
 
 

Delft University of Technology

Where Is My Tag?
Unveiling Alternative Uses of the Apple FindMy Service
Tonetto, Leonardo; Carrara, Andrea; Ding, Aaron Yi; Ott, Jörg

DOI
10.1109/WoWMoM54355.2022.00059
Publication date
2022
Document Version
Accepted author manuscript
Published in
Proceedings - 2022 IEEE 23rd International Symposium on a World of Wireless, Mobile and Multimedia
Networks, WoWMoM 2022

Citation (APA)
Tonetto, L., Carrara, A., Ding, A. Y., & Ott, J. (2022). Where Is My Tag? Unveiling Alternative Uses of the
Apple FindMy Service. In L. L. Chen, T. Melodia, E. E. Tsiropoulou, C. F. Chiasserini, R. Bruno, S.
Bhattacharjee, P. Frangoudis, & V. S. S. Nadendla (Eds.), Proceedings - 2022 IEEE 23rd International
Symposium on a World of Wireless, Mobile and Multimedia Networks, WoWMoM 2022 (pp. 396-405). IEEE.
https://doi.org/10.1109/WoWMoM54355.2022.00059
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/WoWMoM54355.2022.00059
https://doi.org/10.1109/WoWMoM54355.2022.00059


Where Is My Tag? Unveiling Alternative Uses
of the Apple FindMy Service

Leonardo Tonetto, Andrea Carrara
Department of Computer Science

Technical University of Munich
Munich, Germany

tonetto@in.tum.de, andrea.carrara@tum.de

Aaron Yi Ding
Dept. of Engineering Systems and Services

Delft University of Technology
Delft, Netherlands

aaron.ding@tudelft.nl

Jörg Ott
Department of Computer Science

Technical University of Munich
Munich, Germany

ott@in.tum.de

Abstract—Bluetooth trackers, or tags, have quickly become
ubiquitous and widely supported by multiple vendors. Beyond
their original design of finding lost objects, these devices have
the ability to extend the capabilities of current wireless smart
devices. Since its launch in 2019, Apple’s FindMy enables any
devices from their brand to be easily tracked by more than 1
billion active iPhones and iPads on the market. While convenient,
these systems may even serve further uses, including as a result
of this work, crowd sensing and a side channel for mobile
communication. But they also raise privacy concerns for their
users. In this paper, we demonstrate how Apple FindMy can be
used as a privacy-friendly tool for crowd monitoring, and how
it may inadvertently leak information on a person’s location in
case of deliberate tracking. Additionally, we design and evaluate a
proof of concept protocol, using the Apple FindMy and a crafted
tag using a simple microcontroller. We show how such system
could be used to transmit information at very low bit rates, while
the devices transporting the information remain unaware of this
covert channel, yielding an out of band communication channel.

Index Terms—sensing, location privacy, crowd monitoring,
mobile communication, covert exfiltration

I. INTRODUCTION

Bluetooth trackers, or tags, have become ubiquitous, being
primarily used to track and find lost objects. This growing
pervasiveness allowed manufacturers to create a network of
tracker owners to anonymously report about any nearby tag,
such as Tile and Apple FindMy. This crowdsourced reporting
provides obvious primary benefits for its users, but also en-
ables alternative uses for which it was not originally designed.

In this paper, we explore two such alternative uses as the
main objective of our work: (1) a fully anonymous crowd
sensing system and (2) a covert communication channel built
on top of Apple’s FindMy system: As an auxiliary finding, our
work revealed potential privacy issues that could affect billions
of Apple devices [1], for which the only current mitigation is
disabling Bluetooth or opting-out of the FindMy service.

Crowd Sensing: Sensing and monitoring different aspects of a
(large) crowd may serve numerous purposes, such as steering
people flows to safety under pressing conditions. However,
automated methods for crowd monitoring, such as image-
based tracking, may raise privacy concerns [2]. Individuals are
bothered by sensors capturing any form of personal identifiable

information (PII) that, if stored permanently, may require
explicit consent from those being monitored.

Current solutions to this privacy problem in crowd mon-
itoring may rely on computing all relevant metrics at the
edge [2]. However, these systems still handle PII and those
being monitored simply have to trust their personal data are
being dealt with appropriately. Therefore, a reliable source of
crowd data while guaranteeing the privacy of its subjects is
still a relevant open problem that we explore with this paper.

We use handcrafted Apple tags enabled by the reverse-
engineering work of Heinrich et al. [1], in which single board
computers and microcontrollers can be used as tags. Apple
allows the owner of tags to download all location reports
within a week. Through a series of comprehensive analyses,
we demonstrate the capability of such system using trackers,
or sensory-tags, for coarse crowd monitoring, including deter-
mining counts/density and flows.

Covert Data Channel: We also demonstrate how such tracker
systems could be used to create a side channel for commu-
nication, while sending information silently through nearby
mobile devices. Our proof-of-concept enables out-of-band
communication at low bit-rate, without awareness of those
partially carrying the information.

Deliberate Tracking: We explore potential privacy risks as-
sociated with Apple FindMy as a side effect of its sensing
capabilities. The threats we reveal concern the possibility of
exposing location information of a victim from the timestamps
contained in each location report. We demonstrate their feasi-
bility through proof of concept examples and discuss possible
mitigation approaches to these threats.

