
Delft Center for Systems and Control

Nesterov Accelerated ADMM for
Distributed Pose Graph Opti-
mization in SLAM problems

L. Bosland

M
as

te
ro

fS
cie

nc
e

Th
es

is

Nesterov Accelerated ADMM for
Distributed Pose Graph Optimization

in SLAM problems

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

L. Bosland

January 28, 2021

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

Copyright c©
All rights reserved.

Abstract

A common problem in robotics is the simultaneous localization and mapping (SLAM) prob-
lem. Here, a robot needs to create a map of its surroundings while simultaneously localizing
itself in this map. An unknown environment is assumed. Traditionally, it has been ap-
proached through filtering solutions. This paradigm has shifted to pose graph optimization
(PGO). This method scales well with large maps and is fast and accurate. Furthermore, it is
especially suited to the distributed SLAM problem as existing distributed optimization meth-
ods can be leveraged. One such method is the alternating direction method of multipliers
(ADMM), which has been used in distributed PGO. ADMM has a simple implementation and
can achieve high accuracy in distributed PGO. A solution of good quality can be acquired in
a few iterations with ADMM.

However, ADMM is slow to converge to high accuracy. This thesis introduces an algorithm
which implements Nesterov acceleration in the ADMM algorithm for distributed PGO in
SLAM problems. Such an implementation will be novel. To create the proposed Nesterov
accelerated ADMM (N-ADMM) algorithm, the current literature is adapted and extended
based on the choices made in this thesis. The main research question is how to make these
choices.

The proposed N-ADMM algorithm is implemented in C++ and compared with unaccelerated
ADMM and the state of the art. N-ADMM has shown better performance in some scenarios.
To further research what these scenarios are characterized by, two models are introduced to
create new datasets of which the parameters can be controlled. The effects of graph size and
bad initial guesses are investigated.

Master of Science Thesis L. Bosland

ii

L. Bosland Master of Science Thesis

Table of Contents

List of acronyms . v
List of symbols . vi

Acknowledgments vii

1 Introduction 1
1.1 State of the art . 2
1.2 Research questions . 3
1.3 Contributions . 4

2 Distributed pose graph optimization (PGO) 7
2.1 Centralized PGO . 8
2.2 Distributed PGO: splitting formulation . 10

3 Alternating direction method of multipliers (ADMM) for distributed PGO 13
3.1 ADMM . 14

3.1.1 ADMM iterations . 14
3.1.2 Multi-block ADMM . 16

3.2 ADMM for distributed PGO . 16

4 Nesterov accelerated ADMM (N-ADMM) for distributed PGO 19
4.1 Acceleration . 20
4.2 Stabilizing framework . 20
4.3 Proposed algorithm . 22

5 Performance of N-ADMM 25
5.1 Comparison with state of the art . 26
5.2 Generated datasets . 29

5.2.1 Block model . 30
5.2.2 Gaussian model . 32

Master of Science Thesis L. Bosland

iv Table of Contents

6 Conclusions 35
6.1 Answers to the research questions . 35
6.2 Further research . 37
6.3 Contributions . 39

Bibliography 41

A Graphical PGO example 45

B Supporting results and figures 47

L. Bosland Master of Science Thesis

Glossary

List of acronyms

ADMM Alternating direction method of multipliers
DGS Distributed Gauss-Seidel method
HOGMan Hierarchical optimization on manifolds
AMM Accelerated majorization-minimization
N-ADMM Nesterov accelerated alternating direction method of multipliers
PGO Pose graph optimization
SLAM Simultaneous localization and mapping
SMF Small memory footprint method
TSAM2 Tectonic smoothing and mapping

Master of Science Thesis L. Bosland

vi Table of Contents

Notation and symbols

SO(n) Special orthogonal group for n dimensions
SE(n) Special Euclidean group for n dimensions
V Set of nodes corresponding to poses in the pose graph
E Set of edges corresponding to measurements in the pose graph
P Set of priors in the pose graph
S Index set of separators
G Index set of subgraphs
G Pose graph
ti Translation for pose i
tij Relative translation between poses i and j
Ri Rotation for pose i
Rij Relative rotation between poses i and j
xi Pose i
xij Relative pose measurement between i and j
x? Set of estimated poses
x̄i Prior i
xg Set of poses belonging to subgraph g
xs Separator s
Ω,Φ Information matrices related to measurement covariance
L Lagrangian
Lρ ρ-augmented Lagrangian
y, λ, ν Dual variables or Lagrange multipliers for the inequality and equality constraints
u Scaled dual variables
k Iteration number
ρ Penalty factor
σ Convexity constant
I Identity matrix of appropriate size
0 Zero vector of appropriate size
‖ · ‖ 2-norm of the argument
‖v‖2Ω vTΩv
dist(·, ·) Distance function

L. Bosland Master of Science Thesis

Acknowledgments

I would like to thank my supervisor Tamas Keviczky for his feedback and guidance during the
thesis and for his support in the final stage of the Systems and Control master’s program. It
has always helped me to move in the right direction and to focus on the core of the challenges
which presented themselves.

I would also like to thank my family, my good friends and my amazing girlfriend for giving
me the motivation to complete this work and for all the encouragements and shared moments
along the way.

Lastly, I would like to thank my fellow students for working together and making the long
days at university an overall pleasant experience.

Delft, University of Technology L. Bosland
January 28, 2021

Master of Science Thesis L. Bosland

viii Acknowledgments

L. Bosland Master of Science Thesis

Chapter 1

Introduction

Fully autonomous robots must be able to localize themselves in unknown indoor and outdoor
environments. Otherwise, it would be impossible for these robots to function in new locations
without bumping into their environment or needing the help of a human controller. The
problem of creating a map of the environment of the robot and localizing itself within this map
has been approached through the simultaneous localization and mapping (SLAM) problem
[1, 2, 3, 4, 5].

A wide range of applications exist for SLAM which include the following [5]:

• Exploration with aerial, underwater and ground vehicles

• Operations in dangerous environments

• Inspections

• Transportation and distribution

• Autonomous driving

Large areas need to be covered for these applications and the size of the maps have been
steadily increasing. For example, the recently emerging fully autonomous cars have to localize
themselves and map their surroundings in areas that span cities or even countries. However,
when areas grow too large, computations cannot be performed by one unit anymore [6]. A
natural solution to this problem is splitting the problem into multiple subproblems and using
multiple units for computing. One could use multiple cores of the same processor to solve the
subproblems or even use swarms of robots that solve the problem collectively. Data could be
exchanged when they pass each other or via a mobile data connection. Another advantage
of using multiple units is that the system becomes more robust because the SLAM mission
will not be abandoned if a single robot fails [5]. In that case, the task can be taken over
by the other units in the system. This is especially useful for hazardous applications, e.g.
mine explorations or search and rescue missions in a forest fire. Moreover, if multiple cores

Master of Science Thesis L. Bosland

2 Introduction

of a single processor are used, the computational task can be taken over by the other cores
if one core fails. An additional advantage is that data can be collected faster with multiple
robots [5]: multiple robots can cover a larger area than a single robot when they are given the
same amount of time. Furthermore, accuracy can be improved when multiple robots cover
the same area. Therefore, a system consisting of multiple robots is flexible in balancing speed
and accuracy. For the reasons above, this thesis will focus on the distributed SLAM problem,
which allows for the use of multiple robots and cores.

Two paradigms exist in solving SLAM problems: filtering based SLAM and optimization
based SLAM [7]. Optimization can be applied in SLAM if the problem is reformulated as a
pose graph where poses are denoted as nodes and measurements are denoted as edges in the
graph [8]. A graphical example of such a pose graph can be found in Appendix A. The main
advantage of using pose graph optimization (PGO) is that it scales well with larger maps [7, 9].
Filtering based solutions are limited in this sense because solutions depend on the covariance
matrix, which quadratically scales with the size of the map [7]. Therefore, filtering based
solutions use more computation time and memory if the area covered by the robots is large.
Another advantage of using PGO is that existing optimization methods can be leveraged.
This is especially useful for distributed PGO as distributed optimization is an active field of
research while a large body of work already exists [10, 11]. Furthermore, while filtering based
SLAM can be beneficial when only a small processing budget is available, optimization based
SLAM has been shown to be superior in terms of accuracy [9]. Especially because computing
power has increased significantly since [9] was written, the advantage of optimization based
SLAM is clear. Moreover, optimization based SLAM methods can include outlier rejection
techniques, they can handle measurements of different sensors simultaneously and they are
fast [12]. They are fast because the sparsity of the problem is exploited. For the reasons
above, this thesis will use PGO to solve the SLAM problem.

1.1 State of the art

This report considers the following methods to be the state of the art in distributed PGO:

• Alternating direction method of multipliers (ADMM) [6]

• Accelerated majorization-minimization (AMM) [13]

• Distributed Gauss-Seidel method (DGS) [14]

• Tectonic smoothing and mapping (TSAM2) [15]

• Hierarchical optimization on manifolds (HOGMan) [16]

• Small-memory footprint method (SMF) [17]

Within these methods, ADMM, AMM and DGS are considered to be the closest related
works. Some connections will be addressed briefly in this section. These connections will
become more clear throughout this thesis.

L. Bosland Master of Science Thesis

1.2 Research questions 3

To formulate the distributed PGO problem two approaches exist: elimination and splitting.
TSAM2 [15], HOGMan [16] and SMF [17] use elimination to formulate the problem. In these
methods, dense cliques are induced on the separating nodes and bookkeeping of linearization
points is necessary [6]. This causes problems when solving large graphs as these methods are
computationally expensive and have to rely on linearization [6]. To avoid this, the splitting
approach for distributed PGO was introduced in [6]. Moreover, the centralized PGO problem
is sparse, which is appealing when performing optimization [7]. This sparsity is preserved
when distributed PGO is approached through splitting [6]. Sparsity is not preserved when
elimination is used to formulate the problem. Furthermore, the splitting approach connects
neatly to the pose graphs, which means the already available factor graph optimizers and
classes included in the GTSAM [18] and g2o [19] libraries can be leveraged to solve the
subproblems of distributed PGO. For the reasons above, this thesis will use the splitting
approach for distributed PGO. Currently, ADMM [6], DGS [14] and AMM [13] approach
distributed PGO through splitting.
ADMM [20] has been used in [6] to solve distributed PGO. It has various advantages in
distributed optimization. ADMM has a simple implementation and allows for paralleliza-
tion, which means the subproblems can be solved simultaneously across processing units or
robots. Furthermore, minimal information exchange will be required between robots and no
linearization is needed when using ADMM [6]. However, while ADMM reaches a solution of
acceptable quality in a few iterations, convergence to solutions of high quality is considerably
slower than the state of the art. To combat this, parallelization can be applied to distribute
computational load. Moreover, ADMM allows for acceleration. Since accelerated ADMM has
not yet been examined for distributed PGO problems, a clear gap is found in the literature. In
this thesis, such an algorithm will be created by combining and extending existing literature.

1.2 Research questions

In this thesis, acceleration will be implemented with the use of Nesterov’s method [21] as it
has a provably optimal convergence rate of O(1/k2) [22, 23]. From the gap in the literature,
the research question follows:

"How can Nesterov acceleration be implemented in the ADMM algorithm for solving
distributed PGO problems and what adaptations have to be made to the current methods for

this implementation?"

The distributed PGO problem will be defined in Chapter 2. The current ADMM solution
to distributed PGO will be discussed in Chapter 3. This solution will be extended with
Nesterov acceleration in Section 4.1. Then, this accelerated algorithm is combined with a
stabilizing framework in Section 4.2. The proposed algorithm is not convergent without this
framework. In Chapter 4, the necessary adaptations and extensions of the literature will
be discussed. Through these adaptions, the creation of the Nesterov accelerated ADMM
(N-ADMM) algorithm is enabled. The proposed N-ADMM algorithm will be introduced in
Section 4.3. N-ADMM has been implemented in C++ to test if it is valid and converges to
good solutions. Implementation is done in C++ to use the existing pose graph optimization
libraries GTSAM [18] and g2o [19].

Master of Science Thesis L. Bosland

4 Introduction

To support the contribution of the N-ADMM algorithm, the following sub-question is formu-
lated:

"How does the performance of N-ADMM compare to the state of the art?"

Performance will be measured by three factors: the number of iterations needed until con-
vergence, the time needed until convergence and the value of the objective function when the
algorithm converges. The first two factors define efficiency and the last factor defines accu-
racy. These factors are also commonly used in the state of the art, which has been defined
in Section 1.1. The closest related works are considered to be [6], [14] and [13] as they use
the splitting approach to distributed PGO. Further similarities between N-ADMM and the
closest related works will be discussed in Chapter 3. To compare N-ADMM to the state of
the art, tests will be performed on benchmark datasets in Section 5.1.

The number of publicly available benchmark datasets is limited. While they represent a
good mix of scenarios, correlations between certain characteristics of the datasets and the
performance of N-ADMM cannot be discerned based on the benchmark datasets alone. The
following sub-question arises:

"What characterizes the pose graphs for which optimization with N-ADMM is, relative to the
current methods, most efficient?"

In order to find an answer to this question, new datasets have to be created for which the
parameters can be varied. Datasets are created based on two new models, which will be
introduced in Section 5.2. The programs that produce these datasets have been created in
C++. To test the influence of graph size, both the block model of Section 5.2.1 and the
Gaussian model of Section 5.2.2 are used. Bad initial guesses are modelled with relative pose
measurements which have an offset from the trajectory. Only the Gaussian model will be
used to test the effect of the mean and variance of bad initial guesses.

