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SUMMARY

In shipbuilding, there is a need for faster and more efficient production. Furthermore,
quick adaptation of new technologies is desired. One method to potentially achieve
these goals, is modular production. Modular production consists of developing a prod-
uct family that consists of a base platform and several modules. Instead of designing
and producing each product as a one-off product, it can be created by combining mod-
ules. Although research highlights the potential of this method, there is a lack of quan-
titative results. Furthermore, modular shipbuilding comes with many scheduling chal-
lenges. The solution to these challenges influences the usefulness of modular shipbuild-
ing. Therefore, this dissertation focuses on identifying these challenges and finding good
solution methods for them.

In this dissertation, three challenges for scheduling for modular production are con-
sidered. The first challenge is the definition and usage of modules. For this, three things
have to be considered. First, the required resources, such as cranes, can differ based on
whether modules are used. Second, module definition influences the rest of the project.
An example is that using a larger module might require that the roof installation has to be
postponed until the larger module is installed. Third, since shipbuilding consists of very
large projects, each project has room for project-specific solutions, and thus, module
usage can differ per project.

The second challenge is inventory management. Due to the reduced production
time, the influence of items with long lead times increases. Furthermore, due to the
increased standardization of components, inventory costs are spread out over multiple
projects, increasing the economic feasibility of keeping components in inventory. Ad-
ditionally, long-lead items or modules can be replenished in multiple ways, such as in-
house production or outsourcing.

Finally, the third challenge is stochastic scheduling. Since modular production re-
sults in a product family of similar ships, there is some indication of the structure of the
next arriving project. This information can be used to create schedules that also perform
well on arriving future projects.

To handle these challenges, the Resource Constrained Project Scheduling Problem
with a flexible Project Structure (RCPSP-PS) is studied. This scheduling problem con-
sists of a set of activities of which a subset has to be executed. This allows the mod-
eling of modularization choices, such as the use of pre-assemblies or outsourcing. For
this problem, we introduce a Mixed Integer Linear Programming (MILP) model and de-
velop a solution method based on finding sets of activities with certain execution prop-
erties. The first type of sets contains activities of which at least one activity is executed
and the second type contains activities of which at most one is executed. Subsequently,
these types of sets are used to add cutting planes and eliminate variables, which in turn
is used in an exact solution method. This solution method is then compared against
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a state-of-the-art method from the literature, which shows that the proposed solution
method performs significantly better. However, as expected, due to the N P-hardness of
the RCPSP-PS, many instances remain without a proven optimal solution.

In order to find good solutions for the unsolved instances, two heuristic methods
are presented, along with an extension to the RCPSP-PS. This extension is the addition
of nonrenewable resources with consumption and production, leading to the Resource
Constrained Project Scheduling Problem with a flexible Project Structure and Con-
sumption and Production of Resources (RCPSP-PS/CPR). This type of resources allows
for modeling resources such as floor space, capital and inventory.

To quickly find feasible solutions to the scheduling problem, the concept of group
graphs is introduced. With this concept, two heuristic algorithms are developed: A hy-
brid differential evolution algorithm and an ant colony optimization algorithm. Both
algorithms are compared to a state-of-the-art algorithm from the literature and it is
shown that they produce better solutions. Since these heuristic methods find good solu-
tions, even for large instances, they can be used in practice for any case where the exact
algorithm does not provide a solution, or where the exact solution method takes too long
to provide a good solution. This can be the case due to instance size or due to the limited
availability of computing time.

Next, the scope is broadened to the production of a product family instead of a sin-
gle product. This is done by expanding the RCPSP-PS/CPR to the Resource Constrained
Project Scheduling Problem with Modular construction and new Project arrivals (RCPSP-
MP). This expanded problem includes the stochastic arrival of new projects, as well as
the inventory allocation of nonrenewable resources. The latter can, in combination with
the flexible project structure, be used to model the pre-assembly of certain modules.

The model consists of a scenario tree, which is a representation of multiple sce-
narios. To find solutions, an MILP model is developed that represents all projects in a
scenario tree simultaneously. Furthermore, for larger instances, a heuristic Progressive
Hedging (PH) algorithm is designed. This algorithm outputs individual solutions and
then uses penalties to converge to a single common solution that can be used across all
scenarios. To improve the convergence rate, two extensions to the PH algorithm are in-
troduced. These extensions also improve the quality of the derived solutions. With this
PH algorithm, inventory allocation and project structure decisions can now be made,
while considering future project arrivals. This is an important step in scheduling for
modular shipbuilding, as the final goal is to create a profitable product family, instead of
a single product.

Finally, stochastic project arrivals are considered for the standard Resource Con-
strained Project Scheduling Problem (RCPSP). Here, instances of the RCPSP arrive se-
quentially, with overlapping project end and start times. Since these projects use a set
of shared resources, the resource usage of a current project influences the next project.
The goal here is to schedule each project, while also taking into account expected future
projects. For this, simulation optimization is used: each objective function evaluation
contains a simulation of projects arriving in the future. It is shown that although this
creates better solutions than by not looking ahead, it also is very computationally ex-
pensive. Therefore, a second method is introduced. This method uses several neural
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networks to create an estimator for the objective function value. This requires a lot of
time to generate the data and time to train the neural networks, but all of this can be
done at non-critical moments in time. Then, at project arrival, instead of using simula-
tion, the estimator is used within an optimization algorithm. This results in computing
times that are only a fraction of the computing times of simulation optimization.

Furthermore, when comparing this data-assisted method to the method of not look-
ing ahead, a significant improvement is seen. Thus, it showcases the use of machine
learning within optimization for the RCPSP. In practice, this algorithm can be used in
a more developed stage of scheduling, where all modularization and outsourcing deci-
sions are already made.

In conclusion, this dissertation presents methods for scheduling modular shipbuild-
ing. These methods consists of flexible project structures, nonrenewable resources, re-
source allocation and stochastically arriving projects. Besides the use in modular ship-
building, the abstraction of these methods allow them to be used in many other indus-
tries.





SAMENVATTING

In scheepsbouw is er een behoefte aan snellere en efficiëntere productie. Daarnaast is
flexibiliteit, ten opzichte van nieuwe technieken, belangrijk. Een mogelijke methode om
deze doelen te bereiken is modulaire productie. Dit bestaat uit het ontwerpen van een
productfamilie, bestaande uit een basis platform en verschillende modules. Hiermee
kan een product gecreëerd worden door modules te selecteren, in plaats van het ontwer-
pen en produceren van een alleenstaand product. Alhoewel meerdere onderzoekers het
potentieel van deze methode aankaarten, is er een gebrek aan kwantitatieve resultaten.
Daarnaast introduceert modulaire scheepsbouw meerdere uitdagingen in planning. De
oplossingen voor deze uitdagingen beïnvloeden de bruikbaarheid van modulaire pro-
ductie in scheepsbouw. Daarom richt dit proefschrift zich op het identificeren van deze
uitdagingen en het creëren van oplossingsmethodes.

In dit proefschrift worden drie uitdagingen voor planning voor modulaire productie
aangekaart. De eerste uitdaging is de definitie en het gebruik van modules. Hiervoor
moeten drie factoren meegenomen worden. Ten eerste kunnen de benodigde midde-
len, zoals kranen, verschillen op basis van het gebruik van modules. Ten tweede beïn-
vloedt de moduledefinitie de rest van het project. Een voorbeeld is dat het gebruik van
een grotere module kan vereisen dat de installatie van het dak moet worden uitgesteld
totdat de module is geïnstalleerd. Ten derde, aangezien de scheepsbouw uit zeer grote
projecten bestaat, is er bij elk project ruimte voor projectspecifieke oplossingen en kan
het modulegebruik dus per project verschillen. De tweede uitdaging is voorraadbeheer.
Door de kortere productietijd neemt de invloed van langlopende artikelen toe. Boven-
dien worden, door de toegenomen standaardisatie van componenten, voorraadkosten
uitgesmeerd over meerdere projecten, waardoor het economisch haalbaarder wordt om
componenten op voorraad te houden. Bovendien kunnen artikelen of modules met een
lange doorlooptijd op verschillende manieren worden aangevuld, bijvoorbeeld door zelf
te producren of door productie uit te besteden. Ten slotte is de laatste uitdaging sto-
chastische planning. Aangezien modulaire productie resulteert in een productfamilie
van vergelijkbare schepen, is er enige indicatie van de structuur van het volgende pro-
ject dat binnenkomt. Deze informatie kan worden gebruikt om planningen te maken die
ook goed presteren bij aankomende toekomstige projecten.

Om met deze uitdagingen om te gaan, wordt het Resource Constrained Project Sche-
duling Problem with a flexible Project Structure (RCPSP-PS) bestudeerd. Dit is een
planningsprobleem dat bestaat uit een set activiteiten, waarvan een subgroep moet wor-
den uitgevoerd. Hiermee kunnen modularisatie-keuzes worden gemaakt, zoals het ge-
bruik van subassemblages of uitbesteding. We introduceren een Mixed Integer Linear
Programming (MILP) model en een oplossingsmethode, gebaseerd op het vinden van
subgroepen van activiteiten met bepaalde uitvoeringseigenschappen. De eerste sub-
groep bevat activiteiten waarvan tenminste één activiteit moet worden uitgevoerd. De
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tweede subgroep bevat activiteiten waarvan maximaal één activiteit moet worden uitge-
voerd. Deze subgroepen van activiteiten worden vervolgens gebruikt om snijvlakken toe
te voegen en variabelen te elimineren. Dit wordt vervolgens gebruikt in een exacte op-
lossingsmethode. Deze oplossingsmethode wordt vervolgens vergeleken met een (state-
of-the-art) methode uit de literatuur, waaruit blijkt dat deze beduidend beter presteert.
Echter, zoals verwacht vanwege de N P-hardheid van het RCPSP-PS, blijven veel gevallen
zonder een bewezen optimale oplossing.

Om goede oplossingen te vinden voor niet opgeloste instanties worden twee heu-
ristische methodes gepresenteerd, samen met een uitbreiding van de RCPSP-PS. Deze
uitbreiding is de toevoeging van niet-hernieuwbare middelen met consumptie en pro-
ductie, wat resulteert in het Resource Constrained Project Scheduling Problem with
a flexible Project Structure and Consumption and Production of Resources (RCPSP-
PS/CPR). Met dit type middelen kunnen middelen zoals vloerruimte, kapitaal en inven-
taris gemodelleerd worden.

Om snel uitvoerbare oplossingen te vinden voor het planningsprobleem, wordt het
concept van groepsgrafen geïntroduceerd. Met dit concept worden twee heuristische
algoritmes ontwikkeld: een hybrid differential evolution algoritme en een ant colony
optimization algoritme. Beide algoritmes worden vergeleken met een state-of-the-art
algoritme uit de literatuur en er wordt aangetoond dat ze betere oplossingen opleveren.
Aangezien deze heuristische methodes goede oplossingen vinden, zelfs voor grote geval-
len, kunnen ze in de praktijk worden gebruikt voor elk geval waarin het exacte algoritme
geen oplossing biedt, of waar de exacte oplossingsmethode te lang duurt. Dit kan het
geval zijn vanwege de grootte van de instantie of vanwege de beperkte beschikbaarheid
van rekentijd.

Vervolgens wordt de scope verbreed naar de productie van een productfamilie, in
plaats van een enkel product. Dit wordt gedaan door het RCPSP-PS/CPR uit te brei-
den naar het Resource Constrained Project Scheduling Problem with Modular con-
struction and new Project arrivals (RCPSP-MP). Dit uitgebreide probleem omvat de
stochastische aankomst van nieuwe projecten, evenals de voorraadtoewijzing van niet-
hernieuwbare bronnen. Dit laatste kan, in combinatie met de flexibele projectstructuur,
gebruikt worden om de voormontage van bepaalde modules te modelleren.

Het probleem bestaat uit een scenarioboom, wat een weergave is van meerdere sce-
nario’s. Om oplossingen te vinden, wordt een MILP-model gemaakt dat alle scenario’s
in een scenarioboom tegelijkertijd representeert. Bovendien wordt voor grotere instan-
ties een heuristisch Progressive Hedging (PH) algoritme gemaakt. Dit algoritme creëert
individuele oplossingen en gebruikt vervolgens strafpunten om te convergeren naar één
gemeenschappelijke oplossing die in alle scenario’s kan worden gebruikt. Om de conver-
gentiesnelheid te verbeteren, worden twee uitbreidingen op het PH-algoritme geïntro-
duceerd. Deze uitbreidingen verbeteren ook de kwaliteit van de gevonden oplossingen.
Met dit PH-algoritme kunnen nu beslissingen over voorraadtoewijzing en projectstruc-
tuur worden genomen, rekening houdend met toekomstige projectaankomsten. Dit is
een belangrijke stap in de planning voor modulaire scheepsbouw, aangezien het uitein-
delijke doel is om een winstgevende productfamilie te creëren, in plaats van een enkel
product.



SAMENVATTING xv

Tenslotte worden stochastische aankomsten voor het standaard Resource Constrai-
ned Project Scheduling Problem (RCPSP) onderzocht. Hier arriveren realisaties van het
RCPSP achtereenvolgens, met overlappende eind- en starttijden. Aangezien de projec-
ten middelen delen, wordt het volgende project beïnvloed door het middelengebruik
van het huidige project. Het doel is dus om het huidige project te plannen, terwijl de
verwachte toekomstige projecten in acht worden genomen. Hiervoor wordt simulatie-
optimalisatie gebruikt: elke doelfunctie evaluatie bestaat uit een simulatie van toekom-
stige projectaankomsten. Alhoewel deze methode betere oplossingen genereert dan de
methode die niet vooruit kijkt, zijn de rekentijden erg lang. Daarom wordt er een tweede
methode geïntroduceerd die eerder gesimuleerde data gebruikt. Deze tweede methode
gebruikt meerdere neurale netwerken om een schatting te maken van de doelfunctie.
Het genereren van deze data en het trainen van de neurale netwerken kost veel tijd, maar
kan uitgevoerd worden op niet kritieke momenten. Hiermee kan, zodra een project ar-
riveert, kan een schatting gemaakt worden in plaats van dat de volledige simulatie uit-
gevoerd moet worden. De rekentijden van deze methode zijn slechts een fractie van die
van de volledige simulatiemethode.

Daarnaast laat een vergelijking tussen de methode met neurale netwerken en de me-
thode zonder vooruitkijken een significante verbetering van gevonden planningen zien.
Hieruit blijkt het nut van het gebruik van machine learning binnen optimalisatie van de
RCPSP. In de praktijk kan deze methode gebruikt worden in een verdere planningsfase,
waar alle modularisatie- en uitbestedingskeuzes al gemaakt zijn.

Samengevat, deze thesis presenteert methodes voor planning in modulaire scheeps-
bouw. Deze methodes bevatten flexibele projectstructuren, niet-hernieuwbare midde-
len, voorraadtoewijzing en stochastische aankomsten van projecten. Behalve het ge-
bruik in modulaire scheepsbouw kunnen deze methodes, door het niveau van abstrac-
tie, ook in andere industrieën gebruikt worden.
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1
INTRODUCTION

Up to the 1970’s, Europe was a global leader in all segments of the shipbuilding industry.
Since then, low production costs, government subsidies and tax breaks, have caused a
shift of the market to Asian shipyards. Specifically, China, South-Korea and Japan have
become market leaders in the construction of bulk carriers and container ships. This
caused European shipyards to focus on niche markets, such as cruise ships, ferries and
workboats, where they could gain a competitive advantage by technological improve-
ments (Petersson et al., 2019).

Many of these niche markets play an important role in the global energy transition,
with various examples that can be found in different industries. Passenger transporta-
tion is a good example. Due to the short routes and the use of permanent docks, ferries
have been touted as one of the ship types most suited for electrical propulsion. How-
ever, despite this potential, the European ferry fleet remains old and in need of newer
and cleaner vessels. In 2016, it was estimated that the majority of European ferries are
older than 20 years (Gagatsi et al., 2016). Considering that commercial ships usually
retire after 25-30 years (Stopford, 2008), this means that a large fraction of European fer-
ries are close to replacement. Furthermore, ferry routes are usually close to populated
areas, therefore increasing the importance of lower emissions, such as CO2, NOx, SOx

and particulate matter. Unfortunately, there are many cases of polluting ferry transport.
For example, Vierth et al. (2019) found several cases of comparisons between trucks and
roll-on/roll-off transport, where shipping by truck is less polluting than shipping by ferry.
In 2015, the EU has imposed a drastic restriction in the allowed emission of sulphur for
the Baltic Sea, North Sea and English channel. Regulations like these are pushing the
shipping industry to look for cleaner solutions.

Another example would be the offshore wind turbine sector. In order to create a sus-
tainable supply of energy, offshore construction activities play a vital role. For example,
it has been estimated that offshore wind energy will grow rapidly in the European Union,
from 5.9 GW of installed capacity in 2015 to 95 GW in 2050. Most of this growth will take
place between 2020 and 2030 (Commission et al., 2021). The major part of vessels for
the offshore wind sector is used for construction purposes, and vessel supply has been
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touted as a potential bottleneck for offshore wind farm construction (Athanasia et al.,
2012). Furthermore, due to the large increase in size for offshore wind turbines, ship-
building speed has to keep up with these developments (Poulsen and Lema, 2017).

Finally, the agriculture industry can be seen as a potential important part of the
global energy transition. Seaweed agriculture is one of the fastest growing components
of the global food production. Furthermore, seaweed farms can act as a CO2 sink, help
reduce emmissions from agriculture and can produce bio-fuels (Vierth et al., 2019). For
this upcoming industry, workboats are essential, as they are needed for installation,
maintenance and operation.

To keep the European maritime sector flexible enough to adapt to these changes,
quick design and production of ships is desired. Furthermore, in light of the global com-
petition, shorter lead times can create a competitive advantage. A promising method to
achieve these goals is modular production. In modular production, products are built
from smaller parts, called modules, that can be combined to quickly create a variety of
products. This method of production has been successful in various industries, such as
the automotive and aerospace industries. Therefore, this dissertation explores the con-
cept of modular shipbuilding. Since the goal is to decrease production times and costs,
this is done from a scheduling point of view.

In the remainder of this chapter, we give an introduction to scheduling for modular
shipbuilding. First, in Section 1.1, we introduce the concept of modularity, discuss how
this concept can be applied to production, and explore other industries that incorpo-
rate modular production. Next, in Section 1.2, the link to shipbuilding is made. Here,
we first give a general overview of the traditional shipbuilding process, after which we
give a more detailed description of hull construction and outfitting. After this, we evalu-
ate the current state of modular shipbuilding. In Section 1.3, an introduction to project
scheduling given. This is started with a general introduction to mathematical optimiza-
tion. After this, we present the basic version of the scheduling problem that is studied in
this dissertation. Finally, we compare this basic problem to the requirements for modu-
lar shipbuilding and identify the gaps in optimization theory. This chapter is concluded
in Section 1.4, where an outline of this dissertation is given.

1.1. MODULARITY
The definition of product modularity varies across industry and literature. In this thesis,
we use the definition as given in Garud et al. (2009), applicable to a variety of industries:

Modularity is a strategy for organizing complex products and processes efficiently. A
modular system is composed of modules that are designed independently but still function
as an integrated whole.

To achieve modularity, information is partitioned into hidden information and vis-
ible information. Hidden information is information that only affects the local module,
and thus does not need to be communicated between modules. Conversely, visible in-
formation affects different modules. Therefore, this information needs to be available
across the whole system. Visible information falls into three categories (Garud et al.,
2009):

• An architecture that specifies which modules will be part of their system and what
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their functions will be.
• Interfaces that describe how the modules will interact.
• Standards for testing and measuring the performance of modules.

The concept of visible and invisible information simplifies the design and manage-
ment of complex systems. As long as the interfaces are defined concisely, the architec-
ture of the system enables one to understand the system without having to know all the
module-based details. Potential benefits from modularity include (Kusiak, 2002):

• Economy of scale.
• Increased feasibility of product or component change.
• Increased product variety.
• Lead time reductions.
• Decoupled risk.
• Easier product diagnosis, repair and disposal.

However, modularity can also incur costs. These include:

• Redundant physical architecture.
• Excessive capability due to designing for the most rigorous application.
• Potential for static product architectures and excessive product similarities.

Therefore, both the modular design and production process require careful considera-
tion to balance these costs and benefits. This challenge is addressed by the New, Ad-
vanced and Value-added Innovative Ships (NAVAIS) project from the European Union.
The goal of the NAVAIS project is to develop a modular based product family for ship-
building for ferries and workboats. This dissertation is part of this project, and focuses
on modular production to achieve lead time reduction and increased product variety. To
understand how modular production can assist in achieving these goals, the next sub-
section will introduce the customer order decoupling point.

1.1.1. CUSTOMER ORDER DECOUPLING POINT
In order to explain the benefits of modular production, we first explain the concept
of the Customer Order Decoupling point (CODP). This is defined as the point in the
value chain for a product, where the product is linked to a specific customer order (Ol-
hager, 2010). Generally, this points specifies the moment where product specifications
get frozen and where inventory is held. As can be seen in Figure 1.1, we distinguish
four stages in the process of creating a product: engineering, fabricating, assembling
and delivering. The CODP can be located before any of these stages. The latest CODP
is make-to-stock, where products are built completely to inventory. In the assemble-
to-order strategy, products are partially produced, but still have to be assembled upon
customer order. One step before this is make-to-order. Here, products are designed, but
the production only starts after they are ordered. Finally, the earliest CODP is engineer-
to-order. Product with this CODP are both engineered and produced after customer
order. A later position of the CODP generally guarantees a shorter lead-time, but also
carries a higher risk for the manufacturer. Before the CODP, actions are forecast-driven,
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rather than customer order-driven. Naturally, forecasts include uncertainty, and there-
fore the risk of overstocking or understocking. Furthermore, a late CODP also increases
the difficulty of maintaining a varied product portfolio.

Engineer Fabricate Assemble Deliver

Engineer-to-order Make-to-order Assemble-to-order Make-to-stock

Figure 1.1: Possible customer order decoupling points.

Modular production can be seen as production with an assemble-to-order CODP.
Furthermore, it is also possible for a supply chain with a make-to-order CODP to include
modular design. Here, the designs are made, but do not comprise complete products.
Instead, the products are designed consisting of one or more base platforms and multi-
ple modules. Upon customer order, these are combined to quickly create the design of
the complete product. This reduces the risk, as a smaller number of sub-assemblies is in
stock, and can be used for multiple applications. This reduces stock and also increases
turnover rate.

1.1.2. MODULARITY IN PRODUCTION
Usually, the first step in achieving modularity is modularity in design. This envolves
creating a design with the use of modules, thus creating a product family that has high
product variety with relatively few separate designs. Additionally, modularity can also
be extended to the factory floor. This is defined as modularity in production (Sako and
Said, 1999). In Sako and Said (1999), modularity in production is defined as follows:

Modularity in production is the ability to pre-combine a large number of components
into modules and for these modules to be assembled off-line and then brought onto the
main assembly line.

Thus, modularity in production implies a dispersed assembly process, distinguishing
between pre-assembly and final assembly. Modular assembly allows for a later CODP.
This is especially important when product variety is high and lead times are desired to
be low (Fredriksson, 2006).

1.1.3. INDUSTRIES
Modular design and production has been introduced in various industries. One of the
earliest and most successful industries is that of computers. In 1964, instead of creat-
ing a single computer, IBM introduced the system/360. This was a family of computers,
along with design rules for the interfaces and architecture of the modular structure. This
led to multiple advantages. Firstly, it allowed other manufacturers to design and pro-
duce modules, encouraging innovation. Secondly, it was now possible with a relatively
small product portfolio to cover both commercial and scientific applications. Finally, it
allowed customers to upgrade their product by replacing modules, allowing it to grow
with them instead of risking the possibility of outgrowing their investment.
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The modular structure became the standard in the computer industry, with various
companies improving the concept further. A major step was made by Dell. By using
modularity, Dell designed a line of technologically competitive, lower-priced PCs. This
was done by creating an assemble-to-order production process, which, combined with
outsourcing, was able to eliminate most of the inventory and reduce costs (Zhu et al.,
2014).

Another industry that has adopted modular production, is the automotive indus-
try. In this industry, different parts of the world use different modularization strategies.
Western automakers that apply a modular production strategy, are mostly interested
in outsourcing. Conversely, Japanese automakers are more inclined towards in-house
modular production (Pandremenos et al., 2009). Furthermore, manufacturers in Brazil
have implemented the modular consortium model (Pires, 1998). In this model, mod-
ules are delegated to specific module suppliers, which have the responsibility of assem-
bling their modules directly on the assembly line.

A good showcase of the possibilities of modularity in the automotive industry, is the
SMART car (Sako and Murray, 1999). This is a small city car, where most of the produc-
tion has been outsourced to module suppliers. These suppliers assume responsibility
for 40% of the total design cost and more than half of the infrastructure and production
equipment costs. Furthermore, the modular design allows for clients to choose a par-
ticular variant at the dealership. This variant was then constructed at the dealer from
modules in stock within 2 hours (Frigant and Lung, 2002).

Besides the automotive and computer industry, there are numerous other industries
that apply modular design and/or production. One of these is the bus manufacturing
industry. In this industry, Piran et al. (2021) investigated the reduction in time for a man-
ufacturer after implementing modularity. They found significant reductions in corporate
time (48 %), design time (55 %) and production time (30 %). In the construction indus-
try, prefab houses apply modularity in order to obtain benefits of mass production and
automation (Neelamkavil, 2009). This involves producing modules for housing off-site
in factories and transporting them to the installation site for assembly (Ferdous et al.,
2019). The benefits from this process include the reduction of material waste, improved
safety, minimization of building time and improved quality (Innella et al., 2019). Besides
housing, off-site modular construction has also been investigated for nuclear reactors,
where a potential reduce of 38 % in capital costs has been suggested (Wrigley et al., 2021).

Although many benefits of modular design and production are presented, evaluating
modularity in other industries also exposed certain risks. Kotabe et al. (2007) evaluates
modular production in the Brazilian automobile industry. Although they show multiple
obtained benefits, they also state that the hidden information of modules, from the per-
spective of the assemblers, has potential downsides: it can diminish learning capabili-
ties for the assembler. Furthermore, it can make them dependent on exclusive suppliers.
They note that this problem may arise, especially in environments where there is a lack
of trust between parties. Furthermore, one must consider that what is best for the in-
dustry, is not always best for individual companies. Earlier, we introduced the modular
personal computer from IBM: System/360. Although this had significant impact on the
industry as a whole, they could not retain their position as market leader. The reason
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for this is that although IBM tried to keep control of the production of the critical com-
ponents, these components were replicated by Compaq. With this, they could order all
other modules from IBM’s own suppliers and build a similar system with minimal effort
(Braha et al., 2006).

In conclusion, there are several cases in other industries where modularity is intro-
duced with success. However, it was also shown that implementing these is not a trivial
task and has certain downsides or risks. Therefore, careful analysis is required before
implementing modular production. In the next section, we give a general overview of
the shipbuilding process and of modularity in shipbuilding.

1.2. SHIPBUILDING
In this section, a description is given of the shipbuilding process and related work in
modularization in this area. Initially, the traditional shipbuilding process is presented,
starting from the pre-contract phase and ending at the ship delivery. Next, an elabora-
tion is given on the production process and this section is concluded with a literature
overview of research related to shipbuilding modularization.

1.2.1. TRADITIONAL SHIPBUILDING OVERVIEW
In this section, a basic overview of the complete shipbuilding process is given. The pro-
cess starts with the pre-contract design (Wei, 2012). The goal of this design is to give
sufficient information to both the shipbuilder and client for a technological and eco-
nomic assessment of the proposed design. After this, the contract is signed and a more
detailed design is made. This is made in the following iterative stages (Rose, 2017):

• Basic design: This design describes the ship as a total system. It creates an initial
solution by a preliminary general arrangement and selecting materials and tech-
nology.

• Functional design: This design defines each system of the ship systematically.

• Transition design: In this stage, the design is reorganized from a design based on
system schematics to a design based on physical locations.

• Work instruction design: This design has detailed cost estimates and construction
drawings and is suitable for production.

After the design phase, the ship production process starts. The first step of produc-
ing the ship, is material procurement and component fabrication. In certain shipyards,
this starts even before signing the contract for certain long-lead items. Subsequently, the
production processes can start. This process follows two lines: that of the steel structure
construction and that of the outfitting. The steel structure is built by constructing steel
sections and joining these. During both steel structure construction and outfitting, veri-
fication work is done to control the quality of production. Later, both lines are described
in more detail.

The scheduling of this production process is done on different levels. Initially, the
Master plan is created. This plan is created during the pre-contract design. This plan
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contains completion dates of key milestones, such as contract signing, launching and
delivery. Usually, payments from the clients are associated to these milestones. The
second planning phase is the Erection plan. This is usually created at the end of the
transition design, or in the beginning of the work instruction design. The erection plan
dictates the planning of when the steel structure sections are joined together. With this
plan, the Section building plan can be made that determines how each section is cre-
ated. Diving into further details, the Outfitting plan is made. This plan defines the outfit-
ting and painting per section. After the production processes, the ship is commissioned
and made ready for sea trials. Finally, the sea trials are executed, after which the ship
can be delivered. In the next subsection, the hull construction process is discussed more
elaborately.

1.2.2. HULL CONSTRUCTION AND OUTFITTING
The hull of the ship is created by iteratively joining together smaller sub-assemblies to
create larger assemblies. This involves the following chronological stages:

• Panel construction: During this stage, steel panels are created by joining steel
plates with profiles, girders and brackets.

• Section assembly: This stage create sections by joining the panels and individual
parts. This is the basic construction unit of a ship.

• Block building: Assemblies are joined together to form larger blocks.

• Erection: In this stage, the blocks and assemblies are joined on a slipway/drydock
to form the ship hull.

• Launching: In this stage, the ship is launched into the water, by either using a
slipway or a drydock.

The outfitting of the ship involves placing all components, machinery and systems.
Outfitting and painting can be done at various stages (Wei, 2012). Pre-outfitting is the
process of mounting components while the sections are being assembled or just after
assembly. Usually, sections are painted directly after this. On board outfitting involves
outfitting that is done during or after hull erection. Finally, outfitting that is done after
launching, is defined as outfitting along the quay. Pre-outfitting is generally the most
effective method of outfitting, since it is performed inside specialized workshops. Out-
fitting on board can be required due to time constraints, as the erection schedule usually
is leading to the outfitting schedule. Furthermore, it can be required due to the nature
of the work, such as equipment alignment and connection works. Similarly, this is the
case for outfitting along the quay. However, in this case, workers need to bring materials
and equipment and often work in difficult positions. Therefore, it is preferred to do most
outfitting work as early as possible. The choice of which work to perform at which stage,
depends (amongst others) upon the following criteria:

• Production schedule: As the outfitting schedule is usually not leading, there is a
limit to the work that can be done during each stage.
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• Space accessibility: As the ship is further assembled, certain spaces become inac-
cessible. In these cases, it is important to perform the outfitting before this.

• Lifting capacity: The lifting capacity is an important constraint on the maximum
weight of a ship part, and thus of the amount of outfitted machinery.

• Material availability: Delays in material procurement can cause outfitting work to
be shifted to later phases.

• Section building position: The position of the section determines the suitability
for certain outfitting components. For example, if a section is constructed upside-
down, components that are close to the ceiling can be outfitted easier.

In modular outfitting, outfitting is done on sub-assemblies that are then installed as a
whole in the ship. Example of outfitting systems, are the propulsion system, pumps and
piping systems, and Heating, Ventilation and Air-Conditioning (HVAC) systems (Storch,
2007). The degree of work done by the shipyard itself varies. Many European shipyards
(Wei, 2012) use outsourcing to shift work to subcontractors. This offers various potential
advantages: it can alleviate shipbuilder workforce shortfalls, reduce the total costs of
building a ship due to reduced overheads, lower wage rates and improved efficiency.
Furthermore, it reduces the need of new capital investments. Schank et al. (2005) defines
two types of outsourcing: total outsourcing and peak outsourcing. Total outsourcing
subcontracts a complete system (for example, HVAC) or task (for example, painting).
Peak outsourcing is capacity related, and occurs when a shipbuilder temporarily does
not have enough resources or wants to reduce the workload.

1.2.3. SHIPBUILDING MODULARIZATION
The results of modular production in other industries have drawn attention from mar-
itime researchers. Agarwala (2015) lists potential benefits of modular shipbuilding. These
include construction benefits, such as a reduced construction period and higher effi-
ciency from learning. Furthermore, the added value can also be found in ship mainte-
nance (cheaper and faster to upgrade/repair/replace) and ship operation. Additionally,
modular construction is not only promising for the shipbuilder and shipowner, but also
for the environment (Ančić et al., 2019). Since modules can be designed for easy replace-
ment, ships can be easy to upgrade. This can accelerate innovations such as propulsion
by green energy. Furthermore, the option for upgrading certain parts of the ship can
extend the lifetime of it, thus decreasing waste of obsolete ships.

The prospects of potential benefits have resulted in various research in modular ship-
building. Henriksen and Røstad (2014) lists multiple paths for modularization. For the
process-wise path, they suggest using standardization and outsourcing as a basis. In
their view, this can be a cost effective way of distributing development cost. Outsourc-
ing and standardization are commonly viewed by researches as promising methods for
modularization in shipbuilding. However, both the module scope as the module de-
tails differ in literature. Rubeša et al. (2011) approach modularization from an outfitting
point-of-view. They compare labor costs of outfitting through different phases of the
shipbuilding process, such as onboard or in a workshop. Alternatively, Gunawan et al.
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(2018, 2020) define modules based on piping arrangement. Based on a design structure
matrix, indicating the connections between components, they use optimization algo-
rithms to find modules with a low number of interconnections. Pero et al. (2015) evaluate
the effects of modular construction on the supply chain for multiple industries. One case
study involves the production of a cruise-ship, where key modules include upper walls,
decks, living modules, mechanical systems (engines, navigations, pumps) and service
systems (cooling, heating, water supply). They note that due to the lack of standardized
interfaces, the integration with suppliers is quite high. Furthermore, modularity in small
passenger ships is researched by Vladimir et al. (2018, 2022). They divide the ship into
three modules: hull, power system and superstructure.

Despite various research, modularity is sparsely used in the maritime sector (Pfeifer
et al., 2020). Some successful implementations are found in the naval sector (Vladimir
et al., 2018; Alliff et al., 2016). However, especially in the latter case, the lack of publicly
available information inhibits the transfer to other types of vessels. Furthermore, a ma-
jor naval project to create the Littoral Combat Ship, a surface combatant with modular
mission packages, has resulted in limited success. Due to various concerns over cost,
survivability and effectiveness, the program has been controversial and can be seen as
a warning that modular shipbuilding requires careful evaluation of the potential risks
(O’Rourke, 2020).

Possible challenges for successful implementation are the increased complexity in
planning and need for initial investments (Alliff et al., 2016). Since the size of series are
much smaller than in industries such as automotive and aerospace, initial engineering
costs are significantly higher per product. Therefore, to obtain the benefits of modular
construction, module definition is critical (Agarwala, 2015). However, little is done to
quantify the gains and losses of modular construction in shipbuilding. Rubeša et al.
(2011) provide a method to estimate the decrease in cost and lead time, based on rules
of thumb obtained from historical data. Although this provides a good starting point,
these methods currently evaluate practices, instead of the benefits of future practices.
Furthermore, due to the rather simplistic scheduling done in these methods, potential
benefits due to modular construction can remain hidden.

To review the exact gaps in quantification, the process of implementing a modular
production line is discussed in the next section.

1.2.4. IMPLEMENTATION OF MODULAR PRODUCTION
In the preceding text, the concept of modular production is described along with an
overview of the shipbuilding industry and modularization efforts in this industry. It can
be concluded that, although there is some research indicating the potential of modular-
ization, it is not widespread in this industry. Furthermore, it is shown that there is very
little research done in quantifying the benefits of modular production. Since the trans-
formation to modular production requires considerable effort and investment, quan-
tification is essential. Therefore, in this subsection, the requirements for introducing a
modular production line in shipbuilding are evaluated.

First, before starting modular production, a product family is required. This product
family can be viewed from two sides. From the client perspective, it consists of design
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modules. These design modules must cover the desired market: a potential customer
should have their demands fulfilled by selecting the right set of modules. Conversely,
the shipyard uses production modules to actually construct the ships. Although the pro-
duction modules have to be able to construct all possible designs that can follow from
combining the design modules, the two types of modules can differ from each other. For
example, production modules can consist of smaller sub-assemblies that can be com-
bined into the design modules.

Naturally, the definition of production modules has influence on the project sched-
ule. For example, larger modules require larger cranes, but smaller modules might re-
quire more on-board installation work. Therefore, in order to define modules for effi-
cient production, one should consider the effects on project scheduling. Furthermore,
due to the size and duration of ship production projects, there is time available for cus-
tom and ship-specific production solutions. For example, even though the use of a mod-
ule would be beneficial, resource (un)availability might mean that for a specific project
it is better to use direct construction. Therefore, while defining the modules, one should
consider this flexibility during production.

After creating a modular design, the production yards should be prepared for con-
structing these products. Here, one should consider inventory allocation for the follow-
ing reason: since modular design reduces design time, there is less time between the
arriving product order and the start of building. Therefore, for material and/or com-
ponents with long lead times, the risk of material procurement becoming a production
bottleneck is increased. A potential method for dealing with this, is to keep compo-
nents or assemblies in stock. In regular shipbuilding, where each product is unique, this
carries high risks: if no order for a ship that requires the component/assembly comes
in, the component/assembly still has to be stored, financed, and depricated. However,
since a modular design has a larger degree of component commonality, this risk is re-
duced. Thus, because of the increased risk of delivery times becoming a bottleneck and
because of the lower risk due to a larger degree component commonality, a modular
shipbuilding process requires one to reconsider the inventory policy.

Finally, after the work preparation phase, the production process starts. Here, the
definite decisions for scheduling have to be made: which modules to use, should cer-
tain work be outsourced, should the inventory be replenished, and so on. Furthermore,
while scheduling a project, we have some expectation on the work required for the next
project due to the increased standardization of products. To fully capture the benefits of
modular production, it might be important to include this knowledge of the future into
the current schedule.

In conclusion, both for implementing and executing modular production, there are a
lot of specific choices and considerations to be made. The goal of these choices is to cre-
ate an optimized production process. Although scheduling methods could aid in making
these choices, to the best of our knowledge, scheduling theory for modular shipbuilding
is still not well developed. However, it would fill an important gap for the successful im-
plementation of modular shipbuilding for two reasons: first, better quantification of the
benefits of modular production are needed to justify the large initial investment costs
of the implementation. Secondly, smarter scheduling decisions can increase the ben-
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efits, thus helping in the economic feasibility of modular production in shipbuilding.
Therefore, in the next section, an introduction to optimization theory and, subsequently,
scheduling theory is given.

1.3. PROJECT SCHEDULING
Scheduling is the process of constructing a schedule such that every activity or action
aligns with the final objective. In mathematical optimization, this is done by transform-
ing a real world problem to a mathematical model. This model consists of an objective
function and a solution space. The solution space is the set of all feasible solutions and
the objective function maps each solution to a value, which in turn is minimized or max-
imized.

If we look at our own calendar, we usually just have to schedule a few activities per
day. In normal situations, this does not create many problems. However, scheduling
events with a small group already can result in some difficulties. Now, consider a ship-
yard, where thousands of activities have to be scheduled. Furthermore, ships usually
consists of hundred of thousands of parts and manufacturing can take up to several
months or even years (Brett et al., 2022). It can easily be understood that this constitutes
a difficult scheduling problem, with many possible schedules. In these cases, optimiza-
tion can help us find the best schedule.

One might wonder if optimization theory and algorithms are really necessary: we
have very fast computers that seem to get even faster every year. Can we not just evalu-
ate every possible solution the find the best solution? Although this method, called com-
plete enumeration, would definitely solve the problem, it often takes too long to be of
any practical use. For example, consider a simple sequencing problem, where we have to
find the best order to visit 30 houses. The number of combinations is 30! = 30·29·28 · · · ≈
2.65·1032 (30 options for the first house, 29 for the second, 28 for the third, and so on). To
put this number in perspective: if we could do 10 billion objective function evaluations
per second, it would take 8.41 ·1014 years to calculate all objective function values. This
is around 53,050 times the age of the universe.

Thus, better methods are required. In this section, we first give a general introduc-
tion to combinatorial optimization. With this theory in mind, we then present one of the
main scheduling problems discussed in the optimization literature. As we will see, this
scheduling problem is quite basic and only provides a starting point for the problems
encountered in modular shipbuilding. Therefore, we subsequently discuss the short-
comings of this scheduling problem, and thus what is needed to use it for modular ship-
building.

1.3.1. MATHEMATICAL OPTIMIZATION
As stated above, mathematical optimization involves finding an optimal solution. In
this subsection, we give a general introduction to mathematical optimization. We start
with the mathematical formulation of the models we consider. Subsequently, we provide
some information on the complexity of problems that can be formulated with such a
model. Finally, we present methods to find (optimal)) solutions to these problems. For a
more elaborate description of some of the theory introduced in this subsection, we refer
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to Schrijver (2008) and Cook et al. (1997).

FORMULATION

As stated earlier, mathematical optimization involves finding a solution within a solu-
tion space that optimizes a certain objective function. Therefore, in its most general
form, an optimization problem P can be stated as:

(P ) =
{

min f (x),

subject to x ∈X ,
(1.1)

where X is the solution space and f (x) is the objective function. A feasible solution is
defined as any vector x ∈ X . Note that the minimization chosen here is without loss of
generality, since every maximization function can be written as a minimization problem
of the negation of the objective function.

Usually, the solution space is given by constraints. A constraint defines some bound
on the solution vector x, for example g (x) ≤ 0. If both the constraints and the objective
function are linear, we call this linear programming. A linear program is in canonical
form if it is written as:

max cT x,

subject to Ax ≤ b

x ≥ 0.

(1.2)

Here, c is the cost vector, A the constraint matrix and b the constraint vector.

Every constraint in a linear program forms a halfspace. Consequently, the solution
space is a polyhedron if the number of halfspaces is finite. Then, for every linear objec-
tive function, the following property holds: ‘If there is an optimal solution, at least one
optimal solution lies at a vertex (corner point) of the polyhedron.’ This property is used
in the simplex method, which solves most linear programs quickly in practice.

In Figure 1.2, it is illustrated in two dimensions that (as long as there is one) there
is always an optimal solution at a vertex. In this illustration, the constraints are repre-
sented by the black lines, and it can be seen that the feasible region (grey) is indeed a
polyhedron. It can be seen that optimizing the linear objective function (red) results in
aligning this objective function with the top vertex.

An additional constraint to the linear program can be the requirement that one or
more variables have an integer value. If this is the case, we speak of a Mixed Integer Lin-
ear Programming (MILP) model. This model is very useful in practice, as many decision
problems are discrete. Especially, binary variables can represent yes or no decisions,
which is quite useful in decision-making. However, as useful as it may be, discreteness
complicates the process of finding an optimal solution, as the solution space is no longer
a polyhedron, and therefore, the optimal solution does not necessarily lay at a vertex of
the polyhedron. This can be seen in Figure 1.2, where an integer grid is shown by the
black dots. In the next subsection, we present some basic complexity theory to answer
the question: why are some problems ‘easy’ and some ‘hard’?
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Figure 1.2: A linear objective function in a convex polyhedron always has an optimum at a vertex.

COMPLEXITY

Although the example given at the start of this subsection gives some intuition why cer-
tain optimization problems might be difficult to solve, the number of possible solutions
does not necessarily define that a problem is difficult. An example is finding the shortest
path between two points in a network. Although there are exponentially many different
paths that can be taken, Dijkstra (1959) gives a fast algorithm that is guaranteed to find
the shortest path. Therefore, this subsection presents an introduction to computational
complexity theory, in order to answer the question: when is a problem considered ‘easy’
or ‘hard’?

Simply said, the difficulty of a problem is related to the required resources, generally
time and memory, to solve it. As any problem can vary in size, we are not interested
in absolute computing times. Instead, we are interested in how the size of the problem
scales with the required resources of the solution method. In particular, we are inter-
ested if the number of resources scale polynomially with the instance size, or not. If
the maximal computing time needed to solve a problem is a polynomial function of the
problem size, it is said that the problem can be solved in polynomial time. For example, if
t is the maximal computing time and x and y are parameters representing the size of the
problem, t = x3 + y7 means the problem can be solved to optimality in polynomial time,
but t = 4x +2y (exponential function) does not. This concept is used to divide problems
into complexity classes. Before describing these classes, we note that we consider deci-
sion problems instead of optimization problems. A decision problem is a problem with
a yes-no question: “Is there a route that takes less than 20 km?” instead of “What is the
shortest route?”

