systems

Assumption 2.8. For safety, a headway time τH is included, representing the fixed distance
in time units required between consecutive trains.

Assumption 2.9. The actual dwell times τdwell,i with i = 1, 2 are assumed to be measurable.

With the above assumptions, we are ready to obtain the state-space description of the sim-
plified URS.

2-6-2 MPL State-Space Description of the Urban Railway System

Let us assign values for the time units t1, t2, ..., t7 and tH :

Time unit Definition Value [min]
t1 Entering running time 18
t2 Minimum dwell time S1 3
t3 Actual dwell time S1 measurable
t4 Running time 20
t5 Minimum dwell time S2 4
t6 Actual dwell time S2 measurable
t7 Leaving running time 16
tH Headway time 2

Table 2-1: Time unit values in minutes for the two-station URS as presented in Figure 2-4.

If we collect the events Pi with i = 1, ..., 4 in a state vector, we obtain:

x(k) =


x1(k)
x2(k)
x3(k)
x4(k)

 =


a1(k)
d1(k)
a2(k)
d2(k)

 (2-42)

Given the assumptions, we can state the following inequalities for x1(k):

x1(k) ≤ x2(k − 1) + τH

x1(k) ≤ u(k) + t1
(2-43)

Or equivalently, we can write:

x1(k) ≤ max(x2(k − 1) + τh, u(k) + t1) (2-44)

From the fourth assumption that each train leaves as soon as possible, we can replace the
inequality sign with an equality sign, resulting in:

x1(k) = max(x2(k − 1) + τh, u(k) + t1) (2-45)

Similarly, we can obtain the following for the departure time of train k from S1:

x2(k) ≤ x1(k) + t2

x2(k) ≤ x1(k) + t3
(2-46)
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And thus we have:
x2(k) ≤ max(x1(k) + t2, x1(k) + t3) (2-47)

And again by the fourth assumption we have:

x2(k) = max(x1(k) + t2, x1(k) + t3) (2-48)

Following the same steps for x3(k) and x4(k) results in the following:

x3(k) = max(x2(k) + t4, x4(k − 1) + τH)
x4(k) = max(x3(k) + t5, x3(k) + t6)

(2-49)

If we combine the above expressions for the states, we can write:

x(k) =


ε ε ε

t2 ⊗ t3 ε ε ε
ε t4 ε ε
ε ε t5 ⊗ t6 ε

⊗ x(k)

⊕


ε τH ε ε
ε ε ε ε
ε ε ε τH

ε ε ε ε

⊗ x(k − 1)⊕


t1
ε
ε
ε

⊗ u(k)

y(k) =
[
ε ε ε t7

]
⊗ x(k)

(2-50)

And with the fixed numerical values as defined in Table 2-1, we can write:

x(k) =


ε ε ε ε

3⊗ τdwell,1 ε ε ε
ε 20 ε ε
ε ε 4⊗ τdwell,2 ε


︸ ︷︷ ︸

A0

⊗x(k)

⊕


ε 2 ε ε
ε ε ε ε
ε ε ε 2
ε ε ε ε


︸ ︷︷ ︸

A1

⊗x(k − 1)⊕


18
ε
ε
ε


︸ ︷︷ ︸

B

⊗u(k)

y(k) =
[
ε ε ε 16

]
︸ ︷︷ ︸

C

⊗x(k)

(2-51)

For simplicity, let us write:

x(k) = A0 ⊗ x(k)⊕A1 ⊗ x(k − 1)⊕B ⊗ u(k)
y(k) = C ⊗ x(k)

(2-52)

We can recognize the general implicit form of an MPL system as earlier defined in Equation 2-
24. Note that we are dealing with implicitness as the A0 matrix is not empty. Let us
investigate if we can resolve this implicitness using the Kleene star. We have seen that if the
maximal average circuit weight is non-positive, we can obtain the Kleene star A∗

0. However,
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for the two-station URS, the A0 matrix is constructed in such a manner that it does not
contain any circuits, and we therefore have that the maximal average circuit weight is equal
to ε and is therefore non-positive. We can therefore conclude that the Kleene star exists, and
we can rewrite Equation 2-52 in the following manner:

x(k) = A∗
0 ⊗A1 ⊗ x(k − 1)⊕B ⊗ u(k)

y(k) = C ⊗ x(k)
(2-53)

In which A∗
0 is the Kleene star of matrix A0, which can be obtained in the following manner

using Definition 2.3:
A∗

0 =
⊕
k≥0

A⊗k
0

= E ⊕A0 ⊕A⊗2
0 ⊕A⊗3

0 ⊕ . . .

(2-54)

With:
A⊗1

0 = A0

A⊗2
0 = A0 ⊗A0 =


ε ε ε ε
ε ε ε ε
ε 23⊗ τdwell,1 ε ε
ε ε 24⊗ τdwell,2 ε



A⊗3
0 = A0 ⊗A0 ⊗A0 =


ε ε ε ε
ε ε ε ε

26⊗ τdwell,1 ⊗ τdwell,1 ε ε ε
ε 44⊗ τdwell,2 ε ε



A⊗4
0 = A0 ⊗A0 ⊗A0 ⊗A0 =


ε ε ε ε
ε ε ε ε
ε ε ε ε

47⊗ τdwell,1 ⊗ τdwell,2 ε ε ε



A⊗5
0 = A0 ⊗A0 ⊗A0 ⊗A0 ⊗A0 =


ε ε ε ε
ε ε ε ε
ε ε ε ε
ε ε ε ε



(2-55)

Clearly, for A⊗k
0 with k ≥ 5, we have A⊗k

0 = E . And we therefore have:

A∗
0 =


e ε ε ε

3⊗ τdwell,1 e ε ε
26⊗ τdwell,1 ⊗ τdwell,1 23⊗ τdwell,1 e ε
47⊗ τdwell,1 ⊗ τdwell,2 44⊗ τdwell,2 24⊗ τdwell,2 e

 (2-56)
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Chapter 3

Linear Parameter Varying Systems

This chapter is devoted to the Linear Parameter Varying (LPV) framework. This framework is
useful in conventional algebra, as it offers a theoretical approach to model nonlinear systems.
Recently, this framework is extended to its max-plus analogue and is therefore promising
for system modeling and control in the field of max-plus algebra. Today’s control field is
challenged as the need to optimize efficiency and improve reliability of automatization is
increasing. To cope with these challenges and meet the objectives, multiple control approaches
have been introduced, such as robust and nonlinear control. However, in order to implement
these control approaches, an accurate and reliable mathematical description of the dynamics
of the physical phenomena is necessary. Especially for physical and chemical processes in
which nonlinear behavior or dependence on external variables often occurs, modeling these
dynamics can be challenging. Take for example the upcoming field of sustainable energy;
when generating energy from sources such as wind, waves and tides, one deals with highly
nonlinear dynamics [23]. Based on the first principle laws of for example physics, one can
construct models that capture these dynamics. This procedure is however time consuming
and only experts of that field can obtain a reliable model. These challenges give rise to the
introduction of the LPV framework and the extension to the Max-Plus Linear Parameter
Varying (MP-LPV) framework. With the use of these frameworks, we are able to capture the
nonlinear system dynamics in a parameterized (max-plus) linear structure.
This chapter is organized as follows. We will first present the conventional LPV framework
in section 3-1, which we will extend to the MP-LPV framework in section 3-2 thereafter. In
section 3-3 we will extend the Urban Railway System (URS) presented in section 2-6 as a
first MP-LPV system, and finally in section 3-4, we present the URS as an Max-Min-Plus-
Scaling (MMPS) system.

3-1 Linear Parameter Varying Systems

In this section, we introduce the LPV structure for conventional systems. This framework pro-
vides the possibility to model nonlinear dynamics in a parameterized linear system structure.
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The LPV framework is firstly introduced in [24] as a result of investigating gain-scheduling
control approaches. Gain-scheduling is a commonly used nonlinear control method that lin-
earizes the nonlinear system model around different "frozen" operating points, resulting in a
set of local Linear Time Invariant (LTI) systems. The set of operating points is chosen such
that the range of the system’s dynamics is covered. For each of the resulting LTI systems, a
local linear controller is designed. The gains of the local controllers at each operating point
are interpolated or scheduled, resulting in a global nonlinear controller. There are however
some important drawbacks in the gain-scheduling approach [25]. One of these drawbacks is
that this method only makes a discrete selection of operating points for which a local con-
troller is designed. As a result, performance properties such as stability or robustness can
only be guaranteed at those operating points. Thus, nothing can be guaranteed globally
a priori. These drawbacks were resolved by the introduction of the LPV framework, as it
provides a method to contain all (nonlinear) dynamics in one model presenting a complete
overview of the system. The framework therefore gives rise to the possibility to design global
gain-scheduling based controllers instead of local controllers.
We will describe the LPV framework following [9]; the system dynamics are captured in a
linear state-space model, in which the system matrices depend on an exogenous scheduling
variable p that describes the changes of the operating point. This time-varying scheduling
parameter p can itself be nonlinear, but the signal relations of the system remain linear. A
simple example for a scheduling parameter p is p(k) = x(k − 1) + x(k); the presence of x(k)
in p(k) makes the system matrices state-dependent, resulting in a nonlinear system. The
system is however still linear ín the parameter, due to the structure. It is assumed that the
time variation of the parameter p is not (necessarily) known, but that it is measurable in real
time. The result is the LPV system class, that can describe both time-varying and nonlinear
phenomena because of this varying parameter dependence. The difference with the classical
gain-scheduling approach is therefore that instead of obtaining multiple controllers for a set
of frozen operation points, one global controller is designed for the complete range of sys-
tem dynamics. The LPV framework is therefore interesting for control purposes, and it can
be seen as the "middle ground" between LTI systems and nonlinear or time-varying systems
[26]. The LPV framework is described by the following discrete-time state-space model [27]
in conventional algebra:

Definition 3.1 (General LPV System).

x(k + 1) = A(p(k))x(k) + B(p(k))u(k),
y(k) = C(p(k))x(k) + D(p(k))u(k)

(3-1)

In which u(k) ∈ Rm is the input, y(k) ∈ Rn the output, x(k) ∈ Rn the state vector and the
system matrices A(·) ∈ Rn×n, B(·) ∈ Rn×m, C(·) ∈ Rl×n and D(·) ∈ Rl×m depend on the
exogenous parameter vector p(k) ∈ P ⊂ Rr with P the set of parameter values. Furthermore
the index k is considered to be a time variable.

We can define the set of parameter values P as the following:

Definition 3.2 (Parameter Set). Let P be a closed, bounded set in Rr. The system matrices
of the LPV system depend on parameter p in P r, with r representing the size of p.

It remains to show that nonlinear systems actually can be recasted into the LPV framework.
There exist many approaches for this LPV identification process, of which multiple can be
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3-2 Max-Plus Linear Parameter Varying Systems 29

found in [28], and furthermore in [29] and [30]. We can furthermore find multiple applications
that use the LPV framework; [31] uses the LPV framework for control of anesthesia delivery
during surgeries, [32] uses LPV for preserving vehicle stability in extreme situations and [33]
uses it for the control of wind energy conversion systems in wind turbines.

3-2 Max-Plus Linear Parameter Varying Systems

In this section the conventional LPV framework is extended to its max-plus analogue, resulting
in MP-LPV systems. The notion of MP-LPV systems is firstly introduced in [7] as an extended
description on Max-Plus-Linear (MPL) systems. In the theses [19] and [10] elaborate research
is done on MP-LPV systems and therefore form the foundation of this thesis. Research in
MP-LPV systems is very limited; the named resources are one of the few that have researched
this type of systems. We define a general model for an MP-LPV system in the following
manner:

Definition 3.3. [General MP-LPV System]

x(k) = A(p(k))⊗ x(k − 1)⊕B(p(k))⊗ u(k)
y(k) = C(p(k))⊗ x(k),

(3-2)

With {A(p(k)), B(p(k)), C(p(k))} the parameter dependent system matrices in Rn×n
ε , Rn×m

ε

and Rl×n
ε respectively, the state vector x(k) ∈ Rn

ε , the input vector u(k) ∈ Rm
ε , the output

vector y(k) ∈ Rl
ε and exogenous parameter vector p(k) ∈ Pε ∈ Rr

ε.

The index k is now considered to be an event counter instead of a time variable as in conven-
tional LPV systems. Therefore equivalently as in MPL systems, the state x(k) and output
y(k) represent the k-th occurrence of events x and y, and u(k) the k-th time that input u is
implemented. Let us formulate the definition of the parameter set Pε, now in the max-plus
sense:

Definition 3.4 (Max-Plus Algebraic Parameter Set). Let Pε be a closed, bounded set in Rr
ε.

The system matrices of the MP-LPV system depend on parameter p in P r
ε , with r representing

the size of p.

3-2-1 Canonical Form of State-Space Description

The general state-space description of an MP-LPV system defined in Definition 3.3 can be
rewritten into a standard implicit form, similarly as for MPL systems in Equation 2-24. This
description is given by:

x(k) =
M⊕

µ=0
(Aµ(p(·))⊗ x(k − µ))⊕B(p(·))⊗ u(k)

y(k) = C(p(·))⊗ x(k)

(3-3)

With the parameter vector p(·) defined as:

p(k, x(k), u(k), z(k)) = [xT (k), xT (k − 1), . . . , xT (k −M), uT (k), zT (k)] ∈ P (3-4)
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M ≥ 1 is the recurrence order, representing the number of past cycles that are contained
in the state vector, z(k) ∈ Rnz is an exogenous input that is assumed to be independent
of the state and the system vectors and matrices defined as in Definition 3.3. This general
implicit form can be rewritten into a canonical form, which will be useful for studying system
characteristics such as solvability. However, before we can translate the MP-LPV description,
the system first needs to meet the following assumption, presented in [8]:

Assumption 3.1. The finite entries of the system matrices Aµ(·) with µ = {1, ..., M}, B(·)
and C(·) in Equation 3-3 are continuous piecewise affine in the parameter p(·) ∈ P defined
as in Equation 3-4. We assume furthermore that the system description in Equation 3-3 is
structurally finite. The latter means that the following matrix is row finite:

F (·) =
[
A0(·) A1(·) . . . AM (·) B(·) E
E E . . . E E C(·)

]
(3-5)

Mathematically this means that F is row finite1. The structure of matrix F (·) is assumed to
be independent of the parameter p(·).

If Assumption 3.1 holds for the MP-LPV system in Equation 3-3, we can rewrite that de-
scription into the following canonical form:

Lemma 3.1. Consider the implicit MP-LPV system as defined in Equation 3-3. Under
Assumption 3.1 the dynamics of the MP-LPV system can be rewritten into the following
canonical form:

x(k) =
M⊕

µ=0

(
Aµ(p(µ)(k))⊗ x(k − µ)

)
⊕B(p(1)(k))⊗ u(k)

y(k) = C(p(k))⊗ x(k)
p(µ)(k) = [xT (k − µ), . . . , xT (k −M), uT (k), zT (k)]T ∈ P (µ)

(3-6)

The proof for the above lemma can be found in [8]. This internal document introduces
furthermore that under Assumption 3.1, MP-LPV systems and MMPS systems are equivalent.
Let us formally state the latter theorem:

Theorem 3.1. Under Assumption 3.1, the class of MMPS systems as defined in Definition
2.10 and the class of MP-LPV systems as defined in Lemma 3.1 coincide.

For details of the proof of this theorem we again refer to [8]. We can therefore update Figure 2-
3 to Figure 3-1. The propositions referred to in this figure can be found in subsection 2-5-4.

1A matrix is row finite if every row has at least one finite entry.
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MMPS

PWAMLD

MMPS

Prop. 2.5*Prop. 2.4
Prop. 2.3*

Prop. 2.2*

Prop. 2.1*

Theorem 3.1

Figure 3-1: Updated graphical representation of the equivalences between the hybrid system
classes presented in subsection 2-5-4. The ∗ notation indicates that a (mild) assumption is
necessary for the concerning equivalence. Proposition 2.1 until 2.5 can be found in subsection 2-
5-4.

3-2-2 Levels of Implicitness

The canonical representation of the MP-LPV system is given in an implicit format. We can
however identify different levels of implicitness by making small adjustments in the represen-
tation. We will extract systems in four levels of implicitness, namely explicit systems, single
implicit systems version 1, single implicit systems version 2 and doubly implicit systems.

Explicit MP-LPV System

An explicit system occurs when having explicit signal relations and furthermore an explicit
parameter set. One can observe that such a system occurs when A0(·) = En×n, because then
A0(p(0)(k)) ⊗ x(k) = En×n ⊗ x(k) = En×n. Let us write the following for such an explicit
system:

x(k) =
M⊕

µ=0

(
Aµ(p(µ)(k))⊗ x(k − µ)

)
⊕B(p(1)(k))⊗ u(k)

= A0(p(0)(k))⊗ x(k)⊕
M⊕

µ=1

(
Aµ(p(µ)(k))⊗ x(k − µ)

)
⊕B(p(1)(k))⊗ u(k)

= En×n ⊕
M⊕

µ=1

(
Aµ(p(µ)(k))⊗ x(k − µ)

)
⊕B(p(1)(k))⊗ u(k)

=
M⊕

µ=1

(
Aµ(p(µ)(k))⊗ x(k − µ)

)
⊕B(p(1)(k))⊗ u(k)

(3-7)
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We can see that the state x(k) only depends on A1(p(1)), ..., AM (p(M)) and x(k− 1), ..., x(k−
M). The resulting state equation is therefore explicit, as it only depends on previous state
values.

Single Implicit MP-LPV System - Version 1

We define version 1 of a single implicit system if we combine implicit signal relations with
an explicit parameter vector. Mathematically this happens when A0(p(·)) = A0(p(η)(·)) for
η ≥ 1. We can then write the state equation in the following manner:

x(k) = A0
(
p(1)(k)

)
⊗ x(k)⊕

M⊕
µ=1

(
Aµ(p(µ)(k))⊗ x(k − µ)

)
⊕B(p(1)(k))⊗ u(k) (3-8)

The implicitness is thus only due to the presence of x(k) on both the left and right side. This
level of implicitness is similar to the implicitness we have observed in Equation 2-24.

Single Implicit MP-LPV System - Version 2

Version 2 of the single implicit MP-LPV system occurs if we switch version 1; combining
explicit signal relations with an implicit parameter vector. Such a system occurs if A0(·) =
En×n and A1(p(0)(k)). The state vector is then represented as:

x(k) = A0
(
p(0)(k)

)
⊗ x(k)⊕A1

(
p(0)(k)

)
⊗ x(k − 1)⊕

M⊕
µ=2

(
Aµ(p(µ)(k))⊗ x(k − µ)

)
⊕B(p(1)(k))⊗ u(k)

= En×n ⊕A1
(
p(0)(k)

)
⊗ x(k − 1)⊕

M⊕
µ=2

(
Aµ(p(µ)(k))⊗ x(k − µ)

)
⊕B(p(1)(k))⊗ u(k)

= A1
(
p(0)(k)

)
⊗ x(k − 1)⊕

M⊕
µ=2

(
Aµ(p(µ)(k))⊗ x(k − µ)

)
⊕B(p(1)(k))⊗ u(k)

(3-9)

This form however cannot be obtained directly from the canonical form defined in Lemma
3.1; in order to obtain such a form, we need to investigate whether the following form can be
obtained from the standard implicit form defined in Equation 3-3:

x(k) = A0(p(0)(k))⊗ x(k)⊕
M⊕

µ=1
(Aµ(p(µ−1)(k))⊗ x(k − µ)) (3-10)

In this thesis, we will only consider version 1 of the single implicit MP-LPV system, as further
research is necessary for this level of implicitness. From this moment on, we will refer to the
single implicit MP-LPV systems version 1 as single implicit MP-LPV systems.
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Doubly Implicit MP-LPV System

Finally we obtain a doubly implicit system if both the signal relations and the parameter
vector are implicit. This happens when A0(p(0)(k)) = A0(x(k); p(1)(k)), thus A0 having a
parametric dependence on the current state x(k). This is equivalent to the formal canonical
representation of the MP-LPV system as defined in Equation 3-6, in which the state equation
is defined as:

x(k) =
M⊕

µ=0

(
Aµ(p(µ)(k))⊗ x(k − µ)

)
⊕B(p(1)(k))⊗ u(k) (3-11)

3-3 Case Study II: An Urban Railway System as Max-Plus Linear
Parameter Varying System

Let us recall the URS introduced in the previous chapter. To model the URS as an MPL
system, multiple assumptions have been made simplifying the system dynamics. By extending
the system description to an MP-LPV format, we can omit several assumptions. The resulting
URS is therefore a more realistic representation.

3-3-1 System Description and Relaxed Assumptions of the Urban Railway Sys-
tem

The URS is no longer restricted to two stations, but contains J number of stations with K
the number of trains. Assumption 2.1 is therefore adjusted to:

Assumption 3.2. The route of the URS is formed by j = 1, ..., J stations and k = 1, ..., K
trains.

For the URS in MPL format it was furthermore assumed in Assumption 2.9 that the variable
actual dwell times τdwell,i with i = 1, 2 are measurable. We will now approach the dwell time
in a more realistic sense, by describing the disembarking and boarding time. Based on these
relaxations, we therefore need to consider more states to describe the URS than only the
arrival and departure time. For a more realistic and complete description of the URS, we
need to obtain elaborate expressions for the following system characteristics:

• aj(k): arrival time of the k-th train at station j;

• dj(k): departure time of the k-th train from station j;

• τdwell,j(k): dwell time of the k-th train at station j

Arrival Time

A train k can arrive at a station j after the platform at station j is cleared (due to Assumption
2.7). The arrival time aj(k) of train k at station j furthermore depends on the time it takes
for the train k to travel from the previous station j − 1 to j. The following values therefore
need to be taken into account:
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• Departure time of train k from previous station j − 1, dj−1(k);

• Running time τr,j(k) between station j − 1 and j for train k;

• Time between two consecutive trains for safety (minimum headway time τh,min);

• Departure time of previous train k − 1 from station j, dj(k − 1).

Let us add the following assumptions to the system description:

Assumption 3.3. The minimum headway time τh,min is assumed to be a fixed value in time
units for all consecutive trains.

Assumption 3.4. The running time τr,j(k) of train k between station j − 1 and j can vary
per route part, but is assumed to be known in advance.

Based on these factors, we can obtain the following expression for the arrival time:

aj(k) = max(dj(k − 1) + τh,min, dj−1(k) + τr,j(k)) (3-12)

Departure Time

A train k can depart from station j as soon as the dwell time has past. A minimum dwell
time τdwell,min is considered at each station, to prevent that a train can skip a stop. The
departure time dj(k) of train k at station j therefore depends on:

• Arrival time of train k at station j, aj(k);

• Dwell time of train k at station j, τdwell,j(k);

• Minimum dwell time τdwell,min; a fixed value for all stations.

We can therefore obtain the following expression for the departure time:

dj(k) = max(aj(k) + τdwell,min, aj(k) + τdwell,j(k)) (3-13)

Dwell time

The dwell time of a train represents the time it spends on a platform. During this dwell time,
passengers can disembark and board the train. Let us add the following assumptions:

Assumption 3.5. The passengers taking part in the URS are assumed to follow the common
courtesy that passengers first disembark, and thereafter board. This is to overcome overlap
in the disembarking and boarding time.

For now, we still consider Assumption 2.4 which considers an unlimited capacity of the trains
for simplicity purposes. The section hereafter however we will include a maximum capacity.
The dwell time τdwell,j(k) of train k at station j thus depends on:
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• Time it takes for passengers to disembark train k at station j, or the disembarking time
τd,j(k);

• Time it takes for passengers to board train k at station j, or boarding time τb,j(k).

Based on this, we obtain:
τdwell,j(k) = τd,j(k) + τb,j(k) (3-14)

Disembarking time

The disembarking time represents the time it takes for passengers to disembark. Let us add
the following assumptions:

Assumption 3.6. At every station, a fixed fraction βj of passengers disembarks. It is
assumed that this is known in advance. Furthermore, it is assumed that when a passenger
disembarks a train, he/she immediately leaves the station.

Assumption 3.7. The number of passengers that can disembark per time unit, or disem-
barking speed f is fixed and known.

The dwell time τd,j(k) of train k at station j therefore also depends on the number of passen-
gers present in the train. For this, let us introduce ρj(k); the number of passengers in train
k at moment of departure from station j. The dwell time thus depends on:

• The fixed fraction of disembarking passengers βj ;

• The disembarking speed f ;

• Number of passengers present in train k on moment of arrival at station j, ρj−1(k).

We can define this disembarking time τd,j(k) as:

τd,j(k) = βj

f
ρj−1(k) (3-15)

Number of Passengers in the Train at Moment of Departure

The variable ρj(k) represents the number of passengers present in train k on the moment of
departure from station j (i.e. the number of passengers in train k on the moment of arrival
at station j + 1). We assume the following:

Assumption 3.8. Every train k arriving at the initial station 1 arrives with an initial, known
number of passengers present in the train, ρ0(k).

Assumption 3.9. Passengers arrive at a constant and known rate ej at each station (con-
tinuously).

Finally, let us for now assume the following:
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Assumption 3.10. The number of passengers in the train at moment of departure from
the previous station ρj−1(k) is assumed to be measurable. Note that this again is a realistic
assumption, as there exist many URS in which passengers check-in in the particular vehicle.
An example for this is the Dutch tram system.

As the disembarking time τd,j(k) only depends on ρj−1(k) and not on ρj(k), we do not need
an expression for ρj(k).

Boarding time

For the boarding time τb,j(k) of train k at station j we assume the following:

Assumption 3.11. The number of passengers that can disembark per time unit, or boarding
speed b, is fixed and known.

We furthermore introduce qj(k); the number of passengers boarding train k at station j,
which will be expressed in more detail later on. The boarding time therefore depends on:

• Number of passengers boarding qj(k);

• Boarding speed b.

We obtain therefore the following expression:

τb,j(k) = 1
b

qj(k) (3-16)

Number of Passengers Boarding

As we are still considering an unlimited capacity in the trains, all passengers that are waiting
on the platform to board fit in the train (and no passengers are left behind). Let us assume
the following:

Assumption 3.12. Passengers arrive at each station at a constant, known rate e. We
furthermore assume, equivalently as for disembarking, that passengers arriving at the station
are directly ready to board.

Under Assumption 2.4, the number qj(k) of passengers boarding train k at station j depends
only on the number of passengers arriving between departures of consecutive trains. We can
therefore express qj(k) as:

qj(k) = ej(dj(k)− dj(k − 1)) (3-17)
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3-3-2 MP-LPV State-Space Description of the Urban Railway System

We have defined all the necessary variables of the URS system to define a more complete
system description. For this, let us collect the previous expressions and after substitutions
we can obtain:

aj(k) = max
(
dj(k − 1) + τh,min, dj−1(k) + τr,j(k)

)
dj(k) = max

(
aj(k) + τdwell,min, aj(k) + τdwell,j(k)

)
τdwell,j(k) =βj

f
ρj−1(k) + ej

b

(
dj(k)− dj(k − 1)

) (3-18)

It can be observed that the expression for the departure time is implicit, as it depends on
τdwell,j(k) which itself also depends on dj(k). We will later on observe that the implicitness
level is doubly implicit. Let us first define the following state vector for the URS:

x(k) =


x1(k)
x2(k)

...
x2J−1(k)
x2J(k)

 =


a1(k)
d1(k)

...
aJ(k)
dJ(k)

 (3-19)

By defining the parameter vector correctly, we can obtain the max-plus parameter varying
structure, such that the (implicit) relations can be illustrated more clearly. We define:

p(0)(k) =
[

x(k)
x(k − 1)

]
(3-20)

We can then define the dwell time τdwell(k) as a plus-scaling function (which is a subclass
of MMPS functions) of the parameter vector p(0)(k). Let us illustrate this for station j and
train k:

τdwell,j(k) =
[
0 ej

b 0 − ej

b

] 
x2j−1(k)
x2j(k)

x2j−1(k − 1)
x2j(k − 1)


︸ ︷︷ ︸

p
(0)
j (k)

+βj

f
ρj−1(k) (3-21)

Let us finally add the following assumption in addition to Assumption 3.8, which is necessary
to obtain the state-space description:

Assumption 3.13. We assume that, in addition to ρ0(k), the following initial values are
known: τdwell,1(k), d0(k) and dj(0).

We furthermore consider dj(0) as an input for the URS. We can now write the state-space
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description of the URS, with the state vector as defined in Equation 3-19:

x(k) =



x1(k)
x2(k)
x3(k)

...
x2J−1(k)
x2J(k)


=



ε . . . . . . . . . . . . ε
τdwell,min(k)
⊕τdwell,1(k) ε . . . . . . . . . ε

ε τr,2(k) ε . . . . . . ε
...

... . . . . . . . . . ...

ε ε . . .
. . . ε ε

ε ε . . . . . .
τdwell,min(k)
⊕τdwell,J(k) ε


︸ ︷︷ ︸

A0(p(0)(k))

⊗



x1(k)
x2(k)
x3(k)

...
x2J−1(k)
x2J(k)


︸ ︷︷ ︸

x(k)

⊕



ε τh,min ε . . . . . . ε
ε ε ε . . . . . . ε
ε ε ε . . . . . . ε
...

...
... . . . . . . ...

ε ε ε
. . . . . . τh,min

ε ε ε . . . . . . ε


︸ ︷︷ ︸

A1

⊗



x1(k − 1)
x2(k − 1)
x3(k − 1)

...
x2J−1(k − 1)
x2J(k − 1)


︸ ︷︷ ︸

x(k−1)

⊕
[
τr,1(k) ε ε . . . ε

]
︸ ︷︷ ︸

B

⊗


d0(k)

ε
ε
...
ε


︸ ︷︷ ︸

u(k)

(3-22)

It can be observed that we are dealing with a doubly implicit MP-LPV structure, due to the
presence of the parameter vector p

(0)
j (k) in the τdwell,j(k) expressions as defined in Equation 3-

21 in the A0(·) matrix, and the presence of the x(k) vector on both the left and the right side
of the equation. Let us investigate if we can resolve part of this implicitness and obtain a
single implicit MP-LPV system. For this, let us first define the number of passengers actually
boarding:

qactual,j(k) = b

(
dj(k)− aj(k)− βj

f
ρj−1(k)

)
(3-23)

Note that dj(k) − aj(k) is the actual dwell time, and βj

f ρj−1(k) the disembarking time as
defined in Equation 3-15. Therefore, the value in between the brackets is another expression
for the boarding time. As b represents the number of passengers boarding per time index, we
have indeed obtained the actual number of passengers boarding. We can therefore say that
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the following must hold:

qj(k) = ej(dj(k)− dj(k − 1)) = b

(
dj(k)− aj(k)− βj

f
ρj−1(k)

)
(3-24)

We can rewrite this to obtain the following:

dj(k) = − b

ej − b︸ ︷︷ ︸
λ1

aj(k)− bβj

ejf − fb︸ ︷︷ ︸
λ2

ρj−1(k) + ej

ej − b︸ ︷︷ ︸
λ3

dj(k − 1) (3-25)

If we now include the minimum dwell time, we obtain:

dj(k) = max
(

aj(k) + τdwell,min, λ1aj(k) + λ2ρj−1(k) + λ3dj(k − 1)
)

(3-26)

Thus we then have the following expressions describing the URS system:

aj(k) = max
(
dj(k − 1) + τh,min, dj−1(k) + τr,j(k)

)
dj(k) = max

(
aj(k) + τdwell,min, λ1aj(k) + λ2ρj−1(k) + λ3dj(k − 1)

) (3-27)

It can be observed that the expressions now are only single implicit. To obtain this MP-LPV
state-space description, we consider the same state vector as in Equation 3-19 and the same
parameter vector as in Equation 3-20. Let us define the departure time as a function of this
parameter vector. For train k at station j, we have:

dj(k) = max
(
τdwell,min, (λ1 − 1)aj(k) + λ2ρj−1(k) + λ3dj(k − 1)

)
+ aj(k)

= max


τdwell,min,

[
λ1 − 1 0 0 λ3

] 
x2j−1(k)
x2j(k)

x2j−1(k − 1)
x2j(k − 1)


︸ ︷︷ ︸

p
(0)
j (k)

+λ2ρj−1(k)


︸ ︷︷ ︸

fMMPS

(
p

(0)
j (k)

)

+aj(k)

= max
(
τdwell,min, fMMPS

(
p

(0)
j (k)

))
+ aj(k)

(3-28)

The resulting maximization is again an MMPS function, and we therefore have:

dj(k) = fMMPS
(
p

(0)
j (k)

)
+ aj(k) (3-29)

Note that we are allowed to consider MMPS functions fMMPS(·) instead of continuous Piecewise
Affine (PWA) functions fcPWA(·) as assumed in Assumption 3.1, as we have seen in subsec-
tion 2-5-4 that these classes of systems are equivalent. We can now obtain an MP-LPV system
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described by:

x(k) =



x1(k)
x2(k)
x3(k)

...
x2J−1(k)
x2J(k)


=



a1(k)
d1(k)
a2(k)

...
aJ(k)
dJ(k)


=



ε . . . . . . . . . . . . ε

fMMPS
(
p

(0)
1 (k)

)
ε . . . . . . . . . ε

ε τr,2(k) ε
. . . . . . ...

...
... . . . . . . . . . ...

ε ε . . . ε ε ε

ε ε . . . ε fMMPS
(
p

(0)
J (k)

)
ε


︸ ︷︷ ︸

A0(p(0)(k))

⊗



x1(k)
x2(k)
x3(k)

...
x2J−1(k)
x2J(k)


︸ ︷︷ ︸

x(k)

⊕



ε τh,min ε . . . . . . ε
ε ε ε . . . . . . ε

ε ε ε
. . . . . . ...

...
...

... . . . . . . ...