1.3 Contributions

By answering the research questions, this thesis will contribute an accelerated ADMM algo-
rithm for solving distributed PGO. It has been shown to be more efficient in select situations.
Through the creation of this algorithm, a set of choices was found which produce an effective
accelerated multi-block ADMM algorithm. By doing so, a starting point for future research
is created and insight was gained for points of improvement. The proposed N-ADMM al-
gorithm provides a better choice for practical applications in distributed PGO. In the worst
case scenario, performance is roughly equal to the plain ADMM iterations. However, in the
best case scenario, efficiency can be much improved. The main drawback of plain ADMM
for distributed PGO is its slow convergence to high accuracy. This thesis contributes a good
alternative to the plain ADMM algorithm which can mitigate this drawback significantly.
The many advantages of ADMM, e.g. accuracy, parallelization and minimal information ex-
change, can now be more easily leveraged in practical distributed applications. Furthermore,

L. Bosland Master of Science Thesis

1.3 Contributions 5

by creating the N-ADMM algorithm, a multi-block application for the stabilizing framework
of [22] is provided.

Furthermore, this thesis compares the performance of the N-ADMM algorithm and the plain
ADMM algorithm with the state of the art. Through this comparison, the need for further
analysis into the properties of the pose graphs became apparent. While it has been shown
that N-ADMM is more efficient in certain scenarios, little is known on the specifics of these
scenarios. To investigate this, this thesis contributes two models. Based on these models,
datasets with varying characteristics were created. By performing PGO on the resulting
datasets, this thesis has investigated the effects of bad initial guesses and graph size. However,
no correlation was found for the size of the graph and the relative effectiveness between N-
ADMM and plain ADMM. Furthermore, while a correlation was found between poor initial
guesses and efficiency, there was no apparent gap between the performance of N-ADMM
and ADMM. Further research is necessary to find the exact scenarios in which N-ADMM
outperforms ADMM.

In short, this thesis contributes the following:

• Creation of the N-ADMM algorithm by combining and extending current literature.

• Comparison of N-ADMM and ADMM [6] with the state of the art.

• New models for more extensive testing.

• Multi-block application for stabilizing framework [22].

These contributions will be revisited in Chapter 6.

Master of Science Thesis L. Bosland

6 Introduction

L. Bosland Master of Science Thesis

Chapter 2

Distributed pose graph optimization
(PGO)

Classically, the simultaneous localization and mapping (SLAM) problem has been approached
through filtering based solutions. However, the paradigm has shifted towards optimization
based SLAM in recent years. Optimization based SLAM reformulates the problem with the
use of pose graphs [8]. Here, a pose graph is constructed by representing the poses as nodes
in the graph and the relative pose measurements as edges. Pose graph optimization (PGO)
methods have many advantages in solving SLAM. First, they scale well with larger maps
[7, 9]. Second, existing optimization methods can be leveraged in PGO. Since distributed
optimization is an active field of research and many methods exist [10, 11], it is especially
useful to use PGO and leverage the available methods for solving distributed SLAM problems.
This thesis considers the distributed problem. Third, PGO has been shown to be more
accurate than filtering based SLAM [9]. Lastly, PGO is a fast, general and robust method
to solve SLAM [12]. For these reasons, this thesis will use PGO. This thesis will solve the
distributed problem for the reasons stated in the introduction and in Section 2.2. For a
graphical representation of PGO and the connection with the SLAM problem, the reader is
referred to Appendix A.

First, centralized PGO will be discussed in Section 2.1 to introduce the theory. Then, in
Section 2.2 a distributed formulation of the PGO problem will be given. This is the separator
based splitting formulation [6]. For the elimination formulation of the problem the reader is
referred to [15, 16, 17]. This thesis will use the splitting formulation for the reasons stated in
Section 2.2. The closest related works [6, 14, 13] also use this formulation.

Master of Science Thesis L. Bosland

8 Distributed pose graph optimization (PGO)

2.1 Centralized PGO

In this section, the structure of PGO will be discussed. Pose graphs are a special type of factor
graph [8] where poses correspond to the nodes V in the graph. The measurements between the
poses are represented by the edges E . Together, they form the directed [24] graph G = {V, E}.
For a graphical representation and further information, the reader is referred to Appendix A.

A pose consists of its translation ti ∈ Rn and its rotation Ri ∈ SO(n). The group

SO(n) = {R ∈ Rn×n : RTR = In, det(R) = 1} (2.1)

is the special orthogonal group for n dimensions [25, 26]. A pose corresponding to a node
Vi will be denoted with xi. Furthermore, xi = {Ri, ti} and xi ∈ SE(n). All poses combined
form the trajectory of the robot x = [x1, x2, · · · , xn]. The special Euclidean group SE(n) is
defined as follows [25]:

SE(n) =
{[

R t
0 1

]
: R ∈ SO(n), t ∈ Rn

}
. (2.2)

A relative pose measurement belonging to edge Eij ∈ SE(n) between nodes i and j is denoted
with xij . Relative pose measurements are fully described [27] by a relative rotation Rij and
a relative translation tij through

xij

{
tij = RTi (tj − ti) + tεij

Rij = RTi RjR
ε
ij

. (2.3)

Here, the matrices tεij and Rεij represent the measurement noise on the translation and the
rotation respectively.

With these preliminaries an optimization problem

min
Ri∈SO(n)
ti∈Rn

∑
(i,j)∈E

distRn(tij , RTi (tj − ti))2 + distSO(n)(Rij , RTi Rj)2 (2.4)

is stated [27, 28]. Optimization problem (2.4) formulates the aim to estimate the poses
by minimizing the mismatch between the poses xi = {Ri, ti} and the measurements xij =
{Rij , tij}, ∀Eij ∈ G. Details on the distance functions dist(·, ·) will be given below. Opti-
mization problem (2.4) is acquired through the maximum likelihood estimate [14, 28]. The
resulting estimated poses x? are the poses which minimize the objective function. The con-
straint Ri ∈ SO(n) ensures that all matrices Ri which minimize (2.4) must be rotation
matrices that adhere to (2.1). Finding a solution for (2.4) is complex because the constraint
Ri ∈ SO(n) makes the optimization problem nonconvex [24, 29].

In (2.4) the functions dist(·, ·) denote various distance metrics. The function distRn(·, ·)
denotes the Euclidean distance

distRn(tij , RTi (tj − ti)) = ‖RTi (tj − ti)− tij‖ (2.5)

L. Bosland Master of Science Thesis

2.1 Centralized PGO 9

between translations, with the 2-norm denoted as ‖·‖ [27]. The aim to minimize the mismatch
between the measurement on the translation tij and the relative translation between the poses
i and j is clear from this equation. If minimization (2.4) was not dependent on the rotations,
this minimization would simply reduce to a linear least squares problem. This highlights that
the complexity lies in estimating the rotation matrices.

In this thesis, the function distSO(n)(·, ·) denotes the angular distance

distSO(n)(Ra, Rb) = ‖Log(RTaRb)‖ = ‖Log(RTb Ra)‖, (2.6)

with Log(·) denoting the logarithm map of a rotation matrix [27, 30]. The angular distance
will be used to solve terms distSO(n)(·, ·) as this is the metric which the GTSAM [18] and g2o
[19] libraries use. These libraries will be used to implement the algorithm proposed by this
thesis. Other metrics, e.g. chordal distance or quaternion distance, have also been used to
minimize (2.4) [27].

One way to minimize (2.4) is to first estimate the rotations and use the found rotations to
initialize the minimization [14]. This approach is motivated by, among other reasons detailed
in [27], the fact that (2.4) then reduces to two least squares problems, one of which is linear.
If the rotation matrices are found in an efficient way, problem (2.4) is effectively solved.
Moreover, if chordal relaxation [31] is used, problem (2.4) can be further simplified when
additional approximations are applied. This is the approach of the closely related work [14].
Other approaches in finding rotation matrices to initialize optimization problem (2.4) are,
among others, Riemannian gradient descent [26], semidefinite programming relaxation [32],
the single loop solution [33, 34, 35] and quaternion relaxation [36] However, in this thesis,
these approximations will not be applied and the nonconvex optimization problem will be
solved directly. It is expected that this will produce more accurate results.

In SLAM problems, one has no prior knowledge of the map. However, to implement the
theory using the GTSAM [18] and g2o [19] libraries, a prior is needed. The map will not be
anchored without this prior. In practice, one node is used as a prior which is set to have zero
translation and zero rotation. One prior is enough to ensure observability of the global frame
[6]. Using these assumptions, the set of poses that minimize (2.4) can be acquired through
the nonconvex minimization

x? = argmin
x∈SE(n)

∑
(i,j)∈E

∥∥∥Log
(
x−1
ij x

−1
i xj

)∥∥∥2

Ωij

+
∑
i∈P

∥∥∥Log
(
x̄−1
i xi

)∥∥∥2

Φij

= argmin
x∈SE(n)

f(V, E ,P),
(2.7)

with estimated poses x?, priors x̄i and information matrices Ωij and Φij [6]. The function
f(V, E ,P) is the objective function of the PGO problem. The set of priors is denoted with P
and has size 1 in most cases. Information matrices Ωij and Φij are related to the measurement
covariance. The notation ‖v‖2Ω = vTΩv is used. The first sum of (2.7) is equal to the sum in
(2.4) through the properties of the groups SO(n) and SE(n) [26]. Note that (2.7) includes
a prior, whereas (2.4) does not. Results of a method which uses an approximation of the
problem and the results of the methods which solve the nonconvex problem directly will be
compared in Section 5.1.

Master of Science Thesis L. Bosland

10 Distributed pose graph optimization (PGO)

This concludes the discussion of the standard PGO formulation, which will be referred to as
the centralized PGO formulation. Accordingly, optimization problem (2.7) is the centralized
PGO problem. A distributed formulation of PGO will be discussed in the next section.

2.2 Distributed PGO: splitting formulation

While the solvers in the libraries GTSAM [18] and g2o [19] acquire good results for centralized
PGO problems, they do not perform well when the number of variables in the graphs grows
large. The memory requirement can grow quadratically with the size of the graph, resulting
in poor performance [6]. One can use iterative solvers [37, 38] to combat this issue. Here,
the memory demand will only scale linearly with the number of variables. Still, the memory
demand will always reach a limit [6], which means the area that can be mapped using cen-
tralized PGO is limited. One could distribute this demand over multiple units, i.e. processors
or multiple robots, in order to increase the area that can be mapped using PGO. An added
advantage of using multiple robots is that they can cover a larger area than one robot when
given the same amount of time [5]. Furthermore, if one unit runs into a problem, e.g. a robot
crashes or there is an error with one of the processors, the task will not be abandoned if the
functional units take this task over [5]. This provides robustness to the system as a whole.

The distributed approach asks for a reformulation of (2.7). Traditionally, the problem is
reformulated with the use of elimination [15, 16, 17]. However, methods that use elimination
have to rely on linearization and are computationally expensive due to the induction of dense
cliques [6]. The problem can also be reformulated with the use of separators. Using separators
to reformulate the problem is beneficial because this does not require extensive bookkeeping
of linearization points. Another advantage is that the sparsity of the original problem is
preserved when the problem is reformulated with the use of separators. Furthermore, it has
a straightforward connection to factor graphs, which means existing factor graph optimizers
can be leveraged [6]. The factor graph optimizers which are included in the GTSAM [18]
library can be used for this cause. Due to the reasons stated above, the graphs will be split
using separators in this thesis and the problem will reformulated accordingly.

The separator method [6, 14] splits the graph into smaller subgraphs, which is illustrated in
Figure 2.1. This figure shows an example of a pose graph with trajectory [x1, x2, . . . , x9], which
is split into two smaller subgraphs over the separating nodes x2, x5 and x8. Both subgraph 1
and subgraph 2 will hold a copy of the separator. For example, subgraph 1 and subgraph 2
hold copies x1

2 and x2
2 of separating node x2 respectively. The separating nodes, in this case

{x2, x5, x8}, will be referred to as the separators.

The separator method allows for distribution of the tasks of computation and data gathering.
For example, one processor performs computations on subgraph 1 and the other processor
performs computations on subgraph 2. This can be done through parallelization, which will be
addressed in Chapter 3. The option to use parallelization is a major advantage of distributed
PGO. The distribution of tasks is also possible in multi-robot systems because one robot
can gather the measurements of subgraph 1 and another robot can gather measurements of
subgraph 2. If these robots have processing units, they can perform calculations in parallel.
This is not possible with the centralized PGO formulation because subgraphs cannot easily
be merged.

L. Bosland Master of Science Thesis

2.2 Distributed PGO: splitting formulation 11

Figure 2.1: Examples of the centralized and distributed pose graphs. Poses xi are represented
as nodes in the graph, the relative pose measurements xij are represented as the edges. A copy
of separator s in subgraphs g is denoted as xs

g

After the graph is a split, a subgraph will now contain a subset of poses, measurements and
priors of the original graph. The subset of poses corresponding to the nodes Vg of a subgraph
g ∈ {1, 2, . . . , N} = G will be denoted with xg. Here, the variable N denotes the number of
subgraphs. Moreover, the subset of relative pose measurements corresponding to the edges
of a subgraph g will be denoted with Eg. Lastly, the subset of priors belonging to a subgraph
g is denoted as Pg. This subset can be empty.