The class of decision problems solvable in polynomial time is denoted by P . An ex-
ample is finding a path below a certain length between two points, which can be solved
with Dijkstra’s Algorithm in polynomial time (Dijkstra, 1959). The class N P , standing for
nondeterministic polynomial time, contains all decision problems where each input with
a positive answer has a ‘certificate’ from which the correctness can be verified in poly-
nomial time. For example, consider the problem: “Is there a route of less than 20 km that
visits a given set of locations?”. Then, given a sequence of all locations, we can calculate
the length of the route in polynomial time. Therefore, the sequence is the certificate.

Furthermore, we have the class of N P-complete problems. By definition, these are
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the hardest problems in N P . A problem in N P is said to be N P-complete if every prob-
lem in N P can be ‘reduced’ to this problem. Reducing a problem A to a problem B is
defined as a polynomial transformation of an instance of problem A to an instance of
problem B, such that a yes-answer for the instance of problem B also gives a yes-answer
to the instance of problem A , and vice versa. This means that if problem A is reducible
to problem B, any algorithm that solves problem B in polynomial time does the same
for problem A . Therefore, it is said that problem B is ‘at least as hard’ as problem A .

Finally, the last complexity class we introduce is the class of N P-hard problems. This
group contains all problems, not necessarily in N P , that are ‘at least as hard’ as all N P-
complete problems.

Since every solution to a problem is a certificate, it follows that all problems in P are
also in N P . If the converse is true, and thus P = N P , is not known, and is a major open
problem in theoretical computer science. Therefore, there are two possibilities of the
relationship of all classes. In Figure 1.3, we see both the possibility for P = N P and for
P ( N P .

N P − compl ete

N P

P

N P −har d N P −har d

P = N P
= N P − compl ete

P Ú N P P = N P

Figure 1.3: Complexity classes, depending on whether P = N P or not (excluding the empty language and its
complement, which belong to P but are not N P-complete).

EXACT SOLUTION METHODS

After discussing the computational complexity, we now present some basic exact solu-
tion methods to optimization problems. An exact solution method for an optimization
problem is defined as a method that is guaranteed to find the optimal solution. This
has two implications: first, we find the optimal solution and, second, we know that this
indeed the optimal solution. The first method that we present is the simplex method.

The simplex method was designed by Dantzig (1951) and solves most LP problems
quickly in practice. It uses two properties of LP problems. The first one is that if there
is an optimal solution, there always is an optimal solution in one of the vertices of the
solution space polyhedron. The second property is that if, given a solution at a vertex,
none of the adjacent vertices has a solution with a better objective value, the solution at
the vertex is optimal. By using this, the simplex algorithm traverses from vertex to vertex,
until there is no improvement possible. In that case, the solution is optimal.
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In practice, the simplex method can be used to quickly find an optimal solution to
most LP problems. There are LP problems for which the simplex method requires expo-
nential time, but there exist other algorithms that solve these problems in polynomial
time. However, no polynomial time algorithm has been found yet to solve general MILP
problems. Therefore, MILP problems are usually much harder to solve than most LP
problems.

One of the most common methods for solving an N P-hard MILP problem is the
Branch and Bound (B&B) method (Land and Doig, 1960), although this might take ex-
ponential time. In this method, a search tree is used to break up the solution space into
smaller and smaller parts. A search tree is a graphical representation, consisting of nodes
and edges. Each node represents (a part of) the solution space. The root node represents
the complete solution space. Each node can be branched upon, which splits up the so-
lution space represented by the considered node into two parts represented by two new
nodes. Furthermore, bounding is used to discard nodes that can be proven to not con-
tain an optimal solution. We now illustrate the algorithm for a minimization problem.
In this problem, we assume that all variables have to be integer, resulting in an Integer
Linear Program (ILP).

The B&B method iteratively selects a node that has not yet been investigated, and
evaluates the problem represented by that node. For this problem, the LP-relaxation is
solved. This is the same problem, without restricting variables to integer values. There
are now three options:

1. The LP-relaxation is infeasible.

2. The solution of the LP-relaxation only has variables with integer values.

3. The solution of the LP-relaxation has variables with non-integer values.

If the relaxed problem does not have a feasible solution, neither has the integer prob-
lem. This means that the node cannot be branched upon any further. When a node is not
branched upon further, this is called pruning a node. In the second option, the optimal
solution to the relaxed problem is integer. This integer solution gives an upper bound
on the objective value of the complete integer problem. The smallest upper bound is
maintained globally, and is used to prune all nodes for which the objective function
value of the LP-relaxation of the corresponding problem is equal to or larger than this
upper bound, since in these nodes no better integer solution can be found than given
by the globally best upper bound. Finally, the last option is that the LP-relaxation has
a non-integer solution. If the objective function value of this solution is lower than the
best found integer solution, further branching is required. Otherwise, this node can be
pruned. Branching is done by selecting a variable xi with a non-integer value in the LP-
relaxation x∗

i to branch on. Then, two new nodes are created, one with the constraint
xi ≤ bx∗

i c and one with xi ≥ dx∗
i e. Since xi is required to be integer, this does not remove

any feasible integer solutions.
The B&B method starts this process at the root node and iteratively evaluates nodes

until all leaves of the tree have been pruned. Since nodes are only pruned when further
branching will not result in a better solution, the best found integer solution is thus the



1

16 1. INTRODUCTION

optimal solution. If the algorithm terminates without finding a feasible integer solution,
which happens if all leaf nodes are pruned because of infeasibility of the LP-relaxation,
it means that the integer problem is infeasible.

For each node, the choice whether the solution space has to be branched on further,
depends on the lower and upper bounds and on the feasibility of the linear relaxation of
the resulting solution space. Therefore, the quality of the bounds are vital to the perfor-
mance of the B&B algorithm. For this reason, a lot of research is done on how to improve
these bounds. One method is to change the formulation of the ILP. Often, the same prob-
lem can be expressed in various forms of variables and constraints. Although the optimal
solution value will be the same, the performance of the B&B algorithm might be signifi-
cantly different. A specific method of modifying the ILP, is to add additional constraints.
We define additional constraints, added with the purpose of improving the lower bound,
as valid inequalities. These constraints are added to remove a part of the solution space
of the linear relaxation, while not removing any integer solutions.

HEURISTIC SOLUTION METHODS

In the previous section, we described how the simplex method and B&B algorithm can
solve LP’s and ILPs. For MILPS, the same B&B algorithm can be used, while only branch-
ing on variables that are required to be integer. However, especially for (M)ILPs, many of
these problems are N P-hard. This means that there is currently no known algorithm that
solves these problems to optimality in polynomial time. Thus, even though improved
lower bounds can decrease the computational requirements to solve these problems,
there is currently no guarantee of finding an optimal solution within a reasonable time.
Therefore, we often have to settle for finding good feasible, instead of optimal, solutions.
This is done by heuristic methods. A heuristic algorithm for an optimization problem is
defined as an algorithm that tries to find a good solution, but does not give a guarantee
of optimality. Note that it is definitely possible for these algorithms to find the optimal
solution. However, this will not always happen, and even if it happens, we are not able
to prove optimality in general. Fortunately, giving up the guarantee of optimality usually
results in significantly less computing time, often just a fraction of the computing time
for exact methods.

We divide the heuristics into three categories: classic heuristics, metaheuristics and
hyperheuristics. Classic heuristics are problem specific and often close to how an actual
person might solve this problem. An example is the well known nearest neighbor algo-
rithm to solve the Traveling Salesman Problem (TSP), as described in Cook et al. (1997).
The TSP asks the question: “Given a list of locations and the distances between each pair
of locations, what is the shortest possible route to visit all locations precisely once and
return to the starting location?” The nearest neighbor algorithm, as its name implies,
finds a solution by moving from one location to another, each time selecting the clos-
est non-visited location. Classic heuristics have the benefit of being easy to implement
and easy to explain to users. However, other types of heuristics often outperform these
simpler types.

The second type of heuristics are metaheuristics. These heuristics are not problem-
specific and, thus, can be used on many problems. These algorithms try to explore the
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solution space in an efficient way, to find (near-)optimal solutions. Many of these heuris-
tics are based on local search: a local search algorithm tries to find a good solution, by
iteratively modifying an existing solution. Given a solution x, the set of solutions that
can be reached by this modification step is called the neighborhood. If the objective
value of solution x is better than the objective value of all solutions in the neighborhood,
it is called a local optimum. If a solution is at least as good as all other solutions in the
solution space, it is called a global optimum. This is illustrated in Figure 1.4.

Local optimum

Global optimum

Figure 1.4: An example of a local optimum and a global optimum.

Reaching a local optimum is quite easy. However, unfortunately, a lot of combinato-
rial problems have solution spaces with many local optima that are not global optima.
Therefore, one of the main goals of metaheuristic design is to escape these local optima.
For example, the local search based algorithm simulated annealing (Kirkpatrick et al.,
1983) occasionally accepts solutions even if they have worse objective values than the
current one. In Figure 1.4, it is illustrated how this might work. If we are at the local op-
timum, there are no better neighboring solutions, and thus, we get stuck if we are only
looking for those. However, if we temporarily would accept worse solutions, we might
‘climb out‘ of the local optimum and find the global optimum.

Search based metaheuristics can either consist of a single agent or of a population
of agents. Single agent methods, such as simulated annealing or tabu search (Glover,
1977), have a single agent exploring the solution space. Conversely, population-based
heuristics keep a population of agents, each representing a solution. These agents simul-
taneously explore the solution space and influence each other. Often, these algorithms
are inspired by nature. Examples are genetic algorithms (described in, e.g., (Katoch et al.,
2021)) that simulate evolution through natural selection, inheritance and mutation, and
Ant Colony Optimization (Colorni et al., 1991), where the foraging behavior of ants is
mimicked.

The final category of heuristics is called hyper heuristics. In Gendreau and Potvin
(2019), a hyper heuristic is defined as “an automated methodology for selecting or gen-
erating heuristics to solve computational search problems”. By selecting, combining or
adapting several components of heuristics, it is possible to create new algorithms. Often,
this is done by incorporating machine learning techniques.
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1.3.2. RESOURCE CONSTRAINED PROJECT SCHEDULING PROBLEM
There are many different optimization problems that involve scheduling and/or plan-
ning of activities. We now introduce a basic project scheduling problem to give an idea
of the type of problems considered in this thesis. In shipbuilding, both precedence con-
straints and resource availability are important. These characteristics are captured in
the Resource Constrained Project Scheduling Problem (RCPSP) (Pritsker et al., 1969).
In this section, we present the standard version of this problem. The RCPSP is a well
researched scheduling problem and will serve as the basis for the methods presented
in this dissertation. It consists of a set of activities that have to be scheduled, accord-
ing to precedence and resource constraints. The goal is to find a schedule of minimal
makespan; the duration of the project.

PROBLEM FORMULATION

We now formulate the RCPSP. The RCPSP consists of a set of activities N that have to be
scheduled. The first activity 1, and the last activity |N |, are dummy activities. They have a
duration of zero and indicate the start and end of the project, respectively. Each activity
i ∈ N has a duration di and has to be scheduled according to the precedence relation-
ships P : a precedence relationship (i , j ) ∈ P imposes that activity j can only start after
activity i is finished. These precedence relationships can be represented by a scheduling
graph, as shown in Figure 1.5. Here, each node represents an activity and each edge a
precedence relationship. Thus, for example, the edge from node 0 to 2 represents that
activity 2 has to start after activity 0.

0

1 3

2

5

4 1 Activity

Precedence relationship

Figure 1.5: Scheduling graph for example instance of the RCPSP.

Furthermore, the activities have to be scheduled according to resource constraints.
The set of resources is denoted by R. These resources can represent things such as ma-
chinery, workers, workshops etc. The total availability of each resource r ∈ R is λr . This
means that at any given time, the maximal resource usage of all running activities using
resource r ∈ R cannot exceed λr . Activity i ∈ N uses kr i units of resource r ∈ R during its
execution. Furthermore, we introduce the set of timesteps T = {1, · · · , |T |}. The timesteps
form the planning horizon: all possible times at which we can schedule the activities.

With this notation, we present an MILP formulation, as given in Pritsker et al. (1969).
For this, we use the binary variable Xi t for each activity i ∈ N and timestep t ∈ T . If
activity i ∈ N starts at time t ∈ T , we set Xi t = 1 and, otherwise, Xi t = 0. Then, Objective
function (1.3a) defines the objective. Since X |N |t is only equal to one if the final activity
|N | starts at time t , the sum in Objective function (1.3a) computes the starting time of
final activity N . Thus, by minimizing this, the makespan of the project is minimized.



1.3. PROJECT SCHEDULING

1

19

Next, we discuss the constraints, which define that each solution X represents a fea-
sible schedule. The first set of constraints, Constraints (1.3b) impose that each activity
starts execution at exactly one timestep. Secondly, the precedence relationships are im-
posed by Constraints (1.3c). Here, for each precedence relationship (i , j ) ∈ P , the left-
hand side of the equation increases by t ′+di , where t ′ is the starting time of activity i .
Thus, it represents the ending time of activity i . The right-hand side of the equation rep-
resents the starting time of activity j . Therefore, Constraints (1.3c) ensure that for each
precedence relationship (i , j ) ∈ P , activity j starts after or at the ending time of activity
i . Constraints (1.3d) make sure that each schedule X satisfies the resource constraints.
The left-hand side represents the total consumption of resource r ∈ R at time t ∈ T . The
outer sum sums over all activities, and the inner sum makes sure to select only activ-
ities that are still being executed. This is then set to be less than or equal to the total
resource availability λr . Finally, Constraints (1.3e) define that the variables can only take
on values of zero and one.

min
∑
t∈T

t X |N |t , (1.3a)

∑
t∈T

Xi t = 1, ∀i ∈ N , (1.3b)∑
t∈T

(t +di )Xi t ≤
∑
t∈T

t X j t , ∀(i , j ) ∈ P, (1.3c)

∑
i∈N

di∑
u=1

kr i Xi (t−u+1) ≤λr , ∀r ∈ R, t ∈ T, (1.3d)

Xi t ∈ {0,1}, ∀i ∈ N , t ∈ T. (1.3e)

EXAMPLE

We now give a small example of an RCPSP instance and two possible solutions, based
on the scheduling graph given in Figure 1.5. We consider an instance with a single re-
source: R = {1} with capacity λ1 = 2. For each activity i ∈ N , the duration di , resource
requirement k1i and precedence successors are given in Table 1.1.

Table 1.1: Example instance of the RCPSP.

i di k1i Successors
0 0 0 {1,2,4}
1 1 2 {3}
2 2 1 {5}
3 3 1 {5}
4 1 1 {5}
5 0 0 ;

Since activity one and two require three units of resource one in total, it follows that
they cannot be scheduled simultaneously. This gives at least two feasible schedules, as
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shown in Figure 1.6. Here, the total resource usage is shown on the y-axis, along with the
maximum resource capacity. It can be seen that by scheduling activity one first, activity
two and three can be carried out simultaneously, resulting in a makespan of four. Con-
versely, if activity two is executed first, the precedence relationship between activity one
and three implies that activity three cannot start before activity one finishes. This results
in a suboptimal schedule, with a makespan of six. Therefore, it can be seen here that by
making different scheduling decisions, the same project can either be executed in four
or six time units.
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Figure 1.6: Solutions for the example instance of the RCPSP.

EXTENSIONS

Although the RCPSP captures the basics of a lot of scheduling problems quite well, it can
be somewhat simple for a lot of real world applications. Therefore, a lot of research done
for the RCPSP is done on extensions of the RCPSP. In this subsection, we give a very brief
overview of research done in extensions of the RCPSP. Since this is such a well researched
area, the overview that we present is not aimed to be exhaustive, but is given with the
purpose of giving some idea of the kinds of extensions. Later in this thesis, extensions
related to modular shipbuilding are given in more detail.

In Hartmann and Briskorn (2010), an overview is given of extensions and variants of
the RCPSP. They divide these extensions into five categories: Different activity concepts,
different temporal constraints, different resource constraints, alternative objectives and
multiple objectives. For different activity concepts, they list, among others, preemptive
scheduling and multiple modes. Preemptive scheduling is the possibility of interrupting
activities at certain points in time. Multiple modes refers to the possibility of executing
an activity in different ways, with varying durations and resource requirements. Exam-
ples of varying temporal constraints are the inclusion of minimal and maximal time lags
between activities, or the addition of deadlines. Different resource constraints can, for
example, include nonrenewable resources that do not automatically renew after using
them. Another example is resource capacities varying with time. Furthermore, alterna-
tive objectives are a common extension to the RCPSP. For example, instead of minimiz-
ing the final makespan, cost based objectives are possible. Often, this is done on the net
present value: the cost discounted for the time value of money. Finally, multiple projects
can be considered, often with a combined objective function.
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Besides variations to the deterministic RCPSP, many researchers have included un-
certainty to the RCPSP (Herroelen and Leus, 2005). One source of uncertainty are stochas-
tic activity durations. Other research includes rescheduling with the random arrival of
new activities.

SOLUTION METHODS

Both exact and heuristics methods have been developed to (heuristically) solve the RCPSP.
Exact methods usually consist of Branch and Bound algorithms, often based on an MILP
model. To improve performance, different formulations can be used. In Koné et al.
(2013), various MILP formulations are compared. These formulations can either be in
discrete time or continuous time. In discrete time formulations (e.g., Constraint set (1.3)),
the activities have to be scheduled in discrete units of time with a decision variable link-
ing each activity to its timestep. In continuous time formulations, there are no discrete
timesteps. Often, continuous variables are used to determine the starting time of activ-
ities, along with additional binary variables to impose the precedence sequence and/or
resource constraints. Alternatively, an event based formulation is possible. Here, activ-
ities are modeled as pairs of events: a starting event and an ending event. These events
are then ordered in time, and the activities are linked to the events with binary variables.

Another method to improve the performance of the solution algorithm, is to add con-
straints/valid inequalities that cut off infeasible solutions. A fast and effective method to
impose bounds on the starting time of activities, is by using the Critical Path Method
(CPM). We define the length of a path in the scheduling graph as the sum of the dura-
tions of all activities encountered on that path. The critical path to a given activity is
then the longest path from the start to that activity. For example, in Figure 1.5, there are
three paths to activity 5: 0 → 1 → 3 → 4 → 5, 0 → 2 → 4 → 5 and 0 → 4 → 5. The length of
these paths is four, two and one, respectively. Therefore, the critical path length is four,
and forms a lower bound on the starting time of activity 5.

Due to the N P-hardness of the RCPSP, heuristic algorithms are often needed in prac-
tice. An important consideration here is the schedule representation. Unfortunately,
formulating a schedule by linking each activity directly to the executing times, as is done
in most MILP formulations, is unpractical for use within (meta)heuristics. Therefore,
Schedule Generation Schemes (SGSs) are usually used. An SGS converts a certain solu-
tion representation to a schedule.

Since most SGSs cannot represent every schedule possible, we now present a classifi-
cation of schedules (a more elaborate description can be found in, for example, Artigues
et al. (2008)). As introduced earlier, a feasible schedule is a schedule that satisfies the
precedence and resource constraints. Now, we introduce the concept of a left shift. A
left shift on an activity i ∈ N of a feasible schedule S transforms it into a feasible schedule
S′, by setting the starting time for activity i at least one timestep earlier. If this shift can
be done by sequential left shifts of one timestep, the shift is called a local left shift. If
this is not true, since certain intermediate left shifts would result in an infeasible sched-
ule, it is called a global left shift. In Figure 1.7, an example of both types of left shifts is
shown. Here, activity 4 can be moved at most 2 timesteps earlier using only left shifts
of one timestep, as shown in the top-right. After this, another left shift of one timestep
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would result in an infeasible schedule, due to activity 1. Therefore, the schedule in the
bottom-right can only be obtained by a global left shift on the initial schedule.

A schedule for which no local left shift is possible is called a semi-active schedule and
a schedule for which no global left shift is possible is called an active schedule. There
always exists an optimal schedule that is active. If for any activity, no local or global left
shift would be possible even if preemption (splitting up activities in time) was allowed,
the schedule is called a non-delay schedule, according to the classification for the RCPSP
given in Sprecher et al. (1995). It follows that every non-delay schedule is active and that
both non-delay schedules and active schedules are semi-active. An optimal solution is
also active, although not necessarily non-delay.

1
2 3

4

1
2 3

4

Local left shift

1
2 3

4

Global left shift

Figure 1.7: Local and global left shift for a schedule of the example instance given in Table 1.1.

The classification of schedules is useful, since a solution representation now only
has to represent active schedules. Usually, this is done by representing the schedule by
a sequence of activities, a so called activity list. This activity list is then converted to
a schedule using an SGS. This is done by starting with an empty schedule, and itera-
tively setting the starting times for activities. The SGS decides, based on the activity list,
the order of activities and how the starting times are set. There are two main types of
SGSs: serial SGSs and parallel SGSs. In a serial SGS, in each iteration, the next activity in
the activity list is scheduled at the earliest feasible time possible. A parallel SGS iterates
over the timesteps in ascending order. In each iteration at time t , a second iteration is
done over all unscheduled activities in the order of the activity list. Each activity is then
scheduled at time t , unless it causes infeasibility. A serial SGS can represent any active
schedule, whereas a parallel SGS can only represent non-delay schedules.

To construct an initial schedule to be used in a heuristic, a priority rule can be used
(Kolisch and Hartmann, 1999). A priority rule is a mapping that assigns each activity
i ∈ N a priority value, where at each decision moment the activity with the highest (or
lowest) priority value is selected. An activity list can then be constructed by iteratively
considering all precedence feasible unscheduled activities, and adding the one with the
highest (or lowest) priority value. Often, to further improve these schedules, improve-
ment metaheuristics are used, such as local search or genetic algorithms.
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1.3.3. SCHEDULING FOR MODULAR SHIPBUILDING
After having presented the basic RCPSP, we now discuss this problem in the context of
modular shipbuilding. Specifically, we discuss the shortcomings of the RCPSP in order
to handle the difficulties and opportunities that arise when considering modular ship-
building.

DEFINING AND USING MODULES

One consideration is the design phase. For modular shipbuilding, this switches from
designing a single product to designing a product family. This increases the significance
of design for production: any investment made here is now returned for all ships in the
product family, instead of a single ship. In this design, the definition of modules, and
possibly submodules, plays a very important role.

When defining several candidate modules, two things have to be considered. Firstly,
the use of a module has influence on the rest of the production process. For example, if
we choose to construct a large module A in a workshop, we have to make sure that there
is still enough physical space to place this module at the location in the ship. Therefore,
we have to make sure that this location is not yet enclosed, for example by delaying the
roof construction. Consequently, modules also influence each other. To continue the ex-
ample, if we have to hold off constructing the roof of the location of module A, we might
even gain more benefit if we also use module B located at the same space. However, if A
and B require similar workshop resources, using them together can introduce delays.

Secondly, even though modular shipbuilding has the potential of gaining certain
benefits of serial production, each ship still requires a large construction network with
a lot of room for project-specific solutions. Therefore, it should be considered that even
if a ship is designed with modules, it might be beneficial to not use a certain module at
certain times. For example, this can be due to capacity limitations in workshops, de-
livery time of ordered components, or due to outsourcing availability. Not considering
these project-specific deviations would result in unrealized potential of reductions in
makespan and/or costs. Additionally, even when it is decided that a module is used,
there are various options on how to use this. For example, the construction could be
outsourced or even built to stock before the customer order arrives.

To evaluate certain designs for production, it is important to perform simulations
to gain an insight into the results of modularization decisions. One method of using
the RCPSP in these simulations is by creating multiple projects, each representing a
certain configuration of modularization choices. This configuration consists of which
module to use, but also how to exactly use it (outsource, build in house, construct of pre-
ordered sub-assemblies). Therefore, the number of possible configurations increases
very quickly. This makes evaluating all configurations unrealistic. However, calculating
the schedules for only some configurations has the risk of missing potential benefits. The
same happens when an actual ship order comes in. Although in this case, human experts
might give some indication of which modules to use and how to use them, it still consti-
tutes a difficult scheduling problem. Using intuition or expert judgment on this carries
the risk of executing sub-optimal schedules. Therefore, instead of defining many vari-
ants of the RCPSP, realizing the full potential of modular shipbuilding requires a method
of optimally choosing the modularization configurations and scheduling these.
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INVENTORY MANAGEMENT

The quickest way of incorporating any module, is by not having to construct it when
needed, but by simply taking a pre-assembled module from inventory. Similarly, by hav-
ing certain long-lead items (for example, the ship engine) in inventory, ordering times
can be eliminated. Unfortunately, having these items in inventory incurs significant
costs, and is therefore not always financially feasible. First, there is the storage cost of
these items. Storage halls have to be rented, the items have to be insured, employees are
required for managing the storage facilities, etc. Secondly, there are the financing costs:
keeping an item in inventory requires this item to be purchased earlier than required,
which binds up capital. Finally, there are the depreciation costs: holding an item in the
inventory, carries the risk of the value of this item to decrease over time and even of the
item becoming obsolete.

Thus, although keeping items in the inventory potentially decreases makespan, it
also carries certain costs. In modular shipbuilding, however, a higher level of compo-
nent commonality across products causes these costs per ship to be lower. Since ships
are more similar and thus often use the same component, the expected time in inventory
for a component is relatively low. However, the exact inventory amount is not simple to
determine: not only does it depend on the components required for future project ar-
rivals, it also depends on the scheduling decisions made in these future projects. For
example, consider a component that is usually required in the 6th month of the ship
production process. If the delivery time is 5 months, there is no need of having this item
in the inventory. However, if, due to other scheduling decisions, the process is sped up
and the component is required after 4 months, it would be beneficial to have this item in
the inventory. Therefore, inventory management is linked to scheduling decisions. The
basic RCPSP only considers a fixed set of resources that automatically become available
after use. Therefore, the RCPSP would have to be extended to consider inventory alloca-
tion decisions.

STOCHASTIC SCHEDULING

The goal of modular shipbuilding is not to quickly or cheaply produce a single ship,
but to quickly or cheaply produce a series of ships. As these ships consists of a simi-
lar basic platform with varied modules, there is a lot of commonality between projects.
This creates potential for improvements in scheduling. Since a lot of costs, such as fixed
contracts for workers or rent for the facilities, are constant, having an (partially) unused
shipyard is not cost effective. Therefore, there is usually some project overlap in the ship-
yard: the next project starts before the current project is completely finished. Therefore,
resource and modularization decisions influence future projects. Potentially, this can
result in better schedules: if we know that certain resources are critical at the start of a
project, it makes sense to consider this while scheduling other projects. However, the
basic RCPSP does not support uncertainty: all information is fixed at the beginning of
the project. Therefore, by including stochasticity, schedules can be made that are just
not well-performing on the current project, but are also beneficial to other projects.
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1.4. DISSERTATION OUTLINE
In Section 1.3.3, the shortcomings of the RCPSP for modular shipbuildings are intro-
duced. This thesis is built on the premise that a successful modular design has to con-
sider production, and therefore, scheduling. Therefore, this thesis aims to bridge the
gap between the current state of scheduling research and the state required to evaluate
modular designs and schedule these in practice.

In Chapter 2, we focus on the different modularization choices. We introduce an ex-
tension to the RCPSP that handles flexible project networks, in order to represent the
various construction paths that have to be taken due to different choices in modulariza-
tion. With this new model, we also give an exact solution method, based on decreasing
the solution space. We evaluate the performance of this model and compare it against a
model from the literature.

Subsequently, in Chapter 3, we further extend this method to include nonrenewable
resources with consumption and production. This allows the modeling of characteris-
tics such as inventory, floor capacity and capital requirements. Furthermore, we further
analyse the flexible project structure introduced in Chapter 2 and give two metaheuris-
tics to find good solutions for this extended problem.

Then, in Chapter 4, uncertainty is introduced. In this chapter, we do not consider
a single project, but a series of projects where it is uncertain which project arrives at
what time. In this stochastic problem, we optimize the total costs, while determining
the inventory allocation, modularization, outsourcing and scheduling decisions.

Chapter 5 also introduces uncertainty, but in a different setting. It considers the ba-
sic RCPSP with arriving projects and tries to schedule these such that the resource usage
is beneficial to projects arriving in the future. The aim of this chapter is not only to eval-
uate if this optimization is possible: we introduce a data-assisted method that uses data
from earlier optimization processes to create a machine learning assisted optimization
algorithm that uses a fraction of the time of the original algorithm.

Finally, this thesis is concluded in Chapter 6. Here, we reflect on the methods intro-
duced, both from an optimization and a shipbuilding point of view. We summarize the
achievements, discuss the shortcomings and indicate the work to be done to use these
methods in practice.





2
EXACT SCHEDULING WITH A

FLEXIBLE PROJECT STRUCTURE1

In Chapter 1, the concept of modular shipping is introduced along with its potential
benefits. One of these benefits is a reduction in project makespan: using a smart mod-
ularization in production potentially can result in shorter production times. However, it
was also discussed that this modularization is not trivial. In order to capture the benefits
of modular production, it is required that the modularization choices are made carefully
and that production is accounted for while evaluating different options. Therefore, in
this chapter, we introduce an extension to the RCPSP that allows for better modeling of
modular shipbuilding, in order to realize the potential benefits.

This extension is called a flexible project structure. In the basic RCPSP, all activities
have to be executed. When considering which modules to use, the selection of modules
differs per chosen modularization: using a module requires different activities that use
different resources. For example, installing components in situ might be done by sim-
ply carrying these components manually to the location. However, when they are pre-
assembled, a crane is required. Furthermore, the precedence relationships also might
vary, based on modularization choices. If a module is used, roof installation might have
to be delayed until after module installation.

The most important decision is whether to use a module. However, there are deci-
sions to make within each module. Should it be outsourced? If so, it requires less capac-
ity at the yard, but one might have to consider longer delivery times. If transportation is
done by resources such as a ship, additional outsourcing might use the same transporta-
tion resource and thus improve efficiency. Furthermore, the decisions of what exactly
to use as a sub-assembly and what not might have impact on the total makespan of the
project. As these decisions are often yard and project specific, we do not aim to give an
answer to the question of how to create a modulary design for production. Instead, a

1This chapter is reproduced from the paper submitted for peer-review to the European Journal of Operations
Research (ISSN 03772217).
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scheduling model is given that allows for the optimization of decisions such as modular-
ization and/or outsourcing. The aim of this model is to capture flexibility as general as
possible. As is discussed in the remainder of this chapter, this is done by modifying an
existing model in literature.

After a scheduling problem is created, the goal is to find good solutions for it. There-
fore, in the second part of this chapter, a solution method is given to find optimal so-
lutions. This is done by analyzing the problem, proving mathematical properties of it,
and using these properties to decrease the solution space. At the end of this chapter, the
proposed methods are evaluated.

2.1. INTRODUCTION
The Resource Constrained Project Scheduling Problem (RCPSP) is an optimization prob-
lem aimed at scheduling activities. It comprises a list of activities that have to be sched-
uled, while satisfying a list of precedence constraints and resource availability constraints.
The problem aims to minimize the makespan of the project and is used in various ap-
plications, such as assembly scheduling or employee scheduling (Artigues et al., 2008).
The problem was proven to be N P-hard by Blazewicz et al. (1983) and much research
has been done in finding heuristic methods (Pellerin et al., 2019) to solve it. Additionally,
generalizations of the RCPSP have been studied by many in great detail (Hartmann and
Briskorn, 2010).

While the RCPSP assumes that all activities have to be executed, this is not always re-
quired. In many applications, like housing construction (Servranckx and Vanhoucke,
2019), highway project construction (Wu et al., 2010), modular shipbuilding (Rubeša
et al., 2011) and aircraft turnaround scheduling (Kellenbrink and Helber, 2015), there are
multiple ways of completing a project. This results in an RCPSP that can be completed by
executing only a subset of all activities. This is called the Resource Constrained Project
Scheduling Problem with a flexible Project Structure (RCPSP-PS). The RCPSP-PS con-
sists of two sub-problems. First, the decision has to be made which subset of activities
to execute. This is called the activity selection problem. Secondly, a schedule has to be
made with these selected activities, which gives rise to the activity scheduling problem.

In large assembly projects, the choice of which activity to execute next is often asso-
ciated with flow of components and/or material. If these components, e.g. a ship hull,
cannot be split up, the choices can be exclusive; only one alternative can be selected
from a subset of activities. This is what we call the exclusivity criterion, which compli-
cates the activity selection problem as is shown in this chapter. Furthermore, to better
represent project scheduling in reality, two properties are often required. The first is the
separation of scheduling and selection logic. Furthermore, we introduce the concept
of independent succession (IS): a choice to execute a certain activity, can be forced by
multiple other activities independently instead of a single activity.

An example can be given from modular shipbuilding, where a ship is produced by
combining multiple construction modules. For each module, we have two options: con-
struct it locally with available materials, or ship it from another yard. Shipping of mod-
ules can be combined, such that we only need to execute one shipping activity for all
modules. Therefore, if at least one module is shipped, the activity ‘shipping modules’
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has to be executed and finished before installing the modules. To model this, we require
both the separation of scheduling and selection logic, and IS.

Although multiple papers introduce various models for the RCPSP-PS, there has not
been a combination of the exclusivity criterion, independent succession and separation
of scheduling and selection logic. Furthermore, there is little research on cutting planes
and related exact methods for the RCPSP-PS. To fill this gap, this chapter presents a new
model for the selection logic, based on modifying the model of Kellenbrink and Helber
(2015) to add independent succession. This allows for a simplification of the model,
such that no distinction has to be made anymore between optional activities and activ-
ities that are always executed. Furthermore, an exact solution algorithm is given. This
algorithm uses a variable reduction method based on the Critical Path Method (CPM)
(Zhou et al., 2013) and two types of cutting planes. The proposed solutions methods
are then evaluated on restricted instances against the model of Kellenbrink and Helber
(2015), and against each other on non-restricted instances.

In Section 2, we present an overview of the literature on exact methods for the RCPSP
and on different models for the RCPSP-PS. Subsequently, the problem description and
MILP formulation are given in Section 3. The solution algorithm is given in Section 4, of
which the results are presented and discussed in Section 5. Finally, Section 6 concludes
the chapter.

2.2. LITERATURE OVERVIEW
The RCPSP is a classical optimization problem, introduced by Pritsker et al. (1969) and
proven to be N P-hard by Blazewicz et al. (1983). Since then, numerous studies have
been focused on developing heuristic and exact solution methods. An overview of this
research can be found in, for example, Pellerin et al. (2019) and Lombardi and Milano
(2012). These two review papers discuss heuristic and exact methods, respectively. In
this section, we focus on exact solution methods for and generalizations of the RCPSP.y,
we de

The standard RCPSP, without generalizations, is often solved by MILP solvers or con-
straint programming solvers (Herroelen and Leus, 2005). One way of reducing the so-
lution space in both methods is variable reduction. For the RCPSP, this is often based
on the Critical Path Method (CPM) (Rayward-Smith, 2001), which defines the earliest
time an activity can start, based on precedence constraints, while ignoring resource con-
straints. Another way of reducing the solution space is by finding better lower bounds.
Stronger lower bounds for MILP problems can reduce the number of branch-and-bound
nodes needed to be explored. For constraint programming, optimization can be done by
iteratively proving (in)feasibility for varying makespans. Stronger lower bounds can de-
crease the number of iterations in this process.

Various researchers developed cutting planes for the RCPSP. Brucker and Knust (2000)
provide bounds based on constraint propagation and linear programming. The con-
straint propagation method keeps track of the minimal durations between activities and
iteratively updates this based on the precedence constraints. The linear programming
method relaxes the precedence and non-preemption constraints. Baptiste and Demassey



2

30 2. EXACT SCHEDULING WITH A FLEXIBLE PROJECT STRUCTURE

(2004) use the same relaxation and provide additional bounds based on so-called ener-
getic reasoning and weak versions of preemption and precedence. Energetic reasoning
for the RCPSP is defined by comparing the demand of resources within a certain time
interval with the supply of resources. Hardin et al. (2008) provide a class of valid inequal-
ities for the RCPSP with a single resource. These are based on covers; subsets of activities
that cannot be executed all simultaneously due to limited resource availability. Further-
more, they give sufficient conditions under which these inequalities are facet-defining
and provide lifting procedures. Other lower bounds for the RCPSP are given by Haouari
et al. (2012), who provide three classes of lower bounds based on energetic reasoning
and an efficient way of generating these.

A generalization of the RCPSP that enables different ways of executing activities is the
Multi-Mode Resource Constrained Project Scheduling Problem (MRCPSP) (Talbot, 1982).
In this problem, each activity has multiple execution modes with varying durations and/or
resource usage. An overview of variations and solution methods can be found in Wȩglarz
et al. (2011). For the MRCPSP, various exact methods are developed. Zhu et al. (2006) pro-
vide a branch-and-cut algorithm that uses both reduction of variables based on constraint-
propagation, and cutting planes based on resource conflicts and precedence relations.
Araujo et al. (2020) propose two new models for the MRCPSP and introduce preprocess-
ing cuts based on feasible subsets: sets of job-mode combinations that can be executed
simultaneously. Furthermore, they give a branch-and-cut algorithm that uses five types
of cutting planes in parallel.

The RCPSP-PS is a generalization of the MRCPSP where only a subset of all activi-
ties has to be selected for execution. Both the name of the problem and the way the
selection decisions are modeled vary across the literature. One of the earliest models
was given by Kuster et al. (2009), who introduce the Extended RCPSP. They model the
execution decisions by introducing a set of active activities: activities that are initially
set to be executed. Substitution activities are introduced for some of these active activi-
ties and these substitution activities can be executed instead of the corresponding active
activities. Finally, the model is completed by adding a set of dependencies; execution
requirements for an activity if another activity is activated or inactivated. To find good
feasible solutions for this model, an evolutionary algorithm is used.

Kellenbrink and Helber (2015) separate the scheduling requirements from the prece-
dence requirements, and give a model based on a set of choices and a distinction be-
tween optional and mandatory activities. They call this model the RCPSP-PS and solve
it heuristically using a genetic algorithm. Each activity has a set of activities it can cause
to be selected. Furthermore, the model includes a time-indexed MILP formulation that
imposes some restrictions on the selection logic: it is not possible for multiple activ-
ities to have the same activity in the set of activities it can cause to be selected. This
restricts the modeling process. Tao and Dong (2017) introduce the RCPSP with alterna-
tive activity chains, where they give a single network that defines both the precedence
constraints and the selection constraints based on AND-activities and OR-activities. An
AND-activity is an activity for which all successors have to be executed and an OR-
activity is an activity for which at least one successor has to be executed. By using a
single network for both the precedence and selection constraints, separation of prece-
dence and selection logic is not possible; every precedence relationship is equal to a
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Table 2.1: Overview of models with a flexible project structure
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Kuster et al. (2009) X X X
Kellenbrink and Helber (2015) X X X X
Tao and Dong (2017) X X X
Servranckx and Vanhoucke (2019) X X X
Hauder et al. (2020) X X X
This chapter X X X X

selection relationship and vice versa. This means that problems where the precedence
and selection constraints do not coincide cannot be modelled with this approach. They
solve this model heuristically using a simulated annealing based algorithm. In Tao and
Dong (2018), they extend this to multiple objectives. Furthermore, Servranckx and Van-
houcke (2019) present the RCPSP with alternative subgraphs. This is a model based on
alternative subgraphs and branches; a branch consists of a set of activities, and an alter-
native subgraph is a collection of branches of which exactly one has to be executed. This
model also has a single network for both precedence and selection logic and is solved
heuristically by a tabu search procedure. Finally, Hauder et al. (2020) use a network with
different types of activities (OR, AND and OUT) to model both the selection and schedul-
ing problem, while adding the extension of supporting multiple projects. Besides the
standard objective of makespan minimization, they also consider time balance and re-
source balance as objective functions. They provide time indexed MILP formulations for
these models and a constraint programming method.

An overview of all models is given in Table 2.1. It can be seen that there is not yet a
model combining separation of scheduling and selection, independent succession and
the exclusivity criterion. Furthermore, most of the focus is on heuristic methods. Al-
though three papers include an exact method, for two of these it comprises of only an
MILP formulation. Although there are differences in these MILP formulations for the
flexible project structure, they all share a similar time-indexed basic RCPSP model.

2.3. RCPSP-PS
In this section, the problem is formalized. First, Section 2.3.1 gives a description of the
problem, which includes a description of the selection graph with selection groups. Fi-
nally, Section 2.3.2 gives an MILP formulation for the RCPSP-PS.
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2.3.1. PROBLEM DESCRIPTION
The RCPSP-PS consists of a set of activities N of which a subset has to be executed while
minimizing the makespan of executing the selected activities. Let n = |N |−2 be the num-
ber of non-dummy activities. Then, the starting activity is activity 0 and the final activity
is activity n+1. Both of these activities have a duration and resource requirement of zero
and the final activity can only be executed after all other executed activities. The time
horizon during which these activities are scheduled is represented by a set of discrete
time periods T . Each activity i ∈ N has a duration of di time periods. Activities have to
be scheduled while satisfying resource, precedence and selection constraints. The set of
resources is denoted by R. Each resource r ∈ R has a capacity of λr , and each activity
i ∈ N uses kr i units of resource r across the whole duration. The precedence relation-
ships are defined by a set of tuples P . For each (i , j ) ∈ P , it is required that activity i is
finished before the start of activity j . These relationships can be represented in a graph
by creating a node for each activity and a directed edge for each precedence relationship.
This graph is called the precedence graph. Furthermore, the set P j contains all prede-
cessors of activity j and the set Si contains all successors of activity i in the precedence
graph.

In the RCPSP-PS, only a subset of activities has to be executed. To define the choices
on the selection of activities, the concept of selection groups (denoted by set G) is in-
troduced. A selection group g ∈ G consists of an activator activity ag and a set of one
or more successor activities Sg . If an activator activity is executed, exactly one of the
successor activities has to be executed, which means that a selection group defines an
‘exclusive or’-relationship. Additionally, we define the set of selection groups with full
precedence H ⊆ G . This set contains all selection groups with a time precedence rela-
tionship between the activator and all successors, i.e., H = {g ∈ G : (ag , j ) ∈ P ,∀ j ∈ Sg }.
Furthermore, we define a unit selection group as a selection group g ∈G with only one
successor (i.e., |Sg | = 1). This defines a direct consequential relationship; if activator ac-
tivity ag is executed, the single successor activity in Sg will have to be executed as well.
An ‘and’-relationship can be modeled by multiple unit selection groups.

The selection groups can be represented by a selection graph. This is a graph in
which each activity is represented by a node and the selection groups are represented by
directed edges. A single edge denotes that the source and target activity belong to a unit
selection group. Multiple edges with an arc between them indicate a non-unit selection
group, where the source activity is the activator and the target activities the successor
activities. This is illustrated in Figure 2.1.

1 2 3

4

5

Figure 2.1: A unit selection group (ag ,Sg ) = (1, {2}) (left) and a non-unit selection group (ag ,Sg ) = (3, {4,5})
(right).

The precedence and selection relationships split up the RCPSP-PS into two prob-
lems. The first one is selecting which activities will be executed. This is called the se-
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lection problem. The next question is when to schedule the executed activities. This is
defined as the scheduling problem.

An example of a precedence graph and a selection graph is given in Figure 2.2. The
selection graph in this example contains 5 selection groups, with (0,{1,2}) being the only
non-unit selection group. This imposes that if activity 0 is executed, either activity 1 or
activity 2 has to be executed. Furthermore, if activity 0 is executed, activity 3 has to be
executed as well. Finally, for activities 1, 2 and 3, it follows that if one of them is executed,
activity 4 has to be executed as well.

The precedence graph is very similar, and thus, activities 1, 2 and 3 can only start
after the end of activity 0, and activity 4 can only start after the end of activities 1, 2
and 3, only considering executed activities. Furthermore, since there is a directed edge
between activity 2 and 3, activity 3 can only start after activity 2 is finished, if both are
executed. If activity 2 is not executed, activity 3 can start directly after finishing activity
0. Since for every selection relationship, there is a time precedence relationship as well,
all selection groups have full precedence (G = H).

In Kellenbrink and Helber (2015), the selection logic was mainly modeled by choices,
activities causing a choice, and optional activities per choice. Respectively, these are
analogous to selection groups, activators and successor activities. The difference be-
tween these concepts is that selection groups support IS. Furthermore, to simplify the
model, the concept of activities caused by another activity in Kellenbrink and Helber
(2015) is not included the presented model, but can be modeled by unit-selection groups
instead. This was done to simplify both modeling and mathematical analysis for cutting
planes, which are presented in Section 2.4. Finally, this chapter does not consider nonre-
newable resources. This was done since the focus of the proposed solution method is the
flexible project structure. Since nonrenewable resources are not a standard component
of the RCPSP, we exclude this extension from the model.

