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Abstract: In the realm of human urban transportation, many recent studies have shown that
comparatively smaller fleets of shared autonomous vehicles (SAVs) are able to provide efficient
door-to-door transportation services for city dwellers. However, because of the steady growth of
e-commerce and same-day delivery services, new city logistics approaches will also be required to
deal with last-mile parcel delivery challenges. We focus on modeling a variation of the people and
freight integrated transportation problem (PFIT problem) in which both passenger and parcel
requests are pooled in mixed-purpose compartmentalized SAVs. Such vehicles are supposed
to combine freight and passenger overlapping journeys on the shared mobility infrastructure
network. We formally address the problem as the share-a-ride with parcel lockers problem
(SARPLP), implement a mixed-integer linear programming (MILP) formulation, and compare
the performance of single-purpose and mixed-purpose fleets on 216 transportation scenarios. For
149 scenarios where the solver gaps of the experimental results are negligible (less than 1%),
we have shown that mixed-purpose fleets perform in average 11% better than single-purpose
fleets. Additionally, the results indicate that the busier is the logistical scenario the better is
the performance of the mixed-purpose fleet setting.

© 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
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1. INTRODUCTION

The world’s level of urbanization is likely to steadily in-
crease in the next decades: 2.5 billion people are projected
to be added to urban centers by 2050 (UN, 2014). This
growth tends to be accompanied by a series of underlying
repercussions: while urban land will increasingly become
scarce, the demand for cities services and infrastructure
will probably rise as well. Besides, the steady growth of
online retail and the recent development of speedy delivery
services, such as same-day deliveries, are also expected to
increase the number of freight movements inside urban
centers, challenging even further cities’ mobility infrastruc-
ture (Savelsbergh and Woensel, 2016). As a result, current
deficiencies in urban mobility, such as lack of parking
spaces, congestion, and low vehicle occupation rates, might
be strongly intensified if the current mobility paradigm
remains unaltered (Pavone et al., 2012).

Ride-sharing has been described in the relevant literature
as a sustainable solution to mitigate such deficiencies. In
fact, as demonstrated by (Tachet et al., 2017), most urban
centers world-wide have a high, unexplored “shareability”
rate, i.e., the majority of their current single-passenger

* This research is supported by the project “Dynamic Fleet Man-
agement (P14-18 project 3)” (project 14894) of the Netherlands
Organisation for Scientific Research (NWO), domain Applied and
Engineering Sciences (TTW).

rides could seamlessly be combined. Consequently, increas-
ing the occupancy rates of vehicles by globally managing
empty car seats could drastically improve the efficiency
of urban transportation systems (Agatz et al., 2012). For
a ride-sharing system to succeed, however, it must be as
convenient as private car usage so that it is adopted by a
sufficient number of users.

The long anticipated advent of autonomous vehicles (AVs)
can possibly represent the necessary change to transporta-
tion systems that will finally jump-start widespread ve-
hicle sharing (Spieser et al., 2014). As vehicle automa-
tion advances, commuting via shared, self-driving vehicles
may eventually become as affordable as public transit
modes (McKerracher et al., 2016). Then, stimulated by
the additional convenience of a door-to-door on demand
service, many passengers might be compelled to subscribe
to an autonomous mobility-on-demand (AMoD) provider,
reducing their vehicle ownership, and, as a result, cities’
congestion and parking requirements (Litman, 2017). Be-
sides reshaping public transit, AVs are also expected to
impact last-mile delivery services. Joerss et al. (2016),
for example, advocate that autonomous vehicles equipped
with parcel lockers will enable affordable and convenient
same-day and time-window delivery options in urban ar-
eas.

2405-8963 © 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
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Recent studies have consistently shown that AMoD sys-
tems employing fleets of shared autonomous vehicles
(SAVs), can be more efficient (Boesch et al., 2016; Alonso-
Mora et al., 2017) and sustainable solutions (Fagnant
and Kockelman, 2016) for urban logistics. However, they
also show that vehicle occupation is highly dependent
on demand fluctuation. In fact, passenger transportation
demand greatly varies throughout the day (see, e.g., Stiles
et al. 2014), so that any fleet, shared or not, would be
inevitably idle during off-peak hours. As an alternative to
harness the full potential of its vehicles, a fleet operator
might take advantage of the inherited flexibility of parcel
transportation to also meet freight demands whenever
adequate. Besides improving profitability by dealing with
passenger and parcel requests interchangeably, such inte-
grated approach would also enable the creation of low cost
routes by combining heterogeneous overlapping journeys.

