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Abstract

Falling is a significant problem for older adults. It can cause severe injury and even death. Furthermore, the
fear of falling has a significant influence on the life of the elderly, and therefore they reduce their physical
activity. Two new balance assistive devices are being developed to reduce the risk of falling. Both devices use
a control moment gyroscope (CMG) to generate a moment to counter the falling motion. One device con-
sists of a single CMG. The other device consists of two CMGs that are coupled such that the gimbals rotate in
opposite direction. This is called a scissored pair CMG (SPCMG). The purpose of this study was to examine
whether it is possible to design an (SP)CMG with a passive mechanism that exploits gyroscopic precession of
gimbal(s) to emulate different types of impedances for balance assistance.
To examine this, first, the equations of motion of a CMG and an SPCMG were derived. Next, the equations of
motion were used to derive the impedance of the system. The impedance was optimized such that it would
simulate the behaviour of a spring, a damper, a mass, a mass-spring-damper system, and a rotational PD
controller which is proportional to the XCoM (PDXCoM), a measure of stability. The optimization used a
gradient-based algorithm to find the minimum. Multiple optimizations with different random initial guesses
were performed to increase the chance to find the global minimum. Two sets of optimizations were per-
formed. One optimization with and one optimization without bounds on the optimization. The sets param-
eters that led to the best fit were used in a walking simulation to calculate the moments the device would
generate during normal walking.
It is shown that it is possible to simulate the dynamics of a spring, a damper, a mass, and a mass-spring-
damper system with a CMG and an SPCMG. However, it was not possible to replicate the dynamics of the
PDXCoM with a CMG and an SPCMG. A walking simulation showed that the generated moments of the
(SP)CMG were in the opposite direction of the angular velocity of the human. Therefore, using a passive
mechanism to control an (SP)CMG could be used as balance assistance.
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Nomenclature

Table 1: Nomenclature list

Symbol Meaning
R Vector R
R Matrix R
Ω Angular velocity of the flywheel
γ̇ Angular velocity of the gimbal
F Force vector
H Angular momentum vector
M Moment vector
QR Vector R expressed in the Q frame

(QṘ)S Change of R with respect to the S frame, expressed in the Q frame
ω Angular velocity of the (human) body

{ês , êt , êg } Gimbal fixed frame
{êu , êv , êw } Body fixed frame

L Laplace transform
D Discriminant





1
Introduction

1.1. Motivation
Older adults are more likely to lose their balance and fall. This can cause serious injury, immobility, premature
nursing home placement, and even death [37]. In 2002, about 1000 people older than 50 years died because
of falling in Finland, a population of about 5 million people [20]. The fear of falling has a high impact on
the lives of the elderly. About a third of the elderly is afraid to fall [41]. Due to the fear of falling, the elderly
decrease their physical activity. This decrease in physical activity can cause deconditioning, reduced- health,
physical functioning and participation in society [38], which lead to an increased risk of falling. Risk factors
for falling can be classified into intrinsic and extrinsic. The most important intrinsic factors are fatigue, the
use of medication, muscle weakness, balance deficit, and mobility limitations[11, 18]. Extrinsic factors are
mainly interaction with the environment [18]. This can include unexpected steps or changes in grade, and
terrain that is slippery, or loose.
Humans have a variety of balance techniques. One such technique is to produce a moment around the ankle
to keep the body upright. To generate this moment, the plantar- and dorsiflexors around the ankle are used
to control the human body. This ankle strategy only works for perturbations with a frequency lower than 1 Hz
and with a small amplitude [1, 22]. For perturbations with a higher frequency, the hip strategy is used. With
this, the upper body is moved in the opposite direction of the lower body[1, 22]. These techniques are used
during stance. The task of balance is to keep the centre of gravity above the base support. During walking,
the base support is small since the human is only supported on one foot. Therefore, walking is a challenging
daily activity to maintain balance [43]. Keeping balance becomes even harder since, during walking, humans
have to initiate, and terminate gait, avoid objects and thereby altering the gait cycle, and might bump into
objects or other people. It is during walking that about 50% of all falls occur [2]. The primary way to prevent
a fall is a correct foot placement and body sway, such that the centre of gravity is above the foot. To do this,
response time is of great importance [40]. About a third of all falls occur because the response time was too
long [34]. With longer recovery time, the response time of the person can be slower.

Fall prevention programs are used to teach the elderly how to manoeuvre better and how to fall. Here,
robots like KineAssist [33] are already used to reduce the workload of physiotherapists and increase training
intensity. Additionally, technical solutions are being proposed to prevent falling. This includes a robotic cane
[7], which moves to a position where it is able to support the falling human. And a stroller-like robot with
actuated arms [12] that give support to the user. For these devices, the user has to use one or both arms to keep
balance. Additionally, it requires the user to actively provide a force to prevent falling. Therefore, a certain
strength is needed for the user to stay upright. An older person might not be able to provide the necessary
amount of force needed to do this. Another assistive device is a wearable robot with two legs that can move to
a posture to provide assistance [31]. This design is however very bulky which makes manoeuvring in compact
spaces, like in a living room, more difficult. Apart from these robotic devices, also exoskeletons like, Ekso(Ekso
Bionics, USA), XoR [16], and BALANCE (EU) are used for balance control. These are strong enough to move
limbs and are therefore bulky, and complicated to use. Moreover, the actuation that the exoskeletons provide
generates internal moments. Therefore, it does not directly change the angular momentum of the body.

Another creative, solution for fall prevention is proposed by Li and Vallery [25]. Here, control moment
gyroscopes (CMGs) are used to create a moment to counter the falling motion. If a flywheel has a high angular
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4 1. Introduction

velocity and it is rotated about a second axis, a moment about a third axis is generated. This moment can be
used to prevent falling or reduce the falling speed to give the person extra time to recover.

This concept of using a gyroscope is minimalistic and allows the user to keep their hands free. Moreover,
many people with balance impairment are functionally capable of walking and thus do not need full muscle
support. They only need assistance for fall prevention, and therefore an exoskeleton is unnecessary. The
concept of using a CMG for balance assistance has gained some momentum over time. Scissored paired
CMGs have been used to steer the moment provided by the CMGs in the desired direction and prevent sway
[6, 36]. Furthermore, a prototype has been developed using an inverted pendulum to replace a human [24].
Here they were able to produce a CMG moment of 70 Nm. All of these concepts, however, use a motor to
control the gimbal. This motor adds weight due to the transmission, and the battery, which is undesirable.
Passive control also requires no sensors, is therefore very fast and reliable.

Currently CMGs are mainly used to steer satellites and other space crafts [23] or to stabilize ships [32].
Here, the angular velocity of the base structure is low and will, therefore, not induce a significant gyroscopic
effect. Furthermore, obects with a high angular velocity have been stabilized using a CMG such as bicycles
[3], robots [5], and a ropeway carrier [30].

Also in wearable applications, the angular velocities can be large enough to induce a significant gyro-
scopic effect. It might be possible to use this effect to control the CMG. If the CMG is controlled passively via
direct mechanical coupling, it will overcome some drawbacks that active control entails. A significant draw-
back that active control brings is time delay, which reduces the predictability of the device. Moreover, some
electronics might fail. With a mechanical coupling, there is no time delay and no electronics.

1.2. Background information
To understand the rest of the report, some backgournd information is needed about CMGs and bodeplots.
Reaction wheels and CMGs can both be used to generate a moment by changing the angular momentum of
the flywheel. A reaction wheel accelerates or decelerates its flywheel about the spin axis and thereby generates
a moment. CMGs also have a rotation flywheel, but they generate a moment by a rotation about a different
axis than the flywheel spin axis. This is typically done by rotating a gimbal. This produces moments that are
much larger than a reaction wheel could provide. This moment will be orthogonal to both the spin axis of the
flywheel and the gimbal.

To control the gyroscope, the dynamics of the gyroscope will be used. When the gimbal rotates about the
êt axis and the flywheel has an angular momentum in direction ês , see Fig. 1.1, a torque will be generated
about an axis perpendicular to both êt and ês . To determine in which direction the torque is generated,
the right-hand rule is used. The thumb points in the direction of the angular velocity of the gimbal and
the index finger in the direction of the angular momentum. This shows that the torque is generated in the
positive êg direction. This moment will start to rotate the flywheel about this êg axis and therefore a new
moment is generated perpendicular to ês and êg , which will be in the êt direction. This is called the cascaded
gyroscopic effect. This means that a gyroscope has an output torque in the opposite direction of the input
angular velocity.
When the output of a system is in the opposite dirction of the input, a system has a phase of 180 deg or it is
non-minimum phase [10]. At least one zero exists in the right-half plane when a system is non-minimum
phase. In the result section, the frequency responses of the (SP)CMG are shown with different parameters.
Therefore it is imporant to be able to interpret bodeplots. When drawing the bode plot of a non-minimum
phase system, the normal "rule book" for drawing bode plots do not apply. For drawing a bode plot of a non-
minimum phase system, some rules have to added. These can be seen in Table 1.1. Non-minimum phase
system can have a "strange" behaviour. When an odd number of zeros exist in the RHP, the initial direction of
the step response will be in the opposite direction of the final value [13].

1.3. Project overview
The research question of this project is; "Is it possible to design a (SP)CMG with a passive mechanism, such
that (SP)CMG dynamics can be exploited in a way that it can generate effective moments for balance assis-
tance?"

The goal of this thesis is to investigate whether it is possible to passively exploit a (SP)CMG for balance
assistance. This will be done by making a theoretical model of an (SP)CMG with a passive mechanism, which
will be optimized such that it can replicate the impedance of arbitrary systems. The scope of this project will
be limited to theoretical analysis and using measured data to predict the moments the (SP)CMG will generate.
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Figure 1.1: Hand sketch of flywheel with gimbal. The body-fixed frame, {êu , êv , êw }is rotated with an angle γ with respect to the gimbal-
fixed frame, {ês , êt , êg }. The flywheel rotates with an angular velocity of Ω. The spring and damper provide a moment along the êw /êg
axis.

There will be no experiments on humans subjects.
In Chapter 2, the equations of motion of a CMG and SPCMG will be explained as well as how the transfer
function are obtained and the optimization method. In Chapter 3, a case study will be discussed. Herein,
specific impedances will be chosen, and the CMG impedance will be matched to this. In Chapter 4, the
results of the parameter optimization are shown. Furthermore, the time response of the CMG and SPCMG
are shown with one set of optimized parameters. In Chapter 5, the results and method will be discussed as
well as future directions. The conclusion will be given in Chapter 6. Additional graphs and formulas can be
found in the appendices, as well as the Matlab code that was used.

Table 1.1: Table with rules for drawing bode plots

Magnitude Phase Initial Phase

Minimum Phase

Zero 20 dB/dec +90°

0°
Double Zero 40 dB/dec +180°
Pole −20 dB/dec −90°
Double Pole −40 dB/dec −180°

Non Minimum Phase
Zero 20 dB/dec −90° −180°
Pole −20 dB/dec +90°





2
Mechanism Design

In this chapter, the equations of motions of a single CMG and SPCMG are derived. These are then used to
obtain the impedances. The impedance is then optimized such that the (SP)CMG simulates the behaviour of
simple mechanical systems.

2.1. Equations of motion for a single CMG
In this section, the equations of motion are derived for the single CMG. A CMG system is composed of a
flywheel, with moment of inertia tensor Iw with values Iws, Iwt and Iwt on the diagonal, spinning at a high
angular velocity (Ω). Moreover, a gimbal with a moment of inertia tensor Ig with values Igs, Igt and Igg on
the diagonal, can rotate with respect to the body with angular velocity γ̇. We propose, a passive mechanism
between the human body and the gimbal, consisting of a spring with stiffness k and a damper with damping
coefficient b. This passive mechanism provides a moment to the gimbal. The equations of motion are in the
body-fixed frame with both the Newton-Euler methods and the Lagrange methods.

2.1.1. Definitions of angles and angular velocities
The equations of motion are generated for body fixed sensing. The term body refers to the human body.
The body-fixed frame (B) consists of unit vectors {êu , êv , êw }. Where êu is in the direction of the left-right
axis where the positive direction is right, êv is in the direction of the sagittal axis where the positive direction
is ventral, and êw is in the longitudinal direction of the human where the positive direction is cranial. The
definitions can all be seen in Fig. 2.2. The gimbal-fixed frame (G) consists of the unit vectors {ês , êt , êg }, see
Fig. 2.2. The projections of the body-fixed frame on the gimbal-fixed frame can be seen in Fig. 2.1 and are
defined as follows:

G êu =
 cos

(−γ)
sin

(−γ)
0

 , G êv =
 −sin

(−γ)
cos

(−γ)
0

 , G êw =
 0

0
1

 , (2.1)

The rotation matrix from the body-fixed frame to the gimbal-fixed frame is:

GR(γ)B = [êu êv êw ] (2.2)

The rotation matrix from the gimbal-fixed frame to the body-fixed frame is the transpose of Eq. (2.2). This
will results in, BR(γ)G =G R(γ)T

B. The angular velocities between the wheel fixed frame (W) and the gimbal
fixed frame (G), angular velocities between the G and the body fixed frame (B) are expressed as:

GωW/G =
 Ω

0
0

 , GωG/B =
 0

0
γ̇

 (2.3)

The angular velocity between B and the inertial frame (N ) is expressed as:

BωB/N =
 ωu

ωv

ωw

 (2.4)

7
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Figure 2.1: Free body diagram of a flywheel with a gimbal. The body-fixed frame, {êu , êv , êw }is rotated with an angle γwith respect to the
gimbal-fixed frame, {ês , êt , êg }. The flywheel rotates with an angular velocity of Ω. The moments Mu and Mv are the reaction moments
of the bearing in the êu , êv respectively. The moments Mk and Mb are generated by a spring with spring stiffness k and a damper with
damping coefficient b respectively.

From this it follow that the angular velocity between G and N is GωG/N =G ωG/B+G R(γ)BBωB/N .

2.1.2. Newton-Euler Approach for a Single CMG with body-fixed Rotations
The Newton-Euler method was used to generate the equations of motion. The angular momentum of fly-
wheel and gimbal in the gimbal-fixed frame are:

GHw = Iw(GωW/G +GωG/B+G R(γ)BBωB/N )

GHg = Ig(GωG/B+G R(γ)BBωB/N )

GH =G Hb +G Hg

(2.5)

To calculate the change of angular momentum with respect to the N frame, we will first derive the change of
angular momentum with respect to the G frame. Since we assume thatΩ is constant, the derivative of GωW/G
equals zero. Therefore, G(Ḣ)G can be calculated as follows.

G(Ḣw)G = Iw(G(ω̇G/B)G +G R(γ)BB(ω̇B/N )G)

G(Ḣg)G = Ig(G(ω̇G/B)G +G R(γ)BB(ω̇B/N )G)

G(Ḣ)G =G (Ḣw)G +G (Ḣg)G

(2.6)

To derive the derivative of BωB/N with respect to the G frame, we need to use the transport theorem.

B(ω̇B/N )G =B (ω̇B/N )B+BωB/G ×BωB/N (2.7)

Now we can derive the change of angular momentum with respect to the N frame by using the transport
theorem again.