ε ε ε
. . . . . . τh,min

ε ε ε . . . . . . ε


︸ ︷︷ ︸

A1(p(1)(k))

⊗



x1(k − 1)
x2(k − 1)
x3(k − 1)

...
x2J−1(k − 1)
x2J(k − 1)


︸ ︷︷ ︸

x(k−1)

⊕
[
τr,1(k) ε ε . . . ε

]
︸ ︷︷ ︸

B

⊗


d0(k)

ε
ε
...
ε


︸ ︷︷ ︸

u(k)

(3-30)

On first hand, the resulting MP-LPV system seems doubly implicit due to the presence of the
parameter vector p(0)(k) in the A0 matrix and the presence of the current state vector x(k)
on both the left and the right side of the expression. Let us however investigate this MMPS
function. As can be observed in Equation 3-28, we have:

fMMPS
(
p

(0)
j (k)

)
= fMMPS(aj(k), dj(k − 1), ρj−1(k)) (3-31)

Furthermore, we have that only the departure time dj(k) depends on fMMPS(p(0)
j (k)). Clearly,

the arrival time aj(k) is known on the moment the train k departs from station j. Therefore,
if we correctly maintain the order of the state vector, we can conclude that the resulting
MP-LPV system is single implicit. The URS that is considered now is still subject to several
assumptions that can be relaxed. In the next section we will relax these assumptions and we
will observe that the resulting system initially is derived as an MMPS system.
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3-4 Case Study III: Urban Railway System as MMPS System

In this case study, we will relax the assumptions for the URS system even more, resulting
in an MMPS system description. First, let us remove Assumption 2.4, which considers an
unlimited capacity of the trains. Removing this assumption results in the possibility that not
all passengers fit in the train and therefore are left behind. Let us thus add a new assumption:

Assumption 3.14. The trains have a limited number of seats available, defined as the
maximum capacity ρmax.

Because of this assumption, we are now dealing with two possible scenarios:

1. The passengers waiting on the platform to board all fit in the train. The train is then
either filled up until the maximum capacity (ρj(k) = ρmax), or there are still empty
seats available (ρj(k) < ρmax).

2. There are more passengers waiting on the platform than empty seats available. We then
have ρj(k) = ρmax and passengers are left behind on the platform.

In the following subsection, we will adjust the URS states according to these two scenarios.

3-4-1 System Description and Relaxed Assumptions of the Urban Railway Sys-
tem

To describe scenario 1 and 2, we need to adjust the variables ρj(k) and qj(k), and we need to
introduce another variable σj(k); the number of passengers left behind by train k on station
j. All assumptions that are defined so far, still hold, unless stated otherwise.

Updated: Number of Passengers in the Train at Moment of Departure

Because of the addition of Assumption 3.14, we need to adjust the variable ρj(k). In As-
sumption 3.10, we have assumed that ρj−1(k) is measurable. However, let us now correctly
describe ρj(k) such that we can include its influence. The number of passengers ρj(k) depends
on the following:

• Number of passengers that remain seated (and thus not disembark), (1− βj)ρj−1(k);

• Number of passengers boarding, qj(k).

We can define the expression for ρj(k) by:

ρj(k) = (1− βj)ρj−1(k) + qj(k) (3-32)
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Updated: Number of Passengers Boarding

Because of the introduction of scenario 2 due to Assumption 3.14 the expression for qj(k)
also needs to be updated. In Equation 3-17, we have defined the value qj(k) in case scenario
1 occurs. However, this expression needs to be updated as we are now also considering σj(k),
the number of passengers left behind by train k on platform j. The number of passengers
boarding in scenario 1 now depends on the following factors:

• The number of passengers arriving between departures of consecutive trains, ej(dj(k)−
dj(k − 1);

• The number of passengers left behind by the previous train, σj(k − 1).

We can therefore define the new expression qj,1(k) for scenario 1:

qj,1(k) = ej(dj(k)− dj(k − 1)) + σj(k − 1) (3-33)

In case of the second scenario, not all passengers waiting on the platform can actually board
the train. Therefore, qj,2(k) depends on:

• Maximum capacity ρmax;

• Number of passengers present in train k at arrival at station j, ρj−1(k);

• Number of passengers disembarking, βjρj−1(k) (and therefore also the number of pas-
sengers remaining seated (1− βj)ρj−1(k)).

The number of passengers boarding in scenario 2 can be defined as:

qj,2(k) = ρmax − (1− βj)ρj−1(k) (3-34)

We can therefore define the actual number of passengers boarding train k at station j as:

qj(k) = min (ej (dj(k)− dj(k − 1)) + σj(k − 1), ρmax − (1− βj)ρj−1(k)) (3-35)

Passengers Left Behind

It remains to describe σj(k), the number of passengers left behind by train k at station j.
This variable depends on the following:

• Number of passengers on the platform at beginning of boarding time, or equivalently
the number of passengers that want to board;

• Number of passengers actually boarding (this value depends on whether scenario 1 or
2 occurs).

We can therefore express σj(k) as:

σj(k) = ej(dj(k)− dj(k − 1)) + σj(k − 1)− qj(k) (3-36)

Note that σj(k) will always be zero in case of scenario 1.
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3-4-2 MMPS Description of the Urban Railway System

Combining all previous definitions of the system variables and substituting where logical, we
obtain the following expressions that describe the complete URS:

aj(k) = max(dj(k − 1) + τh,min, dj−1(k) + τr,j(k))

dj(k) = max
(

aj(k) + τdwell,min, aj(k) + βj

f
ρj−1(k) + 1

b
qj(k)

)
qj(k) = min (ej (dj(k)− dj(k − 1)) + σj(k − 1), ρmax − (1− βj)ρj−1(k))
ρj(k) = (1− βj)ρj−1(k) + qj(k)
σj(k) = ej(dj(k)− dj(k − 1)) + σj(k − 1)− qj(k)

(3-37)

Just as for the previous case we can observe that we are dealing with doubly implicitness,
due to the expression of qj(k). Let us resolve this implicitness in the following manner. For
this, let us recall the number of passengers actually boarding:

qactual,j(k) = b

(
dj(k)− aj(k)− βj

f
ρj−1(k)

)
(3-38)

If scenario 1 holds, we have:

qactual,j(k) = b

(
dj(k)− aj(k)− βj

f
ρj−1(k)

)
= ej (dj(k)− dj(k − 1)) + σj(k − 1) (3-39)

Rewriting this and taking all dj(k) to the left side results in:

dj(k) = b

b− ej︸ ︷︷ ︸
α1

aj(k) + b

b− ej

βj

f︸ ︷︷ ︸
α2

ρj−1(k) + 1
b− ej︸ ︷︷ ︸

α3

σj(k − 1)− ej

b− ej︸ ︷︷ ︸
α4

dj(k − 1) (3-40)

If scenario 2 holds, we can write:

qactual,j(k) = b

(
dj(k)− aj(k)− βj

f
ρj−1(k)

)
= ρmax − (1− βj)ρj−1(k) (3-41)

If we rewrite this again, we obtain:

dj(k) = 1
b

ρmax︸ ︷︷ ︸
γ0

+︸︷︷︸
γ1

aj(k) + (βj

f
− 1− βj

b
)︸ ︷︷ ︸

γ2

ρj−1(k) (3-42)

Therefore, we can write the following for the departure time:

dj(k) = min(α1aj(k) + α2ρj−1(k) + α3σj(k − 1) + α4dj(k − 1),
γ0 + γ1aj(k) + γ2ρj−1(k))

(3-43)

If we now add the minimum dwell time τdwell,j,min to the departure time, we end up with:

dj(k) = max(aj(k) + τdwell,j,min, min(α1aj(k) + α2ρj−1(k) + α3σj(k − 1) + α4dj(k − 1),
γ0 + γ1aj(k) + γ2ρj−1(k)))

(3-44)
We finally add the following assumption, as an update of Assumption 3.13:
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Assumption 3.15. We assume that the following initial values are known: d0(k), dj(0),
ρ0(k) and σj(0).

Let us now define the state vector that includes all the states that describe the URS system
completely:

x(k) =

 x1(k)
...

x5J(k)

 =



a1(k)
d1(k)
q1(k)
ρ1(k)
σ1(k)

...
aJ(k)
dJ(k)
qJ(k)
ρJ(k)
σJ(k)



(3-45)

With therefore, for station j and train k:



xj(k)
xj+1(k)

xj+2(k)

xj+3(k)
xj+4(k)


=



max(xj+1(k − 1) + τh,min, xj−4(k) + τr,j(k))
max(xj(k) + τdwell,j,min,

min(α1xj(k) + α2xj−2(k) + α3xj+4(k − 1) + α4xj+1(k − 1),
γ0 + γ1xj(k) + γ2xj−2(k)))

min(ej (xj+1(k)− xj+1(k − 1)) + xj+4(k − 1),
ρmax − (1− βj)xj−2(k))
(1− βj)xj−2(k) + xj+2(k)

ej(xj+1(k)− xj+1(k − 1)) + xj+4(k − 1)− xj+2(k)


(3-46)

Note that the expressions contain both maximization as well as minimization. Furthermore,
all above expressions contain the multiplication operation. Therefore, the expressions that
we obtained now are actually MMPS functions. We have seen however in subsection 3-2-1
that under Assumption 3.1 the class of MP-LPV systems and MMPS systems coincide. Let
us therefore show how we can rewrite the above state equations into expressions that fit into
the MP-LPV framework, for the initial station j = 1. Let us consider the following parameter
vector for j = 1:

p
(0)
1 (k) =

[
x(k)

x(k − 1)

]
=



a1(k)
d1(k)
q1(k)
ρ1(k)
σ1(k)

a1(k − 1)
d1(k − 1)
q1(k − 1)
ρ1(k − 1)
σ1(k − 1)


(3-47)
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We can then write the following for the departure time d1(k):

d1(k) = max
(
τdwell,1,min, min((α1 − 1)a1(k) + α2ρ0(k) + α3σ1(k − 1) + α4d1(k − 1),

γ0 + (γ1 − 1)a1(k) + γ2ρ0(k))
)

+ a1(k)

= fMMPS
(
a1(k), ρ0, σ1(k − 1), d1(k − 1)

)
+ a1(k)

= fMMPS,1
(
p

(0)
1 (k)

)
+ a1(k)

(3-48)

Similarly, we have for number of passengers boarding:

q1(k) = min
(
(e1 − 1)d1(k)− e1d1(k − 1) + σ1(k − 1),

ρmax − (1− β1)ρ0(k)− d1(k)
)

+ d1(k)

=fMMPS
(
d1(k), d1(k − 1), σ1(k − 1), ρ0

)
+ d1(k)

=fMMPS,2
(
p

(0)
1 (k)

)
+ d1(k)

(3-49)

And for the number of passengers in the train at moment of departure ρ1(k):
ρ1(k) = (1− β1)ρ0(k) + q1(k)

= fMMPS
(
ρ0
)

+ q1(k)

= fMMPS,3
(
p

(0)
1 (k)

)
+ q1(k)

(3-50)

And finally, for the number of passengers left behind σ1(k):
σ1(k) = e1(d1(k)− d1(k − 1)) + σ1(k − 1)− 2q1(k) + q1(k)

= fMMPS
(
d1(k), d1(k − 1), σ1(k − 1), q1(k)

)
+ q1(k)

= fMMPS,4
(
p

(0)
1 (k)

)
+ q1(k)

(3-51)

Recall that we have assumed in Assumption 3.15 that the initial values d0(k) and ρ0(k) are
known. We can therefore obtain the following MP-LPV system:


a1(k)
d1(k)
q1(k)
ρ1(k)
σ1(k)

 =



ε ε ε ε ε

fMMPS,1
(
p

(0)
1 (k)

)
ε ε ε ε

ε fMMPS,2
(
p

(0)
1 (k)

)
ε ε ε

ε ε fMMPS,3
(
p

(0)
1 (k)

)
ε ε

ε ε fMMPS,4
(
p

(0)
1 (k)

)
ε ε


︸ ︷︷ ︸

A0(p(0)
1 (k))

⊗


a1(k)
d1(k)
q1(k)
ρ1(k)
σ1(k)


︸ ︷︷ ︸

x(k)

⊕


ε τh,min ε ε ε
ε ε ε ε ε
ε ε ε ε ε
ε ε ε ε ε
ε ε ε ε ε


︸ ︷︷ ︸

A1(p(1)(k))

⊗


a1(k − 1)
d1(k − 1)
q1(k − 1)
ρ1(k − 1)
σ1(k − 1)


︸ ︷︷ ︸

x(k−1)

⊕
[
τr,1(k) ε ε . . . ε

]
︸ ︷︷ ︸

B

⊗


d0(k)

ε
ε
...
ε


︸ ︷︷ ︸

u(k)
(3-52)
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Again, as continuous PWA functions and MMPS functions are equivalent, we are allowed to
use MMPS functions in the A0 matrix. Similarly as for the MP-LPV state-space description
defined in Equation 3-30 for the URS of Case Study II, the description seems doubly implicit
on first sight. However, due to the construction of the MMPS functions in Equation 3-48,
3-49, 3-50 and 3-51 we can conclude that the URS is single implicit. Let us elaborate on
this, by observing fMMPS,1(p(0)(k)). This function is located at entry [A0(·)]21 and therefore
is only present at the state equation for the departure time d1(k). The only implicit value
present in this entry is the arrival time a1(k). But if we maintain the order of the states
as defined when calculating the states, we can conclude that we fírst calculate a1(k), and
thereafter d1(k). This is confirmed by the logical reasoning that the arrival time of train
k at station j is known at the departure time of train k from station j. Therefore, when
calculating d1(k), this value a1(k) can be considered as a known value. The same reasoning
can be implemented on the remaining MMPS functions fMMPS,i(p(0)(k)) with i = 2, ..., 4,
confirming that the resulting URS is indeed single implicit.
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Chapter 4

Solvability of Max-Plus Linear
Parameter Varying Systems

In this chapter, we discuss the solvability of Max-Plus Linear Parameter Varying (MP-LPV)
systems, which were introduced in the previous chapter. We have seen that MP-LPV systems
can present themselves with different levels of implicitness. This implicitness occurs as a
result of the presence of the state x(k) on both the left as the right side of the state equation
and the presence of the maximization operation. Due to the absence of an inverse of the
maximization operation we cannot easily solve the state equation for x(k). It gives rise to
the solvability problem; we can not at all times guarantee the existence of a solution to the
state equation of the MP-LPV system. We therefore aim to find a set of conditions that
does guarantee this existence of this state solution. With the different levels of implicitness,
we will construct different sets of conditions to ensure solvability for the concerning system.
This chapter is organized as follows. In the first section, we present an updated definition of
the solvability framework for MP-LPV systems. Thereafter we will discuss the solvability of
explicit MP-LPV systems in section 4-2. We will present the problems for solvability for single
implicit MP-LPV systems in section 4-3, after which we will suggest a solvability framework
in section 4-4. Subsequently, we will approach doubly implicit MP-LPV systems in the same
manner in section 4-5 and section 4-6. Finally in section 4-7 we discuss the solvability of Case
Study I and II of the previous chapter.

4-1 Solvability Framework

In this section, we present the definition of solvability of MP-LPV systems. There has been
done some research in solvability for MP-LPV systems in [10] and [8], but the resulting
framework is incomplete and subject to several strict assumptions. Let us first present the
latter solvability framework in subsection 4-1-1, after which we can present the updated
solvability definitions in subsection 4-1-2.
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48 Solvability of Max-Plus Linear Parameter Varying Systems

4-1-1 Background

In this subsection, we present the solvability framework as proposed in [8], which has shown
to be incomplete and subject to assumptions that can be relaxed. This internal document
defines solvability of an MP-LPV system in the following manner:

Definition 4.1 (Solvability of a general MP-LPV System). The MP-LPV system as defined
in Lemma 3.1 is considered solvable if for every x(k − j) ∈ Rn, u(k) ∈ Rm and z(k) ∈ Rz

with k ≥ M and j ∈ {1, ..., M}, at least one state x(k) exists such that the dynamics of the
state-space description hold.

In the previous chapter we have seen three levels of implicitness for MP-LPV systems, namely
explicit, single implicit and doubly implicit systems. Let us introduce the solvability frame-
work per level of implicitness as proposed by [8]. We have seen that an explicit MP-LPV
system occurs when A0(·) = En×n. We have furthermore seen that the state equation in
such an explicit format is only depending on previous states x(k − 1), ..., x(k −M). Obtain-
ing a solvability framework for explicit MP-LPV systems will therefore not give rise to any
problems.

A single implicit system occurs when A0(p(·)) = A0(p(η)(·)) for η ≥ 1. This level of implic-
itness is comparable to the Max-Plus-Linear (MPL) system introduced in Equation 2-24 in
Chapter 2. The paper [8] proposes that the implicitness of a single implicit system can be
resolved using the Kleene star operator as defined in Definition 2.3 resulting in an explicit
system. The paper states that under Assumption 3.1, solvability of such a system is ensured
if the Kleene star A∗

0(p(1)) exists. Furthermore, [8] states that the uniqueness of the solution
is guaranteed if the communication graph G(A0(·)) has negative circuit weights. We will
investigate, expand and improve this idea of solvability of single implicit MP-LPV systems
later in this chapter.

Let us finally present the solvability problem of a doubly implicit MP-LPV system as proposed
by [8]. Unfortunately, we cannot translate this doubly implicit MP-LPV into an explicit form
using the Kleene Star operator. This is due to the presence of the current state x(k) in
the parameter vector and therefore in the entries of matrix A0(·); the absence of an inverse
of the maximization property imprisons this x(k). [8] provides an algebraic approach to
this solvability problem, and presents a sufficient condition that ensures the existence and
uniqueness of the state trajectories under the following assumptions:

Assumption 4.1. Consider the doubly implicit MP-LPV system as defined in subsection
3-2-2. We assume the following:

• Matrix A0(·) is reducible and in Frobenius normal form;

• The finite components of matrix A0(·) are Max-Plus-Scaling (MPS) functions1 of the
parameter p(k);

• The finite entries of the matrix A0(·) are defined as: [A0(·)]ij = [A0(·)]ij(x(−i)(k), xi(k), p(1))
for i ≤ j, i, j ∈ {1, ..., n}, with x(−i)(k) defined as x(−i)(k) = [x1(k) . . . xi−1(k)]T .

1A MPS function is a recursive function that can only contain the operations maximization, addition and
multiplication.
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Under this assumption, we can express the state x at event step k as:

xi(k) =
(
f

(i)
MPS(x(−i)(k), xi(k), p(1)(k)), ri(k)

)
(4-1)

In which r(k) =
⊕M

µ=1

(
Aµ(p(µ)(k))⊗ x(k − µ)

)
⊕ B(p(1)(k)) ⊗ u(k) and fMPS is a MPS

function defined as:

f
(i)
MPS(·) = max

i∈{1,...,N}

(
α

(i)
l xi(k) + β

(i)
l (x(−i)(k), p(1)(k))

)
+ δ

(i)
0 (4-2)

In which δ
(i)
0 = ε if [A0(·)]ij = ε for all j ∈ {1, ..., n} and δ

(i)
0 = 0 otherwise. Furthermore,

all known terms are collected in β
(i)
l (·), and α

(i)
l are real valued coefficients. The condition

for solvability as defined in Definition 4.1 of a doubly implicit MP-LPV that [8] presents as a
result from these assumptions, is:

Lemma 4.1. Under Assumption 3.1 and 4.1, we have that for every i ∈ {1, ..., n} there exists
a unique solution xi(k) to Equation 4-1 if for every l ∈ {1, ..., N} we have that α

(i)
l < 1 in

f
(i)
MPS(·) in Equation 4-2.

More details of the proof of this lemma can be found in [8]. This proof however lacks the
concrete proof of existence of a solution to the state equation, and only provides the proof
on uniqueness of the solution. This lack therefore gives rise to the need for a more complete
solvability framework, separating existence and uniqueness of a state solution. Furthermore,
with Assumption 4.1 we restrict the systems to a doubly implicit MP-LPV format for which
there is no interdependence between current and future states. For the simplified Urban
Railway System (URS) this can make sense; the departure time from a station i is independent
of departure times of upcoming stations j > i. However, if we would no longer restrict the
URS to being uni-directional, this assumption no longer would hold. Therefore, to obtain a
solvability framework that is more general and can therefore fit a wider set of possibly more
complex MP-LPV systems, there is a need to relax these assumptions. In the remainder
of this chapter, we will therefore omit all assumptions in Assumption 4.1, and retain only
Assumption 3.1, which is necessary to obtain the canonical form of the MP-LPV system.

4-1-2 Updated Solvability Framework

We have seen the definition for solvability of MP-LPV systems as proposed by [8] in Definition
4.1. We have seen however that this definition is incomplete. Let us therefore extend this
definition and introduce a solvability framework consisting of four (separate) levels, namely
existence of a solution, unique existence of a solution, solvability of the system and unique
solvability of the system. Let us present these definitions for a general MP-LPV system in
the format as presented in Lemma 3.1:

Definition 4.2 (Existence of a solution of an MP-LPV system). The MP-LPV system as
defined in Lemma 3.1 is considered to have a solution x(k) to the state equation if for x(k−1) ∈
Rn, u(k) ∈ Rm and z(k) ∈ Rz at least one state x(k) exists such that the dynamics of the
state-space description hold.
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50 Solvability of Max-Plus Linear Parameter Varying Systems

Definition 4.3 (Unique Existence of a solution of an MP-LPV system). The MP-LPV system
as defined in Lemma 3.1 is considered to have a unique solution x(k) to the state equation if
for x(k − 1) ∈ Rn, u(k) ∈ Rm and z(k) ∈ Rz the solution x(k) exists and is unique such that
the dynamics of the state-space description hold.

Definition 4.4 (Solvability of an MP-LPV System). The MP-LPV system as defined in
Lemma 3.1 is considered solvable if, given that existence of a solution as defined in Definition
4.2 is guaranteed, a solution exists for all future states x(k + j) ∈ Rn with j ≥ 1, such that
the dynamics of the state-space description hold.

And finally we can define:

Definition 4.5 (Unique Solvability of an MP-LPV System). The MP-LPV system as defined
in Lemma 3.1 is considered uniquely solvable if it is solvable and all solutions x(k + j) for
j ≥ 0 are unique.

These four levels forming the solvability framework all present different degrees, which is
visualized by Figure 4-1. The arrows represent the degrees of solvability; if an MP-LPV
system is considered solvable, it is considered automatically that existence holds as well.
Furthermore, if we can confirm unique existence, we can confirm existence. Equivalently, if
an MP-LPV system is considered uniquely solvable, we can confirm unique existence as well
as solvability. If we compare these definitions with the definition for solvability as proposed by
[8], we can conclude that Definition 4.1 is actually comparable with the definition of existence
as proposed in Definition 4.2.

Existence

x(k) exists


Unique 
Existence


x(k) exists and is
unique


Unique
Solvability


x(k+j) exists and
is unique for all

j≥0


Solvability

x(k+j) exists for 

all j≥0


Figure 4-1: The four levels of the solvability framework for MP-LPV systems, with x(k) the
solution to the state equation given by x(k) =

⊕M
µ=0

(
Aµ(p(µ)(k))⊗ x(k − µ)

)
⊕B(p(1)(k))⊗

u(k). More details of the levels can be found in Definition 4.2, 4.3, 4.4 and 4.5.

In the previous section we have seen how [8] analyzes the solvability property as defined in
Definition 4.1 for the different levels of implicitness for MP-LPV systems. Based on this, let
us propose an approach to investigate the updated solvability framework. We have seen that
analyzing solvability as proposed in [8] for explicit MP-LPV systems does not give rise to any
problems and nor will the updated solvability framework, as we will present in the following
section. For single implicit MP-LPV systems, we will extend the Kleene star approach in
section 4-3 to investigate the four levels of the updated framework separately. Finally, we
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will disregard all three assumptions made in Assumption 4.1, and we will define a new and
more general condition necessary for analyzing the updated solvability framework for doubly
implicit MP-LPV systems.

4-2 Solvability of Explicit MP-LPV Systems

In Equation 3-7 we have introduced to canonical form of an MP-LPV system with explicit
system dynamics. For simplicity, let us repeat the state equation of such a system:

x(k) =
M⊕

µ=1

(
Aµ(p(µ)(k))⊗ x(k − µ)

)
⊕B(p(1)(k))⊗ u(k) (4-3)

Let us formally propose the condition for unique solvability of explicit MP-LPV systems:

Proposition 4.1. The state equation defined in Equation 4-3 of the explicit MP-LPV system
is considered uniquely solvable if Assumption 3.1 holds.

Proof. Let us prove this using direct proof. In order to obtain the (explicit) canonical form
of the MP-LPV system, we have seen that Assumption 3.1 needs to hold. In this canonical
form, we have that the right hand side only contains known variables. The state equation
therefore always has a solution x(k) which can be calculated directly and this solution will
automatically be unique. Likewise, if x(k) exists, the state thereafter (x(k + 1)) will also
exist, as this will be built from x(k) and so on.

4-3 The Solvability Problem of Single Implicit MP-LPV Systems

To investigate how we can extend the method to resolve the implicitness in MPL systems to
a solvability framework for single implicit systems, let us recall Lemma 2.1:

Recall: Lemma 2.1. Let A ∈ Rn×n
ε be a matrix of which the communication graph G(A)

only has circuits of non-positive weight. Then the solution x to x = A⊗ x⊕ b is given by:

x = A∗ ⊗ b (4-4)

In which A∗ is the Kleene star and vector b ∈ Rn
ε . Furthermore, if the circuit weights are

negative instead of non-positive, this solution x is unique.

Let us furthermore recall the state-space description of the single implicit MP-LPV system
based on Lemma 3.1:

x(k) = A0
(
p(1)(k)

)
⊗ x(k)⊕

M⊕
µ=1

(
Aµ(p(µ)(k))⊗ x(k − µ)

)
⊕B(p(1)(k))⊗ u(k)

︸ ︷︷ ︸
b(k)

= A0
(
p(1)(k)

)
⊗ x(k)⊕ b(k)

y(k) = C(p(k))⊗ x(k)
p(µ)(k) = [xT (k − µ), . . . , xT (k −M), uT (k), zT (k)]T ∈ P(µ)

(4-5)
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52 Solvability of Max-Plus Linear Parameter Varying Systems

With z(k) ∈ Rz an exogenous input that is assumed to be independent of the state x(·) ∈ Rn

and u(·) ∈ Rm the control input. Furthermore, µ is a variable for which holds that µ ∈
Z+ and m is the maximum number of past cycles that are included. Clearly, the parameter
vector p(1)(k) is defined such that it contains only previous and therefore known variables.
The same holds for b(k). It can be observed that the format of the state equation is equal to
Equation 4-4 considered in Lemma 2.1, and we can therefore propose the following:

Proposition 4.2. The state equation of the single implicit MP-LPV system as defined in
Equation 4-5 has a solution x(k) (and thus Definition 4.2 holds) if the Kleene star A∗

0

(
p(1)(k)

)
exists.

Proof. The proof is based on [12, Theorem 3.17] combined with Lemma 2.1. The proof of [12,
Theorem 3.17] provides that for existence of A∗

0(p(1)(k)), it is necessary and sufficient that
the elementary circuit weights of the communication graph G(A0(p(1)(k)) are non-positive.
Lemma 2.1 states that if the circuit weights are non-positive, the solution to the state equation
in Equation 4-5 exists and is given by:

x(k) = A∗
0

(
p(1)(k)

)
⊗

M⊕
µ=1

(
Aµ(p(µ)(k))⊗ x(k − µ)

)
⊕B(p(1)(k))⊗ u(k) (4-6)

This proposition provides the condition necessary for the existence of the solution x(k), given
x(k − 1). It does not provide the necessary and sufficient proof; it is only necessary and
sufficient that the elementary circuit weights have to be non-positive for existence of the
Kleene star. However, the existence of the Kleene star is only a necessary condition for
existence of the solution as given by Lemma 2.1. We thus aim to find the set P such that
if p(1)(k) ∈ P, the Kleene star A∗

0(p(1)(k)) exists; or equivalently, the set P such that if
p(1)(k) ∈ P, the elementary circuits are non-positive. If the elementary circuit weights are
strictly negative, we can confirm unique existence as defined in Definition 4.3 based on Lemma
2.1. For the property of (unique) solvability, we are interested in conditions that guarantee
that a solution x(k + j) remains to exist for all future event steps k + j with j ∈ Z+.
Equivalently, we aim to find an invariant set Pinv ⊆ P for which holds that if p(1)(k) ∈ Pinv
with p(1)(k) resulting in existence of a solution x(k), then p(1)(k + j) ∈ Pinv for all j ∈ Z+
resulting in a solution x(k + j). In addition to Proposition 4.2, we propose the following:

Proposition 4.3. The following conditions are equivalent to the existence of the Kleene star
A∗

0(p(1)(k)):

1. Circuit weights |p|w =
⊗C

k=1 aik+1ik
≤ 0 ∀m, with C the number of nodes that constitute

the circuits and a(·) entries of the matrix A0(p(1)(k));

2. max(λm(A0(p(1)(k)))) ≤ 0 ∀m;

3. λm(A0(p(1)(k))) ≤ 0 ∀m.

In which m all elementary circuits of A0(p(1)(k)). For existence of a unique solution x(k),
we require all inequality signs in the above conditions to be strict inequality signs (<).
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Proof. We have seen in the proof of Proposition 4.2 that a necessary and sufficient condition
for existence of the Kleene star A∗

0(p(1)(k)) is that the elementary circuit weights of the
communication graph must be non-positive. We can therefore confirm the equivalence of the
first condition. By [13, Lemma 2.5] we can say that average circuit weights are candidates
for eigenvalues. Equivalently we can say that every finite eigenvalue is equal to some average
circuit weight. Thus, if all circuit weights are non-positive, then all eigenvalues are non-
positive and vice versa, or equivalently the maximum of all eigenvalues is non-positive and
vice versa. This confirms the equivalence of the second and third condition.

For uniqueness of the solution, we refer to Lemma 2.1, which states that if the circuit weights
are negative instead of non-positive, the solution x(k) is unique. As the three conditions above
are equivalent to one another, it is easily confirmed that they are still equivalent for < instead
of ≤. It remains to show this equivalence extends to Proposition 4.2. This is automatically
confirmed by Lemma 2.1, as the unique solution is then defined by x = A∗ ⊗ b and therefore
A∗ must be unique.

In conclusion, in Proposition 4.3 we have seen that in order to investigate the existence of
solution x(k) to the state equation of the single implicit MP-LPV system, we can investi-
gate the values of λ(A0(p(1)(k))). Let us start with analyzing the possible E-structures of
A0(p(1)(k)), to investigate if we can already make a few statements:

1. A strictly lower triangular, reducible structure with the diagonal entries equal to ε:

A0(p(1)(k)) =


ε . . . . . . ε
∗ ε . . . ε
... . . . . . . ...
∗ . . . ∗ ε

 (4-7)

With the entries ∗ ∈ Rε. Let us propose the following:

Proposition 4.4. A single implicit MP-LPV system with an A0(p(1)(k))-structure as
in Equation 4-7 for all k + j with j ≥ 0 is considered to be uniquely solvable.

Proof. In [13, Chapter 2] it is stated that in the case where the set of elementary circuits
C(A0(·)) is empty, we define the eigenvalue to be λ = ε. In this strictly lower triangular
structure there are no circuits present and we can therefore define λ(A0(·)) = ε < 0,
regardless of the values of the finite entries ∗ ∈ Rε. By Proposition 4.2 and 4.3, we
can conclude that a solution x(k) therefore exists and is unique. If this structure is
maintained for all future steps k + j with j ≥ 1, we can conclude that λ(A0(·)) = ε for
all k + j, and therefore the Kleene star exists for all k + j, such that the single implicit
MP-LPV system is uniquely solvable for all k + j.

2. A lower triangular, reducible structure with the diagonal entries possibly finite:

A0(p(1)(k)) =


∗d ε . . . ε

∗ . . . . . . ...
... . . . . . . ε
∗ . . . ∗ ∗d

 (4-8)
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54 Solvability of Max-Plus Linear Parameter Varying Systems

With ∗ ∈ Rε and ∗d ∈ Rε. In this structure, the set of elementary circuits C(A0(·))
consists out of all diagonal entries ∗d representing the self-loops.

Proposition 4.5. A single implicit MP-LPV system with an A0(p(1)(k))-structure as
in Equation 4-8 has a solution x(k) (and thus Definition 4.2 holds) if p(1)(k) is such
that ∗d ≤ 0. If furthermore ∗d < 0, this solution x(k) is unique (and thus Definition 4.3
holds).

Proof. If all diagonal entries are non-positive (or negative), the weights of the elementary
circuits are non-positive (or negative) and by Proposition 4.2 and 4.3 we can ensure that
solution x(k) exists (and is unique).

If we want to ensure (unique) solvability for this reducible structure with diagonals
possibly finite, we again have to find the set Pinv ⊆ P such that if p(1)(k) ∈ Pinv, then
∗d ≤ 0 (or ∗d < 0 for uniqueness), and furthermore p(1)(k + j) ∈ Pinv for all j ∈ Z+.
The values of the entries ∗ ∈ Rε can again be disregarded, as they will not be a part of
any (elementary) circuit.

3. An irreducible structure:

A0(p(1)(k)) =

∗ . . . ∗
... . . . ...
∗ . . . ∗

 (4-9)

With ∗ representing any continuous Piecewise Affine (PWA) function of p(1)(k) as as-
sumed in Assumption 3.1. From [12, Paragraph 3.2.4] we state the following:

Theorem 4.1. If A is irreducible (and thus communication graph G(A) is strongly con-
nected), there exists one and only one eigenvalue λ and at least one associated eigen-
vector v. This eigenvalue λ is equal to the maximum average weight over all elementary
circuits.

From this theorem we know that if A0(·) has the structure as in Equation 4-9, we have
one and only one eigenvalue which is equal to the maximum average weight over all
elementary circuits. Thus, in order for this eigenvalue to be non-positive (negative)
for existence of a (unique) solution x(k), we again must ensure that the maximum
average weight over all elementary circuits is non-positive (negative). We can ensure
this by having all entries ∗ ≤ 0 (or ∗ < 0 for uniqueness), but this condition is stricter
than necessary. We will therefore approach the solvability problem for the irreducible
structure in a elaborate manner in the following section.