Although people and freight integration is already present
in some long-haul modes (e.g., aircrafts, ferries), short-haul
integration is hardly observed in practice (Savelsbergh and
Woensel, 2016). To the best of our knowledge, integration
on a ride-hailing setting was only explored in (Li et al.,
2014), (Li et al., 2016a) and (Li et al., 2016b). The authors
describe the share-a-ride Problem (SARP), a variation
of the well known dial-a-ride problem (DARP), in which
people and parcels can share the same taxi. However, ride-
sharing is limited in such approach, since each vehicle
can only combine a single passenger request with a single
parcel request.

In this study, we model and evaluate a people and freight
integrated system (PFIT) in which both commodities, i.e.,
passengers and parcels, are transported simultaneously
by compartmentalized mixed-purpose SAVs. We assume
passenger compartments are private cabins tailored for
human transportation whereas freight compartments can
be parcel lockers of different sizes. Differently from previ-
ously mentioned SARP implementations, we consider all
possible ride-sharing people and freight integration sce-
narios. Hence, each vehicle is allowed to (1) carry one or
more passengers, (2) carry various sized parcels, and (3)
carry a number of passengers and parcels. Finally, to assess
the performance of such mixed-purpose fleets, we compare
them with equivalent single-purpose fleets in which there
is no people and freight integration.

The subsequent sections define the examined share-a-ride
with parcel lockers problem (SARPLP) and present a
mathematical model for the problem as well as a numerical
study leading to managerial insights and conclusions for
the future of shared autonomous transportation of pas-
sengers and parcels.

2. PROBLEM DEFINITION

We consider a PFIT system comprised of mixed-purpose
SAVs with parcel lockers, i.e., shared vehicles featuring
people and parcel compartments. Next, we identify some
potential types of compartments as well as the commodi-
ties they are supposed to accommodate:

XS: documents, e.g., mail, envelopes;
S: small objects e.g., jewelry, electronics;
M: average sized objects e.g., bags, purses;

: large objects e.g., suitcases, groceries;

extra large objects e.g., household appliances;
adult seat;

children seat (above 3 years of age);

baby seat (under 3 years of age);

wheel chair space.

The set of human compartments is H = {A,C, B, W} and
the set of freight compartments is F' = {X S, S, M, L, X L}.
While passenger requests must be attended as soon as they
are revealed, parcel requests have more flexible pick-up and
delivery times, i.e., they do not have to be immediately
addressed. This characteristic of the parcel transportation
requests aims to emulate current courier services, in which
senders and receivers previously agree on the delivery
conditions. For instance, an online store might determine
a 24h delivery policy whereas a restaurant might require a
much shorter time span. In our static approach, however,
we consider that the details of both types of request, such
as, number of compartments, pick-up/delivery coordinates
and time windows, are know in advance. Still, pick-up
windows and travel delays are assumed to be much shorter
for passenger requests.

Zwae=rr e

Regarding the fares of the transportation service, we con-
sider that human and freight commodities are charged not
only according to the distance entailed by their rides, but
also by the type of compartment specified in the demand.
For freight transportation, for example, the cost can be
proportional to the dimensions of the compartments. Ul-
timately, to properly determine a service fare a request
must include (1) the pick-up and delivery coordinates and
(2) the number of units required for a determined type
of compartment. This information is essential during the
scheduling phase: only vehicles whose available number of
compartments match the order specifications are suited to
attend a potential commodity transportation demand.

Theoretically, the problem can be modeled as a variant of
the classic pick-up and delivery problem (PDP), in which
transportation requests consist of point-to-point trans-
ports, i.e., movements of people or cargo between origins
and destinations (Toth and Vigo, 2014; Berbeglia et al.,
2010). According to Berbeglia et al. (2010), depending on
the way vehicles move between points, such problems can
be categorized as 1) many-to-many, 2) one-to-many-to-one
and 3) one-to-one. In 1), any point can serve as a source or
as a destination for any commodity and in 2), commodities
might be transported from the depot to the customers
and from the customers to the depot. Finally, in 3) each
commodity has a given origin and a given destination, such
as the door-to-door system presented in this study.