G(Ḣ)N =G (Ḣ)G +GωG/N ×G H (2.8)

So B(Ḣ)N =B R(γ)GG(Ḣ)N . The written out form of this equation can be seen in Eq. (A.1). The moments
generated by the spring, damper and the bearings are:

BM =
 Mu

Mv

+bγ̇+k(γ−γ0)

 (2.9)



2.2. Frequency response analysis of a single CMG 9

Figure 2.2: Diagram of the body fixed frame, {êu , êv , êu } and the gimbal fixed frame {ês , êt , êg }

Using Euler’s 2nd law of motion, we state:
BM =−B(Ḣ)N (2.10)

This can be solved for γ̈ which leads to:

γ̈=−[bγ̇−k(γ0 −γ)+ ω̇w (Igg + Iwt)− Igs(ωu cosγ+ωv sinγ)(ωv cosγ−ωu sinγ)+ Ig t (ωu cosγ+ωv sinγ)
(ωv cosγ−ωu sinγ)+ Iwt(ωu cosγ+ωv sinγ)(ωv cosγ−ωu sinγ)− Iws(ωv cosγ−ωu sinγ)

(Ω+ωu cosγ+ωv sinγ)]/(Igg + Iwt)
(2.11)

2.2. Frequency response analysis of a single CMG
The goal of this subsection is to generate equations to describe the impedance, Mi

ωi
, of the system. This

impedance denotes the change in moment due to a rotation disturbance. Generating the impedance is done
by using the moments due the change in angular momentum that act on the human body, GM . The moment
is not solely dependent on ωB/N but also on γ, γ̇, and γ̈. Therefore, the dynamics of γ̈ must be implicitly
included in the impedance to get a complete description of the impedance. Therefore, γ has to be written
as a function of s and ωB/N first. The equations of motion are linearized around an equilibrium point with
arbitrary ωu ,ωv ,ωw ,γ and with γ̇= 0.

AM = ∂M
∂x

Aγ̈ = ∂γ̈
∂y

(2.12)

Where x = [γ̈, γ̇,γ,ωu ,ωv ,ωw ,ω̇s ,ω̇t ,ω̇g ]T and y = [γ̇,γ,ωu ,ωv ,ωw ,ω̇s ,ω̇t ,ω̇g ]T . The resulting state space
equations are:

M̂ = AM(x −x0)
ˆ̈γ= Aγ̈(y − y0)

(2.13)

Next, Eq. (2.13) is transformed into frequency domain by taking the Laplace transform, L {M̂}, and L { ˆ̈γ}.
Now we can solve L { ˆ̈γ} for γ such that γ= f (s,ωu ,ωv ,ωw ). The function f (s,ωu ,ωv ,ωw ) can be substituted
for γ into L {M̂} .

Now that BM is linearized, transformed into frequency domain, and γ is substituted, it still equals the
moments. Hence, L {M̂} = [Mu , Mv , Mw ]T . We are only interested in the impedances Mi

ωi
of the transfer

function matrix. So the impedances that are derived are:
Mu
ωu

Mv
ωu

Mw
ωu

Mu
ωv

Mv
ωv

Mw
ωv

Mu
ωw

Mv
ωw

Mw
ωw

 (2.14)
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This leads to the following transfer functions when linearized around γ= γ? and ωu =ω?u ,ωv =ω?v ,ωw =
ω?w , which can have arbitrary values. Furthermore only the transfer functions Mu

ωu
, Mv
ωv

and, Mw
ωw

are shown.
The rest can be found in appendix B. Herein, it is assumed that the gimbal is a sphere, so Igs = Ig t . To simplify
the equations the following simplification is used.

Js = Iws + Igs

Jt = Iwt + Ig t

Jg = Iwt + Igg

(2.15)

Mu
ωu

= (ω?w sin
(
2γ?

)
(Iws − Iwt))/2− s(Js + (Iwt − Iws)sin

(
γ?

)2)

− (ω?w ((Iws−Iwt)ω?u cos(2γ?)+(Iws−Iwt)ω?v sin(2γ?)+IwsΩcos(γ?))((Iwt−Iws)ω?v cos(2γ?)+(Iws−Iwt)ω?u sin(2γ?)+IwsΩsin(γ?)))
k+bs+Jg s2+(Iws−Iwt)ω?2

u cos(2γ?)+(Iwt−Iws)ω?2
v cos(2γ?)+IwsΩω

?
u cos(γ?)+IwsΩω

?
v sin(γ?)+2(Iws−Iwt)ω?uω

?
v sin(2γ?)

+ (s((Iwt−Iws)ω?v cos(2γ?)+(Iws−Iwt)ω?u sin(2γ?)+IwsΩsin(γ?))(Jgω
?
v +(Iws−Iwt)ω?v cos(2γ?)+(Iwt−Iws)ω?u sin(2γ?)−IwsΩsin(γ?)))

k+bs+Jg s2+(Iws−Iwt)ω?2
u cos(2γ?)+(Iwt−Iws)ω?2

v cos(2γ?)+IwsΩω
?
u cos(γ?)+IwsΩω

?
v sin(γ?)+2(Iws−Iwt)ω?uω

?
v sin(2γ?)

(2.16)

Mv
ωv

=−(ω?w sin
(
2γ?

)
(Iws − Iwt))/2− s(Jt + (Iws − Iwt)sin

(
γ?

)2)

+ω?w [(Iws−Iwt)ω?u cos(2γ?)+(Iws−Iwt)ω?v sin(2γ?)+IwsΩcos(γ?)][(Iwt−Iws)ω?v cos(2γ?)+(Iws−Iwt)ω?u sin(2γ?)+IwsΩsin(γ?)]
k+bs+Jg s2+(Iws−Iwt)ω?2

u cos(2γ?)+(Iwt−Iws)ω?2
v cos(2γ?)+IwsΩω

?
u cos(γ?)+IwsΩω

?
v sin(γ?)+2(Iws−Iwt)ω?uω

?
v sin(2γ?)

− s[(Iws−Iwt)ω?u cos(2γ?)+(Iws−Iwt)ω?v sin(2γ?)+IwsΩcos(γ?)][(Igs−Igg)ω?u+(Iws−Iwt)ω?u cos(γ?)2+((Iws−Iwt)ω?v sin(2γ?))/2+IwsΩcos(γ?)]

k+bs+Jg s2+(Iws−Iwt)ω?2
u cos(2γ?)+(Iwt−Iws)ω?2

v cos(2γ?)+IwsΩω
?
u cos(γ?)+IwsΩω

?
v sin(γ?)+2(Iws−Iwt)ω?uω

?
v sin(2γ?)

(2.17)

Mw
ωw

=− s Jg (k+bs)

k+bs+Jg s2+(Iws−Iwt)ω?2
u cos(2γ?)+(Iwt−Iws)ω?2

v cos(2γ?)+IwsΩω
?
u cos(γ?)+IwsΩω

?
v sin(γ?)+2(Iws−Iwt)ω?uω

?
v sin(2γ?)

(2.18)
To maximize the moment in êv , γ has to be zero. This can be used to simplify the impedances.

Mu
ωu

= ω?v ω
?
w (Iws−Iwt)(IwsΩ+Iwsω

?
u−Iwtω

?
u

k+bs+Jg s2+(Iws−Iwt)ω?2
u +(Iwt−Iws)ω?2

v +IwsΩω
?
u

− (sω?2
v (Igg−Igs)(Iws−Iwt))

k+bs+Jg s2+(Iws−Iwt)ω?2
u +(Iwt−Iws)ω?2

v +IwsΩω
?
u

(2.19)

Mv
ωv

=−s Jt

− s(IwsΩ+(Iws−Iwt)ω?u )(IwsΩ−Iggω
?
u Jsω

?
u−Iwtω

?
u

k+bs+Jg s2+(Iws−Iwt)ω?2
u +(Iwt−Iws)ω?2

v +IwsΩω
?
u

− ω?v ω
?
w (Iws−Iwt)(IwsΩ+Iwsω

?
u−Iwtω

?
u

k+bs+Jg s2+(Iws−Iwt)ω?2
u +(Iwt−Iws)ω?2

v +IwsΩω
?
u

(2.20)

Mw
ωw

=− s Jg (k+bs)

k+bs+Jg s2+(Iws−Iwt)ω?2
u +(Iwt−Iws)ω?2

v +IwsΩω
?
u

(2.21)

The poles of the simplified impedance are described by:

p1,2 = −B±
p

B 2−4AC
2A

A = Jg

B = b
C = k + Iws(Ωω?u +ω?2

u −ω?2
v )+ Iwt(ω?2

v −ω?2
u )

(2.22)



2.3. Equations of motion of a scissored pair CMG 11

2.3. Equations of motion of a scissored pair CMG
In this section, the equations of motion are derived for a scissored pair CMG (SPCMG). The equations of
motion are expressed in the body-fixed frame. The gimbals are coupled such that the angular rotations are
always opposite. Therefore, two rotation matrices are needed. The first, G1 RB is equal to Eq. (2.2). For the sec-
ond rotation matrix, G2 RB, the same rotation matrix is used but −γ is substituted for γ. The angular velocities
of the second CMG can be seen in Eq. (2.23). A schematic figure of the SPCMG can be seen in Fig. 2.3.

G2ωW/G2 =
 −Ω

0
0

 , G2ωG2/B =
 0

0
−γ̇

 (2.23)

Figure 2.3: Simplistic top view of scissored pair gyroscope. The blue disks rotate in opposite direction. The orange rectangles represent
the flywheel

The same method to generate the equations of motion is used for the first CMG as in Section 2.1.2 except
that the second gimbal applies a moment,Mc, on the first gimbal because they are coupled. So the moment
applied to the first gimbal is:

M1 =
 M1u

M1v

k(γ−γ0)+bγ̇+Mc

 (2.24)

For the second gyro, the method is very similar to the first. However, the second gimbal rotates in the opposite
direction compared to the first gimbal. Therefore, we fill in γ for−γ,Ω rotates in the−ês direction, and G2 RB is
used. This also means that the angular velocity is in the opposite direction. The moment due to the coupling
also applies to the second gimbal.

M2 =
 M2u

M2u

−k(γ−γ0)−bγ̇+Mc

 (2.25)

Now we solve the equation B(Ḣ2)N =B M2 for Mc and substitute this result in M1. So, M1 consists of −I2γ̈−
2bγ̇−2kγ among other terms related to the gyroscopic effect. Now the total change of angular momentum
can be calculated with:

−B (Ḣ1)N −B (Ḣ2)N = M1 (2.26)

The written out version of this equation can be seen in Eq. (A.2). When solved for γ̈, it results in:

γ̈=−[2bγ̇−2(γ0 −γ)k + Igsω
2
u sin

(
2γ

)− Ig tω
2
u sin

(
2γ

)− Igsω
2
v sin

(
2γ

)
+Ig tω

2
v sin

(
2γ

)+ Iwsω
2
u sin

(
2γ

)− Iwtω
2
u sin

(
2γ

)− Iwsω
2
v sin

(
2γ

)
+Iwtω

2
v sin

(
2γ

)+2IwsΩωu sin
(
γ
)
/[2γ?]

(2.27)

To check whether the equations of motion are correct, also the Lagrange method was used to generate the
equations of motion. The equations of motion found with the Lagrange method were equal to the equations
of motion found with the Newton-Euler method. Furthermore, H1 + H2 was numerically differentiated and
this was matched with B(Ḣ1)N +B (Ḣ2)N . Both validation checks can be seen in appendix A.
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2.4. Frequency response analysis of scissored pair CMG
The method of computing the impedance of the SPCMG is exactly the same as for a single CMG from Sec-
tion 2.2. This leads to the following transfer functions when linearized around γ = γ? and ωu = ω?u ,ωv =
ω?v ,ωw =ω?w , which can have arbitrary values. Furthermore only the transfer functions Mu

ωu
, Mv
ωv

and, Mw
ωw

are
shown. The rest can be found in appendix Appendix B.

Mu
ωu

=−s cos
(
γ?

)
2Js

− sω?u sin(2γ?)(Iws−Iwt)[2(Iws−Iwt)ω?v cos(γ?)+2Iggω
?
u sin(γ?)+2Iwsω

?
u sin(γ?)]

k+bs+Jg s2+(Iws−Iwt)ω?2
u cos(2γ?)+(Iwt−Iwt)ω?2

v cos(2γ?)+IwsΩω
?
v sin(γ?)

− 2ω?uω
?
v ω

?
w sin(2γ?)sin(γ?)(Igg−Igs)(Iws−Iwt)

k+bs+Jg s2+(Iws−Iwt)ω?2
u cos(2γ?)+(Iwt−Iwt)ω?2

v cos(2γ?)+IwsΩω
?
v sin(γ?)

(2.28)

Mv
ωv

=−s cos
(
γ?

)
(2Jt )

− s[(Iws−Iwt)ω?v sin(2γ?)+IwsΩcos(γ?)][2IwsΩ+2(Iwt−Iws)ω?u cos(γ?)+2(Iws−Igg−2Iwt)ω?v sin(γ?)]

k+bs+Jg s2+(Iws−Iwt)ω?2
u cos(2γ?)+(Iwt−Iwt)ω?2

v cos(2γ?)+IwsΩω
?
v sin(γ?)

− 2ω?uω
?
w sin(γ?)[Iwsω

?
v sin(2γ?)−Iwtω

?
v sin(2γ?)+IwsΩcos(γ?)](Jg −Js )

k+bs+Jg s2+(Iws−Iwt)ω?2
u cos(2γ?)+(Iwt−Iwt)ω?2

v cos(2γ?)+IwsΩω
?
v sin(γ?)

(2.29)

Mw

ωw
=Ø (2.30)

The impedance Mw
ωw

does not exist because the term ωw nor ω̇w does not appear in the equations of motion
found in Eq. (2.26).

If γ= 0, Eq. (2.28) and Eq. (2.29) simplify to:

Mu

ωu
=−2s Js (2.31)

Mv
ωv

=−s(2Jt )− (2I 2
wsΩ

2s)
(k+bs+Jg s2+(Iws−Iwt)ω?2

u +(Iwt−Iws)ω?2
v )

(2.32)
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2.5. Effect of changing parameters on frequency response

Multiple bode plots with changing parameters are shown in Fig. 2.4 to get an overview of how different pa-
rameters change the frequency response of a single CMG. The parameters can be seen in Table 2.1. The
chosen parameters are similar to the parameters of mini-GYRO’s that are being used in the bio-robotics lab.
In Fig. 2.4a the effect of γ on the frequency response is shown. It shows that the frequency response with γ

between 0rad and π/3rad are very similar in both the magnitude and phase. Furthermore, when γ=π/2rad,
the impedance is that of a pure mass.
In Fig. 2.4b the effect of stiffness on the frequency response is shown. It shows that with low stiffness, the sys-
tem behaves as a damper at low frequencies. With an increasing stiffness, the impedance will become more
similar to a mass.
In Fig. 2.4c, the effect of damping on the frequency response is shown. It shows that with a low damper, a
complex pole pair and a complex zero pair will exist. The pole pair exists at lower frequencies than the zero
pair. With an increase in damping, the impedance will behave as a damper at lower frequencies. It should be
noted, however, that the frequency response will depend on specific combinations of parameters. Therefore
the frequency response can not be determined with a linear superposition.

Table 2.1: Arbitrary values for the parameters for transfer function Mv
ωv

.