These different structures show that depending on the structure of the system, different
conditions are necessary to guarantee existence of the Kleene star of A0(·) which ensures
existence of solution x(k). However, for both the reducible as the irreducible case, we need to
investigate which parameter vectors ensure (unique) solvability is guaranteed. In the following
section, we will investigate how to obtain such a parameter set.
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4-4 (Unique) Solvability of Single Implicit MP-LPV Systems

In this section, we will approach the (unique) existence and (unique) solvability problem
of the single implicit MP-LPV system in a set theoretical manner. This approach will be
suitable for as well the reducible structure, as the irreducible structure. The goal is to find
the maximal positive invariant set Pinv for which is ensured that if p(1)(k) ∈ Pinv results in
the existence of solution x(k), then also p(1)(k + j) ∈ Pinv ensures the existence of solution
x(k + j) for all j ∈ Z+. Let us first define a (positive) invariant set:

Definition 4.6 ((Positive) Invariant Set). A set O is an invariant set with respect to the
(autonomous) system x(k + 1) = f(x(k)) with x(k) ∈ X if the following holds:

O ⊆ X ; x(0) ∈ O ⇒ x(k) ∈ O ∀ k ∈ R (4-10)

And therefore x(k) ∈ X for all k ∈ R. If the above holds solely for all k ∈ Z+, the set O is a
positive invariant set.

In other words, the positive invariant set O contains all solutions for which is ensured that
all future solutions also are contained in O.

Definition 4.7 (Maximal Positive Invariant Set). The set O∞ is the maximal positive in-
variant set of the system x(k + 1) = f(x(k)) with x(k) ∈ X if O∞ is positive invariant and
O∞ contains all positive invariant sets O ⊆ X . Or equivalently:

O∞ =
⋃
O (4-11)

We can find this maximal positive invariant set Pinv in three steps. First, we need to find the
set P, defined as:

P =
{

p(1)(k)
∣∣ λm

(
A0
(
p(1)(k)

))
≤ 0

}
(4-12)

Or equivalently, set P contains all parameter vectors that ensure that the eigenvalues of the
A0(·) are non-positive. And thus, for all vectors p(1)(k) ∈ P existence as defined in Definition
4.2 is guaranteed. If we furthermore have λm < 0, we can confirm unique existence as defined
in Definition 4.3. We will first focus on existence and extend this afterwards to unique
existence. The next step after obtaining the set P is to obtain the precursor set Pre(P),
defined as:

Pre(P) =
{

p(1)(k − 1) | p(1)(k) = fcPWA
(
p(1)(k − 1)

)
∈ P

}
(4-13)

In which fcPWA is a continuous PWA function. Note that because of Assumption 3.1 in
which is assumed that the entries of A0(·) are continuous PWA functions of the parameter
vectors, we require p(1)(k) to be a continuous PWA function of p(1)(k−1). This precursor set
Pre(P) represents the set of parameter vectors that evolve to the target set P in one event
step. Clearly, we have Pre(P)⊆ P. The idea of the target set P and precursor set Pre(P) is
visualized in Figure 4-2.
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Figure 4-2: We compute the precursor set Pre(P) of the target set P for which holds that if
p(µ)(k− 1) ∈Pre(P), then p(µ)(k) ∈ P, as shown on the left. The resulting precursor set Pre(P)
will then be a subset of the target set P, as shown on the right.

Finally, we want to find the maximal positive invariant set Pinv with respect to the set P and
therefore sequentially of Pre(P), for which holds that:

Pinv =
{

p(1)(k) | p(1)(k + j) ∈ Pinv ∀ j ∈ Z+
}

(4-14)

And by definition of a maximal positive invariant set we then also know that p(1)(k) ∈ P,
and therefore also p(1)(k + j) ∈ P for all j ∈ Z+. We then have:

Pinv ⊆ Pre(P) ⊆ P (4-15)

The concept of the invariant set Pinv is shown in Figure 4-3.

Figure 4-3: We compute the invariant set Pinv with respect to Pre(P) on the left. As the
precursor set Pre(P) is a subset of the target set P, Pinv is also invariant with respect to P, as
shown on the right.

Let us combine all this in a formal proposition:

Proposition 4.6. Existence of a solution to the state equation of the single implicit MP-LPV
system (with any A0-structure) can be confirmed if there exist nonempty sets Pre(P) and
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P with Pre(P) ⊆ P as defined in Equation 4-13 and 4-12 respectively. The single implicit
MP-LPV system (with any A0-structure) is considered solvable if we can also find a nonempty
maximal positive invariant subset Pinv with Pinv ⊆ Pre(P) ⊆ P, defined in Equation 4-14.

Proof. Let us prove this using direct proof. For this, let us assume that Pinv ⊆ Pre(P) ⊆ P
exist and are nonempty. By definition of a subset ⊆, we know that if p(1)(k) ∈ Pinv, then
p(1)(k) ∈ Pre(P) and also p(1)(k) ∈ P. Furthermore, by definition of the set Pinv, we know
that if p(1)(k) ∈ Pinv, then all future p(1)(k + j) ∈ Pinv for all j > 0. And, by definition of set
P we know that if p(1)(k) ∈ P, we have that λm(A0(p(1)(k))) ≤ 0 for all elementary circuits m.
By Proposition 4.2 and 4.3, we know that if all eigenvalues of the elementary circuits of the
A0(·) matrix are non-negative, existence of a solution is ensured, regardless of the structure
of A0(·). By the definition of a maximal invariant set, we know that therefore existence of all
future solutions x(k + j) is ensured. By the definition of solvability in Definition 4.4, we can
therefore confirm solvability of the single implicit MP-LPV system with any A0-structure.

In the following subsections, we show how we can obtain these sets for the single implicit
MP-LPV system. We will also see that these results can easily be extended to the properties
of unique existence and unique solvability.

4-4-1 Computing P

In Equation 4-12, we have seen how the target set P is defined. This target set P is in-
troduced as the set that contains all parameter vectors p(1)(k) that ensure that the Kleene
star A∗

0(p(1)(k)) and therefore the solution x(k) to the state equation of the single implicit
MP-LPV system exists, ensuring that Definition 4.2 holds. In this subsection, we will de-
fine an approach to obtain this set. Let us first focus on existence only. These results will
thereafter be extended to unique existence.

We have seen in Proposition 4.2 and 4.3 that the Kleene star exists if all elementary circuit
weights are non-positive, or equivalently if λ(A0(p(1)(k))) ≤ 0. Let us define the following
matrix:

Γ
(
A0(p(1)(k)

)
=

n−1⊕
i=1

A⊗i
0

(
p(1)(k)

)
(4-16)

The entries of this matrix are the maximum weights of all the circuits with a length less
than or equal to n (and thus the elementary circuits). As a path is only a circuit if it starts
and ends in the same node, we know that the diagonal entries of Γ(A0(p(1)(k)) represent
the maximum weights of all the circuits. Therefore, by Proposition 4.3 we can say that if
[Γ(A0(p(1)(k))]ii ≤ 0 for all i, λ(A0(p(1)(k))) ≤ 0. By [13, Lemma 2.2], we then have:

A∗
0

(
p(1)(k)

)
= E ⊕ Γ

(
A0(p(1)(k)

)
(4-17)

Let us vectorize matrix A0(·) and Γ(·) in the following manner:

a (A0(·)) =


[A0(·)]11
[A0(·)]12

...
[A0(·)]nn

 γ (Γ(·)) =


[Γ(·)]11
[Γ(·)]12

...
[Γ(·)]nn

 (4-18)
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We want to compute the set P that contains all p(1)(k) that ensures the following:

γii (Γ(·)) ≤ 0 ∀i = 1, ..., n (4-19)

In which γii(Γ(·)) represent the diagonal entries [Γ(·)]ii. By the definition of Γ(·) in Equation 4-
16, the entries of Γ(·) are max-plus equations of the entries of A0(·). In other words, the entries
of vector γ(·) are max-plus equations of the entries of vector a(·), as well as γii(·). Let us
visualize this by a 3× 3 example:

Γ
(
A0(p(1)(k)

)
=

2⊕
i=1

A⊗i
0

(
p(1)(k)

)
= A0(·)⊗1 ⊕A0(·)⊗2

=

a11 a12 a13
a21 a22 a23
a31 a32 a33

⊕
a11 a12 a13

a21 a22 a23
a31 a32 a33

⊗
a11 a12 a13

a21 a22 a23
a31 a32 a33


=

max(a11, a11 + a11, a12 + a21, a13 + a31) . . . . . .
max(a21, a21 + a11, a22 + a21, a23 + a31) . . . . . .
max(a31, a31 + a11, a32 + a21, a33 + a31) . . . . . .


(4-20)

These entries are clearly max-plus equations of the vector a(·). We can furthermore write
these entries as sets of linear inequalities. Let us write this out for the [Γ(A0(p(1)(k))]11 entry
of the above example. From Equation 4-19 we know that we must have [Γ(A0(p(1)(k))]11 ≤ 0.
We can therefore write:

[Γ(A0(p(1)(k))]11 = max(a11, a11 + a11, a12 + a21, a13 + a31) ≤ 0 (4-21)

This can be rewritten as a set of linear inequalities in the following manner:

a11 ≤ 0
a11 + a11 ≤ 0
a12 + a21 ≤ 0
a13 + a31 ≤ 0

(4-22)

From this example, we have therefore observed that we can rewrite the condition in Equa-
tion 4-19 as a set of linear inequalities:2

γi(·) ≤ 0 ∀i = 1, ..., n ⇔ Aa = {a(·) | Haa(·) ≤ 0} (4-23)

In which Ha ∈ RnHa ×n2 a tall matrix. The set Aa contains all vectors a such that the entries of
vector γ are non-positive and therefore all vectors a such that the Kleene star A∗

0(·) exists and
λ(A0(·)) ≤ 0. In Assumption 3.1 we have assumed all finite entries of A0(·) to be continuous
PWA functions of the parameter vector. We can therefore write the entries of vector a(·) as
continuous PWA functions in the following manner:

a
(
p(1)(k)

)
= Gjp(1)(k) + gj , ∀p(1)(k) ∈ Tj (4-24)

2The resulting set Aa is a polyhedral cone.
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With Tj = {p(1)(k) | Tjp(1)(k) ≤ tj} non-overlapping convex polyhedra, Gj ∈ Rn2×n
p(1) ,

gj ∈ Rn2 , Tj ∈ RnT ×n
p(1) , tj ∈ RnT for j = 1, ..., nT . Equivalently, after substituting a(·) in

Equation 4-23, we can construct the following sets:

Pj =
{

p(1)(k)
∣∣∣∣
[
HaGj

Tj

]
p(1)(k) ≤

[
−Hagj

tj

]}
, j = 1, ..., nT (4-25)

With Pj convex for all j. Computing the union of these sets results in the set that contains all
parameter vectors p(1)(k) that ensure that λ(A0(·)) ≤ 0 and therefore existence of a solution
x(k):

P =
nT⋃
j=1
Pj (4-26)

The resulting set P will in general not be convex. We can extend these results to obtaining
a set P that ensures existence of a unique solution. Let us formulate a formal proposition:
Proposition 4.7. The set P defined in Equation 4-26 contains all parameter vectors p(1)(k)
that ensure existence of a unique solution x(k) of the single implicit MP-LPV system, if the
inequality signs in Equation 4-25, 4-23 and 4-19 are replaced with strictly inequality signs <.

Proof. Let us prove this using direct proof. For this, we assume that we indeed have strict
inequality signs in the concerning equations. By Equation 4-19 we then know that all diag-
onal entries of Γ(·) are strictly negative, and thus the elementary circuit weights are strictly
negative. By Proposition 4.2 we can then confirm that the single implicit MP-LPV system
indeed has a unique solution x(k).

4-4-2 Computing Pre (P) ⊆ P

Now that we have obtained the target set P, the next step is to investigate how we can obtain
the precursor set Pre(P), as defined in Equation 4-13. This precursor set will be constructed
in such a manner that it contains all parameter vectors that evolve to the target set P in one
event step, or equivalently p(1)(k − 1) ∈ Pre(P) ensures that p(1)(k) ∈ P. In Equation 4-13
we have defined the parameter vector p(1)(k) as a continuous PWA function of p(1)(k − 1).
This can be confirmed by the following reasoning. Recall that the parameter vector p(1)(k)
is defined such that it contains x(k − 1). Furthermore, we know that x(k − 1) is a max-plus
equation of the entries of A0(p(1)(k − 1)), which we can conclude from the 3 × 3 example in
the previous subsection. As the entries of A0(p(1)(k − 1)) are continuous PWA functions of
p(1)(k − 1), we therefore know that p(1)(k) is a continuous PWA function of p(1)(k − 1). We
can therefore write fcPWA(p(1)(k − 1)) in the following manner:

fcPWA
(
p(1)(k − 1)

)
= p(1)(k) = Dlp

(1)(k − 1) + dl ∀p(1)(k − 1) ∈ Sl (4-27)

With non-overlapping convex polyhedra Sl = {p(1)(k − 1) | Slp
(1)(k − 1) ≤ sl}, matrices

Dl ∈ Rn
p(1) ×n

p(1) and Sl ∈ RnS×n
p(1) and vectors dl ∈ Rn

p(1) and sl ∈ Rn
p(1) for l = 1, ..., nS .

We can follow a similar procedure as in the previous subsection, and after substitution of
Equation 4-27 in Equation 4-25, we can construct the following sets:

χj,l =

p(1)(k − 1)
∣∣∣∣∣
HaGjDl

TjDl

Sl

 p(1)(k − 1) ≤

−Hagj −HaGjdl

tj − Tjdl

sl


 , ∀j, l (4-28)
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With j = 1, ..., nT and l = 1, ..., nS . Thus in summary, if p(1)(k − 1) ∈ χj,l, then we know
that p(1)(k−1) ∈ Sl and therefore fcPWA(p(1)(k−1)) = p(1)(k) which composes the precursor
set Pre(P)j,l. We then have found all p(1)(k − 1) ∈ Pre(P)j,l such that fcPWA(p(1)(k − 1)) =
p(1)(k) ∈ Pj . As χj,l represent (nT ·nS) number of sets, we want to find the union of all these
sets to find Pre(P):

Pre(P) =
nS⋃
l=1

nT⋃
j=1

χj,l ⊆ P (4-29)

Again, the resulting precursor set Pre(P) will in general be not convex. Note that we again
can extend the above result to ensure existence of a unique solution x(k):

Proposition 4.8. The set Pre(P) contains all parameter vectors p(1)(k− 1) that ensure that
p(1)(k) ∈ P, with P the set of parameter vectors, such that existence of a unique solution as
defined in Definition 4.3 of the single implicit MP-LPV system is ensured, if the inequality
signs discussed in Proposition 4.7 and in Equation 4-28 are replaced with <.

Proof. As Equation 4-28 is obtained through substitution, replacing the inequality sign in
this equation with < is an inevitable result of replacing the inequality signs with < in the
equations discussed in Proposition 4.7.

4-4-3 Computing Pinv ⊆ Pre(P) ⊆ P

Now that we have found the sets P and Pre(P) with Pre(P)⊆ P, it remains to find the
maximal positive invariant set Pinv ⊆ P, formally defined in Equation 4-14. Recall that this
set will ensure that if p(1)(k) results in a solution x(k), all future parameter vectors p(1)(k +j)
will result in a solution x(k + j) with j ∈ Z+. In finding Pinv, let us first state the following
theorem based on [34, Theorem 10.1]:

Theorem 4.2 (Geometric Condition for Invariance). A set O ⊆ X is a positive invariant set
with respect to the system x(k +1) = f(x(k)) with x(k) ∈ X if and only if the following holds:

O ⊆ Pre(O) (4-30)

Or equivalently:

Pre(O) ∩ O = O (4-31)

We have already seen that both the target set P and Pre(P) are both the unions of multiple
sets Pj and χj,l respectively, and that the resulting unions generally are nonconvex. For un-
derstanding purposes, we have included an example situation in Figure 4-4, when computing
the sets. It can be observed that in this example case we still have Pinv ⊆ Pre(P) ⊆ P.
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Figure 4-4: The union sets P, Pre(P and Pinv are generally nonconvex. This figure shows an
example situation of the resulting sets.

Based on Theorem 4.2, the definition of an invariant set as defined in Definition 4.6 and
observing Figure 4-4, we can state the following equivalences:

Pinv ∩ P = Pinv

Pinv ∩ Pre(P) = Pinv

Pinv ∩ Pre(P) ∩ P = Pinv

(4-32)

These equivalences make sense as the definition of an invariant set states that if the initial
solution is in Pinv, then all subsequent solutions are in Pinv. Furthermore, based on Theorem
4.2, [34] provides an algorithm for finding the maximal positive invariant set. Adjusting this
algorithm for the single implicit MP-LPV system, we obtain:

Algorithm 1 Computation of Pinv

1: Input: fcPWA(·), P
2: Output: Pinv
3: Ω0 ← P, k ← −1
4: Repeat
5: k ← k + 1
6: Ωk+1 ← Pre(Ωk) ∩ Ωk

7: Until Ωk+1 = Ωk

8: Pinv ← Ωk

The book [34] furthermore introduces the concept of control invariant sets. Let us properly
define such a set as:

Definition 4.8 (Control Invariant Set). A set C ⊆ X is said to be a control invariant set
for a non-autonomous system x(k + 1) = f(x(k), u(k)) with x(k) ∈ X and u(k) ∈ U if the
following holds:

x(k) ∈ C ⇒ ∃u(k) ∈ U such that f(x(k), u(k)) ∈ C, ∀k ∈ Z+ (4-33)
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Such a set can be interesting to obtain for MP-LPV systems in the following manner; if we
can find a nonempty control invariant set, we can find the control effort that steers the state
trajectories of the MP-LPV system such that the states will remain in the target set P. If
we for example have an empty invariant set Pinv, the MP-LPV system is not solvable. But
if there does exist a nonempty control invariant set, we can steer the system such that the
non-autonomous MP-LPV system ís solvable. Finding such a set however can be a complex
procedure. The aim is to find the hull of the projection of the target set P, which will
contain the parameter vectors that form the control invariant set. For this, future research is
necessary.

In conclusion, if we can find the sets Pinv ⊆ Pre(P) ⊆ P following the above procedures and
it is provided that these sets are all nonempty, we can ensure solvability of the single implicit
MP-LPV system. Furthermore, if we want to ensure unique solvability, we just need to ensure
that the inequality signs ≤ in the necessary equations as discussed in Proposition 4.7 and 4.8
are all replaced with strict inequality signs <. If the target set P is empty, the precursor
set Pre(P) and invariant set Pinv are automatically empty as well, and we cannot guarantee
(unique) solvability nor (unique) existence. If P and Pre(P) are nonempty, but the invariant
set Pinv is empty, only (unique) existence can be guaranteed. Note that finding nonempty sets
Pinv ⊆ Pre(P) ⊆ P only provide a necessary condition for (unique) existence and solvability,
not a necessary and sufficient condition. This can be explained by the following; the condition
in the target set P is based on Lemma 2.1, but this Lemma however provides only a necessary
condition for existence of a (unique) solution.

4-5 The Solvability Problem of Doubly Implicit MP-LPV Systems

In section 4-1 and the previous chapter, we have seen that we cannot use the same condition in
the target set on existence of the Kleene star as we used for single implicit MP-LPV systems
in order to construct a (unique) existence and solvability framework. The main reason for
this is that Proposition 4.2 does not hold for doubly implicit MP-LPV systems, and therefore
neither the subsequent propositions 4.3, 4.4 and 4.5. Let us formally introduce the following
proposition to demonstrate this:

Proposition 4.9. Proposition 4.2 until 4.5 do not hold for doubly implicit MP-LPV systems.

Proof. Let us prove this proposition using proof by counterexample to disprove Proposition
4.2 using a one-by-one case of the doubly implicit MP-LPV system. Subsequently it will
follow that Proposition 4.3 then also does not hold. Thereafter, we will show with the use of
an example that Proposition 4.4 and 4.5 do not hold. For the one-by-one case of the doubly
implicit MP-LPV system, the state equation is defined as:

x(k) = A0
(
p(0)(k)

)
⊗ x(k)⊕

M⊕
µ=1

(
Aµ(p(µ)(k))⊗ x(k − µ)

)
⊕B(p(1)(k))⊗ u(k)

︸ ︷︷ ︸
b(k)

= A0
(
p(0)(k)

)
⊗ x(k)⊕ b(k)

= max
(
a0
(
p(0)(k)

)
+ x(k), b(k)

)
(4-34)
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We have assumed in Assumption 3.1 that the entries of the A0(p(0)(k)) matrix are continuous
PWA functions of the parameter vector p(0)(k). We have furthermore seen in subsection 2-5-4
that continuous PWA functions and Max-Min-Plus-Scaling (MMPS) functions are equivalent.
We can therefore write the following for a0(·):

a0
(
p(0)(k)

)
= max

l∈L

(
min
m∈nl

(
α(l,m)x(k) + β(l,m)

(
p(1)(k)

)))
(4-35)

For simplicity, let us take L = n1 = 1. We can then write:

x(k) = max (αx(k) + β + x(k), b(k)) (4-36)

From Proposition 4.2 and 4.3 we know that in order for the Kleene star A∗
0(·) to exist, it

is required that the weights of the elementary circuits of A0(·) are non-positive. For the
one-by-one case, this means that the following must hold:

a0
(
p(0)(k)

)
= αx(k) + β ≤ 0 (4-37)

If this is not the case, we can already confirm that no solution exists because of the following:

αx(k) + β ≥ 0 ⇒ αx(k) + β + x(k) ≥ x(k) (4-38)

In this case clearly Equation 4-36 cannot have a solution. Therefore, it is required that
αx(k) + β ≤ 0. This is the case for:

x(k) ≤ −β

α
for α ≥ 0 (1)

x(k) ≥ −β

α
for α ≤ 0 (2)

(4-39)

Therefore, the solution set is bounded by conditions (1) and (2). But then automatically b(k)
is also bounded to those conditions. Let us prove this by contradiction. We will first look
into case (1) where α ≥ 0. Let us assume that b(k) > −β

α (in contradiction to condition (1)):

x(k) = max
(

αx(k) + β︸ ︷︷ ︸
≤0

+ x(k)︸ ︷︷ ︸
≤− β

α︸ ︷︷ ︸
≤− β

α

, b(k)︸︷︷︸
>− β

α

)

= b(k) > −β

α

(4-40)

Clearly this is different than our first assumption that x(k) ≤ −β
α and it is therefore not

possible that b(k) > −β
α . The same reasoning can be implemented for case (2) where α ≤ 0.

In conclusion, for the one-by-one case we require the following:

x(k) ∧ b(k) ≤ −β

α
for α ≥ 0 (1)

x(k) ∧ b(k) ≥ −β

α
for α ≤ 0 (2)

(4-41)

We can therefore conclude that for doubly implicit MP-LPV systems, more conditions are
necessary than solely the existence of the Kleene star. The number of these conditions will
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increase for increasing order n of the system. As Proposition 4.3 is based on Proposition 4.2,
Proposition 4.3 automatically does not hold for doubly implicit MP-LPV systems. Therefore,
propositions 4.2 and 4.3 both do not hold for doubly implicit MP-LPV systems.

The above result shows that we cannot use the condition of the existence of the Kleene star
A0(p(0)(k)) as a requirement for the target set that contains all parameter vectors p(0)(k) that
ensure that the solution x(k) to the state equation of the doubly implicit MP-LPV system
exists. It remains to prove that Proposition 4.4 and 4.5 do not hold for doubly implicit
MP-LPV systems, and thus that analyzing different structures for the A0 matrix (as we did
for the single implicit MP-LPV system) does not provide us with any simplifications or interim
results. Let us prove this using proof by counter example again, observing a doubly implicit
MP-LPV system with a strictly reducible A0 matrix:

Example 4.1. Consider a doubly implicit MP-LPV system with a strictly reducible A0
matrix:

x(k) =


ε . . . . . . ε

a21(·) ε . . . ε
... . . . . . . ...

an1(·) . . . an(n−1)(·) ε

⊗ x(k)⊕ b(k) (4-42)

In which b(k) =
⊕M

µ=1

(
Aµ(p(µ)(k))⊗ x(k − µ)

)
⊕B(p(1)(k))⊗u(k). By Assumption 3.1 and

the canonical form of doubly implicit MP-LPV systems, we know that the finite entries are
continuous PWA in the parameter vector p(0)(k). Let us observe state x2(k). We can write
the following:

x2(k) = a21(·)⊗ x1(k)⊕ b(k)

= fcPWA
(
p(0)(k)

)
⊗ x1(k)⊕ b(k)

= max
(
fcPWA

(
p(0)(k)

)
+ x1(k), b(k)

) (4-43)

By definition of the parameter vector p(0)(k), fcPWA(p(0)(k)) can therefore contain the states
x2(k), x3(k) and so on. Therefore, the state equation still contains implicitness that cannot
be removed because of the absence of the maximization operation.

The same reasoning can be extended to doubly implicit systems with a (not strictly) reducible
A0 matrix. We can therefore conclude that Propositions 4.2 until 4.5 do not hold for doubly
implicit MP-LPV systems.

We therefore aim to find conditions suitable for the target set which suffice for existence (and
uniqueness) of a solution, regardless of the structure of the A0 matrix. We will obtain these
conditions in the following sections.

4-6 (Unique) Solvability of Doubly Implicit MP-LPV Systems

Let us approach the solvability problem of the doubly implicit MP-LPV system in a similar
manner as we did for the single implicit MP-LPV system. We will again compute a target
set for the doubly implicit MP-LPV system, here referred to as Λ. We will introduce a
condition different from the Kleene star condition used for the target set of single implicit
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MP-LPV systems, as defined in Equation 4-12. Thereafter we will follow the same procedure
to construct the precursor set Pre(Λ)⊆ Λ and the invariant set Λinv ⊆ Pre(Λ) ⊆ Λ. Recall
Figures 4-2 and 4-3 for visualization of the procedure. We will again provide conditions to
ensure unique existence and unique solvability.

4-6-1 Computing Λ

Let us recall this state equation:

x(k) = A0
(
p(0)(k)

)
⊗ x(k)⊕

M⊕
µ=1

(
Aµ(p(µ)(k))⊗ x(k − µ)

)
⊕B(p(1)(k))⊗ u(k)

︸ ︷︷ ︸
b(k)

= A0
(
p(0)(k)

)
⊗ x(k)⊕ b(k)

(4-44)

As we have assumed in Assumption 3.1 that the (finite) entries of the A0(p(0)(k)) matrix are
continuous PWA functions of the parameter vector p(0)(k) and as the state equation itself is
a max-plus function, we can write the following:

x(k) = fcPWA
(
p(0)(k)

)
(4-45)

By definition of the parameter vector, we can write p(0)(k) as:

p(0)(k) =


x(k)

x(k − 1)
...

x(k −M)

 =
[

x(k)
p(1)(k)

]
∈ Rn

p(0) , np(0) ≥ n (4-46)

We can ensure existence of the solution x(k) if we introduce the function F (p(0)(k)) and can
ensure the following:

F
(
p(0)(k)

)
= fcPWA

(
p(0)(k)

)
− x(k) = 0 (4-47)

Clearly, F (p(0)(k)) is again a continuous PWA function. We can therefore write:

F
(
p(0)(k)

)
= Eip

(0)(k) + ei, ∀p(0)(k) ∈ Wi (4-48)

With Wi = {p(0)(k) | Wip
(0)(k) ≤ wi} non-overlapping convex polyhedra, Ei ∈ Rn×n

p(0) ,
ei ∈ Rn, Wi ∈ RnW ×n

p(0) and wi ∈ RnW for i = 1, ..., nW . As we can write p(0)(k) as in
Equation 4-46, we can split up matrices Ei and Wi in the following manner:

F
(
p(0)(k)

)
= Ei,0x(k) + Ei,1p(1)(k) + ei, ∀p(0)(k) ∈ Wi (4-49)

With Wi written as:

Wi =
{

p(0)(k) |Wi,0x(k) + Wi,1p(1)(k) ≤ wi

}
(4-50)
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With Ei,0 ∈ Rn×n, Ei,1 ∈ R
n×
(

n
p(0) −n

)
, Wi,0 ∈ RnW ×n and Wi,1 ∈ R

nW ×
(

n
p(0) −n

)
. As we

require F (p(0)(k)) = 0, we can write:

F
(
p(0)(k)

)
= Ei,0x(k) + Ei,1p(1)(k) + ei = 0

Ei,0x(k) = −Ei,1p(1)(k)− ei

(4-51)

Matrix Ei,0 can either be singular or nonsingular. Let us first consider the case where Ei,0 is
singular. Then Equation 4-51 has infinitely many solutions x(k) if the right-hand side of the
equation (−Ei,1p(1)(k)− ei) is contained in the vector space spanned by matrix Ei,0. Thus in
that case existence of the solution x(k) is guaranteed, but uniqueness not. If the right-hand
side is not contained in the vector space spanned by matrix Ei,0, no solution x(k) exists. In
this thesis, we will only consider the case where Ei,0 is nonsingular for the target set Λ. For
this, let M with m ∈ {1, ..., nM} be the set for which Em,0 is invertible. Clearly, if M = ∅
the matrix Em,0 is singular. Therefore, let us assumeM ≠ ∅. We can then find the following
solution to Equation 4-51:

x(k) = −E−1
m,0Em,1p(1)(k)− E−1

m,0em, m ∈M, ∀p(0)(k) ∈ Wm (4-52)

If we substitute Equation 4-52 in Wm with m ∈M, we obtain the target sets Λm:

Λm =
{

p(1)(k) |
(
Wm,1 −Wm,0E−1

m,0Em,1
)

p(1)(k) ≤ wm + Wm,0E−1
m,0em

}
, m ∈M (4-53)

Computing the union of these sets Λm results in the set Λ that contains all parameter vectors
p(1)(k) that ensure that Equation 4-51 and 4-52 hold, and therefore existence of the solution
x(k):

Λ =
nM⋃
m=1

Λm (4-54)

In general this set Λ will not be convex. Note furthermore that the sets Λm might be over-
lapping. If that is the case, we cannot confirm uniqueness of the solution. Figure 4-5 shows
an example situation of overlapping Λm.

Figure 4-5: An example situation of overlapping sets Λm with m = 1, 2, 3. In this case, we
cannot confirm uniqueness of the state solution.
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4-6-2 Computing Pre(Λ) ⊆ Λ

We define the precursor set Pre(Λ) as the following:

Pre(Λ) =
{

p(1)(k − 1) | p(1)(k) = fMMPS
(
p(1)(k − 1)

)
∈ Λ

}
(4-55)

Similarly as for the single implicit MP-LPV system we can say that p(1)(k) = fcPWA(p(1)(k−
1)) as the finite entries of A1(p(1)(k − 1)) are continuous PWA functions of p(1)(k − 1). We
can write fcPWA(p(1)(k − 1)) as:

fcPWA
(
p(1)(k − 1)

)
= p(1)(k) = Clp

(1)(k − 1) + cl ∀p(1)(k − 1) ∈ Ol (4-56)

With non-overlapping convex polyhedra Ol = {p(1)(k − 1) | Olp
(1)(k − 1) ≤ ol}, matrices

Cl ∈ Rn
p(1) ×n

p(1) and Ol ∈ RnO×n
p(1) and vectors cl ∈ Rn

p(1) and ol ∈ Rn
p(1) for l = 1, ..., nO.

Again, after substituting Equation 4-56 into set Λm in Equation 4-53, we obtain:

Ψm,l =
{

p(1)(k − 1)
∣∣∣∣∣
[
Wm,1Cl −Wm,0E−1

m,0Cl

Ol

]
p(1)(k − 1) ≤[

wm + Wm,0E−1
m,0em −Wm,1cl −Wm,0E−1

m,0cl

ol

]}
, ∀m, l

(4-57)

With m = 1, ..., nM and l = 1, ..., nO. Thus in summary, if p(1)(k − 1) ∈ Ψm,l, then we know
that p(1)(k−1) ∈ Ol and therefore fcPWA(p(1)(k−1)) = p(1)(k) which composes the precursor
set Pre(Λ)m,l. We then have found all p(1)(k− 1) ∈ Pre(Λ)m,l such that fcPWA(p(1)(k− 1)) =
p(1)(k) ∈ Λm. As Ψm,l represent (nM · nO) number of sets, we want to find the union of all
these sets to find Pre(Λ):

Pre(Λ) =
nO⋃
l=1

nM⋃
m=1

Ψm,l ⊆ P (4-58)

Again, the resulting precursor set Pre(Λ) will in general not be convex.

4-6-3 Computing Λinv ⊆ Pre(Λ) ⊆ Λ

Finally, it remains to obtain the maximal positive invariant set Λinv ⊆ Λ that ensures that if
p(1)(k) results in the unique solution x(k), all future parameter vectors p(1)(k + j) will result
in a solution x(k + j) with j ∈ Z+. This can be done with the use of Algorithm 1, but then
with input Λ:

Algorithm 2 Computation of Λinv

1: Input: fcPWA(·), Λ
2: Output: Λinv
3: Ω0 ← Λ, k ← −1
4: Repeat
5: k ← k + 1
6: Ωk+1 ← Pre(Ωk) ∩ Ωk

7: Until Ωk+1 = Ωk

8: Λinv ← Ωk
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Similarly as for single implicit systems, we can confirm the following statements, when ob-
serving Figure 4-5:

Λinv ∩ Λ = Λinv

Λinv ∩ Pre(Λ) = Λinv

Λinv ∩ Pre(Λ) ∩ Λ = Λinv

(4-59)

Equivalently as for single implicit MP-LPV systems, the next step can be to compute the
control invariant set as defined in Definition 4.8. In conclusion, if we can find the sets
Λinv ⊆ Pre(Λ) ⊆ Λ, we can ensure solvability of the doubly implicit MP-LPV system. Note
that we can only ensure unique solvability, if we can confirm that the sets Λm are non-
overlapping. We can however confirm that finding nonempty sets Λinv ⊆ Pre(Λ) ⊆ Λ are a
necessary and sufficient condition for existence and solvability of the doubly implicit MP-LPV
system; the condition for the target set defined in Equation 4-47 can be considered as a
necessary and sufficient condition for existence of solution x(k). Let us present this in a
formal proposition:

Proposition 4.10. The existence of nonempty sets Λinv ⊆ Pre(Λ) ⊆ Λ are a necessary and
sufficient condition for existence and solvability of the doubly implicit MP-LPV system.