Figure 1 highlights the differences from Li et al. (2014)
implementation, making explicit the concept of compart-
mentalized requests. A mixed-purpose SAV comprised of
5 compartments of type “A” and 5 compartments of
type “XL” is supposed to find the best route to attend
a set of transportation requests structured as follows:
id_request:id_compartment [number]. From the depar-
ture moment until the delivery of the last customer, the
load configuration of the vehicle in each point can be rep-
resented by the following sequence { 1:A[1]-XL[0], 3:A[3]-
XL[0], 1:A[2]-XL[0], 3:A[0]-XL[0], 2:A[0]-XL[2], 4:A[2]-
XL[2], 4:A[0]-XL[2], 6:A[3]-XL[2], 6:A[0]-XL[2], 5:A[0]-
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INPUT
ALS]-XLL]

OUTPUT

Transportation requests &
Mixed-purpose SAVs

Ridesharing routes

&People demand ﬁFreight demand AL SAV

Fig. 1. Example of the operational behaviour of a
PFIT system comprised of mixed-purpose capacitated
SAVs. Passengers and parcels requests are consoli-
dated in the same vehicle.

XL[5], 5:A[0]-XL[2], 2:A[0]-XL[0]}. Assuming the re-
quest’s IDs are related with the order they are revealed,
notice that the ride-sharing route generated privileges peo-
ple demands, occasionally postponing the service at freight
demands.

We extend the MILP model presented by Li et al. (2014)
to define a pick-up and delivery problem able to handle
the constraints involving our performance demands, vehi-
cles’ specifications and requests’ heterogeneity. Firstly, we
define a set K of vehicles such that each vehicle £k € K
is equipped with a set of available compartments C} and
geographically located at a starting point s;. Additionally,
for each vehicle k, the number of compartments ¢ € Cy, is
Q% > 0. From the vehicles’ compartments definition, we
can derive the overall set of compartments C = {Cy U
Co U ...Cy... U C|g|}. The set of compartments C' can be
further partitioned into two sets, F' and H, according to
the nature of the commodity being transported, namely,
freight or human.

Secondly, we define a request as a transportation demand
to move commodities between two geographical points in
a map. Hence, given a set of requests R, every request
i € R determines a set of compartment demands D; C C
as well as the number of units ¢ of compartment c € D;.
We assume that all compartment demands D; can be
totally satisfied by a vehicle k € K, therefore Vi € R
dk € K : D; C Cp ANVe € Dy, qf < Q]cf Furthermore,
besides defining a transportation demand, every request
¢ has an origin destination pair (pk;,dl;), so that the
set of requests’ pick-up nodes can be defined as P =
{pk; : i € R} and the set of requests’ delivery nodes
as D = {dl; : i € R}. Following Cordeau et al. (2007)’s
DARP formulation, the SARPLP is defined on a directed
graph G = (V, E) in which the vertex set V is partitioned
into {P, D, O, f} where O = {51, 52,83, ..., Sk, ..., S| k| }» 1.€.,
the set of vehicles’ starting points and f is an dummy final
point where all vehicles are supposed to finish. Defining O
and f is necessary to model the particular characteristics
of a free-floating fleet, in which vehicles can depart from
different locations and finish at the delivery location of
their last attended request.

Thirdly, to guarantee an adequate flow of commodities,
compartment demands are associated to all nodes in V.
For each request ¢ € R and compartment ¢ € D;, we
assume that G, = 0 and gg, = —¢p,. In turn, q]% =0Vce
C and ¢;, =0Vk € K,Vc € Ck.

Then, to create a set of edges F in which any vehicle
k € K can only traverse arcs (i,j) € (V,V) where
both compartment demands of ¢ and j match k’s loading
capabilities, we define the following auxiliary sets, V,
and V,. V,, is the set of tuples (i, k,c) where each tuple
indicates that a demand for an individual compartment
¢ of a node i can be attended by vehicle k, ie., V,, =
{(i,k,c) i e Vike K,ce C, N D;, Q5 >| ¢ |} In turn,
V., is the set of tuples (k,i) where each tuple indicates
vehicle k can completely accommodate all compartment
demands of node i, ie., V, = {(k,i) : k € K,i €
V.Ve € Ck, (i,k,¢) € Viy}. Thus, the set of valid edges

Table 1. Variables and parameters for the
SARPLP formulation.