Each separator xs, with s ∈ {1, 2, . . . , S} = S, has copies xsi and xsj in subgraph i and j
respectively. The variable S denotes the number of separators. In the separator method,
measurements and priors are divided over the subgraphs and therefore {E1 ∪ . . . ∪ EN} = E
and {P1 ∪ . . . ∪ PN} = P. However, because separating nodes are copied in the respective
subgraphs {V1∪ . . .∪VN} > V [6]. The formulation of the problem, which is acquired through
the separator method, will be referred to as the distributed PGO formulation.

Now, the optimization problem can be stated for the distributed PGO formulation as

argmin
x1,...,xN∈SE(n)

N∑
g=1

f(Vg, Eg,Pg)

subject to Log((xsi)−1xsj) = 0, ∀s ∈ S,

(2.8)

with the objective function f(Vg, Eg,Pg) as in (2.7). A zero vector of appropriate size is
denoted 0. Moreover, a constraint is introduced to enforce that the translation and rotation
of copies xsi and xsj are identical. This constraint ensures that the estimated positions acquired
through distributed PGO will be roughly equal to the estimated positions acquired through
centralized PGO. This will be shown empirically in Section 5.1. Subgraphs will drift relative to
each other if no constraint is added to optimization problem (2.8). Because the subgraphs are
connected through their separators, all subgraphs will be anchored if there is a prior in at least
one subgraph. Generally, distributed PGO problems have N > 2 and multi-block algorithms

Master of Science Thesis L. Bosland

12 Distributed pose graph optimization (PGO)

will be necessary to perform optimization for the problems. A multi-block formulation will
be discussed in Section 3.1.2.

The advantage of the distributed formulation of PGO is that the problem can be broken into
smaller subproblems. Distributed PGO is a fully separable optimization problem [39] which
means distributed optimization methods, e.g. splitting methods [10], can be used. These
methods allow for parallelization over different processing units. Moreover, they allow for
computations on datasets which are gathered by groups of robots. The centralized formulation
does not allow for the combining of maps and cannot handle such datasets. Combining maps
is naturally done through the separators in the distributed PGO formulation. For the multi-
robot formulation of distributed PGO the reader is referred to [14]. Apart from notation, this
multi-robot formulation is equivalent to the formulation stated in this section.

One splitting method is the alternating direction method of multipliers (ADMM). It has
been applied in [6] for distributed PGO. ADMM can solve separable, convex optimization
problems. However, distributed PGO is a separable nonconvex optimization problem. Due to
the nonconvex properties of distributed PGO, no convergence guarantees can be provided in
[6]. The method in [6] is furthermore slow to converge to high accuracy. This thesis aims to
expand the algorithm and introduce Nesterov acceleration [21] to speed up the convergence
of ADMM in distributed PGO problems. Furthermore, the algorithm will be expanded with
the globally convergent framework of [22] to ensure this convergence. This thesis will first
discuss ADMM and the implementation of [6] in Chapter 3 before introducing the proposed
Nesterov accelerated algorithm in Chapter 4.

L. Bosland Master of Science Thesis

Chapter 3

Alternating direction method of
multipliers (ADMM) for distributed

PGO

In this thesis, the alternating methods of multipliers (ADMM) [20] will be used to solve
distributed pose graph optimization problems (PGO). ADMM is a widely used distributed
optimization method due to its simple implementation. It can be applied in a wide range
of distributed optimization problems, distributed PGO being among them [6]. It further-
more allows for parallelization, which distributes the computational load over the available
units and performs the iterations in parallel for each subproblem. It allows for a practical
implementation in multi-robot platforms as information exchange is minimal with ADMM
[6]. Furthermore, the sparsity of the PGO problem is preserved and no approximations of the
problem are necessary. It solves the nonconvex problem directly and is suspected to be more
accurate for this reason.

First, a brief introduction to duality will be provided as it is the basis of ADMM. This intro-
duction has been provided because the terminology will be used throughout this thesis. Then,
in Section 3.1.1, the basic iterations of ADMM will be introduced for a standard separable
optimization problem. If an optimization problem is separable the objective function consists
of the sum of N functions. The ADMM iterations corresponding to an optimization problem
with N = 2 will first be addressed in Section 3.1.1. The following section, Section 3.1.2, will
address the multi-block ADMM iterations for the case with N > 2. Then, Section 3.2 will
discuss the ADMM solution of [6] for the distributed PGO problem (2.8). The algorithm in
Section 3.2 will provide the basis for the Nesterov accelerated ADMM (N-ADMM) algorithm
as proposed in Chapter 4.

Master of Science Thesis L. Bosland

14 Alternating direction method of multipliers (ADMM) for distributed PGO

3.1 ADMM

In this section, the ADMM algorithm for general optimization problems will be discussed.
The ADMM algorithm is a splitting scheme [10] which performs optimization on the dual
formulation of an optimization problem. This dual formulation of the problem is called the
dual problem. A general structure for formulating the dual problem is given in [40]. Here, a
general optimization problem

minimize
x

f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m
hi(x) = 0, i = 1, . . . , p

(3.1)

with x ∈ Rn, objective function f0, inequality constraints fi and equality constraints hi is
stated and will be referred to as the primal problem. No assumption is made on the convexity
of optimization problem (3.1) in [40].

To define the dual problem, a Lagrangian function L (·) is stated as

L (x, λ, ν) = f0(x) +
m∑
i=1

λifi(x) +
p∑
i=1

νihi(x). (3.2)

with dual variables λi and νi. The dual problem can then be defined as

maximize
λ,ν

inf
x

L (x, λ, ν)

subject to λ ≥ 0
. (3.3)

The objective of the dual problem (3.3) is called the dual function. Functions (3.1) and (3.3)
can be used to evaluate the quality of a solution to the optimization problem. To analyse the
quality of a solution, the optimal value of (3.1) is denoted as p? and the optimal value of (3.3)
is denoted as d?. A value called the optimality duality gap can then be determined by p?−d?.
Strong duality is implied when p? = d?, which is the case for convex problems. Otherwise,
p? ≤ d? and weak duality holds. The duality gap has been used in the works [12, 24, 28] to
evaluate the quality of solutions in PGO problems.

3.1.1 ADMM iterations

Now that the dual formulation of an optimization problem is defined, the ADMM iterations
can be introduced. For the ADMM iterations a separable optimization problem

minimize
(x,z)

f(x) + g(z)

subject to Ax+Bz = b
(3.4)

is considered [20]. Here, x ∈ Rn, z ∈ Rm, A ∈ Rp×n, B ∈ Rp×m and b ∈ Rp. Furthermore, it
is assumed that f and g are convex functions.

L. Bosland Master of Science Thesis

3.1 ADMM 15

ADMM has its roots in the method of multipliers, a method which optimizes the augmented
Lagrangian [20]. For optimization problem (3.4) the augmented Lagrangian becomes

Lρ(x, z, y) = f(x) + g(z) + yT (Ax+Bz − b) + ρ

2‖Ax+Bz − b‖2, (3.5)

with the dual variables y ∈ Rp. The Lagrangian has been augmented with the penalty factor
ρ in (3.5), which is also referred to as the ρ-augmented Lagrangian.
The ADMM iterations [20] are now stated as

x(k + 1) := argmin
x

Lρ (x, z(k), y(k)) (3.6a)

z(k + 1) := argmin
z

Lρ (x(k + 1), z, y(k)) (3.6b)

y(k + 1) := y(k) + ρ (Ax(k + 1) +Bz(k + 1)− b) . (3.6c)

Here, the iterations have initial condition y(0) = 0. First, the variables x and z are updated
with the minima of the augmented Lagrangians in equations (3.6a) and (3.6b). Then, the dual
variables are updated in (3.6c). Steps (3.6a) and (3.6b) are referred to as the primal updates
and step (3.6c) is referred to as the dual update. These ADMM iterations can be seen as the
method of multipliers where the joint minimization step is replaced with a Gauss-Seidel step
[20]. The ADMM algorithm allows for separable problems because the minimization step is
split in this way.
Iterations (3.6) can be rewritten in the scaled form

x(k + 1) := argmin
x

(
f(x) + ρ

2 ‖Ax+Bz(k)− b+ u(k)‖2
)

(3.7a)

z(k + 1) := argmin
z

(
g(z) + ρ

2 ‖Ax(k + 1) +Bz − b+ u(k)‖2
)

(3.7b)

u(k + 1) := u(k) +Ax(k + 1) +Bz(k + 1)− b, (3.7c)

where u = y/ρ denotes the scaled dual variable [20]. The scaled formulation will be used in
this thesis and is used in the ADMM approach to distributed PGO given in [6]. This ADMM
approach to distributed PGO will be discussed in Section 3.2 and will form the basis for the
proposed algorithm in Chapter 4.
The connection between the ADMM approach and the closely related works of [14, 13] is
clear here as well. As stated before, the algorithm can be seen as a Gauss-Seidel approach to
the method of multipliers, thus connecting the ADMM approach to distributed Gauss-Seidel
(DGS) method of [14]. Furthermore, the minimization steps are variants of the proximal
operator [20]. For example, if (3.7a) is rewritten as

x(k + 1) = argmin
x

(
f(x) + ρ

2 ‖Ax− v‖
2
)
, (3.8)

with v = −Bz + c − u, it is clearly visible that the righthand side is equal to the prox-
imal operator [39] of f when A = I. This connects the ADMM approach to accelerated
majorization-minimization (AMM) method of [13] as both methods are related to the proxi-
mal operator.

Master of Science Thesis L. Bosland

16 Alternating direction method of multipliers (ADMM) for distributed PGO

3.1.2 Multi-block ADMM

One more formulation of the ADMM algorithm is relevant to this thesis, namely the multi-
block formulation. For objective functions that are separable in more than two functions the
multi-block variation is needed. These kinds of objective functions take the following form
[41]:

min
x1,x2,...,xN

N∑
i=1

fi (xi)

subject to
N∑
i=1

Aixi = b.

(3.9)

Here, the functions fi(·) are assumed to be convex functions. The corresponding augmented
Lagrangian is given in [23] as

Lρ (x1, . . . , xN , y) =
N∑
i=1

fi (xi)− yT
(

N∑
i=1

Aixi − b
)

+ ρ

2

∥∥∥∥∥
N∑
i=1

Aixi − b
∥∥∥∥∥

2

. (3.10)

Optimization problem (3.9) has been solved through variable splitting ADMM [11], Gauss-
Seidel ADMM [42] or Jacobi ADMM [43]. The variable splitting ADMM approach increases
the number of constraints and variables considerably for large N . This approach is considered
to be inefficient [41]. Solving problem (3.9) through the Gauss-Seidel ADMM approach has
proven to be more efficient, but does not allow for parallelization and may not converge for
N ≥ 3. However, empirical results have shown that it is effective for a wide range of problems
[41]. The Jacobi ADMM approach to solving problem (3.9) does allow for parallelization, at
the cost of being more likely to diverge [41]. For these reasons, the choice has been made to
select the Gauss-Seidel ADMM approach for the proposed algorithm in Chapter 4. This is
also the approach used in [6] to solve distributed PGO.

The Gauss-Seidel ADMM approach solves (3.9) through the following iterations [41]:

xi(k + 1) = argmin
xi

Lρ (x1(k + 1), . . . , xi, . . . , xN (k), y(k)) , ∀i ∈ {1, 2, . . . , N} (3.11a)

y(k + 1) = y(k)− ρ
(

N∑
i=i

Aixi(k + 1)− b
)
. (3.11b)

Here, the primal update (3.11a) is performed sequentially for all xi ∈ {x1, x2, . . . , xN} before
performing the dual update (3.11b). For variable splitting ADMM and the Jacobi ADMM
the reader is referred to [41]. In this report, Gauss-Seidel ADMM will simply be referred to
as ADMM.

3.2 ADMM for distributed PGO

With the formulations of ADMM as described in Section 3.1, it is clear that a solution to
problem (2.8) can be found with this method. Splitting schemes like ADMM [6] or the AMM

L. Bosland Master of Science Thesis

3.2 ADMM for distributed PGO 17

scheme of [13] are suitable for solving problem (2.8) due to their simple and intuitive im-
plementation. Furthermore, it is known that these methods reach, for many applications,
an acceptable accuracy in a few iterations. However, they are also known to have slow
convergence to a high accuracy solution. This can be helped by parallelization where the
minimization steps of the algorithm are run simultaneously across platforms, or even across
cores of the same computer. This is one of the advantages of solving the distributed prob-
lem instead of the centralized problem. Minimal information exchange between platforms
is needed as it is a memory efficient approach [6]. This thesis work, along with the closely
related works [6, 14, 13], have the advantage of being memory efficient and thus allows paral-
lelization across multi-robot platforms. Other methods [15, 16, 17] rely on elimination, which
is computationally expensive. Furthermore, they work with linearization points, which can
introduce further problems [6]. Lastly, ADMM works directly in the nonlinear domain and it
preserves the sparsity structure of the original graph [6].

For the reasons above, this thesis work uses ADMM as a solution for distributed PGO. To
combat the slow convergence, the ADMM approach will be extended with Nesterov accelera-
tion [21, 23] in Section 4.1. Note that in order to introduce parallelization to ADMM, a Jacobi
approach should be considered instead of the Gauss-Seidel approach considered in this thesis
[41]. Transcribing the formulations in this chapter to the Jacobi ADMM approach should
not form problems, but the study of its convergence will be left for further work. Lastly, no
convergence guarantees are given in [6]. This thesis aims to ensure convergence by expanding
the algorithm of this section with the stabilizing framework of [22]. This expansion is given
in Section 4.2. In this section, the ADMM solution to distributed PGO as introduced in [6]
will be given.