Our work exposes and discusses alternative usages for an
established secure system, including potential malicious ones.
We present an evaluation of the Apple FindMy network and
its main properties that are pertinent to the proposed solutions.
Furthermore, we design and test a simple protocol, with basic
characteristics to ensure a successful transmission of data
with our system. Finally, we discuss the implications of this
work, along with possible mitigation strategies for users and
developers of similar systems. We reported all uncovered
issues to Apple several months prior to the submission of this
manuscript.
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Our contributions: (1) We thoroughly analyse the timing and
conditions in which location reports are sent for a lost smart
tag in the Apple finder network (§ IV). (2) We demonstrate the
feasibility and accuracy of using such anonymous location re-
ports for sensing two different aspects of a crowd, namely flow
and size/density, from a series of real-world measurements
compared to state of the art solutions (§ VI). (3) We reveal the
feasibility of timing attacks, using the Apple finder network
that could reveal information about a person’s whereabouts
without their consent (§ VII). (4) We show such tags can be
used to transmit information through a side-channel, and we
name it TagComm (§ VIII). (5) Complementing the original
work by Heinrich et al. [1], we provide open source code that
enables other devices to be used as sensory-tags as well as
be used for covert communication: macOS devices and the
Amazon Echo [3], [4]. (6) We discuss the privacy and ethical
implications of our work (§ IX).

II. RELATED WORK

1) Apple Ecosystem: Recently, various papers evaluated the
security of different Apple services. Analysis by Martin et al.
of the Handoff services, that enables seamless communication
between multiple Apple devices under the same iCloud ac-
count, reveals how Apple’s proprietary protocol can undermine
MAC address randomization and allow the identification of
devices belonging to a single user [5]. Furthermore, a study
by Stute et al. demonstrated how the Apple Wireless Direct
Link (AWDL) works, including the reverse engineering of its
protocols and Wireshark plugins. These examples support the
importance of scrutinizing such proprietary systems that may
affect users of billions of devices worldwide [6].

2) Bluetooth LE trackers: A recent study by Weller et
al. evaluated different Bluetooth trackers and their cloud
services [7]. Their study revealed a series of security issues,
including privacy risks with all products tested, although it
did not include Apple’s FindMy as no commercial product
was available at the time. Focusing exclusively on the Apple
service, Heinrich et al. dissected how FindMy components
work [1]. Their study reverse engineered the protocol used
by lost devices, finders and how owners can retrieve available
location reports for their tags. Their open source code was
used as the foundation for our present paper.

3) Security and Privacy: Security and privacy literature
has a vast number of systems that exploit different vectors to
covertly exfiltrate data from systems (e.g. [8]). Various systems
have used keyboard or HDD indicator LEDs [9], as well as
inaudible (or indistinguishable) sound from speakers [10], fans
or HDDs [11]. In this paper, the proof-of-concept we present
enables a covert channel, through which any information
can transmitted at low bit rates. To foster further research,
we extend [1] by macOS support that runs without root
privilege [3], [4].

4) Crowd Monitoring: Assessing and understanding large
crowds has been studied with a myriad of sensors and methods,
but not without its privacy implications [2]. However, several
challenges are still open when it comes to scalability and

integration of multiple systems towards a common decision
support [12]. The COVID-19 pandemic has stimulated crowd
monitoring research, for example, ensuring social distanc-
ing [13] as a valuable approach to reduce infections [14].

5) Our Work: In this paper, we further analyse the Apple
FindMy service, and we present two proof-of-concept systems,
one which allows coarse crowd monitoring, and other that
allows side-channel communication as well as their potential
risks for users’ privacy. Note that, while [1] reverse engineered
the client-side managing of tags, we extend our understanding
of this system while exposing possible security and privacy
leaks FindMy users are currently subject to.

III. BACKGROUND

In this section, we present basic functionality of Apple
FindMy as the underlying system for our current work. Fur-
thermore, we present relevant concepts of Bluetooth LE.
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Fig. 1: Delay in sensing and reporting a tag.

A. Apple FindMy Service

This finder network was released in 2019, in which devices
that explicitly opt-in are tracked through anonymous crowd-
sourced location reports. When devices are marked as lost,
their owners receive location reports through their iCloud ac-
count and view them, e.g., using the FindMy application [15].

Heinrich et al. [1] reverse-engineered this system, allowing
a series of Bluetooth Low Energy (BLE) devices to appear as
tags inside Apple’s FindMy network. Any of such tags will
beacon at all times, regardless of the presence of its owner.
Furthermore, when marked as lost the owner of a tag may then
receive any available location report. To get started, an iCloud
user, the owner of a tag, creates a public-private key pair
(ek, dk) through a series of API calls, for tracking a device.

1) Beaconing: To enable tracking, a device broadcasts a
BLE advertising packet using a specific MAC address that
is derived from the above public key ek. Finder devices
listen for Apple FindMy beacons and check for each received
beacon if the advertised payload and MAC address are a valid
“match”. A tag derives both payload and MAC address from
the public key (ek) created by its owner (see [1] for details



on their algorithm), so that only valid packets are processed
further. Finder devices receiving such beacons can then furnish
location reports for nearby tags, anonymously to iCloud.

