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A DICHOTOMY CONCERNING UNIFORM BOUNDEDNESS

OF RIESZ TRANSFORMS ON RIEMANNIAN MANIFOLDS
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(Communicated by Svitlana Mayboroda)

Abstract. Given a sequence of complete Riemannian manifolds (Mn) of the
same dimension, we construct a complete Riemannian manifold M such that
for all p ∈ (1,∞) the Lp-norm of the Riesz transform on M dominates the Lp-
norm of the Riesz transform on Mn for all n. Thus we establish the following
dichotomy: given p and d, either there is a uniform Lp bound on the Riesz
transform over all complete d-dimensional Riemannian manifolds, or there ex-
ists a complete Riemannian manifold with Riesz transform unbounded on Lp.

1. Introduction

Given a Riemannian manifold M , one can consider the Riesz transform R :=
∇(−Δ)

1
2 , where ∇ is the Riemannian gradient and Δ is the (negative) Laplace–

Beltrami operator. In the Euclidean case M = R
n, this can be identified with the

vector of classical Riesz transforms (R1, . . . , Rn), as can be seen by writing R as a
Fourier multiplier (see [12, §5.1.4]).

It is easy to show that R is bounded from L2(M) to L2(M ;TM), and substan-
tially harder to determine whether R extends to a bounded map from Lp(M) to
Lp(M ;TM) for p �= 2. We let

Rp(M) := sup
‖f‖Lp≤1

‖R(f)‖Lp

denote the (possibly infinite) Lp-norm of the Riesz transform on M . Various con-
ditions, often involving the heat kernel on M and its gradient, are known to imply
finiteness of Rp(M); see for example [2–9,13,14]. These results usually entail finite-
ness of Rp(M) for all p ∈ (1, 2), or for some range of p > 2. On the other hand,
there exist manifolds M for which Rp(M) is known to be infinite for some (or all)
p > 2; see [1, 5–8, 13].

Remark 1.1. When M has finite volume we abuse notation and write Lp(M) to
denote the space of p-integrable functions with mean zero. This modification ensures
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that (−Δ)−1/2 is densely defined. When M has infinite volume, Lp(M) denotes
the usual Lebesgue space.

The Euclidean case is now classical: for all p ∈ (1,∞) there is a constant Cp < ∞
such that Rp(R

n) ≤ Cp < ∞ for all n ∈ N ([16]). This behaviour is expected to
persist for all complete Riemannian manifolds, at least for p < 2. More precisely, in
[9] it is conjectured that for all p ∈ (1, 2) there exists a constant Cp < ∞ such that
Rp(M) ≤ Cp for all complete Riemannian manifolds M . Such uniform bounds have
been proven for all p ∈ (1,∞) under curvature assumptions; rather than provide
an overview of the vast literature on this topic we simply point to the recent paper
[10] and the references therein.

One could weaken the conjecture slightly and guess that Rp(M) is finite for all
M , given p ∈ (1, 2). In this article we show that this can only hold if the bound is
uniform among all manifolds of a fixed dimension. This observation follows from
the following dichotomy.

Theorem 1.2. Fix d ∈ N and p ∈ (1,∞). Then the following dichotomy holds:
either

• there exists a constant Cp,d < ∞ such that Rp(M) ≤ Cp,d for all complete
d-dimensional Riemannian manifolds M , or

• there exists a complete (d + 1)-dimensional Riemannian manifold M such
that Rp(M) = ∞.

This follows from the following proposition, which we prove by an explicit con-
struction.

Proposition 1.3. Fix d ≥ 1, and let (Mn)n∈N be a sequence of complete d-
dimensional Riemannian manifolds. Then there exists a complete Riemannian
manifold M of dimension d+ 1 such that for all p ∈ (1,∞),

Rp(M) ≥ sup
n∈N

Rp(Mn).

The main implication of Theorem 1.2 is as follows: to construct a manifold M for
which Rp(M) = ∞ for some p ∈ (1, 2), it suffices to construct a sequence (Mn)n∈N

of manifolds of equal dimension such that Rp(Mn) → ∞ as n → ∞. Thus one is led
to consider lower bounds for Lp-norms of Riesz transforms. These seem not to have
been considered in the literature, excluding of course the well-known computation
of the Lp-norm of the Hilbert transform (the Riesz transform on R) [15]. We hope
that our contribution will provoke further interest in such lower bounds.