Proof. The necessary proof is equivalent to the proof in Proposition 4.6. For the sufficient
proof, we need to prove that if the doubly implicit MP-LPV system is solvable, we can find
nonempty sets Λinv ⊆ Pre(Λ) ⊆ Λ. We can prove this using proof by contradiction. For this,
let us assume that the sets Λinv ⊆ Pre(Λ) ⊆ Λ are empty. We then cannot find a solution
x(k) such that Equation 4-47 holds. However, because of the definition of the state equation
of the doubly implicit MP-LPV system, we then also cannot find a solution to Equation 4-45
and therefore cannot confirm existence of a solution as defined in Definition 4.2. If Definition
4.2 does not hold, we can also state that Definition 4.4 does not hold. Thus, by proof of
contradiction, we can confirm the sufficient part.

Note that the difference with single implicit MP-LPV systems is that the target set condition
in Λ is necessary and sufficient for existence of doubly implicit MP-LPV systems, and the
condition in P for single implicit MP-LPV systems is only necessary for existence. Finally,
we can again make the following statements, similarly as for single implicit MP-LPV systems;
if the target set Λ is empty, the precursor set Pre(Λ) and invariant set Λinv are automatically
empty as well, and we cannot guarantee (unique) solvability nor (unique) existence. If Λ
and Pre(Λ) are nonempty, but the invariant set Λinv is empty, only (unique) existence can be
guaranteed.

4-7 Case Study IV: Solvability of the Urban Railway System

Let us investigate the solvability property of the URS described in Equation 3-30 in Case
Study II in section 3-3. We have already seen that the concerning state-space description is
in a single implicit format, given that the order of states is maintained. Let us recall the A0
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matrix of the system:

A0
(
p(0)(k)

)
=



ε . . . . . . . . . . . . ε

fMMPS
(
p

(0)
1 (k)

)
ε . . . . . . . . . ε

ε τr,2(k) ε
. . . . . . ...

...
... . . . . . . . . . ...

ε ε . . . ε ε ε

ε ε . . . ε fMMPS
(
p

(0)
J (k)

)
ε


(4-60)

In which the MMPS functions are defined as:

fMMPS
(
p

(0)
j (k)

)
= fMMPS(aj(k), dj(k − 1), ρj−1(k)) (4-61)

Of which more details can be found in Equation 3-28. If the order of states indeed is retained,
aj(k) in Equation 4-61 is a known value on the moment that dj(k) is being calculated, and
this MMPS function therefore does not contain any implicit values. It can be observed that
the A0 matrix has a strictly lower triangular reducible structure. By Proposition 4.4, we can
therefore conclude that the URS is uniquely solvable, given that this structure is maintained
for all k + j with j ≥ 0. By construction of the expressions of states, we can indeed confirm
that this structure will be maintained for all future states. We can therefore conclude that
the URS presented in Case Study II in 3-3 is uniquely solvable as defined in Definition 4.5.
Thus, due to the level of implicitness and the reducible structure of the A0 matrix, there is
no need to obtain the sets Pinv ⊆ Pre(P) ⊆ P, as the Kleene star of A0 always exists.

4-8 Case Study V: Solvability of the Urban Railway System with
Limited Capacity

In this section, we will analyze the solvability of the URS with limited capacity presented in
Case Study III in section 3-4. Let us recall the A0 matrix for the initial station j = 1:

A0
(
p(0)(k)

)
=



ε ε ε ε ε

fMMPS,1
(
p

(0)
1 (k)

)
ε ε ε ε

ε fMMPS,2
(
p

(0)
1 (k)

)
ε ε ε

ε ε fMMPS,3
(
p

(0)
1 (k)

)
ε ε

ε ε fMMPS,4
(
p

(0)
1 (k)

)
ε ε


(4-62)

In which the MMPS functions fMMPS,i

(
p

(0)
1 (k)

)
with i = 1, ..., 4 defined in Equation 3-48,

3-49, 3-50 and 3-51. We have seen in section 3-4 that similarly as for Case Study IV in the
previous section, the URS is single implicit. Furthermore, as the A0 matrix again is reducible
with a strictly lower triangular structure, we can follow Proposition 4.4 and conclude that
this URS is uniquely solvable, without obtaining the sets Pinv ⊆ Pre(P) ⊆ P.
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Chapter 5

Model Predictive Control for Max-Plus
Linear Parameter Varying Systems

This chapter is devoted to developing a Model Predictive Controller of the Urban Railway
System (URS) system. Model Predictive Control (MPC) is introduced in 1978 by [35] and
[36] and has gained popularity in the control community because of a wide set of useful
properties; MPC is a model-based controller design method that can handle multi-input
multi-output states. It can furthermore handle constraints and track reference signals and is
an easy-to-tune method, making it easy to obtain the desired behaviour of the system. MPC
has therefore proven itself to be useful for systems especially in the process industry. The
conventional MPC approach was originally developed for discrete-time systems. However, for
some classes of Discrete Event Systems (DES), MPC methods have also been constructed.
The resulting methods still contain all the important building blocks of the conventional
MPC framework, but these have been extended in such a manner that the resulting control
approach is applicable to DES. Clearly, the difference between discrete-time systems and
DES is system evolution over time versus the evolution over the occurrence of events. We
will observe that this difference gives rise to different meanings of the MPC building blocks,
such as the horizon and the objective. In this chapter, will investigate two developed MPC
methods, namely for Max-Plus-Linear (MPL) systems and Mixed Logical Dynamical (MLD)
systems. The MPC method for MPL systems is useful as MPL systems are DES systems.
The MPC method for MLD systems is useful as MLD systems have the capability of handling
real and integer variables, which will be useful for the URS. We will combine these methods
and use the class equivalences with Max-Plus Linear Parameter Varying (MP-LPV) systems
to construct an MPC approach applicable for the URS with limited capacity. The chapter is
organized as follows. In section 5-1, we collect the important background information on the
MPC approaches defined for MPL and MLD systems. We will introduce the format of Mixed
Integer Linear Programming (MILP), an optimization problem formulation that will be of
great importance when obtaining the optimization problem for the URS. In section 5-2, the
URS with limited capacity will be rewritten into MLD format. Thereafter in section 5-3, we
will define the optimization problem and section 5-4 introduces the modeling parameters that
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are considered. In section 5-5, we will present several simulations and include disturbances
to visualize the performance of the MPC. Finally in 5-5, we will investigate whether we can
conclude on closed-loop stability of the system.

5-1 Background Information

In this section, we discuss the MPC methods developed for MPL systems and MLD systems.
The MPC method is an optimization method that calculates the optimal control input for each
sample step k, while minimizing a certain objective function subject to constraints over a given
prediction horizon. The prediction horizon indicates how far into the future the evolution of
the system is estimated. The prediction horizon Np is a design parameter must be long enough
such that any unexpected future evolution of the system can still be covered by the input
vector. The existing MPC approaches for MPL and MLD systems will be relevant for the
control design for the URS system, as the latter will be based on those methods. In [37], there
is also an MPC approach developed directly for Max-Min-Plus-Scaling (MMPS) systems. As
the URS with limited capacity is initially derived as an MMPS system in section 4-7, the
question arises on why we are not using this MPC method directly. However, these resulting
MMPS-MPC optimization problems are nonlinear and nonconvex problems and therefore
computationally hard to solve. The MPL- and MLD-MPC problems are linear and mixed-
integer linear problems respectively, and therefore require less computational effort. The MLD
format is furthermore useful as several states of the URS with limited capacity are already
restricted to being integer variables (namely the states representing numbers of passengers:
qj(k), ρj(k) and σj(k)), and the MLD format is designed to handle such integer variables
mixed with real variables. Finally, we have seen earlier in this thesis that MP-LPV systems
are an extension of MPL systems. Furthermore, we have seen in section 3-2 that the classes of
MLD systems, MMPS systems and MP-LPV systems are equivalent under mild assumptions.
We will use these results in the following sections, to successfully obtain an MPC approach
for the URS with limited capacity.

5-1-1 Model Predictive Control for Max-Plus Linear Systems

In this subsection, we introduce the MPC approach developed for MPL systems, based on
the approach in [11]. For reading purposes, we repeat the state-space description of an MPL
system as defined in Definition 2.8 in section 2-4, but now for the future evolution:

x(k + 1) = A⊗ x(k)⊕B ⊗ u(k)
y(k) = C ⊗ x(k)

(5-1)

In which A ∈ Rn×n
ε , B ∈ Rn×m

ε and A ∈ Rl×n
ε the system matrices, and x(k) ∈ Rn

ε , u(k) ∈ Rm
ε

and y(k) ∈ Rl
ε the state, input and output vector respectively. Furthermore, as MPL systems

describe DES, k is an event counter.
Let us first analyze the evolution of the system. For this, let us assume that the state vector
x(k) is measurable on event step k, or can be estimated based on previous measurements.
Let us define the input sequence as the following:

ũ(k) = [uT (k) . . . uT (k + Np − 1)]T (5-2)
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Using the state-space description described in Equation 5-1 as well as the input sequence, we
can obtain an estimate for the evolution of the output ỹ(k). We have:

ỹ(k) = [ŷT (k + 1|k) . . . ŷT (k + Np|k)]T = H ⊗ ũ(k)⊕ g(k) (5-3)

In which:

H =


C ⊗B ε . . . ε

C ⊗A⊗B C ⊗B . . . ε
...

... . . . ...
C ⊗A⊗Np−1 ⊗B C ⊗A⊗Np−2 ⊗B . . . C ⊗B

 ,

g(k) =


C ⊗A

C ⊗A⊗2

...
C ⊗A⊗Np

⊗ x(k)

(5-4)

Let us now investigate the possibilities for the cost criterion or objective function, which
generally is defined as:

J(k) = Jout(k) + λJin(k)
= (ỹ(k)− r̃(k))T (ỹ(k)− r̃(k))︸ ︷︷ ︸

Jout(k)

+λ ũT (k)ũ(k)︸ ︷︷ ︸
Jin(k)

(5-5)

In which Jout(k) and Jin(k) the reference tracking error and the control effort respectively. In
MPC methods for conventional algebra, tracking the reference error is an often implemented
optimization goal. Here, both the reference signal as the output then evolve over time.
However, as we are dealing with DES, the output represents the occurrence of some event.
Therefore, we must interpret a reference signal as due dates for the events. If we assume that
these due dates are known, we can for example state that a penalty has to be paid for every
delay. Then a well-suited choice for Jout(k) is the tardiness, minimizing the penalty costs:

Jout,1 =
Np∑
j=1

l∑
i=1

max(ŷi(k + 1|k)− ri(k + j), 0) (5-6)

Another example of a situation is if we have perishable goods. To optimize the use of those
goods, we would want to minimize the differences between the due dates and the actual output
time instants:

Jout,2 =
Np∑
j=1

l∑
i=1
|ŷi(k + 1|k)− ri(k + j)| (5-7)

A final example for Jout(k) is the case of wanting to balance the output rates:

Jout,3 =
Np∑
j=1

l∑
i=1
|∆2ŷi(k + 1|k)| (5-8)

In which the delta operator ∆ is defined as:

∆2s(k) = ∆s(k)−∆s(k − 1) = s(k)− 2s(k − 1) + s(k − 2) (5-9)
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For the input cost criterion Jin for conventional MPC, it is very common to minimize the
inputs. However, for DES this could result in input buffer overflows. It is therefore proposed
that for DES, the goal should be to maximize the input time instants, keeping the buffer
levels as low as possible. This can be achieved by using the following:

Jin,1 = −
Np∑
j=1

l∑
i=1

ui(k + j − 1) (5-10)

Or:
Jin,2 = −ũ(k)T ũ(k) (5-11)

Another example for the input cost criterion is wanting to balance the input rates:

Jin,3 =
Np∑
j=1

l∑
i=1
|∆2ui(ik + j)| (5-12)

Again with ∆2 defined as in Equation 5-9. We now have defined multiple options for the cost
criterion with operators of conventional algebra. These operators can be replaced with their
max-plus algebraic analogues, but that is not necessary per se. The optimization problem of
MPC for MPL systems does not need to be in max-plus algebra completely; the goal of the
MPC approach is to calculate the optimal input sequence while satisfying the constraints.
This closed loop system is usually not an MPL system. This sequence can thereafter be fed
into the MPL system, as this sequence will just contain event times.
We furthermore need to obtain a constraint equation for the MPC framework applied to
MPL systems. Just as for conventional MPC, a typical constraint is to set upper and lower
boundaries on the event times. This is usually represented in the following manner:

E(k)ũ(k) + F (k)ỹ(k) ≤ h(k) (5-13)

In which E(k) ∈ Rp×mNp , F (k) ∈ Rp×lNp and h(k) ∈ Rp with some integer p. It again does
not matter that this equation is in conventional algebra, because of the same reasoning as for
the cost criterion.
The MPL systems that we consider, correspond to DES systems with only synchronization
and no choice. Due to the synchronization, the occurrence time of the events in such systems
is consecutive; a new event can only occur after the previous event has finished. Therefore,
as the input sequence represents the occurrence times of events, this sequence should always
be non-decreasing and is furthermore often increasing. We therefore introduce the following
constraint:

∆u(k + j) = u(k + j)− u(k + j − 1) ≥ 0 for j = 0, ..., Np − 1 (5-14)

We finally look at the max-plus algebraic interpretation of the receding control horizon princi-
ple as described in the beginning of this section. From this explanation, we would imply that
the input should stay constant from event step k + Nc on. However, as the input sequence
normally is increasing with every next event step k, this principle is changed as follows; from
event step k + Nc on, the feeding rate should become constant:

∆u(k + j) = ∆u(k + Nc − 1), for j = Nc, Nc + 1, ..., Np − 1 (5-15)

We can now finally state the MPC problem for MPL systems as:
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Definition 5.1 (MPC Problem for MPL Systems).

min
{u(k),...,u(k+Np−1)}

J(k) = min
{u(k),...,u(k+Np−1)}

Jout(k) + λJin(k) (5-16)

Such that:
ỹ(k) = H ⊗ ũ(k)⊕ g(k)
E(k)ũ(k) + F (k)ỹ(k) ≤ h(k)
x(k + 1) = A⊗ x(k)⊕B ⊗ u(k)
y(k) = C ⊗ x(k)
∆u(k + j) ≥ 0, j = Nc, Nc + 1, . . . , Np − 1
∆u(k + j) = ∆u(k + Nc − 1), j = Nc, Nc + 1, . . . , Np − 1

(5-17)

With H and g(k) defined as in Equation 5-4 and ũ(k) defined as in Equation 5-2. Furthermore
E(k) ∈ Rp×mNp, F (k) ∈ Rp×lNp, h(k) ∈ Rp for some integer p. Also A ∈ Rn×n

ε , B ∈ Rn×m
ε

and A ∈ Rl×n
ε the system matrices, and x(k) ∈ Rn

ε , u(k) ∈ Rm
ε and y(k) ∈ Rl

ε the state, input
and output vector respectively. With finally Np the prediction horizon and Nc the control
horizon.

5-1-2 Model Predictive Control for Mixed Logical Dynamical Systems

In this subsection, we introduce the MPC approach developed for MLD systems, based on
[38]. MLD systems have been introduced in subsection 2-5-3 and have shown to be useful as a
modeling technique for systems with dynamics and constraints that are interdependent. We
have seen the rules that are implemented to transform logical statements involving continuous
variables into (mixed-integer) linear inequality constraints. Note that the MLD system con-
sidered in [38] is in discrete-time format. We can however use this format for discrete-event
systems in a similar manner. For reading purposes, let us recall the MLD system description
as defined in Definition 2.17:

x(k + 1) = Ax(k) + B1u(k) + B2δ(k) + B3z(k)
y(k) = Cx(k) + D1u(k) + D2δ(k) + D3z(k)

(5-18)

Subject to the constraint:

E1x(k) + E2u(k) + E3δ(k) + E4z(k) ≤ g (5-19)

With state vector x(k) ∈
[
x⊤

r (k) x⊤
b (k)

]⊤
with xr(k) ∈ Rnr real states, xb(k) ∈ {0, 1}nb

binary states and n = nr + nb. Output y(k) ∈ Rny and input u(k) ∈ Rnu are defined
similarly, and z(k) ∈ Rnr and δ(k) ∈ {0, 1}nb auxiliary variables. The system matrices are
defined as A ∈ Rn×n, B1 ∈ Rn×nu , B2 ∈ Rn×nb , B3 ∈ Rn×nr , C ∈ Rny×n, D1 ∈ Rny×nu , D2 ∈
Rny×nb and D3 ∈ Rny×nr . Furthermore we have E1 ∈ Rng×n, E2 ∈ Rng×nu , E3 ∈ Rng×nb ,
E4 ∈ Rng×nr and vector g ∈ Rng .

To describe the MPC approach for MLD systems, we can again define the input control
sequence, similar to the input sequence defined for MPL systems in Equation 5-2:

u
Np−1
0 = [uT (0) uT (1) . . . uT (Np − 1)]T (5-20)
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In which Np is again the prediction horizon. [38] suggests a simple cost criterion, aiming to
regulate an initial state x0 to a target state, while minimizing the control effort. Such a cost
criterion is equivalent to minimizing the reference tracking error as described for MPC for
MPL systems. The value of the target state can vary over the receding horizon. Let us define
this cost criterion in the following manner:

J
(
u

Np−1
0 , x0

)
=

Np−1∑
t=0
||u(t)− uf ||2Q1 + ||δ(t, x0, ut

0)− δf ||2Q2 + ||z(t, x0, ut
0)− zf ||2Q3

+ ||x(t, x0, ut−1
0 )− xf ||2Q4 + ||y(t, x0, ut−1

0 )− yf ||2Q4

(5-21)

In which x0 is the initial state, δ(t, x0, ut
0), z(t, x0, ut

0), x(t, x0, ut−1
0 ) and y(t, x0, ut−1

0 ) following
from the initial state and input vector and the system dynamics described as in Equation 5-
18, and uf , δf , zf and yf the final values for target state xf . Furthermore we have Qi with
i = 1, ..., 4 as weight matrices. It remains to investigate which constraints can and need to be
included. In the case for the above cost criterion, we have to add a constraint ensuring that
the target state is reached, defined as:

x
(
Np, x0, u

Np−1
0

)
= xf (5-22)

We can furthermore define upper and lower bounds on the both the state and the input in
the following manner, based on [39]:

umin ≤ u(t + k) ≤ umax k = 0, . . . , Np − 1
xmin − σ ≤ x(t + k|t) ≤ xmin − σ k = 0, . . . , Nc

0 ≤ σ ≤ σ(t− 1)
(5-23)

In which Nc is the control horizon, x(k|t) is the state predicted at time (t + k) by applying
the input u(t + k), and σ is a slack variable introduced to make the constraint on x(k + t|t)
a soft constraint; the MPC approach in [38] distinguishes hard and soft constraints. Hard
constraints can be considered as constraints that cannot be violated (such as voltage limits),
while soft constraints are allowed to be violated (such as temperature bounds) to some extend.
We are now ready to define the MPC problem for MLD systems:
Definition 5.2 (MPC Problem for MLD Systems).

min J
(
u

Np−1
0 , x0

)
= min

Np−1∑
t=0
||u(t)− uf ||2Q1 + ||δ(t, x0, ut

0)− δf ||2Q2

+ ||z(t, x0, ut
0)− zf ||2Q3 + ||x(t, x0, ut−1

0 )− xf ||2Q4

+ ||y(t, x0, ut−1
0 )− yf ||2Q4

(5-24)

Such that:
x(k + 1) = Ax(k) + B1u(k) + B2δ(k) + B3z(k)

y(k) = Cx(k) + D1u(k) + D2δ(k) + D3z(k)
E1x(k) + E2u(k) + E3δ(k) + E4z(k) ≤ g

umin ≤ u(t + k) ≤ umax k = 0, . . . , Np − 1
xmin − σ ≤ x(t + k|t) ≤ xmin − σ k = 0, . . . , Nc

0 ≤ σ ≤ σ(t− 1)

x
(
Np, x0, u

Np−1
0

)
= xf

(5-25)
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With the variables all defined in previously in Equation 5-18, 5-19, 5-20, 5-21, 5-22 and 5-23.

5-1-3 Mixed Integer Linear Programming

Optimization problems for MLD systems can often be reformulated into MILP problems;
such problems are described by a linear objective function and linear constraints, and a state
vector divided in states that can take on real values and states that are restricted to be
integer. Similarly as for MLD systems, nonlinear optimization problems can be recasted into
MILP problems, and can then be solved by MILP solvers. MILP solving algorithms have
shown to be more efficient compared to nonlinear optimization algorithms, and can therefore
considered to be very useful for online MPC. A standard format for an MILP optimization
problem can be defined in the following manner:

min cT
I xI + cT

RxR

such that AIxI + ARxR ≤ b

AI,eqxI + AR,eqxR = beq

xmin ≤ x ≤ xmax

xI ∈ ZnI , xR ∈ RnR

(5-26)

Examples of common MILP solvers are the standard function intlinprog in MATLAB or
the more powerful mathematical optimization solver GUROBI.

5-1-4 Mixed Integer Quadratic Programming

The optimization problem defined in Definition 5.2 can be solved as a Mixed Integer Quadratic
Programming (MIQP), due to the presence of the 2-norm || · ||2 in the objective function.
Such a 2-norm is considered to be a quadratic term. We have seen that MILP problems
are constructed by a linear objective and linear constraints. Its extension is therefore MIQP
which allows quadratic terms in only the objective function. We can define a standard format
for such MIQP optimization problems in the following manner:

min xT
I CIxI + xT

RCRxR + cT
I xI + cT

RxR

such that AIxI + ARxR ≤ b

AI,eqxI + AR,eqxR = beq

xmin ≤ x ≤ xmax

xI ∈ ZnI , xR ∈ RnR

(5-27)

To solve this MIQP problem, one can again use GUROBI.

5-2 Urban Railway System as MLD System

Now that we have seen the MPC strategies developed for MPL and MLD systems, and
furthermore discussed the efficient solving strategies MILP and MIQP suitable for MLD-
MPC problems, we will write the URS with maximum capacity defined in section 3-4 into
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MLD format. Let us recall the URS description defined in section 3-4. This expression is in
MMPS format, but we have seen in subsection 2-5-4 that MMPS and MLD systems coincide.
We can therefore rewrite the system description without any problems. In MMPS notation,
recall that we have:

aj(k) = max
(
dj−1(k) + τr,j , dj(k − 1) + τh

)
dj(k) = max

(
τdwell,j,min + aj(k), min

(
α1aj(k) + α2ρj−1(k) + α3σj(k − 1)

+ α4dj(k − 1), γ0 + γ1aj(k) + γ2ρj−1(k)
))

(5-28)

In which aj(k) ∈ R and dj(k) ∈ R the arrival time and departure time of train k from and at
station j. The variables α(·) ∈ R and γ(·) ∈ R are scalar entries defined as in Equation 3-40
and 3-42. Let us furthermore define qj(k) ∈ Z the number of passengers that board train k
at station j, as:

qj(k) = min (ej (dj(k)− dj(k − 1)) + σj(k − 1), ρmax − (1− βj)ρj−1(k)) (5-29)

With ej ∈ Z the number of passengers arriving between departures of train k − 1 and k at
station j per time index, ρmax ∈ Z the maximum capacity of the trains (fixed), σj(k) ∈ Z
the number of passengers left behind at station j by train k and ρj(k) ∈ Z is the number of
passengers present in train k at departure from station j, defined as:

ρj(k) = (1− βj)ρj−1(k) + qj(k) (5-30)

In which βj ∈ [0, 1] is the fraction of passengers that disembarks at station j. Finally, σj(k)
is defined as:

σj(k) = ej(dj(k)− dj(k − 1)) + σj(k − 1)− qj(k) (5-31)
Goal is to rewrite the above expressions such that the system fits in the MLD framework
defined as in Definition 2.17. For this, we will use the auxiliary variables δ(k) ∈ {0, 1} and
z(k) ∈ R defined in subsection 2-5-3. Let us begin with the expression of the arrival time
aj(k):

aj(k) = max(dj−1(k) + τr,j︸ ︷︷ ︸
h1,j(k)

, dj(k − 1) + τh︸ ︷︷ ︸
h2,j(k)

)

= max(h1,j(k), h2,j(k)) = −min(−h1,j(k),−h2,j(k))
(5-32)

We introduce:

f1,j(k) = −h2,j(k)− (−h1,j(k)) = −h2,j(k) + h1,j(k) δ1,j(k) =
{

1 if f1,j(k) ≤ 0
0 if f1,j(k) > 0

(5-33)
We define the upper and lower bound of f1,j(k) as follows:

m1 ≤ f1,j(k) ≤M1 (5-34)

We can then write:

aj(k) = −
(
− h1,j(k) +

(
− h2,j(k) + h1,j(k)

)
δ1,j(k)

)
= h1,j(k)− f1,j(k)δ1,j(k)︸ ︷︷ ︸

z1,j(k)

= h1,j(k)− z1,j(k)
(5-35)
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The upper and lower bound of f1,j(k) in Equation 5-34 and the expression z1,j(k) = f1,j(k)δ1,j(k)
can be expressed equivalently as the following constraints:

f1,j(k) ≤M1
(
1− δ1,j(k)

)
f1,j(k) ≥ ϵ +

(
m1 − ϵ

)
δ1,j(k)

z1,j(k) ≤M1δ1,j(k)
z1,j(k) ≥ m1δ1,j(k)

z1,j(k) ≤ f1,j(k)−m1
(
1− δ1,j(k)

)
z1,j(k) ≥ f1,j(k)−M1

(
1− δ1,j(k)

)
(5-36)

In which ϵ represents the machine precision error. We can follow the same procedure for the
remaining expressions that contain a maximization and/or minimization. For the departure
time dj(k), we can write:

dj(k) = max(τdwell,j,min + aj(k)︸ ︷︷ ︸
h3,j(k)

, min(α1aj(k) + α2ρj−1(k) + α3σj(k − 1) + α4dj(k − 1)︸ ︷︷ ︸
g1,j(k)

,

γ0 + γ1aj(k) + γ2ρj−1(k)︸ ︷︷ ︸
g2,j(k)

))

= max(h3,j(k), min(g1,j(k), g2,j(k))︸ ︷︷ ︸
h4,j(k)

)

= max(h3,j(k), h4,j(k)) = −min(−h3,j(k),−h4,j(k))
(5-37)

Let us start with rewriting h4,j(k) = min(g1,j(k), g2,j(k)). For this, we introduce:

f2,j(k) = g2,j(k)− g1,j(k) (5-38)

We define the upper and lower bound of f2,j(k) as follows:

m2 ≤ f2,j(k) ≤M2 (5-39)

Let us furthermore define the auxiliary variable δ2,j(k):

δ2,j(k) =
{

1 if f2,j(k) ≤ 0
0 if f2,j(k) > 0

(5-40)

We can then rewrite h4,j(k) in Equation 5-37 in the following manner:

h4,j(k) = g1,j(k)+
(
g2,j(k)−g1,j(k)

)
δ2,j(k) = g1,j(k)+f2,j(k)δ2,j(k)︸ ︷︷ ︸

z2,j(k)

= g1,j(k)+z2,j(k) (5-41)

Equivalently, we can rewrite dj(k). Let us introduce again the following:

f3,j(k) = −h3,j(k) + h4,j(k) δ3,j(k) =
{

1 if f3,j(k) ≤ 0
0 if f3,j(k) > 0

(5-42)
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Again with f3,j(k) bounded as:
m3 ≤ f3,j(k) ≤M3 (5-43)

We can then rewrite the equation for the departure time dj(k) as the following:

dj(k) = −
(
− h4,j(k) +

(
− h3,j(k) + h4,j(k)

)
δ3,j(k)

)
= h4,j(k)− f3,j(k)δ3,j(k)︸ ︷︷ ︸

z3,j(k)

= g1,j(k) + z2,j(k)− z3,j(k)
(5-44)

Finally, we can rewrite Equation 5-39 and 5-43 and z2,j(k) = f2,j(k)δ2,j(k) and z3,j(k) =
f3,j(k)δ3,j(k) as the following constraints:

f2,j(k) ≤M2
(
1− δ2,j(k)

)
f3,j(k) ≤M3

(
1− δ3,j(k)

)
f2,j(k) ≥ ϵ +

(
m2 − ϵ

)
δ2,j(k) f3,j(k) ≥ ϵ +

(
m3 − ϵ

)
δ3,j(k)

z2,j(k) ≤M2δ2,j(k) z3,j(k) ≤M3δ3,j(k)
z2,j(k) ≥ m2δ2,j(k) z3,j(k) ≥ m3δ3,j(k)

z2,j(k) ≤ f2,j(k)−m2
(
1− δ2,j(k)

)
z3,j(k) ≤ f3,j(k)−m3

(
1− δ3,j(k)

)
z2,j(k) ≥ f2,j(k)−M2

(
1− δ2,j(k)

)
z3,j(k) ≥ f3,j(k)−M3(1− δ3,j(k))

(5-45)
Finally for the number of passengers boarding the train qj(k), we can write:

qj(k) = min(ej(dj(k)− dj(k − 1)) + σj(k − 1)︸ ︷︷ ︸
h5,j(k)

, ρmax − (1− βj)ρj−1(k)︸ ︷︷ ︸
h6,j(k)

)

= min(h5,j(k), h6,j(k))
(5-46)

We introduce:

f4,j(k) = h6,j(k)− h5,j(k) δ4,j(k)(k) =
{

1 if f4,j(k) ≤ 0
0 if f4,j(k) > 0

(5-47)

With:
m4 ≤ f4,j(k) ≤M4 (5-48)

We then have:

qj(k) = h5,j(k)+(h6,j(k)−h5,j(k))δ4,j(k) = h5,j(k)+f4,j(k)δ4,j(k)︸ ︷︷ ︸
z4,j(k)

= h5,j(k)+z4,j(k) (5-49)

Subject to:
f4,j(k) ≤M4

(
1− δ4,j(k)

)
f4,j(k) ≥ ϵ +

(
m4 − ϵ

)
δ4,j(k)

z4,j(k) ≤M4δ4,j(k)
z4,j(k) ≥ m4δ4,j(k)

z4,j(k) ≤ f4,j(k)−m4
(
1− δ4,j(k)

)
z4,j(k) ≥ f4,j(k)−M4

(
1− δ4,j(k)

)
(5-50)
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So we now have rephrased the expressions that include maximization and minimization into
MLD format, such that we can obtain an optimization problem that includes only linear
(in)equality constraints. Combining the necessary expressions results in the following linear
expression of the URS:

URS:



aj(k) = h1,j(k)− z1,j(k)
dj(k) = g1,j(k) + z2,j(k)− z3,j(k)
qj(k) = h5,j(k) + z4,j(k)
ρj(k) = (1− βj)ρj−1(k) + qj(k)
σj(k) = ej(dj(k)− dj(k − 1)) + σj(k − 1)− qj(k)

(5-51)

If we take the same state vector as defined in Equation 3-45 in Case Study III, we can write
the following for train k at station j:

xj(k)
xj+1(k)

xj+2(k)
xj+3(k)
xj+4(k)


=



xj−4(k) + τr,j − z1,j(k)
α1xj(k) + α2xj−2(k) + α3xj+4(k − 1)+

α4xj+1(k − 1) + z2,j(k)− z3,j(k)
ej(xj+1(k)− xj+1(k − 1)) + xj+4(k − 1) + z4,j(k)

(1− βj)xj−2(k) + xj+2(k)
ej(xj+1(k)− xj+1(k − 1)) + xj+4(k − 1)− xj+2(k)


(5-52)

Subject to:
fi,j(k) ≤Mi

(
1− δi,j(k)

)
fi,j(k) ≥ ϵ +

(
mi − ϵ

)
δi,j(k)

zi,j(k) ≤Miδi,j(k)
zi,j(k) ≥ miδi,j(k) for i = 1, ..., 4

zi,j(k) ≤ fi,j(k)−mi

(
1− δi,j(k)

)
zi,j(k) ≥ fi,j(k)−Mi

(
1− δi,j(k)

)
(5-53)

Note that the above MLD system now describes a DES, as the URS is a DES. This is different
from the MLD system used to describe the MPC approach in subsection 5-1-2, which describes
a discrete-time system.

5-3 Optimization Problem

We have seen that MPC methods provide us with an efficient approach to solve optimization
problems, by means of obtaining an optimal input sequence for the prediction horizon. In
this section, we will define the optimization problem for the URS with limited capacity. First
in subsection 5-3-1, we will define the control input that will be used for optimization of the
URS with limited capacity. Thereafter in subsection 5-3-2, we will formulate the objective
function that will be minimized in this optimization problem. We have seen in the earlier
defined MPC methods for MPL and MLD systems that there are multiple possibilities for
the objective functions as we can focus on different types of criteria. We will give a short
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introduction of few of the possibilities for this cost criterion, but will thereafter focus on one
objective function. Finally in subsection 5-3-3, we will collect all the necessary constraints
for the optimization problem of the URS.