2) Reporting a tag: The reporting process is depicted in
Figure 1. A tag broadcasts an appropriate BLE beacon, as
described above. A finder device passing by will identify
this as a lost device and store a location report, containing
(1) the beacon reception time, termed contact (tc), (2) the
confidence about that contact (similar to accuracy in (4)),
(3) the public key ek, (4) the location information, encrypted
using ek and containing geographical coordinates, horizontal
accuracy, and status, and (5) an authentication label AES-GCM
to validate the report. These reports are uploaded securely
(HTTPS POST) after some time to Apple’s iCloud, where they
are stored until being requested by the tag owner. In addition
to these data fields, a bundle of reports submitted by a single
finder is annotated with the timestamp of when the entire batch
was received on the server side (tr).

3) Reading reports: With the public keys (ek) of their
own tags, users query their iCloud account for available
location reports with HTTPS GET requests; each user can then
decrypt the location information contained in a report using
the corresponding private key (dk).

B. BLE Advertising and Our Experimental Setup

The BLE standard allows advertising packets of devices
to include up to 31 bytes of information. These beacons are
broadcast at intervals between 20 ms and 10 s on any of three
channels used for advertisements [16]. Their successful recep-
tion by a nearby finder device is stochastic: the transmission
(TX) power for the advertising packets may influence proper
reception and may the distance between finder and tag and the
environmental conditions (e.g., radio interference). Also, both
finder and tag continuously switch channels and would need
to use the same one when a packet is sent.

Our Setup: Given these constraints, and to better understand
the conditions in which locations of devices are reported,
we carry out a series of experiments to build a thorough
understanding of how sensing and reporting work in the Apple
FindMy network. We use a series of ESP32 microcontrollers
as tags for our experiments. These low-power devices provide
programmable BLE support through an API which allows full
control of its Bluetooth controller, including TX power and
advertising interval, which are often not accessible on other
platforms. These experiments allow us to draw observations
which set the foundation to the side-channel communication
we discuss on the following sections.

IV. FINDMY SYSTEM CHARACTERIZATION

In this section, we present the results of a series of ex-
periments we conducted in controlled environments as well
as in the wild. We first present our findings on the behavior
of Apple devices when reporting smart tags to the FindMy
network. Next, based on observations drawn from our afore-
mentioned findings, we present results from crowd monitoring

measurements compared to state of the art alternatives, as well
as a possible side-channel attack.

A. Uploading of reports is determined by device settings

As discussed in Section III, finder devices often bundle a
series of reports before uploading them to iCloud. To better
characterize this behavior, we analyzed the traffic between
iCloud and two jailbroken1 iPhones (7 and 8, on iOS14.6)
using an HTTP proxy. With a Bluetooth tracker, continuously
beaconing, placed next to these phones for intervals of 72
hours, we tested how different settings influenced the upload-
ing intervals. We present the distribution of these intervals in
Figure 2 for various settings, with a clear distinction between
being on Wi-Fi (median ∼15 minutes) or Cellular (median ∼3
hours), on power supply or battery. Additionally, with Low
Data Mode enabled, the phones uploaded reports less often
(median ∼36 minutes), whereas other modes did not affect
reporting significantly. Therefore, the phone settings explain
differences between the contact time tc reported and received
time tr, when a bundle of reports is sent.
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Fig. 2: Delay in sensing and reporting a SmartTag.

B. Over 50% of reports are uploaded within 15 minutes

We ran a set of measurements in the wild, at a large public
space. These observations lasted for a total 24 hours, and
were conducted on various days from July to September 2021.
From these data, we computed the delay between sensing a
tag (tc) and uploading the reports to iCloud (tr), for which
the distribution is depicted in Figure 3. This delay shows a
strong mode around 15 minutes, a median of 13.15 minutes,
and has 95% of its values between 6 seconds and 8 hours
(shaded area).
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Fig. 3: Distribution of the delay in sensing and uploading.

1Required as iCloud HTTPS communication requires certificate pinning.



C. Uploading time uniquely identifies a finder

As reports are bundled, their receiving time tr is appended
on the server side with the precision of milliseconds. This,
in turn, allows us to uniquely identify a finder for a series
of reports as those will contain the same tr with several
decimal points of precision. As discussed above, the uploading
of reports may be done hours apart from their actual contact
time. It is important to note that each upload may contain up
to 255 reports and up to 4 per tag. That is, if a nearby finder
is connected to Wi-Fi, only up to 4 location reports will be
uploaded every 15 minutes.

D. Short advertising intervals lead to no reports

During our measurements in the wild using short BLE ad-
vertising intervals (e.g., 20 ms), we observed that the FindMy
network discards all location reports for a tag, possibly due
to uploads happening too frequently. Although we were not
able to precisely determine the best limit, the fastest we could
advertise without periods of missing data was 1022.5 ms. For
that, in all measurements discussed in Section VI we carried
tags configured at that BLE advertising interval (as suggested
by Apple [17]) and at maximum TX power (+9 dBm).
Takeaway (§IV): FindMy provides limited but valuable in-
formation on nearby finders and that depends on the settings
of their mobile devices. Moreover, the reports upload may be
delayed from 15 minutes to several hours.

V. GENERAL OVERVIEW
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Fig. 4: Overview of alternative uses for the Apple FindMy ser-
vice. (a) Crowd monitoring. (b) Remote destination inference.
(c) Path reconstruction. (d) Covert communication.