0

1

2

3

4

Selection graph

0

1

2

3

4

Time precedence graph

Figure 2.2: Example of graphs.

2.3.2. MODEL
To model the problem, we introduce binary decision variables Xi t that are equal to one
if activity i ∈ N starts at time t ∈ T , and zero otherwise. Objective function (2.1a) min-
imizes the completion time of the final activity, and thus, the total project makespan.
The first and final activities are always executed due to Constraints (2.1b) and (2.1c),
respectively. Note that Constraints (2.1c) can also follow from the selection groups. Con-
straints (2.1d) impose that each activity can only be executed once. Furthermore, Con-
straints (2.1e) make sure that if activator activity ag of selection group g ∈G is executed,
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at least one successor activity i ∈ Sg has to be executed. Constraints (2.1f) impose that
if activator ag of selection group g ∈ G is executed, at most one successor activity is
executed. The precedence constraints are set by Constraints (2.1g). These constraints
define that for each (i , j ) ∈ P , if both are executed, the starting time of activity i plus
its duration di cannot be larger than the starting time of activity j . Furthermore, Con-
straints (2.1h) define that for each resource r ∈ R and time t ∈ T , the total resource usage
is smaller than or equal to the resource capacity λr . Finally, Constraints (2.1i) specify
that the decision variables Xi t are binary.

min
∑
t∈T

t X(n+1)t , (2.1a)

∑
t∈T

X0t = 1, (2.1b)∑
t∈T

X(n+1)t = 1, (2.1c)∑
t∈T

Xi t ≤ 1, ∀i ∈ N , (2.1d)∑
t∈T

Xag t ≤
∑

i∈Sg

∑
t∈T

Xi t , ∀g ∈G , (2.1e)∑
j∈Sg

∑
t∈T

X j t ≤ |Sg |−
(|Sg |−1

) ∑
t∈T

Xag , ∀g ∈G , (2.1f)∑
t∈T

(t +di )Xi t ≤
∑
t∈T

t X j t +M
(
1− ∑

t∈T
X j t

)
, ∀(i , j ) ∈P , (2.1g)

∑
i∈N

di∑
u=1

kr i Xi (t−u+1) ≤λr , ∀r ∈ R, t ∈ T, (2.1h)

Xi t ∈ {0,1}, ∀i ∈ N , t ∈ T. (2.1i)

In the next subsection, we further discuss the activity selection problem.

2.3.3. ACTIVITY SELECTION PROBLEM
After introducing the model, we now give a formal definition for the activity selection
problem. Recall that the exclusivity criterion is the criterion that per selection group
with an executed activator activity, exactly one successor has to be executed. With this,
the selection problem (imposed by Constraints (2.1d) to (2.1f)) is defined as follows:
given a selection graph, find a selection of activities including activity 0, such that for
each selection group g ∈ G , exactly one activity j from the set of successor activities Sg

is selected if activator activity ag is selected. This problem is proven to be N P-hard by
Barták et al. (2007).

Although the exclusivity criterion of the selection group is important for certain real-
world applications, there are also cases in which the exclusivity criterion does not hold
and where more than one successor can be executed per selection group. In these cases,
there is an ‘at least one’-requirement instead of an ‘exactly one’-requirement. This can
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be modeled by adding dummy activities (activities with no duration and no resource
requirements) before each successor activity, as is demonstrated in Figure 2.3.

0

1

2 3

45

6

0

1

2

d1

d2

3

45

6

Figure 2.3: Instances where from activities 3 and 4, exactly one (left) and at least one (right) activity has to be
executed.

On the left side in Figure 2.3, selection group (0,{3,4}) is shown with the exclusivity
criterion; either 3 or 4 can be executed. However, activity 3 and 4 can also be activated
by either activity 2 or 5. In some applications, it would be prefered to allow either activity
3 or 4, or both. This is the case in the right-hand side of Figure 2.3. Here, the exclusivity
criterion is moved to the dummy activities d1 and d2. This means that for activity 3 and
4, at least one has to be executed instead of exactly one.

Note that dummy activities only have to be added for successor activities that are
also successor activities of other groups. To demonstrate this, consider a selection group
g ∈ G , which should be transformed such that from the successor activities Sg , at least
one has to be executed instead of exactly one. Then, a dummy activity only has to be
added before each successor activity j ∈ Sg , if j is also a successor of another selection
group. In Figure 2.3, this means that if there is no arc from activity 5 to activity 4, dummy
activity d2 is not required. The proof for this is given in Lemma 1.

Lemma 1
Consider a selection group g ∈G for which Sg does not contain the final activity n+1. This
selection group will be modified such that at least one successor i ∈ Sg has to be executed
if the activator ag is executed, instead of exactly one. This can be achieved by applying the
following algorithm:

Step 1 Let S′
g = {

i : i ∈ Sg , {k : k ∈G , i ∈ Sk ,k 6= g
} 6= ;} be a subset of Sg containing only

activities that are also successors of another group. Create a dummy activity Di for
each successor activity i ∈ S′

g .

Step 2 Create a selection group h with ah = ag and Sh = {Di : i ∈ S′
g }∪ {i ∈ Sg \ S′

g }

Step 3 Create a selection group hi for each i ∈ S′
g with ahi = Di and Shi = {i }.

Step 4 Remove selection group g .
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Proof. The algorithm adds dummy activities for all activities i ∈ S′
g . We first show that if

we do this for all activities i ∈ Sg instead, we impose an ‘at least one’ constraint instead
of an ‘exactly one’ constraint. After that, we show that if we remove all dummy activities
(and corresponding groups) for i ∈ Sg \ S′

g , the solution stays feasible and the optimal
solution value does not change.

First, apply the algorithm with S′
g = Sg . Now, Constraints (2.1e) and (2.1f) impose for

selection group h that if ah is executed, exactly one dummy variable has to be executed.
Consequently, Constraints (2.1e) impose that at least one activity i ∈ Sg has to be exe-
cuted, since activity i ∈ Sg can also be executed when the activating dummy activity Di

is not executed.

Let A be the problem instance obtained by performing the algorithm for S′
g = Sg .

Furthermore, let B be the problem instance we obtain by using S′
g instead of Sg . Con-

verting A to B can be done as follows: for each activity i ∈ Sg \ S′
g , remove dummy ac-

tivity Di , remove selection group hi , and replace successor activity Di in selection group
h by the original successor activity i .

To show that the ‘at least one’-criterion also holds for B, we will show that each so-
lution X to instance A can be converted to a solution Y to instance B and vice versa,
while keeping the same objective value.

Let X be a solution to problem A . We now show that solution X can be converted to
a feasible solution Y for problem B with the same objective value. Converting is done
by projecting all values of X on Y and modifying the values for i ∈ Sg \ S′

g if needed.
Firstly, we consider the case where activity i ∈ Sg \ S′

g is not executed in solution X .
By Constraints (2.1e), it follows that dummy activity Di is also not executed. Therefore,
removing Di and selection group hi does not cause any infeasibilities and Y remains a
feasible solution for B.

Secondly, consider the case where activity i ∈ Sg \ S′
g is executed. If dummy activ-

ity Di was executed, the number of executed successor activities for selection group h
stays the same in solution Y , which therefore remains feasible for problem B. If Di was
not executed, which is possible considering Constraints (2.1e), there is an infeasibility in
problem B for group h in Constraints (2.1f). However, since activity i is not the successor
of any other group, it can be set to not executed. This does not cause any infeasibilities
because Constraints (2.1e) impose in the direction of activator to successor and not in
the reverse direction.

Therefore, any solution X for problem A can be converted to a solution Y for prob-
lem B. Since the value of the objective activity n +1 is not changed, the objective value
remains equal.

Next, we show that a solution Y for problem B can be converted to a solution X for
problem A with equal objective value. This is done by projecting Y on X and setting the
values for the dummy activities as required.

Again, consider activity i ∈ S′
g \Sg . If this activity is not executed, set the correspond-

ing dummy activity Di to not executed in X as well. Then, the problem remains feasible.
Now, consider the case where activity i ∈ S′

g \ Sg is executed. In this case, none of the
dummy activities are executed and dummy activity Di can be set to executed in solution
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X to obtain a feasible solution. Similar as for the reverse case, the objective activity n+1
is not changed, and therefore, the objective value remains equal.

Thus, there exists a solution X for problem A if and only if there exists a solution Y
for problem B with the same objective value. Therefore, the ‘at least one’-criterion from
problem A is also imposed on problem B.

2.4. SOLUTION METHOD
In this section, we present an exact solution method for the RCPSP-PS based on pre-
processing and subsequently using an MILP solver. The preprocessing procedure uses a
variable reduction method and cutting planes. The variable reduction method is based
on the Critical Path Method (CPM) and is described in Section 2.4.1. This method sets
earliest start times and latest finish times for the individual activities. Subsequently, in
Section 2.4.2, we identify properties of the selection problem. With these properties, we
give two types of cutting planes. Finally, in Section 2.4.3, the solution algorithm is given.
The solution algorithm uses a combination of variable reduction and cutting planes to
increase the earliest start times. Subsequently, it solves this preprocessed problem by
using a MILP solver.

2.4.1. VARIABLE REDUCTION
One of the most common methods of variable reduction for the RCPSP is using the CPM
to define the earliest and latest start time. However, since the selection graph and prece-
dence graph do not necessarily coincide, this method cannot be used. For example,
consider activity i and activity j with (i , j ) ∈ P . The CPM would then set the earliest
starting time of activity j equal to the earliest start time of activity i plus the duration of
activity i . However, in the RCPSP-PS, it can happen that activity i is not executed, and
therefore, activity j is not restricted by activity i . Therefore, in this subsection, another
way of setting the earliest start time si and latest start time fi for each activity i ∈ N is
given.

The variable reduction method is based on what we call a Non-Empty Execution Set
(NEES): a set of activities of which at least one has to be executed. Variable reduction can
then be done based on the following principle: if each activity in a NEES A has the same
successor activity j in the precedence graph, then the earliest start time s j of activity j is
equal to mini∈A{si +di }. Similarly, if each activity in a NEES A has the same predecessor
activity i , the latest finish time fi of activity i is equal to max j∈A{ f j −d j }

In the remainder of this section, a variable reduction method for the RCPSP-PS that
uses NEESs is given. First, some notation is introduced. After this, it is shown how to
identify a NEES in a subset of activities. Based on this, an algorithm is given that deter-
mines the earliest start times and latest finish times.

For the variable reduction method, we need to know whether a candidate set N ′ ⊆ N
contains a NEES. For intuition, consider all activities as the candidate set (N ′ = N ) in the
selection graph as shown in Figure 2.4. We traverse the selection graph, starting in the
root activity r . Then, a set of activities A is a NEES if, regardless of the choices we make
in the selection groups, we always end up in an activity in A. Therefore, if we reach a
certain group g that is on the path to A, there should still be a path to A no matter what
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successor we pick. In Figure 2.4, no choice can be made at selection group g1 such that
no activity in A will be executed.

r

1

2

3

4

g1 A

Figure 2.4: Selection graph example of a NEES. Since either activity 3 or activity 4 always has to be executed,
{3,4} is a NEES.

To identify a NEES in a subset of activities N ′ ⊆ N , we solve the MILP given by Con-
straint set (2.2). This MILP selects selection groups and activities, where all selected se-
lection groups form a set of paths, starting at activity 0. As long as each path ends in a
selected activity, the set of selected activities form a NEES.

To formulate this, we introduce the set Gi that contains all groups g ∈G with activator
ag = i . Furthermore, we introduce binary variables Ug for each g ∈ G and Vi for each
i ∈ N ′, which are equal to one if a selection group or activity is selected, respectively, and
zero otherwise.

With this, Constraints (2.2a) imposes that at least one selection group has to be se-
lected at starting activity 0, which is the start of all paths. Then, the paths are continued
due to Constraints (2.2b) and (2.2c). These impose that if a selection group g is selected,
for each successor i ∈ Sg either a succeeding group h ∈ Gi is selected (path continues),
or activity i itself has to be selected (path ends in activity i ). If activity i ∈ N ′, this is im-
posed by Constraints (2.2b). Otherwise, binary variable Vi does not exists and one group
h ∈ Gi has to be selected. This is imposed by Constraints (2.2c). Note that, since Con-
straint set (2.2) is used to identify a NEES, V does not have to be bounded from above,
since adding any activity to a NEES still constitutes a NEES.

∑
g∈G0

Ug ≥ 1, (2.2a)

Ug ≤Vi +
∑

h∈Gi

Uh , ∀g ∈G , i ∈ Sg ∩N ′, (2.2b)

Ug ≤ ∑
h∈Gi

Uh , ∀g ∈G , i ∈ Sg \ N ′, (2.2c)

Ug ∈ {0,1}, ∀g ∈G , (2.2d)

Vi ∈ {0,1}, ∀i ∈ N ′. (2.2e)

We can now show that if V is a feasible solution to Constraint set (2.2), it constitutes
a NEES.
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Lemma 2
Let N ′ ⊆ N be a subset of activities and U ,V be the solution of Constraint set (2.2). Then,
A given by {i ∈ N ′ : Vi = 1} is a NEES.

Proof. We proof this by induction, by creating and updating a set B iteratively. At each
iteration, B satisfies two properties:

1. B is a NEES.

2. B contains only activities i ∈ N ′ with
∑

g∈Gi
Ug ≥ 1 or Vi = 1.

Start with B = {0}. Since the source activity 0 always has to be executed, it is a NEES.
Furthermore, due to Constraints (2.2a), it also satisfies Property 2.

For the induction step, assume that set B satisfies both properties. For each activity
i ∈ B with Vi = 0 (and thus

∑
g∈Gi

Ug ≥ 1 by Property 2), let set Ci contain all successor
activities of i that satisfy Property 2; Ci = { j : ∃g ∈ Gi | j ∈ Sg ∧V j +∑

h∈G j
Uh ≥ 1}. Since∑

g∈Gi
Ug ≥ 1 by assumption, there is at least one group g ∈ Gi with Ug = 1. Then, by

Constraints (2.2b) and (2.2c), it follows that all successors of this group satisfy Property
2 and are therefore included in set Ci . Thus, if i is executed, at least one activity in Ci is
executed. We now create B̄ by replacing i by Ci ; B̄ = B ∪Ci \ {i }. Since B is a NEES, so is
B̄ . Thus, B̄ satisfies both properties. Finally, take B̄ as the new B .

For each iteration, each activity is replaced by its successors unless Vi = 1. Since the
graph is acyclic, the iterative process will terminate, in which case Vi = 1 for every i ∈ B ,
since at some point Gi will be empty. As shown, both properties are maintained in this
process. Therefore, the final set B is a NEES. Because A contains all activities i ∈ N ′ with
Vi = 1, this means that B ⊆ A. Since B is a NEES, which means that at least one activity
in B has to be executed, then any superset of B is also a NEES. Therefore, A is a NEES as
well and since A results from a solution to Constraint set (2.2), this solution constitutes
a NEES.

With this, we now give an algorithm to compute the earliest starting time si for each
activity i ∈ N .

The first loop in Algorithm 1 loops over all activities in topological order. This ensures
that si is defined for every predecessor i ∈P j . Furthermore, it defines the sequence B =
{b1, · · · ,b|B |}. This sequence contains all activities i ∈ P j , ordered by earliest finishing
time si +di in descending order. Loop 2 then takes incremental subsets B ′ of the ordered
set of predecessors i ∈P j and tries to solve Constraint set (2.2) with N ′ = B ′.

For each iteration of Loop 2, an element k is added to N ′ = B ′ until Constraint set (2.2)
becomes feasible. If adding element k to N ′ results in Constraint set (2.2) becoming
feasible, it follows that Vk = 1. Otherwise, Constraint set (2.2) would also be feasible
in the previous iteration. Since B ′ is ordered in non-increasing order of si +di , in the
previous iteration, B ′ contained all activities i ∈ B with si +di ≥ s j +d j . Since solving
Constraint set (2.2) in the previous iteration did not give a feasible solution, B ′ maximizes
mini∈B ′ {si +di }.

Something similar can be done for the latest finish time fi for all activities i ∈ N . The
difference is that fi is initially given a value of |T | for every activity and the algorithm
runs backwards. This means that Loop 1 is reversed, B contains all successors of j and
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Algorithm 1 Preprocessing algorithm

1: N (s) ← topological sorting of N on precedence graph
2: si ← 0 ∀ i ∈ N
3: for all j ∈ N (s) do . Loop 1
4: B ←P j , sorted by non-increasing si +di .
5: stop ← False
6: n ← 1
7: while stop = False AND n ≤ |B | do . Loop 2
8: B ′ ← first n elements of B
9: Solve Constraint set (2.2) for N ′ = B ′

10: if Constraint set (2.2) is feasible then
11: s j ← mini∈B ′ {si +di }
12: stop ← True
13: end if
14: n ← n +1
15: end while
16: end for

is ordered in non-decreasing order of fi −di . Furthermore, instead of updating s j , f j is
updated to maxi∈B ′ { fi −di }. Finally, after both preprocessing steps, all variables Xi t with
t < si or t > fi −di can be set to zero.

2.4.2. CUTTING PLANES

Due to Constraints (2.1g), the linear relaxation of the proposed MILP is very weak. To
strengthen the formulation, we present a simple type of valid inequalities and two types
of cutting planes. The valid inequality is added for each selection group with full prece-
dence g ∈ H ⊆G and is shown in Constraints (2.3), which simply states that if a selection
group has full precedence, each successor activity has to be executed later than the acti-
vating activity, if both are executed.

∑
t∈T

(t +dag )Xag t ≤
∑

j∈Sg

∑
t∈T

t X j t , ∀g ∈ H , (2.3)

Furthermore, two types of cutting planes are presented. The first type is based on
groups of activities of which at least one has to be selected. For the second type, groups
of activities of which at most one can be selected are used.

The procedure is the same for both cutting plane types: first, the linear relaxation
is solved to obtain the relaxed solution. Subsequently, the separation problem is solved
to obtain a cutting plane that cuts off the relaxed solution. This cutting plane is added
to the original problem and a new solution is obtained. This is repeated until no more
cutting planes can be found or when the objective has not increased for a fixed number
of iterations.
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NON-EMPTY EXECUTION CUTTING PLANES

In this subsection, a method is presented for which cutting planes are generated based
on Non-Empty Execution Sets (NEES). Recall that these are sets in which at least one
activity has to be executed. The separation problem is given by Objective function (2.4)
subject to the constraints of Constraint set (2.2), in order to find a NEES with less than
one executed activity in the relaxed solution. Here, X ∗

i t is the solution obtained by solving
the LP relaxation and Vi is the decision variable from Objective function (2.4) indicating
whether an activity i ∈ N is in a NEES.

min
∑

i∈N
Vi

∑
t∈T

X ∗
i t . (2.4)

By Lemma 2, the index set of V forms a NEES. Thus, if the value of Objective func-
tion (2.4) is smaller than 1, the fractional solution X ∗ contains a NEES that has less than
one activity executed. Therefore, we add Constraints (2.5) as a cutting plane, where A is
the index set of V ; A = {i ∈ N : Vi = 1},∑

i∈A

∑
t∈T

Xi t ≥ 1. (2.5)

MAX-ONE CUTTING PLANES

The second type of cutting planes is based on Max-One Execution Sets (MOES). We
call cutting planes generated by this method ‘max-one cutting planes’. This method
requires selection groups with full precedence. A MOES N ′ ⊆ N is a set of activities of
which at most one will be executed in the optimal solution. To identify these sets, Com-
mon Rooted Paths (CRP) are used as defined in Definition 2.4.1. For this, we introduce
the notation of the vertex sequence of a path P ; the sequence of all vertices on a path P ,
denoted by V (P ).

In the remainder of this section, we give a definition of a CRP and show that if there
is no CRP between two activities, at most one of these activities will be executed. Subse-
quently, we show how to identify all CRPs in the selection graph. Finally, these CRPs are
used to generate a new type of cutting planes.

Definition 2.4.1 (Common rooted path (CRP))
For two activities i and j , it is said that they have a common rooted path (r,P,Q) if there
is another activity r with a path P from r to i and a path Q from r to j with the following
properties: the first activities p1 and q1 on P and Q after r , respectively, do not belong to
the same selection group of activator r . Furthermore, after splitting at r , paths P and Q
are disjoint; V (P )∩V (Q) = {r }.

Based on this definition, we give Proposition 1 to identify whether it is allowed for
any two activities to both be executed in the optimal solution.

Proposition 1. If two distinct activities i ∈ N and j ∈ N in a selection graph do not have
a common rooted path, at most one of them will be executed.

Proof. Consider two activities i and j that are both executed in the solution. This is il-
lustrated in Figure 2.5. There has to be a path of executed activities from the start activity
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0 to both i and j . Call these paths S1 and S2, respectively. If these paths split at an ac-
tivity r to successor activities u and v (u 6= v), it follows that u and v cannot be in the
same selection group due to Constraints (2.1f). Since paths can merge after splitting,
take activity r as the activity immediately before the last split, and the remaining paths
as P and Q, which give a CRP (r,P,Q). Let `(P ) be the number of activities on path P .
If there is no split, assume w.l.o.g, `(P ) < `(Q). Then, j lies in the extension of i , and
(i , {i }, {i }∪ {V (Q) \V (P )}) gives a CRP between i and j .

Thus, if activities i and j are both executed, there is always a CRP between them.
This means that at most one of them can be executed if there is no CRP.

0 r

u

v

i

j

S1

S2

Figure 2.5: Example for CRP. There is a CRP (r, (r,u, · · · , i ), (r, v, · · · , j )).

All MOES can be found by using a rooted path graph (RPG), as defined in Defini-
tion 2.4.2.

Definition 2.4.2 (Rooted Path Graph (RPG))
A rooted path graph AG = (N ,E) is a graph with the same activities N as the selection
graph and with an edge (i , j ) ∈ E if and only if there is a common rooted path between i
and j .

It then follows that an independent set in the RPG represents a set of activities with-
out any CRP’s between them, and thus, a MOES. We distinguish between two types of
CRP’s: splitted CRP’s and extended CRP’s. A splitted CRP (r,P,Q) splits up at activity r
and has `(P ) > 1 and `(Q) > 1 (note that paths P and Q both include activity r ), where
`(P ) is the number of activities on path P . In an extended CRP there is no split and one
path is an extension of the other, i.e., the root is i , P = {i } and Q is a path from i to j . In
Figure 2.5, there is a splitted CRP between i and j . However, there also is an extended
CRP between, for example, r and i : (r, (r ), (r,u, · · · , i )).

We now show how to create an RPG. Let Ωi be the set of all successors of i in the
selection graph (recall that Si is the set of all successors in the precedence graph). Fur-
thermore, let Θ be all pairs of activities (i , j ) with a path between i ∈ N and j ∈ N in the
selection graph and Θi all activities reachable from i ∈ N in the selection graph. Finally,
let Γ be the set of activity pairs (i , j ) for which i ∈ N and j ∈ N are successors in the same
selection group, i.e., for all (i , j ) ∈ Γ there exists a selection group g ∈ G such that i ∈ Sg

and j ∈ Sg .

Given these definitions, we now present Algorithm 2, which creates an RPG. Three
sets of edges are introduced: Final edges E ( f ), active edges E (a) and new edges E (n).
There are four steps which add edges to these sets:
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Step 1 For any activity r ∈ N , let F (1)
r be the set of edges between any two successors

(i , j ), with i 6= j , if i and j are not successors in the same selection group; F (1)
r =

{(i , j ) : i ∈Ωr , j ∈Ωr , (i , j ) 6= Γ, i 6= j }. Add these edges to the set of active edges, i.e.,
E (a) ← E (a) ∪F (1)

r .

Step 2 For any active edge (i , j ) ∈ E (a), create a set of edges F (2)
i j . For each successor

activity u of activity i , add edges ( j ,u) and (u, j ) to this set if u is not reachable from
j . We call this extending (i , j ) on i to u. This gives F (2)

i j = {( j ,u) : u ∈Ωi ,u ∉Θ j }∪
{(u, j ) : u ∈Ωi ,u ∉Θ j }. Add these edges to the set of new edges: E (n) ← E (n) ∪F (2)

i j .

Step 3 For any active edge (i , j ) ∈ E (a), create the set F (3)
i j . Add edge (u, v) to this set if u

is a successor of i and v is a successor of j , u 6= v , both u and v are not equal to i
or j , u is reachable from j and v is reachable from i . This gives F (3)

i j = {(u, v) : u ∈
Ωi , v ∈ Ω j ,u 6= v,u ∉ {i , j }, v ∉ {i , j },u ∈ Θ j , v ∈ Θi }. Add this set to the set of new

edges: E (n) ← E (n) ∪F (3)
i j . After this loop, add the set of active edges to the set of

final edges (E ( f ) ← E ( f ) ∪E (a)) and replace the set of active edges by the new set of
edges (E (a) ← E (n)). If the set of new edges is not empty, empty this set (E (n) =;)
and go back to Step 2. Otherwise, proceed to Step 4.

Step 4 For every activity r ∈ N , add final edges (r, i ) for every i reachable from r ; E ( f ) ←
E ( f ) ∪ {(r, i ) : r ∈ N , i ∈Θr }

These steps are illustrated in Figure 2.6.
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Figure 2.6: Steps in RPG algorithm.
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Algorithm 2 Rooted Path Graph

1: E ( f ) ←;
2: E (a) ←;
3: E (n) ←;
4: for all r ∈ N do
5: E (a) ← E (a) ∪F (1)

r . Step 1
6: end for
7:

8: do
9: for all (i , j ) ∈ E (a) do

10: E (n) ← E (n) ∪F (2)
i j . Step 2

11: E (n) ← E (n) ∪F (3)
i j . Step 3

12: end for
13: E ( f ) ← E ( f ) ∪E (a)

14: E (a) ← E (n)

15: E (n) ←;
16: while |E (a)| > 0
17:

18: for all i ∈ N do
19: E ( f ) ← E ( f ) ∪ {(i , j ) : j ∈Θi } . Step 4
20: end for

Theorem 1 states that Algorithm 2 creates an RPG.

Theorem 1
Algorithm 2 creates a rooted path graph if the selection graph is acyclic.

Proof. If there is an edge created by Algorithm 2, there is a CRP:
For Step 1, 2, and 3, we will prove this by induction. The base case is given by Step 1. If
an edge (i , j ) is created in this step, the CRP is given by the splitted CRP (r, {r, i }, {r, j }).
Since Step 2 and 3 take input edges from Step 1, 2, and 3, we assume for the induction
step that each input edge (i , j ) for Step 2 and 3 has a splitted CRP (r,P,Q).

For Step 2, w.l.o.g, let u be the successor activity of the final activity i in path P . If
u ∉ V (Q), then adding u to P gives a splitted CRP for activities u and j , and we are done.
If u ∈ V (Q), there are three cases in which edge (i , j ) could have been created:

1. Edge (i , j ) created by Step 1: since Q = (r, j ) and u is on path Q, it follows that u = r
or u = j . The former would result in a cycle r → i → u = r , which is not possible
since we have an acyclic graph. The latter contradicts u ∉ Θ j , so (i , j ) cannot be
created by Step 1.

2. Edge (i , j ) created by Step 2. Let (i , j ) = (a0,b0), where the index 0 stands for the
number of iterations, counting backwards. There are now two cases, (a0,b0) was
created by extending edge (a−1,b0) to a0 on a−1, or by extending edge (a0,b−1) to
b0 on b−1. Consider the last case. By assumption, u ∈ V (Q) and u is a successor of
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r

a−1 a0

u b−1 b0

Figure 2.7: (i , j ) created by Step 2, with u ∈ V (Q).

a0. Therefore, as shown in Figure 2.7, there is a path a0 → u → b0. This means that
b0 is reachable from a0, which is a contradiction since Step 2 only extends if b0 is
not reachable from a0.

This means that if (a0,b0) is created by Step 2, it has to be extended to a0 from
input edge (a−1,b0). The same logic holds for this input edge (a−1,b0); it cannot be
created by extending (a−1,b−1) to b0 on b−1. Thus, (a0,b0) is created by iteratively
extending edge (a−n ,b0) to a−n+1 on a−n . Taking n as large as possible, we get edge
(a−n ,b0), which is not created by Step 2. Therefore, (a−n ,b0) has to be created by
either Step 1 or Step 3.

Consider the case that (a−n ,b0) is created by Step 1. This means that both activities
a−n and b0 are successor activities of the root activity r ∈ N . Since u cannot be
reachable from b0 and an activity is always reachable by itself, b0 ∈ Θb0 and thus
u 6= b0. Therefore, since u ∈ V (Q) and Q = (r,b0 = j ), we have that u = r , and thus,
there is a path a0 → u = r → a−n →···→ a0, which is a cycle.

If (a−n ,b0) is created by Step 3, call the input edge (a−n−1,b−1). Since u ∈ V (Q) and
u 6= b0, it follows that b−1 is reachable from u, i.e., b−1 ∈Θu . By construction in Step
3, a−n is reachable from b−1. Therefore, there is a path u → b−1 → a−n → a0 → u,
which is also a cycle. This means that there is a cycle in both cases. This contradicts
the fact that we have an acyclic graph. Therefore, edge (i , j ) cannot be created by
Step 2.

r

i ′ i

u j ′ j

Figure 2.8: (i , j ) created by Step 3, with u ∈ V (Q).

3. Edge (i , j ) created by Step 3. Let (i ′, j ′) be the input edge which created (i , j ), with
i ′ and j ′ in P and Q, respectively. This is illustrated in Figure 2.8. Since u ∈ V (Q)
and u 6= j , it follows that j ′ is reachable from u. This gives a path i → u → j ′ → i .
This creates a cycle, which is a contradiction.

Therefore, if u ∈ V (Q), edge (i , j ) could not be created. Thus, u ∉ V (Q) and Step 2
creates a splitted CRP.
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Step 3, with input edge (i , j ), creates an active edge (u, v) representing a splitted CRP
if v ∉ V (P ) and u ∉ V (Q). Thus, assume u ∈ V (Q). Then, there is a cycle from u to j to u,
which is a contradiction. Therefore u ∉ V (Q). The same arguments holds for v ∉ V (P ).

Thus, given a splitted CRP, Step 2 and 3 produce a splitted CRP. Since Step 1 produces
only splitted CRP’s, Step 2 and 3 do as well by induction. Finally, each edge in Step 4 is
an extended CRP.

If there is a CRP, there is an edge created by Algorithm 2:
Consider activities i and j with a CRP {r,P,Q}, P = (r, p1, · · · , pn) and Q = (r, q1, · · · , qm).
Let pn = i and qm = j . If either i is reachable from j or vice versa ((i , j ) ∈ Θ), Step 4
creates an edge. Therefore, assume that (i , j ) ∉Θ.

Step 1 creates an edge between p1 and q1. If p1 = i and q1 = j , we are done, so
assume p1 6= i and/or q1 6= j . Now, if p2 ∈Θq1 and q2 ∈Θp1 , Step 3 creates edge (p2, q2).
If p2 ∉Θq1 and/or q2 ∉Θp1 , Step 2 creates an edge further along the CRP in at least one
path (P or Q). Therefore, in each iteration, an edge is created along the CRP to an activity
on either P , Q or both. Continue this until, w.l.o.g, there is an edge created to activity i
on path P .

Let qa be the last activity on Q with an edge (i , qa). Step 2 iteratively creates a new
edge (i , qa+1) as long as qa+1 ∉Θi . This is either repeated until qa+1 = j and edge (i , j ) is
created, or until qa+1 ∈Θi . In the latter case, there is a path i → qa+1 → j , so Step 4 will
create edge (i , j ).

We now give the separation problem for maximum execution cutting planes in Con-
straint set (2.6). These cutting planes are based on a MOES and a group of activities for
which the MOES has full precedence. As stated earlier, a selection group with full prece-
dence has a precedence relationship between the activator and each successor. The idea
of the cutting planes is that if one activity i from the MOES is executed, then there is
always an activity j executed that has to be executed after finishing activity i .

We define E as the set of all edges in the RPG. The MILP formulated by Constraint
set (2.6) uses the optimal relaxed solution of Constraint set (2.1), denoted by X ∗

i t . The
activities of the MOES are captured by binary variables Wi , which are equal to one if
activity i ∈ N is selected for the MOES and zero otherwise. The set of selected successor
activities of the MOES is defined by binary variables Z j for all j ∈ N , where Z j = 1 if
activity j is selected and zero otherwise. These two sets of activities are linked by selected
selection groups. If a selection group g ∈ G is selected, then binary variable Yg = 1 and
Yg = 0 otherwise.

Constraints (2.6b) only select full-precedence groups for which the activators have
no CRP. Constraints (2.6c) define that activities can only be selected within the MOES, if
they are the activator of a selected full-precedence group. Furthermore, Constraints (2.6d)
select only successors of selected full-precedence groups. The first term in Objective
function (2.6a) represents the finishing times of the MOES, the second term represents
the starting times of the successor activities of the activities in the MOES. By maximizing
the difference between these two terms, a violation of the precedence relations can be
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found.

max
∑

i∈N
Wi

∑
t∈T

(t +di )X ∗
i t −

∑
j∈N

Z j
∑
t∈T

t X ∗
j t , (2.6a)

Yg +Yh ≤ 1, ∀g ∈ H ,h ∈ H , (ag , ah) ∈ E , ag 6= ah , (2.6b)

Yg ≥Wag , ∀g ∈ H , (2.6c)

Z j ≥ Yg , ∀g ∈ H , j ∈ Sg , (2.6d)

Wi ∈ {0,1}, ∀i ∈ N for which |{g : i = ag , g ∈ H }| ≥ 1, (2.6e)

Yg ∈ {0,1}, ∀g ∈ H , (2.6f)

Z j ∈ {0,1}, ∀ j ∈ N . (2.6g)

Proposition 2. Let X ∗ be the linear relaxed solution of Constraint set (2.1). Furtermore,
let W ∗, Y ∗ and Z∗ be the solution of Constraint set (2.6) and let the value of Objective
function (2.6a) be larger than 0. Then, Constraints (2.7) is a cutting plane for the RCPSP-
PS that cuts of the current solution X ∗:∑

i∈N
W ∗

i

∑
t∈T

(t +di )Xi t ≤
∑

i∈N
Z∗

i

∑
t∈T

t Xi t . (2.7)

Proof. Constraints (2.6b) imposes that groups can only be selected if there is no CRP
between the activators. Therefore, in combination with Constraints (2.6c), there is no
CRP between the set of activities for which W ∗

i = 1. Therefore, for an integer solution,
the left hand side of Constraints (2.7) contains at most one non-zero summation term∑

t∈T (t +di )Xi t , for which
∑

t∈T Xi t = 1. Consider the case that one activity i ′ for which
W ∗

i ′ = 1 is executed. Then, there exists at least one selection group g ∈ H with activator i ′
for which Y ∗

g = 1 and thus there exists at least one executed activity j ′ that is a successor
of group g and for which Z∗

j ′ = 1. Due to the full precedence, we obtain Equation (2.8). If

no activity i ′ for which W ∗
i ′ = 1 is executed, the first term of Constraints (2.7) is zero and,

therefore, it is a cutting plane.

∑
i∈N

W ∗
i

∑
t∈T

(t +di )Xi t =
∑
t∈T

(t +di ′ )Xi ′t ≤
∑
t∈T

t X j ′t ≤
∑

i∈N
Z∗

i

∑
t∈T

t Xi t . (2.8)

Therefore, as long as Objective function (2.6a) has a value larger than 0, Constraints (2.7)
cuts of the current solution X ∗.

Both cutting plane types are used as an initial step in solving Constraint set (2.1).
First, the LP-relaxation of Constraint set (2.1) is solved. Secondly, the separation prob-
lems are solved and the cuts are added to the LP-relaxation. This is repeated until no
more cuts are found, or when the objective increase is lower than a certain treshold for a
fixed number of iterations.
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2.4.3. CONSTRAINT PROPAGATION ALGORITHM
In the preceding part of this section, a method for variable reduction and two types of
cutting planes and their separation algorithms are given. In the remainder of this sec-
tion, we combine these methods with an MILP solver to create a solution algorithm for
the RCPSP-PS. This is based on constraint propagation; increments in lower bounds per
activity are propagated to set bounds on other activities.

First, the initialization and individual functions used in this algorithm are presented.
Subsequently, the solution algorithm is given.

The algorithm initializes by creating an empty set of cutting planes for each activity
and by generating a set of forced activities Fi for each activity i ∈ N . A set of forced
activities Fi for activity i ∈ N is defined as the set of activities that always have to be ex-
ecuted if activity i is executed. To determine whether activity j ∈ N is in the set of forced
activities Fi , we use a modified graph as input for Constraint set (2.2). First, we remove
all activities k ∈ N without a CRP between k and i . Since i is executed, any activity with-
out a CRP to i is not executed. Then, if there is a feasible solution to Constraint set (2.2)
for activity set N ′ with V j = 1 and Vp = 0 for every p ∈ N ′, p 6= j , { j } is a NEES and is thus
always executed. In this case, activity j ∈Fi .

Furthermore, we introduce s = [s0, · · · , sn+1] as the vector of earliest starting times
for all activities in N , which is initialized to 0. With this, we introduce four functions:
find_cutting_planes(i ,Ci ,s), linrelax(i ,Ci ,s), variable_reduction(s) and solve(s).

The first function, find_cutting_planes(i ,Ci ,s), generates a set of cutting planes as
follows. First, we replace activity n + 1 in Objective function (2.1a) by activity i and
adding the constraint

∑
t∈T Xi t = 1, which we refer to as setting the objective function

to i . This gives an MILP where activity i is always executed, while minimizing the start-
ing time of activity i , thus, providing a lower bound on the starting time si of activity i .
The solution obtained by solving the relaxation of this MILP, with starting times s and
cutting planes Ci , is then used to generate additional cutting planes as given by Con-
straints (2.5) and (2.7), which together with the already given cutting planes form the
new set Ci . The function call is aborted as soon as more than 10 consecutive cutting
planes did not improve the linear relaxation value, as it was discovered experimentally
that increasing this number did not increase performance significantly, while increasing
the computing time.

The second function, linrelax(i ,Ci ,s), solves the linear relaxation of Constraint set (2.1)
combined with Constraints (2.3) while setting the objective function to i , adding cutting
planes Ci and setting the lower bound on activity starting times to s for all activities in
N . The latter is done by setting X j t = 0 for t < s j for each activity j ∈ N . The function
returns the objective function value, rounded up to the nearest integer, which is a lower
bound on the starting time of activity i .

The function variable_reduction(s) calls Algorithm 1, with the modification of using
s as initial lower bound instead of setting it to zero in line 2. It then returns lower bounds
for all activities. Finally, the function solve(s) first calculates the latest finishing time fi

for each node i ∈ N as described in Section 2.4.1 and then solves the MILP while adding
valid inequalities from Constraints (2.3) and setting Xi t = 0 for all i ∈ N with t < si or
t +di > fi .
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Algorithm 3 Solution algorithm

1: C ← {; : i ∈ N (s)}
2: s ← variable_reduction(0)
3: F ← forced activities
4: N (s) ← topological sorting of N on precedence graph
5: improved ← True
6: while improved = True do
7: improved ← False
8: for all i ∈ N (s) do
9: Ci ←Ci ∪ {C j : j ∈Fi }

10: Ci ←Ci ∪find_cutting_planes(i ,Ci ,s)
11: v ← linrelax(i ,Ci ,s)
12: if v > si then
13: improved ← True
14: si ← v
15: s ← variable_reduction(s)
16: end if
17: end for
18: end while
19: solve(s)

With these functions, the solution algorithm is given in Algorithm 3. Initially, the
lower bounds s are set by calling the variable_reduction() function. Subsequently, the
sets of forced activities Fi for every activity i ∈ N are calculated. The algorithm will now
loop over all activities in topological order N (s). For each activity i ∈ N (s), cutting planes
are calculated by setting the objective to i , and by adding cutting planes from all forced
activities. The latter is done because a cutting plane for an activity j is valid when this
activity is executed. Next, for activity i , a lower bound will be calculated by using lin-
relax(i ,Ci ,s). If this improves the current lower bound for i , the variable_reduction(s)
is called to possibly propagate this improvement to other activities. If there is any im-
provement for at least one of the activities, the loop over all activities will be repeated. If
not, the while loop will terminate. Subsequently, to get an optimal solution, the solve(s)
function is called to solve the MILP.

2.5. COMPUTATIONAL RESULTS
In this section, we present the computational results. We first give a brief description of
how the instances are generated and how the instance sets are created. Subsequently,
the results are presented. These results are used to compare our methods with a method
from literature, to evaluate the sensitivity against the time horizon variable T , and to
evaluate the performance of different parts of the algorithm.

2.5.1. INSTANCES
In this section, we give a brief overview of the instance generation algorithm and give the
instance sets we evaluate. The instances are generated by creating a simple network with
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placeholder activities and replacing these placeholder activities by subnetworks. For
each instance, subnetworks are generated by the generation procedure of Vanhoucke
et al. (2008). This procedure generates instances of the RCPSP based on the number
of activities, Serial/Parallel indicator (SP), Resource Factor (RF) and Resource Con-
strainedness (RC). The description of these parameters can be found in Appendix 2.B
and the specific details can be found in Vanhoucke et al. (2008). Each instance contains
two types of subnetworks, called Phase-1 subnetworks and Phase-2 subnetworks. The
parameters N 1 and N 2 define the number of activities of these respective networks. All
other parameters are equal for all subnetworks of an instance.

The network of placeholder activities is created from a shape array, for example [3,3],
indicating two sequential selection-groups with each three successors. Each successor
is replaced by a phase-1 subnetwork, and in the resulting network, the Replace Number
(RN) determines the number of activities replaced by multiple parallel phase-2 subnet-
works. Finally, additional precedence links are placed according to the Additional Links
(AL) parameter. If Independent Succession (IS) is allowed, then the same number of
selection links as precedence links is placed as well. Details of the instance generation
algorithm can be found in Appendix 2.B.

With these parameters, we create three sets of instances: literature instances, sen-
sitivity instances and comparison instances. For all sets, the parameters RF and SP are
constant (RF = 0.75 and SP = 0.5), as we capture the variance in resources and shape
by the RC parameter and shape array, respectively. Furthermore, each instance has 4
resources. For all other parameters, the values are shown in Table 2.B.1. Here, each list
shows the considered values per parameter and an instance is generated for each combi-
nation, with certain combinations to be removed after computational results indicated
these instance to be unsolvable within a solving time of 6 hours. Furthermore, the full
sets of instances can be found Van der Beek (2022c).

The largest instance set, Literature, has no IS, and therefore, can be solved by the
model in Kellenbrink and Helber (2015). This set is thus used to compare the proposed
method in this chapter with a model from literature. The smaller instance set Sensitivity
neither allows IS and is used to evaluate the solution methods to variations in the initial
time horizon T . Therefore, any instance in this set that cannot have T reduced by 10%
without becoming infeasible is removed. Finally, the instance set Comparison includes
IS, and therefore, can only be solved with the proposed methods in this chapter. This
instance set is used to gain insight in the improved performance by various parts of the
proposed solution method.

2.5.2. RESULTS
All tests are performed on Intel Xeon Gold 5128 2.3 GHz server core. To solve the MILPs,
Gurobi 8.1.1 (Gurobi, 2021) was used with a time limit of 6 hours and the settings to focus
on finding the optimal solution by branch and bound: MIPFocus = 3, Heuristics = 0 and
RINS = 0. We consider four different solution methods:

1. Basic: Solve the MILP given by model Constraint set (2.1) for final activity n +1.

2. Variable reduction (VR): Basic method combined with Constraints (2.3) and the
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variable reduction method given in Algorithm 1; i.e., calling function solve(s) with
s from variable_reduction(0).

3. Constraint propagation (CP): Algorithm 3.

4. Literature: MILP model proposed in Kellenbrink and Helber (2015). Notice that
their variable reduction method does not reduce variables on our instances, since
all non-dummy activities are optional.

The first three methods can be seen as extensions of each other. The VR method is the
Basic method, with additional constraints and certain variables set to zero. Furthermore,
the CP method solves the same MILP as the VR method, although additional variables
are set to zero.

LITERATURE

First, the instance set Literature is evaluated. To compare both basic MILP models, each
instance is solved by methods Basic and Literature. Furthermore, each instance is solved
by the CP method to evaluate the improvement. Due to the large size of this instance set
and the computational effort required, we evaluate this set only on the full (CP) method
and leave the analysis for the intermediate step (VR) for the Sensitivity and Comparison
instance sets.