Compartments

C {c:c € CrVk € K}. Additionally, C = {H, F}, i.e., Cis a
composite of human and freight commodities.

ac Initial fare for delivering commodity c € C.

Be Fare charged for delivering the commodity ¢ based on the
direct estimated travel time (in seconds).

d:gk Pickup delay associated with the embark/load of commodity
ceC.

df)L Delivery delay associated with the disembark/unload of com-
modity ¢ € C.

Requests

R Set of requests.

(pk;,dl;) Pick-up and delivery pair of request ¢« € R.

P Set of requests’ pick-up points, P = {pk; : i € R}.

D Set of requests’ delivery points D = {dl; : 1 € R}.

D; Set of demanded compartments of request ¢ € R.

q;: Amount of compartments of type ¢ € C requested by vertex
i€ Dj.

wipk, wft Maximum pick-up and travel time delays of request i € R.

lei, 1] Pick-up time window for request ¢ € R, where [; = e; +wfk.

d; Delay at node i € PUD. If i € P,d; = EaeDi q¢ « db*
and if 4 € D,d; = ZCGDi q5 * df’LA

Vehicles

K Set of all vehicles.

Sk Start point of vehicle k.

O Start points of all vehicles k € K.

Ch Set of compartments ¢ present in vehicle k € K.

Q’cC Number of compartments of type ¢ € C}, of vehicle k € K.

Vi Average operational cost/s (fuel, tolls, etc.) of vehicle k.

Model ancillary entities

f Dummy final destination point to which all vehicles must
finish in.

14 =PUDUOU({f}.

ti,j Travel time between nodes ¢ and j in seconds. t;y = 0,Vi €
PUDUO.

Vw Valid loads. Set of tuples representing valid load configura-
tions, Vi = {(i,k,c) | i € V,k € K,c € Cp, N Dy, QY. 2| qf |
1.

Vo Valid visits. A vehicle k € K can attend a request i only if i’s

demand can be completely accommodated. The set of valid
visits V,, = {(k,4) | k € K,i € V,Vec € Cy, (3, k,c) € Vi }.

E Valid rides. Set of tuples representing the viable rides of
vehicle k from point ¢ to point j. E = {(k,%,j) : k € K,i,j €
Vii#35,5 ok, i # f,(k, 1), (k, 5) € Vo}.

Model variables

k
i

Binary decision variable equal to 1 if vehicle k € K travels
from point i € V to point j € V, with i # j.

le Arrival time of vehicle k at point .
rf Time spent by request ¢ € R in vehicle k € K.
whe Load of compartment ¢ € Cy of vehicle k € K after visiting
K L k,c k,c
point i € V. For 'Lual’c =w."’
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E is comprised of tuples (k,i,j) representing a viable
ride from vertex ¢ to vertex j traveled by vehicle k, i.e.,
E={(ki,j): k€ K,ij € V,i#j.j¢oni+f (ki) e
Vo, (k,j) € V,}. Finally, we define as ¢;; the time spent
by any vehicle k to go from vertex ¢ to vertex j. Table
1 compiles the previously defined entities and defines the
remainder parameters necessary to build the model.

The formulation of the SARPLP is as follows:

Maximize:

Z Z (oe + 6cti,dli)X@k,j - Z’thi,szk,j

(k,i,j)EE c€ED; (k,i,j)EE
1€EP
Subject to:
ZXZ'kj <1 Vie P (2
(k,if)EE
k k
ZXSkyj:ZXi’le Vk € K (3)
(ks )EE (ki /)ER
Zlepkj - ZXf,dzj Vk € K,Vj€R (4)
(k,i,pkj)EE (kyi,dlj)eE
> oxk, =Y xki=0  VkEKVjePUD (5)
(k,i,j)EE (k,j,i)EE
T2 (rf b+ di) XS V(k,i,j) €E (6)
e <TF <l V(k,i) € Vy (7)
= Th = (g, +dpr,) V(K1) € {(k,D)|(k,pki) € Vo) (8)
tHa, <rE<tfa, +ot (ki) € {(kd)|(k,pki) € o}  (9)
w;fk > (w* + ¢5)XE; V(k,i,5) € E,Vc € C, (10)
wf’k > max{0, ¢{'} V(i,k,c) € Vi (11)
wi* < min{Q5, Q5 + ¢S} V(i k) € Vay (12)
xF; e{0,1} V(k,i,j) € E (13)
wi* eN V(i k,c) € Vi (14)
mF,rfeN V(k,i) € {(k,i)|(k,pki) € Vi }  (15)