Given the observations drawn from the characterization of
FindMy (§ IV), we now look at how the spatial and temporal
availability of tags can be further exploited to create alternative
uses. Using Figure 4 as a guide: (a) In an area with multiple
finders, using a single tag in a fixed location we can estimate
how crowded a monitored area is (§ VI-A), while using
multiple tags in fixed locations we can study properties of
their flow (§ VI-B). (b) Targeting a single finder, using a
single tag, placed for a short period in proximity with a target,
and have this finder move to a commonly visited place, we
(or an attacker) can estimate where this target finder could
have gone from a list of possible destinations (§ VII-A). (c)
Again, targeting a single finder, but this time using multiple
tags, each placed along any arbitrary area (or paths), we

(or an attacker) can estimate the trajectory taken by this
finder (§ VII-B). (d) Using multiple tags (or simply emulating
multiple tagIDs with a single transmitter) and any arbitrary
number of finders, we can encode a message into the sequence
these tagIDs are transmitted. As we will discuss, in (b), (c)
and (d) the respective finder(s) are unaware of the respective
use. Currently, only disabling Bluetooth or opting out of the
FindMy service can mitigate this issue.

VI. CROWD MONITORING

We now evaluate how well smart tags on Apple’s FindMy
network can be used for crowd monitoring. We first present our
results for crowd size estimates, evaluated against a state-of-
the-art image recognition approach. Next, we present results
for crowd flow which we evaluate against passive measure-
ments of commonly used Wi-Fi management frames [2].

A. Crowd Size – Using a single tag

For this evaluation, we conducted 8 measurements, of 3
hours each, from July to September 2021 in a large public
square in the city of Munich, Germany. During these months,
this main square is often crowded due to shops, restaurants
and metro stations nearby. Our smart tag setup consisted
of an ESP32, advertising at ∼1 second intervals and using
high TX power (+9 dBm) for maximum discoverability. We
evaluate these measurements against the people count obtained
by image recognition, which we describe next.

1) Image recognition: The use of images for crowd esti-
mates produces some of the most accurate results with the
use of inexpensive hardware [2]. Modern approaches based
on Convolutional Neural Networks have quickly become the
state of the art for all image recognition tasks, and in spite of
their capabilities, such methods are not extensively used due to
privacy concerns raised by their usage. Those concerns include
regulatory legislation in several countries. For our evaluation,
we used images from a publicly available web-cam2, openly
streaming images at 5 seconds per frame, with a 2048x1536
resolution. For that, we use the Mask R-CNN [18], from
which we extract the total count of persons per frame. Mask
R-CNN performs multi-class object instance segmentation,
detecting and dividing each class instance in the prediction.
This segmentation is of key importance for the detection of
people in a large environment since they tend to stay in groups.
Mask R-CNN is able to detect different people that overlap
each other, increasing the accuracy of the model [18].

2) Size Measurements Description: For crowd size analy-
sis, we correlate the total number of persons identified using
image recognition against our smart tags approach. From the
latter, we identify a unique device using the time a set of
reports was uploaded to iCloud (see § IV).

3) Results: To best estimate the time window to aggregate
tag reports, we correlated the number of identified finders
over different time window (Wt, or bin sizes). Figure 5a
depicts how the Pearson correlation value changed with bin

2https://www.ludwigbeck.de/webcam (will be removed in camera-ready)



sizes, while it also shows the p-value for those sizes. The
p-value estimates the probability the estimated correlation
coefficient was due to randomness, and we adopt p-value
< 0.001 as our confidence interval, below which results are
deemed acceptable. From the analysis, we note that only from
Wt of 8 minutes we obtained p-value below the confidence
interval, and the correlation coefficient reaches its maximum
value at 18 minutes, with a value of 0.58 which corresponds to
a strong correlation between both values. The highest values
around 15 minutes could be explained by the expected time an
iPhone takes to upload location reports (see § IV). Figure 5b
depicts the best relationship between the normalized values
for tags (NT ) and from images (NI ), at Wt 18 minutes. Thus,
coarse-grained crowd size monitoring with a modest time lag
appears feasible.
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Fig. 5: Relationship between numbers from tags (NT ) and
from images (NI ), for different bin sizes (Wt).

B. Crowd Flow – Using multiple tags

We now evaluate how smart tags could be used to study
the flow of a crowd. That is, we explore how well we can
measure moving time and waiting time (or dwell time) using
a pair of smart tags in a large urban environment. We compare
our method with measurements done using Wi-Fi management
frames, as those are currently widely adopted by researchers
and commercial applications [2].

1) Wi-Fi Management Frames: Mainly due to its simplicity
and reported accuracy [2], [19], crowd monitoring using Wi-
Fi management frames is extensively used. In principle, all
Wi-Fi enabled devices send a series of management frames,
often used to search for available access points and to es-
tablish/maintain existing connections. These frames contain
a device identifier (MAC), which can, in turn, be tracked
through space and time while uniquely identifying a mobile
device. To mitigate this traceability, since 2014, mobile devices
perform MAC randomization at ever increasing rates and new
schemes [20]. For our purposes, however, discarding locally
managed addresses and subsampling our measurements with
only global addresses suffices for our first order approxima-
tions of time between vantage points. From our measurements,
on average, 26% of management frames captured were from
non-random MAC addresses. We measured this using a Rasp-
berry Pi 3, with two external antennas, hopping between the
non-overlapping channels 1, 6 and 11.