5-3-1 Control Input

Before we define an objective to minimize, let us define the control effort that can be used
to steer the system into its optimal state. As we are considering a scheduling problem of a
railway system, it makes sense to implement a control effort on the traveling speed of the
trains. Realistically, this makes sense; within boundaries, a train can increase or decrease its
speed. Up until now, we have assumed a fixed running time τr,j for trains between consecutive
stations. As a control effort, we will therefore introduce u1,j(k) as running time input. This
running time input can increase or decrease the running time of the train. This input is
therefore analogue to an increase or decrease of running speed. We can include this running
time input in the following manner:

aj(k) = max
(
dj−1(k) + τr,j + u1,j(k), dj(k − 1) + τh

)
(5-54)

As there realistically is a limit on the running speed, we will need to include constraints on
u1,j(k), that represent the boundaries on the running time:

τ lb
r,j ≤ τr,j + u1,j(k) ≤ τub

r,j (5-55)

The values of these boundaries will be assigned later on. Let us furthermore include intro-
duce another input u2,j(k); this input can decrease or increase the headway time τh between
consecutive trains. For this, we assume that there is some slack in this safety distance. We
can include this second input in the following manner:

aj(k) = max
(
dj−1(k) + τr,j + u1,j(k), dj(k − 1) + τh + u2,j(k)

)
(5-56)

Clearly we must assume a lower bound on this input u2,j(k), because we would otherwise tol-
erate collision between consecutive trains. Let us include therefore the following boundaries:

τ lb
h ≤ τh + u2,j(k) ≤ τub

h (5-57)

Again, we will assign the values of these boundaries later on. As we have adjusted the arrival
time expression, let us rewrite the arrival time expression in MLD format. For this, let us
re-define the expression for h1,j(k) and h2,j(k) in Equation 5-32:

aj(k) = max(dj−1(k) + τr,j + u1,j(k)︸ ︷︷ ︸
h1,j(k)

, dj(k − 1) + τh + u2,j(k)︸ ︷︷ ︸
h2,j(k)

)

= max(h1,j(k), h2,j(k)) = −min(−h1,j(k),−h2,j(k))
(5-58)

The expressions for f1,j(k) and z1,j(k) can therefore be kept equal. Note that another option
for the control effort could be to control the departure time dj(k). This could be done by
for example with a delay time, a ’force to leave early’ time, a variable minimum dwell time
or a combination of these input times. However, as the departure time is contained in the
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expression of the number of passengers boarding qj(k), these input types would also effect
qj(k). And as the departure time again depends on the number of passengers boarding (and
thus boarding speed), the resulting URS will then be more complex to stabilize. If we compare
this to the running time input u1,j(k) and headway time input u2,j(k), we can observe that
these values do not directly influence the number of passengers boarding. Furthermore, to
prevent the trains from skipping stops, an input including a variable minimum dwell time
should always be nonzero. As we will observe in the following section that the input effort is
included in the objective function, this would be far from ideal.

5-3-2 Objective Function

In optimizing the scheduling problem for the URS, there are many possibilities for the objec-
tive function. The optimization problem can be train based or passenger based. Criteria for a
train-based problem are for example energy consumption, train-delay, frequency optimization
and many more. A few examples for passenger based criteria are passenger-delay, in-vehicle
time and use of train capacity. The objective functions resulting from these examples will
often result in a nonlinear function. For simplicity, we will therefore consider only one objec-
tive; we aim to minimize the number of passengers waiting on the platform. At each station
there is a constant flow of passengers arriving per time index defined as ej ∈ Z. Passengers
will therefore arrive in between departures of consecutive trains and have to wait some time
before the next train departs. Furthermore, as the trains have a limited capacity, not all
passengers will always fit and therefore will be left behind on the platform, which we have
defined as σj(k). We can define the number of passengers that are waiting on train k at
station j at moment of arrival of train k therefore in the following manner:

pwait
j (k) = ej

(
aj(k)− dj(k − 1)

)
+ σj(k − 1) (5-59)

Minimizing the number of passengers waiting improves the overall travelling experience, as
less people have to wait on a train. Another option would be to minimize the total waiting
time of all the passengers; minimizing pwaitj (k) clearly has an influence on the total waiting
time. From [40], we can obtain an approximation of the passenger waiting time at station j
on train k in the following manner:

τwait
j (k) = σj(k − 1)(dj(k)− dj(k − 1)) + 1

2ej(dj(k)− dj(k − 1))2 (5-60)

In which the first term represents the waiting time of passengers that where left behind by
the previous train, and the second term is an approximation of the waiting time of passengers
arriving at j in between departures of the consecutive trains. It can however be observed
that this value is in quadratic form. To minimize the optimization effort it is therefore
more convenient to consider the number of passengers waiting (as Equation 5-59 is a linear
expression). In conventional MPC, the objective function consists out of a reference tracking
error and the control effort. This will be extended to the DES environment for the URS in
the following manner:

J(k) = ||pwait
j (k)− pwait

ref ||1 + λ1||u1,j(k)||1 + λ2||u2,j(k)||1 (5-61)

The value pwait
ref represents a reference value that we will try to follow during optimization. This

value will be based on a steady-state value of pwait
j (k), which will be defined in section 5-5. We
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will see that the URS runs optimally when stabilized at a steady-state point. The objective
is limited to only linear terms. The problem can thus be solved as an MILP problem. If the
objective function would contain quadratic terms, the problem would be solved as an MIQP
problem. This will however increase the computational effort, and therefore increase the run
time of the script. The 1-norm is furthermore useful as we would like to minimize the total
number of passengers waiting, and the total implemented running time input and headway
time input, rather than for example using the ∞-norm which minimizes the maximum over
all trains and stations. With the latter norm, the total number of passengers can result in a
higher value than using the 1-norm. The values λ1 and λ2 in the objective function are weight
values which are used to assign the importance of minimizing the total number of passengers
waiting compared to minimizing the control effort, and will be assigned later on.

5-3-3 Constraints

Finally, let us formulate the constraints for the optimization problem. The first set of linear
inequality constraints is already constructed in Equation 5-53 for i = 1, ..., 4. Furthermore,
we must include the state expressions defined in Equation 5-52. There are still a few extra
constraints necessary for the correct definition of the states of the URS, based on the assump-
tions taken for the system. As we have considered a maximum capacity (ρmax) of the trains,
we need to define an upper bound on the number of passengers ρj(k) in the train:

ρj(k) ≤ ρmax (5-62)

Furthermore, we clearly must have the following:

dj(k), aj(k), qj(k), ρj(k), σj(k) ≥ 0 (5-63)

As the resulting problem will be solved as an MILP problem, we can assign which state values
must be integer. Clearly, all state values representing numbers of passengers, must be integer.
We therefore include the following constraint:

qj(k), ρj(k), σj(k) ∈ Z+ (5-64)

We furthermore have:
dj(k), aj(k) ∈ R (5-65)

And:
δi,j ∈ {0, 1} with i = 1, ..., 4, (5-66)

We furthermore need to set constraints on the optimization value pwait
j (k). Originally this

value was not considered as a state, but for programming simplicity, we do consider it as a
state value. We can then assign the constraints as:

pwait
j (k) ≥ 0 (5-67)

And:
pwait

j (k) ∈ Z+ (5-68)
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Finally, we have seen in Equation 5-55 and 5-57 that we need to include lower and upper
bounds on the inputs uj,1(k) and uj,2(k):

τ lb
r,j ≤ τr,j + u1,j(k) ≤ τub

r,j

τ lb
h ≤ τh + u2,j(k) ≤ τub

h

(5-69)

And as both uj,1(k) and uj,2(k) are time values, we have:

u1,j(k), u2,j(k) ∈ R (5-70)

5-4 Modeling Parameters

Now that we have defined the optimization problem that needs to be solved by the MPC,
it remains to define the modeling parameters, after which we can actually design the MPC.
We separate the modeling parameters into MPC parameters, model parameters and initial
conditions.

5-4-1 MPC Parameters

As MPC makes use of the receding horizon principle, we need to assign values for the control
horizon and the prediction horizon. We furthermore need to assign the tuning weights λ1 and
λ2 defined in the objective function in Equation 5-61. We have defined these MPC parameters
in the following manner:

Parameter Definition Value Unit
Kc Train Horizon 4 [−]
Jc Station Horizon 4 [−]
K Train Simulation Horizon 3 ·Kc [−]
J Station Simulation Horizon 3 · Jc [−]
λ1 Tuning Weight for u1,j(k) 0.1 [−]
λ2 Tuning Weight for u2,j(k) 0.1 [−]

Table 5-1: MPC control parameters.

As we want to optimize over a number of stations J ánd a number of trains K, we consider
the horizon for both j and k. Therefore, the controller is designed over a horizon Kc = 4
trains and Jc = 4 stations. The same holds for the simulation time; we will simulate over
Kp = 12 trains and Jp = 12 stations. The value Kc = Jc = 4 is chosen because it is assumed
that in a real life situation, one can to some extend estimate the arrival and departure time
of a train up until four trains and stations ahead.

Let us explain furthermore the choice of the tuning weight λ1,2 = 0.1. For DES, it is in
general more logical to have a negative λ1,2; a positive λ1,2 results in a minimization of the
input time instants while optimizing, and this could result in input buffer overflows in for
example manufacturing systems. However, since the input considered for the URS represents
an influence on the running and headway time, we actually wánt to minimize this value. The
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bigger the delay time, the less trains will cross the stations resulting in a lower frequency. For
urban railways, a high frequency is desired. We will therefore have λ1,2 > 0. Furthermore,
as it is more important to minimize the number of passengers waiting than to minimize the
input value, we have chosen 0 < λ1,2 < 1.

5-4-2 URS Model Parameters

We have seen in the expressions in Equation 5-52 and all the assumptions defined in Chapter
2 and 3 that there are several model parameters that are assumed to be known and therefore
fixed. In the following table, we have collected these parameters:

Parameter Definition Value Unit
τr Running time between consecutive stations 180 [sec]
τh Headway (safety) time between consecutive trains 30 [sec]

τdwell,min Minimum dwell time at each station 30 [sec]
ρmax Maximum capacity of the trains 150 [pas.]

b Passenger boarding speed 2 [pas./sec]
e Speed of passengers arriving at the station 0.5 [pas./sec]
f Passenger disembarking speed 2 [pas./sec]
β Fraction of passengers disembarking at each station 0.5 [−]

Table 5-2: URS model parameters resulting from the assumptions in Chapter 2 and 3.

We have included the minimum dwell time τdwell,min to prevent the trains from skipping stops.
Generally this is preferred to always provide passengers with the possibility to disembark (or
board). However, there are scenarios where skipping stops is more useful, for example when
a train is full and no one plans to disembark. In reality, it is indeed possible in some urban
railway systems for passengers in the vehicle to notify the driver that they want to disembark
(for example, by pushing a button in Dutch busses). We will mimic such a scenario in the
following section, and analyze the corresponding simulation. For now however, we include
the minimum dwell time.

We have seen that rewriting the expression for the departure time into an single implicit
format as in Equation 5-28 resulted in another set of parameters, arising from the parameters
defined in Table 5-2:

Parameter Definition Value Unit
α1

b
b−e

4
3 [−]

α2
b

b−e
β
f

1
3 [sec/pas.]

α3
1

b−e
2
3 [sec/pas.]

α4 − e
b−e −1

3 [−]
γ0

1
b ρmax 75 [sec]

γ1 [−] 1 [−]
γ2

β
f −

1−β
b 0 [sec/pas.]

Table 5-3: Parameters in the expression for the departure time as defined in Equation 5-28.
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Let us furthermore assign values to the lower and upper bounds in the constraints in Equa-
tion 5-53 resulting in the formulation of the MLD expression. Let us define these bounds
as:

Parameter Definition Value
m1 Lower bound of f1,j(k) −3 · τr

M1 Upper bound of f1,j(k) 3 · τr

m2 Lower bound of f2,j(k) −3 · ρmax(b + f)
M2 Upper bound of f2,j(k) 3 · ρmax(b + f)
m3 Lower bound of f3,j(k) −3 · ρmax(b + f)
M3 Upper bound of f3,j(k) 3 · ρmax(b + f)
m4 Lower bound of f4,j(k) −3 · ρmax
M4 Upper bound of f4,j(k) 3 · ρmax

Table 5-4: Lower and upper bounds mi and Mi with i = 1, ..., 4 for the constraints defined in
Equation 5-53.

The values of these bounds are obtained by estimating the worst case (lower bound) and best
case (upper bound) scenarios for the values fi,j(k) with i = 1, ..., 4, and then tripling these
estimations to ensure that all the possible values are ensured to be within the bounds. It
remains to assign the boundary values of the running time and headway time input u1,j(k)
and u2,j(k). Let us define these bounds as:

Parameter Definition Value
τ lb

r,j Lower bound of τr,j + u1,j 160
τub

r,j Upper bound of τr,j + u1,j 250
τ lb

h Lower bound of τh + u2,j 20
τub

h Upper bound of τh + u2,j 80

Table 5-5: Lower and upper bounds of the input constraints as defined in Equation 5-69.

Note that these bounds are defined in such a manner that the running time input boundaries
are:

− 20 ≤ u1,j ≤ 70 (5-71)

And the headway time input boundaries are:

− 10 ≤ u1,j ≤ 50 (5-72)

5-4-3 Initial Conditions

Let us finally define the initial conditions for the URS. In Equation 5-52, we have seen
that the states depend on several previous values, namely dj−1(k), dj(k − 1), ρj−1(k) and
σj(k − 1). We therefore need to design the controller starting from j = 2 and k = 2, with
therefore j = 2, ..., Jc + 1 and k = 2, ..., Kc + 1. We can then consider the initial values where
j = 1 and k = 1 as parameters going in the controller. The same holds for the simulation
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which will run for j = 2, ..., J + 1 and k = 2, ..., K + 1. Let us therefore assign values to the
initial conditions d1(k), dj(1), ρ1(k) and σj(1):

d1(k) = (k − 1) · 120 ∀k = 1, ..., K + 1
dj(1) = (j − 1) · 240 ∀j = 1, ..., J + 1
ρ1(k) = 120 ∀k = 1, ..., K + 1
σj(1) = 0 ∀j = 1, ..., J + 1

(5-73)

In other words: each initial train arriving at the first station contains 120 passengers and
every initial platform is considered empty. We will see in the next section that these initial
conditions are important for simulations. Assigning the ’wrong’ initial conditions could result
in a system that is unfeasible.

5-5 Simulations

We have assigned all modeling parameters and initial conditions, and are therefore ready to
actually solve the optimization problem and obtain simulations. The MPC design will be done
in MATLAB using the YALMIP toolbox and GUROBI as optimization solver. We will first
analyze the URS without any disturbance or control and therefore without inputs u1,j(k)
and u2,j(k). We will investigate the importance of choosing the correct initial conditions.
Thereafter, we will add different types of disturbance, and we will investigate the performance
of the MPC.

5-5-1 No Control - Initial Conditions

Let us investigate how the train schedule of the URS develops without any control or dis-
turbance. We have used the modeling parameters and initial conditions as defined in the
previous section. In Figure 5-1a, the schedule of the trains and the passengers in the train
can be observed. In Figure 5-1b shows the number of passengers in the trains at moment of
departures, Figure 5-1c shows the passengers boarding, and Figure 5-1d the passengers left
behind. Finally in Figure 5-1e, the optimization variable is shown, defined by the number
of passengers waiting. As no control is added and we are not considering an optimization
problem, pwait

j (k) is just a state. It can be observed that the initial values for the URS result
in a constant or steady-state development of the states of the URS, with as a result:

• A constant dwell time (dj(k)− aj(k));

• A stabilized number of passengers in the train (ρj(k) = 120 passengers);

• A stabilized number of passengers boarding (qj(k) = 60 passengers);

• No passengers left behind (σj(k) = 0 passengers);

• A constant number of passengers waiting (pwait
j (k) = 30 passengers).
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The number of passengers waiting is not zero as it also contains the number of passengers
arriving on the platform on the time indices that no train is present, defined by e(aj(k)−dj(k−
1)) with e a continuous inflow of passengers. Note that therefore the number of passengers
waiting can never be zero, because there will always be a ’dead’ moment without any train
present, because of the definition of the arrival time including the headway time. These initial
values can be considered as a equilibrium or steady-state condition of the URS.
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See next page for complete figure description
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Figure 5-1: States of the URS for the initial values and parameters as defined in Section 5-4
without control implemented, for J = 12 and K = 12.

This steady-state condition we have seen in Figure 5-1 is characterized by the following
requirements:

1. Number of passengers disembarking = number of passengers boarding:

βρj−1(k) = qj(k) (5-74)

2. Number of passengers arriving in between departures of consecutive trains = number
of passengers boarding:

e(dj(k)− dj(k − 1)) = qj(k) (5-75)

3. Constant dwell time:

dj(k)− aj(k) = dj−1(k)− aj−1(k) = dj(k − 1)− aj(k − 1) (5-76)

In Figure 5-2, it can be observed that the above requirements for the URS running in steady-
state are indeed fulfilled for the initial values as defined in section 5-4. The number of
passengers disembarking, the number of passengers boarding and the number of passengers
arriving between consecutive trains are equal at every station, as shown in Figure 5-2a. And
furthermore, each train has a constant dwell time at every station, as shown in Figure 5-2b.
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Figure 5-2: Steady-state conditions for initial values as defined in section 5-4, for J = 12 and
K = 12.

Let us show that changing the initial states to values that still guarantee the above three
necessary conditions. In Figure 5-3, the steady-state conditions of the URS can be observed
for the following set of initial values:

d1(k) = (k − 1) · 100 ∀k = 1, ..., K + 1
dj(1) = (j − 1) · 200 ∀j = 1, ..., J + 1
ρ1(k) = 100 ∀k = 1, ..., K + 1
σj(1) = 0 ∀j = 1, ..., J + 1

τr = 150

(5-77)

The remaining parameter values are kept equal to the values defined in section 5-4. In the
resulting URS, 50 passengers board and 50 passengers disembark at every station for every
train. The number of passengers in the train therefore is stabilized at ρj(k) = 100 passengers
(which can be observed in Figure B-1c), and the dwell time at dj(k)− aj(k) = 50 seconds as
shown in Figure 5-3b.
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(b) Steady-state condition 3.

Figure 5-3: Steady-state conditions for initial values as defined in Equation 5-77 without control
implemented, for J = 12 and K = 12.

It can be seen that we indeed fulfill the three conditions that ensure that the URS develops in
steady-state. In Appendix B in Figure B-1e, it can furthermore be observed that the number
of passengers left behind pwait

j (k) stabilizes at 25 passengers, the number of passengers that
arrives within departure and arrival of consecutive trains.

The initial conditions thus are of great importance for the URS. If the initial values are
not exactly representing a steady-state condition for the URS, the resulting time-table will
be irregular and the number of passengers waiting as well as the number of passengers left
behind builds up. The choice of parameters β and e representing the fraction of passengers
disembarking and speed of passengers arriving at the station ([pas./sec]) respectively is fur-
thermore important, as these parameters have an influence on conditions 1. and 2. as can be
observed in Equation 5-74 and 5-75. To show this importance, let us simulate a case where
the initial values are chosen such that the steady-state requirements do not hold. Let us
consider the following initial conditions:

d1(k) = (k − 1) · 120 ∀k = 1, ..., K + 1
dj(1) = (j − 1) · 235 ∀j = 1, ..., J + 1
ρ1(k) = 100 ∀k = 1, ..., K + 1
σj(1) = 10 ∀j = 1, ..., J + 1

τr = 180

(5-78)

And the remaining parameter values are kept equal to the values as defined in section 5-4.
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Figure 5-4: Place-time diagram and number of passengers waiting of the URS with the initial
values as defined in Equation 5-78 without control implemented, for J = 12 and K = 12.

It can be observed that although the place-time diagram seems relatively stable, the number
of passengers waiting has a positive growth rate for several trains. Because of this, these
numbers of passengers waiting will grow to infinity over infinite number of stations, and
are therefore unstable. In Figure B-2 it can furthermore be observed that the steady-state
conditions do not hold, as we have a changing number of passengers boarding and arriving
in between consecutive trains. For the remainder of the chapter and the simulations in the
following subsections, we will use the initial conditions and parameter values as defined in
section 5-4.

5-5-2 Control - Disturbance Scenarios

We are now interested in investigating the performance of the MPC. We will investigate
different scenarios which represent situations that can occur during the run of a real URS.
During all simulations, we will minimize the objective function as defined in Equation 5-
61 subject to the constraints defined in subsection 5-3-3. As we are considering the initial
conditions and parameter values as defined in section 5-4, we can assign the reference value
pwait

ref introduced in Equation 5-61. We will set this value on 30 passengers, as we have seen
in Figure 5-1e that for the initial conditions and parameter values as defined in section 5-
4, pwait

j (k) stabilizes at this value. Thus, the objective function considered in the following
subsections is defined as:

J(k) = ||pwait
j (k)− 30||1 + 0.1||u1,j(k)||1 + 0.1||u2,j(k)||1 (5-79)

Stabilizing the number of passengers waiting around this steady-state value is preferred over
stabilizing around zero as the URS then will be steered to its steady-state mode. For each
type of disturbance, we will compare the MPC performance with the simulations of the URS
without control.
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Decrease in Boarding Speed

The first type of disturbance we will include, is an decrease in boarding speed. We will
investigate two scenarios. The first scenario considers a sudden decrease in boarding speed
for a particular train at a particular station. This can occur in a case where several passengers
of senior age with lower physical mobility are boarding the train at the particular station.
We will include this disturbance in the following manner:

Disturbance 1.
for k = 5, j = 5 : b = 0.6 pas./sec (5-80)

In Figure 5-51, the place-time diagram and the number of passengers waiting for all trains
at all stations can be observed for the URS without any control implemented. It can be
seen in Figure 5-5a that the train schedule is not operating in steady-state anymore, and no
longer has a constant dwell time. It can furthermore be observed in Figure 5-5b that due to
the disturbance, the number of passengers waiting increases and will remain to increase for
increasing number of stations. Let us compare these simulations with the URS subject to the
same disturbance, but now with the implemented MPC.
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Figure 5-5: Place-time diagram and number of passengers waiting of the URS with Disturbance
1 without control for the initial values and parameters as defined in section 5-4, for J = 12 and
K = 12.

Figure 5-6a shows the place-time diagram of the URS subject to Disturbance 1 and the
MPC. It can be observed that the train schedule is still not operating in steady-state mode
with a constant dwell time. However, we see in Figure 5-6b that the number of passengers

1 For simplicity, we have considered all states of the URS to be symbolic decision variables or sdpvar
∈ R in Matlab, instead of the states representing numbers of passengers being integer decision variables or
intvar ∈ Z. After computing the values of the states in the simulations, these values are rounded to the
nearest integer. Note that we could also consider the states to be intvar, but the results will be more chaotic.
Another option is to include a delay time input variable on the departure time, which can easily regulate the
URS such that the states representing qj(k), ρj(k), σj(k) and pwait

j (k) are integers, resulting in similar results.
However, to simplify the optimization problem, we have decided to use sdpvar.
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waiting pwait
j (k) is stabilized by the implemented control. Over a longer horizon J > 12, the

pwait
j (k) will eventually be steered back to the target steady-state value of 30 passengers. In

subsection B-2-1, the remaining states and the implemented control effort can be observed.
This control action forces the system to use the maximum capacity ρmax for trains k = 5 and
k = 6, to minimize the passengers left behind. The trains thereafter are again running at
steady-state condition. The MPC therefore succeeds in stabilizing the URS for Disturbance
1.
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Figure 5-6: Place-time diagram and pwait
j (k) of the URS with Disturbance 1 with the MPC for

the initial values and parameters as defined in section 5-4, for J = 12 and K = 12.

A second scenario we will observe, is a decrease of boarding speed for particular train over its
complete route (for all stations). A realistic example of such a case is if the train is considered
to have less train compartments than other trains and therefore has less doors available for
boarding and disembarking. This disturbance is defined as:

Disturbance 2.
for k = 5, ∀j ∈ J b = 1.6 pas./sec (5-81)

When no control is applied, the decrease in boarding speed will clearly result in a longer
dwell time, as it simply takes longer to let an equal number of passengers board. As there is
a constant rate of passengers arriving at the platform (e), the number of passengers waiting
on the platform will increase. Figure 5-7 shows the place-time diagram and the number of
passengers waiting for the URS subject to Disturbance 2 without control. It can again be
observed that pwait

j (k) increases and remains to increase for several trains (train 5 until train
9).
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Figure 5-7: Place-time diagram and number of passengers waiting of the URS with Disturbance
2 without control for the initial values and parameters as defined in section 5-4, for J = 12 and
K = 12.

Let us compare this result to the URS with the implemented MPC subject to Disturbance
2 in the figure thereafter. If we compare Figure 5-7a with Figure 5-8a, it can be observed
that due to the implemented control effort, a stable train schedule with a constant dwell
time is computed. Furthermore, if we compare Figure 5-7b with Figure 5-8b, it can be
observed that the MPC succeeds in stabilizing the URS without any deviation of the target
value of pwait

j (k) = 30 passengers. Thus, the MPC again succeeds in stabilizing the URS.
The evolution of the remaining states and the implemented control effort can be observed in
subsection B-2-2.
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Figure 5-8: Place-time diagram and number of passengers waiting of the URS with Disturbance
2 with the MPC for the initial values and parameters as defined in section 5-4, for J = 12 and K
= 12.
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Finally, let us investigate one more disturbance variation on the decrease in boarding speed,
namely:

Disturbance 3.
for k = 5, ∀j ∈ J b = 1.5 pas./sec (5-82)

Note that there is only a difference of 0.1 passengers per second compared to Disturbance 2.
Let us first present the URS subject to this disturbance without control. It can be observed
that the URS reacts similar to Disturbance 3 as to Disturbance 2, with a small overall increase
in passengers waiting.
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Figure 5-9: Place-time diagram and number of passengers waiting of the URS with Disturbance
3 without control for the initial values and parameters as defined in section 5-4, for J = 12 and
K = 12.

Let us observe the place-time diagram and number of passengers waiting of the URS subject
to Disturbance 3, now including the control effort. It can be observed in Figure 5-10a that
the MPC effort results in a stable train schedule with constant dwell time. However, the
MPC does not succeed in stabilizing the number of passengers waiting, as can be observed
in Figure 5-10b. Here we see that for train 5 (which is subject to Disturbance 3), pwait

j (k)
is growing for stations j ≥ 7. In subsection B-2-3, the remaining states of the URS and the
control effort can be observed from which we can conclude the following. From station 9
on, the maximum capacity of passengers is reached in the trains, but the maximum control
effort is also applied. This maximum capacity is the reason that the MPC cannot stabilize
the URS anymore; the passengers are boarding too slow for too long, resulting in a longer
dwell time and therefore more passengers arriving on the platforms. As the control effort is
already operating at boundary level we cannot compensate more, resulting in an accumulation
of passengers left behind and therefore passengers waiting. Thus, we can conclude that the
MPC does not succeed in stabilizing the URS subject to Disturbance 3. This situation will
be explained more thoroughly in the next section about closed-loop stability of the URS.
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Figure 5-10: Place-time diagram and number of passengers waiting of the URS with Disturbance
3 with the MPC for the initial values and parameters as defined in section 5-4, for J = 12 and K
= 12.

Decrease in Arrival Speed

Let us now investigate the performance of the MPC while the URS is subjected to a decrease
of value e, the speed of passengers arriving at the platform. Realistically, this can happen at
a platform that is less popular and on a remote location. We will first consider the following
disturbance:

Disturbance 4.
for k = 5, j = 5 : e = 0.3 pas./sec (5-83)

A decrease in arrival speed e results in less passengers arriving on the platform, and therefore
less passengers wanting to board. The trains will therefore be able to depart sooner, as the
dwell time will also decrease. Let us first observe how the states of the URS develop without
control implemented. We can observe in Figure 5-11a that train k = 5 indeed has a shorter
dwell time from station j = 5 on. The shorter dwell time for the stations after j = 5 can
be explained by the following; as less passengers board at station j = 5, less passengers
disembark on the stations thereafter as a fixed fraction disembarks (β). This irregularity also
causes the unstable pwait

j (k) in Figure 5-11b.
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Figure 5-11: Place-time diagram and number of passengers waiting of the URS with Disturbance
4 without control for the initial values and parameters as defined in section 5-4, for J = 12 and
K = 12.

Let us now investigate whether the MPC succeeds in stabilizing the URS subject to Distur-
bance 4. In Figure 5-12a, it can be observed that the resulting train schedule is operating in
steady-state. Furthermore, Figure 5-12b shows that the MPC successfully stabilizes the num-
ber of passengers waiting, with a small discontinuity for train 6 as a result of the disturbance.
More details on the state evolution and control action can be found in subsection B-2-4.
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Figure 5-12: Place-time diagram and number of passengers waiting of the URS with Disturbance
4 with the MPC for the initial values and parameters as defined in section 5-4, for J = 12 and K
= 12.

Let us now implement a disturbance on the speed of passengers arriving at the platforms for
the complete route of train k = 5, resulting in:
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Disturbance 5.

for k = 5, ∀j ∈ J e = 0.3 pas./sec (5-84)

Such a situation occurs for example if train k = 5 is running at an off-peak moment such as
late evening hours. This disturbance results in the URS schedule and number of passengers
waiting throughout the route as shown in Figure 5-13, if no control is implemented. It can
be observed that Disturbance 5 results in a slight overall increase in number of passengers
waiting compared to Disturbance 4. This can be explained by the following: we have seen
that to obtain a steady-state running URS, the number of passengers we need the number
of passenger arriving in between departures of consecutive trains to be equal to the number
of passengers disembarking. However, due to the disruption of the value of e, these numbers
are not equal anymore, resulting in an irregular dwell time. Disturbance 5 can therefore be
considered as a more disruptive disturbance version of Disturbance 4.

Let us observe whether the MPC is able to stabilize the URS subject to this disturbance. It
can be observed in Figure 5-14a that the dwell time is not constant for all trains at every
station. However, this train schedule is still operating close to steady-state. Furthermore,
the MPC succeeds in stabilizing pwait

j (k), as can be observed in Figure 5-14b. If we compare
Figure 5-14b with Figure 5-12b, it can be observed that although Disturbance 5 is more
disruptive, its effect on pwait

j (k) is less; in Figure 5-14b, there is no discontinuity present.
This can however be explained by the number of passengers boarding (qj(k)) and number
of passengers in the train (ρj(k)); these states stabilize at 43 and 86 passengers respectively
for Disturbance 5 as can be observed in Figure B-12b, instead of 60 and 120 passengers
respectively for Disturbance 4. Due to these changes, the MPC succeeds in keeping pwait

j (k)
stable during the complete route for Disturbance 5.
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Figure 5-13: Place-time diagram and number of passengers waiting of the URS with Disturbance
5 without control for the initial values and parameters as defined in section 5-4, for J = 12 and
K = 12.
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Figure 5-14: Place-time diagram and number of passengers waiting of the URS with Disturbance
5 with the MPC for the initial values and parameters as defined in section 5-4, for J = 12 and K
= 12.

No Minimum Dwell Time

The last situation we will observe, is a scenario in which a train will skip a stop. To mimic
such a situation, let us consider the following disturbance:

Disturbance 6.
for k = 5, j = 5 e = 0 pas./sec, β = 0 (5-85)

Note that in order to provide the possibility to skip a stop, we must change the minimum
dwell time τdwell,min = 30 seconds to τdwell,min = 0 seconds. Let us first observe again what
happens for the URS without any control implemented.
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Figure 5-15: Place-time diagram and number of passengers waiting of the URS with Disturbance
6 without control for the initial values and parameters as defined in section 5-4, for J = 12 and
K = 12 and a minimum dwell time set on τdwell,min = 0 seconds.

It can be observed that train k = 5 indeed skips station j = 5, but due to this irregularity,
we again obtain an increasing number of passengers waiting for the later trains. The MPC
succeeds to stabilize this, as can be observed in the following figures.
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Figure 5-16: Place-time diagram and number of passengers waiting of the URS with Disturbance
6 with the MPC for the initial values and parameters as defined in section 5-4, for J = 12 and K
= 12.
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We see in Figure 5-16a that train k = 5 again skips the stop at station j = 5. This results
in an increase in passengers waiting on train k = 6, but it can be observed that the MPC
covers for these passengers, and stabilizes pwait

j (k) from station j = 6 on. The remaining
states and implemented control effort can be found in subsection B-2-6. Note that including
a fixed minimum dwell time has advantages and disadvantages. It is useful from a passenger
point-of-view, as passengers will always get the opportunity to board or disembark. However,
if the fixed minimum dwell time is longer than the actual dwell time, the URS will wait longer
than necessary. Because the URS is now defined in a manner that there is a continuous flow
of passengers arriving at the platform, this extra and unnecessary dwell time will result in a
less efficient schedule than possible. Including a fixed minimum dwell time or not can also be
included with a switching strategy, for which more research is necessary.

5-6 Closed-Loop Stability Analysis

In this section, we will investigate the closed-loop stability of the URS subject to MPC as an
extension of the results of the previous section. In section subsection 5-6-1, we will elaborate
on the definition of closed-loop stability for Discrete Time Systems (DTS) and DES systems,
and thereafter in subsection 5-6-2 we will analyze the closed-loop stability performance of the
URS.

5-6-1 Closed-Loop Stability of Discrete Event Systems

We have seen in section 5-1 that MPC is a popular control method, often implemented on
DTS. It is however not guaranteed that the MPC approach always results in closed-loop
stable systems. Let us shortly introduce some background information on stability. Let us
define the general idea of stability of time-based system:

Definition 5.3 (Bounded-Input Bounded-Output Closed-Loop Stability). A time-based sys-
tem is considered closed-loop stable if, when subjected to control, a bounded input results in a
bounded output.

Such a bounded input can also be considered as a disturbance; stability is a measure of
tendency of the system’s response to return to its original (or a target) state after being
exposed to disturbance. A system can return to such a state without control due to its
dynamics (such as a pendulum that is pushed), or with control (such as a heat regulation
system). The URS however is considered to be a DES, and the above stability definition
cannot directly be extended to such systems. This is due to the difference in evolution of
states in time-based systems versus states in event-based systems. Examples of states in time-
based systems are characteristics of a system such as speed, acceleration and temperature.
Clearly, these are examples of states that can be stabilized at a fixed value. However, we have
seen that states in event-based systems such as DES represent the occurrence of events. In
the URS for example, the states aj(k) and dj(k) represent the arrival and departure time of
train k from station j. The values of these states are non-decreasing, as they represent time
instances. As it is not possible or logical to stabilize such a state at a fixed value, we therefore
define another interpretation for stability of DES; a DES is stable if its buffer levels are stable
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[41]. Buffer levels of DES are defined as the time delay between the occurrences of events
in the same event cycles (k) or consecutive event cycles (k − 1 and k). Stable buffer levels
can be obtained if the growth rates of the states are stable. The growth rate can be defined
as the difference between consecutive states. For stability analysis for closed-loop time-based
systems it is common to use Lyapunov stability theory, of which more information can be
found in [42]. This Lyapunov stability theory is extended for DES in [43]. In this thesis, we
will not dive into the mathematical background on the stability analysis of the URS, but only
make several important remarks.