Parameter Value unit
k 5 N/m/rad
b 1 Nm/s/rad

Iws 4.4e-04 kgm2

Iwt 2.5e-04 kgm2

Igs 8.8e-04 kgm2

Igg 5.0e-04 kgm2

γ 0.00 rad
Ω 2513 rad/s
ωu 0 rad/s
ωv 0 rad/s
ωw 0 rads
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Figure 2.4: Bode plots of a single CMG in the body-fixed frame when different parameters are changed.
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2.6. Optimization
We want to design an (SP)CMG that produces a specified impedance between the human body and the
(SP)CMG. A gradient optimization was used to find a set of parameters for which the (SP)CMG produces
this impedance. Gradient optimization is computationally efficient but has a chance to find local minima.
Therefor multiple optimizations with different random initial guesses were performed. Knowledge about the
system was used to determine the initial guess. Then some randomness was added to the initial guess to
reduce the change of finding a local minimum even further. The algorithm minimizes the difference between
the desired transfer function (TFdes) and the obtained transfer function (TF). Both the magnitude and phase
are important. If the magnitude of the two transfer functions is the same, the pole and zero location of the
transfer function are the same. However, this only holds when all poles and zeros are in the left half-plane.
If there exists one zero or pole in the right half-plane, the phase shifts by 180°, this is called non-minimum
phase. Therefore, the phase is considered more valuable. Furthermore, if the phase between the TFdes and
TF differs 180°, the moment will be applied in the opposite direction than intended, which is worse than a
moment with a different magnitude in the right direction. The algorithm used to solve the optimal parameter
problem is as follows:

i ← 100
x = ub . ·R ∼U ([0,1])
mi nx ||C (x)|| 2

2

Where the cost function is:

C = w1(i mag (T Fdes − i mag (T F )))+ r eal (T Fdes −T F ) (2.33)

Other cost functions are discussed in Section 5.6. The optimization was performed with the MATLAB
R2019b (MathWorks; Natick, USA) function, lsqnonlin. The algorithm minimizes the difference between the
desired transfer function, T Fdes, and the transfer function that was computed earlier, T F . A w1 of 100 was
chosen. This was because the phase was considered more important than the magnitude. The frequency vec-
tor consists of two hundred logarithmic spaced frequencies. These frequencies range from 0.1Hz to 10Hz.
Two sets of optimizations were performed. One in which was examined how good the fit can theoretically get,
and one with realistic bounds on the parameters. The parameters that were optimized are spring stiffness,
damping, moments of inertia of the flywheel, moments of inertia of the gimbal, and the orientation of the
flywheel. The angular momentum depends on both the moment of inertia and the angular velocity of the fly-
wheel. Hence, there is redundancy between those parameters. Therefore, the angular velocity of the flywheel
was fixed on 1500 rad/s for both types of optimizations. An angular velocity of 0 rad/s was used for all angular
velocities of the human body. The bounds for the optimizations can be seen in Table 2.2. The bound on the
inertia of the flywheel was based on the inertia of the flywheel of Lemus et al. [24], where the inertia Iws =
0.02 kg/m2. Twice this value was used to give the optimization more space to explore. Since the gimbal does
not provide gyroscopic torque, it has to be lightweight to reduce the mass of the overall system. Therefore,
an upper bound of 0.2 kg/m2 was chosen. The spring stiffness was based on the maximum spring stiffness of
a torsion spring that was found in [14]. The damping coefficient was based on the rotary dampers found in
[26]. The optimization was performed 100 times to increase the change of finding a global minimum.

Table 2.2: The lower and upper bounds for the for the variable parameters for the (SP)CMG

Parameter Lower Bound Upper Bound on Random Guess Upper Bound Unit
k 0 4500 4500 Nm/rad
b 0 3800 3800 Nm/s/rad

Iws 0 0.3 0.04 kgm2

Iwt 0 0.3 0.04 kgm2

Igs 0 0.3 0.02 kgm2

Igg 0 0.3 0.02 kgm2

γ −π π π rad
Ω 1500 1500 1500 rad/s
ωu 0 0 0 rad/s
ωv 0 0 0 rad/s
ωw 0 0 0 rad/s





3
Case Study

In the previous chapter, the impedance of the CMG and SPCMG were derived. Furthermore, the optimization
algortim was explained. This chapter wil explain to which impedances the (SP)CMG will be matched.

3.1. Desired transfer function
To investigate whether it is possible to match impedances, the impedance of the (SP)CMGs were optimized
for multiple impedances. The optimization was done for a spring, damper, mass, a mass-spring-damper
system and a PD controller inspired by the XCoM, a measure of stability. The values for these systems were
arbitrarily chosen. The desired transfer functions can be seen in Table 3.1.

Table 3.1: Table that shows the desired transfer functions that were used for the optimization.

Mechanism Spring Damper Mass Mass-Spring-Damper System PDXCoM

Symbolic Transfer Function − k
s − bs

s − J s2

s − J s2+bs+k
s + kp+kds

s

Transfer Function − 30
s − 5s

s − 0.5s2

s − 0.5s2+5s+30
s + 100+32s

s

3.1.1. XCoM
The desired transfer function is modeled after a measure of dynamic stability, XCoM [15]. The assumptions
are that the human body can be modeled as an inverted pendulum, see Fig. 3.1. Furthermore, there are no
ankle moments applied and the moment of inertia of the human body is approximated as a point mass. The
sum of the moments around the ankle is: ∑

M : Jfθ̈ = mg L sinθ (3.1)

Where m is the mass of the upper body, L is the length of the leg, θ is the angle of the leg with respect to the
vertical, Jf = Jc +mL2, and g is the gravitational constant. To get the transfer function, this will be linearized
about θ = 0.

Jfθ̈ ≈ mg Lθ (3.2)

The natural frequency, ω0 =
√

mg l
Jf

and the moment of inertia of the trunk is set to zero. When we substitude
this in Eq. (3.2) we get:

θ̈−ω2
0θ = 0 (3.3)

For the orbital energy, we have to multiply equation 3.3 by 1
4 θ̇ and integrate over time [19].

Eorb = 1
4

∫
θ̇(θ̈−ω2

0)dt

Eorb = 1
2 (θ̇−ω0θ)(θ̇+ω0θ)

(3.4)

XCoM is then defined as the distance from the stable trajectory. The stable trajectory can be seen in the phase
plot of Fig. 3.2. The external moment that should be applied to make the system stable is:

17
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Figure 3.1: Figure of XCoM. The length of the leg is depicted by L. The angle of leg with respect to the vertical is depicted by θ. The
moment of inertia of the body is depicted by Jc. The gravity force is depicted by mg.

M = −k XCoM
M = −kl (θ+ω−1

0 θ̇)
M = −kplθ−kd · lω−1

0 θ̇

(3.5)

However, this is the moment generated by the CMG, so the moment applied on the human is in the opposite
direction.

M = kplθ+kd · lω−1
0 θ̇ (3.6)

If we can choose kp and kd independently, equation 3.5 can be interpreted as a PD controller. To make the
system equivalent to the equations of the gyro, the equations are put in frequency domain and the variables
are renamed.

θ̇ = ω

θ = ω
s

(3.7)

For the gains, arbitrary values are used, kp = 100 and kd = 32. For the leg length we choose l = 1 m. From this,
the desired transfer function is:

T Fdes =
100+32s

s
(3.8)

Since keeping balance around the sagittal axis is the most difficult for humans [35], it is decided that the
transfer function that will be optimized for is Mv

ωv
.

3.2. Relevant frequencies
In human balance control, it is common to use a cut-off frequency of about 10 Hz [4, 9]. This is because
human typically can track frequencies up to 6 Hz [27]. Therefore, the optimization will be performed for a
frequency range of 0.01 Hz to 10 Hz, which equals to 0.02πrad/s to 20π rad/s

Figure 3.2: Phase plot of the orbital energy. The lines converging to the origin are the stable trajectories. Figure from Kajita et al. [19].
With permission.
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3.3. Walking simulation
A feed-forward simulation of the (SP)CMG was made using human gait data. This means that the human
gait data does not respond to the moments exerted by the (SP)CMG. The angular velocity and angular accel-
eration of the trunk were used. Furthermore, the orientation of the trunk with respect to the lab was used
to determine the angular velocities and angular acceleration in the body-fixed frame. Two different walking
speeds of the same subject were used as gait data. The walking speeds are 0-0.4 m/s, and a self-selected fast
speed. The gait data that was used is from the data set of [39]. The angular velocities of the gait data can be
seen in Fig. 3.3.
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Figure 3.3: Angular velocity of a subject with a walking speed between 0-0.4 m/s for the top graph, and a walking speed between 1.9-
2.2 m/s for the bottom graph. LFO = left foot off, LFS = lef foot strike, RFO = right foot strike, RFS = right foot strike.





4
Results

This chapter will show the results of the optimization. The bodeplots show the impedance of the (SP)CMG
with the poles and zeros and the desired transferfunction. The parameters that were found with the optimiza-
tions are shown in a table. Furthermore, the walking simulation is shown when the (SP)CMG was optimized
to simulate a damper.

4.1. Results of a single CMG

In the following sections, only the bode plots of the optimized impedance without bounds is shown. The
bode plots of the impedance when the optimization was performed with realistic bounds can be seen in
Appendix C. The parameters of both sets of optimizations are shown in this section. Furthermore, the time
response of a CMG when optimized to simulate a damper with the realistic parameters is shown. The other
time responses are shown in Appendix D.

4.1.1. Optimization of spring

The optimization was performed one-hundred times. The upper bounds of the initial guess were changed
for the spring stiffness and the damping to 0.01 Nm/rad and 0.001 Nm/rad/s respectively. The squared norm
of the residual (resnorm) of the best optimization was 2.1. The optimized parameters can be seen in table
4.1. Figure 4.1 shown the bode plots of both a spring (red dotted) and of the optimized impedance of a single
CMG, Mv

ωv
. The resulting impedance function has two poles located at p1,2 = −2.6×10−5 ± 1.6×10−4i and

three zeros located at z1 = 0, and z2,3 = −2.6×10−5 ±7.01×102i . The damping in the system is ζ = 0.16 and
the natural frequency ωn = 0.16×10−3 rad/s.

21
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Figure 4.1: Bode plot of both TFdes, a spring, (red) and the optimized impedance (blue). The area between the vertical lines are the
optimized frequencies. Zeros are indicated with a circle, poles are indicated with a cross.

4.1.2. Optimization to imitate a damper

The optimization was done one-hundred times for Mv
ωv

. The upper bound of the initial guess for the spring

was changed to 0.1 Nm/rad. The resnorm of the best optimization of the cost function was 1.6×10−5. The
optimized parameters are shown in Table 4.1. Figure 4.3 shows both the transfer function of a damper and
Mv
ωv

. The resulting transfer function has two poles and three zeros. The poles are located at p1 =−2812.5, and

p2 =−7.97×1015. The zeros are located at z1 = 0 ,and z2,3 =−1406.3±2435.9i . The damping in the system is
ζ= 1 and the natural frequency ωn = 2812.5rad/s, and ωn = 7.97×1015 rad/s.
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Figure 4.2: Bode plot of both TFdes, a damper, (red dotted) and the optimized impedance (blue). The area between the vertical lines are
the optimized frequencies. Zeros are indicated with a circle, poles are indicated with a cross.

4.1.3. Optimization to imitate a mass

The optimization was done one-hundred times for Mv
ωv

. The bounds on the initial guess were not changed for

the optimizations. The resnorm of the best optimization of the cost function was 1.88×10−12. The optimized
parameters are shown in Table 4.1. Figure 4.3 shows both the transfer function of a mass and Mv

ωv
. The result-

ing transfer function has two poles and three zeros. The poles are located at p1 =−2.27×105, and p2 =−2.15.
The zeros are located at z1 = 0 , z2 =−2.27×105 and z3 =−2.15. The damping in the system is ζ= 1 and the
natural frequency ωn = 2.27×105 rad/s and ωn = 2.15rad/s.
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Figure 4.3: Bode plot of both TFdes, a mass, (red) and the optimized impedance (blue). The area between the vertical lines are the
optimized frequencies. Zeros are indicated with a circle, poles are indicated with a cross.

4.1.4. Optimization to imitate a mass-spring-damper System

The optimization was done one-hundred times for Mv
ωv

. The resnorm of the best optimization of the cost

function was 1.7×103. The upper bound of the initial guess for the spring was changed to 0.1 Nm/rad. The
optimized parameters are shown in Table 4.1. Figure 4.4 shows both the transfer function of a mass-spring-
damper system and Mv

ωv
. The resulting transfer function has two poles and three zeros. The poles are located

at p1,2 =−0.00±0.0012i . The zeros are located at z1 = 0 ,and z2,3 =−0.00±7.73i . The damping in the system
is ζ= 0.18×10−7 and the natural frequency ωn = 0.0012rad/s.
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Figure 4.4: Bode plot of both TFdes, a mass, (red) and the optimized impedance (blue). The area between the vertical lines are the
optimized frequencies. Zeros are indicated with a circle, poles are indicated with a cross.

4.1.5. Optimization of PDXCoM

The optimization was done one-hundred times for Mv
ωv

. The resnorm of the best optimization of the cost

function was 2.6×109. The optimized parameters are shown in Table 4.1. Figure 4.5 shows both the transfer
function of the PD controller and Mv

ωv
. The resulting transfer function has two poles located at p1 = −176.0,

and p2 = −0.022 and three zeros located at z1 = 0, and z2,3 = −88.0±164.9i . The damping in the system is
ζ= 1 and the natural frequency ωn = 0.022rad/s, and ωn = 176.0rad/s.
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Figure 4.5: Bode plot of both TFdes, PDXCoM, (red dotted) and the optimized impedance (blue). The area between the vertical lines are
the optimized frequencies. Zeros are indicated with a circle, poles are indicated with a cross.

Table 4.1: The optimized parameters of the CMG. Both the best possible parameters and the realistic parameters (RP) are shown.

Parameter Spring Damper Mass Mass-Spring-Damper PDXCoM Unit
Resnorm 2.1 1.6×10−5 1.88×10−12 1.7×103 2.63×109

Resnorm RP 112.1 2.2×10−5 0.84 6.3×108 1.1×1011

k 2.7×10−12 4.2×10−14 5888.6 1.5×10−6 169.0 Nm/rad
k RP 7.5×10−8 4.0×10−14 3633.3 3.1×10−5 0.23 Nm/rad

b 5.3×10−9 5.21 2.74×105 4.5×10−11 7756.7 Nm/rad/s
b RP 6.9×10−6 5.36 7.31 9.2×10−4 2.76 Nm/rad/s
Iws 3.69×10−5 0.0034 1.51×10−4 0.0037 3.99 kgm2

IwsRP 1.0×10−4 0.0035 0.028 5.6×10−4 0.040 kgm2

Iwt 1.85×10−5 0.0017 7.55×10−5 0.0018 1.99 kgm2

IwtRP 0.5×10−5 0.0017 0.014 2.8×10−4 0.02 kgm2

Igs 4.14×10−5 7.6×10−5 0.50 0.50 21.04 kgm2

IgsRP 3.17×10−4 1.3×10−4 6.5×10−6 0.01 1.2×10−14 kgm2

Igg 8.28×10−5 1.5×10−4 1.00 1.00 42.07 kgm2

IggRP 6.34×10−4 2.7×10−4 1.3×10−5 0.02 2.4×10−14 kgm2

γ? 0.01 7.1×10−5 1.50 0.092 3.05 rad
γ?RP 0.30 3.86×10−4 0.001 0.10 −2.5×10−4 rad
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4.1.6. Walk simulation

The moment that were applied on the human by the CMG are shown in this subsection. The parameters
used for the CMG are the parameters that were found when the CMG was optimized a damper. The walking
simulations with the other parameters can be seen in Appendix D. In Fig. 4.6 it can be seen that the maximum
moment of 1.99 Nm is applied before the first left foot off. Furthermore, the angle γ stays between 0.05 rad
and −0.03 rad.

Figure 4.6: Forward simulation of the moments exerted on the human by the optimized CMG. Also γ̈, γ̇, and γ are shown. The walking
speed was between 0-0.4 m/s. LFO = left foot off, LFS = left foot strike, RFO = right foot strike, RFS = right foot strike.

In Fig. 4.7 it can be seen that the maximum moment of −6.66 Nm is applied between the left foot strike
and the right foot off. Furthermore, the angle γ stays between −0.07 rad and 0.05 rad.
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Figure 4.7: Forward simulation of the moments exerted on the human by the optimized CMG. Also γ̈, γ̇, and γ are shown. The walking
speed was a self selected fast speed which was between 1.9-2.2 m/s. LFO = left foot off, LFS = left foot strike, RFO = right foot strike, RFS
= right foot strike.
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4.2. Scissored pair CMG
For the single SPCMG, one-hundred optimizations were performed for each target. In the following sections,
only the bode plots of the optimized impedance without bounds is shown. The bode plots of the impedance
when there was optimized bounds, is shown in Appendix C. The parameters of both sets of optimizations
are shown in this section. Furthermore, the time response of the SPCMG is shown with the found optimized
parameters when the SPCMG was optimized to be simulate PDXCoM with realistic values.

4.2.1. Optimization to imitate a spring
The resnorm of the best optimization was 2.4. The upper bounds of the initial guess were changed for the
spring stiffness and the damping to 0.01 Nm/rad and 0.001 Nm/rad/s respectively. The optimized parameters
can be seen in table 4.2. The bode plot of the found impedance function can be seen in Fig. 4.8 together
with the desired transfer function. The resulting impedance function has two poles located at p1,2 =−0.027±
0.16×10−3i and three zeros located at z1 = 0, z2,3 =−2.6×10−5±682.7i . The damping in the system is ζ= 0.16
and the natural frequency ωn = 0.16×10−3 rad/s.
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Figure 4.8: Impedance of a SPCMG when optimized to mimic a spring. The area between the vertical lines are the optimized frequencies.
Zeros are indicated with a circle, poles are indicated with a cross.