2) Flow Measurements Description: For crowd flow anal-
ysis, we compare the distribution of time intervals a set of

devices takes to be observed between two vantage points.
These points were 176 meters apart and were chosen at the city
center of Munich, Germany, in a commercial area where only
pedestrians are allowed. We conducted 3 measurements of 2
hours each on 6/7/8 September 2021. From the measurements
of the smart tags, we identify a unique device using the time
a set of reports was uploaded to iCloud (tr, see § IV). If
such a bundle of reports contained at least one record at each
vantage point, we could then infer the time interval the device
took between both locations. Similarly from Wi-Fi frames, this
interval corresponds to the time between consecutive records
at each observed location.

3) Results: The left panel on Figure 6 shows the histogram
of measured times between vantage points, with a mode at
2 minutes from both sources. Furthermore, to meaningfully
analyze our measurements, we decompose them into log-
normal distributions, using the widely used Gaussian-Mixture
Model. This unsupervised learning method decomposes an
input set into a pre-determined number of Gaussians. To select
the best number of clusters, we used the BIC method [21]
which estimates how well a given model explains the variance
in the measured value. Our empirical results suggest that
the ideal number of clusters for the Wi-Fi and smart tags
measurements is 3. Following this classification, the right
panel on Figure 6 depicts the similarities in the distributions
of the estimated walking and waiting times from tags and
Wi-Fi. The average walking time was 2.41±0.04 minutes
using tags and 2.28±0.04 minutes using Wi-Fi. That yields
an equivalent ∼4.5 km/h walking speed, in line with exist-
ing urban pedestrian research [22]. The average estimated
waiting time (assuming the mean walking time above) was
19.33±1.44 minutes using tags and 20.54±0.69 using Wi-Fi.
A possible interpretation of these values is the expected time
pedestrians have spent at shops along the way.
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Takeaway (§ VI): Bluetooth trackers can be used for crowd
monitoring, with comparable results to widely used alternative
solutions. These alternatives, however, may disclose personal
information and always generate data that needs to be han-
dled with care, such as personal identities. For crowd sizes,
estimates with a single tag strongly correlate with estimates
using state of the art image recognition. Furthermore, different
aspects of crowd flow were accurately estimated using multiple



tags when compared to Wi-Fi measurements. In both use-
cases, our approach always guarantees the anonymity of the
studied subjects given the reporting mechanism and end-to-end
encryption of this Apple service.

VII. DELIBERATE TRACKING

In this section, we present proof of concept (PoC) evalua-
tions and possible mitigation strategies to information being
leaked by the Apple FindMy service. We demonstrate how
this leakage may allow an attacker to track a victim’s device
through timing attacks, enabled by the reporting system im-
plemented by Apple. The experiments we present used only
our own devices to avoid disclosing unwanted information
from other subjects. Apart from privacy concerns, it was
necessary to have control of the phone’s settings and times
when connected to Wi-Fi or cellular network.
Overview: We demonstrate two examples of information
leakage: A) Destination inference, in which the timing between
sensing a tag and uploading a report may disclose where a
victim could have gone; B) Path reconstruction, in which a
sequence of visited places can be precisely inferred. Both
examples rely on the bundling of reports (see § III) as well as
the difference in uploading delay when connected to different
networks (see § IV). Note that the threats we present only
require the victim being near a tag for a brief period of time,
and not being tracked by inadvertently carrying a tag.

A. Remote Destination Inference – Using a single tag

This attack relies on the timing of location reports, but pre-
cisely the difference between sensing a tag (tc) and uploading
a report (tr). Furthermore, the modulation of the TX power
can limit the range of BLE beacons, helping ensure only a
victim’s phone is affected.

1) Threat Model: An attacker, who wants to know where a
victim has gone after an encounter, performs a timing attack
using one tag. The attacker knows the victim’s most visited
locations, and the victim is only connected to cellular while
outdoors and connects immediately to Wi-Fi when reaching
her destination. During the encounter, the attacker “tags”
a victim’s phone by transmitting a series of beacons. The
victim’s phone, while on cellular, will store the reports until
reaching her destination where, on Wi-Fi, it will upload all
location reports for the attacker’s tag. With the difference
between sensing and uploading the reports, an attacker can
limit (or pinpoint) the most likely destination of the victim.
The victim is unaware this attack is tracking place, and only
disabling Bluetooth or the FindMy service can mitigate it.

2) PoC Description: For this, we used an iPhone 12 (iOS
15) and one tag, configured at -6 dBm ensuring only at close
proximity our phone would sense our tag. We enabled our tag
next to our iPhone for 1 minute, then moved 18.5 km (11.5
miles) to a destination, where we finally enabled Wi-Fi.

3) Results: Our moving time was ∼29 minutes, and the
difference between tc and tr was ∼35 minutes. Furthermore,
we observed similar behavior on sensing and immediately
uploading reports once on Wi-Fi, as previously discussed.

B. Path reconstruction – Using multiple tags

Given the bundling of reports (see § III), intentionally posi-
tioned lost tags can form a sequence of “breadcrumbs” which
can then disclose the path followed by a phone. Similarly to
the previous example, TX power can be modulated to ensure
shorter coverage from each tag. As a proof of concept, we
conduct one experiment.