2. Preliminary lemmas

We begin with some basic lemmas. The first says that the range of the Laplace-
Beltrami operator is dense in Lp, and the second relates the Riesz transform on a
manifold M with that on the M -cylinder M × R. These cylinders play a key role
in the proof of our main theorem.

Lemma 2.1. Let M be a complete Riemannian manifold. Then the set S :=
Δ(C∞

c (M)) is dense in Lp(M) for all p ∈ (1,∞) (recalling that we write Lp(M)
for the space of p-integrable mean zero functions when M has finite volume).

Proof. LetH ∈ Lp′
(M) be such that 〈H,F 〉=0 for every F ∈ S. Then 〈H,ΔG〉= 0

for every test function G, so H is harmonic. By [17, Theorem 3], it follows that H
is constant, and the result follows. �
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Lemma 2.2. Let M be a complete Riemannian manifold. Then

Rp(M × R) ≥ Rp(M).

Proof. Consider the following modification of the Riesz transform on M × R:

R̃ := ∇M (−ΔM×R)
− 1

2 = ∇M (−ΔM − ∂2
t )

− 1
2 .

This is just the projection of R onto the first summand of the tangent bundle
T (M × R) = TM ⊕ TR, so we have that

(1) ‖R̃F‖Lp ≤ ‖RF‖Lp .

Let F ∈ C∞
c (M × R), and for all λ > 0 consider the function

Fλ(x, t) := λ
1
pF (x, λt),

which satisfies ‖Fλ‖Lp(M×R) = ‖F‖Lp(M×R). Rescaling the operator R̃ in the vari-

able t, we define

R̃λ := ∇M (−ΔM − λ2∂2
t )

− 1
2 ,

so that

(2) ‖R̃Fλ‖Lp = ‖R̃λF‖Lp .

Now take f ∈ C∞
c (M) ∩ D((−ΔM )−

1
2 ) and ρ ∈ C∞

c (R) such that ‖ρ‖Lp(R) = 1,

and consider the function F (x, t) = f(x)ρ(t). Since ΔM and ∂2
t commute, and the

function

Gλ(x, y) =

(
x

x+ λ2y

) 1
2

is bounded by 1 for (x, y) > 0, and Gλ → 1 pointwise as λ → 0, we have

lim
λ→0

(−ΔM − λ2∂2
t )

− 1
2F = lim

λ→0
Gλ(−ΔM ,−∂2

t )(−ΔM )−
1
2 f ⊗ ρ = (−ΔM )−

1
2 f ⊗ ρ

in L2, and thus also as distributions. Therefore R̃λF → Rf ⊗ ρ as distributions,
and so

lim inf
λ→0

‖R̃λF‖Lp(M×R) ≥ ‖Rf ⊗ ρ‖Lp(M×R) = ‖Rf‖Lp(M) .

Combining this with (2) and (1), and the fact that C∞
c (M)∩D((−ΔM)−

1
2 ) is dense

in Lp(M),1 yields Rp(M × R) ≥ Rp(M). �

3. Proof of the main theorem

In this section we carry out the construction that proves Proposition 1.3, which
implies Theorem 1.2.

Consider a sequence (Mn)n∈N of complete d-dimensional Riemannian manifolds.
We will connect the Mn-cylinders (Mn × R)n∈N along a T

d-cylinder T
d × R as

follows.2 For each n ∈ N fix a coordinate chart Un ⊂ Mn× (−1/2, 1/2) and a small
ball Bn ⊂ Un. Similarly, for each n ∈ N choose a small coordinate chart U ′

n ⊂ T
n×R

such that the charts (U ′
n)n∈N are pairwise disjoint, and a small ball B′

n ⊂ U ′
n. For

each n ∈ N, glue the manifold (Mn×R)\Bn to (Tn×R)\B′
n along the boundaries

1This follows from the inclusion D((−ΔM )−
1
2 ) ⊇ D((−ΔM )−1) ⊇ ΔM (C∞

c (M)), which is
dense by Lemma 2.1. See also [11, Lemma 2.2]. Again, recall that Lp(M) denotes the correspond-
ing space of mean zero functions when M has finite volume.

2Of course, one could connect the Mn-cylinders to each other directly, without needing the
T
d-cylinder. This would work just as well.
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Figure 1. Construction of M from (Mn)n∈N.

of Bn and B′
n; this is possible since both these balls are “Euclidean” balls sitting

inside coordinate charts. This results in a C0-Riemannian manifold (M, g′), which
is C∞ away from the set Σ =

⋃
n ∂Bn on which we glued the manifolds together.