First, the augmented Lagrangian, corresponding to optimization problem (2.8) is stated as

Lρ(x1, . . . , xN) =
N∑
g=1

f (Vg, Eg,Pg) +
∑
s∈S

(ys)T Log
(
(xsi)

−1 xsj

)
+
∑
s∈S

ρ

2

∥∥∥Log
(
(xsi)

−1 xsj

)∥∥∥2
,

(3.12)
with y = [(y1)T · · · (ys)T · · · (yS)T]T denoting the vector which stacks all Lagrange multipliers.
The vector ys denotes the dual variables that correspond specifically to separator s. Prob-
lem (2.8) is a multi-block problem (3.9) with Aixi = 0 ∀ i. If the expressions of (3.9) are
substituted into the augmented Lagrangian (3.10), equation (3.12) is acquired. One notable
difference between (3.10) and (3.12) is that the dual variables ys are included in the sum in
the second term of (3.12) instead of using the stacked vector as in (3.10). This is a choice for
ease in implementation but constitutes the same result. Optimization problems of this form
are closely related to the consensus problem as discussed in [20].

In work [6] the ADMM iterations for PGO are given as

xg(k + 1) = argmin
xg∈SE(n)

Lρ (x1(k + 1), . . . , xg, . . . , xN (k), y(k)) ,∀g ∈ G (3.13a)

y(k + 1) = y(k) +∇y(k)Lρ (x1(k + 1), . . . , xN (k + 1), y) , (3.13b)

with ∇y(k)Lρ (·) the gradient of Lρ (·) evaluated at y(k) with respect to y. Primal updates
(3.13a) are performed sequentially for every subgraph before applying the dual update (3.13b).
In work [6], only two dimensions are considered and n = 2. Some simplification is applied to

Master of Science Thesis L. Bosland

18 Alternating direction method of multipliers (ADMM) for distributed PGO

the problem in [6]. First, constants are taken out in the minimization of the Lagrangian and
it is rewritten using the scaled form as in (3.7). The primal updates (3.13a) then become

argmin
xi∈SE(n)

f(Vi, Ei,Pi) +
∑
s∈Si

ρ

2

∥∥∥∥Log
(
(xsi)

−1 xsj(k)
)

+ ys

ρ

∥∥∥∥2
, (3.14)

with Si the set of separators belonging to subgraph i. In (3.14), the augmented Lagrangian
is minimized. Any factor graph optimizer [18] can be used for the minimization in (3.14).
Common optimizers are the Gauss-Newton method, the Levenberg–Marquardt method or the
Lagrangian global optimizer which are included in the GTSAM [18] library. Lastly, the dual
update (3.13b) is simplified as

ys(k + 1) = ys(k) +
∑

s∈xs
i ,x

s
j

Log
(
(xsi (k + 1))−1xsj(k + 1)

)
︸ ︷︷ ︸

bs

, ∀s ∈ S. (3.15)

and is performed sequentially for every separator. This formulation allows for parallel compu-
tation by splitting the dual update over the separators. One processing unit can now perform
the primal update for a given subgraph and sequentially perform the dual update for the
separators belonging to this subgraph. However, communication would be necessary between
these units during an iteration. The underbraced term is equal to the term ∇y(k)Lρ (·) in
(3.13b) [6] and will be denoted bs for convenience. In the underbraced term, the sum is
executed over all subgraphs that include separator xs.

The PGO problem is inherently nonconvex [24, 29]. Moreover, no convergence proofs are
available for both the centralized and distributed formulation. However, PGO has been
shown to be well-behaved in terms of convergence. An analysis into this behaviour has been
performed in the works [28, 44]. In this thesis, ADMM is used to perform optimization on the
multi-block distributed PGO problem. Convergence of ADMM for convex problems has been
studied extensively [20]. These studies on convergence were extended to the nonconvex case
in, among other works, [22, 45, 46, 47]. Studies for the convex multi-block case have been
done in [41, 48]. While no convergence guarantees for ADMM are available for the multi-block
nonconvex case, it has shown promising results as is clear from [6] and Chapter 5.

In this chapter, an ADMM algorithm [6] was introduced which solves the distributed PGO
problem. Furthermore, a theoretical connection between ADMM and the closely related
methods DGS [14] and AMM [13] was shown. In the next chapter, Nesterov acceleration
will be implemented in the ADMM and the necessary adaptations will be discussed. The
N-ADMM algorithm that this thesis proposes will be introduced in Section 4.3.

L. Bosland Master of Science Thesis

Chapter 4

Nesterov accelerated ADMM
(N-ADMM) for distributed PGO

To summarize results of Chapters 2 and 3, this thesis aims to perform optimization on the
distributed pose graph optimization (PGO) problem

argmin
x1,...,xN∈SE(n)

N∑
g=1

f(Vg, Eg,Pg)

subject to Log((xsi)−1xsj) = 0, ∀s ∈ S,

(4.1)

for which a solution was given in Chapter 3 through the alternating direction method of
multipliers (ADMM). The ADMM iterations

xg(k + 1) = argmin
xg∈SE(n)

Lρ (x1(k + 1), . . . , xg, . . . , xN (k), y(k)) ,∀g ∈ G (4.2a)

ys(k + 1) = ys(k) + bs ,∀s ∈ S (4.2b)

were given in Section 3.2 as a solution for optimization problem (4.1). Here, the augmented
Lagrangians are calculated through

Lρ(·) = f(Vi, Ei,Pi) +
∑
s∈Si

ρ

2

∥∥∥∥Log
(
(xsi)

−1 xsj(k)
)

+ ys

ρ

∥∥∥∥2
. (4.3)

Iterations (4.2) converge slowly and no convergence guarantees were provided in [6]. This
thesis attempts to solve these issues for the ADMM approach to distributed PGO.

First, Nesterov acceleration will be implemented in Section 4.1. Then, to stabilize iterations,
a stabilizing framework will be added in Section 4.2. Lastly, the proposed algorithm, which
combines the choices that were made in this thesis, shall be stated in Section 4.3. The

Master of Science Thesis L. Bosland

20 Nesterov accelerated ADMM (N-ADMM) for distributed PGO

adaptations that were made to enable the implementation of acceleration and the stabilizing
framework will be discussed throughout this chapter. Iterations (4.2) provide a starting point
on which the building blocks of the proposed algorithm will be added.

4.1 Acceleration

Acceleration can be added in various ways [22]. For this thesis, the choice has been made for
Nesterov acceleration [21] as it can acquire a provably optimal convergence rate of O(1/k2)
[22, 23]. Multi-block optimization methods need to be used on the distributed PGO problem
because it is an optimization problem (3.9) with N ≥ 2. Therefore, the theory of [22] cannot
be used directly as it assumes N = 2.

In the work [23], Nesterov acceleration has been proposed for the general optimization problem
(3.9) with N ≥ 2. For performing optimization on the distributed PGO problem, the iterative
scheme of [23] is rewritten and combined with the ADMM iterations (4.2) to acquire

α(k + 1) = 1
2 + 1

2

√
1 + 4α(k)2 (4.4a)

xg(k + 1) = argmin
xg∈SE(n)

Lρ (x1(k + 1), . . . , xg, . . . , xN (k), y(k)) , ∀g ∈ G (4.4b)

ys(k + 1) = ŷs(k) + bs

ŷs(k + 1) = ys(k + 1) + α(k)−1
α(k+1)

(
ys(k + 1)− ys(k)

) , ∀s ∈ S. (4.4c)

Algorithm (4.4) first calculates a coefficient α(k+1) in (4.4a), which is later used to calculate
the correction term ŷs for the dual update. The primal update (4.4b) is performed with the
augmented Lagrangian as in (3.14). The correction term x̂i of [23] can be left out in the
primal update because distributed PGO is an optimization problem (3.9) with Aixi = 0 ∀ i.
Nesterov acceleration is applied in the dual update (4.4c) by replacing ys(k) in (4.2) with
a corrected term ŷs(k), which has been calculated in the previous step. In the dual update
(4.4c), ys(k+ 1) and ŷs(k+ 1) are sequentially computed for every separator. Iterations (4.4)
have starting conditions ŷs(0) = 0 and α(0) = 1 [13].

When this framework is used to perform optimization on the distributed PGO problem,
solutions tend to diverge. Results on this divergent behaviour are given in Figure B.1 in the
appendix. To stabilize the iterations of scheme (4.4) and provide convergence, a stabilizing
framework must be introduced. A stabilizing framework for ADMM is given in [22]. Here,
global convergence guarantees are provided for optimization problems (3.4) with nonconvex
and nonsmooth f(x) and g(z). This report hopes to extend this stabilizing framework to the
multi-block optimization problem (3.9) as is given in the recommendations for future work in
[22].

4.2 Stabilizing framework

In this section, iterations (4.4) will be extended with the stabilizing framework of [22]. To
make this framework fit to the distributed PGO problem, some adaptations have been made.

L. Bosland Master of Science Thesis

4.2 Stabilizing framework 21

These adaptations will be discussed below. The framework of [22] has been chosen as it
promises convergence guarantees for nonconvex, separable optimization problems. Because
distributed PGO is a nonconvex, separable optimization problem, the framework of [22] is
suited for the algorithm which this thesis proposes.

Iterations (4.4) are extended with the framework as described in [22] to acquire

1 : τ(k) = 1
2 : α(k + 1) = 1

2 + 1
2
√

1 + 4α(k)2

3 : xg(k + 1) = argmin
xg∈SE(2)

Lρ (x1(k + 1), . . . , xg, . . . , xN (k), y(k)) , ∀g ∈ G

4 :
ys(k + 1) = (1− τ(k))ys(k) + τ(k)ŷs(k) + bs

ŷs(k + 1) = ys(k + 1) + α(k)−1
α(k+1)

(
ys(k + 1)− ys(k)

) , ∀s ∈ S
5 : if Lρ (x1(k + 1), . . . , xN (k + 1), y(k + 1)) ≤ Lρ (x1(k), . . . , xN (k), y(k))− σ‖b‖2

then
k = k + 1 go to step 1

else
τ(k) = τ(k)

2 go to step 2,
(4.5)

with convexity number σ and a factor τ(k), which will be discussed below. The steps of
the iterations have been numbered to facilitate jumps to other steps. Starting conditions are
stated in the previous sections. Furthermore, the vector b = [(b1)T · · · (bs)T · · · (bS)T]T . Note
that the framework of [22] was adapted to suit the multi-block distributed PGO scenario.
The Lagrangians are computed accordingly. Moreover, distributed PGO is an optimization
problem (3.9) with Aixi = 0 ∀ i. Consequently, the term −σ‖b‖2 is used in the condition of
step 5. The updates of [22] are replaced with the updates as in (4.4). Therefore, the dual
update is performed only once in step 4. To implement the framework of [22], a factor τ(k) is
introduced to balance between the plain iterations (4.2) and accelerated iterations (4.4). This
factor τ(k) is discussed below. Furthermore, the penalty factor update rule of [22] updates
the values for ρ and σ. However, this penalty factor update rule will not be used as this rule
has destabilized the iterations in testing. Instead, the penalty factor update of [20] will be
used as discussed in Section 4.3. Since no update rule for σ is present in (4.5), σ will simply
be a constant.

To extend (4.4) with the framework of [22], a variable τ(k) is introduced to balance between
the corrected updates ŷs(k + 1) = ŷs(k) + bs if τ(k) = 1 and the plain updates ys(k + 1) =
ys(k) + bs if τ(k) = 0. In other words, for τ(k) = 1 steps 2, 3 and 4 will be equal to
iterations (4.4) and for τ(k) = 0 steps 2, 3 and 4 will be equal to iterations (4.1). If the
Nesterov accelerated iterations do not cause a decrease on the augmented Lagrangian larger
than σ‖b‖2, variable τ(k)→ 0 and the algorithm will revert to the plain ADMM iterations.

If the condition in step 5 of (4.5) is not met, τ(k) is decreased and the algorithm goes back to
step 3. However, at certain iterations the condition in step 5 is never met even as τ(k)→ 0.
Hence, in this form the rule of step 5 can cause the algorithm to get caught in an infinite loop
which never converges to a solution. To avoid this infinite loop, the rule of step 5 has been
extended with a limit on the number of times this condition is not met per iteration. This
adaptation is discussed in Section 4.3.