A summary of the results is given in Table 2.3. Here, it can be seen that the num-
ber of optimal solutions obtained by the methods Basic and CP is significantly higher
than by method Literature. Furthermore, the CP method is, on average, about 32 min-
utes faster than the Literature method. However, this is skewed due to the non-solvable
instances. When comparing only the interesting instances, a decrease in average com-
putation time of 50% is achieved. We define an interesting instance as an instance that
has at least one method solving it to optimality, and at least one method not solving it to
optimality within 5 minutes. This can be seen in Figure 2.9a, where the computing time
of all 976 interesting instances are shown.

Furthermore, we define the optimality gap as (ub − lb)/ub where lb and ub are the
lower and upper bound found by the MILP solver, respectively. In Table 2.3 and Fig-
ure 2.9b, this shows a similar trend as for computing time. Furthermore, to gain more

Table 2.2: Properties of instance sets

Literature Sensitivity Comparison
RC [0.5,0.7,0.9] [0.5,0.7,0.9] [0.5,0.7,0.9]
N1 [3,4,5] [3,4] [3,4,5]
N2 [3,4,5] [3,4] [3,4,5]
Shape [[2,2], [2,3], [3,2],

[2,2,3], [2,3,2],
[3,2,2],[3,3]]

[[2,3],[2,3]] [[2,2],[2,3],[3,3],
[2,3,2]]

RN [2,3] 3 [2,3]
AL [0,2,4,6] [0,3] [0,3,6]
IS No No Yes
# instances 1008 34 576



2

52 2. EXACT SCHEDULING WITH A FLEXIBLE PROJECT STRUCTURE

1 3 4
Method

0

5

10

15

20

Co
m
pu

tin
g
tim

e
(1

03
s)

(a) Computing time.

1 3 4
Method

0.00

0.05

0.10

0.15

0.20

O
pt
im

al
ity

ga
p

(b) Optimality gap (without fliers).

Figure 2.9: Computing time and optimality gap for instance set Literature for methods 1 (Basic), 3 (CP) and 4
(Literature).

insight in this optimality gap, we evaluate the best lower and upper bounds found dur-
ing the MILP solver process. Similar to the optimality gap, we normalize this to the lowest
upper bound found for each instance. Furthermore, we evaluate the number that a cer-
tain method reached the best bound, compared to other methods, excluding all ties. A
tie is defined as an instance where all three methods reach the same bound. It can be
seen that on both bounds and optimality gap, the Basic and CP method outperform the
Literature method. Furthermore, the Basic method has a larger number of best lower
bounds, but the CP method has a higher average lower bound. From this, it can be de-
duced that if CP has the best bound, on average it is with a larger difference than if Basic
has the best bound. Furthermore, it can be seen that the Basic method performs better
than the CP method on all aspects of the upper bound. Therefore, the better average
optimality gap of the CP method compared to the Basic method can be attributed to the
better performance of the lower bounds.

When comparing the size of the problems, it can be seen that the Basic model is con-

Table 2.3: Summary of results for instance set Literature. The numbers of best lower bounds and best upper
bounds have 260 and 867 ties, respectively.

Basic CP Literature
# Optimal solutions 356 364 256
Average computing time (103s) 15.11 14.95 16.85
Average optimality gap 0.130 0.126 0.215
# Best lower bound 452 420 4
Average normalized lower bound 0.872 0.876 0.793
# Best upper bound 104 99 5
Average normalized upper bound 1.0029 1.0032 1.0116
Average number of variables 35048 15275 35048
Average number of constraints 2018 2340 1093
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siderably larger than the Literature model. Both have the same number of variables, but
the Basic model has about twice as much constraints. However, the constraint propaga-
tion reduces the size significantly. Although some more constraints (and thus rows) are
added due to Constraints (2.3), the number of variables is more than halved.

Upon evaluating computing times, we found two major trends: with the number of
activities and with the RC value. The average computing times for different values of
these parameters are plotted in Figures 2.10a and 2.10b. It can be seen that the solving
difficulty increases with the number of activities. We see that the difference between
the methods decreases with the number of activities, presumably due to the influence
of unsolved instances (which are capped at 6 hours). Furthermore, while evaluating the
dependency on the RC parameter, it can be seen that values around 0.7 are significantly
more difficult. A possible explanation could be that since resource constraints are dif-
ficult to solve, a lower constrainedness results in an easier instance, while a high value
would significantly decrease the feasible region, and thus, the number of schedules that
have to be evaluated.
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Figure 2.10: Average computing times for instance set Literature for methods 1 (Basic), 3 (CP) and 4
(Literature).

SENSITIVITY

An important part in any time-based scheduling formulation of the RCPSP is the size
of time horizon T . Decreasing this can significantly decrease the number of variables
and often speed up the computation. To determine our value of T , we create a feasible
solution using a simple heuristic: the selection problem is solved by iteratively adding
nodes, starting at the root node, until a feasible selection is obtained. In the case of
multiple candidate nodes, the selection is made randomly. Then, a schedule is made
by in a similar way: iteratively adding random selected nodes in a precedence feasible
way, starting at the root node. The now sorted selected nodes form an activity list, and
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a serial generation scheme is used to create a schedule (Kolisch and Hartmann, 1999).
Note that this simple heuristic works for the structure of the instances considered in this
chapter, but not necessarily for all instances of the RCPSP-PS. In case of other structures,
more sophisticated heuristics should be used. If no heuristic is available, the sum of all
durations form an (very bad) upper bound that can be used.
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Figure 2.11: Sensitivity to modifications in T for methods 1 (Basic), 2 (VR) , 3 (CP) and 4 (Literature).

To evaluate the influence of the time horizon T , the instance set Sensi t i vi t y is eval-
uated while modifying T for each instance. These modifications are done in percentages
from the initial T value, after which they are rounded. In Figure 2.11, the average com-
puting times per method and per T modification values are shown. For the Basic and
the Literature method, the computing time seems to vary similarly, although the largest
modification for the Literature method has a smaller average computing time. However,
we assume this is due to randomness in the MILP solving process. For the VR and CP
methods, we can see that increasing T has very little effect on the average computing
time. Furthermore, reducing it improves the performance, although this trend does not
seem to continue for further reduction from -5% to -10%.

COMPARISON

Finally, we evaluate the instance set Comparison to gain insight in the relative improve-
ments of different parts of the CP method. A summary of the results is given in Table 2.4
and the total computation time per method for interesting instances are shown in Fig-
ure 2.12a. It can be seen that, although the CP method has the lowest average comput-
ing time, the largest part of this decrease in computing time can be attributed to the
VR method. However, when considering the number of optimal solutions obtained, the
improvement due to the CP method is considerably larger than the improvement due
to the VR method, indicating that the CP method is especially useful on more difficult
instances.

The optimality gaps show counter-intuitive behavior, with the Basic method having
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the smallest gap. When evaluating the average normalized lower and upper bounds, it
can be seen that this optimality gap is mainly due to the better upper bounds found by
the Basic method. Looking at the number of best lower and upper bounds, it seems that
the Basic method performs better than both the VR and CP method. However, this is
not necessarily the case for the lower bounds, since this comparison is slightly skewed
due to CP and VR performing well on the same instances. If only Basic and CP would
be compared on lower bounds, Basic would have 122 best lower bounds and CP 125 (ex-
cluding ties between Basic and CP). However, since on multiple instances where CP has
a better lower bound, VR has an even lower lower bound, CP performs relatively worse
when comparing all three methods. For the upper bounds, however, Basic performs bet-
ter than both the VR and the CP method.

Furthermore, Table 2.4 lists the average sizes of the MILPs. It can be seen that the
largest part of the reduced variables is due to the VR method, averaging to a reduction of
44%. The CP method in turn has a further reduction of 4%. Both the VR and CP method
use the same valid inequalities, resulting in the same number of constraints: 15% more
than the Basic method.

Finally, we evaluate the performance of the methods compared to the AL parameter,
which gives an indication of the similarity between the selection graph and the prece-
dence graph. The average computing time per AL value is shown in Figure 2.12b.

It can be seen here that there is an increasing trend of computing time against the AL
value. Furthermore, it is interesting to see that the VR method performs slightly better
in terms of computation time on all AL values except zero. To analyze the performance
against the AL value in more detail, we evaluate the linear relaxation of both the CP and
the VR method. We define the relative linear relaxation as l r2

l r3
, where l r2 and l r3 are the

linear relaxation values of the VR and CP methods, respectively. Thus, a value of 1 means
no improvement in linear relaxation due to the CP method. Note that CP solves the same
MILP model as VR, although with more variables set to zero. Therefore, the relative linear
relaxation is never larger than one. The lower the value of the relative linear relaxation,
the larger the improvement due to the CP method.

In Figure 2.13a, the relative linear relaxation values are shown. It can be seen that the

Table 2.4: Summary of results for instance set Comparison. The number of best lower bounds and best upper
bounds have 298 and 512 ties, respectively.

Basic VR CP

# Optimal solutions 323 325 336
Average computing time (103s) 11.41 11.04 10.89
Average optimality gap 0.057 0.059 0.058
# Best lower bound 127 88 113
Average normalized lower bound 0.9449 0.9452 0.9453
# Best upper bound 38 24 34
Average normalized upper bound 1.0027 1.0049 1.0036
Average number of constraints 1535 1767 1767
Average number of variables 21253 11871 11000
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Figure 2.12: Computing times for instance set Comparison for methods 1 (Basic), 2 (VR) and 3 (CP).

relative performance of the CP method increases with the AL value. However, by plotting
the computing times of the preprocessing part of the CP method in Figure 2.13b, it can be
seen that the computing time also increases with AL values. As seen in Table 2.5, there
is an decrease in MILP solver time due to the CP method for each AL value. However,
for AL values larger than 0, this decrease is smaller than the increased computing time
due to preprocessing. Therefore, no average computing time improvement is achieved.
However, when evaluating the number of solved instances for an AL value of 3 (108 for
VR and 111 for CP) and 6 (100 for VR and 102 for CP), the use of the CP method can still
be valuable for these instances.
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Table 2.5: Partial computing times (103s) for instance set Comparison for different values of AL.

AL: 0 3 6
VR MILP Solver 10.14 11.14 11.84
CP preprocess 0.73 1.06 1.22
CP MILP Solver 8.81 10.12 10.73

2.6. CONCLUSIONS
In this chapter, we developed a general model for the RCPSP-PS by introducing the con-
cept of selection groups. Based on this model, two types of subsets of activities were
identified: ‘non-empty execution sets’ and ‘max-one execution sets’, which provide in-
formation on the number of executed activities within these sets. With these sets, cut-
ting planes and a constraint propagation technique were introduced, along with an al-
gorithm that combines these methods.

Computational tests show that the basic MILP model performs significantly better
than the most similar model from literature. Furthermore, an improvement on both
computing time and the number of optimal solutions found is achieved by both the
Variable reduction and the Constraint propagation method. Additionally, although for
the final instance set the average optimality gap did not improve, the best lower bound
found did. Furthermore, it was shown that for all methods, a lower initial time hori-
zon decreased the average computing time, therefore indicating the usefulness of good
heuristics, even for instances that can be solved to optimality.

Besides the direct computational improvements, the methods presented in this chap-
ter decrease the solution space. Therefore, they can be directly implemented in other
exact approaches, such as constraint programming. Furthermore, the mathematical
proofs in this chapter can be used as building blocks for other theoretic or computa-
tional improvements.





APPENDIX

2.A. NOTATION
Sets

E Edges in a CRP.
E (a) Active edges representing a CRP.
E ( f ) Final edges representing a CRP.
E (n) New edges representing a CRP.
G Selection groups.
H Selection groups with full precedence.
N Activities.
R Resources.
Sg Successor activities of selection group g ∈G .
T Time periods.
Ci Cutting planes for activity i ∈ N .
Fi Forced activities for activity i ∈ N .
P Precedence relationships (tuples of 2 activities).
P j Predecessors of activity j ∈ N in the precedence graph.
Ri (A) All paths starting in i and ending in an activity in set A, with only the last

activity in set A.
Si Successors of activity i ∈ N in the precedence graph.
V (P ) Vertex set of path P .
Γ All activity pairs (i , j ) if i ∈ N and j ∈ N are successors in the selection graph

of the same selection group.
Θ Pairs (i , j ) of activities where i is reachable from j of vice versa.
Θi All activities that are reachable from activity i ∈ N .
Ωi Successors of activity i ∈ N in the selection graph.

Variables
Vi 1 if activity i ∈ N is selected for the NEES and zero otherwise.
Wi 1 if activity i ∈ N is selected for the MOES and zero otherwise.
Xi t 1 if activity i ∈ N is executed at time t ∈ T , zero otherwise.
Yg 1 if group g ∈ H is selected and zero otherwise.
Zi 1 if activity i ∈ N is selected as successor activity and zero otherwise.
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Parameters
ag Activating activity of selection group g ∈G .
di Duration of activity i ∈ N .
fi Latest finish time of activity i ∈ N .
kr i Usage of resource r ∈ R for activity i ∈ N .
l Lower bound on objective.
M Very large number.
n Number of non-dummy activities.
si Earliest start time of activity i ∈ N
u Upper bound on objective.
`(P ) Number of vertices in path P .
λr Capacity of resource r ∈ R.

2.B. INSTANCE GENERATION METHOD
In this section, we give the instance generation algorithm. The instance generation al-
gorithm works by creating a simple sequential network and replacing activities. First, we
give a list of all input parameters. Subsequently, we give the instance generation algo-
rithm, and finally, we describe the three instance sets.

Table 2.B.1: Properties of instance sets

Parameter Description
Resource constrainedness (RC) Resource Constrainedness parameter

from Vanhoucke et al. (2008).
Resource Factor (RF) Resource Factor from Vanhoucke et al.

(2008).
Serial/Parallel indicator (SP) Serial/Parallel indicator from Vanhoucke

et al. (2008).
Shape Vector with initial shape of the network,

for example [2,3,2].
Network size 1 (N1) Size of networks of Phase 1.
Network size 2 (N2) Size of networks of Phase 2.
Alternatives Number (AN) Number of alternative options of network

Phase 2.
Replacement Number (RN) Number of activities in a Phase 1 network

that is replaced by a set of Phase 2 net-
works.

Additional Links (AL) Number of additional links (precedence
and/or selection) added.

Independent Succession (IS) Boolean, true if selection links are added.

All input parameters are given in Table 2.B.1. The algorithm is based on multiple
functions that either replace or create a part of the network. Since we are mostly inter-
ested in the activities of the network, we use a N (i ) notation to refer to the activities of
a (partial) network. Using an index j , the j th activity is denoted by N (i )

j . Furthermore,
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unless specified otherwise, every created activity is a dummy activity with zero duration
and resource requirements.

Next, we introduce the functions used by the algorithm. The first function is cre-
ate_sequential_network(a). This function creates a network of a serial activities. This
means that for each activity i with i < a, a precedence relationship is created from activ-
ity i to activity i +1, as well as a selection relationship from i to j . Creating a selection
relationship from i to i + 1 is defined as creating a selection group (i , {i + 1}) (i is the
activator and {i +1} is the successor set).

The second function is replace_group(n, a), where n is an activity and a an integer.
This function creates a +2 activities, consisting of a starting activity, a successor activ-
ities and an ending activity. A selection group with full precedence is created between
the activator activity and the successor activities. Subsequently, both a precedence and
a selection relationship are created from each successor to the ending activity. The func-
tion replaces activity n by this partial network and returns the a successor activities for
future reference.

The third function, replace_network(n, N 1,RC ,RF,SP ), is the only function creating
non-dummy nodes. The input is an activity n and the parameters N 1,RC ,RF and SP .
It uses these parameters as input for the method described in Vanhoucke et al. (2008)
to create an RCPSP instance. This instance is converted to an RCPSP-PS instance by
creating a selection link for each precedence link. Then, activity n is replaced by this
instance and all activities, except the root and final activities, are returned for future
reference.

Both functions replace_network() and replace_group() modify the input network in
place and return a subset of activities (as explained above) for future reference. For
example, consider the set of activities N with activity n ∈ N . Then, by calling M ←
r epl ace_g r oup(n, a), a selection group is created with a successors and this selection
group replaces activity n ∈ N . The successors are stored under M , and since n is part of
N and the modification is done in place, the set of activities N now contains this group:
M ⊂ N .

Finally, when the complete network with precedence and selection links is required,
the function network(N ) is used. This function returns the full networks, instead of just
the activities.

With these functions, the first part of the algorithm is described. In Line 1, the net-
work is initialized by creating a sequential network of the same length as the length of
the Shape vector. Then, in Line 3, each hth activity in the sequential network is replaced
by a selection group with Shape[h] successors. Each of these successors is then replaced
by a network generated by the replace_network function. We call these networks: Phase
1 networks. Subsequently, in the loop starting at Line 6, RN activities within this network
are replaced by a selection group with AN successors in Line 8. Then, each successor of
this selection group is replaced by a network at Line 10. These networks are called Phase
2 networks.

This creates the basic network. The final part of the algorithm adds additional se-
lection and precedence links. Before describing this part, two more functions are intro-
duced to create the additional links. The first is get_prec_candidates(N ), where N is a set
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of activities. This function returns all potential pairs for added precedence relationships,
within N . Two activities n and m are a potential pair if all following criteria are satisfied:

1. Creating a precedence link from activity n to activity m does not create a cycle.

2. Activities n and m are part of the same Phase 1 network.

3. Activities n and m are part of a Phase 2 network.

4. Activities n and m are not dummy-activities.

Similarly, the function get_sel_candidates(N ) takes a set of activities N as input and
returns all potential pairs for added selection relationships, within N .

1. Creating a selection link from activity n to activity m does not create a cycle.

2. Activities n and m are part of the same Phase 1 network or activity n was created
in an earlier iteration of Line 2 in Algorithm 4.

3. Activities n and m are part of a Phase 2 network.

4. The Phase 2 networks of activities n and m are not part of the same group in Line
8.

5. Activities n and m are not dummy-activities.

With these functions, the remainder of the algorithm can easily be described. In Line
15, up to AL precedence links are added from the candidates. Subsequently, if I S is
enabled, the same is done for selection links. Finally, the algorithm returns the complete
network in Line 35.
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Algorithm 4 Instance generation algorithm

1: N (1) ← Create_sequential_network(|Shape| )
2: for h in range(|Shape|) do
3: N (2)

h ←replace_group(N (1)
h ,Shape[h])

4: for i in range(Shape[h]) do
5: N (3) ← replace_network(N (2)

i , N 1,RC ,RF,SP ) . Phase 1
6: for j in range(RN ) do
7: n ←Select random w/o replacement from N (3).
8: N (4) ←replace_group(N (3)

n , AN )
9: for k in range(AN ) do

10: N (5) ← replace_network(N (4)
k , N 2,RC ,RF,SP ) . Phase 2

11: end for
12: end for
13: end for
14: end for
15: for i in range(AL) do
16: pr ec_candi d ates ← get_prec_candidates(N (1))
17: if |pr ec_candi d ates| = 0 then
18: break
19: else
20: n,m ←Select randomly from pr ec_candi d ates
21: Create precedence link between n and m
22: end if
23: end for
24: if I S then
25: for i in range(AL) do
26: sel _candi d ates ←get_sel_candidates(N (1))
27: if |sel _candi d ates| = 0 then
28: break
29: else
30: n,m ←select randomly from sel _candi d ates
31: Create selection group (n, {m})
32: end if
33: end for
34: end if
35: return network(N (1))
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HEURISTIC SCHEDULING FOR THE

RCPSP-PS WITH CONSUMPTION

AND PRODUCTION OF RESOURCES 1

In the previous chapter, the RCPSP-PS is given to model modularization and outsourc-
ing decisions for modular shipbuilding. Although the flexible project structure is very
general, certain characteristics of modular shipbuilding cannot be modeled due to limi-
tations in resource types. This chapter, therefore, gives a generalization of the resources
introduced in the previous chapter.

First, we present the resources that cannot be modeled with the RCPSP-PS. The first
is capital. Shipbuilding is a capital-intensive industry. During the building process, a lot
of money is tied up in the ships being constructed. To maintain a healthy financial situ-
ation, there can be a limit on the maximum amount of capital that is tied up in a project.
This is related to project scheduling: activities such as material procurement ‘lock down’
capital. Conversely, payments are usually associated with project milestones, such as
finishing the steel work, installing the engine or finishing the vessel. By considering this
while scheduling, it can be assured that the capital requirements do not exceed a certain
limit.

Secondly, floor space at the ship yard is limited. Although 2D fitting of floor space is
an N P-hard problem by itself (Türk et al., 2022), a simplified model can be created by
considering floor space as a one dimensional entity, possibly considering various types
of floor space. Then, activities such as ‘creating an assembly’ require the resource floor
space: floor space is needed to store the assembly. Subsequently, the activity ‘install an
assembly in the ship’ frees up floor space, as the assembly is taken and moved to the
inside of the ship.

1This chapter is reproduced from the paper published in the European Journal of Operational Research (Van
der Beek et al., 2024).
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Finally, it is possible to pre-construct certain assemblies. This will especially be use-
ful when considering multiple projects at once. These assemblies can be modeled as
resources that are generated by activities that construct these assemblies and depleted
by activities that use the assemblies.

As can be noted, all resources introduced above do not generate automatically after
use. Instead, they are produced by certain activities and consumed by others. Thus, we
call this nonrenewable resources with production and consumption. In this chapter,
these types of resources are added to the model.

Furthermore, in Chapter 2, an exact solution method is given. Although exact solu-
tion methods should be used whenever possible, due to the N P-hardness of the RCPSP-
PS, these methods often take too long to be of practical use. Therefore, in this chapter, we
also present two heuristic methods to quickly find good solutions. The computational
study, among other things, then showcases why exact methods are useful even if they
would not be used in practice: by evaluating against exact solutions, an indication of the
performance of the heuristic methods is given.

3.1. INTRODUCTION
The Resource Constrained Project Scheduling Problem (RCPSP) is an extensively studied
optimization problem with the goal of minimizing the total execution time of a project,
subject to precedence and resource constraints. It is widely applicable and has been
used in many industries, such as shipbuilding (Hu et al., 2019), housing construction
(Bezerra and Scheer, 2021), employee scheduling (Bellenguez and Néron, 2005), etc. In
the standard RCPSP, the list of activities is fixed and all activities have to be scheduled
while being constrained by renewable resources, i.e., resources that become fully avail-
able again after an activity is done. Examples of renewable resources are workers, ma-
chines and cranes.

However, in reality, these assumptions are not always valid, due to multiple rea-
sons. First of all, in many construction projects, there are multiple ways of complet-
ing a project. For example, in shipbuilding, assemblies can be produced beforehand in
workshops, or directly on the ship. After production in a workshop, an assembly has
to be installed as a whole in the ship, requiring specialized resources such as cranes.
Conversely, direct production on the ship does not require this, although the less ideal
working conditions might require better trained workers. Secondly, not all resources are
renewed automatically. For larger products, like machines or aircrafts, factory space be-
comes only available after a moving/shipping activity is done. Similarly, capital might
only be freed up after a certain milestone activity has been reached. In this case, these
resources are modeled as nonrenewable resources. For example, consider capital as one
of these resources. An activity that requires purchasing components consumes capi-
tal. This capital can then be produced again by activities that generate income, such
as reaching a project milestone. Similarly, completing a sub-assembly and moving it to
some other location will free up (produce) the resource ‘floor space’.

These additional aspects give rise to the Resource Constrained Project Scheduling
Problem with a flexible Project Structure and Consumption and Production of Resources
(RCPSP-PS/CPR), a generalization of the RCPSP with two extensions.
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Firstly, we introduce the flexible project structure. The standard RCPSP answers the
question: At what time should each activity be executed? The flexible project structure
adds another problem: Which activities should be executed? This latter problem is called
the selection problem and was proven to be N P-hard by Barták et al. (2007). Secondly,
nonrenewable resources with consumption and production are introduced. As opposed
to renewable resources, which are fully available after use, nonrenewable resources are
either consumed or produced by an activity. This complicates the problem, since an
instance with nonrenewable resources does not always have a feasible solution. With
renewable resources, activities can always be delayed until enough resources are avail-
able. With nonrenewable resources, this is not the case and determining if an instance
has a feasible solution is N P-hard (Neumann and Schwindt, 2003). Although both the
flexible project structure and the nonrenewable resources with consumption and pro-
duction have been studied separately, to the best of our knowledge, the RCPSP-PS/CPR
has not been studied.

This chapter has three contributions. Firstly, we adapt the Mixed Integer Linear Pro-
gramming (MILP) formulation of Chapter 2 by adding nonrenewable resources. Sec-
ondly, group orderings are introduced; a fast method to find feasible solutions to the
selection problem, to be used within heuristics. This method is only applicable to in-
stances with certain characteristics, which are discussed in this chapter. However, these
characteristics are present in many practical instances of the RCPSP-PS/CPR. Finally, we
present a Hybrid Differential Evolution (HDE) algorithm and evaluate its performance
against special cases from the literature, optimal solutions and a Ant Colony Optimiza-
tion (ACO) benchmark algorithm.

In Section 3.2, we present an overview of the literature related to the RCPSP-PS/CPR.
Subsequently, we formulate the problem in Section 3.3. Then, we present a method to
create feasible selections and use this to create the HDE algorithm and the ACO algo-
rithm in Section 3.4. This is followed by a comparison of computational results in Sec-
tion 3.5 and conclusions in Section 3.6.

3.2. LITERATURE REVIEW
The RCPSP is introduced by Pritsker et al. (1969) and proven to be N P-hard by Blazewicz
et al. (1983). In this section, we focus on the extensions considered in this chapter: con-
sumption and production of resources and a flexible project structure. For these exten-
sions, the main points of interest are modeling decisions and metaheuristics used. For
the general RCPSP, an overview of hybrid metaheuristic approaches is given by Pellerin
et al. (2019). They conclude that most algorithms are population-based. Furthermore,
they conclude that local-search-based permutations and forward-backward improve-
ments (Wang and Lui, 2017) are most used in the best performing approaches.

We now consider scheduling with nonrenewable resources. We use this term to
denote the general case of a set of resources that are consumed and not automatically
renewed. Furthermore, we consider the generalization of consumption and production
of resources, where a resource cannot only be consumed but also produced.

When considering scheduling with nonrenewable resources with consumption and
production, two types of closely related problems have to be studied: activity-based
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scheduling and event-based scheduling. The general RCPSP consists of activities to
be planned that have a certain duration and precedence relationships. Conversely, the
Event Scheduling Problem (ESP) consists of events; tasks with zero duration and maxi-
mal and minimal time lags to other events, where time lag is the time difference between
two events. Notice that every instance of the RCPSP can be modeled as an instance of
the ESP by replacing each task with a duration zero and prescribed maximal and min-
imal time lags to other events, while the converse is not true; the basic version of the
RCPSP does not include maximum time lags between activities. Therefore, the RCPSP is
a special case of the ESP.

Event-based scheduling with inventory constraints is introduced by Neumann and
Schwindt (2003). Here, resources have both an upper and a lower bound; the inventory
level cannot exceed its capacity and it is not allowed to drop below a certain level. They
formulate the problem and answer some structural questions, e.g., the N P-completeness
of the feasibility problem. Furthermore, they present a branch-and-bound procedure
and evaluate its performance. The problem introduced by Neumann and Schwindt (2003)
has also been investigated in a paper by Laborie (2003), who applied a constraint pro-
gramming approach with consistency tests. Furthermore, Carlier et al. (2009) intro-
duce the project scheduling problem with consumption and production of resources
(RCPSP/CPR), which uses an event-based approach. For this problem, they provide a
scheduling algorithm that computes the optimal schedule by enumerating over all linear
orders of events. Koné et al. (2013) also consider the problem with production and con-
sumption of resources. They provide a time-indexed MILP model for the discrete time
RCPSP/CPR and a flow-based formulation for the continuous-time RCPSP/CPR. Fur-
thermore, they present a formulation combining activities and events with continuous-
time variables determining the occurrence times of the events and binary variables de-
termining whether an activity is executed at the same time of an event. Similarly, Sahli
et al. (2016) present different models for the ESP with consumption and production of
resources. Like Koné et al. (2013), they give a time-indexed and a flow-based formula-
tion. Besides this, they also give an event-partitioning-based formulation.

Most papers listed above investigate lower bounds and exact formulations. How-
ever, the research on heuristic methods for the RCPSP/CPR is limited. Carlier et al.
(2009) shortly discuss how the exact enumeration algorithm can be modified to obtain
a heuristic method. Furthermore, Shirzadeh Chaleshtarti et al. (2020) present a genetic
algorithm for the RCPSP with nonrenewable resources. This consist of the standard ver-
sion of the RCPSP, with a fixed amount of initially available resources that can only be
consumed and not produced. Since there is no flexible project structure and resources
can only be consumed, the amount of initial resources fully defines feasibility regarding
nonrenewable resources. Therefore, resource infeasibility is not taken into account for
this problem.

Besides nonrenewable resources, the second extension is the flexible project struc-
ture. Although there are different variants under different names in the literature, the
main concept of this extension is that only a subset of all activities have to be executed.

The flexible project structure is firstly introduced by Barták et al. (2007). However,
they do not consider the RCPSP, but a different scheduling problem: temporal networks
where resources are not considered and the goal is to satisfy maximum and minimum
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time lags between activities. For this problem, they introduce the problem of a flexible
structure and, amongst other things, show that the selection problem is N P-hard. One of
the earliest RCPSP variants with a flexible project structure is the Extended RCPSP, intro-
duced by Kuster et al. (2009). They study a disruption management problem, which they
model as an RCPSP with an initial activation state and substitution criteria. These sub-
stitution criteria define what changes are allowed to the initial state. They give a custom
evolutionary algorithm to heuristically solve this problem. Furthermore, Čapek et al.
(2012) study a variant of the RCPSP with a flexible project structure, unary resources,
time-lags and sequence dependent setup times. They represent the branching structure
by Petri nets and give both an MILP and a constructive heuristic algorithm. The RCPSP
with a flexible project structure is studied in Kellenbrink and Helber (2015). They model
this by distinguishing between mandatory and optional activities, and introduce a set
of choices to decide which optional activities have to be executed. They include nonre-
newable resources, but only with consumption of these resources and without produc-
tion. To heuristically solve this problem, they use a genetic algorithm. Another formula-
tion is given by Tao and Dong (2017), who represent the problem by an AND-OR project
network. They call this problem the RSPCP with alternative activity chains and give an
extended simulated annealing algorithm to heuristically solve it. Furthermore, in Tao
and Dong (2018), they extend the problem by adding multiple modes of executing an
activity and by considering multi-objective optimization. This new problem is heuris-
tically solved by a hybrid algorithm consisting of tabu search and a genetic algorithm.
Servranckx and Vanhoucke (2019) define the RCPSP with alternative subgraphs. This
problem consists of branches, where each branch represents a subset of activities that
can be executed. This is heuristically solved using tabu search. Furthermore, Chapter 2
introduces an MILP model where the choices are based on selection-groups; a group
consisting of an activator activity and a set of successor activities. If an activator activ-
ity is executed, exactly one successor activity has to be executed. A solution method is
given that uses cutting planes and constraint propagation for preprocessing, after which
the problem is solved to optimality by a commercial MILP solver.

We now compare the RCPSP-PS/CPR to the problems introduced in this literature
review. For this, we use three concepts from Chapter 2. The first concept is separate
scheduling and selection. This means that the graph representing all selection con-
straints can be separate from the graph representing all precedence constraints. The sec-
ond concept is Independent Succession (IS). A model with IS allows for multiple activities
to simultaneously cause the execution of the same other activity. If a model does not fea-
ture IS, each activity can only be executed based on at most one other activity. Finally, the
exclusivity criterion (EC) is introduced. If a model includes the EC, choices are exclusive;
only one alternative can be selected from a set of candidate activities. With these terms,
the different models can be compared. This is done in Table 3.2.1 and shows that the
models of Chapter 2, Kuster et al. (2009); Kellenbrink and Helber (2015); Servranckx and
Vanhoucke (2019); Tao and Dong (2017) are special cases of the RCPSP-PS/CPR. How-
ever, the problem considered in Čapek et al. (2012) contains additional extensions, and
therefore, is not a special case of the RCPSP-PS/CPR.

In conclusion, although there is various research on the different elements of the
RCPSP-PS/CPR, this has not been combined yet. Furthermore, the research on heuris-
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Table 3.2.1: Overview of models with a flexible project structure
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Kuster et al. (2009) X X X
Čapek et al. (2012) X X X X
Kellenbrink and Helber (2015) X X X X X
Tao and Dong (2017) X X X X
Servranckx and Vanhoucke (2019) X X X
Chapter 2 X X X X
This chapter X X X X X X X

tic methods considering nonrenewable resources with consumption and production is
limited. To the best of our knowledge, no implementation of this exists.

3.3. RCPSP-PS/CPR
In this section, a formal description of the RCPSP-PS/CPR is given. First, Section 3.3.1
describes the problem and introduces all required notation. Subsequently, Section 3.3.2
gives an MILP formulation for the RCPSP-PS/CPR. This model is based on the model for
the RCPSP-PS from Chapter 2. Like nearly all formulations for the RCPSP with a flexible
project structure, it uses a time-indexed formulation. Therefore, we use the constraints
from the time-indexed formulation of Sahli et al. (2016) to model the nonrenewable re-
sources.

3.3.1. PROBLEM DESCRIPTION

The RCPSP-PS/CPR consists of a set of activities N of which a subset has to be executed.
The set N consists of the starting activity 1 and the final activity |N | and |N | − 2 non-
dummy activities. The starting activity 1 starts before all activities and the final activity
|N | starts after all activities have been finished. The objective is to minimize the total
time of the executed activities, also called the makespan of the project. The activities
are scheduled in discrete time periods T . Each activity i ∈ N has a duration of di time
periods. These activities have to be scheduled while satisfying resource, precedence and
selection constraints.

There are two types of resources; renewable resources Rr and nonrenewable resources
Rn . The set of all resources is denoted by R = Rr ∪Rn (Rr ∩Rn = ;). For each resource
r ∈ R, activity i ∈ N consumes k−

r i amount of resource r at the start of the activity and
produces k+

r i at the end of the activity. For each renewable resource r ∈ Rr , we have
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k−
r i = k+

r i . Furthermore, each resource has a total capacity of λr .
The precedence relationships are defined by the set of tuples P . For each precedence

relationship (i , j ) ∈P , it is required that activity j does not start before the finishing time
of activity i .

The flexible project structure is modeled by selection groups G . Each selection group
g ∈G consists of an activator activity ag and a set of successor activities Sg , with |Sg | > 0.
For each activator group g ∈G , it holds that if activator ag is executed, exactly one of the
successor activities Sg has to be executed.

Finding a set of executed activities such that this holds for each group is called the
selection problem, as given in Definition 3.3.1. A representation of the selection prob-
lem is given by the selection graph. This graph consists of a node for each activity and
an arc for each activator-successor relationship. When the selection graph is illustrated,
a circular arc is drawn to denote that multiple activator-successor relationships belong
to the same group. Figure 3.3.1 displays a selection graph with one selection group with
multiple successors and four selection groups with one successor. The selection group
with multiple successors has activator 1 and successors {2,3}.

Definition 3.3.1 (Selection problem)
The selection problem consists of finding a set of executed activities N ′ ⊆ N with 1, |N | ∈
N ′, such that for each selection group g ∈ G it holds that if activator ag is executed (ag ∈
N ′), there is exactly one executed successor: |Sg ∩N ′| = 1.

In order to consider all activities in the selection problem, it is imposed that a valid
project structure has a path from the starting activity to each other activity. Furthermore,
in order to always have the final activity executed, each maximal path in the selection
graph ends in the final activity.

1

2

3

4

5

Figure 3.3.1: Example of a selection graph.

3.3.2. PROBLEM FORMULATION
The problem is modeled with binary decision variables Xi t for each activity i ∈ N and
for each time t ∈ T . This variable is equal to one if activity i is started at time t and
zero otherwise. Objective function (3.1a) minimizes the starting time of final activity
|N |, and therefore, the time of the total project. The first activity is always executed due
to Constraint (3.1b). Furthermore, each activity can only be started once, as imposed by
Constraints (3.1c).

The selection problem is captured by Constraints (3.1d) and (3.1e). The former im-
pose that if an activator ag of selection group g ∈ G is executed, at least one successor
activity i ∈ Sg is executed. The latter ensure that per selection group g ∈G with executed
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activator ag , at most one successor activity i ∈ Sg can be executed. Furthermore, the
precedence relations are imposed by Constraints (3.1f) for each precedence relationship
(i , j ) ∈P . Due to these constraints, activity i has to be finished before or at the start of ac-
tivity j , if both are executed. Here, M is a sufficiently large number (M ≥ |T |+maxi∈N di ).

For each resource r ∈ R, Constraints (3.1g) ensure for each time t ∈ T that the total
consumption minus the total production up to time t is smaller than the total resource
capacity λr . Finally, Constraints (3.1h) impose that decision variables Xi t are binary. In
Table 3.3.1, all notation is given for the model. Furthermore, in Appendix 3.A, all notation
used throughout this chapter is listed.

Table 3.3.1: Notation used in Constraint set (3.1).

ag Activator activity of selection group g ∈G .
di Duration of activity i ∈ N .
k+

r i Production of resource r ∈ R for activity i ∈ N .
k−

r i Consumption of resource r ∈ R for activity i ∈ N .
λr Capacity of resource r ∈ R.
G Set of selection groups.
M Sufficiently large number.
N Set of activities.
P Set of precedence pairs.
R Set of resources.
Sg Set of successor activities of selection group g ∈G .
T Set of time periods.
Xi t Binary variable which is 1 if activity i ∈ N is executed at time t ∈ T , zero other-

wise.

min
∑
t∈T

t X |N |t , (3.1a)

∑
t∈T

X1t = 1, (3.1b)∑
t∈T

Xi t ≤ 1, ∀i ∈ N , (3.1c)∑
t∈T

Xag t ≤
∑

i∈Sg

∑
t∈T

Xi t , ∀g ∈G , (3.1d)∑
j∈Sg

∑
t∈T

X j t ≤ |Sg |−
(|Sg |−1

) ∑
t∈T

Xag t , ∀g ∈G , (3.1e)∑
t∈T

(t +di )Xi t ≤
∑
t∈T

t X j t +M
(
1− ∑

t∈T
X j t

)
, ∀(i , j ) ∈P , (3.1f)

∑
i∈N

(
t∑

τ=1
k−

r i Xiτ−
t−di∑
τ=1

k+
r i Xiτ

)
≤λr , ∀r ∈ R, t ∈ T, (3.1g)

Xi t ∈ {0,1}, ∀i ∈ N , t ∈ T. (3.1h)
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3.4. SOLUTION METHOD
In this section, a Hybrid Differential Evolution (HDE) algorithm is presented to find feasi-
ble solutions for the RCPSP-PS/CPR. Naturally, a search-based algorithm requires a fast
way of exploring different solutions to the selection problem. This poses a challenge,
since the selection problem is N P-hard (Barták et al., 2007). Therefore, Section 3.4.1
gives a special case of the selection problem and a polynomial-time algorithm to find
feasible solutions to this special case. This algorithm is used within the HDE algorithm
that is given in Section 3.4.2. Furthermore, since the RCPSP-PS/CPR is introduced in this
chapter, there is no heuristic algorithm for comparison for general instances. Therefore,
in Section 3.4.3, we briefly introduce an Ant Colony Optimization (ACO) algorithm for
comparison purposes.

3.4.1. GROUP ORDERINGS
As mentioned before, finding a feasible solution to the selection problem is N P-hard.
However, it is often done manually by the planner in real-life cases. In this subsection,
we determine the conditions for when it is possible to find feasible solutions to the se-
lection problem in polynomial time. This is done by the introduction of (feasible) group
orderings: a sorted list containing (a subset G ′ ⊂ G of) groups G . A group ordering is
used to find feasible solutions for the selection problem by making sequential decisions
for each group in the group ordering, while keeping track of the selected and forbidden
activities. In this subsection, we first show how a group ordering is used and give the
definition of a feasible group ordering. With this, we introduce properties to identify if a
group ordering is feasible. Finally, we introduce a special case of the RCPSP-PS/CPR and
show how to obtain feasible group orderings for these instances in polynomial time.

By applying Algorithm 5 on a group ordering J , a selection of activities is obtained.
As it is explained below, this selection may or may not be feasible, depending on certain
instance properties. The algorithm keeps track of a list of executed activities N e and a list
of forbidden activities N f . Then, following the order of group ordering J , each selection
group g ∈ J is evaluated. First, it is checked if the activator ag is executed. If this is the
case, a successor has to be selected. The set of candidate activities N c

g consists of the
set of successor activities Sg , minus the set of forbidden activities. From these candidate
activities, one activity n is selected. This selection is based on the algorithm in which
Algorithm 5 is used, as is explained in Sections 3.4.2 and 3.4.3. Finally, activity n is added
to the set of executed activities and all other successors Sg \ {n} are added to the set of
forbidden activities.

As stated in Definition 3.4.1, a group ordering is feasible if Algorithm 5 always results
in a feasible selection of activities, regardless of the selection made in line 7. From the
selection problem, as defined by Constraints (3.1d) and (3.1e), there are two ways in
which a selection can be infeasible for group g : the activator ag is selected and either
none of the successors in Sg are selected, or more than one successor is selected. Since
Algorithm 5 keeps track of forbidden activities, the latter case will not happen. The first
case can happen in two ways: the set of candidate activities is empty, or an activator ag

is selected for execution after group g has been processed. Based on this, Observation 1
gives a condition for feasibility of a group ordering.
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Algorithm 5 Using a group ordering J

1: N e ← {1} . Executed activities
2: N f ←; . Forbidden activities
3: for g ∈ J do
4: if ag ∈ N e then
5: N c

g ← Sg \ N f . Candidate activities
6: if N c

g 6= ; then
7: n ← Select from N c

g
8: N e ← N e ∪ {n}
9: N f ← N f ∪ (Sg \ {n})

10: end if
11: end if
12: end for
13: return N e

Definition 3.4.1 (Feasible group ordering)
A feasible group ordering J is an ordered list of selection groups such that applying Al-
gorithm 5 always returns a feasible solution to the selection problem, regardless of the
selection choice in line 7. If J does not contain all selection groups G, it is called a partial
group ordering.

Observation 1
A (partial) group ordering J = [ j1, · · · , j|J |] is feasible (i.e., Algorithm 5 always returns a
feasible activity selection) if it satisfies the following properties:

Property 1 There exist no groups ja , jb ∈ J with a < b, such that

a ja ∈ S jb . (3.2)

Property 2 There does not exist a group ja ∈ J such that

S ja ⊆ ⋃
i∈{1,··· ,a−1}|S ji

6=S ja

S ji . (3.3)

Proof. By Property 1, there will be no group g ∈G where a decision has to be made before
all groups containing ag as a successor are considered.

Furthermore, due to Property 2, for each group ja , there is a successor activity j ∈
S ja \∪a−1

i=1 S ji 6= ; that is not a successor activity of an earlier group and therefore can be
chosen without causing a conflict. If any earlier group has exactly the same successors,
making a choice here automatically results in no conflicts arising when making a choice
for ja . Therefore, these can be excluded from the right-hand side of Equation (3.3).

In order to know if a feasible group ordering exists, we introduce the group graph; a
graph with a node for each selection group, and edges based on activator-successor rela-
tionships. For this, we first introduce the property called strict successor containment.
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Definition 3.4.2 (Strict successor containment)
A selection group g ∈ G has strict successor containment on selection group h ∈ G, if the
successors of selection group h are a strict subset of the successors of selection group g ; i.e.,
Sh ( Sg .

Definition 3.4.3 states how to create a group graph.

Definition 3.4.3 (Group graph)
A group graph H is a mixed (containing directed and undirected edges) graph based on
the selection groups. It is created in the following way:

1. Create a node for each selection group g ∈G.

2. Create a directed edge from group g ∈G to group h ∈G if the activator of group h is
a successor of group g ; i.e., ah ∈ Sg .

3. If two selection groups g ∈ G and h ∈ G have successor overlap (Sg ∩ Sh 6= ;) and
the size of at least one successor set is larger than one (|Sh | > 1 or |Sg | > 1), create an
undirected edge between node g and h.

4. If group g ∈G has strict successor containment on group h ∈G,(i.e., Sh ( Sg ), create
a directed edge from node h to node g .

We will show that if the group graph does not contain a cycle, the corresponding
RCPSP-PS/CPR instance has a feasible group ordering. For this, we need the following
lemma:

Lemma 3
If an instance of the selection problem has an acyclic group graph, every group g ∈G with
|Sg | = 1 satisfies Property 2 in Observation 1 for any (partial) group ordering.