4.2.2. Optimization to imitate a damper
The resnorm of the best optimization was 4.4×10−5. The optimized parameters can be seen in table 4.2. The
bode plot of the found impedance function can be seen in Fig. 4.9 together with the desired transfer function.
The found impedance function from has two poles located at p1 =−2428.3, p2 =−1.12e −14 and three zeros
located at z1 = 0, and z2,3 =−1214.1±2103.2i . The damping in the system is ζ= 1 and the natural frequency
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ωn = 2428.3rad/s and ωn = 1.12×10−14 rad/s.
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Figure 4.9: Impedance of a SPCMG when optimized to mimic a damper. The area between the vertical lines are the optimized frequen-
cies. Zeros are indicated with a circle, poles are indicated with a cross.

4.2.3. Optimization to imitate a mass

The resnorm of the best optimization was 1.5×10−9. The optimized parameters can be seen in table 4.2.
The bode plot of the found impedance function can be seen in Fig. 4.10 together with the desired transfer
function. The found impedance function has two poles located at p1 = −5615.8, p2 = −1.1 and three zeros
located at z1 = 0, z2 =−5615.8, and z3 =−1.1. The damping in the system is ζ= 1 and the natural frequency
ωn = 5615.8 and ωn = 1.1rad/s.
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Figure 4.10: Impedance of a SPCMG when optimized to mimic a mass. The area between the vertical lines are the optimized frequencies.
Zeros are indicated with a circle, poles are indicated with a cross.

4.2.4. Optimization to imitate a mass-spring-damper system

The resnorm of the best optimization was 1.7×103. The resnorm of the best optimization of the cost function
was 1.7×103. The upper bound of the initial guess for the spring was changed to 0.1 Nm/rad. The optimized
parameters can be seen in table 4.2. The bode plot of the found impedance function can be seen in Fig. 4.10
together with the desired transfer function. Two zeros and one pole are not shown because they exist at very
high frequencies. The found impedance function has two poles located at p1,2 = −0.000±0.0012i and three
zeros located at z1 = 0, and z2,3 =−0.000±7.7i . The damping in the system is ζ= 0.32×10−7 and the natural
frequency ωn = 0.0012rad/s.
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Figure 4.11: Impedance of a SPCMG when optimized to mimic a mass-spring-damper system. The area between the vertical lines are
the optimized frequencies. Zeros are indicated with a circle, poles are indicated with a cross.

4.2.5. Optimization of PDXCoM

The resnorm of the cost function for the scissored pair gyros was 2.63×109. The optimized parameters can
be seen in table 4.2. The bode plot of the found impedance function can be seen in Fig. 4.12 together with the
desired transfer function. One pole and one zero are not shown because they exist at very high frequencies.
The found impedance function has two poles located at p1 =−176.00, p2 =−0.02 and three zeros located at
z1 = 0 and, z2,3 =−0.88+1.65i . The damping in the system is ζ=±1 and the natural frequencyωn = 0.02rad/s
and ωn = 176.00rad/s.
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Figure 4.12: Impedance of a SPCMG when optimized to mimic XCoM. One pole and one zero are not shown because they exist at very
high frequencies. The area between the vertical lines are the optimized frequencies. Zeros are indicated with a circle, poles are indicated
with a cross.
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Table 4.2: The optimized parameters of the SPCMG. Both the best possible parameters and the realistic parameters (RP) are shown.

Parameter Spring Damper Mass Mass-Spring-Damper PDXCoM Unit
Resnorm 2.4 4.4×10−5 1.5×10−9 1.7×103 2.63×109

Resnorm RP 1.3 4.5×10−5 0.71 1.7×103 6.4×108

k 1.4×10−9 3.2×10−14 2858.0 7.6×10−7 84.6 Nm/rad
k RP 6.7×10−13 4.0×10−14 2243.6 3.1×10−5 0.31 Nm/rad

b 2.8×10−9 2.8 2609.3 3.9×10−11 3881.1 Nm/rad/s
b RP 1.4×10−9 2.9 4.3 9.2×10−4 4.33 Nm/rad/s
Iws 2.0×10−6 0.0018 0.024 0.0019 1.99 kgm2

IwsRP 1.6×10−5 0.0018 0.016 4.2×10−4 0.040 kgm2

Iwt 9.8×10−6 8.9×10−4 0.012 9.4×10−4 0.99 kgm2

IwtRP 8.2×10−6 8.9×10−4 0.0078 2.1×10−4 0.020 kgm2

Igs 2.2×10−5 1.4×10−4 0.23 0.25 10.53 kgm2

IgsRP 1.4×10−5 1.5×10−4 1.2×10−5 0.010 1.4×10−14 kgm2

Igg 4.3×10−5 2.8×10−4 0.45 0.5 21.05 kgm2

Igg RP 2.9×10−5 2.9×10−4 2.4×10−5 0.02 2.8×10−14 kgm2

γ? -0.30 −1.6×10−4 1.55 0.25 -0.05 rad
γ? RP 0.30 −1.7×10−4 0.073 1.88 -0.3 rad

4.2.6. Walking simulation

The moment that were applied on the human by the SPCMG are shown in this subsection. The parameters
used for the CMG are the parameters that were found when the CMG was optimized to simulate a damper.
The walking simulations with the other parameters can be seen in Appendix D. In Fig. 4.13 it can be seen that
the maximum moment of −0.97 Nm is applied between the second left foot off and the second left foot strike.
Furthermore, the angle γ stays between −0.025 rad and −0.01 rad.
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Figure 4.13: Forward simulation of the moments exerted on the human by the SPCMG. Also γ̈, γ̇, and γ are shown. The walking speed
was between 0-0.4 m/s. LFO = left foot off, LFS = left foot strike, RFO = right foot strike, RFS = right foot strike.

In Fig. 4.14it can be seen that the maximum moment of −3.88 Nm is applied between the first left foot
strike and the right foot off. Furthermore, the angle γ stays between −0.07 rad and 0.05 rad.
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Figure 4.14: Forward simulation of the moments exerted on the human by the SPCMG. Also γ̈, γ̇, and γ are shown. The walking speed
was a self selected fast speed between 1.9-2.2 m/s. LFO = left foot off, LFS = left foot strike, RFO = right foot strike, RFS = right foot strike.



5
Discussion

Passively exploiting gyroscopic dynamics is a new concept as well as parameter optimization in frequency
domain for CMGs. In the next chapter, the most important findings are discussed.

5.1. Discussion of CMG and SPCMG optimization
Since the results of the CMG and SPCMG are very similar, this section applies to both the CMG and SPCMG. It
was possible to mimic the impedance of a spring, a damper, a mass, and a mass-spring-damper system with
an (SP)CMG. However it was not possible to simulate the dynamcis of the PDXCoM.

A complex pole pair was placed at low frequencies when the (SP)CMG was optimized to simulate a spring.
This, in combination with the zero at the origin, gives a magnitude slope of −20 dB/dec and a phase of 90°.
This is the same as the desired impedance. Furthermore, a complex zero pair is placed outside the opti-
mized frequency range. This initially gives a dip in the magnitude after which there is a magnitude slope
of 20 dB/dec. It was possible to find a good fit for the damper when the (SP)CMG was optimized with and
without bounds on the parameters. One zero exists at the origin, and therefore there is a magnitude slope
of 20 dB/dec. One pole was placed at low frequencies to create a slope of 0 dB/dec. This also resulted into a
phase of 180°. At frequencies outside the optimized frequency range, a complex zero pair and one pole are
placed at the same frequency. This creates a small dip in the magnitude response and then creates a slope
of 20 dB/dec and a phase of −90°. The algorithm found a good result for when the (SP)CMG was optimized
to simulate a mass for both the optimization without bounds and with bounds. However, the strategy to
find this fit were very different. The optimization without bounds found a result were γ = 1.50rad. Com-
bined with a flywheel with very small inertia, the gyroscopic effect is negligible. Furthermore, the inertia of
the gimbal in the êv direction is 0.5 kgm2, which was the desired inertia. The optimization with bounds on
the parameters found a result where the gyroscopic effect had an effect on the impedance. The inertia of
the gimbal is now very small and the combination of γ = 0rad/ and large inertia for the flywheel create an
impedance which is similar to the desired impedance of a mass. It was possible to simulate the impedance
of a mass-spring-damper system with the (SP)CMG. One complex pole pair was placed at low frequencies to
give the impedance a −20 dB/dec magnitude slope and a phase of 90°. Right where the desired impedance
has two zeros, a complex zero pair is placed for the (SP)CMG impedance. Unlike for the desired impedance,
this causes a dip in magnitude. However, at frequencies higher than the dip, the (SP)CMG impedance follows
the desired impedance perfectly. It was not possible to get a good fit on the PDXCoM. One zero was placed at
the origin which results in a −90° phase and a magnitude slope of 20 dB/dec. One pole is placed at 0.02 rad/s
which gives a phase of −180° and a magnitude slope of 0 dB/dec. However, the desired impedance has a zero
around 5 rad/s which gives a phase shift to 0°.

5.1.1. Explanation of the fit
For the impedance optimization, some assumptions were made. The angular velocity around which the
equations of motion were optimized was 0 rad/s. A γ of 0rad is used to simplify the equations even further.
This is done because, in this configuration, the flywheel generated the highest torque in the êv direction. This
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leads to the following impedance function for the CMG:

Mv

ωv
= s(−Jt Jg s2 − Jt bs − I 2

w sΩ
2 − Jt k)

(Jg s2 +bs +k)
(5.1)

And the following impedance function for the SPCMG:

Mv

ωv
= 2s(−Jt Jg s2 − Jt bs − I 2

w sΩ
2 − Jt k)

(Jg s2 +bs +k)
(5.2)

From this, it is clear that the impedance of an SPCMG is two times the impedance of a CMG. The equation to
solve squared equations is very well known. This equation can be used to compute the poles of the system.
This leads to the following equation for both the CMG and SPCMG.

p1,2 =
−b ±

√
b2 −4Jg k

2Jg
(5.3)

From this, it can be derived that if two single poles are needed to fit the impedance, high damping is needed.
Furthermore, the poles are independent of the parameters, Iw s , Ig s , and Ω. There is also a general equation
to find the roots of cubic equations in the form of As3 +B s2 +C s +D [42]. In this case however, the equation
can be simplified to s(As2 +B s +C ). In this case, there is always one zero at the origin, and the other zeros
can be computed using the following equation for both the CMG and the SPCMG.

z2,3 =
Jt b ±

√
(−Jt b)2 −4(−Jt Jg )(−I 2

w sΩ
2 − Jt k)

−2Jt Jg
(5.4)

It can be seen that the equation to compute the zeros is very similar to the equation to compute the poles.
This equation is, however, dependant on all parameters. This means that the parameters Iw s , Ig s , and Ω

can be used to change the zeros independently from the poles. However, it is only possible to change the
discriminant with these parameters. With this knowledge, we can try to explain why the algorithm was able
to find the found results.

A pure spring has a magnitude slope of −20 dB/dec and a phase of 90°. Since one zero always exists at
0 rad/s, two poles have to be placed at low frequencies. The damping has to be very low to accomplish this.
However, if the damping is too low, the two poles become a complex pole pair. A complex pole pair has its
influence around the natural frequency of the system. The natural frequency of the system can be calculated

with: s2 +qs + r = s2 +2ζωn s +ω2
n . From this it follows that the natural frequency of the system is ωn =

√
k
Jg

.

Hence, Jg must be much larger than the spring stiffness k to place the poles at a low frequency. Therefore a
low value for the spring stiffness and the damping was used for the initial guess.

A pure damper has a magnitude slope of 0 dB/dec and a phase of 180°. Because of the zero at the origin,
one pole needs to be placed at frequencies lower than the optimized frequency range, and one pole needs
to be placed at higher frequencies than the optimized frequency range. This is achieved by a high damping
and low stiffness. Because of the low stiffness, the equation to compute the pole can be approximated with:
p1,2 = −b±b

2Jg
. From this, it is clear that with high damping, one pole is placed close to zero and one pole far

outside the frequency range.
A pure mass has a magnitude slope of 20 dB/dec and a phase of −90. One strategy to match this was to

have a γ that is close to π
2 . This way, the system behaves like a mass. Furthermore, Iw s is very low to decrease

the gyroscopic effect further. This strategy, however, cannot work for the optimization with realistic bounds
on the parameters since, with this optimization, it is not possible to get the required inertia. Therefore, a
high damping and very small inertia Jg were used to place the poles at frequencies higher than the optimized
frequencies.

The PDXCoM has a phase of −90° and a magnitude slope of −20 dB/dec. Two poles would have to placed
at low frequencies to get the same magnitude slope. This would, however, give a phase of 90°. This difference
occurs because of the opposite sign for the PDXCoM and the impedance of the CMG. Since the optimized
parameters cannot be negative, it is not possible to get a good fit on the PDXCoM with the CMG impedance.
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5.1.2. Pole zero placement
The poles of both the CMG and SPCMG do not depend on the Iws, Igs and Ω. However, the zeros do depend
on these parameters. This means that the zeros can be placed independently from the poles using these
parameters. Basically, by changing the angular momentum in êv direction, the location of the zeros can be
changed independently from the poles. In Fig. 5.1, it can be seen that the location of the zeros change when
Iws is changed. One zero always exist in the origin. The two other poles can be complex or real depending
on the value of Iws. The zeros are always be mirrored around −b

2Jg
. Another way to change the angular
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Figure 5.1: Plot which shows the effect of an changing Iws on the location of the poles and zeros.

momentum in êv direction is to change γ. Changing γ gives similar results as changing Iws. The effect of a
changing γ on the zeros can be seen in Fig. 5.2. When γ= π

2 , there is no angular momentum of the flywheel
in êv direction. Therefore, the system behaves like a mass. Hence, there exists only one zero.

5.2. Discussion of walking simulation
5.2.1. Walking simulation of the CMG
The set of parameters that was used was the set for when the CMG was optimized to simulate a damper.
The time response plots with different parameters can be found in Appendix D. Because of the damping, γ
changed very little. This makes sure that the moments are mainly generated in the êv direction. The generated
moments are in the opposite direction, with respect to the angular velocity of the body. Therefore it would
reduce the angular velocity and therefore, the CMG could help to maintain balance.

5.2.2. Walking simulation of the SPCMG
The set of parameters that was used was the set for when the CMG was optimized to simulate a damper. The
time response plots with different parameters can be found in Appendix D. Because of the scissored pair-
ing, the moments were mainly generated in the êv direction. The moments were generated in the opposite
direction compared to the angular velocity. Therefore, the SPCMG could be used for balance assistance.

5.3. Virtual stiffness, damping, and mass
With a reaction wheel, it should also be possible to simulate the dynamic behaviour of a spring, a damper, and
a mass. Since in reaction wheels, there is no torque amplification, the impedance of a spring can just be sim-
ulated by adding that spring to the reaction wheel. This research shows that a CMG is capable of generating a
virtual spring, damper and mass. The (SP)CMG was optimized to simulate a spring with a spring stiffness of
30.0 Nm/rad. To match this impedance, the (SP)CMG had to use a very low spring stiffness and damping co-
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Figure 5.2: Plot which shows the effect of an changing γ on the location of the poles and zeros.

efficient. The spring stiffness comes from the inertia of the system. To create a damping, however, a damper
was needed. A damper coefficient of 5.2 Nm/rad/s was needed to create the impedance of a damper with
damping coefficient of 5.0 Nm/rad/s. This damping, however, does have an effect about another axis than to
which the damper is applied. The angular momentum of the flywheel is needed to realize this coupling. It
was also possible to simulate the impedance of inertia that was higher than the inertia of the actual system.
Reaction wheel can also be used for balance assistance [44]. That the actual stiffness and mass are lower than
the virtual stiffness shows that it is possible to generate a high stiffness or mass with a CMG without a high
stiffness or mass.