5-6-2 Stability of the Urban Railway System

We have seen in the previous subsection that the meaning of stability for DES is different from
the general stability definition for DTS. Let us now define stability for the URS specifically.
We have already seen that for the states representing the arrival and the departure time,
it is required to have a stable growth rate for stability. However, the remaining states all
represent number of passengers. For the latter states, it makes more sense to define stability
equivalently as for time-based systems; these states are considered stable if they stabilize at
a certain value.

We have seen in subsection 5-5-1 that if we choose the correct initial state values and param-
eter values, we can obtain an URS in a steady-state condition. In this steady-state condition,
the URS is considered stable as the arrival and departure time have a fixed growth rate, and
the remaining states stabilize at a fixed value (for example ρj(k) stabilizes at 120 in Figure 5-
1b). As the objective is to minimize the passengers waiting on the platform at moment of
arrival of a train, we therefore measure the performance of the MPC to the degree of ability
to stabilize this number pwait

j (k). We have seen in the formulation of the objective function in
Equation 5-79, that we aim to stabilize this value around the value pwait

ref = 30. For the initial
conditions and assigned parameter values, the URS is then considered to be stable. Let us
formally propose the closed-loop stability of the URS subject to the designed MPC, based on
[38]:

Proposition 5.1 (Closed-Loop Stability of the URS). Let x2,e − x1,e, x3,e, x4,e, x5,e and x6,e

be steady-state values for the URS for which the states evolve in a constant manner, while sat-
isfying all the constraints defined in subsection 5-3-3. Let furthermore x1,0, x2,0, x3,0, x4,0, x5,0
and x6,0 be admissible initial state values for which the constraints hold. The MPC stabilizes
the URS if the following holds:

lim
j→∞

lim
k→∞

||(x2,j(k)− x1,j(k))− (x2,e − x1,e)||1 = 0

lim
j→∞

lim
k→∞

||x3,j(k)− x3,e||1 = 0

lim
j→∞

lim
k→∞

||x4,j(k)− x4,e||1 = 0

lim
j→∞

lim
k→∞

||x5,j(k)− x5,e||1 = 0

lim
j→∞

lim
k→∞

||x6,j(k)− x6,e||1 = 0

(5-86)

And furthermore all constraints and system dynamics hold as defined in subsection 5-3-3.
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We have seen in the figures in subsection 5-5-2 that the MPC succeeds to stabilize the URS
for all disturbances, except for Disturbance 3. We have therefore seen that it depends on the
values of the disturbances added to the URS whether the MPC stabilizes the system. We aim
to find the set of all disturbances for which the MPC does succeed in stabilizing the URS.
We will define this disturbance set as the following:

Definition 5.4 (Admissible Disturbance Set). We define Dad as the set of admissible distur-
bances that can be added to the URS system, such that the MPC succeeds in stabilizing the
URS. Then Equation 5-86 holds.

In order for a disturbance to be admissible and therefore contained in set Dad, the URS
subject to the disturbance has to meet the following condition: the total number of passengers
boarding over complete train route (j = [2 . . . J ]) must be bigger than or equal to the total
number of passengers arriving in between departures of consecutive trains over the complete
train route (j = [2 . . . J ]) for all trains k ∈ K:

J∑
j=2

K∑
k=2

qj(k) ≥
J∑

j=2

K∑
k=2

ej(dj(k)− dj(k − 1)) (5-87)

This condition make sense realistically; if more passengers keep arriving than can board,
the number of passengers left behind builds up. For overall closed-loop stability we have
considered the limits up until infinity in Proposition 5.1. However for the URS let us consider
the limits for finite number of stations J and trains K for simplicity. Let us investigate2

whether this condition is indeed violated in the evolution of the URS subject to Disturbance
3:

J∑
j=2

K∑
k=2

qj(k) = 8781 passengers

J∑
j=2

K∑
k=2

ej(dj(k)− dj(k − 1)) = 8781 passengers
(5-88)

In the overall evolution of the URS, the condition in Equation 5-87 seems not to be violated.
However, for the URS subject to Disturbance 3 we have seen that the steady-state condition
is not obtained for train k = 5 specifically. For this train the number of passengers waiting
(pwait

j (k)) cannot be stabilized, as shown in Figure 5-10b. Let us investigate the condition for
the admissible disturbance set for this train k = 5 specifically:

J∑
j=2

qj(5) = 861 passengers

J∑
j=2

ej(dj(5)− dj(4)) = 911 passengers
(5-89)

It can be observed that for the complete route of train k = 5, the condition is indeed violated,
as we have:

J∑
j=2

qj(5) = 861 < 911 =
J∑

j=2
ej(dj(5)− dj(4)) (5-90)

2We have rounded the values obtained in the simulation to the nearest integer to obtain these numbers of
passengers. See Footnote 1 for more details.
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If we compare the condition values of the URS subject to Disturbance 2, for which the MPC
succeeds in stabilizing pwait

j (k) as can be observed in Figure 5-8b, we have for train k = 5:

J∑
j=2

qj(5) = 805 passengers

J∑
j=2

ej(dj(5)− dj(4)) = 805 passengers
(5-91)

It can be observed that the URS subject to Disturbance 2 does satisfy the condition. We can
therefore conclude the following on the admissible disturbance set Dad for the URS. We can
observe that the MPC succeeds in stabilizing the URS for all disturbances except Disturbance
3. Therefore, we can conclude that the admissible disturbance set Dad is not empty. We can
however conclude that Dad is bounded; although the difference between Disturbance 2 and
Disturbance 3 is small, the MPC succeeds in stabilizing the URS subject to Disturbance 2
and not fails if the URS is subject to Disturbance 3. Therefore, these disturbances are located
on the boundaries of Dad.

Ruby E.S. Beek Master of Science Thesis



Chapter 6

Conclusions and Contributions

In this chapter, we conclude on the thesis work and look back on the research questions
presented in chapter 1. We will separate the conclusions in three sections; the first section 6-1
is devoted to solvability of Max-Plus Linear Parameter Varying (MP-LPV) systems, thereafter
in section 6-2 we discuss the Urban Railway System (URS) and in section 6-3 we present the
conclusions and remarks on the Model Predictive Control (MPC) approach. Finally in section
6-4 a clear overview is given of the contributions this thesis provides to the field of systems
and control.

6-1 On Solvability of MP-LPV Systems

After giving a thorough background overview on MP-LPV systems, we have investigated a
solvability framework for MP-LPV systems in chapter 4, following the first research question
and its subquestions as presented in subsection 1-2-1. Let us recall these questions:

1. How can we define a solvability framework for general implicit MP-LPV systems?

(a) What is the definition of solvability for MP-LPV systems?
(b) What levels of implicitness can we define for MP-LPV systems?
(c) Which problems arise due to the different levels of implicitness?
(d) What are the assumptions in the current solvability framework?
(e) How can we relax these assumptions, resulting in a new and more general solvability

framework?

We will conclude on each subquestion, to finally answer the main research question. We
have introduced a new solvability framework for MP-LPV systems in section 4-1 consisting
of four levels: existence of a solution, existence of a unique solution, solvability and unique
solvability. Existence of a solution can be labeled as solvability, if existence is guaranteed
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for all future states, given the initial states. Equivalently, unique existence can be labeled
as unique solvability, if the solutions are unique for all future states, given the initial states.
These definitions for (unique) existence and (unique) solvability hold for MP-LPV systems,
provided that the dynamics of these systems are guaranteed to hold as well. These definitions
therefore provide the answer to the first subquestion 1.(a). In investigating the background
on MP-LPV systems, we furthermore provided the different levels of implicitness that can oc-
cur resulting from the canonical form of the MP-LPV system. Under mild assumptions, this
canonical form can always be obtained. The levels of implicitness are defined as explicit, single
implicit and doubly implicit MP-LPV systems (answering subquestion 1.(b)). We have seen
that explicit systems are always uniquely solvable. However, for single and doubly implicit
systems, a framework needed to be developed (answering subquestion 1.(c)). In analyzing the
solvability framework defined prior to this thesis work (answering subquestion 1.(d)), we have
concluded the following. For single implicit systems, a condition was obtained sufficient only
for existence, not for solvability of the MP-LPV system. This is caused by the of the lack of
the guarantee of existence of all future solutions. Furthermore, for doubly implicit MP-LPV
systems, the proof of existence was lacking, and only uniqueness was confirmed. Furthermore,
this existence framework was subject to several assumptions. We have presented an updated
solvability framework for (unique) existence and (unique) solvability for both single and dou-
bly implicit systems, while relaxing all the assumptions in the existence framework for doubly
implicit MP-LPV systems (answering subquestion 1.(e)). The resulting two frameworks are
both based on finding three sets. The first set contains all parameter vectors that result in
existence (and uniqueness) of a next solution. The second set consists out of all previous
parameter sets that result in a parameter vector contained in the first set. This second set
is therefore a subset of the first set. The final set is crucial for guaranteeing (unique) exis-
tence of all future solutions and therefore confirming (unique) solvability; this set contains
all parameter vectors resulting in invariance in the first set. This procedure was equivalent
for both single and doubly implicit systems, with the only difference being the condition that
defines the first set. We can therefore conclude that we have obtained a (unique) solvability
framework for all levels of implicitness resulting from the canonical form of MP-LPV systems,
answering the first main research question.

6-2 On the Urban Railway System

During this thesis, several case studies were done using the URS. We have seen that this
system is useful in presenting Max-Plus-Linear (MPL) systems, but also MP-LPV and Max-
Min-Plus-Scaling (MMPS) systems. Recall that the latter two are equivalent to one another.
The URS was presented in prior work before the start of this thesis, but was subject to several
assumptions. Let us recall the second research question and its subquestions:

2. How can we maintain solvability of the Urban Railway System, while considering a
limited capacity of the trains?

(a) How can we include a limited capacity in the system description of the URS?
(b) What assumptions of the current URS description can furthermore be relaxed,

resulting in a more realistic URS?
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(c) How can we analyze the solvability of the new URS?

In Case Study III in section 3-4 we have obtained an expression for the URS with limited
capacity, answering subquestion 2.(a). We have seen that the resulting system is presents itself
in an MMPS format. As we have seen however that MP-LPV systems and MMPS systems
are equivalent, we can therefore rewrite the URS into MP-LPV format without any problems.
The MP-LPV framework is useful as it can give clear insight in the level of implicitness and
therefore in the solvability. Besides the relaxation on the unlimited capacity, we furthermore
included a minimum dwell time, and specified the the actual dwell time to a more elaborate
extend. The latter gives a more complete system description, including expressions of more
system characteristics. The resulting URS contains expressions for the number of passengers
present in the train, the number of passengers boarding and disembarking and the number
of passengers left behind. We have seen however that introducing these expressions gives
rise to a new set of assumptions. These assumptions are mainly based on estimating system
parameters such as fixed boarding and disembarking speed. We can however relax these
assumptions again; for this, one needs to obtain thorough information on a real time train
route, and include approximations on these characteristics. With this, we therefore have
answered the second subquestion 2.(b). Finally, we have analyzed the solvability of the URS
presented in Case Study II and III. Both of the resulting MP-LPV systems seem doubly
implicit on first sight due to the presence of the implicit parameter vector in combination
with implicit signal relations. However, both A0(·) matrices are structured such that we can
consider these systems as single implicit. Due to the order in rows, the states individually do
not depend on the implicit parameter. As both A0(·) matrices are furthermore reducible with
a strictly lower triangular structure, we can conclude that based on Proposition 4.4, the URS
in both Case Study II and III are uniquely solvable. Therefore, unique solvability of the URS
with limited capacity is confirmed based on the structure of the A0(·) matrix. This answers
subquestion 2.(c) as well as the second research question.

6-3 On Model Predictive Control for MP-LPV Systems

Let us address the final research question and its subquestions on an MPC approach for
MP-LPV systems. We have approached this research question by means of introducing an
MPC method for the URS with limited capacity. Let us recall the research questions:

3. What conditions on MP-LPV systems are necessary such that we can design an MPC
controller?

(a) Which existing MPC strategies can be extended to the application of MP-LPV
systems?

(b) How can we implement an MPC control design with the updated URS as the
concerning system?

(c) What different disturbances can be added to the system, to investigate if the MPC
works properly?

(d) What conditions are necessary to obtain a stabilizing controller?
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To answer the first subquestion 3.(a), we have analyzed MPC methods for MPL and Mixed
Logical Dynamical (MLD) systems. We have seen that there have been introduced MPC
approaches on several other hybrid system classes, such as for MMPS systems. However,
MMPS-MPC problems are nonlinear and nonconvex and therefore computationally hard to
solve. As the URS is a discrete-event mixed integer system the MPL- and MLD-MPC ap-
proaches will be suitable. We have thereafter seen that by rewriting the URS into MLD for-
mat, we can obtain an optimization problem in Mixed Integer Linear Programming (MILP)
format that is suitable for MPC, answering subquestion 3.(b). We can furthermore conclude
that any disturbance can be added to the URS. However, the MPC will not always succeed
in stabilizing the URS. We have defined closed-loop stability for the URS as a mix of a
stable growth rate for the dwell time, and stable values for the states representing numbers of
passengers. We have seen that the MPC is stabilizing the URS as long as the disturbance is
in the admissible disturbance set Dad, answering subquestions 3.(c) and 3.(d). The condition
for a stabilizing MPC is that the disturbance is designed within boundaries guaranteeing that
the number of passengers arriving on the platforms is less than or equal to the number of pas-
sengers boarding, answering the third main research question. We can furthermore conclude
that if a disturbance is not in the admissible disturbance set Dad, the MPC still succeeds in
improving the evolution of the URS compared to the URS when no control is implemented.

6-4 Contributions

This work contributes to research in the field of max-plus algebra and systems and control
through the following results:

• A clear overview of the different levels of implicitness in MP-LPV systems;

• A general solvability framework for MP-LPV systems for all levels of implicitness;

• An updated and more realistic URS model, useful for further analysis in MP-LPV
systems;

• A first step towards control design for MP-LPV systems.
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Chapter 7

Future Work

In this chapter, we present several suggestions for future work, directly following from this
thesis work. Let us again separate the future work in three sections, each section focused on
one main research question. We will thereafter include another section devoted to general
future work suggestions.

7-1 On Solvability for MP-LPV Systems

In this section, we present the suggestions for future work regarding the solvability of Max-
Plus Linear Parameter Varying (MP-LPV) systems.

More Relaxations on Format MP-LPV Systems

The solvability framework presented in this thesis is based on the canonical form of MP-LPV
systems as presented in Lemma 3.1. For this, we have introduced Assumption 3.1. This
assumption however restricts the MP-LPV framework, and it can be interesting to relax this
assumption. For example, we can consider the case where the finite entries of the A0(·) can
attain any nonlinear function dependence on the parameter vector p(0)(k). Because of this
relaxation, the conditions in the target sets P and Λ will need to be adjusted properly.

Case Studies analyzing Solvability Framework

The current case studies presented in section 4-7 and 4-8 are rather simple cases; solvability
is proved based on the structure of the A0(·) matrices. It is interesting to consider a single
implicit MP-LPV system with irreducible A0(·), for which we need to compute the sets Pinv ⊆
Pre(P) ⊆ P, or a doubly implicit MP-LPV system for which we need to compute Λinv ⊆
Pre(Λ) ⊆ Λ. By considering such case studies, we can investigate the complexity of obtaining
these sets.
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Obtaining a Control Invariant Set for Solvability

In subsection 4-4-3 and 4-6-3 we have already shortly introduced the concept of a control
invariant set. An interesting future work suggestion is formulating the general framework
for obtaining such a control invariant set. This control invariant set can then be used to
make autonomous, unsolvable MP-LPV systems solvable when subjected to control. This can
furthermore be useful in computing control strategies such as Model Predictive Control (MPC)
for MP-LPV systems for all levels of implicitness.

7-2 On the Urban Railway System

Let us now present the suggestion for future work regarding the Urban Railway System (URS).
We have seen that the URS is a useful case study in the field of MP-LPV systems. This system
is however still subject to several important assumptions that distance the URS from reality.
And although several relaxations have been done in this thesis (considering a maximum
capacity in the trains and considering a minimum dwell time), there are still possibilities to
relax the assumptions even more. A few possibilities are:

• Consider unknown or irregular values for the parameters representing the boarding
speed (b), disembarking speed (f), fraction of passengers disembarking (β), and so on;

• Consider multiple tracks and routes;

• Consider the possibility to ’turn of’ the fixed minimum dwell time;

• Consider cyclicity instead of one way routes.

A few of these adjustments will result in an MP-LPV system wíth choice. Note that up
until now, we have considered Discrete Event Systems (DES) with synchronization and no
concurrency or choice. Considering the possibility of choice in the MP-LPV framework, will
result in a new class of systems, namely switching MP-LPV systems. We will discuss this
possible new class more formally in section 7-4.

7-3 On Model Predictive Control for MP-LPV Systems

Let us consider the future work suggestions on MPC implemented on MP-LPV systems. In
this thesis work, we have only implemented MPC on the case study of the URS. Several future
work suggestions therefore arise regarding obtaining a general MPC approach for MP-LPV
systems.

General MPC Framework for MP-LPV Systems

As mentioned in the introduction of this section, we have so far only obtained an MPC for
the URS case study. This raises the interest in obtaining a standard MPC framework for
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MP-LPV systems, similarly as the existing framework for classes of systems such as Max-
Plus-Linear (MPL) and Mixed Logical Dynamical (MLD) systems. The framework can be
designed for each level of implicitness separately. The existence of a control invariant set,
introduced in section 7-1 can play an important role for both single and doubly implicit
MP-LPV systems. If we can construct an control invariant set for which holds that if the
initial states are in this set, the MPC controller is able to steer the MP-LPV system such that
it remains solvable without violating the constraints, an MPC can be designed to guarantee
solvability of the implicit MP-LPV system. The general MPC framework should contain
a standard formulation of the optimization problem, for which both Mixed Integer Linear
Programming (MILP) and Mixed Integer Quadratic Programming (MIQP) problems provide
interesting formats. For further research, the MPC approach developed for Switching Max-
Plus Linear (SMPL) systems can be useful as well.

Closed-Loop Stability Framework for MP-LPV Systems

In section 5-6, the first steps are taken in analyzing the closed-loop stability, specifically for the
URS case study. However, to extend this to a general closed-loop stability analysis procedure,
we need to expand the idea of the admissible disturbance set as introduced in Definition 5.4.
A formal definition of a stabilizing MPC for an MP-LPV must be defined, and for this we
must investigate the general definition of stable DES. Here again the control invariant set can
play a role; we can investigate whether we can construct a control invariant set such that if
the initial values of the MP-LPV and the MPC are in this set, the MPC remains to succeed to
stabilize the MP-LPV system. If such a set is nonempty, we can confirm closed-loop stability
of the MP-LPV system. Another approach is to extend the Lyapunov stability analysis for
Discrete Time Systems (DTS) to MP-LPV systems.

Different Objective in Optimization Problem

Besides the future work suggestions for general frameworks regarding MPC and closed-loop
stability, there are also several possibilities in expanding the current MPC designed for the
URS. We have now only focused on optimizing from a passenger point of view. We can
extend the optimization therefore to a train based objective. An example is minimizing the
energy consumption, which is specifically interesting considering the input of the running
time we have considered in this thesis. Furthermore, if we expand the URS as suggested in
the previous section, we can expand the MPC design accordingly.

7-4 General Future Work Recommendations

Finally, let us suggest some general research directions regarding MP-LPV systems. As the
class of MP-LPV systems is only introduced recently, there are many directions to investigate.
In this section we will however recommend research topics that are closely connected to this
thesis work.
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General Framework for Stability of Autonomous MP-LPV Systems

We have already elaborated on future work regarding a general framework for closed-loop
stability of MP-LPV systems. It is however also interesting to investigate stability of au-
tonomous MP-LPV systems. For this, we recommend to extend the research done in [41],
which provides a general framework for stability of autonomous SMPL systems.

Switching MP-LPV Systems

We already introduced the concept of switching MP-LPV shortly in section 7-2. In this
thesis, we have given little background on the class of SMPL systems, but this class is never-
theless interesting for future research; a possible direction is to construct a general framework
for switching MP-LPV (or switching Max-Min-Plus-Scaling (MMPS)) systems. Here, the
parameter vector can contain a switching mode to activate specific parts in the parameter
dependencies, resulting in switching parameter varying system matrices. Again, we can con-
sider different levels of implicitness for this new class of systems. It can be investigated if
the solvability framework for implicit MP-LPV systems can be extended to switching implicit
MP-LPV systems. And finally, the MPC approach designed for SMPL systems combined with
the MPC approach defined in this thesis work can be extended to a general MPC framework
for switching MP-LPV systems.

Controllability of MP-LPV Systems

As we are working on the first steps of control strategies for MP-LPV systems, the ques-
tion arises on whether we can define a general framework for analyzing controllability of
MP-LPV systems. This research direction is fairly untouched, and we therefore recommend
to investigate which existing controllability tools in conventional algebra might be interesting
for MP-LPV systems. The general framework for stability of MP-LPV systems might also
be helpful in obtaining the first steps in obtaining a controllability framework for MP-LPV
systems.

New Application as MP-LPV System

During this thesis, we used the URS as a running case study. The question arises however
whether we can find a new application for which the obtained results and research can be
tested. An interesting application might be an anesthesia delivery system during surgery
[31]. The mathematical model obtained in this paper is in conventional Linear Parameter
Varying (LPV) structure, and therefore can possibly be extended to the max-plus analogue.
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Appendix A

Matlab

A-1 Simulation of Urban Railway System without Control

The following MATLAB script can be used to observe the evolution of the Urban Railway
System (URS) without any control implemented. Different disturbances can be activated, and
one can change the initial values to investigate its effect. This script is used in subsection 5-5-
1. The script that plots the results has been omitted, as that part is irrelevant for the content
of the script.

1 % −−−−−−−−−−−−−−−−−−−−−− %
2 % −−−−−− MLD URS −−−−−−− %
3 % −−−−−−−−−−−−−−−−−−−−−− %
4 % −−−−− NO CONTROL −−−−− %
5 % −−−−−−−−−−−−−−−−−−−−−− %
6
7 % Add yalmip and g u r o b i to path
8
9 yalmip ( ’ c l e a r ’ )

10 c l e a r v a r s
11 c l e a r a l l
12 c l o s e a l l
13 c l c
14 format shortG
15 %% System Parameters
16
17 rhomax = 1 5 0 ; %maximum c a p a c i t y o f p a s s e n g e r s per t r a i n
18 tau_dwellmin = 3 0 ; %minimum d w e l l time [ s e c ]
19 tau_h = 3 0 ; %headway time [ s e c ]
20
21 gamma1 = 1 ;
22
23 m1 = −3∗180;
24 m2 = −3∗rhomax ∗ 4 ;
25 m3 = −3∗rhomax ∗ 4 ;
26 m4 = −3∗rhomax ;
27 M1 = 3 ∗ 1 8 0 ;
28 M2 = 3∗rhomax ∗ 4 ;
29 M3 = 3∗rhomax ∗ 4 ;
30 M4 = 3∗rhomax ;
31
32 e p s i l o n = 1e −15; %machine e r r o r
33
34 %% C o n t r o l l e r V a r i a b l e s
35 dim . J = 4 ; % S t a t i o n p r e d i c t i o n h o r i z o n
36 dim .K = 4 ; % Train p r e d i c t i o n h o r i z o n
37
38 %% Def ine D e c i s i o n V a r i a b l e s
39 x1 = [ ] ; x2 = [ ] ; x3 = [ ] ; x4 = [ ] ; x5 = [ ] ; x6 = [ ] ;
40 d e l t a 1 = [ ] ; d e l t a 2 = [ ] ; d e l t a 3 = [ ] ; d e l t a 4 = [ ] ;
41 h1 = [ ] ; h2 = [ ] ; h3 = [ ] ; h4 = [ ] ; h5 = [ ] ; h6 = [ ] ;
42 z1 = [ ] ; z2 = [ ] ; z3 = [ ] ; z4 = [ ] ;
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43 f 1 = [ ] ; f 2 = [ ] ; f 3 = [ ] ; f 4 = [ ] ;
44 g1 = [ ] ; g2 = [ ] ;
45 taur = [ ] ;
46 alpha1 = [ ] ; alpha2 = [ ] ; alpha3 = [ ] ; alpha4 = [ ] ; alpha5 = [ ] ;
47 gamma2 = [ ] ; gamma0 = [ ] ;
48 e = [ ] ; beta = [ ] ; b = [ ] ; f = [ ] ;
49
50
51 f o r j = 1 : dim . J
52
53 x1 = [ x1 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ; % x1 ( j , k ) = a_j ( k ) ( a r r i v a l time )
54 x2 = [ x2 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ; % x2 ( j , k ) = d_j ( k ) ( d e p a r t u r e time )
55 x3 = [ x3 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ; % x3 ( j , k ) = q_j ( k ) (# p a s s e n g e r s

boarding t r a i n k at s t a t i o n j )
56 x4 = [ x4 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ; % x4 ( j , k ) = rho_j ( k ) (# p a s s e n g e r s i n

t r a i n k at d e p a r t u r e from s t a t i o n j )
57 x5 = [ x5 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ; % x5 ( j , k ) = sigma_j ( k ) (# p a s s e n g e r s on

p l a t f o r m j at d e p a r t u r e k )
58 x6 = [ x6 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ; % x6 ( j , k ) = p^ wait_j ( k ) (# p a s s e n g e r s

w a i t i n g on s t a t i o n j at moment o f a r r i v a l t r a i n k )
59
60
61 d e l t a 1 = [ d e l t a 1 ; binvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ; %f o r a_j ( k )
62 d e l t a 2 = [ d e l t a 2 ; binvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ; %f o r d_j ( k )
63 d e l t a 3 = [ d e l t a 3 ; binvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ; %f o r d_j ( k )
64 d e l t a 4 = [ d e l t a 4 ; binvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ; %f o r q_j ( k )
65
66 h1 = [ h1 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
67 h2 = [ h2 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
68 h3 = [ h3 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
69 h4 = [ h4 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
70 h5 = [ h5 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
71 h6 = [ h6 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
72
73 z1 = [ z1 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
74 z2 = [ z2 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
75 z3 = [ z3 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
76 z4 = [ z4 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
77
78 f 1 = [ f 1 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
79 f 2 = [ f 2 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
80 f 3 = [ f 3 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
81 f 4 = [ f 4 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
82
83 g1 = [ g1 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
84 g2 = [ g2 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
85
86 taur = [ taur ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
87
88 alpha1 = [ alpha1 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
89 alpha2 = [ alpha2 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
90 alpha3 = [ alpha3 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
91 alpha4 = [ alpha4 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
92 alpha5 = [ alpha5 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
93
94 e = [ e ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
95 beta = [ beta ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
96 b = [ b ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
97
98 f = [ f ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
99

100 gamma0 = [ gamma0 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
101 gamma2 = [ gamma2 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
102
103 end
104
105 %% C o n t r o l l e r Design
106
107 c o n s t r a i n t s = [ ] ;
108 o b j e c t i v e = 0 ;
109
110 f o r j = 2 : dim . J
111 f o r k = 2 : dim .K
112
113 % C o n s t r a i n t s a r r i v a l time x1
114 % x1 = max( h1 , h2 )
115 c o n s t r a i n t s = [ c o n s t r a i n t s , h1{ j , k} == x2{ j −1,k} + taur { j , k } ] ;
116 c o n s t r a i n t s = [ c o n s t r a i n t s , h2{ j , k} == x2{ j , k−1} + tau_h ] ;
117 c o n s t r a i n t s = [ c o n s t r a i n t s , f 1 { j , k} == h1{ j , k} − h2{ j , k } ] ;
118 c o n s t r a i n t s = [ c o n s t r a i n t s , x1{ j , k} == h1{ j , k} − z1 { j , k } ] ;
119
120 c o n s t r a i n t s = [ c o n s t r a i n t s , e p s i l o n + (m1 − e p s i l o n ) ∗ d e l t a 1 { j , k} <= f 1 { j , k } ] ;
121 c o n s t r a i n t s = [ c o n s t r a i n t s , f 1 { j , k} <= M1∗(1− d e l t a 1 { j , k }) ] ;
122
123 c o n s t r a i n t s = [ c o n s t r a i n t s , m1∗ d e l t a 1 { j , k} <= z1 { j , k } ] ;
124 c o n s t r a i n t s = [ c o n s t r a i n t s , z1 { j , k} <= M1∗ d e l t a 1 { j , k } ] ;
125 c o n s t r a i n t s = [ c o n s t r a i n t s , z1 { j , k} <= f 1 { j , k} − m1∗(1− d e l t a 1 { j , k }) ] ;
126 c o n s t r a i n t s = [ c o n s t r a i n t s , f 1 { j , k} − M1∗(1− d e l t a 1 { j , k }) <= z1 { j , k } ] ;
127
128 % C o n s t r a i n t s d e p a r t u r e time x2
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129 % x2 = max( h3 , min ( g1 , g2 ) ) , h4 = min ( g1 , g2 )
130 c o n s t r a i n t s = [ c o n s t r a i n t s , g1{ j , k} == alpha1 { j , k}∗ x1{ j , k} + alpha2 { j , k}∗ x4{ j −1,k} + alpha3 { j , k

}∗ x5{ j , k−1} + alpha4 { j , k}∗ x2{ j , k −1}] ;
131 c o n s t r a i n t s = [ c o n s t r a i n t s , g2{ j , k} == gamma0{ j , k} + gamma1∗x1{ j , k} + gamma2{ j , k}∗ x4{ j −1,k } ] ;
132 c o n s t r a i n t s = [ c o n s t r a i n t s , f 2 { j , k} == g2{ j , k} − g1{ j , k } ] ;
133 c o n s t r a i n t s = [ c o n s t r a i n t s , h4{ j , k} == g1{ j , k} + z2 { j , k } ] ;
134
135 c o n s t r a i n t s = [ c o n s t r a i n t s , e p s i l o n + (m2 − e p s i l o n ) ∗ d e l t a 2 { j , k} <= f 2 { j , k } ] ;
136 c o n s t r a i n t s = [ c o n s t r a i n t s , f 2 { j , k} <= M2∗(1− d e l t a 2 { j , k }) ] ;
137
138 c o n s t r a i n t s = [ c o n s t r a i n t s , m2∗ d e l t a 2 { j , k} <= z2 { j , k } ] ;
139 c o n s t r a i n t s = [ c o n s t r a i n t s , z2 { j , k} <= M2∗ d e l t a 2 { j , k } ] ;
140 c o n s t r a i n t s = [ c o n s t r a i n t s , z2 { j , k} <= f 2 { j , k} − m2∗(1− d e l t a 2 { j , k }) ] ;
141 c o n s t r a i n t s = [ c o n s t r a i n t s , f 2 { j , k} − M2∗(1− d e l t a 2 { j , k }) <= z2 { j , k } ] ;
142
143 c o n s t r a i n t s = [ c o n s t r a i n t s , h3{ j , k} == tau_dwellmin + x1{ j , k } ] ;
144 c o n s t r a i n t s = [ c o n s t r a i n t s , f 3 { j , k} == h4{ j , k} − h3{ j , k } ] ;
145 c o n s t r a i n t s = [ c o n s t r a i n t s , x2{ j , k} == g1{ j , k} + z2 { j , k} − z3 { j , k } ] ;
146
147 c o n s t r a i n t s = [ c o n s t r a i n t s , e p s i l o n + (m3 − e p s i l o n ) ∗ d e l t a 3 { j , k} <= f 3 { j , k } ] ;
148 c o n s t r a i n t s = [ c o n s t r a i n t s , f 3 { j , k} <= M3∗(1− d e l t a 3 { j , k }) ] ;
149
150 c o n s t r a i n t s = [ c o n s t r a i n t s , m3∗ d e l t a 3 { j , k} <= z3 { j , k } ] ;
151 c o n s t r a i n t s = [ c o n s t r a i n t s , z3 { j , k} <= M3∗ d e l t a 3 { j , k } ] ;
152 c o n s t r a i n t s = [ c o n s t r a i n t s , z3 { j , k} <= f 3 { j , k} − m3∗(1− d e l t a 3 { j , k }) ] ;
153 c o n s t r a i n t s = [ c o n s t r a i n t s , f 3 { j , k} − M3∗(1− d e l t a 3 { j , k }) <= z3 { j , k } ] ;
154
155 % C o n s t r a i n t s #p a s s e n g e r s boarding t r a i n k at s t a t i o n j x3
156 % x3 = min ( h5 , h6 )
157
158 c o n s t r a i n t s = [ c o n s t r a i n t s , h5{ j , k} == e { j , k }∗( x2{ j , k} − x2{ j , k−1}) + x5{ j , k −1}] ;
159 c o n s t r a i n t s = [ c o n s t r a i n t s , h6{ j , k} == rhomax − (1− beta { j , k }) ∗x4{ j −1,k } ] ;
160 c o n s t r a i n t s = [ c o n s t r a i n t s , f 4 { j , k} == h6{ j , k} − h5{ j , k } ] ;
161 c o n s t r a i n t s = [ c o n s t r a i n t s , x3{ j , k} == h5{ j , k} + z4 { j , k } ] ;
162
163 c o n s t r a i n t s = [ c o n s t r a i n t s , e p s i l o n + (m4 − e p s i l o n ) ∗ d e l t a 4 { j , k} <= f 4 { j , k } ] ;
164 c o n s t r a i n t s = [ c o n s t r a i n t s , f 4 { j , k} <= M4∗(1− d e l t a 4 { j , k }) ] ;
165
166 c o n s t r a i n t s = [ c o n s t r a i n t s , m4∗ d e l t a 4 { j , k} <= z4 { j , k } ] ;
167 c o n s t r a i n t s = [ c o n s t r a i n t s , z4 { j , k} <= M4∗ d e l t a 4 { j , k } ] ;
168 c o n s t r a i n t s = [ c o n s t r a i n t s , z4 { j , k} <= f 4 { j , k} − m4∗(1− d e l t a 4 { j , k }) ] ;
169 c o n s t r a i n t s = [ c o n s t r a i n t s , f 4 { j , k} − M4∗(1− d e l t a 4 { j , k }) <= z4 { j , k } ] ;
170
171 % C o n s t r a i n t #p a s s e n g e r s i n t r a i n x4
172 c o n s t r a i n t s = [ c o n s t r a i n t s , x4{ j , k} == (1− beta { j , k }) ∗x4{ j −1,k} + x3{ j , k } ] ;
173
174 % C o n s t r a i n t #p a s s e n g e r s l e f t behind x5
175 c o n s t r a i n t s = [ c o n s t r a i n t s , x5{ j , k} == e { j , k }∗( x2{ j , k} − x2{ j , k−1}) + x5{ j , k−1} − x3{ j , k } ] ;
176
177 % C o n s t r a i n t #p a s s e n g e r s w a i t i n g on j at moment o f a r r i v a l k x6
178 c o n s t r a i n t s = [ c o n s t r a i n t s , x6{ j , k} == e { j , k }∗( x1{ j , k} − x2{ j , k−1}) + x5{ j , k −1}] ;
179
180 % Remaining c o n s t r a i n t s
181 c o n s t r a i n t s = [ c o n s t r a i n t s , 0 <= x1{ j , k } ] ;
182 c o n s t r a i n t s = [ c o n s t r a i n t s , 0 <= x2{ j , k } ] ;
183 c o n s t r a i n t s = [ c o n s t r a i n t s , 0 <= x3{ j , k } ] ;
184 c o n s t r a i n t s = [ c o n s t r a i n t s , 0 <= x4{ j , k } ] ;
185 c o n s t r a i n t s = [ c o n s t r a i n t s , x4{ j , k} <= rhomax ] ;
186 c o n s t r a i n t s = [ c o n s t r a i n t s , 0 <= x5{ j , k } ] ;
187 c o n s t r a i n t s = [ c o n s t r a i n t s , 0 <= x6{ j , k } ] ;
188
189 end
190 end
191
192
193 o p t i o n s = s d p s e t t i n g s ( ’ s o l v e r ’ , ’ g u r o b i ’ ) ;
194 parameters_in = {x2 {2 ,1} , x2 {1 ,2} , x4 {1 ,2} , x5 { 2 , 1 } , [ taur { : , : } ] , [ alpha1 { : , : } ] , [ alpha2 { : , : } ] , [ alpha3