Proof. Let Sg = {i }. Then, since the group graph is acyclic, there is no group h ∈G with i ∈
Sh and |Sh | > 1. Otherwise, the group graph would contain an undirected edge between
node g and node h due to successor overlap and a directed edge from g to h due to strict
successor containment, which would result in a cycle.

Thus, if there is a group h ∈ G with i ∈ Sh , it follows that Sh = {i } = Sg . In this case,
group h is not included in the right-hand side of Equation (3.3). Since there does not
exist a group h ∈G with i ∈ Sh and Sh 6= Sg , the right-hand side will never include activity
i and Equation (3.3) will never hold for ja = g .

Subsequently, we show how to construct partial feasible group orderings in Lemma 4.

Lemma 4
Consider a group graph H that is acyclic. Then, for each connected component of undi-
rected edges, a breadth-first search ordering starting in any node satisfies both properties
in Observation 1 and thus is a partial feasible group ordering.

Proof. By assumption, there are no cycles in H . Therefore, all undirected edges form a
forest. Now, consider a connected component G ′ (which is a tree) of size n with breadth-
first ordering J = [ j1, · · · , jn]. As given in the lemma, G ′ only consists of undirected edges.
We will show that J fulfills both properties of Observation 1.
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To prove Property 1, we show that there are no two selection groups g ∈G ′ and h ∈G ′,
with g < h, such that ag ∈ Sh . Assume, as a contradiction, that there are two selection
groups g ∈ G ′ and h ∈ G ′, with g < h, such that ag ∈ Sh . Then, there is a directed edge
in H from h to g . Since h and g are both in the connected component G ′, there is also
a path by undirected edges from g to h. This results in a cycle and contradicts the as-
sumption of an acyclic group graph. Therefore, Property 1 from Observation 1 is always
satisfied.

We now prove Property 2. For this, we introduce

FJ (a) = ⋃
i∈{1,··· ,a−1}|S ji

6=S ja

S ji , (3.4)

which is the right-hand side of Equation (3.3) and where ji is the i th entry of (partial)
group ordering J . Furthermore, we consider group ja ∈ J where a is the index of group
ja in J . Now, Property 2 is satisfied if for each ja ∈ J it holds that S ja *FJ (a).

Due to Lemma 3, we know that Property 2 is satisfied if |S ja | = 1, thus we only need
to consider the case that |S ja | > 1. Since undirected edges are created between groups
with successor overlap if at least one group has more than one successor, we know that
if two groups in G ′ have successor overlap, there is an undirected edge between them.

Since J is ordered breadth-first, there is at most one group jc ∈ J with successor over-
lap and c < a. An example of this is shown in Figure 3.4.1. We now consider two cases:
the case that S ja 6= S jc and the case that S ja = S jc .

1

2

3

4

1

c = 2

a = 3

4

Group graphInstance

Figure 3.4.1: A breadth-first ordering J on a connected component in the group graph. This illustrates that for
each group ja ∈ J , there can be only one group jc ∈ J with c < a.

Consider the first case: S ja 6= S jc . We know that S jc is contained in FJ (a) (S jc ⊆
FJ (a)). Furthermore, besides group jc , no other group ordered before ja in J has suc-
cessor overlap with group ja . Therefore, we get

S ja ∩FJ (a) = S ja ∩S jc . (3.5)
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For contradiction to Property 2, assume that S ja ⊆ FJ (a). Then, it follows that S ja ∩
FJ (a) = S ja . Combining with Equation (3.5) gives S ja = S ja ∩S jc , from which it follows
that S ja ⊆ S jc . Since, by assumption, S ja 6= S jc , we get S ja ( S jc . However, due to strict
successor containment, this means that there is a directed edge from ja to jc . This edge
forms a cycle with the undirected edge, and therefore contradicts the assumption of an
acyclic group graph. Thus, in the case of S ja 6= S jc , the assumption S ja ⊆ FJ (a) cannot
be true, and therefore, S ja 6⊆FJ (a). Thus, Property 2 holds.

In the other case, when S ja = S jc , group jc is not considered in the union operator
of FJ (a) and no other group in FJ (a) has successor overlap with S ja . Therefore, we get
S ja ∩FJ (a) = ;, and thus, S ja 6⊆ FJ (a). This means that Property 2 is satisfied for all
cases.

Subsequently, we can combine all partial feasible group orderings. This is stated in
Lemma 5.

Lemma 5
If a group graph H is acyclic, there is a feasible group ordering.

Proof. We can construct a feasible group ordering J by combining all partial group or-
derings from the connected components of undirected edges in Lemma 4 by topological
sort; if there is a directed path from connected component of undirected edges G ′ to
connected component of undirected edges H ′, the partial group ordering of H ′ has to
appear after the partial group ordering of G ′. Note that we define nodes without undi-
rected edges as connected components of size 1. By assumption of an acyclic group
graph, it is always possible to sort the partial group orderings topologically.

We now prove that J satisfies both properties of Observation 1 by induction. Let
C = [G ′

1, · · · ,G ′
|C |] be the topologically sorted collection of connected components and

let J ′i be the partial group ordering of G ′
i . Then, we denote J as the concatenation of all

partial group orderings: J = (J ′1, · · · , J ′|C |).

As the base step for induction, Lemma 4 states that J ′1 satisfies both properties of
Observation 1. For the induction step, we take the feasible partial group ordering J (n) =
(J ′1, · · · , J ′n) with n < |C | and append the partial group ordering J ′n+1 to obtain J (n + 1).
We now show that J (n +1) satisfies the properties from Observation 1.

First, we show that for each combination of groups g ∈ J (n) and h ∈ J ′n+1, Property
1 holds. Assume, for contradiction, that it does not hold, and thus, g is a successor of h
(ag ∈ Sh). Then, by Step 2 in Definition 3.4.3, there would also be a directed edge from
component J ′n+1 to J (n). This contradicts the topological sorting in combination with an
acyclic group graph, and therefore, Property 1 is satisfied.

To prove Property 2, we consider group h ∈ J ′n+1 and show that Equation (3.3) is never
satisfied for h = ja . For this, we define K as the preceding part of the group ordering
{ j1, · · · , ja−1} and split this up into K1 = { j1, · · · , jb} = J (n) and { jb+1, · · · , ja−1} = K2 ⊂ J ′n+1.

First, we consider K1 = J (n). Since Property 2 is satisfied if |Sh | = 1 due to Lemma 3,
we only need to consider the case where |Sh | > 1. For this case, we know that there is
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no group g ∈ J (n) with successor overlap between g and h. Otherwise, there would be
an undirected edge between g and h and they would be in the same connected com-
ponent. This means that there is no overlap between all successors of J (n) and Sh :(⋃

g∈J (n)|Sg 6=Sh
Sg

)
∩Sh =;.

Now, consider K2 ⊂ J ′n+1. Property 2 holds by Lemma 4, which results in
Sh *⋃

g∈K2|Sg 6=Sh
Sg . Combining this with the equation for K1 gives Sh *⋃

g∈K |Sg 6=Sh
Sg .

This means that Property 2 is satisfied for each h ∈ Jn+1.

In conclusion, if J (n) is a feasible group ordering, so is J (n +1). Since J (1) is feasible,
so is J = J (|C |).

An example of the process of obtaining a feasible group ordering can be seen in Fig-
ure 3.4.2. First, the selection graph is given. Subsequently, in Step 2, the group graph
is presented. The connected components based on undirected edges are evaluated in
Step 3. Each connected component is ordered by breadth-first. In Step 4, a final order-
ing is obtained, respecting both the topological sorting and the partial orderings of Step
3. It can be seen that this group ordering satisfies both properties of Observation 1, and
therefore, using Algorithm 5 always results in a feasible selection. Theorem 2.
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Step 1

Step 3

Step 2

Step 4

Figure 3.4.2: Creating a feasible group ordering.

In conclusion, we can create a feasible group ordering, given an instance of the RCPSP-
PS/CPR with an acyclic group graph, by executing the steps introduced above. This gives
Theorem 2.
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Theorem 2
If an instance of the RCPSP-PS/CPR has an acyclic group graph, a feasible group ordering
can be found in polynomial time.

Proof. To obtain a feasible group ordering, we execute the following steps:

1. Construct a group graph H , as described in Definition 3.4.3.

2. Find a breadth-first ordering for each connected component in H , as described
in Lemma 4.

3. Topologically sort the connected components, as described in Lemma 5.

Step 1 consists of 4 operations, described in Definition 3.4.3. The last two of these 4
operations have the highest time complexity, namely O(|G|2|N |). Step 2 and 3 can both
be solved by a breadth-first ordering algorithm, which has a time complexity of O(|G|2).
Therefore, the combined time complexity is O(|G|2|N |). Furthermore, Lemma 5 shows
that this group ordering is feasible.

The heuristics introduced in this chapter require a group ordering to create feasi-
ble solutions to the selection problem. As Theorem 2 states, this group ordering can
be found if the group graph is acyclic. An example is given in Figure 3.4.3. Here, Fig-
ure 3.4.3a shows an instance with an acyclic group graph. Therefore, this instance can
be solved by the methods of this chapter. Conversely, Figure 3.4.3b shows an instance
with a cyclic group graph: groups 2 → 3 → 4 → 2 form a cycle. Therefore, we cannot use
the breadth-first ordering to find a feasible group ordering. This means that Algorithm 5
is not guaranteed to find a feasible selection, and thus, this instance cannot be solved by
the methods proposed in this chapter.
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Figure 3.4.3: Instances with corresponding group graphs.
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3.4.2. HYBRID DIFFERENTIAL EVOLUTION ALGORITHM
The algorithm introduced is a Hybrid Differential Evolution (HDE) algorithm with so-
called Forward Backward Improvement (FBI). The Differential Evolution algorithm, orig-
inally introduced by Storn and Price (1995), was chosen based on multiple successful im-
plementations in the literature (Quoc et al., 2020; Sallam et al., 2020; Zaman et al., 2021)
for RCPSP variants and on good preliminary results.

First, we introduce the solution representation. Subsequently, the main Differential
Evolution (DE) algorithm is given, which forms the core of the HDE algorithm. Finally,
the complete HDE algorithm including FBI is presented.

SOLUTION REPRESENTATION

Since DE is an algorithm for continuous variables, a method to convert a DE solution into
a schedule is required. Each agent in the DE algorithm is represented by a 2× |N | pri-
ority matrix A that contains two priorities (scalars) per activity. The selection priority
for activity i ∈ N is denoted by A1i . This is used to make a selection of executed activi-
ties. Furthermore, A2i is the scheduling priority, which is used to schedule the selected
activities. To convert a priority matrix A into a feasible schedule, we first determine the
executed activities. This is done by using a feasible group ordering J and applying Algo-
rithm 5. In this algorithm, on line 7, the successor with the highest selection priority is
selected. This results in a set of executed activities N e .

Next, these executed activities are scheduled according to Algorithm 6. Here, the
activities are scheduled iteratively. In each iteration, at line 5, the available activity with
the highest scheduling priority A2i from all available activities is chosen. An activity j ∈
N is available if all executed predecessors P j ∩N e are scheduled, where P j is the set of
time-based predecessors of activity j .

Algorithm 6 Scheduling activities N e

1: N a = {1} . Available activities
2: N s =; . Scheduled activities
3: t = [0 for i ∈ N e ] . Time vector
4: while |N a | > 0 do
5: n ← Select from N a

6: N s = N s ∪ {n}
7: N a = N a ∪ { j : j ∈ N e \ (N a ∪N s ),P j ∩N e ⊆ N s } \ {n}
8: tn ← earliest time possible for activity n
9: end while

10: return t

If an activity i ∈ N has to be scheduled, it will be at the earliest time possible. This is as
soon as all predecessors are finished and the resource availability is sufficient. However,
due to nonrenewable resources not automatically regenerating, it might happen that it
is not possible to schedule activity i in a resource feasible way. If this is the case, then
activity i is scheduled at the first possible time when all required renewable resources
are available. This causes resource infeasibility. To guide the search towards the feasible
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solution region, we penalize the objective function. Let pr t be the resource availabil-
ity of nonrenewable resource r ∈ Rn at time t of a solution. Then, the objective value
used within the heuristic algorithm is the makespan (which we want to minimize) plus a
penalty of M ·∑r∈Rn

∑
t∈T −min(0, pr t ). Here, M is a sufficiently large number such that

a larger resource deficit always results in a larger objective value.

DIFFERENTIAL EVOLUTION

The core of the HDE algorithm is the differential evolution algorithm. Like many population-
based algorithms, this method explores the search space by iteratively creating offspring
solutions from the current population. Let γ be the size of the population A . Then, we
initialize A as the set of γ 2×|N | matrices containing random values between 0 and 1.

After the initialization phase, the iterative improvement phase starts, which is part
of a standard DE algorithm. It consists of multiple generations. In each generation, the
algorithm iterates over the whole population. For each matrix A ∈ A , define A as the
base matrix. Secondly, we create a mutation matrix B . For this, we randomly select 3
matrices B 1, B 2, B 3 from A such that A, B 1, B 2 and B 3 are all different. Then, we create
the mutation matrix as

B = B 1 +w
(
B 2 −B 3) , (3.6)

where w is the algorithm parameter called weight factor. Subsequently, the mutation
matrix B is combined with the base matrix A to create a trial matrix T . For this, we
define the crossover probability vector c = [c1,c2] with values between 0 and 1. Then,
each entry Ti j in the trial matrix gets the mutation value Bi j with probability ci , and the
base value Ai j otherwise. Furthermore, for both rows in T , one entry is picked randomly
to be replaced by the corresponding entry in the mutation matrix. This ensures that
always at least one entry is replaced.

This process creates a new priority matrix, the trial matrix T . If the objective value of
this solution is lower than or equal to the objective value of the base matrix A, the base
matrix is replaced by the trial matrix. This process repeats itself, until no improvement
of the best solution has been found for ω generations. Then, the best-found solution is
returned. The complete algorithm is shown in Algorithm 7.



3

82
3. HEURISTIC SCHEDULING FOR THE RCPSP-PS WITH CONSUMPTION AND PRODUCTION

OF RESOURCES

Algorithm 7 Differential evolution

1: A ← set of γ random matrices of size 2×|N |
2: A∗ ← argminA∈A (objective A)
3: θ← 0
4: while θ <ω do
5: for A ∈A do
6: B 1,B 2,B 3 ← Pick randomly without replacement from A \ {A}
7: B ← B 1 +w(B 2 −B 3)
8: f = [random from {1, · · · , N }, random from {1, · · · , N }]

9: Ti j ←
{

Bi j with probability ci or if j = fi

Ai j otherwise
10: if objective T ≤ objective A then
11: Replace A ∈A by T
12: if objective T < objective A∗ then
13: A∗ ← T
14: θ←−1
15: end if
16: end if
17: θ← θ+1
18: end for
19: end while
20: return A∗

COMBINE DIFFERENTIAL EVOLUTION WITH FORWARD BACKWARD IMPROVEMENT

Finally, the DE algorithm is combined with a forward backward improvement (Valls et al.,
2008). The complete process in shown in Figure 3.4.4. After the DE algorithm terminates,
each solution is subjected to the forward-backward improvement. If this improves the
best-found solution, the DE algorithm restarts. If it does not find a new best solution,
the algorithm terminates.

Create initial population

DE algorithm

FBI improvement on each
solution in population

Improved best?

Terminate algorithm

Yes

No

Figure 3.4.4: Hybrid Differential Evolution algorithm.
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EXAMPLE

We now show a small example to illustrate the solution presentation. For this, we con-
sider an instance with a single renewable resource r with λr = 1 and where each non-
dummy activity i ∈ N \ {1,7} has a duration of di = 1 and a resource requirement kr i = 1.
Furthermore, the selection and scheduling graphs are shown in Figure 3.4.5. Here, the
groups are displayed as the numbers outside of the activity nodes. Based on the selec-
tion graph, the group graph can be created, which is also shown in Figure 3.4.5. It can
be seen that the group graph is acyclic, and by following the procedure in Lemma 5 we
obtain group ordering [1,2,3,4,5,6,7]. Note that this group ordering is constant for an
instance and is not modified during the execution of the heuristic algorithm. We let pri-
ority matrix A be

A =
[

0.8 0.4 0.9 0.5 0.4 0.3 0.4
0.4 0.6 0.2 0.8 1.1 1.6 0.4

]
(3.7)

and show how to obtain a schedule.
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Figure 3.4.5: Precedence, selection and group graph of an example instance.

We first consider the selection problem. This problem uses the priorities given in
the top row of A. Let N e be the set of executed activities and start by selecting the root
node: N e = {1}. Now, we evaluate the first group in the group ordering: g = 1. Since
activity 2 is the only successor, it will be selected: N e = {1,2}. Similarly, group g = 2
selects activity 3. Next, group g = 3 is evaluated. The two candidate activities are activity
4 and 5. Since A14 > A15, we select activity 4 and add activity 5 to the list of forbidden
activities. This gives N e = {1,2,3,4} and N f = {5}. The next group, g = 4, also has 2
successors. However, since activity 5 is forbidden, only activity 6 remains and has to be
selected. Subsequently, the remaining selection groups only have one successor. Thus,
this results in N e = {1,2,3,4,6,7}.

Next, we schedule the set of executed activities N e , starting at the starting activity by
putting t1 = 0. Let t be the vector of starting times. Based on the precedence constraints,
we can now schedule either activity 2 or 3. Since A22 > A23, we schedule activity 2 at
t2 = 0. Proceeding, we obtain t = [0,0,2,1,−1,3,5], where we use -1 to indicate a non-
executed activity.

3.4.3. ANT COLONY OPTIMIZATION ALGORITHM
Since optimal solutions for general instances of the RCPSP-PS/CPR are unknown, we
also present an Ant Colony Optimization (ACO) algorithm for comparison purposes. The
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choice for this algorithm is made based on the following two points: firstly, the ACO al-
gorithm was successfully implemented for the classic RCPSP (Merkle et al., 2002). Sec-
ondly, due to consumption and production of resources, not every schedule is feasible
to the RCPSP-PS/CPR. The ACO algorithm allows for problem specific heuristic rules to
find feasible solutions.

We now give a general description and pseudo code of the ACO algorithm for the
RCPSP-PS/CPR. Since this algorithm is only for comparison purposes on general in-
stances that cannot be solved to optimality, the details are given in Appendix 3.B.

The ACO algorithm has a population of ants. At each iteration, every ant creates a
new solution and modifies a common set of pheromone trails based on the quality of the
found solution. The pheromone trail then influences other ants while they create new
solutions in future iterations. We keep track of three different kind of pheromones: se-
lection, scheduling and cumulative selection. The selection and scheduling problems
are solved by their respective pheromone trails and the cumulative selection pheromone
trail keeps track of how often a certain activity was selected.

We give a brief overview of the algorithm in Algorithm 8. Here, we use the population
parameter γ and the iteration threshold parameter ω. Furthermore, we define p as the
vector containing all pheromone trails and store the activity starting times of the best
schedule found under t∗.

At each iteration, each ant creates a new set of executed activities N e and schedules
these activities to create a schedule, represented by the starting times t. If this schedule
t is better than the best schedule represented by t∗, it is stored as new best solution and
the iteration threshold counter θ is reset.

After all ants create their solution, the new pheromone contribution p′ is calculated
based on the solutions found. The new pheromone trails are then determined by a con-
vex combination of the old pheromone trails and the new contribution, where evapora-
tion parameter ρ determines the influence of the new contribution. Finally, the iteration
treshold counter θ is incremented by one. If there has been an improvement in the last
ω iterations, a new iteration starts. Otherwise, the algorithm terminates and returns the
best schedule found represented by t∗.

3.5. COMPUTATIONAL RESULTS
In this section, we present the computational results to evaluate the HDE algorithm.
This is done by running a series of tests on instances, both from the literature and newly
generated instances. All tests were performed on a single core of a 3.0 GHz Intel XEON
CPU with 4 GB RAM. The parameters used for the HDE algorithm are γ = 300, ω = 275,
c = [0.15,0.25] and w = 0.1. For the ACO algorithm, the parameters are γ = 300, ω = 75,
q = 1, ρ = 0.35, α = 0.18, β = 0.6, µ= 5 and η = 0.2. These parameters are the result of a
parameter tuning process, which is presented in Appendix 3.C.

Servranckx and Vanhoucke (2019) present both an algorithm to create instances for
the RCPSP-AS (without nonrenewable resources) and a tabu search algorithm for solv-
ing these. They model the flexible project structure as networks with multiple stages.
Each stage is represented by an activity, and possibly one or more alternatives. Then,
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Algorithm 8 Ant Colony Optimization

1: p ← 1
2: t∗ ←∞
3: θ← 0
4: while θ <ω do
5: for i ∈ [1, · · · ,γ] do
6: N e ← Executed activities
7: t ← Schedule executed activities N e

8: if t|N | < t∗|N | then
9: t∗ ← t

10: θ←−1
11: end if
12: end for
13: p′ ← new pheromone contribution
14: p ← p(1−ρ)+p′ ·ρ
15: θ← θ+1
16: end while
17: return t∗

the activities and alternatives across stages are linked to each other to create branches
of activities that represent an option to execute a part of the project. The algorithm to
create instances depends on several parameters, as listed below:

• Linked parameter: This parameter ([0,1]) indicates the degree to which different
branches are connected to each other.

• Nested parameter: This parameter ([0,1]) indicates the degree to which different
branches split up further into sub-branches.

• Flexibility parameter: This parameter ([0,1]) indicates the degree of alternatives.

For an exact description, see Servranckx and Vanhoucke (2019). From the authors of
this paper, a set of instances and objective values was obtained. This was used to build
three sets of instances. The first one, named Literature, simply contains all instances
received from the authors, except for 25 instances that are removed for use in the pa-
rameter tuning process. These therefore do not contain nonrenewable resources.

For further evaluation, two smaller, more uniformly distributed subsets are taken
from the Literature instance set. These sets are named Optimal and Non-optimal and
contain instances for which the optimal solutions are known and unknown, respectively.
The optimal solutions were obtained according to the methods presented in Chapter 2.

These smaller instance sets are created by taking a subset of the set Literature, such
that they have an equal number of instances for all possible combinations of values for
the properties linked, nested and flexibility. Furthermore, a new instance was created
for each selected instance by adding nonrenewable resources, as described in van der
Beek (2021). Since there are more instances without the optimal solution known, the
Non-optimal instance set contains more instances (2000) than the Optimal instance set
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(900). Furthermore, the number of activities of all instances is between 102 and 702, the
number of renewable resources is 5 and the number of nonrenewable resources is 2. The
instance sets are summarized in Table 3.5.1 and the complete instance sets are given in
van der Beek (2021).

Table 3.5.1: Instance sets.

Name # of instances Nonrenew. resources Optimal solutions
Literature 3207 No Mixed
Optimal 900 in 450 instances Known

Non-optimal 2000 in 1000 instances Unknown

Thus, we have three instance sets: Literature, Optimal, and Non-optimal. The in-
stance set Literature is used to compare the HDE algorithm with the algorithm from
Servranckx and Vanhoucke (2019). Furthermore, the instance set Optimal is used to
evaluate the performance of the HDE and the ACO against the optimal solutions. Finally,
the instance set Non-optimal is used to evaluate the performance of the HDE algorithm
on larger instances, for which no optimal solutions are known. Since literature solutions
are only available for half of this set (without nonrenewable resources), we compare the
HDE algorithm against the ACO algorithm to evaluate the HDE algorithm on the com-
plete instance set.

To compare the performance on multiple instances, we introduce the Bound Op-
timality Gap (BOG), which is an upper bound on the optimality gap of the respective
solution:

BOG(ob j ) = ob j −ob j∗

ob j∗
·100%, (3.8)

where ob j is the objective value obtained by the considered algorithm and ob j∗ is the
best known objective value for the instance within the considered instance set. Since an
instance can be part of multiple instance sets, we only consider the solutions within its
respective instance set.

3.5.1. INSTANCE SET: LITERATURE
First, we evaluate the instance set Literature. This instance set contains 3207 instances
without nonrenewable resources and was obtained directly from the authors of Servranckx
and Vanhoucke (2019), along with the objective values from their Tabu Search (TS) algo-
rithm. In this section, we compare the results from the TS algorithm to the algorithms
presented in this chapter.

For the results in the literature, only objective values of a single run are available.
Therefore, for a fair comparison, each algorithm is run once per instance. In Table 3.5.2
is shown how each algorithm performs against the TS algorithm. It can be seen here that
in more than half of the cases, the ACO and HDE algorithms tie with the TS algorithm.

We obtain Figure 3.5.1 by omitting all ties and plotting the relative objective ob j r =
ob j /ob j T S , where ob j is the objective of the ACO/HDE algorithm and ob j T S is the ob-
jective of the TS algorithm. Here, it can be seen that the boxes of the boxplot are com-
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pletely below 1, indicating that both ACO and HDE perform better on most non-tied
instances. Furthermore, the average relative objective of ACO and HDE is shown to be at
0.982 and 0.976, respectively. This shows that the HDE algorithm performs better than
the literature algorithm, and it suggests that the ACO is a reasonable algorithm for com-
parison purposes.
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Figure 3.5.1: Comparison of relative makespan ob j r = ob j
ob j T S of ACO and HDE algorithms, omitting all ties.

Secondly, we compare the BOG for the HDE and literature algorithm over the nested
parameter. This parameter was chosen since it was found to have the most significant
correlation with the performance. This is shown in Figure 3.5.2. Here, the outliers show
an increasing trend for the HDE algoritm of the BOG with the nested parameter value.
However, both the boxes as the outliers show that the performance of the HDE algorithm
is better than the performance of the algorithm from literature, even for the maximum
nested parameter value. Since no clear trend was found for the other instance parame-
ters, l i nked and f lexi bi l i t y , these results are placed in Appendix 3.D.

3.5.2. INSTANCE SET: OPTIMAL
The next set of instances is called Optimal and contains instances for which the optimal
solution is known. To create this set, a new instance was created for each instance in
the set Literature by adding nonrenewable resources according to van der Beek (2021).
Subsequently, up to 5 instances (depending on how many optimal solutions are known)
were randomly selected for each combination of parameters (linked, flexibility, nested).



3

88
3. HEURISTIC SCHEDULING FOR THE RCPSP-PS WITH CONSUMPTION AND PRODUCTION

OF RESOURCES

0.0 0.25 0.5 0.75 1.0

0

5

10

15

20

25

30

B
O
G

(%
)

HDE

0.0 0.25 0.5 0.75 1.0

Literature

Nested parameter

Figure 3.5.2: BOG of HDE and literature algorithm against the nested parameter.

This resulted in a set of 900 instances of which half contains both types of resources and
the other half contains only renewable resources.

For this instance set, both algorithms are run 10 times. Thus, this resulted in 4500
runs per category (with and without nonrenewable resources). In Table 3.5.3, it is shown
how many runs resulted in optimality and how many instances have at least one optimal
solution in ten runs. It can be seen that in most runs, the optimal value was reached for
both methods. Furthermore, it can be seen that the HDE obtains the optimal value at
least once for nearly every instance. When comparing between instances with and with-
out nonrenewable resources, it is shown that both methods perform better for instances
with nonrenewable resources. A possible explanation is that the parameter tuning pro-
cess contained challenging instances on the aspect of resource feasibility.

Next, we evaluate the optimality gaps for the HDE algorithm. The optimality gap is

defined as ob j−ob j∗
ob j ·100%, where ob j is the found objective value and ob j∗ the optimal

objective value. The optimality gap indicates the difference between the found objec-
tive and the optimal objective. Since the HDE algorithm is the main algorithm of this
chapter, we further evaluate these optimality gaps for this algorithm only. This is shown
in Figure 3.D.4, where the optimality gaps are shown for different linked parameter val-
ues. Here, it can be seen that in general the optimality gap is quite low (mostly below 2
%). Additionally, an increasing trend can be seen of the optimality gap against the linked
parameter. This indicates, especially for the highest value, that the HDE algorithm has
more difficulty of finding the optimal solution as the linked parameter increases. How-
ever, since all boxes are reduced to lines of value zero, this trend is only present in the
outliers. Since no clear trend was found for the other instance parameters, nested and
f lexi bi l i t y , these results are placed in Appendix 3.D.
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3.5.3. INSTANCE SET: NON-OPTIMAL
Finally, we consider the instance set Non-optimal. This set is created similarly to the
instance set Optimal, however, it contains 10 instances per combination of parameter
values and only includes instances for which the optimal value is not known. This results
in a set of 2000 instances, of which half contain nonrenewable resources. Since we only
have literature results for a part of the instance set and no optimal solutions, the ACO is
used as a baseline algorithm for comparison. For each instance, each algorithm is run
10 times.

For nonrenewable resources, not every activity list can be mapped to a feasible so-
lution. Therefore, it is possible to obtain infeasible solutions from the algorithms. To
mitigate this, both algorithms restart if they converge to an infeasible solution, with a
maximum of 9 restarts per run. The HDE algorithm did not require any restarts, since
each run directly resulted in feasibility. The ACO algorithm required 21 restarts, spread
out over 17 runs and 8 instances. The maximum number of restarts required for any run
was equal to 2.

Furthermore, we compare the found objective values per algorithm. In Table 3.5.4,
it is shown per algorithm how many times the best value of all 10 runs is lower than the
other algorithm and how often they are tied. Similarly, it compares the average values
of all 10 runs and shows how often this value is lower for HDE, ACO and how often it is
tied. It can be seen that HDE performs clearly better than ACO, although the majority of
instances result in a tie.

We also evaluate the BOGs. The average values are shown in Table 3.5.5 and the av-
erage values with spread are shown in Figure 3.5.4, categorized by the presence of non-
renewable resources. It can be seen that ACO performs significantly worse for instances
with nonrenewable resources. Note that comparison on the BOGs show relative perfor-
mance against other runs for the same instance. Therefore, they might contradict the
absolute performance, indicated in Table 3.5.3. Furthermore, we evaluate the BOG com-
pared to the number of activities, as shown in Figure 3.5.5. It shows, not surprisingly, that
the difficulty of solving instances increases with the number of activities. Additionally, it
can be seen that for each bin of activity numbers, HDE outperforms ACO on both spread
and average value.

To evaluate the effects of nonrenewable resource availability, we use the concept of
resource strength from Neumann and Schwindt (2003). There, a value of zero indicates
that resource profiles of resource-feasible schedules are constant over time and a value of
one indicates that the earliest start schedule (see Neumann and Schwindt (2003)) is feasi-
ble. However, this definition does not hold for the RCPSP-PS/CPR, since not all activities
are executed. Nevertheless, the resource strength can still be used as an indication of the
level of nonrenewable resource availability. In Figure 3.5.6, the BOGs are shown against
the values of the resource strength. In the ACO algorithm, a decreasing trend can be
seen, indicating better performance for instances with a larger resource strength. For
the HDE, however, no clear trend can be seen.

Finally, the computing times are shown in Figure 3.5.7. As expected, the comput-
ing times increase with the number of activities. It also can be seen that the computing
times of the HDE algorithm are significantly longer, even though the parameter tuning
processes of both algorithms had the same computing time penalty. A possible explana-
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tion for this is the high value of ω= 275 for the HDE algorithm, which defines that after
each improvement in objective function value, at least 275 iterations are executed.

3.6. CONCLUSION
In this chapter, a model is given for the RCPSP-PS/CPR by taking the model from Chap-
ter 2 and adding nonrenewable resources. Finding a selection of activities that satisfies
the selection constraints of the RCPSP-PS/CPR is N P-hard, so in order to find feasible
selections quickly in metaheuristics, we restricted the problem. This is done by intro-
ducing the concept of group graphs and feasible group orderings.

We showed that if the group graph is acyclic, there exists a feasible group order-
ing that can be found according to the method presented in this chapter. This feasible
group ordering can then be used to create feasible selections in polynomial time. This
method is used in a HDE algorithm for the RCPSP-PS/CPR. While evaluating this algo-
rithm against solutions from the literature, it is shown that the HDE algorithm gener-
ally creates better solutions. Furthermore, by comparing against optimal solutions, it is
shown that in most cases the HDE finds an optimal solution. For instances where no op-
timal solution is known, the HDE algorithm was compared against a baseline ACO algo-
rithm. Although we showed that this algorithm also performs better than the algorithm
from the literature on instances without nonrenewable resources, the HDE algorithm
outperforms the ACO algorithm on nearly all metrics.

For future research, we recommend testing the developed methods on real-world in-
stances. This will quantify the value of these algorithms in terms of reduced makespan
and costs. Furthermore, from a computational point of view, a decrease in performance
can be seen with increasing value of the nested parameter. Therefore, additional re-
search can be performed on methods for instances with large values for this parameter.
Finally, the presented methods only work on instances with an acyclic group graph. Al-
though this seems usable for nearly all practical cases and we have not encountered any
cases without this property, there might be some real-world exceptions where this is not
the case. Therefore, it would be interesting to see if feasible group orderings can be pro-
duced for a more general case, or to find alternative methods of solving the selection
problem.
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Table 3.5.2: Comparison of ACO and HDE algorithms against the TS algorithm from the literature.

Method ACO HDE
Better 1197 1335
Tied 1813 1858

Worse 197 14

Table 3.5.3: Number of runs (out of 4500 per category) resulting in the optimal value and number of instances
(out of 450 per category) resulting in at least one optimal solution.

Method ACO HDE
Nonrenewable instances No Yes No Yes

Optimal runs 3883 3996 4376 4428
Optimal instances 421 432 444 446
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Figure 3.5.3: Boxplots of optimality gaps for the HDE algorithm against the linked parameter.

Table 3.5.4: For how many instances each algorithm performs better than the other, evaluated on best out of
10 runs and on average of 10 runs.

Best Average
ACO 1 6
HDE 147 758
Tie 1852 1236

Table 3.5.5: Average values of BOGs, categorized on instances with and without nonrenewable resources.

Algorithm: Nonrenewable resources:
No Yes

ACO 0.275% 0.641 %
HDE 0.031% 0.015 %
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Figure 3.5.4: Mean, 2.5 and 97.5 percentile for BOGs against the resource type for both algorithms.
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Figure 3.5.5: Mean, 2.5 and 97.5 percentile for BOGs against the activities per instance for both algorithms.
Instances are grouped into bins. Each bin has a range of 100 activities.
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Figure 3.5.6: Mean, 2.5 and 97.5 percentile for BOGs against the resource strength. Resource strength values
are grouped into bins. Each bin has a range of 0.2.
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APPENDIX

3.A. NOTATION
Sets

G Selection groups.
N Activities.
P j Predecessors of activity j ∈ N in the precedence graph.
R Resources.
Rr Renewable resources.
Rn Nonrenewable resources.
Sg Successor activities of selection group g ∈G .
T Time periods.
P Time-based predecessor-successor pairs.

Variables
Xi t 1 if activity i ∈ N is executed at time t ∈ T , zero otherwise.

Parameters
ag Activating activity of selection group g ∈G .
di Duration of activity i ∈ N .
kr i Net resource production of resource r ∈ R for activity i ∈ N .
k+

r i Production of resource r ∈ R for activity i ∈ N .
k−

r i Consumption of resource r ∈ R for activity i ∈ N .
M Sufficiently large number.
q Parameter for ACO algorithm setting the number of considered solutions.
w Weight factor HDE algorithm.
α ACO parameter indicating influence of selection pheromone values.
β ACO parameter indicating influence of scheduling pheromone values.
γ Population size in ACO and HDE algorithms.
η ACO parameter indication probability of adding heuristic contribution.
λr Capacity of resource r ∈ R.
µ Resource tightness.
ρ Evaporation coefficient for ACO algorithm.
ω Threshold parameter for ACO and HDE algorithms.

Vectors
c Crossover probability for HDE algorithm.
p Pheromone trails.
pcs Cumulative selection pheromone trail.
psc Scheduling pheromone trail.
pse Selection pheromone trail.
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Functions
er f (x) Gauss error function.
HC (N s , N c , i ) Heuristic contribution when selecting activity i from candi-

dates N c ⊆ N , given the selection of activities N s ⊆ N .
N M(ob j ) Normalized makespan.
PR sc (N s , N c , i ) Scheduling probability in ACO for activity i from candidates

N c , given that activities N s are already scheduled.
PR se (N c

g , i ) Selection probability in ACO for activity i from candidates N c
g

from group g ∈G .
RSr (N c , i ) Resource supply of resource r ∈ R of activity i from candidates

N c ⊆ N .
RTr (N s ) Resource tightness of scheduled activities N s ⊆ N for nonre-

newable resource r ∈ Rn .
SC (N c , i ) Scheduling score when scheduling activity i from candidates

N c ⊆ N .

3.B. ANT COLONY OPTIMIZATION ALGORITHM
In this section, we give the full details of the Ant Colony Optimization (ACO) algorithm.
This algorithm has multiple ants creating new solutions at each iteration, and updat-
ing a common set of pheromone trails to influence how solutions are created in future
iterations.

We first discuss the pheromone trails: what is the structure and how are they up-
dated. Secondly, we explain the contribution of the heuristic rule. Subsequently, we
explain how individual ants use this information to create new solutions. Finally, we
combine these parts to give the full algorithm.

3.B.1. PHEROMONE TRAILS
We keep track of three kind of pheromones: selection, scheduling and cumulative selec-
tion. The selection pheromone pse is a vector containing an entry p se

i for every activity
i ∈ N and indicates how often activities occur in high quality solutions. Furthermore,
the entries of the scheduling pheromone vector psc are defined for every combination of
activities, resulting in an entry p sc

i j for every pair of activities i , j ∈ N . These pheromones

are used to schedule a selection. Finally, the vector pcs contains the cumulative selec-
tion pheromone values, indexed similarly to the selection pheromone vector: pcs

i for
every activity i ∈ N . The cumulative selection pheromones are used to negate the effect
of selection choices on the scheduling pheromone. Combing all pheromone values gives
the combined pheromone vector p.

At each iteration, after all ants created their solution, the pheromone trails are up-
dated. This is done by the following update equation:

p := p(1−ρ)+p′ ·ρ. (3.9)

Here, ρ is the evaporation coefficient (set between 0 and 1) and p′ the new pheromone
contribution. We can split up the entries of p′ into p′se , p′sc and p′cs , which are the
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pheromone contributions of selection, scheduling and cumulative selection, respec-
tively.

Let A be the set of solutions found by all ants in the current iteration and let A∗
be the best solution of all previous iterations. Then, we take B as the best q solutions
from A ∪ {A∗}, where q is an algorithm parameter. Thus, we have B = {B1, · · · ,Bq }. Each
solution Bm ∈B is then a priority matrix. Here, the top row contains (Bm)1i = 1 if activity
i ∈ N is executed and (Bm)1i = 0 otherwise. The bottom row contains a priority vector
for all selected activities, as to be used in Algorithm 6. Now, we calculate the selection
pheromone contribution p′se . This is done by the following equation:

p ′se
i =

q∑
m=1

(Bm)1i

m
, ∀i ∈ N . (3.10)

Thus, in Constraints (3.10), the mth best solution gives a contribution of 1/m to every
activity that is executed. For the scheduling pheromone update, the following equation
is used:

p ′sc
i j =

q∑
m=1

({
1/m if (Bm)2i > (Bm)2 j and i , j ∈ N e

0 otherwise

)
, ∀i , j ∈ N . (3.11)

In this equation, the mth best solution gives a contribution of 1/m to every trail (i , j ), if
i and j are both selected (i , j ∈ N e ) and i appears before j in the activity list. Finally, we
update the cumulative selection pheromone as follows:

p ′cs
i =

q∑
m=1

(Bm)1i , ∀i ∈ N . (3.12)

For each node, a contribution of 1 is added if this node is executed in the selected so-
lution. Combining p′se , p′sc and p′cs gives p′ that can be used in Constraints (3.9) to
calculate the new pheromone values.

3.B.2. HEURISTIC RULE
Pheromone trails are the most important part in order to create new solutions. How-
ever, these are not always sufficient in order to enter the feasible region. Therefore, we
implement a heuristic rule in order to direct the algorithm to the feasible region.

As for HDE, the scheduling of a set of executed activities N e is done by Algorithm 6. In
each iteration of this algorithm, there is a set of scheduled activities N s and a set of can-
didate activities N c , where one candidate activity i ∈ N c has to be selected to be added
to the scheduled activities. Furthermore, we introduce the net resource production of
resource r ∈ R for activity i ∈ N as kr i = k+

r i −k−
r i .

A solution is infeasible when, at any time, there is a deficit of nonrenewable re-
sources. Therefore, we use a heuristic rule consisting of two parts: the Resource Tightness
RTr (N s ) and the Resource Supply RSr (N c , i ). The resource rightness RTr (N s ) estimates
how close a nonrenewable resource r ∈ Rn is to depletion, based on the scheduled ac-
tivities N s , and acts as an activation function; if a resource is low, its corresponding re-
source tightness is high which results in a higher priority of replenishing this resource.
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The resource supply RSr (N c , i ) represents the amount of nonrenewable resource r ∈ Rn

generated by candidate node i ∈ N c , and thus, the preference of selecting this activity.

The RT is then defined as follows:

RTr (N s ) = 1

2
er f

(
2− λr +∑

j∈N s kr j

µλr

)
, ∀r ∈ Rn . (3.13)

The top side of the fraction in Constraints (3.13) represents the net amount of resource
r generated by all scheduled activities N s plus the initial available amount of resource r .
Thus, this is a measure for the total available amount of resource r divided by the initial
amount of resource r times the resource tightness parameter µ. Then, the Gauss error
function er f is used together with the constants 1

2 and 2 to create Constraints (3.13).
This equation is close to zero when the available amount of resource r is equal to or
higher than µλr , where λr is the original resource availability. If the resource availability
decreases, the RT increases, and thus, more priority is given to the generation of this
resource.

Secondly, the resource supply RSr (N c , i ) represents the net resource production,
normalized to a [0,1] range. In order to prevent division by zero, we define the Resource
Supply to be 0 if all candidate activities N c have the same net resource generation. This
gives the following equation:

RSr (N c , i ) =


kr i −min j∈N c kr j

max j∈N c kr j −min j∈N c kr j
, if min

j∈N c
kr j < max

j∈N c
kr j

0, otherwise.

(3.14)

Finally, we get the heuristic contribution by averaging over the product of the re-
source tightness and the resource supply for each resource:

HC (N s , N c , i ) = 1

|Rn |
∑

r∈Rn
RTr (N s ) ·RSr (N c , i ). (3.15)

Each term in the sum of Constraints (3.15) consists of the resource tightness times the re-
source supply. This means that the heuristic contribution for activity i ∈ N c is increased
the most, if it generates a nonrenewable resource (high resource supply) that is near to
depletion (high resource tightness).

3.B.3. CREATING SOLUTIONS
Each ant creates a new solution at each iteration. This is done by combining the infor-
mation from the pheromone trails with the heuristic contribution. First, the ant creates
a selection of executed activities N e . This is done by executing Algorithm 5. Here, at line
7, the next activity i from selection group g ∈ G is selected from all candidates N c

g with
probability PR se (N c

g , i ):

PR se (N c
g , i ) = (p se

i )α∑
j∈N c

g
(p se

j )α
, (3.16)

where α is a parameter indicating the influence of higher pheromone trail values.
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Subsequently, the executed activities are scheduled according to Algorithm 6. On line
5, candidate activity i ∈ N c is selected from candidates N c ⊆ N , given that activities in set
N s are already scheduled, with probability PR sc (N s , N c , i ). To calculate this probability,
we first calculate the Scheduling Score SC (N c , i ):

SC (N c , i ) =
(∑

j∈N c \{i } p sc
i j

|N e |

)β
· 1

pcs
i

. (3.17)

Here,β is a parameter indicating the influence of higher pheromone trail values. We then
add the heuristic contribution HC (N s , N c , i ) with probability η, where η is an algorithm
parameter, and normalize the scores to a 0-1 range. This gives the following expression
for the scheduling probabilities:

PR sc (N s , N c , i ) =


SC (N c , i )+HC (N s , N c , i )∑

j∈N c SC (N c , j )+HC (N s , N c , j )
, with probability η,

SC (N c , i )∑
j∈N c SC (N c , j )

otherwise.

(3.18)

3.B.4. FULL ALGORITHM
Finally, we combine the above to present the ACO algorithm, as given in Algorithm 9. For
this algorithm, we use the population parameter γ and the iteration threshold parameter
ω from the HDE algorithm. The algorithm initializes by setting all pheromone trail values
to 1.