Master of Science Thesis L. Bosland

22 Nesterov accelerated ADMM (N-ADMM) for distributed PGO

4.3 Proposed algorithm

In order to make the framework of [22] suitable for solving distributed PGO problems, the
penalty factor update rule of [22] will not be included in the proposed algorithm. Instead, the
penalty factor update rule of [20] will be implemented. In testing, the penalty factor update
rule of [22] has shown to destabilize solutions as the penalty factor will tend towards infinity
as the iteration number increases. The penalty factor update rule of [20] is

ρ(k + 1) =


γρ(k) if pres > µdres
1
γρ(k) if dres > µpres
ρ(k) otherwise,

(4.6)

with pres and dres the primal and dual residual respectively. The method to determine the
value of the residuals will be discussed below and is calculated through (4.8). Parameters
γ > 1 and µ > 1 can be chosen as desired.
Based on the choices and considerations made in this thesis, the following Nesterov accelerated
ADMM (N-ADMM) algorithm is proposed:

1 : if pres > 10dres
then
ρ(k + 1) = 2ρ(k)

if dres > 10pres
then
ρ(k + 1) = ρ(k)

2

2 : τ(k) = 1,m = 0
3 : α(k + 1) = 1

2 + 1
2
√

1 + 4α(k)2

4 : xg(k + 1) = argmin
xg∈SE(n)

Lρ(k+1) (x1(k + 1), . . . , xg, . . . , xN (k), y(k)) ,∀g ∈ G

5 :
ys(k + 1) = (1− τ(k))ys(k) + τ(k)ŷs(k) + bs

ŷs(k + 1) = ys(k + 1) + α(k)−1
α(k+1)

(
ys(k + 1)− ys(k)

) ,∀s ∈ S
6 : if Lρ(k+1) (x1(k + 1), . . . , xN (k + 1), y(k + 1)) ≤ Lρ(k+1) (x1(k), . . . , xN (k), y(k))− σ‖b‖2

or m = M
then
k = k + 1 go to step 1

else
τ(k) = τ(k)

2
m = m+ 1 go to step 3.

(4.7)
As stated before, algorithm (4.7) has starting conditions ys(0) = ŷs(0) = 0 and α(0) = 1.
The penalty factor update rule (4.6) with γ = 2 and µ = 10 is implemented in step 1 of (4.7).
These values were shown to be effective during testing.
In work [22], a varying σ(k) dependent on ρ(k) is proposed. However, since the penalty factor
update rule of [20] is used instead, σ = 1 is chosen. This was empirically proven to be effective.
Starting condition ρ(0) can be chosen freely. For large ρ(0) however, the iterations will not

L. Bosland Master of Science Thesis

4.3 Proposed algorithm 23

converge. Certain starting values ρ(0) cause the iterations to converge faster. Finding values
ρ(0) that perform well is not trivial: a certain value can perform well for certain datasets but
poor for other datasets.

To avoid the infinite loop as described in Section 4.2, the variable m is introduced. This
variable counts the number of times the condition on the Lagrangians in step 6 of (4.7) is not
met. If m is equal to the maximum M , the algorithm moves to the next iteration regardless
of the condition on the Lagrangians.

Algorithm (4.7) uses the stopping conditions as defined in [6]. These stopping conditions are
met when the values of the primal and dual residuals reach a certain threshold. The threshold
can be set as desired according to the desired accuracy. The primal and dual residuals are
determined by

pres =
∑
s∈S

∥∥∥Log
((
xs,?i

)−1
xs,?j

)∥∥∥ (4.8a)

dres = ‖∇xL (x?1, . . . , x?N , y)‖ . (4.8b)

The gradient ∇xL(·) in (4.8b) is calculated according to the unaugmented Lagrangian, which
is equal to the sum of the first two right-hand side terms in (3.12). Optimality is achieved
when Log((xs,?i)−1xs,?j) = 0 ∀s ∈ S and ∇xL (x?1, . . . , x?N , y) = 0 [6].

In this chapter, the N-ADMM algorithm was introduced. It was constructed by combining,
adapting and extending the current literature [6, 20, 22, 23]. The choices made were widely
discussed in this chapter. The performance of N-ADMM will be compared with the state of
the art in the next chapter.

Master of Science Thesis L. Bosland

24 Nesterov accelerated ADMM (N-ADMM) for distributed PGO

L. Bosland Master of Science Thesis

Chapter 5

Performance of N-ADMM

Based on the considerations made throughout this work, the alternating direction method
of multipliers (ADMM) for distributed pose graph optimization (PGO) was extended with
Nesterov acceleration to create the Nesterov accelerated ADMM (N-ADMM) algorithm (4.7).
The proposed N-ADMM algorithm has been implemented in C++ to perform optimization on
the distributed PGO problem for various datasets. The code can be found through the fol-
lowing links: https://cutt.ly/6j5IbYS and https://drive.google.com/drive/folders/
1pYNxD_RHwOPQEJOXdn6pfiK5VmAvLxYc. In this chapter, the results will be documented.
Datasets are in .g2o format [19] and consist of the nodes and edges corresponding to a pose
graph. The edges correspond to the measurements collected by the robot and the nodes
correspond to positions based on an initial guess from these measurements. Datasets may
be created in simulation and always come with these initial guesses. In this thesis, only
two-dimensional scenarios are considered.
To implement N-ADMM, the Gauss-Newton method is used to perform the minimization in
the primal updates. This method is provided in the GTSAM library. All other steps of (4.7)
are programmed using the classes, structures and functions of the GTSAM library. Some
functionalities of the publicly available code of [6] has been used. Before N-ADMM can be
applied, the graphs provided in the datasets have to be partitioned into subgraphs. This is
necessary because only datasets that were collected by a single robot are publicly available.
To solve this issue, the METIS algorithm [49] is used to partition a graph into N subgraphs.
This effectively simulates datasets that have been collected by multiple robots because the
multi-robot formulation [14] is equivalent to the formulation in Section 3.2. The publicly
available code of [6] is used for this partitioning. The datasets that are created by the models
in Section 5.2 are also partitioned in this way for consistency.
First, N-ADMM will be compared with plain ADMM [6] and the state of the art [15, 16, 17,
14, 13] in Section 5.1. Within the state of the art, the distributed Gauss-Seidel (DGS) [14] and
accelerated majorization-minimization (AMM) [13] methods are considered to be the closest
related works due to the theoretical connection as discussed in Sections 2.2 and 3.1.1. From
the tests on the benchmark datasets, it is not clear what characterizes the datasets for which
N-ADMM is most efficient. For this reason, two models will be introduced in Section 5.2 to
investigate the effect of several characteristics of the datasets on efficiency.

Master of Science Thesis L. Bosland

https://cutt.ly/6j5IbYS
https://drive.google.com/drive/folders/1pYNxD_RHwOPQEJOXdn6pfiK5VmAvLxYc
https://drive.google.com/drive/folders/1pYNxD_RHwOPQEJOXdn6pfiK5VmAvLxYc

26 Performance of N-ADMM

Table 5.1: Number of nodes and edges in the publicly available datasets

Dataset Nodes Edges

FR079 989 1217
CSAIL 1045 1172
Intel 1728 2512
M3500 3500 5598

AIS2klinik 15115 16727

5.1 Comparison with state of the art

In this section, the performance of N-ADMM will be compared with the state of the art
methods for distributed PGO by performing tests on the publicly available datasets. Perfor-
mance was judged based on efficiency and accuracy. Efficiency is measured by the number of
iterations needed and the time needed until convergence. The value of the objective function
f(·) at convergence is a good indication of the accuracy of the compared methods.

To compare the performance of N-ADMM to ADMM [6], tests were run on the publicly
available datasets FR079, CSAIL, Intel, M3500 [50] and AIS2klinik [17]. Together, they
provide a complete mix of scenarios. Datasets FR079, CSAIL and Intel have been obtained
by processing measurements of a robot equipped with a laser range finder. The pose graphs
have been created by combining data from the wheel odometry and data from the laser
range finder. The datasets FR079, CSAIL and Intel have been acquired in indoor office
environments. The dataset AIS2klinik is collected by a similar robot, but is acquired in an
outdoor setting. It is furthermore the largest dataset. The dataset M3500 models a robot
driving on a grid and has been acquired through simulation. Table 5.1 details the number of
nodes and edges in the pose graphs and it is clear that a wide range of graph sizes is available
with the benchmark datasets.

The code for the plain ADMM iterations of [6] is publicly available. This thesis extends the
code of [6] with the steps as in (4.7) to acquire the code for the N-ADMM algorithm. To
compare the relative efficiency of N-ADMM to ADMM, the algorithms were run sequentially
on the same machine until the stopping condition on the residuals was reached. These tests
were run for ρ(0) = 0.2 and M = 3 on the publicly available datasets and the results are
gathered in Table 5.2. Furthermore, the graph has been partitioned into ten subgraphs,
simulating the scenario for a system with ten robots. As a measure of efficiency of N-ADMM
and ADMM, the number of iterations that were needed to reach both stopping conditions
pres < 0.1 and dres < 0.1 were noted for both algorithms. Furthermore, the time needed
and the value of the objective function f(·) were recorded when the stopping condition was
reached.

For the dataset AIS2klinik, a significant reduction in the number of iterations is acquired. In
this case, this reduction translates into a large reduction in time needed. Because iterations are
more time consuming for larger graphs, costly computations are avoided with the N-ADMM
algorithm. However, for the dataset M3500, the reduction in the number of iterations is not
translated into a reduction in the time needed for convergence. This is due to the fact that
the individual iterations of the N-ADMM algorithm take longer than the iterations of the

L. Bosland Master of Science Thesis

5.1 Comparison with state of the art 27

Table 5.2: Comparison of results between the N-ADMM and ADMM algorithms for the publicly
available datasets. Results were acquired with M = 3, N = 10, ρ(0) = 0.2 and stopping
conditions pres < 0.1 and dres < 0.1.

Dataset Iterations needed Time needed [s] f(·)
N-ADMM ADMM N-ADMM ADMM N-ADMM ADMM

FR079 4 4 0.50 0.46 0.09 0.08
CSAIL 11 8 1.15 0.83 0.39 0.43
Intel 245 245 47.74 32.78 45.07 45.07
M3500 112 148 52.05 51.48 148.45 148.15

AIS2klinik 115 197 182.03 230.86 174.37 174.42

Table 5.3: Further time reduction by varying M . Results are only stated for values of M which
reduced the time needed most. Acquired with N = 10, ρ(0) = 0.2 and stopping conditions
pres < 0.1 and dres < 0.1. This table has been visualized in the appendix in Figure B.2

Dataset Optimal
M

Iterations needed Time needed [s] f(·)
N-ADMM ADMM N-ADMM ADMM N-ADMM ADMM

Intel 1 245 245 36.97 32.03 45.07 45.07
M3500 4 100 148 49.49 51.71 148.59 148.15

AIS2klinik 1 101 197 140.91 230.25 174.47 175.42

plain ADMM algorithm. For this same reason, the N-ADMM algorithm takes longer for the
datasets Intel, CSAIL and FR079, where equal or more iterations are needed. Furthermore, it
is clear that both methods converge to solutions with the same quality because the difference
in the value for the f(·) is negligible.

These results indicate that the N-ADMM algorithm is most efficient for larger datasets as a
large reduction in the number of iterations is acquired for the datasets AIS2klinik and M3500.
Furthermore, in an absolute sense, the time needed can be reduced most for large datasets,
which means the N-ADMM algorithm might be very useful in these cases. To investigate if
there is a relation between graph size and the relative efficiency of the N-ADMM algorithm,
new datasets must be created in simulation because the datasets in Table 5.1 are the only
publicly available datasets for the PGO problem. In Section 5.2, two models will be introduced
to create new datasets. With these models, various parameters can be varied to investigate
what characterizes the datasets for which N-ADMM is most efficient. Below, this thesis will
only consider the largest datasets Intel, M3500 and AIS2klinik.

To investigate the effect of M on the performance of the N-ADMM algorithm, tests were run
for various values ofM . The results are stated in Table 5.3 for the values ofM which produce
the best outcomes time-wise. A visualization is available in Figure B.2 and the full results are
available in Table B.1 in the appendix. For the dataset AIS2klinik, the difference in iterations
and time needed is even more drastic than in Table 5.2. Furthermore, N-ADMM now needs
less time for convergence than ADMM for the dataset M3500. Moreover, the difference in
time is reduced for the dataset Intel. It is also clear that picking a good value for M is not
trivial as different values are optimal for different datasets.