The objective function (1) maximizes the total profit
obtained from the commodity delivery revenue minus the
operational cost of the active vehicles. Regarding the
constraints, (2) guarantees there is at most one arc leaving
every pick-up point, i.e., service denial is allowed. In turn,
constraint (3) guarantees all vehicles leave their origin
nodes and ultimately arrive at the destination dummy
node while (4) guarantees that if a vehicle visits a request
pick-up node it also must visit the associated delivery
node. Constraint (5) ensures that every pick-up node has
the same number of inbound and outbound arcs, in other
words, a vehicle visiting a node must subsequently leave it.
(6) defines the minimum arrival time of a vehicle at node
j as the sum of the arrival time of the previously visited
node i, its associated delay (boarding or/and loading times
at i) and the travel time from ¢ to j. Next, constraint
(7) imposes that the arrival time of a vehicle at a pick-
up point occurs within a predetermined time window,
(8) defines the ride time a customer spends inside a
vehicle and (9) defines the lower and upper bounds for
this time. Constraints (10), (11) and (12) ensures vehicles
compartment loads are feasible. Finally, we declare the
model’s variables in (13), (14) and (15).

3. NUMERICAL STUDY

A numerical study has been conducted considering various
experimental settings and instances in order to determine
the benefits of different fleet compositions. Particularly, we
focus on the performance assessment of fleets comprised
by mixed-purpose vehicles, whose internal space is divided
among freight and people compartments, and fleets com-
posed by single-purpose vehicles, in which all compart-
ments are dedicated to a specific class of commodity.

3.1 Ezxperimental settings

This section describes how we configured our MILP model
and how the instances were constructed. When creating
the instance scenarios, our ultimate goal was to provide
insights on how distinct factors concerning particular
characteristics of vehicles and requests may influence the
model’s outcome, especially in terms of: 1) the number
of vehicles in fact used to address the requests, 2) the
overall profit gleaned during the fleet’s operation and
3) the overall occupancy level. Regarding 3), we assume
the occupancy level of a single vehicle is proportional to
the share of time and number of loaded compartments
occupied throughout the entire operational route, i.e., from
the dispatching moment until the delivery of the last
customer. Hence, for a particular test case, the overall
occupancy level consists of the average occupancy levels
of all vehicles actually involved in the solution.

SARPLP general operational settings Table 2 presents
the model’s general parameters, shared by all our in-
stances. Every vehicles accommodates 10 compartments
of types “A” and/or “XL”, and both compartments are
assumed to have equal dimensions and service fares. How-
ever, human and freight compartments differ when time
related parameters are considered. Passenger requests im-
pose more pressing constraints once passengers must be
attended within 3m and the total travel delay can’t be
higher than 10m. In contrast, freight requests are more
flexible, allowing a 1h time window to be picked-up and
a bh delay. Additionally, delays for embarking and disem-
barking passengers are set to 1min, and delays to load and
unload parcels are set to Smin.

Table 2. Summary of the general parameters
for the SARPLP formulation.

Parameter Values Parameter Values
H, F {A}, {XL} wh, wh 3m, 10m
dg’;, adl 1m whf,, @i, 1h, 5h
dy’,, dé 5m aa,axr 16€
Vi 0.005€/s Ba, BxL 0.0016€/s
1Qk | 10
Instances  Due to the intrinsic limitations of an integer

programming formulation, we were unable to consider
large scale test cases with large numbers of vehicles and
requests. Hence we limit our investigation to small fleet
sizes, |K| € {4, 8,16}, and small number of requests, |R| €
{8,16,32}. Nonetheless, we defined a series of parameters
that enable the generation of a considerable number of
scenarios where many fleet and request’s aspects are taken
in consideration, namely:



396 Breno A. Beirigo et al. / IFAC PapersOnLine 51-9 (2018) 392—397

(1) Fleet composition: Two types of AVs equipped with
parcel lockers are considered. Single-purpose vehicles
are comprised of either freight or human compart-
ments and mixed-purpose vehicles have their internal
space equally shared among people and freight com-
partments.