{ : , : } ] , [ alpha4 { : , : } ] , [ alpha5 { : , : } ] , [ e { : , : } ] , [ gamma0 { : , : } ] , [ gamma2 { : , : } ] , [ beta { : , : } ] , [ b { : , : } ] , [ f
{ : , : } ] } ;

195 parameters_out = { [ z1 { : , : } ] , [ z2 { : , : } ] , [ z3 { : , : } ] , [ z4 { : , : } ] , [ d e l t a 1 { : , : } ] , [ d e l t a 2 { : , : } ] , [ d e l t a 3
{ : , : } ] , [ d e l t a 4 { : , : } ] , [ f 1 { : , : } ] , [ f 2 { : , : } ] , [ f 3 { : , : } ] , [ f 4 { : , : } ] , [ x1 { : , : } ] , [ x2 { : , : } ] , [ x3
{ : , : } ] , [ x4 { : , : } ] , [ x5 { : , : } ] , [ x6 { : , : } ] } ;

196
197 c o n t r o l l e r = o p t i m i z e r ( c o n s t r a i n t s , [ ] , opt ions , parameters_in , parameters_out ) ;
198
199
200 %% Si mu la t io n
201 % D i s t u r b a n c e s 1−6 can be a c t i v a t e d i n the loop . For d i s t u r b a n c e 6 , minimum
202 % d w e l l time must be s e t on 0 .
203
204 Khorizon = 3∗dim .K+1;
205 J h o r i z o n = 3∗dim . J+1;
206
207 x1hold = [ ] ; x2hold = [ ] ; x3hold = [ ] ; x4hold = [ ] ; x5hold = [ ] ; x6hold = [ ] ;
208 x 1 f i n a l = [ ] ; x 2 f i n a l = [ ] ; x 3 f i n a l = [ ] ; x 4 f i n a l = [ ] ; x 5 f i n a l = [ ] ; x 6 f i n a l = [ ] ;
209 z1hold = [ ] ; d e l t a 1 h o l d = [ ] ; f 1 h o l d = [ ] ; d e l t a 4 h o l d = [ ] ;
210
211 f o r j = 2 : J h o r i z o n
212 f o r k = 2 : Khorizon
213
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214 % Compute i n i t i a l c o n d i t i o n s f o r parameters_in
215 i f j == 2 && k == 2
216 x2inputk = 2 4 0 ;
217 x 2 i n p u t j = 1 2 0 ;
218 x4input = 1 2 0 ;
219 x5input = 0 ;
220 e i n p u t = 0 . 5 ∗ ones ( 1 , dim . J∗dim .K) ;
221 b e t a i n p u t = 0 . 5 ∗ ones ( 1 , dim . J∗dim .K) ;
222 t a u r i n p u t = 180∗ ones ( 1 , dim . J∗dim .K) ;
223 binput = 2∗ ones ( 1 , dim . J∗dim .K) ;
224 f i n p u t = 2∗ ones ( 1 , dim . J∗dim .K) ;
225 e l s e i f j == 2 && k > 2
226 x2inputk = x2hold ( k−2) ;
227 x 2 i n p u t j = ( k−1) ∗ 1 2 0 ;
228 x4input = 1 2 0 ;
229 x5input = 0 ;
230 e i n p u t = 0 . 5 ∗ ones ( 1 , dim . J∗dim .K) ;
231 b e t a i n p u t = 0 . 5 ∗ ones ( 1 , dim . J∗dim .K) ;
232 t a u r i n p u t = 180∗ ones ( 1 , dim . J∗dim .K) ;
233 binput = 2∗ ones ( 1 , dim . J∗dim .K) ;
234 f i n p u t = 2∗ ones ( 1 , dim . J∗dim .K) ;
235 e l s e i f k == 2 && j > 2
236 x2inputk = ( j −1) ∗ 2 4 0 ;
237 x 2 i n p u t j = x 2 f i n a l ( j −2 ,1) ;
238 x4input = 1 2 0 ;
239 x5input = 0 ;
240 e i n p u t = 0 . 5 ∗ ones ( 1 , dim . J∗dim .K) ;
241 b e t a i n p u t = 0 . 5 ∗ ones ( 1 , dim . J∗dim .K) ;
242 t a u r i n p u t = 180∗ ones ( 1 , dim . J∗dim .K) ;
243 binput = 2∗ ones ( 1 , dim . J∗dim .K) ;
244 f i n p u t = 2∗ ones ( 1 , dim . J∗dim .K) ;
245 % % Disturbance 1
246 % e l s e i f k == 6 && j == 5
247 % x2inputk = x2hold ( 1 , ( j −2) ∗( Khorizon −1)+k−2) ;
248 % x 2 i n p u t j = x2hold ( 1 , ( j −3) ∗( Khorizon −1)+k−1) ;
249 % x4input = x4hold ( 1 , ( j −3) ∗( Khorizon −1)+k−1) ;
250 % x5input = x5hold ( 1 , ( j −2) ∗( Khorizon −1)+k−2) ;
251 % e i n p u t = 0 . 5 ∗ ones ( 1 , dim . J∗dim .K) ;
252 % b e t a i n p u t = 0 . 5 ∗ ones ( 1 , dim . J∗dim .K) ;
253 % t a u r i n p u t = 180∗ ones ( 1 , dim . J∗dim .K) ;
254 % binput = 0 . 6 ∗ ones ( 1 , dim . J∗dim .K) ;
255 % f i n p u t = 2∗ ones ( 1 , dim . J∗dim .K) ;
256 % % Disturbance 2
257 % e l s e i f k == 6
258 % x2inputk = x2hold ( 1 , ( j −2) ∗( Khorizon −1)+k−2) ;
259 % x 2 i n p u t j = x2hold ( 1 , ( j −3) ∗( Khorizon −1)+k−1) ;
260 % x4input = x4hold ( 1 , ( j −3) ∗( Khorizon −1)+k−1) ;
261 % x5input = x5hold ( 1 , ( j −2) ∗( Khorizon −1)+k−2) ;
262 % e i n p u t = 0 . 5 ∗ ones ( 1 , dim . J∗dim .K) ;
263 % b e t a i n p u t = 0 . 5 ∗ ones ( 1 , dim . J∗dim .K) ;
264 % t a u r i n p u t = 180∗ ones ( 1 , dim . J∗dim .K) ;
265 % binput = 1 . 6 ∗ ones ( 1 , dim . J∗dim .K) ;
266 % f i n p u t = 2∗ ones ( 1 , dim . J∗dim .K) ;
267 % % Disturbance 3
268 % e l s e i f k == 6
269 % x2inputk = x2hold ( 1 , ( j −2) ∗( Khorizon −1)+k−2) ;
270 % x 2 i n p u t j = x2hold ( 1 , ( j −3) ∗( Khorizon −1)+k−1) ;
271 % x4input = x4hold ( 1 , ( j −3) ∗( Khorizon −1)+k−1) ;
272 % x5input = x5hold ( 1 , ( j −2) ∗( Khorizon −1)+k−2) ;
273 % e i n p u t = 0 . 5 ∗ ones ( 1 , dim . J∗dim .K) ;
274 % b e t a i n p u t = 0 . 5 ∗ ones ( 1 , dim . J∗dim .K) ;
275 % t a u r i n p u t = 180∗ ones ( 1 , dim . J∗dim .K) ;
276 % binput = 1 . 5 ∗ ones ( 1 , dim . J∗dim .K) ;
277 % f i n p u t = 2∗ ones ( 1 , dim . J∗dim .K) ;
278 % % Disturbance 4
279 % e l s e i f k == 6 && j == 5
280 % x2inputk = x2hold ( 1 , ( j −2) ∗( Khorizon −1)+k−2) ;
281 % x 2 i n p u t j = x2hold ( 1 , ( j −3) ∗( Khorizon −1)+k−1) ;
282 % x4input = x4hold ( 1 , ( j −3) ∗( Khorizon −1)+k−1) ;
283 % x5input = x5hold ( 1 , ( j −2) ∗( Khorizon −1)+k−2) ;
284 % e i n p u t = 0 . 3 ∗ ones ( 1 , dim . J∗dim .K) ;
285 % b e t a i n p u t = 0 . 5 ∗ ones ( 1 , dim . J∗dim .K) ;
286 % t a u r i n p u t = 180∗ ones ( 1 , dim . J∗dim .K) ;
287 % binput = 2∗ ones ( 1 , dim . J∗dim .K) ;
288 % f i n p u t = 2∗ ones ( 1 , dim . J∗dim .K) ;
289 % Disturbance 5
290 % e l s e i f k == 6
291 % x2inputk = x2hold ( 1 , ( j −2) ∗( Khorizon −1)+k−2) ;
292 % x 2 i n p u t j = x2hold ( 1 , ( j −3) ∗( Khorizon −1)+k−1) ;
293 % x4input = x4hold ( 1 , ( j −3) ∗( Khorizon −1)+k−1) ;
294 % x5input = x5hold ( 1 , ( j −2) ∗( Khorizon −1)+k−2) ;
295 % e i n p u t = 0 . 3 ∗ ones ( 1 , dim . J∗dim .K) ;
296 % b e t a i n p u t = 0 . 5 ∗ ones ( 1 , dim . J∗dim .K) ;
297 % t a u r i n p u t = 180∗ ones ( 1 , dim . J∗dim .K) ;
298 % binput = 2∗ ones ( 1 , dim . J∗dim .K) ;
299 % f i n p u t = 2∗ ones ( 1 , dim . J∗dim .K) ;
300 % % Disturbance 6
301 % e l s e i f k == 6 && j == 5
302 % x2inputk = x2hold ( 1 , ( j −2) ∗( Khorizon −1)+k−2) ;
303 % x 2 i n p u t j = x2hold ( 1 , ( j −3) ∗( Khorizon −1)+k−1) ;
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304 % x4input = x4hold ( 1 , ( j −3) ∗( Khorizon −1)+k−1) ;
305 % x5input = x5hold ( 1 , ( j −2) ∗( Khorizon −1)+k−2) ;
306 % e i n p u t = 0∗ ones ( 1 , dim . J∗dim .K) ;
307 % b e t a i n p u t = 0∗ ones ( 1 , dim . J∗dim .K) ;
308 % t a u r i n p u t = 180∗ ones ( 1 , dim . J∗dim .K) ;
309 % binput = 2∗ ones ( 1 , dim . J∗dim .K) ;
310 % f i n p u t = 2∗ ones ( 1 , dim . J∗dim .K) ;
311
312 e l s e
313 x2inputk = x2hold ( 1 , ( j −2) ∗( Khorizon −1)+k−2) ;
314 x 2 i n p u t j = x2hold ( 1 , ( j −3) ∗( Khorizon −1)+k−1) ;
315 x4input = x4hold ( 1 , ( j −3) ∗( Khorizon −1)+k−1) ;
316 x5input = x5hold ( 1 , ( j −2) ∗( Khorizon −1)+k−2) ;
317 e i n p u t = 0 . 5 ∗ ones ( 1 , dim . J∗dim .K) ;
318 b e t a i n p u t = 0 . 5 ∗ ones ( 1 , dim . J∗dim .K) ;
319 t a u r i n p u t = 180∗ ones ( 1 , dim . J∗dim .K) ;
320 binput = 2∗ ones ( 1 , dim . J∗dim .K) ;
321 f i n p u t = 2∗ ones ( 1 , dim . J∗dim .K) ;
322 end
323
324 alpha1input = ( binput ( 1 , 1 ) /( binput ( 1 , 1 )−e i n p u t ( 1 , 1 ) ) ) ∗ ones ( 1 , dim . J∗dim .K) ;
325 alpha2input = ( binput ( 1 , 1 ) /( binput ( 1 , 1 )−e i n p u t ( 1 , 1 ) ) ∗( b e t a i n p u t ( 1 , 1 ) / f i n p u t ( 1 , 1 ) ) ) ∗ ones ( 1 ,

dim . J∗dim .K) ;
326 alpha3input = ( 1 / ( binput ( 1 , 1 )−e i n p u t ( 1 , 1 ) ) ) ∗ ones ( 1 , dim . J∗dim .K) ;
327 alpha4input = (− e i n p u t ( 1 , 1 ) /( binput ( 1 , 1 )−e i n p u t ( 1 , 1 ) ) ) ∗ ones ( 1 , dim . J∗dim .K) ;
328 alpha5input = ( binput ( 1 , 1 ) /( binput ( 1 , 1 )−e i n p u t ( 1 , 1 ) ) ) ∗ ones ( 1 , dim . J∗dim .K) ;
329 gamma0input = ( rhomax/ binput ( 1 , 1 ) ) ∗ ones ( 1 , dim . J∗dim .K) ;
330 gamma2input = ( ( b e t a i n p u t ( 1 , 1 ) / f i n p u t ( 1 , 1 ) ) − (1− b e t a i n p u t ( 1 , 1 ) ) / binput ( 1 , 1 ) ) ∗ ones ( 1 , dim . J∗

dim .K) ;
331
332 [ s o l u t i o n , d i a g n o s t i c s ] = c o n t r o l l e r ( x2inputk , x2inputj , x4input , x5input , taur input ,

alpha1input , alpha2input , alpha3input , alpha4input , alpha5input , einput , gamma0input ,
gamma2input , betainput , binput , f i n p u t ) ;

333
334
335 Z1 = reshape ( s o l u t i o n {1} , dim .K, dim . J ) ’ ;
336 Z2 = reshape ( s o l u t i o n {2} , dim .K, dim . J ) ’ ;
337 Z3 = reshape ( s o l u t i o n {3} , dim .K, dim . J ) ’ ;
338 Z4 = reshape ( s o l u t i o n {4} , dim .K, dim . J ) ’ ;
339 DELTA1 = reshape ( s o l u t i o n {5} , dim .K, dim . J ) ’ ;
340 DELTA2 = reshape ( s o l u t i o n {6} , dim .K, dim . J ) ’ ;
341 DELTA3 = reshape ( s o l u t i o n {7} , dim .K, dim . J ) ’ ;
342 DELTA4 = reshape ( s o l u t i o n {8} , dim .K, dim . J ) ’ ;
343 F1 = reshape ( s o l u t i o n {9} , dim .K, dim . J ) ’ ;
344 F2 = reshape ( s o l u t i o n {10} , dim .K, dim . J ) ’ ;
345 F3 = reshape ( s o l u t i o n {11} , dim .K, dim . J ) ’ ;
346 F4 = reshape ( s o l u t i o n {12} , dim .K, dim . J ) ’ ;
347
348 % Compute i n i t i a l c o n d i t i o n s
349 d o l d j = x 2 i n p u t j ;
350 doldk = x2inputk ;
351 r h o o l d j = x4input ;
352 sigmaoldk = x5input ;
353
354 % Compute a r r i v a l time
355 h1 = d o l d j + t a u r i n p u t ( 1 , 1 ) ;
356 h2 = doldk + tau_h ;
357 f 1 = h1 − h2 ;
358 x1 = h1 − Z1 ( 2 , 2 ) ;
359
360 x1hold = [ x1hold x1 ] ;
361
362 % Compute d e p a r t u r e time
363 g1 = alpha1input ( 1 , 1 ) ∗x1 + alpha2input ( 1 , 1 ) ∗ x4input + alpha3input ( 1 , 1 ) ∗ x5input + alpha4input

( 1 , 1 ) ∗ doldk ;
364 g2 = gamma0input ( 1 , 1 ) + gamma1∗x1 + gamma2input ( 1 , 1 ) ∗ x4input ;
365 f 2 = g2 − g1 ;
366 h4 = g1 + Z2 ( 2 , 2 ) ;
367
368 h3 = tau_dwellmin + x1 ;
369 f 3 = h4 − h3 ;
370 x2 = g1 + Z2 ( 2 , 2 ) − Z3 ( 2 , 2 ) ;
371
372 x2hold = [ x2hold x2 ] ;
373
374 % Compute p a s s e n g e r s boarding
375 h5 = e i n p u t ( 1 , 1 ) ∗( x2 − doldk ) + x5input ;
376 h6 = rhomax − (1− b e t a i n p u t ( 1 , 1 ) ) ∗ x4input ;
377 f 4 = h6 − h5 ;
378 x3 = h5 + Z4 ( 2 , 2 ) ;
379
380 x3hold = [ x3hold x3 ] ;
381
382 % Compute p a s s e n g e r s i n t r a i n
383 x4 = (1 − b e t a i n p u t ( 1 , 1 ) ) ∗ r h o o l d j + x3 ;
384
385 x4hold = [ x4hold x4 ] ;
386
387 % Compute p a s s e n g e r s l e f t behind
388 x5 = e i n p u t ( 1 , 1 ) ∗( x2 − doldk ) + sigmaoldk − x3 ;
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389 x5hold = [ x5hold x5 ] ;
390
391 % Compute p a s s e n g e r s w a i t i n g
392 x6 = e i n p u t ( 1 , 1 ) ∗( x1 − doldk ) + sigmaoldk ;
393 x6hold = [ x6hold x6 ] ;
394
395 end
396
397 x 1 f i n a l = [ x 1 f i n a l ; x1hold ( ( j −2) ∗( Khorizon −1) + 1 : ( j −1) ∗( Khorizon −1) ) ] ;
398 x 2 f i n a l = [ x 2 f i n a l ; x2hold ( ( j −2) ∗( Khorizon −1) + 1 : ( j −1) ∗( Khorizon −1) ) ] ;
399 x 3 f i n a l = [ x 3 f i n a l ; x3hold ( ( j −2) ∗( Khorizon −1) + 1 : ( j −1) ∗( Khorizon −1) ) ] ;
400 x 4 f i n a l = [ x 4 f i n a l ; x4hold ( ( j −2) ∗( Khorizon −1) + 1 : ( j −1) ∗( Khorizon −1) ) ] ;
401 x 5 f i n a l = [ x 5 f i n a l ; x5hold ( ( j −2) ∗( Khorizon −1) + 1 : ( j −1) ∗( Khorizon −1) ) ] ;
402 x 6 f i n a l = [ x 6 f i n a l ; x6hold ( ( j −2) ∗( Khorizon −1) + 1 : ( j −1) ∗( Khorizon −1) ) ] ;
403
404
405 end
406
407 x 1 f i n a l = [ z e r o s ( 1 , Khorizon −1) ; x 1 f i n a l ] ; %a r r i v a l
408 x 1 f i n a l = [ z e r o s ( Jhorizon , 1 ) x 1 f i n a l ] ;
409 x 2 f i n a l = [ z e r o s ( 1 , Khorizon −1) ; x 2 f i n a l ] ; %d e p a r t u r e
410 x 2 f i n a l = [ z e r o s ( Jhorizon , 1 ) x 2 f i n a l ] ;
411 x 2 f i n a l ( 1 , 1 : Khorizon ) =((1: Khorizon ) −1) ∗ 1 2 0 ;
412 x 2 f i n a l ( 1 : Jhorizon , 1 ) =((1: J h o r i z o n ) ’ −1) ∗ 2 4 0 ;
413 x 3 f i n a l = [ z e r o s ( 1 , Khorizon −1) ; x 3 f i n a l ] ; %q
414 x 3 f i n a l = [ z e r o s ( Jhorizon , 1 ) x 3 f i n a l ] ;
415 x 4 f i n a l = [ 1 2 0 ∗ ones ( 1 , Khorizon −1) ; x 4 f i n a l ] ; %rho
416 x 4 f i n a l = [ 1 2 0 ∗ ones ( Jhorizon , 1 ) x 4 f i n a l ] ;
417 x 5 f i n a l = [ z e r o s ( 1 , Khorizon −1) ; x 5 f i n a l ] ; %sigma
418 x 5 f i n a l = [ z e r o s ( Jhorizon , 1 ) x 5 f i n a l ] ;
419 x 6 f i n a l = [ z e r o s ( 1 , Khorizon −1) ; x 6 f i n a l ] ; %p wait
420 x 6 f i n a l = [ z e r o s ( Jhorizon , 1 ) x 6 f i n a l ] ;
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In the following MATLAB script, the Model Predictive Control (MPC) design for the URS
can be found. This script is used to simulate the results in subsection 5-5-2 .The main
difference with the previous script is the presence of the input values u1,j(k) and u2,j(k) and
the objective function as defined in Equation 5-79. It is again possible to activate different
disturbances or to change the initial values.

1 % −−−−−−−−−−−−−−−−−−−−−− %
2 % −−−−−− MLD URS −−−−−−− %
3 % −−−−−−−−−−−−−−−−−−−−−− %
4 % −−−−− WITH MPC −−−−−−− %
5 % −−−−−−−−−−−−−−−−−−−−−− %
6
7 % Add yalmip and g u r o b i to path
8
9 yalmip ( ’ c l e a r ’ )

10 c l e a r v a r s
11 c l e a r a l l
12 c l o s e a l l
13 c l c
14 format shortG
15
16 %% System Parameters
17
18 rhomax = 1 5 0 ; %maximum c a p a c i t y o f p a s s e n g e r s per t r a i n
19 tau_dwellmin = 3 0 ; %minimum d w e l l time [ s e c ]
20 tau_h = 3 0 ; %headway time [ s e c ]
21
22
23 gamma1 = 1 ;
24
25 m1 = −3∗180;
26 m2 = −3∗rhomax ∗ 4 ;
27 m3 = −3∗rhomax ∗ 4 ;
28 m4 = −3∗rhomax ;
29 M1 = 3 ∗ 1 8 0 ;
30 M2 = 3∗rhomax ∗ 4 ;
31 M3 = 3∗rhomax ∗ 4 ;
32 M4 = 3∗rhomax ;
33
34 e p s i l o n = 1e −15; %machine e r r o r
35
36 %% C o n t r o l l e r V a r i a b l e s
37 dim . J = 4 ; % S t a t i o n p r e d i c t i o n h o r i z o n
38 dim .K = 4 ; % Train p r e d i c t i o n h o r i z o n
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39 lambda2 = 0 . 1 ; % 0 < lambda \ l e q 1
40 lambda3 = 0 . 1 ; % 0 < lambda \ l e q 1
41
42 %% Def ine D e c i s i o n V a r i a b l e s
43 x1 = [ ] ; x2 = [ ] ; x3 = [ ] ; x4 = [ ] ; x5 = [ ] ; x6 = [ ] ;
44 d e l t a 1 = [ ] ; d e l t a 2 = [ ] ; d e l t a 3 = [ ] ; d e l t a 4 = [ ] ;
45 h1 = [ ] ; h2 = [ ] ; h3 = [ ] ; h4 = [ ] ; h5 = [ ] ; h6 = [ ] ;
46 z1 = [ ] ; z2 = [ ] ; z3 = [ ] ; z4 = [ ] ;
47 f 1 = [ ] ; f 2 = [ ] ; f 3 = [ ] ; f 4 = [ ] ;
48 g1 = [ ] ; g2 = [ ] ;
49 taur = [ ] ;
50 alpha1 = [ ] ; alpha2 = [ ] ; alpha3 = [ ] ; alpha4 = [ ] ; alpha5 = [ ] ;
51 gamma2 = [ ] ; gamma0 = [ ] ;
52 e = [ ] ; beta = [ ] ; b = [ ] ; f = [ ] ;
53
54 u1 = [ ] ;
55 u2 = [ ] ;
56
57 f o r j = 1 : dim . J
58
59 x1 = [ x1 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ; % x1 ( j , k ) = a_j ( k ) ( a r r i v a l time )
60 x2 = [ x2 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ; % x2 ( j , k ) = d_j ( k ) ( d e p a r t u r e time )
61 x3 = [ x3 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ; % x3 ( j , k ) = q_j ( k ) (# p a s s e n g e r s

boarding t r a i n k at s t a t i o n j )
62 x4 = [ x4 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ; % x4 ( j , k ) = rho_j ( k ) (# p a s s e n g e r s i n

t r a i n k at d e p a r t u r e from s t a t i o n j )
63 x5 = [ x5 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ; % x5 ( j , k ) = sigma_j ( k ) (# p a s s e n g e r s on

p l a t f o r m j at d e p a r t u r e k )
64 x6 = [ x6 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ; % x6 ( j , k ) = p^ wait_j ( k ) (# p a s s e n g e r s

w a i t i n g on s t a t i o n j at moment o f a r r i v a l t r a i n k )
65
66 u1 = [ u1 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
67 u2 = [ u2 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
68
69 d e l t a 1 = [ d e l t a 1 ; binvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ; %f o r a_j ( k )
70 d e l t a 2 = [ d e l t a 2 ; binvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ; %f o r d_j ( k )
71 d e l t a 3 = [ d e l t a 3 ; binvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ; %f o r d_j ( k )
72 d e l t a 4 = [ d e l t a 4 ; binvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ; %f o r q_j ( k )
73
74 h1 = [ h1 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
75 h2 = [ h2 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
76 h3 = [ h3 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
77 h4 = [ h4 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
78 h5 = [ h5 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
79 h6 = [ h6 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
80
81 z1 = [ z1 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
82 z2 = [ z2 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
83 z3 = [ z3 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
84 z4 = [ z4 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
85
86 f 1 = [ f 1 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
87 f 2 = [ f 2 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
88 f 3 = [ f 3 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
89 f 4 = [ f 4 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
90
91 g1 = [ g1 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
92 g2 = [ g2 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
93
94 taur = [ taur ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
95
96 alpha1 = [ alpha1 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
97 alpha2 = [ alpha2 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
98 alpha3 = [ alpha3 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
99 alpha4 = [ alpha4 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;

100 alpha5 = [ alpha5 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
101
102 e = [ e ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
103 beta = [ beta ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
104 b = [ b ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
105
106 f = [ f ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
107
108
109 gamma0 = [ gamma0 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
110 gamma2 = [ gamma2 ; sdpvar ( repmat ( 1 , 1 , dim .K) , repmat ( 1 , 1 , dim .K) ) ] ;
111
112 end
113
114 %% C o n t r o l l e r Design
115
116 c o n s t r a i n t s = [ ] ;
117 o b j e c t i v e = 0 ;
118
119 f o r j = 2 : dim . J
120 f o r k = 2 : dim .K
121
122 % C o n s t r a i n t s a r r i v a l time x1
123 % x1 = max( h1 , h2 )
124 c o n s t r a i n t s = [ c o n s t r a i n t s , h1{ j , k} == x2{ j −1,k} + taur { j , k} + u1{ j , k } ] ;
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125 c o n s t r a i n t s = [ c o n s t r a i n t s , h2{ j , k} == x2{ j , k−1} + tau_h + u2{ j , k } ] ;
126 c o n s t r a i n t s = [ c o n s t r a i n t s , f 1 { j , k} == h1{ j , k} − h2{ j , k } ] ;
127 c o n s t r a i n t s = [ c o n s t r a i n t s , x1{ j , k} == h1{ j , k} − z1 { j , k } ] ;
128
129 c o n s t r a i n t s = [ c o n s t r a i n t s , e p s i l o n + (m1 − e p s i l o n ) ∗ d e l t a 1 { j , k} <= f 1 { j , k } ] ;
130 c o n s t r a i n t s = [ c o n s t r a i n t s , f 1 { j , k} <= M1∗(1− d e l t a 1 { j , k }) ] ;
131
132 c o n s t r a i n t s = [ c o n s t r a i n t s , m1∗ d e l t a 1 { j , k} <= z1 { j , k } ] ;
133 c o n s t r a i n t s = [ c o n s t r a i n t s , z1 { j , k} <= M1∗ d e l t a 1 { j , k } ] ;
134 c o n s t r a i n t s = [ c o n s t r a i n t s , z1 { j , k} <= f 1 { j , k} − m1∗(1− d e l t a 1 { j , k }) ] ;
135 c o n s t r a i n t s = [ c o n s t r a i n t s , f 1 { j , k} − M1∗(1− d e l t a 1 { j , k }) <= z1 { j , k } ] ;
136
137 % C o n s t r a i n t s d e p a r t u r e time x2
138 % x2 = max( h3 , min ( g1 , g2 ) ) , h4 = min ( g1 , g2 )
139 c o n s t r a i n t s = [ c o n s t r a i n t s , g1{ j , k} == alpha1 { j , k}∗ x1{ j , k} + alpha2 { j , k}∗ x4{ j −1,k} + alpha3 { j , k