To compare N-ADMM with the state of the art, this thesis has to rely on the results from
[6, 13] as the code for the algorithms are not always publicly available and implementation

Master of Science Thesis L. Bosland

28 Performance of N-ADMM

Table 5.4: Value of f(·) at k = {100, 250, 1000}. Results achieved with M = 3, N = 10 and
ρ(0) = 0.2. The results of the methods marked with an asterisk "*" are retrieved from [13]. This
table is visualized in Figure B.3

Dataset Maximum
iterations

f(·)
N-ADMM ADMM [6] AMM [13]* DGS [14]*

Intel
100 45.43 45.43 52.52 52.55
250 45.07 45.07 52.48 52.44
1000 45.01 45.01 52.40 52.38

M3500
100 148.6 148.8 194.7 195.6
250 147.6 147.6 194.4 194.6
1000 146.8 146.9 194.0 194.3

AIS2klinik
100 174.9 183.5 198.2 864.6
250 174.2 174.2 196.2 931.5
1000 174.0 173.9 193.3 335.0

is often complex if they are. First, N-ADMM will be compared with the closest related
methods DGS [14] and AMM [13]. To make this comparison, optimization was performed
with the methods N-ADMM and ADMM under the same conditions as in [13]. In that work,
optimization is performed until a maximum number of iterations has been reached, which
takes the place of the stopping conditions as in Section 4.3. The results are recorded in
Table 5.4. For easier comparison, these results are visualized in Figure B.3 of the appendix.
When the results in Table 5.4 are compared with the results in [13], it can be seen that both
N-ADMM and ADMM outperform AMM and DGS significantly and a solution with superior
quality is acquired in fewer iterations. Furthermore, N-ADMM reaches a better solution
in fewer iterations, but might not reach the best solution for a higher maximum number of
iterations. However, the difference in the values for f(·) for N-ADMM and ADMM are already
negligible at 250 iterations. The DGS method approximates the distributed PGO problem,
whereas N-ADMM, ADMM and AMM solve the nonlinear optimization problem directly. In
this test, there is a clear gap in accuracy between the method that uses approximations of the
distributed PGO problem and the methods that solve the distributed PGO problem directly.
To compare the performance of N-ADMM and ADMM with the tectonic smoothing and map-
ping method (TSAM2) [15], the hierarchical optimization on manifolds method (HOGMan)
[16] and the small-memory footprint method (SMF) [17], tests were run for N-ADMM and
ADMM under the same conditions as in [6]. In the work [6], optimization was terminated
when either the maximum number of iterations was reached or both stopping conditions
pres < 0.1 and dres < 0.1 were acquired. The results are summarized in Table 5.5. In this
table, the time needed is not considered as the tests have been run on a different machine than
the machine that was used in [13]. Therefore, results regarding computation times cannot be
compared. The results of Table 5.5 are visualized in Figure B.4 of the appendix for easier
comparison.
When results are compared between [6] and the results achieved by N-ADMM and ADMM,
it is clear that only TSAM2 outperforms N-ADMM and ADMM when it comes to accuracy.
However, when compared to the results of the other methods in [6], the difference between
N-ADMM, ADMM and TSAM2 is negligible. It is important to note that TSAM2, HOG-
Man and SMF will most likely be faster time-wise than N-ADMM and ADMM. Surprisingly,

L. Bosland Master of Science Thesis

5.2 Generated datasets 29

Table 5.5: Results for a maximum of 200 iterations with M = 3, N = 10, ρ(0) = 0.2 and
stopping conditions pres < 0.1 and dres < 0.1. The results of the methods marked with an
asterisk "*" are retrieved from [6]. This table is visualized in Figure B.4 in the appendix

Dataset f(·)
N-ADMM ADMM [6] TSAM2 [15]* HOGMan [16]* SMF [17]*

Intel 45.11 45.11 45.0 134.7 53.3
M3500 148.45 148.15 146.1 521.9 287.1

AIS2klinik 174.37 174.42 172.8 647.0 471.0

ADMM performs better in this thesis than in [6]. Both N-ADMM and ADMM acquire values
for f(·) close to those achieved through the centralized formulation [6].

To summarize results, N-ADMM converges in fewer iterations than ADMM in some cases.
Because the individual iterations of N-ADMM take longer than those of ADMM, this reduc-
tion in iterations is not always translated into a reduction in the time needed for convergence.
If parameters are selected to be optimal, a significant reduction can be acquired in the time
needed for convergence. In the best case, N-ADMM is 40% more efficient time-wise than
ADMM. However, for most datasets, N-ADMM is roughly as efficient time-wise as ADMM.
Both N-ADMM and ADMM acquire similar values for f(·) at convergence, with negligible
difference. This verifies that the solutions achieved by N-ADMM are of equal quality as those
achieved by ADMM. When the accuracy of N-ADMM and ADMM is compared to the accu-
racy of the closest related works [14, 13], it is clear that they achieve solutions of superior
quality in less iterations. Compared to the methods [15, 16, 17], only [15] performs slightly
better.

N-ADMM performs better than ADMM for some datasets. However, it is unclear what
characterizes the datasets for which N-ADMM is most efficient. To investigate this, two
models will be formulated in Section 5.2 and datasets will be created based on these models.
Several parameters can be varied in these models such that correlations can be found between
the efficiency of N-ADMM and these parameters. The choice was made in this thesis to focus
on graph size and bad initial guesses because these were thought to be of the most influence
on dataset complexity.

5.2 Generated datasets

In this section, two models will be introduced which simulate a robot trajectory. These
models were created such that the parameters of interest could be adjusted. Datasets were
created with these models using the GTSAM [18] and g2o [19] libraries and the classes and
formats they provide. By doing so, insight can be acquired into the relationship between the
characteristics of the datasets and the efficiency of N-ADMM. First, the model which will be
referred to as the block model will be used to investigate the effect of graph size. Then, a
model which will be referred to as the Gaussian model will be introduced to investigate the
effects of varying the variance and mean of the offsets on the relative pose measurements. In
this way, the effect of bad initial guesses will be tested. Graph size will also be investigated
with the Gaussian model.

Master of Science Thesis L. Bosland

30 Performance of N-ADMM

Both models simulate a robot moving in a linear trajectory. An initial guess for pose xj , with
j ∈ {1, 2, . . . , J − 1} and J the number of poses in the generated graph, is generated through

xj =


xxj

xyj

xθj

 =


j + x̃

ỹ

θ̃

 . (5.1)

Here, the variables x̃, ỹ denote the offsets in x and y directions. The variable θ̃ denotes the
offset on the angle. Furthermore, x0 = 0. This creates a linear trajectory in x-direction with
slight offsets. A relative pose measurement is generated through

xij =


xxij

xyij

xθij

 =


xxj − xxi + x̂

xyj − x
y
i + ŷ

xθj − xθi + θ̂

 , (5.2)

with i = j − 1. The variables x̂, ŷ and θ̂ denote the offsets on the measurements. To create a
factor in the pose graph when using GTSAM, an information matrix Ωij is necessary. For the
purposes of this thesis, the information matrix belonging to the relative pose measurements
of dataset M3500 is used. This dataset is a simulated dataset, with properties similar to the
datasets which the models of this section generate. Through these means a trajectory can
be created with J poses and J − 1 relative pose measurements. The offsets are calculated
differently for each model and these will be introduced first for the block model.

5.2.1 Block model

For the block model, the offsets are calculated through


x̃

ỹ

θ̃

 =


± 0.11

(
U(0,1000)

16000

)
± 0.112

(
U(0,1000)

16000

)
± 0.11

(
U(0,1000)

16000

)
 ,


x̂

ŷ

θ̂

 =


±
(
0.015 + 0.5

(
U(0,1000)

16000

))
±
(
0.015 + 0.5

(
U(0,1000)

16000

)) (
0.0015 +

(
U(0,1000)

16000

))
±
(
0.0015 +

(
U(0,1000)

16000

))
 .

(5.3)
Here, U(a, b) denotes the uniform distribution on the open interval (a, b). For the block model,
U(a, b) is implemented with the C++ function rand(). The operator ± denotes that there are
equal chances of the sign being positive or negative. This sign is determined using rand() as
well. A sketch of the model can be found in Figure 5.1. There is a high degree of randomness
to this model because a measured pose can fall into any of the four boxes. Difficulty in
optimization could stem from this randomness. It is not a very realistic model for a robot
as sensors do not tend to create these kind of patterns in the relative pose measurements.
However, it has been made with the intent to create datasets which are difficult to perform
PGO on. This will become apparent below.

With this model, datasets of varying graph size were created in the .g2o format. Then, the
graphs are partitioned into 25 subgraphs and optimization is performed by the N-ADMM

L. Bosland Master of Science Thesis

5.2 Generated datasets 31

Figure 5.1: Sketch of the block model. Initial guesses are shown with the black arrows xi and xj .
The relative pose measurement is displayed as the grey dotted line xij and the grey arrow indicates
the fictional measured pose that corresponds to the pose measurement. The red blocks indicate
the possible locations of these fictional measured poses. These blocks are determined by (5.3)
and are not to scale in this sketch.

(a) Results for ρ(0) = 0.1 (b) Results for ρ(0) = 0.9

Figure 5.2: Number of iterations needed to reach pres < 0.2 and dres < 0.2 for a given number
of nodes J . Performance of N-ADMM is given in red, performance of ADMM is given in blue.
Here, M = 3 and N = 25.

and ADMM methods for ρ(0) = 0.1 and ρ(0) = 0.9 until both stopping conditions pres <
0.2 and dres < 0.2 are reached. Stopping conditions were relaxed because optimization on
these datasets proved to be difficult. Optimization was performed for increasing graph sizes
until one method reached 3000 iterations. The results are given in Figure 5.2. Here, it can be
seen that the N-ADMM method needs less iterations to converge than the ADMM methods
when the graph size exceeds 4000 nodes. However, since the N-ADMM needs roughly 10%
less iterations, this reduction in the number iterations does not translate into a reduction in
the time needed for convergence. For both methods, similar values for f(·) were achieved.

It is clear that the block model produces graphs that are difficult to perform optimization on.
For example, the dataset AIS2klinik has 15115 nodes in its graph, but both N-ADMM and
ADMM need less than 200 iterations to converge to stricter stopping conditions. It can also
be seen that the difficulty scales with the number of poses in the graph. It is unclear from
the graph itself what causes this difficulty. For this reason, the Gaussian model is introduced
in the next section to investigate the effect of the mean and variance of the relative pose
measurements.

Master of Science Thesis L. Bosland

32 Performance of N-ADMM

Figure 5.3: Sketch of the Gaussian model. The notation as in Figure 5.1 is used. Not to scale.

5.2.2 Gaussian model

For the Gaussian model, the offsets are calculated through


x̃

ỹ

θ̃

 =


N (0, 0.05)
N (0, 0.05)

0

 ,

x̂

ŷ

θ̂

 =


cos

(
U
(
−1×10−6, 1×10−6))N (µ, σ)

sin
(
U
(
−1×10−6, 1×10−6))N (µ, σ)

0

 , (5.4)

with N (c, d) denoting the Gaussian distribution with mean c and standard deviation d. Here,
the random generator mt19937 is used in C++ to draw from the distributions N (·) and U(·).
A sketch of the Gaussian model is found in Figure 5.3. This model is considered to be a more
realistic representation of a robot as offsets on the relative pose measurements are connected
to the orientation of the robot. Furthermore, sensors can be modelled better with Gaussian
distributions than uniform distributions.
Datasets were created with this model for varying µ and σ. Then, optimization was performed
with the N-ADMM and ADMM methods with ρ(0) = 0.1 and ρ(0) = 0.9. The datasets were
partitioned into 25 subgraphs. Stopping conditions were set to pres < 0.1 and dres < 0.1
because optimization proved to be easier on these datasets. The results of these tests are given
in Figure 5.4. Optimization was performed for increasing values of µ and σ until one method
could no longer converge. In these tests, increasing µ and σ led to an increase in the number
of iterations needed for convergence. N-ADMM and ADMM show similar performance, but
ADMM outperforms N-ADMM slightly when the variance is increased. Both methods achieve
similar values for f(·). No correlations could be found when different values for x̃, ỹ, θ̃ and θ̂
were given.
However, when datasets were created for increasing graph sizes, with fixed values for µ and σ,
a correlation as in Figure 5.1 could not be perceived. Moreover, roughly the same number of
iterations were needed for convergence for datasets with graph sizes ranging from 2000 nodes
to 25000 nodes. Approximately 40 iterations were needed by both methods on this range.
An explanation for this behaviour could be that there is a certain complexity per pose in
the block model which is not present in the Gaussian model. What causes this complexity
is unknown. Since the correlation between graph size and the efficiency of N-ADMM is not
present in the Gaussian model, it cannot be concluded that there is a relationship between
the relative efficiency of N-ADMM and large graph sizes alone.
To conclude, while it is clear from Section 5.2.1 that efficiency can be increased significantly
when using N-ADMM, it is not clear what characterizes the datasets for which N-ADMM
is more efficient. More research is necessary to find this correlation. For further research,
the effect of the information matrix could be examined. Furthermore, a linear trajectory
without loop closures is taken in this thesis. Future research could examine the effect of loop

L. Bosland Master of Science Thesis

5.2 Generated datasets 33

(a) Results for σ = 1×10−6 and varying µ (b) Results for µ = 2×10−2 and varying σ

Figure 5.4: Number of iterations needed to reach pres < 0.1 and dres < 0.1 for varying values
µ and σ. Performance of N-ADMM is given in red. Performance of ADMM is given in blue. Here,
optimization was performed with M = 3 and N = 25 on a graph with 10000 nodes. Datasets
were created with the Gaussian model.

closures and more elaborate trajectories. Moreover, N-ADMM was only tested in simulation.
Collecting the data in experimentation could be a further path of investigation. Lastly, the
inclusion of outliers in the datasets are known to complicate computations and their effect
could be studied. The choice was made to not further investigate these paths and focus on
the creation and implementation of the N-ADMM algorithm. Further investigation would
require extensive research into pose graph complexity and simulation. Moreover, it would
be too time-consuming to set up experiments and it would require resources that are not
currently available. Even if these paths were researched, it would not guarantee that the
exact scenarios in which N-ADMM is more efficient than ADMM can be found.

Lastly, the solutions of N-ADMM and ADMM are very accurate and they provide a good
option when accuracy is important. As is clear from Table 5.4, N-ADMM converges faster to
a lower value for f(·) than ADMM. Moreover, this thesis has shown that both N-ADMM and
ADMM reach a lower value for f(·) much faster than AMM and DGS. However, N-ADMM
and ADMM are likely to be time-consuming options. This might be nullified by introducing
parallelization as discussed in Chapter 3.

Master of Science Thesis L. Bosland

34 Performance of N-ADMM

L. Bosland Master of Science Thesis

Chapter 6

Conclusions

In this thesis, a new, accelerated algorithm was created for distributed pose graph optimiza-
tion (PGO) problems. Acceleration was implemented in the alternating direction method
of multipliers (ADMM) to create Nesterov accelerated ADMM (N-ADMM) (4.7). The N-
ADMM algorithm was tested on the publicly available benchmark datasets to compare its
performance to the state of the art. Two new models were created to gain insight into the
effect of graph sizes and bad initial guesses on the performance of N-ADMM. In all tests,
the methods N-ADMM and ADMM were run sequentially to investigate the relative effect of
acceleration.