At each iteration, each ant creates a new schedule by first selecting activities accord-
ing to Algorithm 5 and subsequently scheduling these according to Algorithm 6. If this
new schedule represented by t is better than the best solution represented by t∗, t is
stored as best solution. After all ants have created a new solution, the pheromone values
are updated. This process is repeated until there has not been an improvement for ω
iterations.
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Algorithm 9 Ant Colony Optimization

1: p ← 1
2: t∗ ←∞
3: θ← 0
4: while θ <ω do
5: for i ∈ [1, · · · ,γ] do
6: N e ← Executed activities by Algorithm 5 and Constraints (3.16)
7: t ← Schedule by Algorithm 6 and Constraints (3.18)
8: if t|N | < t∗|N | then
9: t∗ ← t

10: θ←−1
11: end if
12: end for
13: p′se ← by Constraints (3.10)
14: p′sc ← by Constraints (3.11)
15: p′cs ← by Constraints (3.12)
16: p′ = [p′se ,p′sc ,p′cs ]
17: p := p(1−ρ)+p′ ·ρ
18: θ← θ+1
19: end while
20: return t∗

3.C. PARAMETER TUNING
This section describes the parameter tuning process, which consists of a local-search
algorithm. This algorithm iteratively varies a single parameter across a range of values.
For each value, the scheduling algorithm is executed on a set of 50 instances, half with
renewable resources and half without. The tuning algorithm selects a parameter, varies
this parameter, and selects the value with the lowest mean objective function value.
Then, the same is done for the next parameter. This is repeated until the parameters
have not changed in a full iteration of all parameters, thus assuring a local minimum.

In order to equalize the running times, a maximum running time of 15 minutes is
used. A penalty of 10 is added for every second above this. Furthermore, a penalty of 10
is added for every unit of nonrenewable resource unavailability. For the HDE algorithm,
this resulted in parameters γ = 300, ω = 275, w = 0.1, c = [0.15,0.25]. For the ACO algo-
rithm, the parameters are γ = 300, ω = 75, q = 1, ρ = 0.35, α = 0.18, β = 0.6, µ = 5 and
η= 0.2. In Figures 3.C.1 and 3.C.2, the average makespan plus resource penalties and the
average computing times are shown for the HDE algorithm. In Figures 3.C.3 and 3.C.4,
this is shown for the ACO algorithm. Note that for some parameters, the influence of the
computing time prevents the lowest objective value (makespan plus resource penalty)
to be picked. For example, parameter q has its best objective value at q = 5, but q = 1 is
selected due to its shorter computing time.
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Figure 3.C.1: Average makespan plus resource penalties for the final iteration of the HDE parameter tuning
process.
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Figure 3.C.2: Average computing times for the final iteration of the HDE parameter tuning process.
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Figure 3.C.3: Average makespan plus resource penalties for the final iteration of the ACO parameter tuning
process.
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Figure 3.C.4: Average computing times for the final iteration of the ACO parameter tuning process.
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Figure 3.D.1: BOG of HDE and literature algorithm against the linked parameter.
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Figure 3.D.2: BOG of HDE and literature algorithm against the flexibility parameter.
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Figure 3.D.3: Boxplots of optimality gaps for the HDE algorithm against the nested parameter.
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Figure 3.D.4: Boxplots of optimality gaps for the HDE algorithm against the flexibility parameter.



4
PROFIT MAXIMIZATION WITH

STOCHASTIC PROJECT ARRIVALS

So far, in this thesis, the optimization goal is to minimize the makespan for a single
project. However, in modular shipbuilding, the final product consists of a product fam-
ily, instead of a single product. Consequently, the goal is to produce all products within
this family as efficiently as possible. Therefore, this chapter extends the model to sup-
port two important characteristics of modular shipbuilding: inventory allocation and
the stochastic arrival of new projects. It should be noted that these characteristics are
strongly correlated: inventory allocation is done based on the expectation of arriving
projects. If it was known exactly which project will arrive, having the right items in the
inventory would be much easier. Unfortunately, this is not the case: if we want to fully
capture the benefits of having pre-built assemblies, this decision might have to be made
before the arrival of the product order.

Choosing the correct inventory allocation for minimal makespan is easy: simply keep
the inventory levels as high as possible. However, since there are also costs incurred by
having items in inventory, makespan minimization is not a realistic optimization objec-
tive in this setting. Instead, one should compare the additional costs due to inventory
allocation to the benefits obtained by shorter project makespans. Then, it might be re-
vealed that constructing a certain assembly as soon as the ship order comes in might be
a better decision than having this assembly always on stock, even if it slightly delays the
project finish date. Therefore, the model in this chapter maximizes the expected profit
instead of minimizing the makespan.

With stochastic project arrivals, choices made for a current project influence the yard
capacity in the future, and thus, the scheduling options for the next arriving project. For
example, it might be beneficial for the current project to use a pre-built assembly and
reconstruct this after the project is finished. However, this will require yard capacity that
can interfere with the next project. Considering this yard capacity, a safer option would
be to outsource building the assembly. However, this might incur additional costs.
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To model these additional choices, this chapter introduces a model with profit max-
imization and stochastic project arrival. Furthermore, although the instances that we
use to test our models and algorithms are not taken from real life projects, the struc-
ture of these instances shows how to model decisions such as when to outsource, when
to construct in-house, and which modules to keep in the inventory. This model uses a
scenario-based approach, where a set of scenarios are generated. The decisions are then
made such that the average outcome over all scenarios is optimized. For this, both an
exact and a heuristic method are given and the computational results of both methods
are compared.

4.1. INTRODUCTION
The shipbuilding industry is an industry producing long-term products, where building
times usually vary from a few months to a few years. In order for shipbuilding companies
to be competitive, improvements are made on both the technical aspect and the process
aspect. Improving the shipbuilding process is done for multiple reasons, one of which is
lead time reduction. The lead time is the time between ordering a product and receiving
it. Since ships are essential elements for many trade operations and on-sea construction
projects, delayed access to ships can postpone other operations (Athanasia et al., 2012).

One method of decreasing lead time is to build ships to stock. Although this is done
in some specific cases, shipbuilding usually is a one-off industry where each product is
unique. This prohibits keeping pre-built ships in inventory. A possible method to obtain
the benefits of pre-building, while maintaining product flexibility, is assemble-to-order
(ATO) production (Storch and Sukapanpotharam, 2003). In ATO production, a product
is divided into pre-built modules that are assembled on customer order to decrease the
production time. However, shipbuilding is a complex process and implementing an ATO
strategy is not straightforward. Having items or modules in inventory can significantly
reduce lead times, but will also incur costs. These costs are, among others, insurance
costs, storage costs and depreciation costs. This raises an important question: what
should be the inventory of items and modules with long lead times?

Once a resource inventory level has been decided upon, used modules will have to
be replenished. This can be done by the shipyard itself, or the production can be out-
sourced to third parties. Outsourcing generally induces additional costs, such as costs
for transportation. However, in-house production influences the resource-capacity at
the shipyard. This can affect the lead times of incoming projects.

Finally, using modules modifies the structure of the project schedule. Using a mod-
ule usually requires cranes for transportation and assembly, as opposed to building with-
out a module, which usually requires more on-board crew. Furthermore, it also has ef-
fects on other activities. For example, if the installation space is already enclosed by
other parts of the ship, the pre-assembled module cannot be moved to the desired instal-
lation location. However, without using modules, it might still be possible to transport
separate parts and assemble them at the required location.

Thus, modular construction results in a scheduling problem where decisions have to
be made on activity starting times, resource inventory levels, outsourcing decisions and
project structure decisions. Furthermore, due to the size and duration of the production
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process, it can be beneficial to make different decisions per project. This can be mod-
eled by adapting the Resource Constrained Project Scheduling Problem with a flexi-
ble Project Structure and Consumption and Production of Resources (RCPSP-PS/CPR)
from Chapter 3 to include resource inventory levels, stochastic project arrivals and profit
maximization. Furthermore, decisions have to be made during the arrival of a project,
which influences scheduling capabilities in future projects. This results in a multi-stage
stochastic optimization problem. To find solutions for this problem, we present a mod-
ified version of the Progressive Hedging (PH) algorithm that uses a heuristic algorithm
to solve the scenario subproblems. This algorithm consists of a basic version and two
extensions that improve the performance.

Thus, the contributions of this chapter are as follows: first, we introduce and present
a formulation for the Resource Constrained Project Scheduling Problem with Modular
Production (RCPSP-MP). Second, we present a PH algorithm for this problem and com-
pare its performance against optimal solutions. Finally, we compare different variations
of the algorithm.

In Section 4.2, an overview is presented of related research for both scheduling with
stochastic project arrivals and multi-stage optimization. Subsequently, in Section 4.3,
the RCPSP-MP is described and formulated. However, without assumptions on proba-
bility distributions, this model cannot be optimized directly. After this, in Section 4.4,
the solution method is given. Finally, this solution method is evaluated in Section 4.5
and the chapter is concluded in Section 4.6.

4.2. LITERATURE REVIEW
In this section, we review the literature related to the RCPSP-MP, which can be catego-
rized as a Resource Constrained Multi-Project Scheduling Problem (RCMPSP) with un-
certain arrivals. Unfortunately, relevant research in this area is sparse, since most re-
search is focused on baseline scheduling (Pamay et al., 2014; Capa and Ulusoy, 2015).
Here, an initial baseline schedule is created, for which the number of later modifications
done has to be minimized. However, in the RCPSP-MP, the goal is to schedule without
later modifications. Therefore, we broaden our view to general Stochastic Programming
(SP). This is a framework for modeling decisions under uncertainty and was originally
introduced by Dantzig (1955). Multi-stage SP involves making decisions over multiple
stages (i.e. decision making moments). Between each stage, some uncertain data is re-
vealed. Since multi-stage SP models are usually difficult to solve, the probability distri-
butions are often discretized by creating realizations of the uncertain parameters. Such a
realization is called a scenario. To solve a discretized problem, decomposition methods
can be used. These methods fall into two categories: stage based decomposition, such
as the L-shaped method (van Slyke and Wets, 1969), and scenario based methods, such
as dual decomposition (DD) (Carøe and Schultz, 1999) and progressive hedging (Rock-
afellar and Wets, 1991). An overview of recent developments of these methods is given in
Torres et al. (2019). They state that both the L-shaped method and dual decomposition
often lead to long computing times, particularly in the case when the MILP problem has
a poor LP relaxation. Additionally, an overview of multi-stage methods is given in Bakker
et al. (2020), where it is stated that scenario decomposition methods are generally at-
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tractive for multi-stage decomposition methods. Finally, there are several PH methods
that find solutions to the decomposed subproblems by a meta-heuristic (Løkketangen
and Woodruff, 1996; Haugen et al., 2001; Hasannia Kolaee and Mirzapour Al-e-Hashem,
2022). Since the subproblems of the RCPSP-MP are computationally demanding, the
possibility of quickly solving them is an important requirement. Thus, for the reasons
stated above, PH is deemed as a promising algorithm for the RCPSP-MP. Therefore, we
now present research on the PH algorithm.

Progressive Hedging (Rockafellar and Wets, 1991) iteratively solves each scenario
subproblem separately while trying to converge to a feasible solution. Originally, it was
proposed for convex stochastic problems, where convergence to an optimum is guaran-
teed. Although this guarantee is not available when integer variables are present, it has
been applied successfully for these types of problems as a heuristic. However, this cre-
ates two problems: first, the subproblems might not be solvable in a reasonable amount
of time. Second, there are no theoretical guarantees for convergence to a feasible solu-
tion.

To address the issue of finding solutions to subproblems within a reasonable time, re-
searchers have been using heuristic algorithms. One of the first implementations of this
is presented in Løkketangen and Woodruff (1996). They give a general method for mixed
integer multi-stage stochastic programming problems with binary variables. They use a
general version of PH, although they find solutions to the scenario subproblems with a
tabu search algorithm. They apply this method to a general production planning prob-
lem. A more specific application of the PH algorithm is given by Haugen et al. (2001).
They apply PH to a multi-stage lot sizing problem, with costs for producing and back-
logging. Similar to Løkketangen and Woodruff (1996), they heuristically solve the sub-
problems. They use a dynamic programming algorithm that finds good solutions for the
subproblems. Although dynamic programming has an optimality guarantee for the stan-
dard subproblem, PH alters the objective function, which removes this guarantee and
makes dynamic programming a heuristic. Furthermore, Hasannia Kolaee and Mirza-
pour Al-e-Hashem (2022) study a problem in medical tourism, that involves the alloca-
tion and transportation of patients to hospitals. To find good solutions, they present a
PH algorithm that finds solutions to the subproblems with a genetic algorithm.

Furthermore, various research has focused on improving convergence behaviour of
the PH algorithm for non-convex problems. Watson and Woodruff (2011) study a re-
source allocation problem and provide several algorithmic improvements, which result
in better convergence behavior. First, they provide a method for defining the penalty-
term multipliers separately per variable. Second, they provide various ways of variable
fixing to improve convergence. Third, they propose a new termination criterium, tai-
lored to their specific optimization problem. Finally, they give a method for detect-
ing cyclic behaviour in penalty terms and a mitigation for this. Furthermore, Crainic
et al. (2011) present PH metaheuristics for a problem in selecting arcs for stochastic net-
work design, with various improvement strategies. They give an adjustment strategy for
the penalty terms, which increased/decreased costs if an arc is chosen in the minor-
ity/majority of scenarios. Furthermore, they adjust costs based on deviations from the
average. Guo et al. (2015) combine PH with DD, where they use PH to create a start-
ing point for the DD algorithm and present a method to transform PH penalty weights
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to Lagrange multipliers for DD. They apply this algorithm to a server location problem
and a unit commitment problem for electricity generation. Furthermore, Lamghari and
Dimitrakopoulos (2016) combine PH, mixed integer linear programming, and heuris-
tics to find solutions to a pit mining problem. They first run PH while finding solutions
to the scenario subproblems with a heuristic algorithm, after which they use a mixed
integer linear programming solver to solve a restricted problem to reach convergence.
Additional acceleration techniques are given by Peng et al. (2019). They investigate a
stochastic resource allocation problem, where the cost of a production process is min-
imized, including inventory, backorder and production cost. For this, a PH algorithm
is used that solves the subproblems with a MILP solver. They introduce three methods
to define the penalty term in the PH algorithm. Furthermore, they introduce accelera-
tion techniques based on penalty-linearization, variable fixing, early terminations and
warm starts. Finally, we discuss the work of Jiang et al. (2021). They study a stochastic
service network design problem and introduce the idea of soft clustering: creating sce-
nario bundles with probabilistic membership. This means that a scenario can be part of
multiple bundles simultaneously.

In conclusion, it can be stated that the current research on the RCPSP with uncer-
tain arrivals does not give useful research directions for the RCPSP-MP. Therefore, we
considered different SP methods, of which the PH algorithm seemed most promising.
Although PH only has proven convergence properties for convex problems, it is used as
a heuristic for non-convex problem fairly successful. However, as research indicates, this
often requires various acceleration/improvement techniques.

4.3. PROBLEM DESCRIPTION
The RCPSP-MP is a multi-stage stochastic optimization problem, where at the first stage
the resource inventory levels have to be set and, at subsequent stages, the scheduling
decisions have to be made. In this section, a formal description of this problem is given.
To represent the uncertainty, the concept of a scenario tree is used. A scenario tree is a
rooted tree where each scenario tree node defines a decision moment. The root node
defines the first stage and thus the first decision moment. Then, each child node repre-
sents a possible next stage realization. From each child node, its respective child node
again represents a possible next stage, and so on. Then, a path from the root node to
a leaf node represents a scenario: a possible realization of all stages of the stochastic
process.

Since a node can be part of multiple root-leaf paths, it can also be part of multiple
scenarios. However, at the moment of making the decisions for this node, it is not known
which of these scenarios will occur. Therefore, if the problem is decomposed by scenar-
ios, all decisions for a certain node across all of its scenarios should be the same. This is
referred to as the Non Anticipativity Constraints (NACs). If a solution satisfies all NACs,
the solution is called implementable.

In the RCPSP-MP, activities have to be planned according to two types of resources:
renewable resources Rr and nonrenewable resources Rn . A renewable resource, such as
workers or machines, regenerates automatically after use. For each renewable resource
r ∈ Rr , the initial availability is input and given by λr . A nonrenewable resource is a
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resource that does not always automatically renew after the consuming activity ends.
Instead, the consumption and/or production can be set separately per activity. An ex-
ample is an inventory item or module, for which a reorder activity has to be performed
to replenish it. To simplify the replenishment decisions, we assume a fixed base inven-
tory level Yr that has to be decided upon for each nonrenewable resource r ∈ Rn at the
root node of the scenario tree. For each activity that consumes an amount of resource
r ∈ Rn , a reorder activity is scheduled that replenishes the same amount. After setting
the inventory levels at the root node, a project that has to be scheduled arrives at each
descendant node of the scenario tree. The goal is to maximize the total profit, which
consists of profit for executing activities at certain times minus costs for inventory.

An example of a scenario tree with 3 types of candidate projects can be seen in Fig-
ure 4.3.1. Consider, for example, the scenario represented by nodes 0-1-4. At the root
node, the resource inventory levels have to be decided for the nonrenewable resources.
Then, at node 1, a project of type A arrives with arrival time τ= 10 and has to be sched-
uled. At this moment, we only know that we are either in the scenario represented by
nodes 0-1-3 or 0-1-4. Finally, due to node 4, a project of type C arrives with arrival time
τ= 120.

Resource
inventory
level

0

1

Project A, τ= 10

2

3

4

5

6

Project A, τ= 110

Project C, τ= 120

Project A, τ= 105

Project A, τ= 130
Project B, τ= 12

Time

Figure 4.3.1: Example of a scenario tree for 3 stages (2 arriving projects).

We now give a formal description of the scenario tree and the projects contained in
it. Let Ω be the set of all scenarios, Ψ the set of all scenario tree nodes, Ωψ the set of all
scenarios that contain scenario tree node ψ ∈Ψ and let Ψω be the set of scenario tree
nodes in scenario ω ∈Ω. Furthermore, we let scenario tree node ψ ∈Ψwith ψ= 0 be the
root node. Then, we let Pψ be the project arriving at non-root node ψ > 0 and τψ the
arrival time of project Pψ.

The project Pψ consists of a set of possible activities Nψ. To model the choices of
using certain modules, a flexible project structure is used. This means that from all ac-
tivities Nψ, only a subset has to be executed. The structure of these choices is defined by
a set of selection groups Gψ. Each selection group g ∈Gψ has an activator activity ag and
a set of successor activities Sg . For each selection group g ∈Gψ, it holds that if the acti-
vator activity ag is executed, exactly one successor in Sg has to be executed. The set of
executed activities has to be scheduled in the set of discrete time periods T = {1, · · · , |T |}.
Each activity i ∈ Nψ has a duration of di time periods. Furthermore, the set Pψ defines
the precedence relationships. For each precedence relationship (i , j ) ∈ Pψ, activity j can
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start only after activity i has been finished, if both activity i and j are executed. Fur-
thermore, each activity i ∈ Nψ requires kr i units of renewable resource r ∈ Rr . For each
nonrenewable resource r ∈ Rn , k−

r i units are consumed at the start of activity i and/or
k+

r i units are generated at the end.

Thus, at each non-root scenario tree node ψ ∈Ψ \ {0}, a project Pψ arrives. There-
fore, a scenario ω ∈Ω then has a set of sequentially arriving projects {Pψ|ψ ∈Ψω \ {0}}.
These projects can be combined by creating finish to start precedence constraints be-
tween the final and starting activity of subsequent projects. This creates a multi-project
P m
ω per scenario ω ∈Ω, that represents all sequentially arriving projects. The model for

the RCPSP-MP represents all these multi-projects simultaneously.
For multi-project P m

ω for scenario ω ∈ Ω, let Nω = ∪ψ∈ΨωNψ be the set of activities
and Gω = ∪ψ∈ΨωGψ the set of selection groups. Furthermore, consider activity i ∈ Nω,
created by project Pψ from selection tree node ψ ∈ Ψω. Then, we define Nωi as the
set of identical activities from selection tree node ψ in other scenarios ω′ ∈ Ω,ω 6= ω′.
Similarly, Gωg is the set of identical selection groups of the same selection tree node in
different scenarios. Additionally, we let N and G be the union of all activities and selec-
tion groups over all scenarios, respectively (N =⋃

ω∈ΩNω and G =⋃
ω∈ΩGω). Finally, we

define sω as the first activity of multi-project P m
ω and let P be the total set of all prece-

dence relationships. With this, we can give the Mixed Integer Linear Program (MILP) of
the RCPSP-MP.

The RCPSP-MP has two types of decision variables. As stated before, Yr defines the
initial resource availability for each nonrenewable resource r ∈ Rn . Furthermore, Xi t

is a binary decision variable, equal to 1 if activity i ∈ N starts at time t ∈ T and zero
otherwise. The objective is to schedule the project such that the profit is maximized.
Each nonrenewable resource r ∈ Rn has a fixed cost of cr per unit. For each activity
i ∈ N scheduled at time t ∈ T , the profit is pi t , which is a non-increasing function for
t . Generally, the profit is zero for most activities, except for the final one or for some
milestone activities. Furthermore, deducting a constant value (relative to t ) from pi t

allows for a fixed cost of executing activity i , which can be used to model outsourcing
costs. With this, we get Objective function (4.1a).

Furthermore, Constraints (4.1b) specify that for each scenario, the starting activity
has to be executed. Constraints (4.1c) define that activities can only be scheduled af-
ter the project has arrived. Subsequently, Constraints (4.1d) impose that each activ-
ity is scheduled at most once. The selection groups are handled by Constraints (4.1e)
and (4.1f). For each selection group g ∈ G , the former define that if the activator activ-
ity ag is executed, at least one successor activity is selected. The latter define that if the
activator activity ag is executed, at most one successor is executed. Furthermore, Con-
straints (4.1g) impose that, for each precedence relationship (i , j ) ∈ P , when both activity
i and j are executed, activity j starts after activity i is finished. The resource constraints
are set by Constraints (4.1h) to (4.1j). The first constraint set imposes the constraints
of renewable resources, while the latter do this for the nonrenewable resources. Con-
straints (4.1i) impose that the total resource consumption cannot be larger than the ini-
tial availability Yr , thus assuring that the resource inventory levels cannot be negative.
Part of the resource inventory level costs are due to keeping the items in the inventory,
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such as costs for storage space, insurance costs or financing costs. Therefore, the avail-
able resource inventory level cannot be higher than the initial resource inventory level
Yr , for each nonrenewable resource r ∈ Rn . Thus, Constraints (4.1j) define that the to-
tal resources consumption cannot be negative. Subsequently, Constraints (4.1k) repre-
sent the NACs. They impose that for different scenarios, the identical activities within
the same selection tree nodes must have the same selection and scheduling time deci-
sion. Finally, Constraints (4.1l) and (4.1m) define the variable domains. All notation used
throughout this chapter is presented in Appendix 4.A.

max
∑
ω∈Ω

∑
i∈Nω

∑
t∈T

pi t Xi t

|Ω| − ∑
r∈Rn

cr Yr (4.1a)

∑
t∈T

Xsωt = 1, ∀ω ∈Ω, (4.1b)∑
t∈T,t<τψ

Xi t = 0, ∀ψ ∈Ψ, i ∈ Nψ (4.1c)∑
t∈T

Xi t ≤ 1, ∀i ∈ N , (4.1d)∑
t∈T

Xag t ≤
∑

i∈Sg

∑
t∈T

Xi t , ∀g ∈G , (4.1e)∑
j∈Sg

∑
t∈T

X j t ≤ |Sg |−
(|Sg |−1

) ∑
t∈T

Xag t , ∀g ∈G , (4.1f)∑
t∈T

(t +di )Xi t ≤
∑
t∈T

t X j t +M
(
1− ∑

t∈T
X j t

)
, ∀(i , j ) ∈ P, (4.1g)

∑
i∈Nω

t∑
t ′=t−di+1

kr i Xi t ′ ≤λr , ∀ω ∈Ω,r ∈ Rr , t ∈ T, (4.1h)

∑
i∈Nω

(
t∑

t ′=1

k−
r i Xi t ′ −

t−di∑
t ′=1

k+
r i Xi t ′

)
≤ Yr , ∀ω ∈Ω,r ∈ Rn , t ∈ T, (4.1i)

∑
i∈Nω

(
t∑

t ′=1

k−
r i Xi t ′ −

t−di∑
t ′=1

k+
r i Xi t ′

)
≥ 0, ∀ω ∈Ω,r ∈ Rn , t ∈ T, (4.1j)

Xi t = X j t , ∀ω ∈Ω, i ∈ Nω, j ∈ Nωi , t ∈ T (4.1k)

Xi t ∈ {0,1}, ∀i ∈ N , t ∈ T, (4.1l)

Yr ≥ 0, ∀r ∈ Rn . (4.1m)

4.4. SOLUTION METHOD
To find solutions to the RCPSP-MP, a Progressive Hedging (PH) algorithm is created.
This algorithm uses PH to make decisions for the resource inventory level and activity
selection. Subsequently, a Hybrid Differential Evolution (HDE) algorithm creates the
full schedules. In this section, we first present the solution representation. Subsequently,
we give a short description of the HDE algorithm, after which the PH algorithm is given.
Finally, we present two extensions that improve the performance of the PH algorithm.
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4.4.1. SOLUTION REPRESENTATION
The PH algorithm decomposes the optimization problem by scenarios. These scenar-
ios are then, iteratively, optimized heuristically while the objective function is altered
to steer the solution towards implementability. This means that we can consider two
types of optimization processes: the complete optimization process that finds an im-
plementable solution for all scenarios in the scenario trees, and the subproblem opti-
mization processes, where separate scenarios are optimized.

These two optimization processes both have a unique solution representation. The
subproblem optimization algorithms use the subproblem solution vectors. Here, each
solution vector is a concatenation of a resource vector, a selection priority vector and a
scheduling priority vector. The resource vector has |Rn | entries. Each entry represents,
after being rounded, the initial resource availability Yr for nonrenewable resource r ∈ Rn .
The selection and scheduling priority vectors indicate the priority for each activity i ∈ N
to be selected or scheduled, respectively. For the details to convert these vectors to a
schedule, we refer to Chapter 3.

Additionally, the complete optimization process uses compressed solution vectors.
This vector contains only the nonrenewable resource availabilities and information on
the selection of executed activities. The PH algorithm tries to converge the compressed
solution vectors to an implementable solution. Since the focus of the RCPSP-MP is on
resource inventory level and modularization choices, and because of the increased com-
putational difficulty of converging on starting times, implementability on starting times
is handled later in the algorithm. Furthermore, we can differentiate the activities to be
selected by activities that represent an actual choice, and activities where the selection
follows from other choices. Since the PH algorithm makes the solutions converge to
be implementable by penalizing entries in the solution vector, we do not want to dis-
tort these penalties by activities that do not represent a choice. Therefore, we define a
selectable activity as any activity that is a successor of successor group g ∈ G , with at
least two successor activities. Thus, the set of selectable activities can be denoted by
N s = {i ∈ N |g ∈G , i ∈ Sg , |Sg | > 1}.

Then, we create the compressed solution vector xω by concatenating the vector of
nonrenewable resource availabilities Y and a vector consisting of a binary value for each
selectable activity that indicates whether activity i ∈ N is executed or not.

The penalization of each compressed solution vector xω for scenario ω ∈ Ω is done
by comparing xω to the average solution vector xω over all scenarios. To calculate xω,
we note that each scenario ω ∈Ω consists of multiple scenario tree nodes Ψω. Since xω
consists of the resource inventory vector (set in the root scenario tree node) and activity
selection entries (related to projects in non-root nodes), each entry in xω can be mapped
surjectively to a scenario tree node. With this, we can create xω: for each entry in xω that
maps to scenario tree node ψ ∈Ψω, we average the corresponding entries in xω′ for all
scenarios ω′ ∈Ωψ that also contain scenario tree node ψ.

To formalize this, we introduce the solution indicator vector

U
(
ω,ω′,ψ

)= [
U

(
ω,ω′,ψ

)
1 , · · · ,U

(
ω,ω′,ψ

)
|xω|

]
(4.2)

for every combination ofω ∈Ω, ω′ ∈Ω andψ ∈Ψω. If nodeψ ∉Ψω′ , we get U
(
ω,ω′,ψ

)=
0. Otherwise, if ψ ∈Ψω′ , we let the j th entry of U

(
ω,ω′,ψ

)
be 1 if the j th variable in xω
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corresponds to a selectable activity in scenario tree node ψ, and zero otherwise. With
this, we can express xω as

xω = ∑
ψ∈Ψω

∑
ω′∈Ωψ

1

|Ωψ|
U

(
ω,ω′,ψ

)T ·xω′ . (4.3)

4.4.2. HYBRID DIFFERENTIAL EVOLUTION
The individual scenario subproblems are solved by the Hybrid Differential Evolution
(HDE) algorithm, introduced in Chapter 3. This is a differential evolution algorithm with
a Forward Backward Improvement (FBI) step (Valls et al., 2008). The HDE algorithm has
a population of γ solution vectors. In each iteration, a trial solution vector is created
for each solution x in the population. This is done by linearly combining 3 randomly
selected solutions, based on the scaling parameter SC and replacing entries from this
new solution in the original solution x, based on replacement parameter RP . This new
solution replaces the original solution x if it has a better objective.

This process is executed iteratively for the complete population. If no best new so-
lution has been found for T P iterations, an FBI improvement step is performed for all
solutions. If this does not improve any solutions, the process is terminated. For the
complete details of this algorithm, we refer to Chapter 3.

4.4.3. PROGRESSIVE HEDGING
We now present the structure of the PH algorithm. This algorithm uses the, in PH liter-
ature called, Lagrangian multiplier wω for each scenario ω ∈Ω and penalty ratio rω, to
alter the objective functions of the subproblems to enforce implementability. Initially,
rω is set to its initialization value ri ni t

ω > 0 and each wω is set to a zero vector with the
same length as xω. Furthermore, the PH algorithm initializes a compressed solution xω
for each scenarioω ∈Ω, obtained by optimizing the subproblem solution vector with the
HDE algorithm and converting to the compressed version. This solution maximizes the
unaltered objective function ob j (xω).

After this initialization, the iterative process starts. In each iteration, the average so-
lution xω is calculated for each scenario ω ∈Ω by Constraints (4.3). An implementable
set of solutions correlates to xω = xω for every scenario ω ∈ Ω: each decision value is
equal across all scenarios. Therefore, xω can be used to steer the solution set to be im-
plementable. This is done by first modifying the Lagrangian vector wω, by adding the
penalty ratio times the difference between current solution xω and average solution xω:
wω← wω+rω(xω− x̄ω). If an entry of xω is larger than the average solution vector xω, the
corresponding entry in wω is increased. Conversely, entries lower than the average result
in a decreased entry in the Lagrangian vector wω. This is then used, together with rω and
xω, to alter the cost of the objective function. In the standard PH implementation, the
altered objective function is given by:

al t_ob j
(
xω,xω,wω,rω

)= ob j (xω)−wT
ωxω− rω‖xω−xω‖2, (4.4)

where the last two terms are penalization terms. The first one is based on the Lan-
grangian vector wω. Recall that positive entries of wω are the result of larger than average
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values in xω, since we start with wω equal to zero and increase wω when xω is larger than
average. Therefore, this term penalizes high values if the solution from the previous it-
erations (or initialization) was above the average solution vector. Similarly, negative val-
ues of wω correspond to entries in xω that are smaller than average. Therefore, this term
guides the solution towards the average value. The second penalty term penalizes the
squared distance between xω and xω, times the penalty ratio rω. This has a similar ef-
fect, penalizing any deviation from the average. At the end of each iteration, the penalty
ratio is multiplied by the Penalty Multiplicator parameter P M > 1. This technique is
taken from Crainic et al. (2011). The iterative process continues until the solutions are
implementable, or until a maximum number of iterations is reached.

However, xω represents only the resource inventory level and activity selection deci-
sions. Therefore, after terminating the iterative process, this still needs to be converted
to a schedule. First, if x is not implementable, the repair function repair(x) converts it to
an implementable solution. This is done by setting each resource inventory entry to its
maximum value across all scenarios. Second, the activity selection entries are rounded
sequentially. After rounding an activity selection variable, all other activities in the same
selection group are fixed to prevent selection infeasibilities. This is done by using group
orderings, with the definition, generation procedure, and use described in Chapter 3.

After the repair process, a schedule is created for each project Pψ at scenario tree
nodeψ> 0,ψ ∈Ψ. This is done by orderingΨ breadth-first from the root node. Then, all
resource inventory levels and activity selection decisions are fixed according to x. Subse-
quently, the HDE algorithm is ran for each scenario tree node while taking into account
the schedules of all ancestor nodes. We denote this procedure by get_final_solution(ψ,xω),
where ω is any scenario inΩψ (note that entries in xω, corresponding to node ψ ∈Ψ, are
equal across all scenarios ω ∈Ωψ).

This gives the PH algorithm, as given in Algorithm 10, that is guaranteed to create
feasible schedules for the RCPSP-MP. In the remainder of this section, we present im-
provement techniques for this algorithm.

4.4.4. EXTENSIONS
In order to improve the performance of the PH algorithm, two improvement techniques
are presented here. They are either based on adaptations from improvement techniques
in the literature, or newly created.

The first improvement technique introduced is Overshoot limitation, which is one
of the contributions of this chapter. As shown in Constraints (4.4), the Lagrangian penalty
is wT

ωxω. Consider entry xi ∈ xω that has been higher than average for some iterations,
such that the corresponding entry in wω has become positive. This gives an incentive for
xi to become lower. However, especially with the resource inventory level variables that
can take on a range of values, this can result in overshoot: there is an incentive to be as
low as possible, not just to be close to the average value. Therefore, we replace xω by x′ω
in the second term of Constraints (4.4), with for each entry x ′

i ∈ x′ω:

x ′
i =

{
xi if

(
wi > 0 and xi < xi

)
or

(
wi < 0 and xi > xi

)
,

xi otherwise,
(4.5)
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Algorithm 10 Progressive Hedging algorithm

1: rω← ri ni t
ω . Initialization

2: for ω ∈Ω do
3: wω← 0
4: xω← argmaxxω∈Xω ob j (xω)
5: end for
6:

7: while termination criterion not met do . Iterative improvements
8: for ω ∈Ω do
9: xω←∑

ψ∈Ψω

∑
ω′∈Ωψ

1
|Ωψ|U

(
ω,ω′,ψ

)¯xω′

10: wω← wω+ rω(xω− x̄ω)
11: xω← argmaxxω∈Xω al t_ob j (xω,wω,rω)
12: end for
13: rω← rω ·P M
14: end while
15:

16: if x is not implementable then .Make solution implementable
17: x ←repair(x)
18: end if
19:

20: for ψ ∈Ψ do . Create complete solution
21: ω← Select any fromΩψ

22: Xω←get_final_solution(ψ,xω)
23: end for

using corresponding entries xi ∈ xω, xi ∈ xω and wi ∈ wω. Thus, entries of xω for which
wi > 0 have no incentive to become as small as possible, since the penalty given by wi x ′

i
is equal for all values of xi below xi (and vice verse for entries with wi < 0). This means
that x′ω is capped at the average value to prevent overshoot. This gives us the altered cost
when overshoot limitation is used:

al t_ob j
(
xω,xω,wω,rω

)= ob j (xω)−wT
ωx′ω− rω‖xω−xω‖2. (4.6)

Second, we introduce Variable bounding, based on the variable fixing technique
from Watson and Woodruff (2011). Here, in each iteration of the PH algorithm, for vari-
able xi , an upper bound for future iterations is set on the largest value for this variable,
across all scenarios. Similarly, a lower bound is set by the lowest value of xi across all
scenarios. Note that for binary values, variable bounding is the same as variable fixing.
Furthermore, we introduce the lag parameters LR and LS, defining the lag in variable
bounding for resource inventory level and activity selection variables, respectively. A lag
means that a variable is only bounded, after it has satisfied a bound for at least that many
iterations.
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4.5. COMPUTATIONAL STUDY
This section presents the computational study. First, the instance generation methods
and instance sets are described. After this, the computational results are given.

4.5.1. PROBLEM INSTANCES

In this subsection, we present the instances used in the computational study. This is
done by first describing the structure of the instances. Second, the instance sets are
described. A summary of this is given here, while the detailed description can be found
in Appendix 4.B and the instances are given in van der Beek (2022a). The structure of the
instances represents choices that have to be made in modular shipbuilding.

Every instance consists of a scenario tree. Each node in this tree, except for the root
node, corresponds to a project. A project is created by using a base project and replac-
ing multiple activities by a Module Option (MO). An MO is a set of activities for which
a module can be used. Each MO consists of four alternative subnetworks: the Module
Alternative (MA), the Direct Construction Alternative (DCA), the Outsource Alterna-
tive (OA) and the Reconstruction Alternative (RA). The first two represent the process
of installing a module: the MA represents the use of pre-assembled module components
and the DCA represents building the module directly, without the use of module com-
ponents. The latter two represent the replenishment processes of the required module
components: in the OA, the module components are ordered from a third party and the
RA reconstructs the components locally.

For each module option, we randomly select an activity i ∈ N \ {0, |N |} in the base
project. This activity is then replaced by a selection group, with a dummy activity (zero
duration) as activator activity and the first activities of the MA and DCA as successors.
Additionally, the final activities of both alternatives are linked to the original successors
of activity i . Thus, activity i is replaced by two subnetworks, MA and DCA, of which ex-
actly one has to be executed. Since the MA represents the use of a pre-assembled mod-
ule, it requires the use of nonrenewable resources that represent the module compo-
nent(s). Therefore, if the MA is executed, it triggers one of the replenishments networks.
These replenishment networks, OA and RA, produce the same number of nonrenewable
resources as their corresponding MA. Since ordering or reconstructing can be done as
soon as the schedule is decided upon, the OA and RA only have precedence relation-
ships to the starting activity of the base project.

After creating a project for each scenario tree node ψ ∈ Ψ, these projects are com-
bined sequentially to create multi-project P m

ω , by creating finish to start precedence re-
lationships between the finish and start nodes of the respective projects. Then, all multi-
projects are combined to create the scenario tree. Although there is generally some level
of overlap between projects, we model them as sequentially to focus on the modulariza-
tion decisions. Since the OA and RA do not have a precedence relationship with the final
activity, they can interfere with future projects.

Thus, the procedure explained above creates a single instance, consisting of scenar-
ios of multiple sequentially linked projects. In Figure 4.5.1, an example of a single project
is shown. Here, the base network consists of five activities. From this, we replace activity
one by a module option. It can be seen that this creates 4 alternatives: DCA, MA, RA and
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OA. The DCA and MA replace activity one, while the RA and OA are placed after the root
activity in the precedence graph and after the MA in the selection graph.

0

1 3

2

4

Base project

0

DCA

MA
3

2

4

RA

OA

Precedence graph

0

DCA

MA
3

2

4

RA

OA

Selection graph

Figure 4.5.1: Insertion of a single module option in a base project.

The method described above is used to create two instance sets: Exact and Heuristic-
only. The former has 209 instances that are small enough such that feasible solutions can
be found with the MILP given in Constraint set (4.1). The goal of this instance set is to
evaluate the performance of the MILP formulation. The latter instance set, Heuristic-
only, contains larger instance that such that Constraint set (4.1) cannot be used to find
feasible solutions. The goal of this instance set is to compare the various variants of the
PH algorithm.

4.5.2. COMPUTATIONAL RESULTS
This subsection presents the computational results. These are divided into two parts: the
results for the Exact instance set and the results for the Heuristic-only instance set. The
instance set Exact contains smaller instances, for which the MILP model in Constraint
set (4.1) is used to find feasible (but not necessarily optimal) solutions. The goal of these
instances is to evaluate the MILP model against the PH algorithm and its extensions. The
instance set Heuristic-only contains instances with more scenarios. These instances are
only solved with the PH algorithms, with the goal of evaluating the extensions. All tests
are performed on a a single core of a 3.0 GHz Intel XEON CPU with 4 GB RAM.

The parameters were decided upon by creating a small set of instances and running
a local search based algorithm that iteratively varies one parameter. The parameters for
the HDE algorithm for the subproblems are determined by running the HDE algorithm
on subproblems separately. Then, with this, the other parameters are decided upon.
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This resulted in the parameters γ= 100 , SC = 0.1, RP = 0.1, T P = 100, ri ni t
ω = 1.6, P M =

1.001, LB = 8 and LS = 7.

During these computational tests, the following methods are used:

1. MILP Method (MM): Running the GUROBI optimizer on the MILP model in Con-
straint set (4.1) for a fixed amount of time and returning the best found feasible
solution.

2. Basic Progressive Hedging (BPH): The basic PH algorithm, as presented in Sec-
tion 4.4.3, without any extensions.

3. Bounded Method (BM): The BPH with the variable bounding extension from Sec-
tion 4.4.4.

4. Overshoot-limited Method (OM): The BPH with the overshoot limitation exten-
sion from Section 4.4.4

5. Combined Method (CM): The BPH with both the overshoot limitation and the vari-
able bounding extensions.

Due to the repair step in the PH algorithm, methods 2 to 5 always create implementable
solutions. The MM, however, does not have this guarantee. Based on time limitations for
the computational study, the maximal computing duration for the MM is set to 18 hours
and the maximum number of iterations of the PH algorithms is set to 250.

Furthermore, to compare methods, instances need to be normalized in some way
to put equal emphasis on smaller and larger instances. This is done by introducing the
Bound Optimality Gap (BOG), which is an upper bound on the optimality gap of the
respective solution:

BOG(ob j ) = ob j −ob j∗

ob j∗
·100%. (4.7)

Here, ob j is current objective value, and ob j∗ the best known objective value for that
instance.

EXACT

First, the instance set Exact is evaluated. This set contains instances with only a few
scenarios, such that feasible solutions can be found by the MILP method. Table 4.5.1
shows a summary of the tests results. Here, it can be seen that for nearly half of the
instances, a feasible solution is found. However, nearly none of these solutions were
proven to be optimal. Consequently, nearly all tests were terminated due to the time
limit, which results in the average computing duration being close to this time limit.
Furthermore, the optimality gaps (OG) are evaluated . This is defined as

OG = l b −ob j∗

ob j∗
·100%, (4.8)

where lb is the highest lower bound found by the MILP-solver and ob j∗ is the best found
feasible solution, either from the MILP-solver or from the PH heuristics. Using both the
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feasible solution from the MILP-solver and the PH methods is done to obtain a mean-
ingful OG, even when no feasible solution is found by the MILP-solver. In Figure 4.5.2a,
the optimality gaps are given against the total number of projects in the scenario tree for
each instance. Here, a slightly increasing trend can be seen.

Table 4.5.1: Summary of tests for all 209 instances for instance set Exact.

Optimal solutions found 2
Feasible solutions found 97
Average computing time (h) 17.89
Average optimality gap 24.68
Standard deviation optimality gap 10.62

Furthermore, a comparison of all instances, for which feasible solutions are found
for all methods, is given in Table 4.5.2. Here, it can be seen that both the mean BOG and
the computing time is significantly better for all PH methods. In Figure 4.5.2b, the BOGs
are shown for each method. It can be seen that the BPH has a significant improvement
compared to the MM. Furthermore, all extensions result in an even larger reduction of
BOG. However, when evaluating the number of instances for which a method reaches the
best found solution (including ties), the BPH performs slightly worse than the MM. Here,
it can be seen that the improvements are required to outperform the MM. Evaluating
only the performance and not the computing time, it can be seen that the OM performs
best.

Table 4.5.2: Comparison for all methods for all 97 instances in the instance set Exact, where a feasible solution
is found by the MM.

Method MM BPH BM OM CM
Mean BOG 23.60 11.77 2.80 1.08 2.59
Standard deviation BOG 39.13 17.24 4.71 2.17 4.37
# Best feasible solutions 17 16 22 36 24
Mean computing time(h) 17.76 4.33 0.35 2.04 0.49
Std. deviation Computing time (h) 1.86 3.98 0.59 1.91 0.76

HEURISTIC-ONLY

Next, the instance set Heuristic-only is evaluated, in order to gain insight in all PH meth-
ods. The summary of these results is shown in Table 4.5.3. Furthermore, Figure 4.5.3
shows the BOGs and computing times per method. It can be seen that all extensions
result in a significant improvement of the basic method in all metrics. When evaluat-
ing the BOG and number of best solutions found, it can be seen that the OM performs
best. However, this method also takes significantly longer than the other improvement
methods, with the BM having the lowest computing time. The CM, which combines the
BM and OM, has its computing times and BOGs between these two methods. A possible
explanation for the higher computing time, compared to the BM, is that the overshoot
limitation dampens the penalty terms in the PH algorithm. This results in slower con-
verging bounds, and thus, in an increased computing time.
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Figure 4.5.2: Results for instance set Exact.