Mollify the metric to get a C∞-Riemannian manifold (M, g) such that g = g′ away
from the ε-neighbourhood of Σ for some very small ε. An artist’s impression of this
construction, with Mn = S1 for each n, is shown in Figure 1.

For each n ∈ N we have an inclusion map

in : Mn × (1,∞) → M

which is an isometry. From here on we fix n and just write i = in. Functions on
M can be pulled back to Mn × (1,∞); the pullback map is denoted i∗, so that for
f : M → R the function i∗f : Mn × (1,∞) → R is defined by

i∗f(x, t) = f(i(x, t)).

On the other hand, for g : Mn× (1,∞) → R we can define a pushforward i∗g : M →
R by setting i∗g(i(x, t)) := g(x, t) on i(Mn × (1,∞)) and extending by zero to the
rest of M . For a function g : Mn×R → R and for s ∈ R we let τsg : Mn×R → R be
the translated function τsg(x, t) := g(x, t− s). Similarly if g : Mn × (1,∞) → R we
can define τsg : Mn × (1 + s,∞) → R. These concepts apply equally well to vector
fields in place of functions.

We will need the following lemma, which relates the heat flow on Mn ×R to the
one on M .

Lemma 3.1. Let F : Mn × R → R be smooth and compactly supported, and fix
σ > 0. Then for every (x, t) ∈ Mn × R,

lim
s→+∞

(eσΔM i∗τsF )(i(x, t+ s)) = (eσΔMn×RF )(x, t).
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Proof. Let Wx,t(σ) be a Brownian motion on Mn × R at time σ starting from
the point (x, t). Since the generator 1

2ΔMn×R satisfies 1
2 i∗ ◦ΔM×R|i(Mn×(1,+∞)) =

1
2ΔM |i(Mn×(1,+∞)), defining the stopping time

T (x, t) := inf {s : Wx,t(s) ∈ Mn × (−∞, 1)} ,
we have that i(Wx,t(σ)) is a Brownian motion on M for σ < T (x, t). Therefore

there exists a Brownian motion W̃i(x,t)(σ) on M such that W̃ (σ) = i(W (σ)) for

σ < T ; if W is a Brownian motion on M , we can take for example

W̃i(x,t)(σ) =

{
i(Wx,t(σ)) if σ < T,

W i(Wx,t(T ))(σ − T ) if σ ≥ T.

We have that

(eσΔM i∗τsF )(i(x, t+ s))

= E[(i∗τsF )(W̃i(x,t+s)(2σ))]

= E[(i∗τsF )(W̃i(x,t+s)(2σ))�2σ<T ] + E[(i∗τsF )(W̃i(x,t+s)(2σ))�2σ≥T ]

= E[(τsF )(Wx,t+s(2σ))�2σ<T ] + E[(i∗τsF )(W̃i(x,t+s)(2σ))�2σ≥T ]

= E[(τsF )(Wx,t+s(2σ))]

− E[(τsF )(Wx,t+s(2σ))�2σ≥T ] + E[(i∗τsF )(W̃i(x,t+s)(2σ))�2σ≥T ]

= (eσΔMn×RτsF )(x, t+ s)

− E[(τsF )(Wx,t+s(2σ))�2σ≥T ] + E[(i∗τsF )(W̃i(x,t+s)(2σ))�2σ≥T ].

Therefore∣∣(eσΔM i∗τsF )(i(x, t+ s))− (eσΔMn×RτsF )(x, t+ s)
∣∣ ≤ 2 ‖F‖L∞ P(T (x, t+s) ≤ 2σ).

Since ΔMn×R is translation invariant in the R coordinate, we have that

P(T (x, t+ s) ≤ 2σ) ≤ P
(
{Wx,t+s(σ

′) ∈ Mn × (−∞, 1) for some σ′ ≤ 2σ + 1}
)

= P
(
{Wx,t(σ

′) ∈ Mn × (−∞, 1− s) for some σ′ ≤ 2σ + 1}
)

and by continuity of Wx,t(·), this tends to 0 as s → ∞. Thus we find that

lim
s→+∞

(
(eσΔM i∗τsF )(i(x, t+ s))− (eσΔMn×RτsF )(x, t+ s)

)
= 0.