5.4. Comparison between CMG and SPCMG
The impedance functions of the CMG and SPCMG are very similar when γ= 0, and all the angular velocities
of the human are considered zero. The impedance for the SPCMG is two times the impedance for the CMG.
However, the general impedance, Eq. (2.32) and Eq. (2.20), are very different. Both the CMG and SPCMG
were able to simulate the desired damper between the optimized frequencies. The difference in dynamics
can be seen in the walking simulation plots Fig. 4.6, Fig. 4.7, Fig. 4.13, and Fig. 4.14. From these plots, it
can be seen that the moments generated by the CMG have about two times the magnitude of the moments
generated by the SPCMG. This discrepancy occurs because with a single CMG, ω?u contributes much more to
the impedance than with the SPCMG. With the optimizations,ω?u was considered zero, while with the walking
simulation it ranged from −1 rad/s to 1 rad/s. Therefore, during the walking simulation, there are generated
moments that were not accounted for with the optimization. Since ω?u does not contribute as much to the
impedance for the SPCMG, the impedance used during the optimization is a much better representation of
the actual dynamics than the impedance for the CMG.

5.5. Optimization in frequency domain
The goal of the optimizations was to find a set of parameters with which a specific impedance could be
achieved. One of the parameters that was optimized was the initial orientation of the flywheel, γ?. This
parameter might be redundant since the optimization was performed for one impedance, Mv

ωv
. Therefore,

γ? only has an influence on the angular momentum in the êv direction. The angular momentum can also
be changed by altering the moment of inertia, Iw s . It would, however, be very useful to use γ? when the
impedance in multiple directions was optimized. In that case, γ? would influence how the angular momen-
tum is divided in each direction. It is also possible to optimize in time domain. In time domain, a specific
desired moment would be given. The parameters would be adjusted to fit the desired moment as closely as
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possible. This is done, for example, in [21].

5.6. Cost function design
The cost function that was used for the optimization was:

C = w1(i mag (T Fdes − i mag (T F )))+ r eal (T Fdes −T F ) (5.5)

This cost function was able to perform twenty optimizations in 197.7 s. The best resnorm was 2.5×10−5. It
would have been possible to use a different cost function for the optimization. Another cost function that was
tried can be seen in Eq. (5.6). A potential benefit of this cost function is that the punishment for de distance
above the desired impedance and below the desired impedance is the same.

C = w1(∠T Fdes −∠T F )+ (ln |(T Fdes)− (T F )|) (5.6)

Performing twenty optimizations with realistic bounds took 790 s, which is over 13 minutes. Furthermore,
the resnorm of the best optimization of the cost function from Eq. (5.6) was 1.01×103.

5.7. Parameter Design
When the optimization was successful in finding a set of parameters to simulate the desired impedance, the
parameters are applicable. For example, when the CMG was optimized to simulate a damper, a damper with a
damping coefficient of 5.2 Nm/rad/s is needed. A damper with this damping coefficient can be found and has
a mass of 0.522 kg [26]. Furthermore, the flywheel has an inertia of 0.0034 kgm2. Assuming the flywheel has a
mass of 1 kg, the flywheel must have a radius of 0.082 m. The inertia of the damper would add to the inertia of
the gimbal. When it is assumed that the damper with the right damping coefficient can be approximated as a
solid cylinder, the approximate moments of inertia are Igs = 2.35×10−4 kgm2 and Igg = 1.66×10−4 kgm2. This
is only slightly more than the inertia of the gimbal that was found with the optimization. The same damper
can be used to simulate a mass. The main difference is that now also a spring is needed. Springs with a spring
stiffness of 3633.3 Nm/rad are commercially available [14].

5.8. Future Directions
It would be useful to focus more on performing the optimization for multiple impedances to improve on cur-
rent results. This way, a desired behaviour in multiple directions could be obtained. It can also be tried to fit
the (SP)CMG impedance to new impedances. The impedances that were used in this study were arbitrarily
chosen. Other measures of stability could be used. One popular measure of stability is "the maximum Lya-
punov exponent", see ??, firstly used by Dingwell et al. [8] in the context of gait stability. Other measures of
stability that could be used are, "Foot Placement Estimator" by Millard et al. [28], a measure of stability in
the sagittal plane. Or a similar measure in 3D, by Millard et al. [29]. Also, more complicated design features
could be explored like end stops, which prevent the gimbal from rotating beyond a specific angle. Secondly,
a passive mechanism with magnets could be explored. Magnets can be used to create an anti-spring. These
have already been used to tune the natural frequency in passive-vibration isolators [17]. Anti-springs can also
be used to create a bistable system [17]. The two stable equilibrium points could be used to rotate the gimbal
between the two equilibrium points quickly. Lastly, nonlinear springs and dampers could be implemented in
the design. This will, however, make the impedance optimization harder since the system has to be linearized
to convert it into frequency domain.

Moreover, a prototype could be made. This way, it can be studied how people react to wearing a passively
controlled (SP)CMG. The gait of the wearer will change due to the moments that are applied to the body. It is,
however, also likely that the wearer would adapt to the new moments and therefore, might change their gait
in unexpected ways.





6
Conclusion

By modelling a CMG and an SPCMG and optimizing their impedance, it was possible to replicate the dy-
namics of a spring, a damper, a mass, and a mass-spring-damper system. It was not possible to replicate
the dynamics of the PDXCoM. When the found parameters were used in a walking simulation, it showed
that the generated moments were in the opposite direction to the angular velocity of the walking person.
This shows that a CMG and an SPCMG could be able to generate stabilizing moments for balance. A CMG
generates higher moments than an SPCMGs when they have the same impedance. However, the moments
generated by the SPCMG are easier to model and therefore, easier to predict than the CMG. This study lays the
groundwork for impedance optimization of (SP)CMGs. Insight is gained in what the influence of the design
parameters is on the behaviour of the (SP)CMG. Furthermore, it should now be easy to match new desired
impedances to the impedance of an (SP)CMG.
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A
Appendix A

A.1. Written out equations of motion
The equations of motion found for the CMG can be seen in Eq. (A.1). To reduce the lenght of the equations
sinγ is written as sγ and cosγ is written as cγ.

B(Ḣ)N =



cγ(Ig s (cγ(ω̇u + γ̇ωv )+ sγ(ω̇v − γ̇ωu))+ Iw s (cγ(ω̇u + γ̇ωv )+ sγ(ω̇v − γ̇ωu))+ Ig g (γ̇+ωw )(ωv cγ−ωu sγ)...
−Ig t (γ̇+ωw )(ωv cγ−ωu sγ))− sγ(Ig t (cγ(ω̇v − γ̇ωu)− sγ(ω̇u + γ̇ωv ))+ Iw t (cγ(ω̇v − γ̇ωu)− sγ(ω̇u + γ̇ωv ))...

+Iw s (γ̇+ωw )(Ω+ωucγ+ωv sγ)− Ig g (γ̇+ωw )(ωucγ+ωv sγ)+ Ig s (γ̇+ωw )(ωucγ+ωv sγ)...
−Iw t (γ̇+ωw )(ωucγ+ωv sγ));

cγ(Ig t (cγ(ω̇v − γ̇ωu)− sγ(ω̇u + γ̇ωv ))+ Iw t (cγ(ω̇v − γ̇ωu)− sγ(ω̇u + γ̇ωv ))+ Iw s (γ̇+ωw )(Ω+ωucγ+ωv sγ)...
−Ig g (γ̇+ωw )(ωucγ+ωv sγ)+ Ig s (γ̇+ωw )(ωucγ+ωv sγ)− Iw t (γ̇+ωw )(ωucγ+ωv sγ))+ sγ(Ig s (cγ(ω̇u + γ̇ωv )...
+sγ(ω̇v − γ̇ωu))+ Iw s (cγ(ω̇u + γ̇ωv )+ sγ(ω̇v − γ̇ωu))+ Ig g (γ̇+ωw )(ωv cγ−ωu sγ)− Ig t (γ̇+ωw )(ωv cγ−ωu sγ));

Ig g (γ̈+ ω̇w )+ Iw t (γ̈+ ω̇w )− Ig s (ωucγ+ωv sγ)(ωv cγ−ωu sγ)+ Ig t (ωucγ+ωv sγ)(ωv cγ−ωu sγ)...
+Iw t (ωucγ+ωv sγ)(ωv cγ−ωu sγ)− Iw s (ωv cγ−ωu sγ)(Ω+ωucγ+ωv sγ)


(A.1)

The equations of motion found for the CMG can be seen in Eq. (A.2).

BM =



2Ig sω̇u(sγ2 −1)−2Iw t ω̇u sγ2 −2Ig gωvωw −2Ig t ω̇u sγ2 +2Iw sω̇u(sγ2 −1)...
−2Ig tωvωw (sγ2 −1)+2Iw sΩωw sγ+2Ig s γ̇ωu s2γ−2Ig t γ̇ωu s2γ+2Iw s γ̇ωu s2γ...

−2Iw t γ̇ωu s2γ+2Ig sωvωw sγ2 +2Iw sωvωw sγ2 −2Iw tωvωw sγ2;

2Ig sω̇v (cγ2 −1)−2Iw t ω̇v cγ2 −2Ig t ω̇v cγ2 +2Iw sω̇v (cγ2 −1)...
+2Ig gωuωw +2Ig tωuωw (cγ2 −1)−2Iw s γ̇Ωcγ−2Ig s γ̇ωv s2γ...

+2Ig t γ̇ωv s2γ−2Iw s γ̇ωv s2γ+2Iw t γ̇ωv s2γ−2Ig sωuωw cγ2 −2Iw sωuωw cγ2 +2Iw tωuωw cγ2;

2γ0k −2Iw t γ̈−2bγ̇−2Ig g γ̈−2γk − Ig sω
2
u s2γ+ Ig tω

2
u s2γ+ Ig sω

2
v s2γ...

−Ig tω
2
v s2γ− Iw sω

2
u s2γ+ Iw tω

2
u s2γ+ Iw sω

2
v s2γ− Iw tω

2
v s2γ+2Iw sΩωv cγ


(A.2)

A.2. Lagrange approach for a single CMG in the body-fixed Frame
To check if the equations of motion are correct, also the Lagrange method was used to compute the equations
of motion. For the generalized coordinates, γ was used. The kinetic energy used for the this method was:

T = 1

2

(
(Ωgs + γ̇gg +G R(γ)BBωB/N )T Iw (Ωgs + γ̇gg +G R(γ)BBωB/N )+ (γ̇gg +G R(γ)BBωB/N )T Ig (γ̇gg +G R(γ)BBωB/N )

)
(A.3)
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The potential energy used was:

V = 1

2
(k(γ−γ0)2) (A.4)

The Lagrangian, L, of the system is:
L = T −V (A.5)

The non conservative generalized forces will be in Q:

Q =−bγ̇ (A.6)

To compute the equations of motion the following equation was used:

d

dt
(
∂L

∂γ̇
)− ∂L

∂γ
=Q (A.7)

This can be solved for q̈ which leads to:

γ̈=−[bγ̇−k(γ0 −γ)+ ω̇w (Ig g + Iw t )− Ig s (ωu cosγ+ωv sinγ)(ωv cosγ−ωu sinγ)+ Ig t (ωu cosγ+ωv sinγ)
(ωv cosγ−ωu sinγ)+ Iw t (ωu cosγ+ωv sinγ)(ωv cosγ−ωu sinγ)− Iw s (ωv cosγ−ωu sinγ)

(Ω+ωu cosγ+ωv sinγ)]/(Ig g + Iw t )
(A.8)

Which is the same as Eq. (2.11)

A.3. Lagrange approach for scissored pair gyro
To generate the Lagrange equations of motion, one generalized coordinate was used, q = γ. The kinetic
energy ,T, of the system are defined as:

T 1 = 1
2

(
(Ωgs + γ̇gg +G1 RB

BωB/N )T Iw (Ωgs + γ̇gg +G1 RB
BωB/N )+ (γ̇gg +G1 RB

BωB/N )T Ig (γ̇gg +G1 RB
BωB/N )

)
T 2 = 1

2

(
(Ωgs − γ̇gg +G2 RB

BωB/N )T Iw (Ωgs − γ̇gg +G2 RB
BωB/N )+ (−γ̇gg +G2 RB

BωB/N )T Ig (−γ̇gg +G2 RB
BωB/N )

)
T = T 1+T 2

(A.9)
Where T1is the kinetic energy of the first CMG respectively and T2, is the kinetic energy of the second CMG
respectively. The potential energy is twice the potential energy of a single CMG, which was given in Eq. (A.4).
The Lagrangian of the system is then is done in the same manner as Eq. (A.5). There are no external forces
applied to the system so Q consists only of non conservative forces, which are only the two dampers.

Q =−2bγ̇ (A.10)

To compute the equations of motion, equation Eq. (A.7) was used. When this is solved for q̈ , this results in:

γ̈=−[2bγ̇−2(γ0 −γ)k + Ig sω
2
u sin

(
2γ

)− Ig tω
2
u sin

(
2γ

)− Ig sω
2
v sin

(
2γ

)
+Ig tω

2
v sin

(
2γ

)+ Iw sω
2
u sin

(
2γ

)− Iw tω
2
u sin

(
2γ

)− Iw sω
2
v sin

(
2γ

)
+Iw tω

2
v sin

(
2γ

)+2Iw sΩωu sin
(
γ
)
]/[2(Ig g + Iw t )]

(A.11)

Which is equivalent to Eq. (2.27).

A.4. Numerical differentiation
Numerical differentiation was used to validate B(Ḣ)N . To do this, first GH had to be transformed to the
natural frame. This was done by first transforming it to the body fixed frame and then to the natural frame.
The rotation matrix from the gimbal fixed frame to the body fixed frame is explained in Section 2.1. The
rotation matrix from the body fixed frame to the natural frame is:

Rφ =
 1 0 0

0 cosφ −sinφ
0 sinφ sinφ

 , Rθ =
 cosθ 0 sinθ

0 1 0
−sinθ 0 cosθ

 , Rψ =
 cosψ sinψ 0

−sinψ cosψ 0
0 0 1

 , (A.12)

N RB = RφRθRψ (A.13)

This leads to:
N H =N RB

BRG
GH (A.14)

Next, values are given to all the variables and the difference between the time step is taken. This difference
should now equal B(Ḣ)N when it is rotated to N . The plot of both can be seen in
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Figure A.1: Plot of the numerical value of ḢN and the gradient of HN
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Appendix B

B.1. Impedance of a Single CMG
Mu
ωu

= [ω?w si n(2γ?)(Iw s − Iw t )]/2− s(Js − Iw s si n(γ?)2 + Iw t si n(γ?)2)

+ sω?v [(Iw t−Iw s )ω?v cos(2γ?)+(Iw s−Iw t )ω?u si n(2γ?)+Iw sΩsi n(γ?)]
k+bs+Jg s2+(Iw s−Iw t )ω?2

u cos(2γ?)+(Iw t−Iw s )ω?2
v cos(2γ?)+Iw sΩω

?
u cos(γ?)+Iw sΩω

?
v si n(γ?)+2(Iw s−Iw t )ω?uω

?
v si n(2γ?)

−ω?w [(Iw s−Iw t )ω?u cos(2γ?)+(Iw s−Iw t )ω?v si n(2γ?)+Iw sΩcos(γ?)][(Iw t−Iw s )ω?v cos(2γ?)+(Iw s−Iw t )ω?u si n(2γ?)+Iw sΩsi n(γ?)]
k+bs+Jg s2+(Iw s−Iw t )ω?2

u cos(2γ?)+(Iw t−Iw s )ω?2
v cos(2γ?)+Iw sΩω

?
u cos(γ?)+Iw sΩω

?
v si n(γ?)+2(Iw s−Iw t )ω?uω

?
v si n(2γ?)