Additionally, Table 4.5.3 shows the number of solutions that were implementable
without the repair step in Algorithm 10. It can be seen that the BPH usually did not
reach implementability within the allowed number of iterations. The relatively large
number of implementable solutions for the BM and the CM indicate that the use of
variable bounding significantly improves the convergence of the PH algorithm. How-
ever, even though the OM required more repairs, it has significantly more best solutions
found. Upon further inspection of the instances where OM reached the best solution
found, 35 of these instances had to be repaired for the OM, while having at least one
other method where reparation was not needed. This indicates that even without reach-
ing implementability directly, it is still possible to reach good solutions. Note that the
number of implementable solutions without repair and number of best solutions found
being equal for OM is thus a coincidence.

Furthermore, we evaluate the use of lag in variable bounding for the BM and the
CM. To indicate the variations including lag of these methods, the suffic ‘L’ is used. Fig-
ure 4.5.4 shows the BOGs and computing times for all methods. It can be seen that in-
troducing lag reduces the mean BOG and increases the computing time. For the BM,
introducing lag results in computing times larger than the OM, while not having bet-
ter BOG-based performance. For the CM, introducing lag results in a lower mean BOG.
Compared to the OM, the CML has lower computing times, but also higher BOGs.

Finally, Figure 4.5.5 shows the number of iterations per method. It can be seen that
the BPH usually does not reach implementability and relies heavily on the repair func-
tion. Furthermore, it can be seen that introducing variable bounding significantly de-
creases the number of iterations, while introducing lag increases this. The relatively large
number of iterations needed for the BML compared to the combined lag method, might
be explained by the fact that the bounded method relies heavily on occasional dips and
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peaks in variables. Introducing lag limits the effect of this. For the combined method,
due to the dampening effect of the overshoot limitation, bounds are formed more grad-
ually and are less affected by the lag.

Table 4.5.3: Summary of results for all 206 instances of instance set Heuristic-only.

Method BPH BM OM CM
BOG mean 14.1 2.5 0.4 1.8
BOG standard deviation 13.4 3.9 0.8 2.9
Mean computing time (h) 9.0 2.7 6.5 3.7
Std. deviation computing time (h) 5.6 2.7 4.6 3.1
# Implementable without repair 30 193 109 194
# Best solution 13 27 109 27

CMBM OMBPH
Method

0

10

20

30

40

BO
G

(a) BOG per method (without outliers).

CMBM OMBPH
Method

0

5

10

15

20

Co
m

pu
tin

g
tim

e
(h

)

(b) Computing times.

Figure 4.5.3: Results for all PH methods for instance set Heuristic-only.

4.6. CONCLUSION
In this chapter, the RCPSP-MP is introduced to model a stochastic modular production
problem. This was done by modifying the RCPSP-PS/CPR by adapting the objective
function, introducing resource inventory level variables for nonrenewable resources,
and by converting to a scenario-tree based formulation. This model then determines
the resource inventory levels, activity scheduling, and activity selection decisions, while
optimizing the mean of the objective functions over all scenarios.

An MILP formulation is given for the deterministic equivalent of the RCPSP-MP. Al-
though this formulation can theoretically be solved to optimality by branch-and-bound
solvers, the RCPSP-MP consists of multiple instances of the RCPSP-PS/CPR, which are
by itself N P-hard. Therefore, as is shown in the computational results, the MILP model
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Figure 4.5.4: Results for PH methods, while including lag on variable bounding, for instance set Heuristic-only.
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Figure 4.5.5: Number of iterations per method for instance set Heuristic-only.

is rarely solved to optimality, even for small instances. Thus, a PH algorithm is intro-
duced that converges on the resource inventory level and activity selection decisions.
After these are converged, the activity scheduling decisions are determined. Further-
more, two extensions are introduced to accelerate convergence: variable bounding and
overshoot limitation.

In the computational results, it is shown that all variations of the PH algorithm out-
perform the MILP-based solution method. However, the basic algorithm relies heavily
on the repair step at the end of the algorithm and does not usually converge without this.
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The improvement techniques significantly improve the convergence rate, while creating
better solutions in less time. In terms of solution quality, overshoot limitation performs
best. Adding variable bounding to this decreases the computing time, but also the so-
lution quality. Introducing lag on variable bounding somewhat improves the solution
quality in cost of computation time, although the solution quality does not improve be-
yond the solutions found by only using overshoot limitation.

The PH algorithm converges on resource inventory level and activity selection deci-
sions, while deciding on the scheduling decisions afterwards. Although this assumption
generally aligns with the practice of modular production, it also means that the compu-
tational results have to be viewed in the context of the generated instances, which have
the assumption that scheduling decisions have less influence on future projects than re-
source inventory level and activity selection problems. One direction of future research
would be to relax this assumption and evaluate the performance.



APPENDIX

4.A. NOTATION
Sets

G Selection groups.
Gω Selection groups in scenario ω ∈Ω.
Gωg Selection groups identical to selection groups g ∈ Gω for scenario ω ∈ Ω in

all other scenarios.
N Activities.
N s Selectable activities.
Nω Activities in multi-project P m

ω of scenario ω ∈Ω.
Nωi Activities identical to activity i ∈ Nω for scenarioω ∈Ω in all other scenarios.
Nψ Activities of project Pψ in scenario tree node ψ ∈Ψ.
P Predecessor-successor pairs.
P j Predecessors of activity j ∈ N in the precedence graph.
R Resources.
Rr Renewable resources.
Rn Nonrenewable resources.
Sg Successor activities of selection group g ∈G .
T Time periods.
Ψ Scenario tree nodes.
Ψω Scenario tree nodes in scenario ω ∈Ω.
Ω Scenarios.
Ωψ Scenarios that contain scenario tree node ψ ∈Ψ.

Variables
Xi t 1 if activity i ∈ N is executed at time t ∈ T , zero otherwise.
Yr Initial resource availability of nonrenewable resource r ∈ Rn .

Other
ag Activating activity of selection group g ∈G .
al t_ob j (· · · ) Altered objective function.
cr Unit cost of initial availability of nonrenewable resource r ∈ Rn .
di Duration of activity i ∈ N .
kr i Net resource production of resource r ∈ R for activity i ∈ N .
k+

r i Production of resource r ∈ R for activity i ∈ N .
k−

r i Consumption of resource r ∈ R for activity i ∈ N .
ob j (xω) Unaltered objective function value of solution xω.
pi t Profit obtained by scheduling activity i ∈ N at time t ∈ T .
pr o f i t (X ) Profit obtained by executing schedule X .
rω Penalty ratio.
sω Starting activity of multi project P m

ω of scenario ω ∈Ω.
SC Differential evolution scaling parameter.

127
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LR Lag parameter for resource inventory level variables.
LS Lag parameter for selection variables.
M Sufficiently large number.
OC Outsourcing cost parameter.
P M Penaly multiplicator.
PT Preparation time parameter.
RC Resource constrainedness.
RF Resource factor.
RU Resource usage parameter.
SP Serial/parallel indicator.
ST Starting time parameter.
TC Sum of all inventory costs of nonrenewable resources for a module option.
T D Target duration.
T DM A Module alternative duration parameter.
T DO A Outsource alternative duration parameter.
T DR A Reconstruct alternative duration parameter.
U (ω,ω′,ψ) Solution indicator vector for scenarios ω,ω′ ∈Ω and scenario tree node ψ ∈Ψ.
V ARO A Outsource alternative variation parameter.
V AROC Outsourcing cost variation parameter.
V ARRC Resource constrainedness variation parameter.
V ARST Starting time variation parameter.
P m
ω Multi-project representing all projects of scenario ω ∈Ω.

Pψ Project arriving at scenario ψ ∈Ψ.
wω Lagrangian multiplier for scenario ω ∈Ω.
xω Compressed solution vector of scenario ω ∈Ω.
xω Average compressed solution vector of scenario ω ∈Ω.
γ HDE population size.
λr Capacity of renewable resource r ∈ Rr .

4.B. INSTANCES
This section describes the instances used in this chapter. First, in Appendix 4.B.1, the
instance generation method is presented. Second, Appendix 4.B.2 describes the instance
sets created by this method.

4.B.1. INSTANCE GENERATION

This subsection presents the instance generation method. Each instance is generated
by creating a scenario tree defined by the Shape vector. This vector defines, for each
level in the scenario tree, the number of child nodes. For example, the instance shown
in Figure 4.3.1 has a shape factor of [2,2], since the root node splits into two child nodes,
which in turn both split into two child nodes as well. After creating the scenario tree,
a project is created for each non-root node. Each of these projects is created by using
a base project and replacing activities by Module Options (MO). The base project is an
RCPSP instance, created by the instance generation algorithm from Demeulemeester
et al. (2003). The algorithm requires the following input parameters: The number of ac-
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tivities |N |, the Serial/Parallel (SP) indicator, the Resource Factor (RF) and the Resource
Constrainedness (RC). The SP indicator is a measure of the shape of the network, where
a value of zero indicates a project consisting of all activities in series and a value of one
indicates a project where all activities can be executed in parallel (disregarding resource
constraints). The RF reflects the average portion of resource types per activity, and the
RC represents the average amount of each resource requested. For the exact formula-
tion of these parameters, we refer to Demeulemeester et al. (2003). The values of these
parameters are selected randomly from the values shown in Table 4.B.1.

Subsequently, N M activities of this base project are replaced by MOs. These activ-
ities are randomly sampled from all activities, except the start and finish activity. The
Direct Construction Alternative (DCA) is created by the instance generation algorithm
from Demeulemeester et al. (2003), with the parameters sampled random from the val-
ues shown in Table 4.B.1. The Module Alternative (MA) and the Reconstruct Alternative
(RA) are created by scaling the durations of the DCA subproject to match a target dura-
tion (TD). For the MA, this target total duration is set to T D ·T DM A , where 0 < T DM A < 1
is an input parameter. Similarly, the target total duration for the RA is T D ·T DR A , where
0 < T DR A < 1 is an input parameter. Furthermore, the Outsource Alternative (OA) con-
sists of a single activity with (rounded) duration chosen uniformly from the interval
T D · (T DO A ±V ARO A). Here T DO A > 0 and V ARO A > 0 are input parameters.

Next, we describe the resource and cost structure of each project. For each module
option, the amount of nonrenewable resource r ∈ Rn used is chosen randomly in the
interval {1, · · · ,RU }, where RU is the resource usage parameter. The profit obtained for
finishing a project at time t , is set equal to −t , meaning that the profit decreases con-
stantly with an increase in makespan. The cost of each unit of nonrenewable resource
r ∈ Rn is chosen uniformly from the interval (1±V ARr c ) ·RC , where V ARRC and RC
are input parameters. Finally, to determine the cost of executing the RA, the sum of
the inventory costs of all nonrenewable resources required for the module option is de-
fined as TC . Then, the cost for executing the RA is taken uniformly from the interval
TC · (OC ±V AROC ), where OC is the outsourcing cost parameter and V AROC its corre-
sponding variance.

After creating a project for each non-root scenario tree node ψ ∈ Ψ, these projects
are combined sequentially to create multi-project P m

ω for each scenario ω ∈Ω, by cre-
ating finish to start precedence relationships between the finish and start nodes of the
respective projects. Then, all multi-projects are combined to create the scenario tree.
The earliest start time of each project, τ, is taken randomly from the interval (ST ±

Table 4.B.1: Parameters options for project sets

Base projects Module projects
SP [0.2, 0.4, 0.6, 0.8]
RC [0.5, 0.7, 0.9]
RF [0.25, 0.5, 0.75]
|Rr | 4
|N | 7-9 12-17
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V ARST ) · cr i t i cal_path, where cr i t i cal _path is the critical path length of all preced-
ing projects. Additionally, ST and V ARST are the starting time and starting time variance
parameters, respectively. Furthermore, preparation time in between projects might be
needed. Therefore, the duration of the starting activity of each project is set to a duration
taken randomly from [0, · · · ,PT ], where PT is the Preparation Time parameter.

4.B.2. INSTANCE SETS
The method described in Appendix 4.B.1 is used to create two instance sets: Exact and
Heuristic-only. The former is used to evaluate the performance of the MILP formulation
given in Constraint set (4.1) and the latter is used to compare the various variants of the
PH algorithm. In Table 4.B.2, the parameters per set are given. We define each possi-
ble combination of parameters, except for the parameters N M , RC , OC and |N |, as an
instance combination. Then, for each instance combination, N M and |N | are selected
randomly (|N | is sampled for each individual base project) and an instance is created
for each combination of RC and OC . This creates multiple instances. For each of these
instances, the HDE algorithm is ran once per scenario, resulting in a resource inventory
level for each scenario. Subsequently, from all instances that are created for one instance
combination, the instance is selected with the highest standard deviation of resource in-
ventory levels across all scenarios. This is done to assure computational challenging in-
stances. If the resource inventory levels are zero for all scenarios, or if the MA is selected
for each MO, the instance is considered not computationally challenging. Therefore, the
instance generation algorithm restarts, and if no computationally challenging instance
is created after 10 restarts, no instance is created. This happened for 7 combinations
for the Exact instance set, resulting in 216−7 = 209 instances (all combinations of pa-
rameters, except N M , |N |, RC , and OC ). For the Heuristic-only set, each combination
resulted in a feasible challenge, presumably due to the larger number of projects in each
instance. Therefore, the Heuristic-only instance set contains 216 instances.
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Table 4.B.2: Parameter options for instance sets

Exact Heuristic-only
T DM A [0.25, 0.5, 0.75]
T DR A [0.25, 0.5, 0.75]
T DO A [1, 1.5, 2]
V ARO A 0.25
RU 5
RC [1,2,3]
V ARRC 0.2
OC [0.25, 0.5, 0.75]
V AROC 0.2
PT [0, 5]
ST 1.25
V ARST 0.25
N M random from [2,3,4]
|Rr | 4
Shape [[2, 1], [2, 2], [3, 1], [3, 2]] [[2, 2, 1], [2, 3, 1], [3, 2, 1], [3, 3]]
|N | random from 7-9 random from 12-17





5
STOCHASTIC MAKESPAN

MINIMIZATION FOR THE RCPSP

In Chapter 4, we considered resource allocation and scheduling with stochastic project
arrivals. However, the focus of the algorithm was on activity selection and resource allo-
cation, not on scheduling. The reason for this was to reduce the number of choices to be
made, and thus to reduce computational effort. Even with this limited focus, computing
times were still in the order of hours or days, thus indicating that scheduling decisions
might have been too much to include as well. However, it is not to say that schedul-
ing decisions are not important while considering future arrival. As multiple sequential
projects require the same resources, choosing another schedule for the same set of ac-
tivities might result in less resource conflicts upon the arrival of the next project. This is
investigated in this chapter.

Due to the computational complexity, the model used is the standard RCPSP instead
of the DRCMPSP/SS. The context of the methods presented in this chapter is therefore
later in the scheduling process as the previous models and methods. The methods of this
chapter are used when all resource allocation and module decisions are made, resulting
in a project with a fixed set of activities that all have to be executed. Thus, the projects
are represented by the standard RCPSP.

As is shown in the remainder of this chapter, even the standard RCPSP, but with
stochastic project arrivals, forms a computationally demanding optimization problem.
Even standard heuristics from literature might take very long to finish. In practice, we
might need a schedule quickly, since waiting for a schedule to be generated will delay
other steps in the planning process. On the other hand, there is a lot of time before
project arrival. Therefore, it would be beneficial if calculations could be shifted in time,
such that most work is done at non-critical moments. This is done in this chapter, by
using machine learning to learn from optimizing simulations. With this, an optimiza-
tion algorithm is created that uses a learned objective function to quantify the quality
of a schedule, based on an estimation of the performance of expected future arrivals.
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This is then compared to the full optimization method, and to the method of scheduling
without looking ahead.

5.1. INTRODUCTION
Modular production is used in various industries to combine the benefits of product
standardization with the ability to meet customer specific demands. This is usually done
by defining a base product and optional modules, which can be selected to configure the
product. In modular production for large construction products, such as shipbuilding
(Agarwala, 2015), aircraft manufacturing (Buergin et al., 2018), or housing construction
(Neelamkavil, 2009), this results in sequentially arriving similar projects. These projects
have to be scheduled, while satisfying resource and time constraints. A common method
of scheduling is using the Resource Constrained Project Scheduling Problem (RCPSP).
This problem consists of a set of activities that have to be scheduled, subject to resource
and precedence constraints. The goal is to minimize the makespan: the total project
duration.

At the moment of scheduling a project, there might be some indication about the
arrival time of the next project. Furthermore, since large construction projects require
communication and resource reservation across multiple stakeholders, modification of
earlier made schedules can be undesired or even impossible. Therefore, it is desired
to completely schedule a project, without postponed decisions or modifications made
later. Since all projects use a set of shared resources, each schedule influences future
scheduling capabilities.

To model these properties of project scheduling for modular production, the Dy-
namic Resource Constrained Multi-Project Scheduling Problem with Static project Sched-
ules (DRCMPSP/SS) is introduced in this chapter. This problem consists of a set of stages
in which problems arrive sequentially. At each moment of project arrival, we assume to
have an estimate of the arrival time of the next project. Each project is created by a gener-
ator, which draws projects from a certain distribution. As soon as a new project arrives,
it has to be scheduled completely, without the possibility to reschedule. Although this
is a simplification of reality, it serves to find solutions that deal with uncertain future
projects. Furthermore, the goal of the DRCMPSP/SS goal is to minimize the weighted
average makespans of all projects.

As is discussed in Section 5.2, there are various studies on the dynamic arrival of new
projects for the RCPSP. However, to the best of our knowledge, these papers do either
not consider completely scheduling a project at each decision point, or have a purely
reactive approach, meaning that a decision maker only reacts and does not look ahead.
One possible reason for this might be that proactive scheduling of complete projects
results in a computationally very expensive problem, which can take very long to solve
for more traditional optimization methods.

The contribution of this chapter is threefold. First, we introduce the DRCMPSP/SS.
Secondly, we introduce a new solution representation that supports time gaps and present
a simulation based heuristic optimization algorithm. Finally, we propose a heuristic
method based on objective function estimation by a neural network that is trained with
data from the former method. These methods are compared against a greedy alternative:
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scheduling each project as well as possible without looking ahead.

In Section 5.2, we first give an overview of research related to the DRCMPSP/SS. Sub-
sequently, we give a description of the problem in Section 5.3. Then, in Section 5.4, the
solution methods are given. Finally, we present the results of the computational study in
Section 5.5 and conclude the chapter in Section 5.6.

5.2. LITERATURE REVIEW
The RCPSP was introduced by Pritsker et al. (1969) and proven to be N P-hard by Blazewicz
et al. (1983). It has been one of the most studied scheduling problems, which has re-
sulted in many solution methods and variations. In this section, we first give a general
introduction of the RCPSP under uncertainty, before presenting related research on the
RCPSP with new project arrivals. Furthermore, since the methods in these papers do
not seem suitable for the DRCMPSP/SS, we present research on estimating the objective
function within heuristic algorithms.

Numerous researchers have studied versions of the RCPSP under uncertainty. Her-
roelen and Leus (2005) give an overview of different variants of the RCPSP without the
assumption of complete information. They differentiate methods on how they react to
disruptions or uncertainty. The first type is called predictive-reactive scheduling. Here,
a baseline (or predictive) schedule is created before execution, and this schedule is re-
paired or modified as soon as uncertainties arise. The second type is dynamic schedul-
ing, where no baseline schedule is present, but where a scheduling policy is decided
upon that handles random events.

As there are many different types of uncertainties for the RCPSP, we focus especially
on the Resource Constrained Multi-Project Scheduling Problem (RCMPSP) with arriving
projects. In this setting, baseline scheduling is usually done with the assumption that
there is a penalty for modifying earlier defined schedules. This is done by Pamay et al.
(2014), who present an RCMPSP problem with new project arrivals and weighted earli-
ness and tardiness costs. At each project arrival time, a local search heuristic is used that
minimizes the makespan of the new project plus the earliness and tardiness penalties for
deviations of previously scheduled projects. A similar problem is investigated by Capa
and Ulusoy (2015). They consider a problem that includes preemption, stochastic dura-
tions and new project arrivals, and use a genetic algorithm to minimize the makespan
and the total sum of absolute deviations.

For the DRCMPSP/SS, modifications of earlier schedules is not allowed as is done in
the work discussed above. Therefore, research on dynamic scheduling policies is pre-
sented here. Problems of this kind are usually modeled with Markov Decision Processes
(MDP).

Choi et al. (2007) study an RCMPSP with uncertainty in duration, costs and task out-
come and with new project arrivals, with the goal of cost minization. They model this
as an MDP where the possible actions at each timestep are whether to perform, not per-
form or cancel each task. They heuristically create state-action pairs by simulation and
use Q-learning to find solutions to this problem. They present solutions for instances
with up to 5 different project types. Another variant is given by Salemi Parizi et al. (2017).
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They consider a RCPSP with new project arrivals, where new projects are rejected if there
are too many incomplete projects in the queue. At each time, the policy determines
which tasks to start in order to minimize the infinite-horizon discounted expected profit.
This is solved with a simulation-based approximate policy iteration method and compu-
tational results are given for instances with up to 15 different project types. Satic et al.
(2020) solve a stochastic RCMPSP with new project arrivals with cost minimization based
on early/late finish penalties. They provide exact solutions based on an MDP and dy-
namic programming, and compare this to a priority rule based reactive algorithm and a
genetic algorithm. This is done for fairly small instances, with the largest containing 4
project types with all 2 tasks per project.

All these MDP-based approaches have certain characteristics in common. First of all,
they handle instances with relatively few types of projects and relatively small projects.
Secondly, they give policies to decide between projects at various given time steps, in-
stead of making all decisions at the start of a project. Therefore, we broaden our view.

The field of simulation optimization has both the characteristics of handling very
hard to compute objective functions by simulating stochastic processes and making
multiple decisions at one decision stage. More precisely, it deals with optimization prob-
lems where the objective function and/or constraints can be evaluated through a stochas-
tic simulation. As these characteristics are closer to the DRCMPSP/SS than MDP based
approaches, we further explore this method. For more details on simulation optimiza-
tion, we refer to various surveys (Homem-de Mello and Bayraksan, 2014; Amaran et al.,
2016; Juan et al., 2015).

When considering simulation optimization, the main difficulty for the DRCMPSP/SS
is that each simulation contains the scheduling process of newly arriving projects, and
therefore, will be computationally very expensive. A method for dealing with compu-
tationally expensive objective functions is estimation with machine learning, which has
been studied for various problems. One of these is a machine scheduling problem stud-
ied by Hao et al. (2016). They solve a problem consisting of machine assignment and
sequencing decisions, where they use a so called extreme learning machine to estimate
the value of a specific machine assignment. This is subsequently used by a differen-
tial evolution algorithm. Park and Kim (2017) present a general optimization algorithm
where a particle swarm optimization algorithm uses a neural network to estimate the
fitness function for each particle, based on the fitness of the parent. This is used to select
promising solutions for full fitness function computation. This algorithm is used to op-
timize 10 benchmark functions. Another approach using objective function estimation
can be seen in Zheng et al. (2020). Here, an assembly job shop problem is studied with
optimization on makespan and expected deviation. The expected deviation is estimated
by a radial basis function network that uses data from previously ran Monte Carlo simu-
lations. This estimator is then used within a tabu search heuristic to find good solutions
to the problem.

In conclusion, there has been quite some research on the RCMPSP with new project
arrivals, but these approaches seem unsuitable for the DRCMPSP/SS. Therefore, we have
expanded our search to simulation optimization and objective function estimation to
find different building blocks in order to handle the DRCMPSP/SS.
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5.3. PROBLEM DESCRIPTION
In this section, we give a problem description of the DRCMPSP/SS. We start by describ-
ing the environment of the arriving projects and the scheduler. Subsequently, we present
the structure of a single project and, finally, we explain the full optimization problem,
consisting of multiple projects.

The DRCMPSP/SS environment consists of a project generator and a project sched-
uler, which operate sequentially. In the first iteration, the project generator outputs a
project P 1 and an earliest arrival time for the next project: τ2

mi n . After this, project P 1

has to be scheduled. In each subsequent iteration k > 1, it outputs a project P k , earliest
next arrival time τk+1

mi n , and current arrival time τk = τ′k +τk
mi n , where τ′k ≥ 0 is the de-

viation from the estimate τk
mi n . Therefore, the time is incremented until τk , the arrival

time of project P k , and project P k is scheduled. This is repeated |K | times, where K is
the set of stages: K = {1, · · · , |K |}. The process is illustrated in Figure 5.3.1. At each stage

Project
scheduler Schedule

Project
generator

Increase time to τk (P k ,τk ,τk+1
mi n )

Figure 5.3.1: Scheduling environment with the project scheduler and the project generator.

k ∈ K , we let Ξk be the random variable representing the generated project. Thus, each
realization ξk of Ξk is a 3-tuple (P k ,τk ,τk+1

mi n). The shared project environment consists
of a set of resources R that have to be shared across all projects. The resource availability
λr defines the total capacity of resource r ∈ R. Furthermore, we define a set of feasible
timesteps T in which the projects can be scheduled.

At decision step k, we obtain a single project P k = (N k ,P k ,dk ,bk ). For brevity, we
omit the superscript k as long as it is clear from context or irrelevant. The project P

consists of a set of activities N , of which the first one is the starting activity and the last
one is the ending activity. All activities N have to be scheduled, while subjected to the
precedence relationships P . A precedence relationship (i , j ) ∈ P imposes that activity
i ∈ N has to finish before activity j ∈ N can start. Furthermore, the vector d, consisting
of entries di for i ∈ N , defines the duration of each activity i . Finally, the |R|×|N |-matrix
b, with entries br i for r ∈ R and i ∈ N , defines the resource requirement for each resource
r and activity i .

For notational purposes, we introduce the notation x[i ] = {x1, · · · , xi } for any indexed
variable x. Furthermore, each project P k can only be scheduled after the arrival time
τk . Therefore, we define the set T k = {τk , · · · , |T |} as the set of timesteps considered for
project P k . With this, we denote a schedule for project P k by binary matrix X k , with
X k

i t = 1 if activity i ∈ N k starts at time t ∈ T k and 0 otherwise. Since the projects use

the same shared resources, the feasible region of all schedules for project P k depends
on the schedules of all previous projects. Therefore, we notate the feasible region of all
schedules for project P k as X k (X [k −1]) and define this as follows:
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X k (X [k −1]) = {X k ∈ [0,1]|N
k |×|T k |,∑

t∈T k

t X k
i t +di ≤

∑
t∈T k

t X k
j t , ∀(i , j ) ∈ P k

∑
t∈T k

X k
i t = 1, ∀i ∈ N k

k∑
k ′=1

∑
i∈N k′

bk ′
r i

t∑
t ′=t−d k′

i ,t ′∈T k′
X k ′

i t ′ ≤λr , ∀r ∈ R, t ∈ T k }.

(5.1)

Since this is a basic formulation of the RCPSP, we refer to Pritsker et al. (1969) for an ex-
planation and only focus on the final constraint, where X k ′

i t with k ′ < k is input given by
X [k − 1]. This constraint imposes that the resource capacities are not exceeded. The
modification made here, with respect to the standard RCPSP, is that we consider re-
sources from all projects up to P k .

In the standard RCPSP, the objective is to minimize the makespan of the project.
However, in the DRCMPSP/SS, we are interested in minimizing the combined makespan
of all projects instead. Simply taking the average makespan would unfairly focus more
on larger projects. Therefore, based on the research of Chen et al. (2019), we minimize
the average makespan divided by the critical path length per project. The critical path
length cp(P ) is the duration of the project, while relaxing the resource constraints (Ar-
tigues et al., 2008). This can be calculated quickly and can be used as a measure for the
size of the project. Thus, the goal is to minimize the expected sum of the makespan over
the critical path for each project. We define this iteratively, by introducing the cost-to-go
function ct g k :

ct g k
(

X [k −1],Ξk
)
=

min
X∈X k (X [k−1])

∑
t∈T k (t −τk )X k

|N k |t
cp(P k )

+E
[

ct g k+1(X [k],Ξk+1)
]

, ∀k ∈ K .
(5.2)

The first part of this function is the objective function per project and the second part
is the expectation of all future projects. Thus, the value of the objective function is
the average value of all weighted makespans. By defining this as iterative minimiza-
tion functions, the minimization at each decision stage finds the minimal value, given
that the future decisions also minimize the cost-to-go. Therefore, optimizing Equa-
tion (5.2) for k = 1 captures all decision stages due to the iterative formulation. If we
define ct g = ct g 1, the optimization problem can be expressed as:

ct g = ct g 1 (;,Ξ1)= min
X∈X 1

∑
t∈T 1 (t −τ1)X 1

|N 1|t
cp(P 1)

+E[
ct g 2(X [1],Ξ2)

]
. (5.3)

Furthermore, all notation used throughout this chapter is presented in Appendix 5.A.
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5.4. SOLUTION METHODS

In the previous section, the DRCMPSP/SS is described. An instance of the DRCMPSP/SS
consists of a set of shared resources and a project generator that generates projects and
corresponding arrival times. This section presents three solution methods that schedule
these arriving projects.

The first method is the Greedy Method (GM). This method schedules each project by
scheduling it as well as possible, without looking ahead. This is a fast and simple method
that serves as a baseline to compare against the other algorithms. The second method is
the Full Method (FM). Here, each objective function evaluation contains a simulation of
projects arriving in the future. Thus, this method looks ahead and finds schedules that
account for future arriving projects. The final method is the Trained Method (TM). This
method uses data from earlier or simulated runs from the FM and trains a neural net-
work based estimator. This estimator replaces the simulations in the objective function
evaluation of the FM. Therefore, the TM takes much less computing time than the FM.

In the remainder of this section, the three methods are described.

5.4.1. GREEDY METHOD

One of the most common methods of scheduling multiple arriving projects in practice,
is simply by not looking ahead and scheduling each project as well as possible at the
time of arrival. We call this method the Greedy Method (GM) and use it as a bench-
mark algorithm. This allows us to answer the question: Can we improve scheduling for
the DRCMPSP/SS by learning from data? Based on successful implementations for the
RCPSP (Quoc et al., 2020; Sallam et al., 2020; Zaman et al., 2021), we use a Differential
Evolution (DE) algorithm to optimize each schedule. Since the focus of this chapter is
on the learning-from-data aspect, we only give a brief description of the algorithm and
refer to Storn and Price (1995) for a more elaborate description. Furthermore, since the
DE algorithm is used throughout this chapter with varying details, we use a general no-
tation.

The solutions in the algorithm are stored in solution matrixX that consists of γ so-
lution vectors of length sol_len. In the GM, sol_len is equal to the number of activities.
Furthermore, x∗ keeps track of the best solution so far. During the iterative improve-
ment step, three solution vectors a1,a2 and a3 are taken and used to create a trial solu-
tion ρ = [ρ1, · · · ,ρsol_len]. This is done by using algorithm parameters w and c. Subse-
quently, the trial solution vectors are converted to schedules by a serial Schedule Gener-
ation Scheme (SGS), as described in Artigues et al. (2008). If this trial schedule is better
than or equal to the currently considered solution, it replaces this one. Similarly, if it
is better than the best solution found so far, it replaces this one too. This gives the full
solution algorithm, as shown in Algorithm 11.

The initialization is done by creating a matrix with uniformly distributed random
values between 0 and 1. Finally, the algorithm is terminated as soon as in the last 25
iterations no new improved solution has been found. This value is set manually, as it
was found to give reasonable computing times.
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Algorithm 11 Differential evolution

1: X← Initialization matrix of size γ× sol_len
2: x∗ ← argminx∈X(objective x)
3: while not terminated do
4: for x ∈X do
5: a1,a2,a3 ← Pick randomly without replacement fromX\ {x}
6: a ← a1 +w(a2 −a3)
7: f = random from {1, · · · , N }

8: ρi ←
{

ai with probability c or if i = f

xi otherwise
9: if objective ρ ≤ objective x then

10: Replace x ∈X by ρ
11: if objective ρ < objective x∗ then
12: x∗ ← ρ

13: end if
14: end if
15: end for
16: end while
17: return x∗

5.4.2. FULL METHOD
This subsection presents the Full Method (FM), which is the most computationally ex-
pensive method presented in this chapter. The FM also uses a DE algorithm to find so-
lutions. However, instead of computing only the objective of the current project, it also
contains a simulated objective of future projects.

The problem presented in Section 5.3 is a multi-stage stochastic problem, where
each stage contains an N P-hard problem and the expectation of multiple future N P-
hard problems. However, computing the expectation over multiple stages would be too
challenging computationally. Therefore, the FM uses a rolling horizon approach: At each
decision step, we only consider the current project and one or more simulations for the
next project.

In the remainder of this subsection, first the solution representation used in the FM
is presented. Subsequently, the FM itself is given.

SOLUTION REPRESENTATION

In Solution set (5.1), an exact solution representation is given by using X k
i t for project

P k , with X k
i t = 1 if activity i starts at time t and zero otherwise. This representation,

however, is unpractical for use in meta-heuristics. Therefore, most heuristic approaches
use either an activity list or a priority list in combination with a serial SGS (as in Sec-
tion 5.4.1) or a parallel SGS (Pellerin et al., 2019). The main idea of these methods is to
sequentially schedule each activity at the earliest time available. However, when future
arrivals are considered, it is possible that the best schedule contains activities that are
scheduled later than their earliest time available. This can be done to allow availability
of resources for later arrivals. For this reason, we introduce a new schedule representa-
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tion by defining each schedule x as a vector of length 2|N |, where |N | is the number of
activities to be scheduled. Then, the first |N | entries form a priority vector, as described
in Quoc et al. (2020). The remaining entries form the gap vector. This vector defines
the gap for each activity. When scheduling an activity according to the serial SGS, this
gap value is rounded and added to the starting time. This allows the schedules to have
spread out activities in order to decrease the resource usage at certain times.

FULL METHOD ALGORITHM

With the solution representation introduced above, we now present the FM. Along with
this method, we explain how the data of the search process is stored. Although storing
data is not necessary for the FM, it is required for the TM, as is explained later.

The FM is based on Sample Average Approximation (Kleywegt et al., 2002). A stan-
dard way of finding solutions for stochastic problems is by generating multiple scenar-
ios and creating a deterministic equivalent. However, using a fixed set of scenarios risks
finding solutions that perform well only on these specific scenarios (Homem-De-Mello,
2003). Therefore, we vary the scenarios during the execution of our data generation al-
gorithm, as seen in Homem-De-Mello (2003). This allows us to consider a large set of
scenarios, without having to optimize for all of these scenarios simultaneously.

Secondly, since one of the goals of the FM is to generate data for the TM, we are also
interested in the quality of schedules found during the search process, instead of only
being interested in the final schedule. Therefore, instead of generating a deterministic
equivalent, the FM uses an iterated optimization approach where each objective estima-
tion consists of optimizing multiple future candidate projects.

The FM optimizes a schedule and stores data that can later be used to train the TM.
The goal is to create an algorithm that minimizes the complete objective: the value of
Equation (5.3). To achieve this, we require some objective terminology. The current ob-
jective refers to the scaled makespan of a schedule for the current project; the project
that we are scheduling in the FM. Looking one step into the future, one can create a set
of scenarios for the next project. We call the set of scaled makespans for these scenarios
the scenario objectives. Combining the current objective and the scenario objectives re-
sults in a measure for how good the current schedule is while taking into account future
arrivals. This is called the combined objective.

The FM can be based on any search-based heuristic that explores many different
schedules. The main modifications that have to be made, are the computation of the
objective function and the storage of data. For this, we introduce the concept of resource
profiles. A resource profile Y is a matrix, where each entry Yr t represents the total usage
of resource r ∈ R at time t ∈ T . We define the resource profile function RP (X [k], t ), which
gives the resource profile of all solutions X [k], starting at time t ∈ T .

Furthermore, the function scenar i o_ob j ect i ves(X k , X [k − 1],ξ[k],Pk+1) is intro-
duced as given in Algorithm 12, where Pk+1 = {Pk+1

1 , · · · ,Pk+1
|Pk+1|} is a set of candidate

projects for decision step k + 1; realizations of Ξk+1. The scenario_objectives function
returns a list of objectives to evaluate solution X k against projects Pk+1. It does this by
using a heuristic to schedule each project P ∈Pk+1 as well as possible without looking
ahead, given previous solutions X [k −1]. In our implementation, we use Algorithm 11
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for this. Finally, we scale each objective value with the inverse of the critical path length
of project P ∈Pk+1.

Algorithm 12 Calculating a list of objectives for solution X k with previous solutions
X [k −1], realization ξ[k] and project scenariosPk+1.

1: v ← Vector of size |Pk+1|
2: for i ∈ [1, · · · , |Pk+1|] do
3: X ′ ← Find a schedule forPk+1

i given X [k],ξ[k]

4: vi ← (makespan of X ′)/cp(Pk+1
i )

5: end for
6: return v

With this, we present the algorithm of the FM. This algorithm takes a set of k projects
P [k], k arrival times τ[k], all previous solutions X [k−1] and the project generation pro-
cess Ξk+1, and returns a solution for the k th project P k . The algorithm initializes by
creating a population of γ agents with solutionsX1 for project P k . Here,X1 is a matrix
of dimension γ× 2|N |, where each row represents a solution. In our implementation,
we run Algorithm 11 on project P k without considering future projects and storing the
best γ unique solutions. Furthermore, it sets the variable ζ that represents the current
number of scenario evaluations (realizations ofΞk+1) to 2. Besides this, the initialization
process sets the iteration threshold counter variable θ to 0 and creates placeholders for
the best solution indexes q, scenario objective values V and combined objective values
W . Both V and W are indexed by agent i and population index j , where population
index j defines whether a property belongs to the old population ( j = 1) or the new pop-
ulation ( j = 2). Finally, it initializes empty set D where the resource usage and objective
data will be stored and sets iteration counter m to zero.

The algorithm then performs iterative improvement steps until a termination cri-
terion holds. In this iterative improvement step, a new set of schedules X2 is created.
In our implementation, this is done by the DE modification step, as described in Algo-
rithm 11. Secondly, we create ζ new projects by realizing Ξk+1 and denote this set of
projects by P= {P1, · · · ,Pζ}. Then, for each agent i in the population, we evaluate both
X1 and X2. For each agent i and population index j , the scenario objective values are
stored under Vi j . Then, the combined objective Wi j is defined as the sum of the aver-

age of the scenario objectives Vi j (the average over all ζ entries in Vi j ) and the objective
value of the current project. Furthermore, the algorithm adds a tuple of the resource
profile and the scenario objectives under Dm .

Then, we store the population index (1 for old population, 2 for new population) of
the best solution under j∗ and the agent index under q2. If the population index is 2
(and thus the best solution is part of the new population) and we are not in the first
iteration, we perform a paired t-test between Vq11 and Vq22. This idea was adopted from
Homem-De-Mello (2003). If the p-value of the test is smaller than the p-value threshold
parameter µ, it cannot be concluded that Vq11 and Vq22 are statistically different and
ζ is increased by 1. Subsequently, at the end of each iteration, the average objective
value of the whole new population W2 is compared to the average objective of the best
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population. Finally, both counters θ and m are incremented by one and q and X are
updated, before starting a new iteration. If the average objective value has not reached
a new minimum in the last ω iterations, which is an input parameter, the solution data
D is saved and the best found solution is returned. A short overview of this algorithm is
given in Algorithm 13 and the full algorithm is presented in Appendix 5.B.

Algorithm 13 Full method

1: Initialize population of γ solutions
2: ζ← 2 .Number of scenarios
3: while Not terminated do
4: P← Scenario projects
5: for i ∈ [1, · · · ,γ] do
6: Create new solution.
7: Compute ζ scenario objectives of old and new solution.
8: Store scenario objectives and resource profiles of both solutions to D.
9: Calculate combined objective of both solutions.

10: If combined objective is improved, replace old solution by new solution.
11: end for
12: if best combined objective belongs to a new solution then
13: p ←paired t-test between scenario objectives of old and new solution.
14: if p <µ then
15: ζ← ζ+1 . Increase number of scenarios
16: end if
17: end if
18: Compute average of combined objectives of new solutions.
19: if did not find new lowest average in last ω iterations then
20: Terminate while loop.
21: end if
22: end while
23: Save data D.
24: Return best solution

5.4.3. TRAINED METHOD
The FM can be used to find schedules for arriving projects. However, this requires a lot
of time, usually multiple days per project. Therefore, we use the stored data D to create
an objective estimator. This objective estimator replaces the simulation step in the FM
and thus reduces computing time significantly.

The workflow of the TM is visualized in Figure 5.4.1. This consists of three stages.
First, the data generation process generates all data required for training the estimator.
This is done by using the project generatorΞ to create multiple simulations, where each
simulation consists of K projects. Then, the FM method is executed on each of these
projects, while taking the resource usage of the solutions of all previous projects into ac-
count. During this process, the resource profiles and corresponding scenario objectives
are saved to D. Next, the training process starts. This process uses stored data D to
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train an objective estimator. Finally, the real project arrives and the scheduling process
starts. This process uses the objective estimator within the DE algorithm to schedule any
incoming projects.

Create simulation

Optimize simulation

Store data

Repeat

multiple

times

Process data Train estimator

Real project arrives

Optimize with estimator

Data generation process Training process Scheduling process

Figure 5.4.1: Workflow of optimization approach.

Since the data generation process consists of using the FM on simulated data, the
description can be found in Section 5.4.2. Therefore, the remainder of this subsection
explains the training and scheduling processes. The training process is split up into data
processing and estimator training.

DATA PROCESSING

The goal of the objective estimator is to evaluate a schedule on the estimated scheduling
performance for future projects. This is done by taking the resource profile of a solu-
tion as input and returning a scalar value, called the profile score. However, the data D

obtained by the FM consists of a set of resource profiles, each with a corresponding set
of scenario objectives. In this subsection, it is explained how to convert these scenario
objectives to a single scalar value per resource profile, on which the estimator can be
trained.

Before presenting the data processing method, three observations are made. The
first one is that, since the goal of the estimator is to compare solutions, it is not required
that the value given by the objective estimator resembles the combined objective. In-
stead, for an ideal objective estimator f (x), it only is required that f (X ) < f (X ′) when
E

(
combined objective of X

)<E(
combined objective of X ′) for any two solutions X and

X ′. Secondly, a possible method to create the estimator is to train it directly on combi-
nations of resource profiles and the average scenario objectives in D. However, this does
not give a reliable estimate, since the objective values in D are obtained over different
scenarios. Finally, since the number of scenarios varies in Algorithm 13, we note that the
number of objective values in D also varies per iteration. It follows that solutions with
more objective values provide more certainty about the expected combined objective
value.

To obtain the scalar values for each resource profile, called the profile scores, the
profile network is introduced. This is a network that contains a node for each resource
profile and an edge based on comparisons between these profiles. Each directed edge
from resource profile Yi to resource profile Y j has a weight, representing the probabil-
ity that resource profile Y j has better scenario objective values than resource profile Yi .
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Then, resource profiles with good scenario objectives can be found by performing ran-
dom walks in this network, as is explained later.

To create the profile network, we let Y = {Y1, · · · ,Y|Y |} contain all unique resource
profiles in D. The objective values are stored in U , where Uni is the vector of scenario
objectives for resource profile Yi in iteration n of the while loop in Algorithm 13. Fur-
thermore, we let Ci j be the set of all iterations in D that contain both resource profile
Yi ∈ Y and Y j ∈ Y . With this, we define vector ∆i j containing the difference of all sce-
nario objectives for iterations with both resource profile Yi and Y j :

∆i j =
⋃

n∈Ci j

(
Uni −Un j

)
, (5.4)

where we use the ∪-operator to concatenate vectors. With this, we require a measure for
the confidence that profile Yi should be chosen over profile Y j and define this measure
as Qi j , with a low value for Qi j indicating that profile Yi should be chosen over Y j . For
this measure, we use the t-distribution. Usually, this distribution is used for normally
distributed data. However, even though ∆i j might not be normally distributed, we only
require a confidence measure and not an exact probability. Using a t-distribution has
the following beneficial properties:

1. More samples result in a higher confidence.

2. No samples or no difference between samples result in Qi j =Q j i .

3. The values are symmetrical; Qi j = 1−Q j i .

Therefore, we define the confidence value Qi j as follows:

Qi j = F

(
∆i j

√|∆i j |
std

(
∆i j

) , |∆i j |−1

)
, (5.5)

with std() being the sample standard deviation with Bessels correction and F (x,n) the
cumulative distribution function of the t-distribution with n degrees of freedom. Next,
we apply a method similar to Negahban et al. (2012) to convert these values to a network
usable for random walks. First, let C I

i j be the indicator value, equal to 1 if there is at least

one iteration where both resource profile Yi ∈ Y and Y j ∈ Y are found (|Ci j | > 0) and
zero otherwise. We only create an edge between profile Yi and Y j , if there is at least one
comparison in the same iteration (C I

i j = 1). We define δi as the number of outgoing arcs

from profile Yi :

δi =
|Y |∑

j=1,i 6= j
C I

i j . (5.6)

Now, we define for each pair of profiles Yi ,Y j ∈Y the value Ai j that represents the prob-
ability of moving to profile Y j ∈Y , while located in profile Yi ∈Y , in the random walk:

Ai j =


1
δi

Qi j if i 6= j and C I
i j = 1

1− 1
δi

∑
k 6=i Qi kC I

i k if i = j ,

0 otherwise.