The conclusion follows from translation invariance of ΔMn×R in R. �

We return to the proof of Proposition 1.3. Fix ε > 0, and choose F = ΔMn×RH
for some H ∈ C∞

c (Mn × R) with ‖F‖Lp = 1 such that

‖RMn×RF‖Lp ≥ (Rp(Mn)− ε) ∧ ε−1.

Such a function exists by Lemmas 2.1 and 2.2. We claim that

(3) lim
s→+∞

τ−si
∗RM (i∗τsF ) = RMn×RF

as distributions. Assuming (3) for the moment, we have

lim sup
s→∞

‖RM (i∗τsF )‖Lp(M) ≥ lim sup
s→∞

‖i∗RM (i∗τsF )‖Lp(Mn×R)

= lim sup
s→∞

‖τ−si
∗RM (i∗τsF )‖Lp(Mn×R)

≥ ‖RMn×RF‖Lp(Mn×R) ≥ Rp(Mn)− ε,
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while for all s ∈ R

‖i∗τsF‖Lp(M) ≤ ‖τsF‖Lp(Mn×R) = ‖F‖Lp(Mn×R) ≤ 1.

The result follows, so it remains to prove (3).
For s sufficiently large, we have that

i∗τsF = i∗τs(ΔMn×RH) = i∗(ΔMn×RτsH) = ΔM i∗τsH,

therefore i∗τsF ∈ D(Δ−1
M ) ⊆ D((−ΔM )−

1
2 ), and hence

R(i∗τsF ) = ∇
(
(−Δ)

− 1
2

M i∗τsF
)

as a distribution. To test the distributional convergence, let X be a smooth com-
pactly supported vector field in Mn × R. For large s we have that

〈τ−si
∗RM (i∗τsF ), X〉 = 〈RM (i∗τsF ), i∗τsX〉

=
〈
(−Δ)

− 1
2

M i∗τsF, div(i∗τsX)
〉

=
〈
(−Δ)

− 1
2

M i∗τsF, i∗τs div(X)
〉
.

Therefore it is enough to show that for every G ∈ C∞
c (Mn × R),

(4) lim
s→∞

〈
(−Δ)

− 1
2

M i∗τsF, i∗τsG
〉
=

〈
(−Δ)

− 1
2

Mn×R
F,G

〉
.

By the well-known formula

(−Δ)−
1
2 = π− 1

2

∫ +∞

0

σ− 1
2 eσΔ dσ,

(4) is equivalent to showing that

(5) lim
s→∞

∫ +∞

0

σ− 1
2

〈
eσΔM i∗τsF, i∗τsG

〉
dσ =

∫ +∞

0

σ− 1
2

〈
eσΔMn×RF,G

〉
dσ.

Note that∣∣∣σ− 1
2

〈
eσΔM i∗τsF, i∗τsG

〉∣∣∣ ≤ σ− 1
2 ‖i∗τsF‖L2 ‖i∗τsG‖L2 ≤ σ− 1

2 ‖F‖L2 ‖G‖L2

and∣∣∣σ− 1
2

〈
eσΔM i∗τsF, i∗τsG

〉∣∣∣ = ∣∣∣σ− 3
2

〈
eσΔMσΔM i∗τsH, i∗τsG

〉∣∣∣ � σ− 3
2 ‖H‖L2 ‖G‖L2 .

Since the function min(σ− 1
2 , σ− 3

2 ) is integrable, by dominated convergence (5) will
be proved if we show

(6) lim
s→∞

〈
eσΔM i∗τsF, i∗τsG

〉
=

〈
eσΔMn×RF,G

〉
for every σ > 0. We show (6) by writing

lim
s→∞

〈
eσΔM i∗τsF, i∗τsG

〉
= lim

s→∞

〈
τ−si

∗eσΔM i∗τsF,G
〉

= lim
s→∞

∫ +∞

1−s

∫
Mn

(eσΔM i∗τsF )(i(x, t+ s))G(x, t) dx dt

=

∫
R

∫
Mn

(eσΔMn×RF )(x, t)G(x, t) dx dt

=
〈
eσΔMn×RF,G

〉
,
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using Lemma 3.1 and dominated convergence (by ‖F‖L∞ |G(x, t)|). This completes
the proof of Proposition 1.3, and hence establishes Theorem 1.2.
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