(B.1)

Mv
ωu

=ω?w (Ig g − Ig s − Iw s + Iw t + Iw s si n(γ?)2 − Iw t si n(γ?)2)− (ssi n(2γ?)(Iw s − Iw t ))/2

− sω?u (Iw tω
?
v cos(2γ?)−Iw sω

?
v cos(2γ?)+Iw sω

?
u si n(2γ?)−Iw tω

?
u si n(2γ?)+Iw sOmeg asi n(γ?))

k+bs+Jg s2+(Iw s−Iw t )ω?2
u cos(2γ?)+(Iw t−Iw s )ω?2

v cos(2γ?)+Iw sΩω
?
u cos(γ?)+Iw sΩω

?
v si n(γ?)+2(Iw s−Iw t )ω?uω

?
v si n(2γ?

− ω?w (Iw tω
?
v cos(2γ?)−Iw sω

?
v cos(2γ?)+Iw sω

?
u si n(2γ?)−Iw tω

?
u si n(2γ?)+Iw sOmeg asi n(γ?))2

k+bs+Jg s2+(Iw s−Iw t )ω?2
u cos(2γ?)+(Iw t−Iw s )ω?2

v cos(2γ?)+Iw sΩω
?
u cos(γ?)+Iw sΩω

?
v si n(γ?)+2(Iw s−Iw t )ω?uω

?
v si n(2γ?

(B.2)

Mw
ωu

=− (k+bs)(Iw tω
?
v cos(2γ?)−Iw sω

?
v cos(2γ?)+Iw sω

?
u si n(2γ?)−Iw tω

?
u si n(2γ?)+Iw sΩsi n(γ?))

k+bs+Jg s2+(Iw s−Iw t )ω?2
u cos(2γ?)+(Iw t−Iw s )ω?2

v cos(2γ?)+Iw sΩω
?
u cos(γ?)+Iw sΩω

?
v si n(γ?)+2(Iw s−Iw t )ω?uω

?
v si n(2γ?

(B.3)

Mu
ωv

=−ω?w (Ig g − Ig s − Iw s si n(γ?)2 + Iw t si n(γ?)2)

+ ω?w (Iw sω
?
u cos(2γ?)−Iw tω

?
u cos(2γ?)+Iw sω

?
v si n(2γ?)−Iw tω

?
v si n(2γ?)+Iw sΩcos(γ?))2

k+bs+Jg s2+(Iw s−Iw t )ω?2
u cos(2γ?)+(Iw t−Iw s )ω?2

v cos(2γ?)+Iw sΩω
?
u cos(γ?)+Iw sΩω

?
v si n(γ?)+2(Iw s−Iw t )ω?uω

?
v si n(2γ?

− sω?v (Iw sω
?
u cos(2γ?)−Iw tω

?
u cos(2γ?)+Iw sω

?
v si n(2γ?)−Iw tω

?
v si n(2γ?)+Iw sΩcos(γ?))

k+bs+Jg s2+(Iw s−Iw t )ω?2
u cos(2γ?)+(Iw t−Iw s )ω?2

v cos(2γ?)+Iw sΩω
?
u cos(γ?)+Iw sΩω

?
v si n(γ?)+2(Iw s−Iw t )ω?uω

?
v si n(2γ?)

(B.4)

Mv
ωv

=−ω?w si n(2γ?)(Iw s − Iw t )/2− s(Jt + Iw s si n(γ?)2 − Iw t si n(γ?)2)

sω?u (Iw s−Iw t )ω?u cos(2γ?)+(Iw s−Iw t )ω?v si n(2γ?)+Iw sΩcos(γ?)
k+bs+Jg s2+(Iw s−Iw t )ω?2

u cos(2γ?)+(Iw t−Iw s )ω?2
v cos(2γ?)+Iw sΩω

?
u cos(γ?)+Iw sΩω

?
v si n(γ?)+2(Iw s−Iw t )ω?uω

?
v si n(2γ?)

+ω?w [(Iw s−Iw t )ω?u cos(2γ?)+(Iw s−Iw t )ω?v si n(2γ?)+Iw sΩcos(γ?)][(Iw t−Iw s )ω?v cos(2γ?)+(Iw s−Iw t )ω?u si n(2γ?)+Iw sΩsi n(γ?)]
k+bs+Jg s2+(Iw s−Iw t )ω?2

u cos(2γ?)+(Iw t−Iw s )ω?2
v cos(2γ?)+Iw sΩω

?
u cos(γ?)+Iw sΩω

?
v si n(γ?)+2(Iw s−Iw t )ω?uω

?
v si n(2γ?)

(B.5)
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Mw
ωv

= (k+bs)(Iw sω
?
u cos(2γ?)−Iw tω

?
u cos(2γ?)+Iw sω

?
v si n(2γ?)−Iw tω

?
v si n(2γ?)+Iw sΩcos(γ?))

k+bs+Jg s2+(Iw s−Iw t )ω?2
u cos(2γ?)+(Iw t−Iw s )ω?2

v cos(2γ?)+Iw sΩω
?
u cos(γ?)+Iw sΩω

?
v si n(γ?)+2(Iw s−Iw t )ω?uω

?
v si n(2γ?)

(B.6)

Mu
ωw

=− 2ω?u sin(2γ?)(Iw s−Iw t )(k+bs)
k+bs+Jg s2+(Iw s−Iw t )ω?2

u cos(2γ?)+(Iw t−Iw s )ω?2
v cos(2γ?)+Iw sΩω

?
u cos(γ?)+Iw sΩω

?
v si n(γ?)+2(Iw s−Iw t )ω?uω

?
v si n(2γ?

(B.7)

Mv
ωw

= Ig gω
?
u − Ig sω

?
u − Iw sω

?
u cos(γ?)2 + Iw tω

?
u cos(γ?)2 − (Iw sω

?
v si n(2γ?))/2+ (Iw tω

?
v si n(2γ?))/2− Iw sΩcos(γ?)

− sω?w (Iw tω
?
v cos(2γ?)−Iw sω

?
v cos(2γ?)+Iw sω

?
u si n(2γ?)−Iw tω

?
u si n(2γ?)+Iw sΩsi n(γ?))

k+bs+Jg s2+(Iw s−Iw t )ω?2
u cos(2γ?)+(Iw t−Iw s )ω?2

v cos(2γ?)+Iw sΩω
?
u cos(γ?)+Iw sΩω

?
v si n(γ?)+2(Iw s−Iw t )ω?uω

?
v si n(2γ?

− s2ω?u Jg

k+bs+Jg s2+(Iw s−Iw t )ω?2
u cos(2γ?)+(Iw t−Iw s )ω?2

v cos(2γ?)+Iw sΩω
?
u cos(γ?)+Iw sΩω

?
v si n(γ?)+2(Iw s−Iw t )ω?uω

?
v si n(2γ?)

(B.8)

Mw
ωw

= −s Jg (k+bs)

k+bs+Jg s2+(Iw s−Iw t )ω?2
u cos(2γ?)+(Iw t−Iw s )ω?2

v cos(2γ?)+Iw sΩω
?
u cos(γ?)+Iw sΩω

?
v si n(γ?)+2(Iw s−Iw t )ω?uω

?
v si n(2γ?)

(B.9)

B.2. Transmissibility of a single CMG in the body-fixed Frame
γ
ωu

=− (Jt−Js )ω?v cos(2γ?)+(Js−Jt )ω?u si n(2γ?)+Iw sΩsin(γ?)
(k+bs+Jg s2+(Js−Jt )ω?2

u cos2γ?+(Jt−Js )ω?2
v cos2γ?+Iw sΩω

?
u cosγ?+Iw sΩω

?
v sinγ?+2(Js−Jt )ω?uω

?
v sin2γ?)

(B.10)

γ
ωv

= (Js−Jt )ω?u cos(2γ?)+(Js−Jt )ω?v si n(2γ?)+Iw sΩcos(γ?)
(k+bs+Jg s2+(Js−Jt )ω?2

u cos2γ?+(Jt−Js )ω?2
v cos2γ?+Iw sΩω

?
u cosγ?+Iw sΩω

?
v sinγ?+2(Js−Jt )ω?uω

?
v sin2γ?)

(B.11)

γ
ωw

=− s
(k+bs+Jg s2+(Js−Jt )ω?2

u cos2γ?+(Jt−Js )ω?2
v cos2γ?+Iw sΩω

?
u cosγ?+Iw sΩω

?
v sinγ?+2(Js−Jt )ω?uω

?
v sin2γ?) (B.12)

B.3. Impedance of a Scissored Pair CMG
Mu
ωu

=−s cos
(
γ?

)
2Js

− sω?u sin(2γ?)(Iw s−Iw t )[2(Iw s−Iw t )ω?v cos(γ?)+2Ig gω
?
u sin(γ?)+2Iw sω

?
u sin(γ?)]

k+bs+Jg s2+(Iw s−Iw t )ω?2
u cos(2γ?)+(Iw t−Iw t )ω?2

v cos(2γ?)+Iw sΩω
?
v sin(γ?)

− 2ω?uω
?
v ω

?
w sin(2γ?)sin(γ?)(Ig g −Ig s )(Iw s−Iw t )

k+bs+Jg s2+(Iw s−Iw t )ω?2
u cos(2γ?)+(Iw t−Iw t )ω?2

v cos(2γ?)+Iw sΩω
?
v sin(γ?)

(B.13)

Mu
ωv

=−2ω?w cos
(
γ?

)
(Ig g − Ig s )

+ s(Iw sω
?
v sin(2γ?)−Iw tω

?
v sin(2γ?)+Iw sΩcos(γ?))(2Iw sω

?
v cos(γ?)−2Iw tω

?
v cos(γ?)+2Ig gω

?
u sin(γ?)+2Iw sω

?
u sin(γ?))

k+bs+Jg s2+(Iw s−Iw t )ω?2
u cos(2γ?)+(Iw t−Iw t )ω?2

v cos(2γ?)+Iw sΩω
?
v sin(γ?)

+ 2ω?v ω
?
w sin(γ?)(Ig g −Ig s )(Iw sω

?
v sin(2γ?)−Iw tω

?
v sin(2γ?)+Iw sΩcos(γ?))

k+bs+Jg s2+(Iw s−Iw t )ω?2
u cos(2γ?)+(Iw t−Iw t )ω?2

v cos(2γ?)+Iw sΩω
?
v sin(γ?)

(B.14)
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Mu
ωw

=−2ω?v cos
(
γ?

)
(Ig g − Ig s ) (B.15)

Mv
ωu

= 2ω?w cos
(
γ?

)
(Jg − Js )

+ sω?u sin(2γ?)(Iw s−Iw t )(2Iw sΩ−2Iw sω
?
u cos(γ?)+2Iw tω

?
u cos(γ?)−2Ig gω

?
v sin(γ?)+2Iw sω

?
v sin(γ?)−4Iw tω

?
v sin(γ?))

k+bs+Jg s2+(Iw s−Iw t )ω?2
u cos(2γ?)+(Iw t−Iw t )ω?2

v cos(2γ?)+Iw sΩω
?
v sin(γ?)

+ 2ω?2
u ω?w sin(2γ?)sin(γ?)(Iw s−Iw t )(Jg −Js )

k+bs+Jg s2+(Iw s−Iw t )ω?2
u cos(2γ?)+(Iw t−Iw t )ω?2

v cos(2γ?)+Iw sΩω
?
v sin(γ?)

(B.16)

Mv
ωv

=−s cos
(
γ?

)
(2Jt )

− s[(Iw s−Iw t )ω?v sin(2γ?)+Iw sΩcos(γ?)][2Iw sΩ+2(Iw t−Iw s )ω?u cos(γ?)+2(Iw s−Ig g −2Iw t )ω?v sin(γ?)]

k+bs+Jg s2+(Iw s−Iw t )ω?2
u cos(2γ?)+(Iw t−Iw t )ω?2

v cos(2γ?)+Iw sΩω
?
v sin(γ?)

− 2ω?uω
?
w sin(γ?)[Iw sω

?
v sin(2γ?)−Iw tω

?
v sin(2γ?)+Iw sΩcos(γ?)](Jg −Js )

k+bs+Jg s2+(Iw s−Iw t )ω?2
u cos(2γ?)+(Iw t−Iw t )ω?2

v cos(2γ?)+Iw sΩω
?
v sin(γ?)

(B.17)

Mv
ωw

= 2ω?u cos
(
γ?

)
(Jg − Js ) (B.18)

Mw
ωu

=− 2ω?u sin(2γ?)(Iw s−Iw t )(k+bs)
k+bs+Jg s2+(Iw s−Iw t )ω?2

u cos(2γ?)+(Iw t−Iw t )ω?2
v cos(2γ?)+Iw sΩω

?
v sin(γ?) (B.19)

Mw
ωv

= (2k+2bs)(Iw sω
?
v sin(2γ?)−Iw tω

?
v sin(2γ?)+Iw sΩcos(γ?))

k+bs+Jg s2+(Iw s−Iw t )ω?2
u cos(2γ?)+(Iw t−Iw t )ω?2

v cos(2γ?)+Iw sΩω
?
v sin(γ?) (B.20)

Mw
ωw

=Ø (B.21)

B.4. Transmissability of Scissored Pair Gyros
The transmissability describes the response of γ with a perturbation

γ
ωu

=− ω?u sin(2γ?)(Js−Jt )+Iw sΩsin(γ?)
k+bs+Jg s2+Js−Jtω

?2
u cos2γ?+(Jt−Js )ω?2

v cos2γ?+Iw sΩω
?
u cosγ?

(B.22)

γ
ωv

= ω?v sin(2γ?)(Js−Jt )
k+bs+Jg s2+Js−Jtω

?2
u cos2γ?+(Jt−Js )ω?2

v cos2γ?+Iw sΩω
?
u cosγ?

(B.23)

γ

ωw
=Ø (B.24)
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C.1. Frequency Response of a Single CMG with realistic parameters
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Figure C.1: Frequency response of a CMG when it was optimized to simulate a spring.
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Figure C.2: Frequency response of a CMG when it was optimized to simulate a damper.
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Figure C.3: Frequency response of a CMG when it was optimized to simulate a mass.
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Figure C.4: Frequency response of a CMG when it was optimized to simulate a mass spring damper system.