(5.7)
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Thus, we obtain a profile network G = (Y ,E), where each unique resource profile
Yi ∈Y is a node, and with an edge (i , j ) ∈ E if resource profiles Yi and Y j have been com-
pared at least once in the same iteration of Algorithm 13. Each edge (i , j ) ∈ E has a value
of Ai j . Then, we can calculate the stationary distribution of a random walk by initializing
the profile score row vector s = {s1, . . . ,s|Y |} to 1 and repeatedly matrix-multiplying s by
A until the change in s is below a certain treshold η. This is shown in Algorithm 14. After
convergence, a large entry si in score vector s indicates a high quality resource profile
Yi ∈Y .

Algorithm 14 Random walk to generate profile scores s

1: s ← 1
2: di f f ←∞
3: while di f f > η do
4: s′ ← s · A
5: di f f ←|s−s′|
6: s ← s′
7: end while

A requirement for obtaining useful scores, is that G is connected. This is always the
case if D only contains data from a single run of Algorithm 13, since for each generation
a comparison is added containing both the old and new population. However, since D

can contain data from multiple runs, it is possible that G is not connected. In this case,
each score si for Yi ∈ Y only represents a score relative to nodes within the connected
component of Yi . Therefore, we use Algorithm 14 to obtain score vector s. With this, we
select the set of resource profiles with the highest score within its respective connected
component. For each of these resource profiles, we perform a new objective evaluation
to obtain a new edge with corresponding value. This is done by creating a set of new
scenarios and calculating the scenario objectives, given each respective resource profile.
Although Algorithm 12 requires the full previous solutions as input to calculate the sce-
nario objectives, only the resource profiles of these solutions are used. Therefore, the
scenario objectives can also be created from only the resource profiles. The number of
scenarios is equal to the maximum number of scenarios evaluated in one generation,
of all runs of Algorithm 13 in the data generation process (i.e.: largest ζ encountered
in all runs of Algorithm 13). These new edges result in a connected graph G , on which
Algorithm 14 is executed to obtain scores s. This is summarized below:

1. Generate data D using Algorithm 13.

2. Create profile network G and compute profile scores s.

3. If G is connected, terminate. Otherwise, go to the next step.

4. Get connected components and create set Y max consisting of the resource profile
with the highest score in each connected component.

5. Create objective evaluation for profiles Y max and add this data to D.
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6. Repeat step 2 and terminate.

This generates a profile score for each unique resource profile. These scores are used to
train the objective estimator, as discussed in the next section.

ESTIMATOR TRAINING

The profile score vector s from the previous section forms a measure to compare the re-
source profiles Y , encountered in the data generation process. However, in the schedul-
ing process, we require a method to compare any resource profile to other resource pro-
files. Therefore, we use the resource profiles Y and profile score vector s to train an
objective estimator, which in turn can create an estimate of the score of any resource
profile. This objective estimator is a function that takes a resource profile Y as input and
outputs a scalar estimation of the quality, i.e., a profile score. This estimator is trained
during the training process and, subsequently, used within the optimization algorithm
during the scheduling process. The core of this estimator consists of a neural network
that is trained several times.

This used neural network is a dense feed-forward network, which has as input a re-
source profile, consisting of a set of sequences, where a sequence denotes the resource
usage for a single resource. The length of each sequence is the makespan of the project,
minus the earliest arrival time of the next project. Then, the output of the neural net-
work is a scalar: the estimation of the profile score. In order to make estimations for se-
quences, one might think of different neural network structures, such as recurrent neu-
ral networks or transformers (Lim and Zohren, 2021). However, even though the input
sequence in theory can be of infinite length, very long sequences correlate to sched-
ules with a very high makespan, and thus of low-quality. This permits us to cut off
sequences after a certain length, presuming that this length is sufficiently large. Fur-
thermore, the absolute location in the sequence is important, a property that suits a
feed-forward network instead of a recurrent network. Nevertheless, preliminary tests
were performed with recurrent neural networks, long short-term memory networks and
transformer based networks, but the best performance was found with the simple feed-
forward network.

We now describe the neural network architecture. The input layer has a size of l |R|,
where l is the maximal considered sequence length and |R| the number of resources. l
is set to be the length of the longest profile, encountered in the data generation process.
Then, the shape consists of nnh hidden layers, each with nnw nodes. After the final layer,
there is one output node. This rectangular shape was chosen for tuning efficiency, since
it can be described by only 2 variables. When the input, encountered in the scheduling
process, is longer than l , the final part is truncated.

Furthermore, we use an ADAM optimization process (Kingma and Ba, 2015) with a
weight decay of pw and a learning rate of p l . The parameter values were tuned with the
hyperparameter optimization method from Bergstra et al. (2013).

TRAINED METHOD ALGORITHM

In the previous section, it is explained how to process the data D to obtain profile scores
and how to train a neural network on these profile scores. In the remainder of this sec-
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tion, it is described how to create the objective estimator and how it is used within an
optimization algorithm.

Using a neural network as an objective estimator has the following major problem:
In a neural network, there are some areas of the input space bound to have lower accu-
racy, and thus, some profiles are estimated to be high quality while they are not. When
an optimization algorithm uses the neural network as an objective function, it actively
searches for these low-accuracy areas, since they often hold good objective values due to
the variation. To remedy this, a technique encountered in reinforcement learning re-
search is used (Levine et al., 2020). Here, we train a neural network several times with
different seeds. Then, instead of using one estimated value, the objective consists of
the mean value of all predictions plus a penalty term based on the variance of the es-
timations. The idea behind this is that if the variance is high, the area can be seen as
low-accuracy. By adding a penalty based on this, the search is guided away from these
low-accuracy areas.

Let M = {M1, · · · ,M|M |} be the set of trained neural network estimators, where each
Mi ∈ M is a function taking a resource profile Y ∈ Y as input and outputting a scalar
value. Then, calling M (Y ) returns the set of values for each neural network function
Mi ∈ M . Furthermore, let ob j est (X ,τk+1

mi n) be the estimated objective value of solution

X with next earliest arrival time τk+1
mi n and let pm > 0 and p s > 0 be scaling parameters.

Then, we define the estimated objective ob j est as:

ob j est (X ,τk+1
mi n) = cur r ent_ob j ect i ve(X )−pmM

(
RP

(
X ,τk+1

mi n

))
+p s std

(
M

(
RP

(
X ,τk+1

mi n

)))
.

(5.8)

This objective function thus evaluates a potential schedule X based on three parts. The
first parts consists of its current objective. The second part consists of an average of all
quality predictions multiplied by scaling paramater pm . Since we are minimizing the
objective, this term is subtracted. Finally, a penalty term consisting of scaling paramater
p s and the standard deviation of all quality predictions is added, in order to penalize
low-accuracy estimations. Thus, ob j est (X ) gives an estimate of the combined objective.
The calculation exists of using an SGS to calculate the resource profile given solution X ,
and then using the trained neural networks on this profile. This objective function is
then used within Algorithm 11 to create the TM.

5.5. COMPUTATIONAL STUDY
In this section, the methods are evaluated and the computational results are presented.
First, the instances are described. After this, the tests setup is described, including data
processing and parameter tuning. With this, we present the actual tests results.

5.5.1. PROBLEM INSTANCES
The presented methods are evaluated on multiple instances. An instance consists of a
project generator Ξ and a set of resources R. The project generator generates multiple
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simulations that consist of K realizations, where each realization is an arriving project.
The instances are created to replicate characteristics from modular production. The first
characteristic is that projects are similar. When considering projects from a single prod-
uct family, each project has some base activities that occur in each project, and some
activities that result from the modularization choices of the customer. Secondly, there
is an estimate of when the next project will arrive. In practice, for large construction
projects, there is usually some contact with the customer before a project arrives. Al-
though this does not give any exact information, it can give a rough estimate. Finally,
production facilities aim to have some overlap in project execution times. Therefore, it
is imposed that the next arriving project arrives before the current project is finished.

With these conditions, the instance generation method is now given. The instances
are created by using a base network, generated by the method described in Vanhoucke
et al. (2008). This method uses as input the Serial/Parallel (SP) parameter, the Resource
Factor (RF) and the Resource Constrainedness (RC). For a description of these param-
eters, we refer to Vanhoucke et al. (2008). The base network has nbase activities. From
these activities, we randomly select nopt activities to be optional. Then, for each realiza-
tion of an arriving project, we randomly pick nsel from these optional activities and ex-

clude the rest of the optional activities. This means that there are
(nopt

nsel

)
different projects

in the distribution Ξ, each arriving with equal probability. Furthermore, the minimum
arrival times of a realization of Ξ are set by scheduling each previous project by the GM.
This gives a finishing time, and the arrival time of the next project is set halfway the pre-
vious arrival and finishing time. Finally, we set the varying additional arrival time, τ′, to
be taken uniformly between 0 and τ′max .

Before applying stochastic optimization methods, it is recommended to test the po-
tential of stochastic optimization by exploring the bounds. A commonly used upper
bound can be found by creating a naive model and calculating the expected result of
using this model (Birge and Louveaux, 1997). For two stage continuous problems, this
naive model is the expected value solution, which can be created by taking the mean
value of each stochastic variable. For our multi-stage integer problem, we define this
naive model to be the greedy model: at each stage, the optimal solution that does not
look ahead is chosen. The expected result is then defined as the Expected result of the
Greedy Solution (EGS). As a lower-bound, the expected value of the Wait-and-See (WS)
solution (Birge and Louveaux, 1997) can be used. The WS solution is the optimal solu-
tion of the problem that assumes that it is possible to wait for all stochastic variables to
be realized before making any decision. The difference between the WS value and the
EGS then forms an upper bound on the Value of Stochastic Solution (VSS); the price
one pays for using the naive model rather than the stochastic model.

Due to the very long computing time of generating data, parameter tuning for the
training process, and training the neural networks, it is not feasible to evaluate many
different instances. Therefore, we generate 6 instances and give detailed results for these.
The selection of these instances is done by an estimate of the VSS to focus on instances
with a high potential for improvement by any stochastic method. To estimate the VSS,
instead of creating and optimizing many scenarios per instance, only one scenario is
generated. This estimate consists of taking the base project and creating a sequence of
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projects by copying this project. Subsequently, both the EGS and the WS solution values
are approximated by the DE algorithm. Then, six instances were selected on the number
of activities and on the estimated VSS value. These instances are shown in Table 5.5.1.

5.5.2. TESTS SETUP
In this subsection, the data creation, data processing and parameter tuning are dis-
cussed. The parameter tuning for all parameters, except the neural network related pa-
rameters, is carried out by a local search algorithm that iteratively varies a single pa-
rameter. Initially, this is done to determine the parameters w and c in Algorithm 11, by
creating a set of projects from realizations of each instance and running the parameter
tuning algorithm. This results in w = 0.8 and c = 0.1, meaning that 10% of variables are
replaced in every iteration.

Since each instance represents a production scenario with a corresponding project
generator, both the data generation process and the training process in Figure 5.4.1 are
executed for each instance. Additionally, the parameter tuning process for the trained
method is also executed per instance, since this is also recommended in practice. For
each instance, 10 simulations are created, with each simulation consisting of |K | = 5 se-
quentially arriving projects. Then, Algorithm 13 is sequentially executed on each arriving
project, given the solutions of the previous projects in the same simulation. After this,
the data is processed to create resource profiles and corresponding profile scores. Next,
parameter tuning for the neural networks is started for each instance, as described in
Section 5.4.3, to determine the parameters p l , nnh , nnw and p l . Subsequently, the neu-
ral network is trained multiple times for each instance. Then, the local search parameter
tuning is started on each instance to determine the number of trained neural networks
(|M | ≤ 15, where 15 is chosen due to computational resource limitations) and the esti-
mator parameters pm and p s . All parameters per instance are given in Table 5.5.2 and
the complete instances are given in van der Beek (2022b). With these parameters and
instances, the tests are performed, as explained in the next subsection.

The average durations of these steps are shown in Table 5.5.3. Here, it can be seen
that the data creation parts takes very long: 20.3 days. However, this process is addi-
tive, meaning that data from new runs can be added to the previous data. Therefore, in
practice, it is possible to start with less generated data, and generate more data at a later
time. Furthermore, this process can be easily parallelized. The parameter tuning also
takes several days, because it involves training the neural network multiple times. After

Table 5.5.1: Instances.

# nbase nopt nsel SP RF RC |R| τ′max

1 30 8 3 20 30 40 2 10
2 30 8 3 80 40 60 2 10
3 40 12 4 20 30 40 2 10
4 40 12 4 80 50 80 2 10
5 50 15 5 40 50 40 2 10
6 50 15 5 80 50 90 2 10
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all this is done, training a neural network takes relatively short: around 3 hours.

5.5.3. COMPUTATION RESULTS
The presented instances are used to evaluate the solution methods. As presented earlier,
there are three solution methods: Greedy Method (GM), Trained Method (TM) and Full
Method (FM). This subsection describes the processing and tests done to evaluate these
methods. These tests are divided into two categories: comparison between GM and TM
and comparison between all methods. The former compares only the GM and the TM.
Since both of these methods are relatively fast, it is possible to evaluate many simula-
tions. The goal of these tests is to evaluate whether the TM performs better than the GM,
and thus, if the algorithm can learn from earlier optimization runs. The latter category,
comparison with all methods, also includes the FM. The purpose of these tests is evalu-
ating the decrease in computing time due to learning from data and the cost, in terms of
solution quality, of this. Since the FM is considerably slower, less tests are performed in
this category.

To compare the results, we introduce the total relative makespan:

tr m = ∑
k∈K

∑
t∈T k (t −τk )X k

|N k |t
cp(P k )

 , (5.9)

which can be seen as the realized value of the ct g (Equation (5.3)): the sum of the
makespan over all projects, relative to the critical path length.

The neural network training and corresponding parameter tuning is performed on
single cores of a 2.80 GHz GPU with 32 GB Ram. All other computations are performed
on a single core of a 3.0 GHz Intel XEON CPU with 4 GB RAM.

COMPARISON BETWEEN GREEDY METHOD AND TRAINED METHOD.
The first category of tests are comparisons between the GM and the TM. The goal of
these tests is to evaluate the improvement that can be obtained by training an objective
estimator. For each instance, 100 simulations are created by realizing Ξ for each k ∈ K ,
thus having 600 simulations in total. Then, each simulation is optimized with both the
TM and the GM.

In Table 5.5.4, the results are summarized for these tests. Note that the minimal val-
ues for the tr m is 5, since sequences of 5 projects are considered. It can be seen that both
the mean and the median tr m are lower for the TM. However, the GM is slightly more

Table 5.5.2: Parameters per instance.

# l nnw nnh p l pw pm p s |M |
1 2542 400 4 1×10−4 1×10−5 1.0 0.7 10
2 1792 500 7 1×10−4 1×10−5 7.0 0.7 14
3 1149 500 6 1×10−4 1×10−2 1.0 0.2 5
4 1316 500 6 1×10−4 1×10−5 5.0 0.4 5
5 1124 500 7 1×10−4 1×10−2 1.0 0.1 10
6 1296 400 6 1×10−4 1×10−5 4.0 0.7 12
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stable, since the standard deviation of the tr m is around 7% lower. Finally, we evaluate
the number of times that either method exclusively has the lowest tr m. Here, it can be
seen that the majority of simulations has the best tr m found by the TM. Deducting these
values from the total number of simulations gives 600−403−173 = 24, which shows that
there are few simulations for which both methods reach the same value.

Furthermore, the tests are evaluated in more detail in Figure 5.5.1. Here, the in-
stances are separated by the number of activities in the base network. The tr ms are
shown in Figure 5.5.1a. For comparison between the two methods, Figure 5.5.1b shows
the ratio of the tr ms for the TM tr mT and the GM tr mG . This reveals a number of
trends. Firstly, in Figure 5.5.1a, it can be seen that the deviation of the tr ms increases
with number of activities for the GM. Secondly, in Figure 5.5.1b, it can be seen that with
more activities, the increased performance of the TM becomes smaller. However, as both
the mean and the median are slightly below zero, the TM still performs better than the
GM on the instances with 50 activities.
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Figure 5.5.1: Comparison between the TM and the GM on trm.

Additionally, the performance difference between the number of stages |K | is evalu-
ated. For this, we define pob jk =∑

t∈T k (t−τk )X k
|N k |t as the partial objective: the makespan

of the project at stage K . We use superscript to denote the method, such that pob j G
k and

pob j T
k refer to the values for the GM and TM, respectively. Then, Figure 5.5.2 shows

Table 5.5.3: Average computing times of processes.

Data creation 20.3 days
Parameter tuning 6.8 days
Neural network training (per network) 3.1 hours
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the ratio between both methods, for each stage. Here, it can be seen that the first stage
has all values greater than or equal to 1, meaning that the GM performs better than the
TM. This is logical, as the TM introduces some delays in order to create better resource
profiles for later stages. In the remaining stages, it can be seen that the TM performs
better than the GM, with the difference in performance slightly increasing with the stage
number.
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Figure 5.5.2: Partial objective ratios per stage.

Finally, the effect of using multiple trained neural networks in the estimator is evalu-
ated. In Figure 5.5.3, the average ratio between tr m per method is shown, while varying
the number of trained neural networks in the estimator. It can be seen that the perfor-
mance rapidly increases with the first 6 trained neural networks, after which the per-
formance increase flattens out somewhat. However, the average slope remains slightly
negative, indicating a benefit of adding more neural networks.

COMPARISON WITH FULL ALGORITHM

The second category of tests compares the FM to the GM and TM. The goal of these tests
is to evaluate the cost, in terms of solution quality, paid for the reduction in computing
time. This is done by creating 20 simulations per instance and executing all methods on
these simulations.

Table 5.5.4: Results of comparison between GM and TM.

GM TM
Mean tr m 7.678 7.181
Median tr m 7.636 6.826
Standard deviation tr m 1.132 1.222
# Lowest tr m 173 403
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Figure 5.5.3: Value of tr m ratio while varying the number of trained neural networks in the estimator.

The summarized results of all three methods are shown in Table 5.5.5. Here, it can be
seen that the quality of solutions found by the FM is superior: The mean tr m, median
tr m, standard deviation of the tr m and (non-exclusive) number of lowest tr ms found
are better for the FM than for the other methods. However, it also can be seen that this
method has an average duration of more than three days, where the GM and TM have
average computing times of less than 1 and 11 minutes, respectively. Thus, considering
the GM as the base, the TM achieves 64% of the improvement of the FM, while only
requiring around 0.33% of the computing time at the time of project arrival.

In Figure 5.5.4, the tr ms are shown. Here, it can be seen that the improvement
against the TM and FM have a stronger correlation with the number of activities than
the GM. For 50 activities, the GM and TM perform similar, although the results for the
FM indicate that there is still some room for improvement in the TM. This holds espe-
cially for the median tr m.

When evaluating the ratio between the tr m of the TM and FM, as shown in Fig-
ure 5.5.5a, it can be seen that the TM is closest to the FM for the instances with 30 and 50
activities in the base network. A possible explanation is that the TM performs relatively
well on the small instances, and that the FM performs relatively poor on the largest in-

Table 5.5.5: Summarized results for comparison with FM.

GM TM FM
Mean tr m 7.861 7.283 6.958
Median tr m 7.760 7.051 6.686
Standard deviation tr m 1.100 1.245 1.165
Mean computing time (h) 0.014 0.174 52.253
# Lowest tr m 11 29 80



5.6. CONCLUSIONS

5

155

stances. This can be seen in Figure 5.5.4, where there is a relatively small improvement
for the FM on the largest instances. Furthermore, there is more variety in the distribu-
tion of larger projects. This can increase the difficulty of creating schedules that perform
well on expected future arrivals.

Additionally, the ratio of partial objectives per stages are shown in Figure 5.5.5b,
where pob j F

k refers to the partial objective of the FM at stage k. It can be seen that the
relative performance of the TM decreases with the stage number. A possible explana-
tion for this is the following: the resource profiles in D, used to train the TM, are created
from different simulations than the ones being evaluated in each test. In the first stage,
there are no resource profiles from the earlier projects. Therefore, the resource profiles
encountered in the training process are similar to the resource profiles in the evaluation
process. In each subsequent stage, an extra project enters, and thus a potential devia-
tion in resource profiles. Therefore, it follows that for later stages, the resource profiles
encountered in the training phase are less similar to the profiles in the evaluation stages.

Finally, the computing times are shown in Figure 5.5.6. Here, a clear increasing trend
can be seen between the number of activities and the computing time.
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Figure 5.5.4: Value of tr m per method.

5.6. CONCLUSIONS
In this chapter, the stochastic optimization problem DRCMPSP/SS is introduced. Fur-
thermore, three solution methods are created: the greedy method, the full method, and
the trained method. The greedy method does not look ahead and is used as a baseline
method. The full method uses a sample average approximation approach with varying
scenarios. The trained method learns from the full method to look ahead, while decreas-
ing the computing time needed. When comparing the three methods, it can be seen
that the trained method achieves a significant improvement in objective function value
compared to the greedy method, while only requiring a fraction of the computing time
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Figure 5.5.6: Computing times per number of activities for the FM.

of the full method. However, looking only at the solutions found, the full method still
performs better. Therefore, the recommended use of these algorithms depends on the
use case. Since the projects considered span several months, it often is recommended
to run the full method for a few days to obtain the best schedule. However, if the size of
the instances and the variation in scenarios becomes larger, the computing time of the
full method might become too high and the trained method is preferred. Furthermore,
quick preliminary schedules might be needed for discussion and estimates. For these
use cases, the trained method is recommended as well.
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From a computational point of view, it is shown how to use data from a heuristic
optimization algorithm for the RCPSP. This learning process is very versatile. First of all,
the data collection process is the same for any population-based search algorithm and,
thus, can easily be used in other heuristics. Secondly, the data processing converts any
set of comparisons to an objective estimator. Thus, this can be used with any simulation
that uses resource profiles as input. Even more so, it can be converted easily to include
other characteristics of the solution, as long as the corresponding neural networks are
adapted as well.

For future research, one might focus on computational evaluation of the trained
method. One possibility is to evaluate the use of profile networks and study the correla-
tion of network parameters, such as density, to the performance of the trained method.
Secondly, due to the high computational demands, the number of evaluated instances
is limited. Although this already shows certain trends, these can be verified with more
computational tests.

Furthermore, although the instances used resemble the characteristics of modular
production, they are also fairly simplified. Therefore, creating more elaborate instances
by using expert opinions or historical data can show the potential benefit of the proposed
methods in practice. This can also give insight in the required size of the instances and
the computational demands for this. Similarly, creating more general instances from
other applications can indicate whether the presented methods are also applicable in
other fields.

In conclusion, future research can focus on bringing the methods closer to applica-
bility and by evaluating them with more computational resources. However, as shown by
the difference between the trained method and the greedy method, this chapter demon-
strates that training from data is possible for the DRCMPSP/SS, and possibly for other
variants of the Resource Constrained Project Scheduling Problem.





APPENDIX

5.A. NOTATION
Sets and matrices

A Profile networks edge values.
B Resource requirement matrix.
Ci j Set of iterations in D that contain both profile Yi and Y j .
C I

i j Indicator value for Ci j .

D Stored data.
E Arcs in profile network.
G Profile network.
K Decision steps.
M Set of trained neural networks.
N k Set of activities of project P k .
P k Precedence relationships of project P k .
P k Project at decision step k ∈ K .
Pk Scenario projects for decision step k ∈ K .
Qi j Comparison measure between resource profiles Yi and Y j .
R Set of resources.
T Set of timesteps of all projects.
T k Set of timesteps of project P k .
X Binary solution matrix.
X Feasible region for project P k .
Yr t Resource usage of resource r ∈ R at time t ∈ T .
Y Unique resource profiles.
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Variables, parameters and vectors
bk

r i Resource requirement of resource r ∈ R for activity i ∈ N of project P k .
c Replacement parameter in Algorithm 11.
dk Duration vector of project P k .
l Maximum sequence length in each neural network.
nbase Number of activities in base network.
nopt Number of optional activities.
nsel Number of optional activities to be selected.
nnh Number of hidden layers in neural network.
nnw Width of hidden layers in neural network.
pm , p s Scaling parameters.
p l Learning rate.
pw Weight decay.
s Profile score vector.
sol_len Length of solution in Algorithm 11.
tr m Total relative makespan.
w Weight parameter in Algorithm 11.
γ Population size.
∆i j Vector of differences between objectives of resource profiles Yi and Y j .
δi Outgoing arcs of resource profile Yi ∈Y in the profile network.
ζ Scenario counter.
η Threshold parameter for profile score convergence.
λr Resource capacity for resource r ∈ R.
µ Threshold parameter for p-value.
Ξk Distribution of (project, arrival time) at decision step k ∈ K .
τk Arrival time of project P k .
τk

mi n Earliest arrival time of project P k .
τ′ Deviation from earliest arrival time.
ω Iteration treshold parameter.
SP Serial/parallel parameter.
RC Resource constrainedness.
RF Resource factor.
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Functions
cp(P ) Critical path length of project P .
ct g k (X [k −1],Ξk ) Cost to go at decision step k ∈ K , given schedules X [k−

1] and distribution Ξk , for project P k .
F (x,n) Cumulative distribution function of t-distribution for

x with n degrees of freedom.
ob j est (X ,τ) Estimated objective of solution X , with earliest next ar-

rival time τ.
RP (X [k], t ) Resource profile of solutions X [k], starting from time

t ∈ T .
scenar i o_ob j ect i ves
(X k , X [k −1],ξ[k],P)

Scenario objectives, given solutions X [k], realizations
ξ[k] of distributions Ξ[k] for scenario projectsP.

std(x) Standard deviation of x.
tr m Total relative makespan.
X k (X [k −1]) Feasible schedules for project P k , given solutions

X [k −1].
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5.B. FULL METHOD ALGORITHM

Algorithm 15 Generate data for project P k , given previous and current projects P [k],
time steps τ[k], previous solutions X [k −1] and project generation process Ξk+1.

1: X1 ← [X1
1, · · · ,X1

γ] . Initialize population
2: ζ← 2 .Number of scenarios
3: θ← 0 . Termination criterion variable
4: q = [q1, q2] ← [0,0]
5: Vi j ←;, ∀i ∈ [1, · · · ,γ], j ∈ {1,2}
6: Wi j ← 0, ∀i ∈ [1, · · · ,γ], j ∈ {1,2}
7: m ← 0
8: D ←;
9: W ∗ ←∞

10: while θ <ω do
11: X2 ← [X2

1, · · · ,X2
γ] . Create new population as in Algorithm 11

12: P← create ζ projects (realizations of Ξk+1)
13: Dm ←;
14: for i ∈ [1, · · · ,γ] do
15: for j ∈ {1,2} do . For both populations

16: Vi j ← scenario_objectives(X j
i , X [k −1],ξ[k],P) using Algorithm 12

17: Wi j ←Vi j +makespan ofX j
i /cp(P k )

18: Dm ←Dm ∪ {(RP (X [k −1]∪X j
i ,τk+1

mi n),Vi j )}
19: end for
20: end for
21: j∗ ← argmin j∈1,2 mini∈[1,··· ,γ] Wi j

22: q2 ← argmini∈[1,··· ,γ] Wi j∗

23: if j∗ = 2 and m > 0 then . Found new best solution
24: p ← Paired t-test between Vq11 and Vq22

25: if p <µ then
26: ζ← ζ+1
27: end if
28: end if
29: if W2 <W ∗ then . Found new lowest average
30: W ∗ ←W2

31: θ←−1
32: end if
33: θ← θ+1
34: m ← m +1
35: q ← [q2,0]
36: X1

i ←X2
i if Wi 2 <Wi 1, ∀i ∈ [1, · · · ,γ]

37: end while
38: Save D



6
DISCUSSION AND CONCLUSIONS

In this chapter, we review the work done in this dissertation and discuss it both from an
application and an optimization point of view. Subsequently, conclusions of this disser-
tation are given.

6.1. DISCUSSION
In Chapter 2, a time-indexed Mixed Integer Linear Programming (MILP) model is intro-
duced to model the flexible project structure. The decision for using a time based index
was due to models from literature that all use a similar indexation. However, for the stan-
dard RCPSP, various formulations are present that do not use time indexing. Depend-
ing on the structure of the problem, these alternative formulations can result in better
bounds, and better branch-and-bound performance. Therefore, even though the deci-
sion for a time-indexed MILP makes it simple to represent the flexible project structure,
it is worth evaluating whether other indexations result in improved solver performance.

For this MILP problem, we defined Max One Execution Sets (MOESs) and Non Empty
Execution Sets (NEESs) that are used as building blocks for variable reduction. Part of
this variable reduction was done by creating cutting planes for each activity. Although
this resulted in a netto reduction in computing time, the preprocessing phase has a sig-
nificant duration. This leaves room for improvement. It should be researched if there are
some indications for the effectiveness per cutting plane. Various theoretic approaches
for this are listed in Dey and Molinaro (2018). With this, it might be possible to reduce
the preprocessing time, while still having a similar effect on the branch-and-bound per-
formance. Furthermore, the cutting planes are only used to remove variables from the
MILP, but are not added as constraints for the final branch-and-bound algorithm. Al-
though some preliminary experiments that included these cutting planes did not indi-
cate a reduction in computing time, additional research might find some cases or meth-
ods where adding these constraints prove to be effective. This might be done in the root
node of the branch-and-bound tree, or in later nodes. For example, this is done for the
RCPSP in Araujo et al. (2020) and shows significant improvements.

163



6

164 6. DISCUSSION AND CONCLUSIONS

Besides these cutting planes, it also might be possible to create different types of cut-
ting planes that use NEESs and/or MOESs. In this dissertation, resource usage was not
included in the cutting planes. However, for the standard RCPSP, various types of cutting
planes are based on resource usage (Baptiste and Demassey, 2004). Therefore, gener-
alizing these cutting planes to the RCPSP-PS/CPR might lead to new solution methods.
Since NEESs and MOESs give information on whether an activity is executed, they might
be of importance while generalizing these cutting planes.

When comparing the theoretic approach, given in Chapter 2, to the real life case of
modular shipping, one might question how similar the instances of the computational
tests are to the instances encountered in practice. The approach taken in Chapter 2 con-
siders relatively complicated instances to create a challenge for the optimization algo-
rithm. Due to the lack of data available for modular shipping, this approach was pre-
ferred to creating more realistic instances and running the risk of oversimplifying. How-
ever, this approach does not give a guarantee that similar performance is expected for
realistic instances and, therefore, a case study on computational performance with real-
istic instances is recommended.

When considering these methods in practice, they should not only be used on the
complete design after a ship order comes in. Instead, design should be accompanied by
optimization. This allows for designs to be optimized for production, which is one of the
aims of a modular product family. However, it should be noted that this requires addi-
tional design effort. Similarly, even when using these methods after the design phase,
it requires the design to include various production alternatives. This additional invest-
ment of effort might result in larger benefits in the production process. However, this
requires for the product series to be sufficiently large and for a careful consideration of
the amount of detail to be modeled.

In Chapter 3, the model was extended to include consumption and production of
nonrenewable resources. This allows for the modeling of resources, such as capital and
floor space. In the model, a simplified representation for these resources is used. This
was done for two reasons: first, it allows that a single type of resource constraints repre-
sents both capital, floor space, and other types of resources. Secondly, the simplification
reduced the computational effort compared to full modeling of both resources. Never-
theless, it is important to note the shortcomings of this approach. For capital, it is the
assumption of constant cost at different times. In reality, money obtained later in time
is worth less due to (missed) interest. For the resource floor space, the two-dimensional
problem is simplified to a single dimensional problem. Although both simplifications
are valid and still offer useful results, one should be aware of these when implement-
ing solutions obtained by solving the Resource Constrained Project Scheduling Problem
with a flexible Project Structure and Consumption and Production of Resources (RCPSP-
PS/CPR).

Furthermore, both heuristic algorithms can only solve instances with acyclic group
graphs. Although this seems quite a general case for practical purposes, it cannot be
guaranteed that there are no use cases without this property. Therefore, if this is en-
countered, additional methods of solving the selection problem should be explored.

From an optimization point of view, the Hybrid Differential Evolution (HDE) algo-
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rithm can be considered relatively simple. It consists of one neighborhood of local im-
provement and a standard Differential Evolution algorithm. It can be worth researching
more complicated algorithms, or additional local neighborhoods. However, as the Ant
Colony Optimization (ACO) algorithm shows, more complicated does not necessarily
mean better.

One direction of improving the HDE might be to consider the infeasibility of non-
renewable resources. Currently, not much effort is put into fixing infeasible solutions:
a quite standard approach of penalizing and possibly restarting handles this. Although
this does generally result in feasible solutions, this might be because of the algorithm
choosing a different selection of activities. If this is the case, it also might be the case
that additional effort to make infeasible solutions feasible while keeping the selection of
activities fixed will find unexplored parts of the feasible region. This approach was used
for the ACO algorithm and was shown to aid the solutions to become feasible.

Finally, we discuss the usage of the heuristic algorithm compared to the exact algo-
rithm. Generally, if the exact algorithm can be used, it should be used. However, if the
instances are too large, or the available computing time is too short, the switch should
be made to the heuristic algorithms. It can also be the case that both can be used. For
example, to create a quick estimate of the schedule with the heuristic algorithm, while
taking more time to calculate the definitive schedule. Furthermore, the heuristic solu-
tion can be used to give the branch-and-bound algorithm a ‘warm start’. Although this
improves performance for many optimization problems, additional research should be
done to quantify this effect.

In Chapters 4 and 5, scheduling with arriving projects is considered. Both chapters
rely on simulations to model the arriving projects. Although the performance of both
methods can be seen as an indication of the validity of this research direction, two com-
ments have to be made. First, creating realistic simulations is not a trivial task, as can be
deducted from the numerous research in this area (Kim et al., 2005a,b; Park et al., 2016).
In this dissertation, we assumed to have simulators to evaluate the possibilities of opti-
mization methods. However, these simulators are not realistic and additional research is
needed to create better ones. This has to be done in coorporation with industry experts
and/or while using historical data. The second discussion point of the simulators is that
it cannot be guaranteed that the presented methods perform similarly for different sim-
ulators. Especially for the methods considered in Chapter 5, it might even be the case
that the greedy scheduling method provides near-optimal solutions for realistic cases. If
this is true, optimization methods are not required in that case.

Furthermore, for the instances considered in Chapter 4, a fixed level of inventory is
assumed. This can be seen as a valid consumption for a steady state case, where we ex-
pect to have a long horizon of products to be produced. However, at the end of the life
cycle of a modular shipping family, additional considerations should be used to deter-
mine whether replenishing inventory items is still worth the investment.

Additionally, a comment can be made on the instances considered in Chapter 4. To
allow for evaluation of many instances, they were kept relatively small. One assump-
tion for this was to consider a single yard and roughly one simultaneous project being
executed. In reality, risk can be mitigated by using a shared product inventory for multi-
ple yards. Although this can be modeled with the RCPSP-MP, it will result in much larger
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instances. Therefore, computational tests are required to evaluate the performance. Ide-
ally, this would be done in combination with a case study with realistic instances.

When evaluating the results in Chapter 4 on solution quality, it was shown that the
overshoot-limited method performed best, even while relying on the repair function more
often than other methods. This might indicate even more improvement there, as the al-
gorithm often did not converge. Therefore, running the algorithm with a higher comput-
ing time limit might result in even better solutions. Furthermore, although combining
the two extensions had some positive result, the combined method did not create better
solutions than the overshoot-limited method. Additional research can therefore focus on
other ways of combining the extensions.

The scope of Chapter 5 is learning from previous optimization processes. Therefore,
the optimization algorithm itself was relatively simple, created by modifying a standard
DE algorithm for the RCPSP, which allows delays between activities to be better prepared
for future incoming projects. Thus, additional research in the optimization aspect might
lead to better solutions. When developing these methods, one should consider that the
objective is not only to find the best solution, but also to encounter many different re-
source profiles to generate training data. Thus, since the goals differ, it might be better
to have a different method for generating data then for the final optimization.

Similarly, additional research can be done into the data processing part. As the re-
search in Chapter 5 was done in a relatively new field, the presented method was cre-
ated based on inspiration from various fields, while the challenge was mostly to find a
working method. In future research, this can serve as a benchmark to see if alternative
methods can further improve the performance. This also holds for the neural network.
Preliminary tests were done with various architectures and the best one was chosen.
However, each architecture might be improved based on further parameter tuning and
combining several parts. Thus, a potential research topic could be the accuracy of esti-
mating the objective function.

Finally, we consider the data generation process. This is currently done before all
project arrivals. However, in practice, there is a lot of time between subsequent project
arrivals. Therefore, after the scheduling of one project, significant time can be dedi-
cated to generate data based on simulations with the current resource profiles. This is
expected to improve the performance, as the data more closely represents the expected
future situation.

When evaluating the link to the application of the proposed optimization methods,
two points have to be considered. Firstly, the methods in this thesis were validated com-
putationally by creating virtual instances. Although the structure of these instances is
chosen to replicate the structure encountered in practice, or to ensure a computational
challenge, multiple differences remain. For example, the resource structure of the in-
stances are created by instance generators from literature. Comparing this to real in-
stances, the instances in this thesis have fewer types of resources that are used more in-
tensively. In real instances, there are usually more types of resources, but many resources
are only used in just a few activities. Thus, in order to fully evaluate the computational
performance of the proposed methods, instances from practice have to be used.

Secondly, the flexible project structure requires the modeling of potential modules.
This requires more effort than the current approach, where only the executed project
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structure is modeled. To modify this, both the data infrastructure and company pro-
cesses have to be changed. However, this requires a significant investment from the
shipbuilding company. Therefore, it is important to perform case studies to quantify
the benefits of optimization in shipbuilding. This gives shipbuilding insight in the po-
tential benefits of scheduling with flexible projects, which can serve as a motivation for
using flexible project structures in scheduling.

6.2. CONCLUSION
In this dissertation, scheduling methods are presented that handle the challenges of
scheduling for modular production. This was done with the assumption that, in order
to evaluate a modular shipbuilding design or production process, the right scheduling
decisions are required.

In Chapter 2, a new formulation for the RCPSP-PS was given to capture all aspects of
the flexible project structure for modular shipbuilding. It was shown that, even without
the presented solution space reduction, this model performed significantly better than
a similar, but less general model from literature. Furthermore, this formulation allowed
for mathematical analysis, introducing the concepts of NEESs and MOESs. These con-
cepts served as building blocks for the improved solution methods. The method consists
of two parts, where the first part is adding valid inequalities and imposing lower bounds
based on an adapted critical path method. The second part improved these bounds by
creating cutting planes. This second method of preprocessing took significantly more
computing time. However, since it allowed for improved performance of the subsequent
branch-and-bound algorithm, it proved an effective method of decreasing the comput-
ing time. Especially on instances that were computationally more challenging due to the
resource constraints, the complete method improved performance significantly com-
pared to the partial method, consisting of only a few building blocks of the solution
method.

Both the partial and complete method show that NEESs and MOESs provide suitable
building blocks for solution methods for the RCPSP-PS. The resulting method solves in-
stances with up to around a hundred executed activities to optimality. Therefore, this
provides a useful method for real world purposes with a small to medium level of detail
and multiple hours of available computing time. Furthermore, it allows for the evalua-
tion of heuristic methods, which in turn can be used for larger instances or cases with
less available computing time.

These heuristic methods were presented in Chapter 3. Additionally, nonrenewable
resources with consumption and production were introduced. With this, resources such
as floor space, capital and inventory items can be modeled. Besides the usefulness for
scheduling incoming projects, this also allows the shipyard to evaluate various scenar-
ios of yard capacities. By varying resources such as available workers, floor space, ma-
chines, inventory and capital, while performing simulations, the effect of varying these
resources can be researched. This allows for better insight and justification of investing
both time and money to transform to a modular shipbuilding approach.

Furthermore, the heuristic methods presented decreased the computing time from
several hours for the exact method to several minutes, while having only a slight loss in
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solution quality. This allows for the RCPSP-PS/CPR to be used on instances with high
detail and in cases with only several minutes of available computing time. Furthermore,
even for cases where plenty of computing time is available, the heuristic methods can be
used as an initial solution that in turn can be further improved by exact methods.

From an optimization point of view, it was shown that, although the selection prob-
lem is N P-hard, most real world cases are a special case of this problem for which a
polynomial time algorithm exists. By restricting ourselves to these cases, a lot of com-
puting time improvement is gained. This shows that the question: "What do we really
want to solve?" is important to consider, instead of trying to solve the most general case.

The two algorithms presented were an HDE algorithm and an ACO algorithm. Even
though they both performed better on special cases than an existing algorithm from lit-
erature, HDE outperformed ACO on nearly every aspect. Furthermore, the HDE algo-
rithm also required less parameters, which in turn resulted in easier tuning.

Subsequently, in Chapter 4, the RCPSP-PS/CPR was expanded with resource allo-
cation, profit maximization and stochastic project arrivals. Two important steps were
made here for the shipbuilder. First, instead of creating various scenarios of resource
allocation and evaluating them, it now is possible to optimize this and thus automati-
cally find good configurations. Secondly, instead of considering single projects, the step
is now made to consider a series of projects. Producing a product family instead of a set
of individual products is one of the main concepts of modular production. Therefore, to
properly quantify the benefits and make the correct scheduling decisions, it is not suffi-
cient to consider only separate projects. Thus, Chapter 4 bridges an important gap for
scheduling in modular shipbuilding.

When evaluating the computational results, it can be seen that although even a ba-
sic progressive hedging algorithm performs better than using an MILP solver, extensions
are needed to converge to implementable solutions without relying on the repair func-
tion. Variable bounding has the strongest effect on convergence properties. Conversely,
the effect on convergence by limiting the overshoot effect of variables is less strong, but
ultimately leads to better quality solutions.

Finally, in Chapter 5, production of a series of projects is viewed from a standard
RCPSP point of view with stochastic arrivals. In this chapter, the flexible project network
was disregarded and the focus was put primarily on scheduling such that the resource
profiles were beneficial for future arriving projects. For modular shipbuilding, this can
be used in a more developed stage, where the inventory allocation choices, outsourc-
ing choices and modularity choices are already made and only a fixed project structure
remains.

From a computational point of view, it is shown that using a solution representa-
tion that supports delays between activities can create schedules that allow for improved
schedules of projects arriving in the future. The best schedules were obtained by a sim-
ulation optimization approach, which has a computing time of several days. However,
it is shown that it is possible to learn from the data of this algorithm, by storing the re-
source profiles and corresponding objective function values. This resulted in the trained
method, which only requires a fraction of the computing time of the simulation based
method, but still provides significantly better results than without looking ahead.
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In conclusion, the models and methods introduced in this dissertation can be used
to schedule for modular production. In particular, the methods in Chapters 2 and 3 can
be used to handle choices in module definition and usage. Furthermore, Chapter 4 in-
troduces inventory management for a product family, along with operational decisions,
such as outsourcing or in-house production. Finally, Chapter 5 handles the challenge
of using shared resources for stochastically arriving projects, as encountered in modular
production. These methods allow for real-life instances to be created, in order to quan-
tify the results of modular production. This is an important step in the study of modular
production in shipbuilding: multiple studies indicate the potential benefits, but few give
quantification of these benefits. Furthermore, even if some quantification is given, it is
often case specific and not generalizable to other branches of shipbuilding.

Since adopting a modular production approach requires a complete overhaul of data
structure, production processes and design methods, quantification of these processes
are required to justify the large costs of these changes. Therefore, creating the models
and methods that are required for this quantification, as is done in this dissertation, is
an essential step for introducing modular production in shipbuilding.

Due to the abstractness of the models and methods introduced in this dissertation,
they are also valid in other industries. Naturally, they can be used for modular produc-
tion of any product, such as airplanes or houses. However, the methods are not restricted
to modular projects. Flexible networks were also found in other applications, such as
highway construction, aircraft turnaround scheduling and regular housing construction.
Here, the improved exact and heuristic methods can result in increased efficiency. Fur-
thermore, the principle of scheduling projects while looking ahead can be of use in many
cases. In nearly every industry where the RCPSP is used, there are companies that use
the same resources for multiple sequential projects. Therefore, both the resource alloca-
tion from Chapter 4 as the resource profile optimization from Chapter 5 can be used in
many industries.
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