1) Threat Model: An attacker, willing to find out the
whereabouts of a victim through an area of interest, places
tags at known locations. This attack relies on the victim
having her phone connected to the cellular network only while
moving and eventually connecting to Wi-Fi after the monitored
journey. The victim’s phone will then sense these tags, keeping
the order of the observed tags. Once uploaded, the location
reports disclose where and when the victim had been. The
unique tr, appended by iCloud when receiving a bundle of
reports, uniquely identifies a finder device (see § III). The
victim is unaware this attack is taking place, and only disabling
Bluetooth or the FindMy service can mitigate it.

2) PoC Description: For this example, we used 3 iPhones
(7 and 8 on iOS 14.8 and 12 on iOS 15), and placed 3 pairs
of tags in a straight line, with each pair at 150 meters away
from the next pair, configured at -6 dBm to ensure that only at
close proximity devices would sense our tags. We stayed for
5 minutes, at a distance of 2 meters from each pair of tags,
then walked to the next location (in ∼2 minutes). We disabled
Wi-Fi until reaching a planned location away from the tags to
ensure it did not unexpectedly upload any reports.

3) Results: From all three phones, we were able to recon-
struct the path and timing taken at each location. Figure 7
depicts the transitions between each state (static or mobile)
as well as the corresponding tc contained in each location
report. We also noted that, on all phones, the upload of
reports happens within the first 5 minutes of switching to
Wi-Fi from cellular-only. With such information, an attacker
can reconstruct the set of visits of a victim and obtain an
accurate estimation of the time spent at each place. However,
if a finder device uploads a bundle of reports before all visits
are done, then the attacker will not be able to fully reconstruct
a trajectory.
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Fig. 7: Path reconstruction.



C. Mitigation

We now discuss mitigation strategies applicable to both path
reconstruction and destination inference cases. Until Apple
addresses these issues, users can only disable Bluetooth or
the FindMy services to prevent their location information
unknowingly being leaked, impairing the functionally of the
service. From the system’s perspective, providers like Apple
could (1) reduce the granularity of the received timestamps
(tr) or remove them altogether from the location reports, (2)
randomize when reports are uploaded, no longer determined
by the connectivity available, or (3) initiate the uploading of
reports after moving a random distance. None of these systems
solutions should impact the functionality of the service, while
still protecting the privacy of its users.

VIII. TAGCOMM – COVERT CHANNEL USING BLE
TRACKERS

Now, we turn to an illustration of a side-channel communi-
cation, built on the FindMy service, which we name TagComm.
In this section, we delve into the design a simple unicast
protocol, which essentially uses the sensing of tags by nearby
iPhones to encode and transport information. Figure 8 outlines
our proposed design: we create an artificial tag that changes
its beaconed tag ID over time (chosen from a pre-defined
alphabet, encoding messages as sequences of the transmitted
tag IDs, without the awareness of any nearby finder. Our
proposed system could, for example, be used by an attacker
trying to exfiltrate data from an air gapped system (cf. [8]).
Note that, the transmission is end-to-end encrypted as neither
the finder nor Apple are able to decode that any specific tag
ID is being transmitted. The decoding of the IDs transmitted,
and therefore the final message, is only possible by the owner
as discussed in Section III.
Overview: Our protocol uses a set of tag IDs and their per-
mutations to encode information. That is, for N available tags
we can encode blog2 (N !)c bits of information. Additionally,
we include a set of header bits as well as a parity bit to be
encoded along with the message payload. These extra bits and
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Fig. 8: TagComm protocol example, encoding a message as
a sequence of tag IDs, silently and securely transmitted by a
finder.

a pre-defined number of tags guarantee a transmitted message
can eventually be recovered, as will be presented next.

A. Encoding

In order to maximize the amount of information being sent
and provide basic integrity guarantees, we use the permuta-
tions of N tag IDs to encode the information we want to
transmit. Furthermore, the understanding of the sensing and
reporting behavior from Section IV establishes bounds to how
fast information can be transmitted.

Algorithm 1: Encoding input word into sequences

Input: S,w; /* Symbols and word encoded */
Output: E; /* Encoded sequence */

1 L← length(S) ; /* Length of S */
2 assert(L! >= w) ; /* From Ê */
3 E ← [ceil(w/(L− 1)!)] ; /* One item list */
4 for idx ∈ range(L− 1, 0,−1) do /* From Ë */
5 w −= (E[−1]− 1) ∗ idx! ; /*E[−1]: last */
6 e = ceil(w/(idx− 1)!);
7 E.append(e);

1) Input to sequence of symbols: Given an input message to
be transmitted W and a set of encoding symbols of size N, we
iteratively divide the interval of N! to find the corresponding
sequence to be used. Note that this requires W < N! (as Ê).
For example, for N=5 and W=42, we define an order for the
resulting set of symbols, i.e., a<b<c<d<e (Ë). Next, we
split the interval 5! into 5 equally sized blocks, as depicted
in Figure 10a. As 42 is found within the second block, the
symbol b is removed and set as the first symbol. These steps
are repeated until all symbols have been removed, yielding
the final sequence bdeca. This procedure allows us to encode
log2 (N !) bits of information using N tags. Algorithm 1
systematically describes these steps.

2) Defining N=16: Given Ê, we define the code efficiency
as the ratio blog2 N !c/dN log2 Ne (as Ë). That is, the maxi-
mum number of bits encoded by the minimum number of bits
required for all used symbols N. Given these observations,
Figure 9 shows the variation in Ë for different values of N up
to 20 tags3, with its highest efficiency at N=16, which we use
in our experiments. This leaves us with a total of 44 bits, and
their use will be further described next.