6.1 Answers to the research questions

The following main research question was stated:

"How can Nesterov acceleration be implemented in the ADMM algorithm for solving
distributed PGO problems and what adaptations have to be made to the current methods for

this implementation?"

To implement Nesterov acceleration in ADMM for distributed PGO, the multi-block formu-
lation of Nesterov acceleration [23] was used to extend the algorithm of [6]. By doing so,
algorithm (4.4) was acquired. However, this algorithm does not converge in testing. The
stabilizing framework of [22] was implemented to obtain (4.5). However, adaptations were
necessary to create a convergent algorithm. The necessary adaptations were widely discussed
in Section 4.2. Adaptations to the current methods were made based on the existing litera-
ture and empirical results. Because the penalty factor update rule of [22] caused divergence,
the penalty factor of [20] was used to create the N-ADMM algorithm. Moreover, a rule was
introduced in this thesis to avoid infinite loops. Through combining, extending and adapting
the current methods to solve distributed PGO problems, the N-ADMM algorithm (4.7) was
created.

Master of Science Thesis L. Bosland

36 Conclusions

Based on the choices made throughout this work, a method which implements Nesterov accel-
eration in ADMM for distributed PGO was introduced in this thesis. However, other choices
can be made which might lead to a different method that implements Nesterov acceleration
in ADMM for distributed PGO. A few examples for further research to consider will be given
in Section 6.2. Methods based on other choices might perform better than N-ADMM in some
aspects, but worse in other aspects. For example, if Jacobi updates are used for the ADMM
iterations as discussed in [41], parallelization can be applied in computing. This would allow
for a drastic reduction in the time needed for convergence. However, this may come at the
cost of a higher likelihood of divergence.

To judge the value of N-ADMM in the context of the state of the art, the following sub-
question was raised:

"How does the performance of N-ADMM compare to the state of the art?"

In Section 5.1, a comparison was made between N-ADMM and the state of the art. Perfor-
mance was measured in terms of efficiency and accuracy. Efficiency was determined based
on the number of iterations needed for convergence and the time needed for convergence.
Accuracy was measured by the value of the objective function at convergence. The works
[6, 14, 13] were considered to be the closest related works as they formulate distributed PGO
with the use of separators as discussed in Section 2.2. Furthermore, the N-ADMM algorithm
is an extension of the ADMM approach of [6]. Because N-ADMM uses Gauss-Seidel steps,
the distributed Gauss-Seidel (DGS) method [14] also has connections to N-ADMM. Moreover,
the minimization steps of N-ADMM are variants of the proximal operator, which is also used
in the accelerated majorization-minimization (AMM) method [13]. To compare N-ADMM
and ADMM, both methods were run sequentially on the same datasets. This was possible
due to the open source code of ADMM for distributed PGO [6]. For comparison with the
DGS method [14] and the AMM method [13], this thesis had to rely on the results that were
stated in [13].

When compared to ADMM, N-ADMM has shown to have better performance because a
more accurate solution was found in fewer iterations. In some cases, this can translate into a
significant reduction in the time needed when N-ADMM is used. Under optimal conditions,
this reduction in the time needed becomes more distinct. Moreover, in the cases where N-
ADMM is outperformed by ADMM, the difference in the time needed becomes negligible when
optimal parameters are selected. The difference in accuracy when N-ADMM and ADMM are
converged is negligible. However, as stated before, N-ADMM will reach this accuracy in
fewer iterations. Both N-ADMM and ADMM outperform the methods of DGS and AMM
significantly and they reach more accurate solutions much faster. Moreover, a gap can be
seen between DGS, a method which uses approximations for the formulation of distributed
PGO, and N-ADMM, ADMM and AMM. The methods N-ADMM, ADMM and AMM use
no approximations in formulating and solving the distributed PGO problem and these results
indicate that these are more accurate for this reason.

When the performance of N-ADMM is compared to the performance of the methods which
use elimination to formulate the distributed PGO problem [15, 16, 17], N-ADMM is only
outperformed by [17] in terms of accuracy. However, the difference in accuracy is marginal.
Lastly, while N-ADMM and ADMM are good choices when accuracy is desired, they are

L. Bosland Master of Science Thesis

6.2 Further research 37

likely to use more time than the methods [15, 16, 17]. Since most methods are not publicly
available, the time needed for convergence could not be compared.

It is not clear from the tests on the benchmark datasets what the characteristics of the datasets
are for which N-ADMM is most efficient. To gain insight into this matter, this thesis aimed
to answer the following sub-question:

"What characterizes the pose graphs for which optimization with N-ADMM is, relative to the
current methods, most efficient?"

To answer this question, two models were introduced in Section 5.2. Based on these models,
datasets were generated. By varying the parameters of the models, insight was acquired into
the effect of these parameters on the efficiency of N-ADMM.

Based on the two models, datasets with a range of graph sizes were created to investigate if
there is a correlation between the efficiency of N-ADMM and the size of the graph. To compare
its performance, ADMM was run sequentially on the same datasets. First, the block model
of Section 5.2.1 was introduced to test for the effect of graph size. In terms of the number
of iterations needed for convergence, N-ADMM consistently performed better in comparison
to ADMM when the graph size was large. However, this same relation was not found when
datasets were created with the Gaussian model of Section 5.2.2. Therefore, no correlation
between the relative efficiency of N-ADMM and the size of the graph could be discovered.
Possibly, a complexity is created by the block model which propagates per generated pose.
This complexity might not be created by the Gaussian model. However, it is unknown what
this complexity might be and discovering it might not be simple.

With the Gaussian model, the variance and mean of a relative pose measurement could be
varied. By doing so, the effect of bad initial guesses was investigated. With the Gaussian
model, a positive correlation was found between the values for the mean and variance and
the number of iterations needed for convergence. However, as both N-ADMM and ADMM
have similar performance on these datasets, this does not provide insight into the relative
efficiency of N-ADMM.

Unfortunately, this report was not able to find the exact scenarios in which N-ADMM is more
efficient than the current methods. However, it is clear from the tests in Sections 5.1 and 5.2.1
that such scenarios exist. Further research into how complexity is defined for PGO datasets is
necessary. Recommendations for future research into dataset complexity and other directions
will be given in the next section.

6.2 Further research

This thesis provided one method to implement Nesterov acceleration in ADMM for distributed
PGO. Different choices to implement Nesterov acceleration could be made. Possible paths
for research into these choices are

Master of Science Thesis L. Bosland

38 Conclusions

• Parallelization
To bring down computation times, computation can be distributed over the processing
units of the robots or over different cores within the same processor. Primal and dual
updates will then be performed in parallel by the units. One core or robot would then
perform all the primal and dual updates belonging to one subgraph. However, in the
current form, the primal updates are performed sequentially in (4.7). When the values
xg(k+ 1) are calculated, the values xi(k+ 1) with i < g are used for this update. When
parallel computing is applied, knowledge of these values will be shared after the primal
and dual updates and will not be available during these updates. Therefore, algorithm
(4.7) must be rewritten to accommodate this. For this purpose, the Jacobi formulation
of multi-block ADMM [41] can be used instead of the Gauss-Seidel form that is used
in this thesis. Parallelization would provide a significant increase in the efficiency of
N-ADMM. However, this may come at the cost of a higher likelihood of divergence. As
a stabilizing framework is already used in (4.7), this might not be concerning.

• Update rules
To create N-ADMM, the choice was made in this thesis to use the penalty factor update
by [20] instead of the penalty factor update as per [22]. However, this also means that
no update rule for σ is present in (4.7). For this reason, σ = 1 was assumed. The
effect of different values for σ could be analysed. Moreover, by adapting the penalty
factor update rule of [22] such that ρ(k) will also be decreased, the rule of [22] could be
implemented. The value of σ will then be adjusted accordingly.

• Adaptive M
Currently the value M is taken to be constant in (4.7). However, it was clear from
the findings in Section 5.1 that different values for M were optimal for each dataset.
For some datasets, the condition on the Lagrangians will never be met regardless of
the value τ(k). This τ(k) was used to balance between the plain iterations and the
accelerated iterations. Instead of reducing this value for τ(k) if the condition is not
met, one could also start with the plain iterations and increase the value of τ(k) if the
condition is met. This way, unnecessary steps will be avoided, while acceleration is
achieved when possible.

Unfortunately, the exact characteristics of the datasets for which N-ADMMwas more efficient,
relative to ADMM, were not found in Section 5.2. To attempt to find these characteristics,
the recommendation is made to research the following:

• Loop closures
In this thesis, a roughly linear trajectory was simulated. However, the introduction of
loop closures is known to complicate scenarios. The N-ADMM algorithm might perform
better in these scenarios.

• Information matrix
The choice was made to use the information matrix that is used for every relative pose
measurement in the simulated dataset M3500. However, this matrix is not constant in
the datasets that have been collected by robots. The effect of the information matrix
could be analysed in future work.

L. Bosland Master of Science Thesis

6.3 Contributions 39

• Outliers
No outliers were present in the datasets in Section 5.2. The effect of such outliers can
be studied.
• Experimentation
The datasets in Section 5.2 were created through simulation. However, N-ADMM has
been shown to perform exceptionally for a dataset which was acquired through exper-
imentation. Collecting the datasets in experimentation could be a promising path for
future research.

Furthermore, only two-dimensional datasets were considered in this thesis. The N-ADMM
algorithm might perform exceptionally on three-dimensional datasets. Lastly, the choice was
made in this thesis to use Nesterov acceleration due to its optimal convergence rate O(1/k).
Other methods for acceleration, e.g. Quasi-Newton schemes, can be investigated.

6.3 Contributions

This thesis has contributed the following:

• Creation of the N-ADMM algorithm
In this thesis, the N-ADMM algorithm (4.7) was created by combining, adapting and
extending the current literature and methods to solve the distributed PGO problem. A
summary of the adaptations and extensions is listed shortly in Section 6.1 as an answer
to the main research question. Details of the N-ADMM algorithm and its creation are
given in Chapter 4. It has shown promising results when compared to the plain ADMM
iterations [6].
• Comparison of N-ADMM and ADMM [6] with the state of the art
This thesis has provided a comparison of N-ADMM with state of the art methods [6,
15, 16, 17, 14, 13] by running N-ADMM and ADMM [6] sequentially on the benchmark
datasets. Furthermore, the performance of ADMM for distributed PGO was compared
with the more recent DGS and AMM methods. Lastly, a clear gap between the methods
N-ADMM, ADMM and AMM, which solve the nonconvex optimization problem directly,
and DGS, which uses approximations to solve distribute PGO, was found.
• New models for more extensive testing
To test for which datasets N-ADMM is more efficient and what these datasets are
characterized by, two new models were introduced. The first model created challeng-
ing datasets while the second model created a more realistic scenario. While no clear
characteristics were found in testing, the first steps towards this goal were made. Fur-
thermore, it provides a more complete picture than the tests on the limited number of
publicly available datasets alone.
• Multi-block application for stabilizing framework [22]
In the work [22], an optimization problem of form (3.4) was assumed. The application
of the theory of [22] to the multi-block case was given as a recommendation for future
work. One such application was given in this thesis and the framework of [22] was
adapted and extended accordingly.

Master of Science Thesis L. Bosland

40 Conclusions

L. Bosland Master of Science Thesis

Bibliography

[1] S. Thrun, W. Burgard, and D. Fox, Probalistic robotics. Emerald Group Publishing
Limited, 2006.

[2] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping: part I,” IEEE
Robotics & Automation Magazine, vol. 13, no. 2, pp. 99–110, 2006.

[3] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and mapping (SLAM): part
II,” IEEE Robotics & Automation Magazine, vol. 13, no. 3, pp. 108–117, 2006.

[4] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, and J. J.
Leonard, “Past, present, and future of simultaneous localization and mapping: toward
the robust-perception age,” IEEE Transactions on Robotics, vol. 32, no. 6, pp. 1309–1332,
2016.

[5] S. Saeedi, M. Trentini, M. Seto, and H. Li, “Multiple-robot simultaneous localization
and mapping: a review,” Journal of Field Robotics, vol. 33, no. 1, pp. 3–46, 2016.

[6] S. Choudhary, L. Carlone, H. I. Christensen, and F. Dellaert, “Exactly sparse mem-
ory efficient SLAM using the multi-block alternating direction method of multipli-
ers,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 1349–1356, Sep. 2015.

[7] S. Thrun, “Simultaneous localization and mapping,” in Robotics and cognitive approaches
to spatial mapping, pp. 13–41, Springer, 2007.

[8] F. Dellaert and M. Kaess, “Factor graphs for robot perception,” Foundations and Trends
in Robotics, vol. 6, pp. 1–139, 01 2017.

[9] H. Strasdat, J. Montiel, and A. J. Davison, “Real-time monocular SLAM: why filter?,”
in IEEE International Conference on Robotics and Automation, pp. 2657–2664, 2010.

[10] G. Stathopoulos, H. Shukla, A. Szucs, Y. Pu, C. N. Jones, et al., Operator splitting
methods in control, vol. 3. Now Publishers, Inc., 2016.

Master of Science Thesis L. Bosland

42 BIBLIOGRAPHY

[11] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation: numerical
methods, vol. 23. Prentice hall Englewood Cliffs, NJ, 1989.