}∗ x5{ j , k−1} + alpha4 { j , k}∗ x2{ j , k −1}] ;
140 c o n s t r a i n t s = [ c o n s t r a i n t s , g2{ j , k} == gamma0{ j , k} + gamma1∗x1{ j , k} + gamma2{ j , k}∗ x4{ j −1,k } ] ;
141 c o n s t r a i n t s = [ c o n s t r a i n t s , f 2 { j , k} == g2{ j , k} − g1{ j , k } ] ;
142 c o n s t r a i n t s = [ c o n s t r a i n t s , h4{ j , k} == g1{ j , k} + z2 { j , k } ] ;
143
144 c o n s t r a i n t s = [ c o n s t r a i n t s , e p s i l o n + (m2 − e p s i l o n ) ∗ d e l t a 2 { j , k} <= f 2 { j , k } ] ;
145 c o n s t r a i n t s = [ c o n s t r a i n t s , f 2 { j , k} <= M2∗(1− d e l t a 2 { j , k }) ] ;
146
147 c o n s t r a i n t s = [ c o n s t r a i n t s , m2∗ d e l t a 2 { j , k} <= z2 { j , k } ] ;
148 c o n s t r a i n t s = [ c o n s t r a i n t s , z2 { j , k} <= M2∗ d e l t a 2 { j , k } ] ;
149 c o n s t r a i n t s = [ c o n s t r a i n t s , z2 { j , k} <= f 2 { j , k} − m2∗(1− d e l t a 2 { j , k }) ] ;
150 c o n s t r a i n t s = [ c o n s t r a i n t s , f 2 { j , k} − M2∗(1− d e l t a 2 { j , k }) <= z2 { j , k } ] ;
151
152 c o n s t r a i n t s = [ c o n s t r a i n t s , h3{ j , k} == tau_dwellmin + x1{ j , k } ] ;
153 c o n s t r a i n t s = [ c o n s t r a i n t s , f 3 { j , k} == h4{ j , k} − h3{ j , k } ] ;
154 c o n s t r a i n t s = [ c o n s t r a i n t s , x2{ j , k} == g1{ j , k} + z2 { j , k} − z3 { j , k } ] ;
155
156 c o n s t r a i n t s = [ c o n s t r a i n t s , e p s i l o n + (m3 − e p s i l o n ) ∗ d e l t a 3 { j , k} <= f 3 { j , k } ] ;
157 c o n s t r a i n t s = [ c o n s t r a i n t s , f 3 { j , k} <= M3∗(1− d e l t a 3 { j , k }) ] ;
158
159 c o n s t r a i n t s = [ c o n s t r a i n t s , m3∗ d e l t a 3 { j , k} <= z3 { j , k } ] ;
160 c o n s t r a i n t s = [ c o n s t r a i n t s , z3 { j , k} <= M3∗ d e l t a 3 { j , k } ] ;
161 c o n s t r a i n t s = [ c o n s t r a i n t s , z3 { j , k} <= f 3 { j , k} − m3∗(1− d e l t a 3 { j , k }) ] ;
162 c o n s t r a i n t s = [ c o n s t r a i n t s , f 3 { j , k} − M3∗(1− d e l t a 3 { j , k }) <= z3 { j , k } ] ;
163
164 % C o n s t r a i n t s #p a s s e n g e r s boarding t r a i n k at s t a t i o n j x3
165 % x3 = min ( h5 , h6 )
166
167 c o n s t r a i n t s = [ c o n s t r a i n t s , h5{ j , k} == e { j , k }∗( x2{ j , k} − x2{ j , k−1}) + x5{ j , k −1}] ;
168 c o n s t r a i n t s = [ c o n s t r a i n t s , h6{ j , k} == rhomax − (1− beta { j , k }) ∗x4{ j −1,k } ] ;
169 c o n s t r a i n t s = [ c o n s t r a i n t s , f 4 { j , k} == h6{ j , k} − h5{ j , k } ] ;
170 c o n s t r a i n t s = [ c o n s t r a i n t s , x3{ j , k} == h5{ j , k} + z4 { j , k } ] ;
171
172 c o n s t r a i n t s = [ c o n s t r a i n t s , e p s i l o n + (m4 − e p s i l o n ) ∗ d e l t a 4 { j , k} <= f 4 { j , k } ] ;
173 c o n s t r a i n t s = [ c o n s t r a i n t s , f 4 { j , k} <= M4∗(1− d e l t a 4 { j , k }) ] ;
174
175 c o n s t r a i n t s = [ c o n s t r a i n t s , m4∗ d e l t a 4 { j , k} <= z4 { j , k } ] ;
176 c o n s t r a i n t s = [ c o n s t r a i n t s , z4 { j , k} <= M4∗ d e l t a 4 { j , k } ] ;
177 c o n s t r a i n t s = [ c o n s t r a i n t s , z4 { j , k} <= f 4 { j , k} − m4∗(1− d e l t a 4 { j , k }) ] ;
178 c o n s t r a i n t s = [ c o n s t r a i n t s , f 4 { j , k} − M4∗(1− d e l t a 4 { j , k }) <= z4 { j , k } ] ;
179
180 % C o n s t r a i n t #p a s s e n g e r s i n t r a i n x4
181 c o n s t r a i n t s = [ c o n s t r a i n t s , x4{ j , k} == (1− beta { j , k }) ∗x4{ j −1,k} + x3{ j , k } ] ;
182
183 % C o n s t r a i n t #p a s s e n g e r s l e f t behind x5
184 c o n s t r a i n t s = [ c o n s t r a i n t s , x5{ j , k} == e { j , k }∗( x2{ j , k} − x2{ j , k−1}) + x5{ j , k−1} − x3{ j , k } ] ;
185
186 % C o n s t r a i n t #p a s s e n g e r s w a i t i n g on j at moment o f a r r i v a l k x6
187 c o n s t r a i n t s = [ c o n s t r a i n t s , x6{ j , k} == e { j , k }∗( x1{ j , k} − x2{ j , k−1}) + x5{ j , k −1}] ;
188
189 % Remaining c o n s t r a i n t s
190 c o n s t r a i n t s = [ c o n s t r a i n t s , 0 <= x1{ j , k } ] ;
191 c o n s t r a i n t s = [ c o n s t r a i n t s , 0 <= x2{ j , k } ] ;
192 c o n s t r a i n t s = [ c o n s t r a i n t s , 0 <= x3{ j , k } ] ;
193 c o n s t r a i n t s = [ c o n s t r a i n t s , 0 <= x4{ j , k } ] ;
194 c o n s t r a i n t s = [ c o n s t r a i n t s , x4{ j , k} <= rhomax ] ;
195 c o n s t r a i n t s = [ c o n s t r a i n t s , 0 <= x5{ j , k } ] ;
196 c o n s t r a i n t s = [ c o n s t r a i n t s , 0 <= x6{ j , k } ] ;
197 c o n s t r a i n t s = [ c o n s t r a i n t s , tau_dwellmin <= x2{ j , k}−x1{ j , k } ] ;
198 c o n s t r a i n t s = [ c o n s t r a i n t s , 160 <= taur { j , k} + u1{ j , k } ] ;
199 c o n s t r a i n t s = [ c o n s t r a i n t s , taur { j , k} + u1{ j , k} <= 2 5 0 ] ;
200 c o n s t r a i n t s = [ c o n s t r a i n t s , 20 <= tau_h + u2{ j , k } ] ;
201 c o n s t r a i n t s = [ c o n s t r a i n t s , tau_h + u2{ j , k} <= 8 0 ] ;
202
203 o b j e c t i v e = o b j e c t i v e + norm ( ( x6{ j , k}−30) , 1 ) + lambda2∗norm ( u1{ j , k } , 1 )+ lambda3∗norm ( u2{ j , k } , 1 ) ;
204
205 end
206 end
207
208
209 o p t i o n s = s d p s e t t i n g s ( ’ s o l v e r ’ , ’ g u r o b i ’ ) ;
210 parameters_in = {x2 {2 ,1} , x2 {1 ,2} , x4 {1 ,2} , x5 { 2 , 1 } , [ taur { : , : } ] , [ alpha1 { : , : } ] , [ alpha2 { : , : } ] , [ alpha3

{ : , : } ] , [ alpha4 { : , : } ] , [ alpha5 { : , : } ] , [ e { : , : } ] , [ gamma0 { : , : } ] , [ gamma2 { : , : } ] , [ beta { : , : } ] , [ b { : , : } ] , [ f
{ : , : } ] } ;
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211 parameters_out = { [ u1 { : } ] , [ u2 { : } ] , [ z1 { : , : } ] , [ z2 { : , : } ] , [ z3 { : , : } ] , [ z4 { : , : } ] , [ d e l t a 1 { : , : } ] , [
d e l t a 2 { : , : } ] , [ d e l t a 3 { : , : } ] , [ d e l t a 4 { : , : } ] , [ f 1 { : , : } ] , [ f 2 { : , : } ] , [ f 3 { : , : } ] , [ f 4 { : , : } ] , [ x1
{ : , : } ] , [ x2 { : , : } ] , [ x3 { : , : } ] , [ x4 { : , : } ] , [ x5 { : , : } ] , [ x6 { : , : } ] } ;

212
213 c o n t r o l l e r = o p t i m i z e r ( c o n s t r a i n t s , o b j e c t i v e , opt ions , parameters_in , parameters_out ) ;
214
215
216 %% Si mu la t io n
217 % D i s t u r b a n c e s 1−6 can be a c t i v a t e d i n the loop . For d i s t u r b a n c e 6 , minimum
218 % d w e l l time must be s e t on 0 .
219
220 Khorizon = 3∗dim .K+1;
221 J h o r i z o n = 3∗dim . J+1;
222
223 implementedU1 = [ ] ;
224 implementedU2 = [ ] ;
225
226 x1hold = [ ] ; x2hold = [ ] ; x3hold = [ ] ; x4hold = [ ] ; x5hold = [ ] ; x6hold = [ ] ;
227 x 1 f i n a l = [ ] ; x 2 f i n a l = [ ] ; x 3 f i n a l = [ ] ; x 4 f i n a l = [ ] ; x 5 f i n a l = [ ] ; x 6 f i n a l = [ ] ;
228 z1hold = [ ] ; d e l t a 1 h o l d = [ ] ; f 1 h o l d = [ ] ; d e l t a 4 h o l d = [ ] ;
229 diag = [ ] ;
230
231 f o r j = 2 : J h o r i z o n
232 f o r k = 2 : Khorizon
233
234 % Compute i n i t i a l c o n d i t i o n s f o r parameters_in
235 i f j == 2 && k == 2
236 x2inputk = 2 4 0 ;
237 x 2 i n p u t j = 1 2 0 ;
238 x4input = 1 2 0 ;
239 x5input = 0 ;
240 e i n p u t = 0 . 5 ∗ ones ( 1 , dim . J∗dim .K) ;
241 b e t a i n p u t = 0 . 5 ∗ ones ( 1 , dim . J∗dim .K) ;
242 t a u r i n p u t = 180∗ ones ( 1 , dim . J∗dim .K) ;
243 binput = 2∗ ones ( 1 , dim . J∗dim .K) ;
244 f i n p u t = 2∗ ones ( 1 , dim . J∗dim .K) ;
245
246 e l s e i f j == 2 && k > 2
247 x2inputk = x2hold ( k−2) ;
248 x 2 i n p u t j = ( k−1) ∗ 1 2 0 ;
249 x4input = 1 2 0 ;
250 x5input = 0 ;
251 e i n p u t = 0 . 5 ∗ ones ( 1 , dim . J∗dim .K) ;
252 b e t a i n p u t = 0 . 5 ∗ ones ( 1 , dim . J∗dim .K) ;
253 t a u r i n p u t = 180∗ ones ( 1 , dim . J∗dim .K) ;
254 binput = 2∗ ones ( 1 , dim . J∗dim .K) ;
255 f i n p u t = 2∗ ones ( 1 , dim . J∗dim .K) ;
256 e l s e i f k == 2 && j > 2
257 x2inputk = ( j −1) ∗ 2 4 0 ;
258 x 2 i n p u t j = x 2 f i n a l ( j −2 ,1) ;
259 x4input = 1 2 0 ;
260 x5input = 0 ;
261 e i n p u t = 0 . 5 ∗ ones ( 1 , dim . J∗dim .K) ;
262 b e t a i n p u t = 0 . 5 ∗ ones ( 1 , dim . J∗dim .K) ;
263 t a u r i n p u t = 180∗ ones ( 1 , dim . J∗dim .K) ;
264 binput = 2∗ ones ( 1 , dim . J∗dim .K) ;
265 f i n p u t = 2∗ ones ( 1 , dim . J∗dim .K) ;
266 % % Disturbance 1
267 % e l s e i f k == 6 && j == 5
268 % x2inputk = x2hold ( 1 , ( j −2) ∗( Khorizon −1)+k−2) ;
269 % x 2 i n p u t j = x2hold ( 1 , ( j −3) ∗( Khorizon −1)+k−1) ;
270 % x4input = x4hold ( 1 , ( j −3) ∗( Khorizon −1)+k−1) ;
271 % x5input = x5hold ( 1 , ( j −2) ∗( Khorizon −1)+k−2) ;
272 % e i n p u t = 0 . 5 ∗ ones ( 1 , dim . J∗dim .K) ;
273 % b e t a i n p u t = 0 . 5 ∗ ones ( 1 , dim . J∗dim .K) ;
274 % t a u r i n p u t = 180∗ ones ( 1 , dim . J∗dim .K) ;
275 % binput = 0 . 6 ∗ ones ( 1 , dim . J∗dim .K) ;
276 % f i n p u t = 2∗ ones ( 1 , dim . J∗dim .K) ;
277 % % Disturbance 2
278 % e l s e i f k == 6
279 % x2inputk = x2hold ( 1 , ( j −2) ∗( Khorizon −1)+k−2) ;
280 % x 2 i n p u t j = x2hold ( 1 , ( j −3) ∗( Khorizon −1)+k−1) ;
281 % x4input = x4hold ( 1 , ( j −3) ∗( Khorizon −1)+k−1) ;
282 % x5input = x5hold ( 1 , ( j −2) ∗( Khorizon −1)+k−2) ;
283 % e i n p u t = 0 . 5 ∗ ones ( 1 , dim . J∗dim .K) ;
284 % b e t a i n p u t = 0 . 5 ∗ ones ( 1 , dim . J∗dim .K) ;
285 % t a u r i n p u t = 180∗ ones ( 1 , dim . J∗dim .K) ;
286 % binput = 1 . 6 ∗ ones ( 1 , dim . J∗dim .K) ;
287 % f i n p u t = 2∗ ones ( 1 , dim . J∗dim .K) ;
288 % % Disturbance 3
289 % e l s e i f k == 6
290 % x2inputk = x2hold ( 1 , ( j −2) ∗( Khorizon −1)+k−2) ;
291 % x 2 i n p u t j = x2hold ( 1 , ( j −3) ∗( Khorizon −1)+k−1) ;
292 % x4input = x4hold ( 1 , ( j −3) ∗( Khorizon −1)+k−1) ;
293 % x5input = x5hold ( 1 , ( j −2) ∗( Khorizon −1)+k−2) ;
294 % e i n p u t = 0 . 5 ∗ ones ( 1 , dim . J∗dim .K) ;
295 % b e t a i n p u t = 0 . 5 ∗ ones ( 1 , dim . J∗dim .K) ;
296 % t a u r i n p u t = 180∗ ones ( 1 , dim . J∗dim .K) ;
297 % binput = 1 . 5 ∗ ones ( 1 , dim . J∗dim .K) ;
298 % f i n p u t = 2∗ ones ( 1 , dim . J∗dim .K) ;
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299 % % Disturbance 4
300 % e l s e i f k == 6 && j == 5
301 % x2inputk = x2hold ( 1 , ( j −2) ∗( Khorizon −1)+k−2) ;
302 % x 2 i n p u t j = x2hold ( 1 , ( j −3) ∗( Khorizon −1)+k−1) ;
303 % x4input = x4hold ( 1 , ( j −3) ∗( Khorizon −1)+k−1) ;
304 % x5input = x5hold ( 1 , ( j −2) ∗( Khorizon −1)+k−2) ;
305 % e i n p u t = 0 . 3 ∗ ones ( 1 , dim . J∗dim .K) ;
306 % b e t a i n p u t = 0 . 5 ∗ ones ( 1 , dim . J∗dim .K) ;
307 % t a u r i n p u t = 180∗ ones ( 1 , dim . J∗dim .K) ;
308 % binput = 2∗ ones ( 1 , dim . J∗dim .K) ;
309 % f i n p u t = 2∗ ones ( 1 , dim . J∗dim .K) ;
310 % % Disturbance 6
311 % e l s e i f k == 6 && j == 5
312 % x2inputk = x2hold ( 1 , ( j −2) ∗( Khorizon −1)+k−2) ;
313 % x 2 i n p u t j = x2hold ( 1 , ( j −3) ∗( Khorizon −1)+k−1) ;
314 % x4input = x4hold ( 1 , ( j −3) ∗( Khorizon −1)+k−1) ;
315 % x5input = x5hold ( 1 , ( j −2) ∗( Khorizon −1)+k−2) ;
316 % e i n p u t = 0∗ ones ( 1 , dim . J∗dim .K) ;
317 % b e t a i n p u t = 0∗ ones ( 1 , dim . J∗dim .K) ;
318 % t a u r i n p u t = 180∗ ones ( 1 , dim . J∗dim .K) ;
319 % binput = 2∗ ones ( 1 , dim . J∗dim .K) ;
320 % f i n p u t = 2∗ ones ( 1 , dim . J∗dim .K) ;
321 e l s e
322 x2inputk = x2hold ( 1 , ( j −2) ∗( Khorizon −1)+k−2) ;
323 x 2 i n p u t j = x2hold ( 1 , ( j −3) ∗( Khorizon −1)+k−1) ;
324 x4input = x4hold ( 1 , ( j −3) ∗( Khorizon −1)+k−1) ;
325 x5input = x5hold ( 1 , ( j −2) ∗( Khorizon −1)+k−2) ;
326 e i n p u t = 0 . 5 ∗ ones ( 1 , dim . J∗dim .K) ;
327 b e t a i n p u t = 0 . 5 ∗ ones ( 1 , dim . J∗dim .K) ;
328 t a u r i n p u t = 180∗ ones ( 1 , dim . J∗dim .K) ;
329 binput = 2∗ ones ( 1 , dim . J∗dim .K) ;
330 f i n p u t = 2∗ ones ( 1 , dim . J∗dim .K) ;
331 end
332 alpha1input = ( binput ( 1 , 1 ) /( binput ( 1 , 1 )−e i n p u t ( 1 , 1 ) ) ) ∗ ones ( 1 , dim . J∗dim .K) ;
333 alpha2input = ( binput ( 1 , 1 ) /( binput ( 1 , 1 )−e i n p u t ( 1 , 1 ) ) ∗( b e t a i n p u t ( 1 , 1 ) / f i n p u t ( 1 , 1 ) ) ) ∗ ones ( 1 ,

dim . J∗dim .K) ;
334 alpha3input = ( 1 / ( binput ( 1 , 1 )−e i n p u t ( 1 , 1 ) ) ) ∗ ones ( 1 , dim . J∗dim .K) ;
335 alpha4input = (− e i n p u t ( 1 , 1 ) /( binput ( 1 , 1 )−e i n p u t ( 1 , 1 ) ) ) ∗ ones ( 1 , dim . J∗dim .K) ;
336 alpha5input = ( binput ( 1 , 1 ) /( binput ( 1 , 1 )−e i n p u t ( 1 , 1 ) ) ) ∗ ones ( 1 , dim . J∗dim .K) ;
337 gamma0input = ( rhomax/ binput ( 1 , 1 ) ) ∗ ones ( 1 , dim . J∗dim .K) ;
338 gamma2input = ( ( b e t a i n p u t ( 1 , 1 ) / f i n p u t ( 1 , 1 ) ) − (1− b e t a i n p u t ( 1 , 1 ) ) / binput ( 1 , 1 ) ) ∗ ones ( 1 , dim . J∗

dim .K) ;
339
340 [ s o l u t i o n , d i a g n o s t i c s ] = c o n t r o l l e r ( x2inputk , x2inputj , x4input , x5input , taur input ,

alpha1input , alpha2input , alpha3input , alpha4input , alpha5input , einput , gamma0input ,
gamma2input , betainput , binput , f i n p u t ) ;

341
342 diag = [ diag d i a g n o s t i c s ] ;
343 U1 = reshape ( s o l u t i o n {1} , dim .K, dim . J ) ’ ;
344 U2 = reshape ( s o l u t i o n {2} , dim .K, dim . J ) ’ ;
345 Z1 = reshape ( s o l u t i o n {3} , dim .K, dim . J ) ’ ;
346 Z2 = reshape ( s o l u t i o n {4} , dim .K, dim . J ) ’ ;
347 Z3 = reshape ( s o l u t i o n {5} , dim .K, dim . J ) ’ ;
348 Z4 = reshape ( s o l u t i o n {6} , dim .K, dim . J ) ’ ;
349 DELTA1 = reshape ( s o l u t i o n {7} , dim .K, dim . J ) ’ ;
350 DELTA2 = reshape ( s o l u t i o n {8} , dim .K, dim . J ) ’ ;
351 DELTA3 = reshape ( s o l u t i o n {9} , dim .K, dim . J ) ’ ;
352 DELTA4 = reshape ( s o l u t i o n {10} , dim .K, dim . J ) ’ ;
353 F1 = reshape ( s o l u t i o n {11} , dim .K, dim . J ) ’ ;
354 F2 = reshape ( s o l u t i o n {12} , dim .K, dim . J ) ’ ;
355 F3 = reshape ( s o l u t i o n {13} , dim .K, dim . J ) ’ ;
356 F4 = reshape ( s o l u t i o n {14} , dim .K, dim . J ) ’ ;
357
358 % Compute i n i t i a l c o n d i t i o n s
359 d o l d j = x 2 i n p u t j ;
360 doldk = x2inputk ;
361 r h o o l d j = x4input ;
362 sigmaoldk = x5input ;
363
364 % Compute a r r i v a l time
365 h1 = d o l d j + t a u r i n p u t ( 1 , 1 )+U1 ( 2 , 2 ) ;
366 h2 = doldk + tau_h+U2 ( 2 , 2 ) ;
367 f 1 = h1 − h2 ;
368 x1 = h1 − Z1 ( 2 , 2 ) ;
369
370 x1hold = [ x1hold x1 ] ;
371
372 % Compute d e p a r t u r e time
373 g1 = alpha1input ( 1 , 1 ) ∗x1 + alpha2input ( 1 , 1 ) ∗ x4input + alpha3input ( 1 , 1 ) ∗ x5input + alpha4input

( 1 , 1 ) ∗ doldk ;
374 g2 = gamma0input ( 1 , 1 ) + gamma1∗x1 + gamma2input ( 1 , 1 ) ∗ x4input ;
375 f 2 = g2 − g1 ;
376 h4 = g1 + Z2 ( 2 , 2 ) ;
377
378 h3 = tau_dwellmin + x1 ;
379 f 3 = h4 − h3 ;
380 x2 = g1 + Z2 ( 2 , 2 ) − Z3 ( 2 , 2 ) ;
381
382 x2hold = [ x2hold x2 ] ;
383
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384 % Compute p a s s e n g e r s boarding
385 h5 = e i n p u t ( 1 , 1 ) ∗( x2 − doldk ) + x5input ;
386 h6 = rhomax − (1− b e t a i n p u t ( 1 , 1 ) ) ∗ x4input ;
387 f 4 = h6 − h5 ;
388 x3 = h5 + Z4 ( 2 , 2 ) ;
389
390 x3hold = [ x3hold x3 ] ;
391
392 % Compute p a s s e n g e r s i n t r a i n
393 x4 = (1 − b e t a i n p u t ( 1 , 1 ) ) ∗ r h o o l d j + x3 ;
394
395 x4hold = [ x4hold x4 ] ;
396
397 % Compute p a s s e n g e r s l e f t behind
398 x5 = e i n p u t ( 1 , 1 ) ∗( x2 − doldk ) + sigmaoldk − x3 ;
399 x5hold = [ x5hold x5 ] ;
400
401 % Compute p a s s e n g e r s w a i t i n g
402 x6 = e i n p u t ( 1 , 1 ) ∗( x1 − doldk ) + sigmaoldk ;
403 x6hold = [ x6hold x6 ] ;
404
405 implementedU1 = [ implementedU1 ; U1 ( 2 , 2 ) ] ;
406 implementedU2 = [ implementedU2 ; U2 ( 2 , 2 ) ] ;
407
408
409 end
410
411 x 1 f i n a l = [ x 1 f i n a l ; x1hold ( ( j −2) ∗( Khorizon −1) + 1 : ( j −1) ∗( Khorizon −1) ) ] ;
412 x 2 f i n a l = [ x 2 f i n a l ; x2hold ( ( j −2) ∗( Khorizon −1) + 1 : ( j −1) ∗( Khorizon −1) ) ] ;
413 x 3 f i n a l = [ x 3 f i n a l ; x3hold ( ( j −2) ∗( Khorizon −1) + 1 : ( j −1) ∗( Khorizon −1) ) ] ;
414 x 4 f i n a l = [ x 4 f i n a l ; x4hold ( ( j −2) ∗( Khorizon −1) + 1 : ( j −1) ∗( Khorizon −1) ) ] ;
415 x 5 f i n a l = [ x 5 f i n a l ; x5hold ( ( j −2) ∗( Khorizon −1) + 1 : ( j −1) ∗( Khorizon −1) ) ] ;
416 x 6 f i n a l = [ x 6 f i n a l ; x6hold ( ( j −2) ∗( Khorizon −1) + 1 : ( j −1) ∗( Khorizon −1) ) ] ;
417
418 end
419
420 implementedU1 = reshape ( implementedU1 , Jhorizon −1, Khorizon −1) ’ ;
421 implementedU1 = [ z e r o s ( 1 , Khorizon −1) ; implementedU1 ] ;
422 implementedU1 = [ z e r o s ( Jhorizon , 1 ) implementedU1 ] ;
423 implementedU2 = reshape ( implementedU2 , Jhorizon −1, Khorizon −1) ’ ;
424 implementedU2 = [ z e r o s ( 1 , Khorizon −1) ; implementedU2 ] ;
425 implementedU2 = [ z e r o s ( Jhorizon , 1 ) implementedU2 ] ;
426 x 1 f i n a l = [ z e r o s ( 1 , Khorizon −1) ; x 1 f i n a l ] ; %a r r i v a l
427 x 1 f i n a l = [ z e r o s ( Jhorizon , 1 ) x 1 f i n a l ] ;
428 x 2 f i n a l = [ z e r o s ( 1 , Khorizon −1) ; x 2 f i n a l ] ; %d e p a r t u r e
429 x 2 f i n a l = [ z e r o s ( Jhorizon , 1 ) x 2 f i n a l ] ;
430 x 2 f i n a l ( 1 , 1 : Khorizon ) =((1: Khorizon ) −1) ∗ 1 2 0 ;
431 x 2 f i n a l ( 1 : Jhorizon , 1 ) =((1: J h o r i z o n ) ’ −1) ∗ 2 4 0 ;
432 x 3 f i n a l = [ z e r o s ( 1 , Khorizon −1) ; x 3 f i n a l ] ; %q
433 x 3 f i n a l = [ z e r o s ( Jhorizon , 1 ) x 3 f i n a l ] ;
434 x 4 f i n a l = [ 1 2 0 ∗ ones ( 1 , Khorizon −1) ; x 4 f i n a l ] ; %rho
435 x 4 f i n a l = [ 1 2 0 ∗ ones ( Jhorizon , 1 ) x 4 f i n a l ] ;
436 x 5 f i n a l = [ z e r o s ( 1 , Khorizon −1) ; x 5 f i n a l ] ; %sigma
437 x 5 f i n a l = [ z e r o s ( Jhorizon , 1 ) x 5 f i n a l ] ;
438 x 6 f i n a l = [ z e r o s ( 1 , Khorizon −1) ; x 6 f i n a l ] ; %p wait
439 x 6 f i n a l = [ z e r o s ( Jhorizon , 1 ) x 6 f i n a l ] ;
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Appendix B

Simulations

In this Appendix, additional figures of the simulations are shown. For each simulation of the
Urban Railway System (URS) subject to a type of disturbance, we present the remaining
states that have not been presented in the main body of the thesis.

B-1 No Control - Initial Conditions

In subsection 5-5-1 we have simulated the URS using the script in section A-1, without any
control implemented. We have investigated three different sets of initial values: two sets of
initial values that result in steady-state evolution of the URS, and one set of initial values for
which the URS evolves in an unstable manner. In Figure 5-1, the evolution of all states of the
URS are shown for the initial values as defined in section 5-4. In Figure B-1, we present the
additional figures for the state evolution of the URS subject to the initial values as defined in
Equation 5-77. It can be observed in Figure B-1a that the dwell time is constant resulting in
a constant train schedule. It can furthermore be observed that the remaining states all settle
at constant values:

• qj(k) stabilizes at 50 passengers;

• ρj(k) stabilizes at 100 passengers;

• σj(k) stabilizes at 0 passengers;

• pwait
j (k) stabilizes as 25 passengers.
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Figure B-1: States of the URS for the initial values as defined in Equation 5-77, for J = 12 and
K = 12.
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Finally, let us present the additional figures to the third set of initial values we have inves-
tigated as defined in Equation 5-78. Figure B-2 shows the steady-state conditions for these
initial values. It can be observed that these conditions are not satisfied; Figure B-2a shows
that the number of passengers disembarking, the number of passengers boarding and the
number of passengers arriving between consecutive departures are not equal. Furthermore
we can see in Figure B-2b that the dwell time is not constant over all stations. In Figure 5-4
we have seen the evolution of the place-time diagram and the number of passengers waiting,
and Figure B-3 shows the evolution of the remaining states of the URS subject to the initial
values as defined in Equation 5-78. It can be observed that without any control, the URS
evolves in an unstable manner due to the initial conditions.
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Figure B-2: Steady-state conditions for initial values as defined in Equation 5-78 without control
implemented, for J = 12 and K = 12.
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Figure B-3: Remaining states of the URS with initial values as defined in Equation 5-78 without
control implemented, for J = 12 and K = 12.

B-2 Control - Disturbance Scenarios

In subsection 5-5-2 we have exposed the URS to several disturbance scenarios, and we have
observed the performance of the Model Predictive Controller in rejecting these disturbances.
In subsection 5-5-2, we have included the place-time diagrams and the figure presenting the
number of passengers waiting of the URS for all disturbances without and with control. In
this appendix we present the remaining figures of qj(k), ρj(k) and σj(k), and we will present
the implemented control effort u1,j(k) and u2,j(k).
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B-2-1 Disturbance 1

In Figure B-4, we can observe the evolution of the remaining states of the URS when exposed
to Disturbance 1. It can be observed that qj(k) and ρj(k) of the trains 5 and 6 are stabilized
at constant values after being exposed to the disturbance due to the control effort which can
be observed in Figure B-5. Furthermore, we can observe that σj(k) evolves to zero.
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Figure B-4: Remaining states of the URS with Disturbance 1 for the initial values and parameters
as defined in section 5-4, for J = 12 and K = 12.
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Figure B-5: Implemented control on the URS subject to Disturbance 1 for the initial values and
parameters as defined in section 5-4, for J = 12 and K = 12.
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B-2-2 Disturbance 2

In Figure B-6, we can observe the evolution of the remaining states of the URS when exposed
to Disturbance 2. It can be observed that all states are kept within boundaries due to the
control effort which can be observed in Figure B-7.
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Figure B-6: Remaining states of the URS with Disturbance 2 for the initial values and parameters
as defined in section 5-4, for J = 12 and K = 12.
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Figure B-7: Implemented control on the URS subject to Disturbance 2 for the initial values and
parameters as defined in section 5-4, for J = 12 and K = 12.
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B-2-3 Disturbance 3

In Figure B-8, we can observe the evolution of the remaining states of the URS when exposed
to Disturbance 3. It can be observed that the running time input is implemented on lower
boundary level in Figure B-9a. However, this input is not enough to stabilize the URS, as
we have seen in Figure 5-10b that pwait

j (k) blows up for train k = 5. We can furthermore see
in Figure B-8c that the number of passengers left behind also blows up for train k = 5, due
to the maximum capacity that is reached for train k = 5 and k = 6 as can be observed in
Figure B-8b.
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Figure B-8: Remaining states of the URS with Disturbance 3 for the initial values and parameters
as defined in section 5-4, for J = 12 and K = 12.
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Figure B-9: Implemented control on the URS subject to Disturbance 3 for the initial values and
parameters as defined in section 5-4, for J = 12 and K = 12.
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B-2-4 Disturbance 4

In Figure B-10, we can observe the evolution of the remaining states of the URS when exposed
to Disturbance 4. It can be observed that qj(k) and ρj(k) are stabilized at constant values
after being exposed to the disturbance, due to the control effort which can be observed in
Figure B-5. Furthermore, we can observe that σj(k) remains zero.
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Figure B-10: Remaining states of the URS with Disturbance 4 for the initial values and param-
eters as defined in section 5-4, for J = 12 and K = 12.
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Figure B-11: Implemented control on the URS subject to Disturbance 4 for the initial values
and parameters as defined in section 5-4, for J = 12 and K = 12.
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B-2-5 Disturbance 5

In Figure B-12, we can observe the evolution of the remaining states of the URS when exposed
to Disturbance 5. It can be observed that qj(k) and ρj(k) of the disturbed train k = 5 are
stabilized at constant values due to the control effort which can be observed in Figure B-13.
Furthermore, we can observe that σj(k) remains at zero.
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Figure B-12: Remaining states of the URS with Disturbance 5 for the initial values and param-
eters as defined in section 5-4, for J = 12 and K = 12.
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Figure B-13: Implemented control on the URS subject to Disturbance 5 for the initial values
and parameters as defined in section 5-4, for J = 12 and K = 12.
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B-2-6 Disturbance 6

In Figure B-14, we can observe the evolution of the remaining states of the URS when exposed
to Disturbance 6. It can be observed that qj(k) and ρj(k) of the disturbed trains k = 5 and
k = 6 are stabilized at constant values after being exposed to the disturbance due to the
control effort which can be observed in Figure B-15. Furthermore, we can observe that σj(k)
remains at zero.
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Figure B-14: Remaining states of the URS with Disturbance 6 for the initial values and pa-
rameters as defined in section 5-4, for J = 12 and K = 12 and a minimum dwell time set on
τdwell,min = 0 seconds.
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Figure B-15: Implemented control on the URS subject to Disturbance 6 for the initial values
and parameters as defined in section 5-4, for J = 12 and K = 12 and a minimum dwell time set
on τdwell,min = 0 seconds.
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Glossary

List of Acronyms

MP-LPV Max-Plus Linear Parameter Varying
MPL Max-Plus-Linear
DES Discrete Event Systems
LPV Linear Parameter Varying
MMPS Max-Min-Plus-Scaling
URS Urban Railway System
MPC Model Predictive Control
MLD Mixed Logical Dynamical
PWA Piecewise Affine
MLD Mixed Logical Dynamical
LTI Linear Time Invariant
SMPL Switching Max-Plus Linear
MPS Max-Plus-Scaling
MILP Mixed Integer Linear Programming
MIQP Mixed Integer Quadratic Programming
DTS Discrete Time Systems

List of Symbols

∆ Difference operator, ∆x(k) = x(k)− x(k − 1)
Λ Target set of doubly implicit MP-LPV systems ensuring (unique) existence
λ Eigenvalue
Λinv Maximal positive invariant set of doubly implicit MP-LPV systems ensuring

(unique) solvability
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148 Glossary

R Set of real numbers
Rmax Max-plus semiring
Rε The set R ∪ {−∞}
Z+ Set of (positive) integers
C Convex set
D Set of links associated with graph G
Dad Admissible Disturbance Set
E Max-plus null matrix
G(A) Communication graph of matrix A

Gc(A) Critical graph of matrix A

N Set of nodes associated with graph G
P Target set for (unique) existence of single implicit MP-LPV systems
Pinv Maximal positive invariant set of single implicit MP-LPV systems ensuring

(unique) solvability
V Halfspace
X Polyhedral set
⊕ Max-plus addition operator or maximization (’oplus’)
⊗ Max-plus multiplication operator or addition (’otimes’)
def= Is defined as
Ã Frobenius normal form of matrix A

ε Max-plus zero element, ε = −∞
A∗ Kleene star of matrix A

Aλ Normalized matrix of matrix A

E Max-plus identity matrix
e Max-plus unit element, e = 0
fcPWA Continuous PWA function
fMPS Max-plus scaling function
P Parameter set
p(k) Parameter vector with standard length r

Pε Max-plus parameter set
u(k) Input vector with standard length m

v Eigenvector
x(k) State vector with standard length n

y(k) Output vector with standard length l

Pre(Λ) Precursor set of Λ
Pre(P) Precursor set of P
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