10
-4

10
-2

10
0

10
2

10
4

10
6

Frequency in rad/s

10
-5

10
0

10
5

M
a
g
n
it
u
d
e
 i
n
 d

B

p
1
=-138p

2
=-0.0832

z
2,3

=-68.9 3e+03i

10
-4

10
-2

10
0

10
2

10
4

10
6

Frequency in rad/s

-180

-90

0

90

180

P
h
a
s
e
 i
n
 d

e
g

M
v
/

v

TFdes

Figure C.5: Frequency response of a CMG when it was optimized to simulate the XCoM.
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C.2. Frequency Response of a SPCMG with realistic parameters
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Figure C.6: Frequency response of a SPCMG when it was optimized to simulate a spring.
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Figure C.7: Frequency response of a SPCMG when it was optimized to simulate a damper.
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Figure C.8: Frequency response of a SPCMG when it was optimized to simulate a mass.
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Figure C.9: Frequency response of a SPCMG when it was optimized to simulate a mass spring damper system.
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Figure C.10: Frequency response of a SPCMG when it was optimized to simulate the XCoM.
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D.1. Time Response CMG

D.1.1. Spring

Figure D.1: Time response of a single CMG when optimized for a spring without bounds. The walking speed was between 0 - 0.4 m/s
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Figure D.2: Time response of a single CMG when optimized for a spring without bounds. The walking speed was a self selected fast
walking speed between 1.9 - 2.2 m/s

D.1.2. Damper

Figure D.3: Time response of a single CMG when optimized for a damper without bounds. The walking speed was between 0 - 0.4 m/s
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Figure D.4: Time response of a single CMG when optimized for a damper without bounds. The walking speed was a self selected fast
walking speed between 1.9 - 2.2 m/s

D.1.3. Mass

Figure D.5: Time response of a single CMG when optimized for a mass without bounds. The walking speed was between 0 - 0.4 m/s
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Figure D.6: Time response of a single CMG when optimized for a mass without bounds. The walking speed was a self selected fast walking
speed between 1.9 - 2.2 m/s

D.1.4. Mass Spring Damper

Figure D.7: Time response of a single CMG when optimized for a mass spring damper system without bounds. The walking speed was
between 0 - 0.4 m/s



D.1. Time Response CMG 67

Figure D.8: Time response of a single CMG when optimized for a mass spring damper system without bounds. The walking speed was a
self selected fast walking speed between 1.9 - 2.2 m/s

D.1.5. PDXCoM

Figure D.9: Time response of a single CMG when optimized for PDXCoM without bounds. The walking speed was between 0 - 0.4 m/s
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Figure D.10: Time response of a single CMG when optimized for PDXCoM without bounds. The walking speed was a self selected fast
walking speed between 1.9 - 2.2 m/s

D.2. CMG with realistic parameters

D.2.1. Spring

Figure D.11: Time response of a single CMG when optimized for a spring with realistic bounds. The walking speed was between 0 -
0.4 m/s
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Figure D.12: Time response of a single CMG when optimized for a spring with realistic bounds. The walking speed a self selected fast
speed between 1.9 - 2.2 m/s

D.2.2. Damper

Figure D.13: Time response of a single CMG when optimized for a Damper with realistic bounds. The walking speed was between 0 -
0.4 m/s
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Figure D.14: Time response of a single CMG when optimized for a Damper with realistic bounds. The walking speed a self selected fast
speed between 1.9 - 2.2 m/s

D.2.3. Mass

Figure D.15: Time response of a single CMG when optimized for a mass with realistic bounds. The walking speed was between 0 - 0.4 m/s
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Figure D.16: Time response of a single CMG when optimized for a mass with realistic bounds. The walking speed a self selected fast
speed between 1.9 - 2.2 m/s

D.2.4. Mass Spring Damper

Figure D.17: Time response of a single CMG when optimized for a mass spring damper system with realistic bounds. The walking speed
was between 0 - 0.4 m/s
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Figure D.18: Time response of a single CMG when optimized for a mass spring damper system with realistic bounds. The walking speed
a self selected fast speed between 1.9 - 2.2 m/s

D.2.5. PDXCoM

Figure D.19: Time response of a single CMG when optimized for the PDXCoM system with realistic bounds. The walking speed was
between 0 - 0.4 m/s
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Figure D.20: Time response of a single CMG when optimized for the PDXCoM system with realistic bounds. The walking speed a self
selected fast speed between 1.9 - 2.2 m/s

D.3. SPCMG without bounds

D.3.1. Mass

Figure D.21: Time response of a single SPCMG when optimized for a spring without bounds. The walking speed was between 0 - 0.4 m/s
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Figure D.22: Time response of a single SPCMG when optimized for a spring without bounds. The walking speed was a self selected fast
walking speed between 1.9 - 2.2 m/s

D.3.2. Damper

Figure D.23: Time response of a single SPCMG when optimized for a damper without bounds. The walking speed was between 0 - 0.4 m/s
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Figure D.24: Time response of a single SPCMG when optimized for a damper without bounds. The walking speed was a self selected fast
walking speed between 1.9 - 2.2 m/s

D.3.3. Mass

Figure D.25: Time response of a single SPCMG when optimized for a mass without bounds. The walking speed was between 0 - 0.4 m/s



76 D. Appendix D

Figure D.26: Time response of a single SPCMG when optimized for a mass without bounds. The walking speed was a self selected fast
walking speed between 1.9 - 2.2 m/s

D.3.4. Mass Spring Damper

Figure D.27: Time response of a single SPCMG when optimized for a mass spring damper system without bounds. The walking speed
was between 0 - 0.4 m/s
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Figure D.28: Time response of a single SPCMG when optimized for a mass spring damper system without bounds. The walking speed
was a self selected fast walking speed between 1.9 - 2.2 m/s

D.3.5. XCoM

Figure D.29: Time response of a single SPCMG when optimized for the PDXCoM system without bounds. The walking speed was between
0 - 0.4 m/s
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Figure D.30: Time response of a single SPCMG when optimized for the PDXCoM system without bounds. The walking speed was a self
selected fast walking speed between 1.9 - 2.2 m/s

D.4. SPCMG with realistic bounds

D.4.1. Spring

Figure D.31: Time response of a SPCMG when optimized for a spring with realistic bounds. The walking speed was between 0 - 0.4 m/s
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Figure D.32: Time response of a SPCMG when optimized for a spring with realistic bounds. The walking speed a self selected fast speed
between 1.9 - 2.2 m/s

D.4.2. Damper

Figure D.33: Time response of a SPCMG when optimized for a damper with realistic bounds. The walking speed was between 0 - 0.4 m/s
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Figure D.34: Time response of a SPCMG when optimized for a damper with realistic bounds. The walking speed a self selected fast speed
between 1.9 - 2.2 m/s

D.4.3. Mass

Figure D.35: Time response of a SPCMG when optimized for a mass with realistic bounds. The walking speed was between 0 - 0.4 m/s
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Figure D.36: Time response of a SPCMG when optimized for a mass with realistic bounds. The walking speed a self selected fast speed
between 1.9 - 2.2 m/s

D.4.4. Mass Spring Damper

Figure D.37: Time response of a SPCMG when optimized for a mass spring damper system with realistic bounds. The walking speed was
between 0 - 0.4 m/s
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Figure D.38: Time response of a SPCMG when optimized for a mass spring damper system with realistic bounds. The walking speed a
self selected fast speed between 1.9 - 2.2 m/s

D.4.5. PDXCoM

Figure D.39: Time response of a SPCMG when optimized for the PDXCoM with realistic bounds. The walking speed was between 0 -
0.4 m/s
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Figure D.40: Time response of a SPCMG when optimized for the PDXCoM with realistic bounds. The walking speed a self selected fast
speed between 1.9 - 2.2 m/s
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Appendix E

Matlab notation

Table E.1: Matlab notation list

Symbol Matlab name
ês , êt , êg es, et, eg

BRG bRg
AωB/G wbg_a
GIw ,G Ig Iwheel_g, Igimbal_g

GHw ,G Hg Hwheel_g, Hgimbal_g
A(ω̇B/N )C dwbn_c_a
γ, γ̇, γ̈ gamma, dgamma, ddgamma
Ω omega

A(Ḣw )B dHwheel_b_a
A(Ḣw )N dHwheel_N_a

E.1. Main File: Single CMG

1 % This s c r i p t i s made by Roemer Helwig for his master t h e s i s . I t generates
2 % the equations of motion of a singl e CMG, the impedance of the CMG.
3 % Furhtermore , i t can optimize the impedance to mimic an a r b i t r a r y t r a n s f e r
4 % function . With the optimized parameters i t can then compute the time
5 % response .
6 % Roemer Helwig , 11−12−2019
7

8 addpath ( ’ Necessary_functions ’ )
9

10 clear
11 close a l l
12

13 % % Bode options
14 PP = bodeoptions ;
15 PP . PhaseWrapping = ’on ’ ;
16 PP . FreqUnits = ’Hz ’ ;
17 PP . XLim = [1 e−3 1e4 ] ;
18 PP . Grid = ’on ’ ;
19

20 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21 %% Newton−Euler Equations of Motion

85
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22 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
23

24 % Generate symbolic var iables
25 syms omega domega gamma m r dgamma ddgamma k g t time r b Mu Mv Mw J s J t Jg w phi

theta psi
26 syms ws wt wg dwbn dws dwt dwg Igs I g t Igg Iws Iwt Iwg Ms Mt Mg s gamma0 wu wv ww

dwu dwv dww wuS wvS wwS gammaS
27 disp ( ’EoM via Newton−Euler . . . ’ )
28

29 % Unit vectors of the gimbal f ixed frame
30 es = [ 1 ; 0 ; 0 ] ;
31 et = [ 0 ; 1 ; 0 ] ;
32 eg = [ 0 ; 0 ; 1 ] ;
33

34 % projection of the gimbal f ixed frame on the body f ixed frame
35 eu = [ cos(−gamma) ; sin (−gamma) ; 0 ] ;
36 ev = [−sin (−gamma) ; cos(−gamma) ; 0 ] ;
37 ew = [ 0 ; 0 ; 1 ] ;
38

39 gRb= [ eu ev ew ] ; % Rotation matrix from body to gimbal f ixed frame
40 bRg= transpose (gRb) ; % Rotation matrix from gimbal to body f ixed frame
41

42 % Angular v e l o c i t i e s in the gimbal frame
43 wbg_g = [0 ; 0 ; −dgamma] ;
44 wwg_g = [omega ; 0 ; 0 ] ;
45 wgb_g = [ 0 ; 0 ;dgamma] ;
46

47 % Angular v e l o c i t i e s in the body frame
48 wbn_b = [wu; wv ;ww] ;
49 wbg_b = bRg*wbg_g ;
50 wgn_b = wbn_b−wbg_b ;
51

52 wbn_g = gRb*wbn_b ;
53 wgn_g = gRb*wgn_b ;
54

55 % Moment of i n e r t i a tensor in Gimbal frame
56 Iwheel_g = diag ( [ Iws ; Iwt ; Iwt ] ) ;
57 Igimbal_g = diag ( [ Igs ; I g t ; Igg ] ) ;
58

59 % Angular momentum in gimbal frame
60 Hwheel_g = Iwheel_g * (wwg_g + wgb_g + wbn_g) ;
61 Hgimbal_g = Igimbal_g * ( wgb_g + wbn_g) ;
62

63 % Angular acceleration of the body frame wrt the natural frame expressed in
64 % the body frame
65 dwbn_b_b = [dwu; dwv ; dww] ;
66

67 % Angular acceleration of the gimbal frame wrt the natural frame expressed in
68 % the body frame
69 dwbn_g_b = dwbn_b_b + cross (wbg_b , wbn_b) ;
70

71 % Angular accelerations in the gimbal frame
72 dwbn_g_g = gRb*dwbn_g_b ;
73 dwwg_g_g = [domega ; 0 ; 0 ] ;
74 dwgb_g_g = [ 0 ; 0 ;ddgamma] ;
75
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76 domega = 0 ;
77

78 % Take the time d e r i v a t i v e with respect to the G frame
79 dHwheel_g_g = Iwheel_g * ( dwgb_g_g + dwbn_g_g) ;
80 dHgimbal_g_g = Igimbal_g * ( dwgb_g_g + dwbn_g_g) ;
81

82

83 % Use transport theorem to calculate d e r i v a t i v e s with respect to N frame
84 dHwheel_N_g = dHwheel_g_g + cross (wgn_g , Hwheel_g ) ;
85 dHgimbal_N_g = dHgimbal_g_g + cross (wgn_g , Hgimbal_g ) ;
86 dH_g = dHwheel_N_g + dHgimbal_N_g ;
87

88 dH_N_b = simpli fy (bRg*dH_g) ;
89

90 % Moment due to bearings , spring and dampers
91 Mpassive = [ 0 ; 0 ; 0−b * (dgamma)−k * (gamma−gamma0) ] ;
92 M_b = dH_N_b − Mpassive ;
93 MBODY = −M_b;
94

95 % equation of motion in body frame
96 [ I_b , Mom_b] = equationsToMatrix (MBODY( 3 ) == 0 ,ddgamma) ;
97 [ I2_b , Mom2_b] = equationsToMatrix (MBODY == 0 , ddgamma) ;
98 ddgamma_eq = simpli fy ( I_b \Mom_b) ;
99

100

101 %% Validation
102 % Rotation Matrices to go to Natural frame
103 rotphi = [1 0 0;0 cos ( phi ) −sin ( phi ) ; 0 sin ( phi ) cos ( phi ) ] ;
104 rottheta = [ cos ( theta ) 0 sin ( theta ) ; 0 1 0;− sin ( theta ) 0 cos ( theta ) ] ;
105 r o t p s i = [ cos ( psi ) sin ( psi ) 0;− sin ( psi ) cos ( psi ) 0;0 0 1 ] ;
106

107 % Change to natural frame
108 Hwheel_N = rotphi * rottheta * r o t p s i *bRg * ( Hwheel_g ) ;
109 dHwheel_N = rotphi * rottheta * r o t p s i *bRg*dHwheel_N_g ;
110

111 % Validation (Hwheel_N , dHwheel_N) ;
112

113 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
114 %% Lagrange Equations of Motion
115 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
116 disp ( ’EoM via Lagrange . . . ’ )
117

118 q = gamma;
119 dq = dgamma;
120 ddq = ddgamma;
121

122 % Kinetecs and Potential Engeries
123 T = 0.5 * ( ( omega* es + dgamma* eg + gRb*wbn_b) . ’ * Iwheel_g * (omega* es + dgamma* eg +

gRb*wbn_b) + (+dgamma* eg + gRb*wbn_b) . ’ * Igimbal_g * (+dgamma* eg + gRb*wbn_b) ) ;
124 V = 0.5 * ( k * (gamma−gamma0) ^2) ;
125 % Lagrangian
126 L = T−V ;
127

128 % P a r t i a l Derivatives
129 dLdq = jacobian ( L , q) ;
130 dLdqd = jacobian ( L , dq) ;



88 E. Appendix E

131 ddtdLdqd = jacobian (dLdqd , [ q ; dq ; wbn_b ] ) * [ dq ; ddq ; dwbn_g_b ] ;
132

133 % Non conservative forces
134 Qnc = −b*dgamma;
135

136 L_eq = simpli fy ( ddtdLdqd − dLdq . ’ − Qnc) ;
137

138 [ Inert ia ,Moment] = equationsToMatrix ( L_eq == 0 , ddq) ;
139 ddq_eq = simpli fy ( I n e r t i a \Moment) ;
140

141 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
142 %% Check i f Newton−Euler and Lagrange are equivalent
143 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
144 Error = simpli fy (ddgamma_eq − ddq_eq ) ;
145

146

147

148 i f Error == 0
149 disp ( ’Newton−Euler and Lagrange are equivalent ’ )
150 else
151 error ( ’ Formulations are not equivalent . Please check d e f i n i t i o n s ’ )
152 end
153

154 I g t = Igs ;
155 Mom_b = subs (Mom_b) ;
156 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
157 %% Compute General Transfer functions of the system
158 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
159

160 CompAllTFs = yes_or_no ( ’Compute a l l the Transfer Functions ? ’ ) ; % function by Daniel
Lemus

161

162 i f ( CompAllTFs )
163 % Uncomment following l i n e s to i n s e r t values to the impedance
164 k = 5 ;
165 b = 1 ;
166 Iws = 4.4 e−4;
167 Iwt = 2.5 e−4;
168 Igs = 8.8 e−4;
169 Igg = 5.0 e−4;
170 omega = 2513;
171

172 %l i n e a r i z e for d i f f e r e n t gammas
173 gammatemp = [ 0 ; pi / 6 ; pi / 3 ; pi / 2 ] ;
174

175 % optional to use d i f f e r e n t spring s t i f f n e s s or damping
176 ktemp = [ 0 . 0 0 1 ; 1 ; 1 0 0 ; ] ;
177 btemp = [ 0 . 0 0 1 ; 1 ; 1 0 0 ] ;
178 % l i n e a r i z e for s p e c i f i c anglar v e l o c i t y of the human
179 wbn_b0 = [ 0 ; 0 ; 0 ] ;
180

181

182 for i = 1 : length (gammatemp)
183 gammaS = gammatemp( i ) ;
184 A_H = l i n e a r i z a t i o n (−dH_N_b, [ddgamma;dgamma;gamma; wbn_b ; dwbn_b_b ] ,gammaS, wbn_b0)

; % Linearization of the Moments
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185 dH_lin = A_H* [ddgamma;dgamma;gamma−gammaS; wbn_b−wbn_b0 ; dwbn_b_b ] ;
186

187 ddgamma = simpli fy ( inv ( I_b ) *Mom_b) ; % re cal cu l a te ddgamma
188 [A_gamma] = l i n e a r i z a t i o n (ddgamma, [dgamma;gamma; wbn_b ; dwbn_b_b ] ,gammaS, wbn_b0) ;

% Linearization of ddgamma
189 ddgamma_lin = A_gamma* [dgamma;gamma; wbn_b ; dwbn_b_b ] ;
190