(2) Share of freight requests: For each request set of
size n we check the influence of the proportion of
freight requests on the model outcome. As shown in
(Stiles et al., 2014), ride-hailing demands strongly
vary throughout the day, and it might be the case
of freight demands as well. In order to further inves-
tigate the differences of handling these commodities,
freight requests may correspond to 25%, 50% and 75%
of the total number of requests.

(3) Interval between requests: In real-world large-scale
transportation systems, many new requests may oc-
cur every second, whereas in smaller systems or less
busy scenarios, intervals between requests might be
bigger. Let [i;,,] be the range of possible integer in-
tervals (in minutes) between requests. We investigate
two possible intervals’ ranges: 1) [0, 0], i.e., no interval
between requests and 2) [5, 10].

(4) Range of route distance: Since our PFIT system is
intended to operate within urban centers, we expect
to deal with small distance trips (from 500m to 1km).
However, we also investigate longer distance trips
varying from 5km to 10km.

(5) Compartment demand/Req.: The compartment de-
mand per request, i.e., the number of compartments
associated with a single request, can be either low (<
50% of available compartments in vehicle) or high (>
50% of available compartments).

Table 3. Summary of scenarios’ parameters.

Parameter Values

Number of vehicles | K | {4,8,16}
Number of requests | R | {8,16,32}

Share of freight requests {25%,50%, 75%}
Interval between requests {[0, 0], [5,10]}

Range of route distance {0.5km-1km, 5km-10km}
{low (< 50%), high(> 50%)}

{single-purpose, mixed-purpose}

Compartment demand/request

Fleet composition

For each fleet composition (single-purpose or mixed-
purpose), a total of 216 scenarios are generated from the
combination of the parameters investigated (summarized
in Table 3). We run each scenario in 3 different geographi-
cal distributions of vehicles and requests, resulting in 1296
instances (2 fleet compositions x 3 geographical distribu-
tions x 216 scenarios). Each distribution is created based
on distinct datetime windows of the New York City taxicab
public dataset. Although it contains a number of fields,
we only make use of the origin/destination latitude and
longitude coordinates as a reference to build our instances.
Given a particular scenario, we chose 3 time windows and
for each window, we extract |K| vehicle’s origins and n
pairs of requests’ pick-up/delivery locations. Additionally,
when extracting requests, we only select those in which the
distance traveled by the taxi is within the preferred route
distance specified in the scenario. Finally, all travel times
between vehicles and requests coordinates are queried from
the Mapbox Matrix API (www.mapbox.com) using the

driving profile. Given a set of points, the API returns a
matrix of average trip durations based on the fastest car
routes.

3.2 Results

Test instances were solved on an Intel Core i7, 2.30GHz
CPU, 16GB RAM computer. Gurobi 7.0.2 Python inter-
face was used to implement the SARPLP model and the
maximum runtime of each instance was set to 10 min.

Table 4 compiles the results of the instances in which the
MIP gap between the lower and upper objective bound is
less than 1%. This constraint guarantees only near opti-
mal results are compared in order to draw more accurate
conclusions about the performance of mixed-purpose and
single-purpose fleets. As a result, both fleet compositions
are ultimately assessed over 149 scenarios, i.e., about 30%
of the scenarios with non-optimal solutions are eliminated.
For each combination of number of vehicles (| K|) and num-
ber of requests (|R|) we indicate in the first column (#)
how many scenarios were left out, and in the subsequent
columns we present the following averages for each vehicle
type: number of vehicles used to devise a solution (#Veh.),
the occupancy rate (Occ.(%)) of these vehicles and the
profit gleaned during the operation. In terms of acquired
profit, mixed-purpose fleets are able to reach superior
results in 92% of the instances tested, having profits in
average 12.3% higher than single-purpose fleets. However,
the additional profit comes at a cost: in average, 18%
more mixed-purpose vehicles must be assigned, resulting
in a 22.5% lower occupancy rate. Naturally, if a single-
purpose fleet is able to address roughly the same number
of requests of a mixed-purpose fleet with less vehicles,
the occupancy rate of the vehicles in fact used in the
solution will be higher. However, from the perspective of
a fleet operator who wants to make the most of his fleet
capabilities, idleness would only be welcomed if it did not
influenced fleet’s profitability.