[12] L. Carlone and F. Dellaert, “Duality-based verification techniques for 2D SLAM,” in
IEEE International Conference on Robotics and Automation (ICRA), pp. 4589–4596,
May 2015.

[13] T. Fan and T. Murphey, “Majorization minimization methods to distributed pose graph
optimization with convergence guarantees,” arXiv preprint arXiv:2003.05353, 2020.

[14] S. Choudhary, L. Carlone, C. Nieto, J. Rogers, H. I. Christensen, and F. Dellaert, “Dis-
tributed trajectory estimation with privacy and communication constraints: a two-stage
distributed Gauss-Seidel approach,” in IEEE International Conference on Robotics and
Automation (ICRA), pp. 5261–5268, May 2016.

[15] K. Ni and F. Dellaert, “Multi-level submap based SLAM using nested dissection,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2558–2565,
2010.

[16] G. Grisetti, R. Kümmerle, C. Stachniss, U. Frese, and C. Hertzberg, “Hierarchical opti-
mization on manifolds for online 2D and 3D mapping,” in IEEE International Conference
on Robotics and Automation, pp. 273–278, 2010.

[17] B. Suger, G. D. Tipaldi, L. Spinello, and W. Burgard, “An approach to solving large-scale
SLAM problems with a small memory footprint,” in IEEE International Conference on
Robotics and Automation (ICRA), pp. 3632–3637, 2014.

[18] F. Dellaert, “Factor graphs and GTSAM: a hands-on introduction,” tech. rep., Georgia
Institute of Technology, 2012.

[19] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard, “g2o: a general
framework for graph optimization,” in IEEE International Conference on Robotics and
Automation, pp. 3607–3613, May 2011.

[20] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al., “Distributed optimization
and statistical learning via the alternating direction method of multipliers,” Foundations
and Trends R© in Machine learning, vol. 3, no. 1, pp. 1–122, 2011.

[21] Y. E. Nesterov, “A method for solving the convex programming problem with conver-
gence rate O(1/k2),” in Dokl. Akad. Nauk SSSR, vol. 269, pp. 543–547, 1983.

[22] A. Themelis, L. Stella, and P. Patrinos, “Douglas–Rachford splitting and ADMM for non-
convex optimization: new convergence results and accelerated versions,” arXiv preprint
arXiv:1709.05747, 2017.

[23] V. Hryhorenko and D. Klyushin, “Multiblock ADMM with Nesterov acceleration,” in
XVIII International Conference on Data Science and Intelligent Analysis of Information,
pp. 358–364, Springer, 2018.

[24] G. Calafiore, L. Carlone, and F. Dellaert, “Pose graph optimization in the complex
domain: Lagrangian duality, conditions for zero duality gap, and optimal solutions,”
arXiv preprint arXiv:1505.03437, 2015.

L. Bosland Master of Science Thesis

BIBLIOGRAPHY 43

[25] A. Alcocer, P. Oliveira, A. Pascoal, and J. Xavier, “Estimation of attitude and posi-
tion from range-only measurements using geometric descent optimization on the special
Euclidean group,” in 9th International Conference on Information Fusion, pp. 1–8, 2006.

[26] R. Tron and R. Vidal, “Distributed 3-D localization of camera sensor networks from
2-D image measurements,” IEEE Transactions on Automatic Control, vol. 59, no. 12,
pp. 3325–3340, 2014.

[27] L. Carlone, R. Tron, K. Daniilidis, and F. Dellaert, “Initialization techniques for 3D
SLAM: a survey on rotation estimation and its use in pose graph optimization,” in
IEEE International Conference on Robotics and Automation (ICRA), pp. 4597–4604,
May 2015.

[28] L. Carlone, D. M. Rosen, G. Calafiore, J. J. Leonard, and F. Dellaert, “Lagrangian duality
in 3D SLAM: verification techniques and optimal solutions,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 125–132, 2015.

[29] S. Choudhary, L. Carlone, C. Nieto, J. Rogers, H. I. Christensen, and F. Dellaert, “Dis-
tributed mapping with privacy and communication constraints: lightweight algorithms
and object-based models,” The International Journal of Robotics Research, vol. 36,
no. 12, pp. 1286–1311, 2017.

[30] R. Hartley, J. Trumpf, Y. Dai, and H. Li, “Rotation averaging,” International Journal
of Computer Vision, vol. 103, no. 3, pp. 267–305, 2013.

[31] D. Martinec and T. Pajdla, “Robust rotation and translation estimation in multiview re-
construction,” in IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–
8, 2007.

[32] J. Fredriksson and C. Olsson, “Simultaneous multiple rotation averaging using La-
grangian duality,” in Asian Conference on Computer Vision, pp. 245–258, Springer,
2012.

[33] G. C. Sharp, S. W. Lee, and D. K. Wehe, “Multiview registration of 3D scenes by
minimizing error between coordinate frames,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 26, no. 8, pp. 1037–1050, 2004.

[34] G. Dubbelman, P. Hansen, B. Browning, and M. B. Dias, “Orientation only loop-closing
with closed-form trajectory bending,” in IEEE International Conference on Robotics and
Automation, pp. 815–821, 2012.

[35] D. F. Glas, T. Miyashita, H. Ishiguro, and N. Hagita, “Automatic position calibration and
sensor displacement detection for networks of laser range finders for human tracking,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2938–2945,
2010.

[36] V. M. Govindu, “Combining two-view constraints for motion estimation,” in IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 218–
225, 2001.

Master of Science Thesis L. Bosland

44 BIBLIOGRAPHY

[37] F. Dellaert, J. Carlson, V. Ila, K. Ni, and C. E. Thorpe, “Subgraph-preconditioned
conjugate gradients for large scale SLAM,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 2566–2571, 2010.

[38] Y.-D. Jian and F. Dellaert, “iSPCG: incremental subgraph-preconditioned conjugate
gradient method for online SLAM with many loop-closures,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 2647–2653, 2014.

[39] N. Parikh, S. Boyd, et al., “Proximal algorithms,” Foundations and Trends R© in Opti-
mization, vol. 1, no. 3, pp. 127–239, 2014.

[40] S. Boyd and L. Vandenberghe, Convex Optimization. USA: Cambridge University Press,
2004.

[41] W. Deng, M.-J. Lai, Z. Peng, and W. Yin, “Parallel multi-block ADMM with O(1/k)
convergence,” Journal of Scientific Computing, vol. 71, no. 2, pp. 712–736, 2017.

[42] B. He, M. Tao, and X. Yuan, “Alternating direction method with Gaussian back sub-
stitution for separable convex programming,” SIAM Journal on Optimization, vol. 22,
no. 2, pp. 313–340, 2012.

[43] B. He, L. Hou, and X. Yuan, “On full Jacobian decomposition of the augmented La-
grangian method for separable convex programming,” SIAM Journal on Optimization,
vol. 25, no. 4, pp. 2274–2312, 2015.

[44] L. Carlone, “A convergence analysis for pose graph optimization via Gauss-Newton meth-
ods,” in IEEE international conference on robotics and automation, pp. 965–972, 2013.

[45] M. Hong, Z.-Q. Luo, and M. Razaviyayn, “Convergence analysis of alternating direction
method of multipliers for a family of nonconvex problems,” SIAM Journal on Optimiza-
tion, vol. 26, no. 1, pp. 337–364, 2016.

[46] Y. Wang, W. Yin, and J. Zeng, “Global convergence of ADMM in nonconvex nonsmooth
optimization,” Journal of Scientific Computing, vol. 78, no. 1, pp. 29–63, 2019.

[47] A. Themelis and P. Patrinos, “Douglas–Rachford splitting and ADMM for nonconvex
optimization: tight convergence results,” SIAM Journal on Optimization, vol. 30, no. 1,
pp. 149–181, 2020.

[48] C. Chen, B. He, Y. Ye, and X. Yuan, “The direct extension of ADMM for multi-block con-
vex minimization problems is not necessarily convergent,” Mathematical Programming,
vol. 155, no. 1-2, pp. 57–79, 2016.

[49] G. Karypis and V. Kumar, “Multilevel algorithms for multi-constraint graph partition-
ing,” in SC’98: Proceedings of the 1998 ACM/IEEE Conference on Supercomputing,
pp. 28–28, IEEE, 1998.

[50] L. Carlone and A. Censi, “From angular manifolds to the integer lattice: guaranteed
orientation estimation with application to pose graph optimization,” IEEE Transactions
on Robotics, vol. 30, no. 2, pp. 475–492, 2014.

L. Bosland Master of Science Thesis

Appendix A

Graphical PGO example

Figure A.1: Simple pose graph with poses xi as nodes and measurements as edges.

A simple pose graph optimization (PGO) example is given in this appendix. Here, only a
graphical representation will be given. For the mathematical formulation of PGO, the reader
is referred to Chapter 2.

Consider a simple simultaneous localization and mapping (SLAM) scenario where a robot
moves along a trajectory in an unknown environment. In this scenario, a robot is equipped
with odometry sensors and a laser range finder. Based on the measurements from these
sensors, the pose graph will be constructed. The true position of the robot will never be
known in SLAM problems. However, a good estimate can be made through PGO. A pose
graph is constructed through nodes and edges. Nodes correspond to the poses that make
up the trajectory of the robot and edges correspond to the measurements. An example of
a pose graph with trajectory [x1, x2, . . . , x9] is depicted in Figure A.1. A measurement xij
connects pose xi to pose xj in this trajectory. A special measurement known as a loop closure
is present between poses x2 and x6. These connections are made when the robot recognizes a
location it has previously visited. Since the true poses are never known in the SLAM problem,
an initial guess must be made to construct the initial pose graph. These initial guesses will
move closer to the true poses through optimization.

Master of Science Thesis L. Bosland

46 Graphical PGO example

Figure A.2: Two consecutive poses x1 and x2 of the pose graph with measurement x12. The
fictional measured pose is shown in grey. The error between the initial guess and the measurement
is denoted with e.

In Figure A.2, two consecutive poses of the pose graph in Figure A.1 are depicted. To create
the pose graph an initial guess of pose x2 is made relative to pose x1. This initial guess is
usually based on the odometry data alone. The measurement from the laser range finder
is decoded in the relative pose measurement x12. By minimizing the error e, an estimation
will be made of the true pose. In the case of Figure A.2, the pose will correspond with
the measurement after estimation. However, pose graphs consist of a chain of elements
as in Figure A.2. To estimate the full trajectory, all errors in the pose graph will have
to be minimized. If the error is reduced in one element of the pose graph, the error in
another element might be increased. Therefore, the estimated trajectory will be the result of
a consensus where the sum of all errors is as small as possible.

In PGO, multiple sensors can encode the relative pose measurement. Furthermore, landmarks
can easily be included in this framework. Landmarks will take a similar role as a pose in
this case. The SLAM problem can then be solved by not only estimating a trajectory, but
also estimating the location of the landmarks. For an extensive overview of PGO in SLAM
problems, the reader is referred to [8].

L. Bosland Master of Science Thesis

Appendix B

Supporting results and figures

Figure B.1: Convergence of ADMM and N-ADMM. Divergence for N-ADMM without stabilizing
framework. Here, M = 3, N = 10, ρ(0) = 0.2 and stopping conditions pres < 0.1 and dres <
0.1. Tests were performed on the dataset M3500

Master of Science Thesis L. Bosland

48 Supporting results and figures

Figure B.2: Iterations and time needed for N-ADMM and ADMM. Acquired withN = 10, ρ(0) =
0.2 and stopping conditions pres < 0.1 and dres < 0.1. Graphical representation of Table 5.3.

L. Bosland Master of Science Thesis

49

Figure B.3: Values of f(·) at k = {100, 250, 1000}. Results achieved with M = 3, N = 10 and
ρ(0) = 0.2. Graphical representation of Table 5.4.

Master of Science Thesis L. Bosland

50 Supporting results and figures

Figure B.4: Values of f(·) at k = 200. Results acquired with M = 3, N = 10, ρ(0) = 0.2 and
stopping conditions pres < 0.1 and dres < 0.1. Graphical representation of Table 5.5.

L. Bosland Master of Science Thesis

51

Table B.1: Complete table for varying M . Here, N = 10, ρ(0) = 0.2 and stopping conditions
pres < 0.1 and dres < 0.1.

Dataset M Iterations needed time [s]
N-ADMM ADMM N-ADMM ADMM

intel

1 245 245 36.97 32.03
2 245 245 42.28 32.19
3 245 245 47.69 31.92
4 245 245 51.68 32.01
5 245 245 56.55 31.82

m3500_g2o

1 130 148 55.25 53.29
2 130 148 56.50 51.39
3 112 148 52.36 51.34
4 100 148 49.49 51.71
5 113 148 60.94 51.20

ais2klinik

1 101 197 140.91 230.25
2 101 197 149.29 231.62
3 115 197 179.40 229.31
4 113 197 183.42 229.48
5 113 197 193.18 232.02

Master of Science Thesis L. Bosland

	Front Matter
	Cover Page
	Title Page
	Table of Contents
	Acknowledgments

	Main Matter
	Introduction
	Distributed pose graph optimization (PGO)
	Alternating direction method of multipliers (ADMM) for distributed PGO
	Nesterov accelerated ADMM (N-ADMM) for distributed PGO
	Performance of N-ADMM
	Conclusions
	Bibliography

	Appendices
	Graphical PGO example
	Supporting results and figures