3) Frame and supporting bits: To ensure the integrity of
the information being transmitted and to allow the receiver
to decode that information, we define a simple frame to
our protocol, illustrate in Figure 10b. Three header bits (as
MSB) distinguish different message types: STX (0b000) the
start of transmission, F0 and F1 alternating even and odd
frames (0b010 and 0b100, respectively), and EOT end of
transmission (0b110). These bits ensure the receiver can
deterministically identify the start of a transmission, new
frames as well as the end of a transmission. This guarantee

3Largest number of permutations that fits in 64 bits.
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Fig. 9: Code efficiency given the number of symbols (tag IDs)
being used to endcode a message, with its maximum at 16.

is achieved by ensuring the initial symbol of a sequence
will be unique for each frame type, as a consequence of the
values chosen for the header bits. Additionally, a parity bit (as
LSB) provides a minimal “checksum” to the message being
transmitted once its decoded. Finally, the remaining bits are
used for the message payload, which in our setup, consists of
40 bits.
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4) Transmission integrity: To transmit a block of informa-
tion W using Tagcomm, a node will chunk it into words w of 40
bits. A transmission will start with an STX frame (i.e., header
bits set to 0b000) that will carry the total number of words
to be expected in its payload. Next, each word is encoded
as a sequence (as described above) as alternating frames of
type F0 and F1. Finally, a transmission is terminated with an
EOT frame. Note that, as the protocol requires all symbols to
be transmitted, if a receiver is unable to reconstruct an entire
sequence, the corresponding word w cannot be retrieved. For
details on error recovery, see Section VIII-B.

B. Decoding

Once received by the owner device, location reports for a
series of tag IDs should be decoded into its original message.
Essentially, this is done by inverting the steps done while

encoding a frame into a sequence. Once the different frames
are decoded and parity bits verified, the original message can
finally be reconstructed.

1) Tags alignment: As the duration of each tag being
transmitted is predefined (e.g., ttag), the first step in decoding
a message is aligning each received tag in slots of size ttag.

2) Frames alignment: As discussed in Section VIII-A, each
frame type starts distinct symbols, represented and transmitted
in TagComm as tags. Similar to the tags alignment, the
duration of how long a frame is sent is also predefined, for
example 5 minutes. This way, knowing the expected sequence
of frames, i.e., STX, F0, F1, ..., EOT (as Ì), and their
corresponding starting symbols, we can align all received
frames and start the decoding step.

3) Decoding frames: Once the sequences that encode each
frame are identified, we can decode the information by revers-
ing the steps explained in Section VIII-A. That is, assuming
a predefined order between tags (e.g., Ë), and taking the
encoded sequence as input, we can recover the initial message
by adding up the partial contributions each symbol had in
splitting the N! interval, as described in Algorithm 2. After
decoding, we then verify the presence of errors in the next
step.

Algorithm 2: Decoding sequences into words

Input: S, E; /* Symbols and encoded seq. */
Output: w; /* Decoded word */

1 L← length(S) ; /* Length of S */
2 P ← [ ] ; /* Empty list */
3 for i, e ∈ enumerate(E) do
4 idx← S.index(c) ; /* Symbol e index */
5 P.append((L− 1− i) ∗ idx); /*Partial sum*/
6 S.pop(idx)

7 w ← sum(P ) ; /* Add up all partials */

4) Error Correction: Once each frame has been decoded
from the input sequences, we can validate the integrity of the
frame with its parity bit. Furthermore, the expected sequence
of frame types (i.e., Ì), combined with a parity bit, allows us
to recover messages when a single tag (out of a sequence) is
not received. The position of the missing tag can be determined
when aligning the tags in each frame (see above), and finally
verified with the corresponding parity bit, allowing us to
reconstruct the orginal message in the next step.

5) Final message reconstruction: Once all frames have
been decoded, the total number of expected frames sent as
the payload of STX frames can be read and verified. Finally,
all the information encoded in a series of sequences of tags
can be reconstructed.

C. TagComm Experiment

In this section, we describe the set of experiments we
conducted to test our TagComm system. Furthermore, we
present a series of observations made from the results obtained.



D. Setup

For all measurements, we transmitted a set of 10 randomly
generated words of 40 bits. These were transmitted using the
protocol described in Section VIII. As previously discussed,
we used a single ESP32 as our lost tag, which implemented
the transmitter/encoder logic (see § VIII-A. As a finder, we
had an iPhone 12 (iOS 15) nearby, connected to Wi-Fi at all
times. As discussed in Section III, this setting allows us to
estimate a best-case scenario given the expected frequency the
iPhone would publish location reports for our tag (i.e., within
15 minutes more than 50% of the time).

E. Results

We were able to successfully transmit a set of random
words, as described above. To better verify the limits of our
system, we varied some of the parameters, such as word
duration and BLE advertisement interval.

Definitions: For this analysis, we define the error rate as the
fraction of tag slots during which no reports were received.
That is, given the tag slot duration (e.g., 30 s), the error rate of
a transmission corresponds to tag slot intervals during which a
finder was present but no report was sent. Further, we define
the time until done (TUD) as the expected minimum time
required to decode a complete message, from starting the
transmission until it is fully decoded by the owner’s device.
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Fig. 11: Error rate and TUD for different settings. (a) CDF
of error rate and different frame duration (Wt). (b) Error rate
and BLE advertisement intervals. (c) CDF of TUD and Wt.