It is also worth mentioning that since we are dealing
with a static setting, all people and freight demands are
known in advance, enabling single purpose vehicles to
be timely dispatched to attend each type of commodity
request. In contrast, when an unpredictable environment
is considered, i.e., when mixed-type demands occur dy-
namically, single-purpose vehicles may potentially miss
several opportunities to address overlapping human and
freight routes. This phenomenon can also be identified in
busy scenarios in which service will inevitably be denied
to a great share of the demands. In fact, such scenarios
ultimately induce vehicles to seek for the most profitable
set of customers while keeping a low operational cost. To
make this relation more explicit in our results, we compile
the average profit for both fleet compositions in Table 5,
grouped once again per number of vehicles and requests.
The busier the logistical scenario, i.e., the lower is the
number of vehicles available to attend a set of requests,
the higher is the superiority of the average profit of mixed-
purpose fleets over single-purpose fleets. This relation can
be particularly verified for the 4-vehicles instances: when
8, 16 and 32 requests are considered, mixed-purpose fleets
perform 13%, 24% and 33% better respectively. For this
setup, it can also be verified that this profit is greatly
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Table 4. Results of SARPLP instances whose
MIP gaps are lower than 1%.

Mixed-purpose Single-purpose
# | |K| | |R| | Occ.(%) | #Veh. | Profit | Occ.(%) | #Veh. | Profit
24| 4 8 28.5 3.4 253.6 34.7 2.7 224.6
17| 4 | 16 27.8 3.7 465.4 39.7 3.2 375.0
81 4 |32 29.6 4.0 731.5 42.7 3.3 551.6
24| 8 | 8 29.3 4.3 273.8 33.5 3.6 260.7
17| 8 | 16 27.6 6.1 542.7 33.3 5.4 504.7
81| 8 |32 25.7 7.1 972.0 31.8 6.3 861.0
24|16 | 8 30.0 4.8 294.4 33.2 4.3 275.8
18| 16 | 16 29.4 8.4 590.7 33.7 7.4 566.5
9116 | 32 279 11.4 |1074.9 30.7 10.2 | 1010.1

Table 5. Profit breakdown of mixed-purpose
and single-purpose fleets.

Mixed-purpose Single-purpose
|K| | |R| | Revenue | Cost | Revenue | Cost | Diff.
4 8 290.7 37.0 | 256.92 | 32.35 | 13%
4 | 16 528.9 63.5 | 423.62 | 48.63 | 24%
4 | 32 825.0 93.5 | 620.72 | 69.11 | 33%
8 8 310.8 36.9 | 296.08 | 3541 | 5%
8 | 16 610.0 67.4 | 565.54 | 60.86 | 8%
8 | 32| 1087.7 | 115.7 | 971.22 | 110.20 | 13%
16 | 8 330.0 35.6 | 310.77 | 35.00 | 7%
16 | 16 651.4 60.7 | 625.97 | 59.48 | 4%
16 | 32 | 1156.6 | 81.7 | 1093.53 | 83.39 | 6%

influenced by the increased revenue that far surpasses the
respective growth in the operational costs. On the other
hand, when a considerable number of vehicles is available,
single-purpose fleets show a similar performance to mixed-
purpose fleets once virtually every request can be attended
by a vehicle.

4. CONCLUSION

This study proposed a MILP formulation to deal with a
variation of the people and freight integration transporta-
tion problem. The performances of single-purpose and
mixed-purpose fleets of AVs are compared to determine
whether dividing vehicles internal space among people and
parcel requests is financially advantageous for a fleet oper-
ator wanting to implement such service in an urban center.
Overall, the results have shown that employing a fleet of
mixed-purpose vehicles is in fact more profitable once geo-
graphically overlapping people and freight demand can be
further combined to design more efficient routes. Neverthe-
less, it is important to stress that although we have tested
many different scenarios with varied characteristics, the
results are still highly dependent on the general parameters
assumed. The adoption of different compartment fares, for
example, could create a bias towards a specific commodity
and higher operational costs could drive to solutions where
farther requests are not worth attending. Hence, future
will focus on finding an adequate balance between these
factors to provide a sensible range of parameter options for
fleets’ operators. Additionally, more complex and realistic
instances shall be investigated throughout the implemen-
tation of a dynamic formulation.
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