Frame duration and error rate: The different frame dura-
tions we tested produced small differences between error rates.
We observed 26.17% for 20 minutes, 24.73% for 15 minutes,
and 28.82% for 10 minutes on average, and their distributions
are depicted in Figure 11a. This indicates that repeating a tag
at a certain position for longer periods of time does not affect
the probability it will be detected by a Finder.

Larger BLE advertisement intervals increase error rate:
We compare the effect different Bluetooth LE advertising in-
tervals had in the error rate. From our measurements, we note
that for larger advertising intervals, less tags were observed
per unit of time. Figure 11b depicts the monotonic increase in
error rate with increased adv. intervals. This could be explained
by the probabilistic nature of these intervals, and to which
transmitters do not have any control [16].

Frame duration and time until done: We tested frame
window sizes around 15 minutes (10, 15, 20), as previous
experiments showed that to be the expected time over 50% of
reports take to be published. We measured each configuration
for 72 hours, and computed expected values for TUD from
100 different random starting points in each setting. For these
measurements, we observed 7.73±0.22 hours with 20 minutes,
9.57±0.30 hours with 15 minutes, and 10.36±0.36 hours with
10 minutes. The distributions of TUD for each configuration
is depicted on Figure 11c. Interestingly, using two iPhones
on the same iCloud account and placed near a tag, did not
produce statistically significant improvements.

F. Mitigation

Currently, users can avoid inadvertently transporting infor-
mation with a similar system by disabling Bluetooth on their
phones or opting out of the FindMy services. From the system
side, while keeping the main functionality of the FindMy
services, Apple can limit the number of updates issues by
a finder, as well as limit the number of available reports
per tag or decrease the accuracy of the time stamps used.
Notably, Apple currently does not notify users about one of
these crafted tags being around, as we did not get a single
notification during our experiments, using multiple iCloud
accounts.

IX. DISCUSSION

Privacy: To preserve privacy of the individuals part of our
crowd sensing experiments, we (1) discard all original MAC
addresses from the Wi-Fi measurements, leaving records that
can no longer identify the owners of the original devices, (2)
we compute the metrics from each image and store only the
counts per frame, using publicly available images, and (3) used
our own equipment to demonstrate the possible information
leakage from the FindMy services. For the communication
experiments, by using our own devices and iCloud accounts,
we ensure the privacy and resources of other individuals were
not affected by our work. However, our work unveils possible
attack vectors which could be exploited, compromising the
security and privacy of the subjects involved.

Ethics: Our measurements and analysis were designed and
executed to minimize exposing information about subjects
being studied. Whenever possible, we limited our study to
our own devices, and when studying crowds we discarded all
identifiable information. However, we understand the methods
presented could be used in other unintended ways. Therefore,
we believe such study may contribute to the design of future
versions of Bluetooth tracking systems.

Crowd Sensing: Our analyses show acceptable results using
a single tag on the Apple FindMy service to sense aspects
of a crowd. More importantly, our system provides privacy
guarantees when used with a large group of subjects. Unlike
in the deliberate tracking examples, a large group of unknown
individuals ensures no single subject can be identified or have
further information disclosed.



Extended support to other platforms: To enable further
studies with such smart tags system, we extend the support
originally implemented by Heinrich et al. [1] to macOS
(e.g., developing of new applications and debugging) and the
Amazon Echo [3], [4] (e.g., home IoT turn into sensing device)
to be used as a tag.
More Finders may increase Tagcomm delivery guarantees:
During our Tagcomm experiments, using a single extra Finder
did not yield significant improvements in the reliability of
sending messages. For applications deployed in spaces where
multiple finders could be passing by may increase further the
guarantees messages are transmitted.

X. CONCLUSION

In this paper, we present how Bluetooth trackers (or tags)
can be used beyond their originally designed purpose, of
tracking lost devices. We show how crafted tags can be used as
crowd sensing devices, with relative estimates of large groups
of people. These estimates include crowd size estimated with
a single tag, and also crowd flow by using multiple tags
along a monitored path. Furthermore, we demonstrate through
a series of controlled experiments how the Apple FindMy
service currently discloses sensitive location information from
passive finder devices. An attacker may, in turn, reconstruct a
victim’s path and visits as well as a possible final destination,
currently exposing billions of Apple devices [1].

In addition, we also present Tagcomm, a proof-of-concept
out-of-band communication channel using Apple tags. Using
a simple protocol, we demonstrate how various tag IDs can be
used to encode any arbitrary information and transmitted over
a secure end-to-end encrypted channel, without the knowledge
of the phones that handle part of this communication path. Our
intent is to raise awareness of such possibility, while discussing
possible uses which include side-channel communication that
could leak sensitive information from a compromised system.

Future iterations of our work will consider other Bluetooth
trackers for crowd sensing, and leverage TagComm to estimate
users’ behavior. Furthermore, similar systems providing raw
reports (i.e., not aggregates over time) will be verified for the
vulnerabilities presented here.

Reproducibility: To foster further research, we make our
code and sample data openly available [4] along with an
extended support for other platforms to be used for either
communication or sensing [3].
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