191 % Take the Laplace transforms
192 dgamma = s *gamma;
193 ddgamma = s ^2*gamma;
194 dwu = s *wu;
195 dwv = s *wv ;
196 dww = s *ww;
197

198 gamma = simplify ( solve ( subs ( ddgamma_lin ) − s ^2*gamma == 0 ,gamma) ) ; % solve for
gamma

199 sdH = simpli fy ( subs ( subs ( dH_lin ) ) ) ; % F i l l in the Laplace transforms in the
Linearized moments

200 AA = l i n e a r i z a t i o n (sdH, wbn_b , [ ] , wbn_b0) ; % Reduce so that equations are only
dependant on wbn

201 dH_reduced = AA * wbn_b ;
202

203 eq1 = dH_reduced − [Mu;Mv;Mw] ; % Make equation : terms − M = 0
204 % Compute t r a n s f e r functions
205 Gsuu = comptf ( eq1 ,wu, 1 ,Mu, 1 ) ; Gsvu = comptf ( eq1 ,wu, 1 ,Mv, 2 ) ; Gswu = comptf ( eq1 ,

wu, 1 ,Mw, 3 ) ;
206 Gsuv = comptf ( eq1 , wv, 2 ,Mu, 1 ) ; Gsvv = comptf ( eq1 , wv, 2 ,Mv, 2 ) ; Gswv = comptf ( eq1 ,

wv, 2 ,Mw, 3 ) ;
207 Gsuw = comptf ( eq1 ,ww, 3 ,Mu, 1 ) ; Gsvw = comptf ( eq1 ,ww, 3 ,Mv, 2 ) ; Gsww = comptf ( eq1 ,

ww, 3 ,Mw, 3 ) ;
208

209 Gs = syms2tf ( subs ( Gsvv ) ) ;
210 Gs . InputName = ’ \omega_v ’ ;
211 Gs . OutputName = ’M_v ’ ;
212 G = bodeplot (Gs , PP) ;
213 hold on
214 grid on
215

216 clear gamma dgamma ddgamma dws dwt dwg
217 syms gamma dgamma ddgamma
218

219 % Compute Transmisabil ity
220

221 % eq2 = gamma2 − gamma;
222 % H1 = comptf ( eq2 ,wu, 1 ,gamma, 1 ) ;
223 % H2 = comptf ( eq2 , wv, 2 ,gamma, 1 ) ;
224 % H3 = comptf ( eq2 ,ww, 3 ,gamma, 1 ) ;
225 % Hs = [H1 H2 H3 ] ;
226 end
227 % Uncomment following l i n e s to plot the impedance
228 legend ( num2str (gammatemp) )
229 fh = gcf ;
230 lh = f i n d a l l ( fh , ’Type ’ , ’ Line ’ ) ;
231 arrayfun (@( x ) set ( x , ’ LineWidth ’ , 2 ) , lh )
232 leg = legend ( ’show ’ ) ;
233 t i t l e ( leg , ’ \gamma’ )
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234 end
235

236 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
237 %% Load Optimal Parameters
238 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
239 LoadPar = yes_or_no ( ’Load the best paramters ? ’ ) ;
240 i f ( LoadPar )
241 close a l l
242

243 num_opt = 100;
244 n_par = 5 ;
245 x = zeros ( n_par , num_opt) ;
246 resnorm = ones ( 1 ,num_opt) * 1e10 ;
247 x0 = zeros ( n_par , num_opt) ;
248

249 for j = 1 :num_opt
250

251 parameter ( j ) = load ( [ ’ opt_parameter_ ’ num2str ( j ) ’ . mat ’ ] , ’ x ’ , ’ resnorm ’ , ’Gs ’ , ’ x0 ’ ) ;
252 x ( : , j ) = parameter ( j ) . x ;
253 resnorm ( j ) = parameter ( j ) . resnorm ;
254 Gs ( : , j ) = parameter ( j ) . Gs ;
255 x0 ( : , j ) = parameter ( j ) . x0 ;
256

257 end
258 % Find the best parameters , Gs and i n i t i a l guess
259 [~ , col ] = find (min( resnorm ) == resnorm ) ;
260 col = min( col ) ;
261 x_best = x ( : , col ) ;
262 Gs = Gs ( : , col ) ;
263 x0 = x0 ( : , col ) ;
264 % k = x_best ( 1 ) ; b = x_best ( 2 ) ; Iws = x_best ( 3 ) ; Iwt = x_best ( 4 ) ; Igs = x_best ( 5 ) ;

I g t = Igs ; Igg = x_best ( 6 ) ; gammaS = x_best ( 7 ) ;
265 % k = x_best ( 1 ) ; b = x_best ( 2 ) ; Iws = x_best ( 3 ) ; Igg = x_best ( 4 ) ; Iwt = 1/2* Iws ; Igs

= 1/2* Igg ; I g t = Igs ; gammaS = x_best ( 5 ) ;
266

267 omega = 2500; k = 0 . 0 0 1 ; b = 50; Iws = 0 . 0 1 ; Iwt = 4 ; Igs = 0 . 1 ; Igg = 0 . 3 ; gammaS =
0 ;

268

269 gamma0 = gammaS;
270 sortRes = sort ( resnorm , ’ descend ’ ) ;
271

272 % Create desired t r a n s f e r function
273 kp = 100;
274 kd = 32;
275 Jdes = 0 . 5 ; bdes = 5 ; kdes= 30;
276 % TFdes = syms2tf ( +( kp+kd* s ) / s ) ;
277 TFdes = syms2tf (−(kdes ) / s ) ;
278

279 % Find poles , zeros , damping and natural frequency
280 [wn, zeta ] = damp(Gs) ;
281 Gpole = pole (Gs) ;
282 Gzero = zero (Gs)
283

284 wuS = 0 ; wvS = 0 ; wwS = 0 ;
285 omega = 1500;
286 GsvvTemp = syms2tf ( subs ( Gsvv ) ) ;
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287

288 % Make bode plot of the optimized impedance and the desired t r a n s f e r
289 % function
290

291 BodeGraph(GsvvTemp, TFdes )
292

293 % Make plot of the resnorm
294 % f i g u r e ( )
295 % semilogy ( sortRes , ’mo’ , . . .
296 % ’ LineWidth ’ , 2 , . . .
297 % ’ MarkerEdgeColor ’ , ’ k ’ , . . .
298 % ’ MarkerFaceColor ’ , [ . 4 9 1 . 6 3 ] , . . .
299 % ’ MarkerSize ’ , 1 0 )
300 % t i t l e ( ’ Optimizations Sorted by Resnorm ’ )
301 % ylabel ( ’ resnorm ’ )
302 % xlabel ( ’Number of I te r a t i o ns ’ )
303

304 end
305

306 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
307 %% Optimization of the Transfer Functions
308 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
309 i f LoadPar == 0
310 OptTF = yes_or_no ( ’ Optimize the Transfer Function ? ’ ) ; % function by Daniel Lemus
311 i f (OptTF)
312

313 % F i l l in unoptimizable parameters
314 I g t = Igs ;
315 Igs = 1/2* Igg ;
316 Iwt = 1/2* Iws ;
317 wuS = 0 ; wvS = 0 ; wwS = 0 ;
318 omega = 1500;
319

320 % Create desired t r a n s f e r function
321 kp = 100;
322 kd = 32;
323 Jdes = 0 . 5 ; bdes = 5 ; kdes= 30;
324

325 % Weights for the Cost function
326 w1 = 100; %best 100
327 w2 = 1 ;
328 % Parameters that w i l l be optimized
329 par = [ k b Iws Igg gammaS] ;
330 % Create frequency vector in Hz
331 wHz = logspace (−2 ,1 ,2e2 ) ;
332 % Create frequency vector in rad/ s
333 w = wHz*2* pi ;
334 num_opt = 100;
335

336 TFdes = −(Jdes * s^2 + bdes* s + kdes ) / s ;
337 % TFdes= +(kp+kd* s ) / s ;
338

339 s = 1 j *w; %
substitude s for jw

340 Gsn = subs ( subs ( Gsvv ) ) ;
341 TFdes1 = subs ( subs ( TFdes ) ) ;
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342 C1 = w1* ( imag ( TFdes1−Gsn) ) ; % Phase
part of costfunction

343 C2 = w2* ( r e a l ( TFdes1−Gsn) ) ; %
Magnitude part of costfunction

344 C = C1+C2 ;
345 errorfun = matlabFunction (C, ’ Vars ’ , { par } ) ;
346

347

348 for j = 1 :num_opt
349 [ x , resnorm , Gs , ~ , x0 ] = optimization ( Gsvv , TFdes , errorfun ) ;
350 save ( [ ’RP_MSD_opt_parameter_ ’ num2str ( j ) ’ . mat ’ ] , ’ x ’ , ’ resnorm ’ , ’Gs ’ , ’ x0 ’ )
351 end
352

353

354 clear s
355 syms s
356

357 load gong . mat ;
358 sound ( y , Fs ) ;
359

360

361 else
362 % k = 1 . 2 0 ; b = 8 . 1 3 ; omega = 2.513e+03; Iws = 0.1238; Iwt = 0.0116; Igg = 0 . 1 5 3 ;

gammaS = 0 ; gamma0 = gammaS; Igs = 0 . 0 0 1 ; I g t = 0 . 0 0 1 ;
363 end
364 end
365

366

367

368 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
369 %% F i l l in Parameters and compute Frequency response
370 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
371 i f ( CompAllTFs )
372 SubsTF = yes_or_no ( ’ F i l l in parameters in TFs and compute Freq Response ? ’ ) ;
373

374 % Compute a l l t r a n s f e r functions
375 i f ( SubsTF )
376 wuS = 0 . 1 ; wvS = 0 . 1 ; wwS = 0 . 1 ;
377 Gsuu = zpk ( syms2tf ( subs (Gsuu) ) ) ; Gsvu = zpk ( syms2tf ( subs ( Gsvu ) ) ) ; Gswu = zpk (

syms2tf ( subs (Gswu) ) ) ;
378 Gsuv = zpk ( syms2tf ( subs ( Gsuv ) ) ) ; Gsvv = zpk ( syms2tf ( subs ( Gsvv ) ) ) ; Gswv = zpk (

syms2tf ( subs (Gswv) ) ) ;
379 Gsuw = zpk ( syms2tf ( subs (Gsuw) ) ) ; Gsvw = zpk ( syms2tf ( subs (Gsvw) ) ) ; Gsww = zpk (

syms2tf ( subs (Gsww) ) ) ;
380

381 Gstot = [Gsuu Gsvu Gswu; Gsuv Gsvv Gswv ; Gsuw Gsvw Gsww] ;
382 Gstot . InputName = ’Moment ’ ;
383 Gstot . OutputName = ’omega ’ ;
384 f i g u r e ( )
385 bodeP = bodeplot ( Gstot , PP) ;
386 p=getoptions (bodeP) ;
387 % p . Ylim {1}= [−10 1 0 0 ] ; %Sett ing the y−axis l i m i t s
388 % p . Ylim {2}= [−10 1 0 0 ] ; %Sett ing the y−axis l i m i t s
389 % p . Ylim {3}= [−10 1 0 0 ] ; %Sett ing the y−axis l i m i t s
390 setoptions (bodeP , p) ; %update your plot
391 fh = gcf ;
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392 lh = f i n d a l l ( fh , ’Type ’ , ’ Line ’ ) ;
393 arrayfun (@( x ) set ( x , ’ LineWidth ’ , 1 . 5 ) , lh )
394 end
395 end
396

397 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
398 %% Comp Time Response from Gait Data
399 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
400 CompTimeResp = yes_or_no ( ’Compute time response from g a i t data ? ’ ) ;
401

402 i f (CompTimeResp)
403 close a l l
404 clear s dwu dwv dww gamma dgamma ddgamma wu wv ww
405 syms dwu dwv dww gamma dgamma ddgamma t time wu wv ww
406

407 FrameRate = 100; % per second
408 h = 1/FrameRate ; % time step
409 h2 = 0.01*h ; % time step for interpolat ion
410 omega = 1500;
411 ddgamma_eq = subs (ddgamma_eq) ;
412 M_b_opt = subs ( subs (MBODY) ) ;
413

414 Condition = 5 ; % Select which walking condition to use for input . Range from 1 to 5 .
415

416 % Load g a i t data
417 addpath ( ’ Matlab Motion Data ’ )
418

419 AngVel = load ( [ ’ AngVel ’ num2str ( Condition ) ’ . t x t ’ ] ) ;
420 AngAcc_temp = load ( [ ’AngAcc ’ num2str ( Condition ) ’ . t x t ’ ] ) ;
421 AngAcc = zeros ( length ( AngVel ) , 3 ) ;
422

423 AngAcc ( 2 : end−1 , : ) = AngAcc_temp ;
424 TrunkRot = wrapTo360 ( load ( [ ’ TrunkRot ’ num2str ( Condition ) ’ . t x t ’ ] ) ) ;
425 EventData = xlsread ( [ ’ Events ’ num2str ( Condition ) ’ . x l s x ’ ] ) ;
426

427 [LFO, LFS ,RFO, RFS , TimePoint ] = RecEvent ( EventData ) ;
428 et = ( 0 : length ( AngVel )−1) ’ *h ;
429

430 % Create function of the g a i t data
431 omega_func = @( t _ i ) interp1 ( et , AngVel , t _ i ) ;
432 wv_func = @( t _ i ) interp1 ( et , AngVel ( : , 2 ) , t _ i ) ;
433 wu_func = @( t _ i ) interp1 ( et , AngVel ( : , 1 ) , t _ i ) ;
434 dww_func = @( t _ i ) interp1 ( et , AngAcc ( : , 3 ) , t _ i ) ;
435

436 % Create function of the moments and ddgamma
437 Mcmg_b = matlabFunction (M_b_opt , ’ f i l e ’ , ’Mcmg_b ’ ) ;
438 ddgamma_fun_b = matlabFunction ( [ ddgamma_eq] , ’ f i l e ’ , ’ddgamma_fun_b ’ ) ;
439

440 % % Create function handle and use ode15s for numerical integrat ion
441 % ddgamma_func = @( t , y ) ddgamma_fun_b( y ( 2 ) ,dww_func( t ) , y ( 1 ) , wu_func ( t ) , wv_func ( t ) ) ;
442 % [ t , y ] = ode15s (ddgamma_func, [ 0 3 ] , [ 0 1 ] ) ;
443

444 wu1 = AngVel ( : , 1 ) ;
445

446 dwu1 = AngAcc ( : , 1 ) ;
447 dwv1 = AngAcc ( : , 2 ) ;
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448 dww1 = AngAcc ( : , 3 ) ;
449

450 Time = length (wu1) *h ;
451 % Interpolate to improve integrat ion
452 wu1 = interp1 ( 0 : h : ( Time−h) ,wu1, 0 : h2 : ( Time−h2 ) , ’PCHIP ’ ) ;
453 wv1 = AngVel ( : , 2 ) ;
454 wv1 = interp1 ( 0 : h : ( Time−h) ,wv1 , 0 : h2 : ( Time−h2 ) , ’PCHIP ’ ) ;
455 ww1 = AngVel ( : , 3 ) ;
456 ww1 = interp1 ( 0 : h : ( Time−h) ,ww1, 0 : h2 : ( Time−h2 ) , ’PCHIP ’ ) ;
457

458 dwu1 = interp1 ( 0 : h : ( Time−h) ,dwu1, 0 : h2 : ( Time−h2 ) , ’PCHIP ’ ) ;
459 dwv1 = interp1 ( 0 : h : ( Time−h) ,dwv1 , 0 : h2 : ( Time−h2 ) , ’PCHIP ’ ) ;
460 dww1 = interp1 ( 0 : h : ( Time−h) ,dww1, 0 : h2 : ( Time−h2 ) , ’PCHIP ’ ) ;
461

462 TrunkRot = interp1 ( 0 : h : ( Time) , TrunkRot , 0 : h2 : ( Time) , ’PCHIP ’ ) ;
463 % Create i n i t i a l conditions
464 w = zeros ( 3 , length (wu1) ) ;
465 dw = zeros ( 3 , length (wu1) ) ;
466 wu = wu1( 1 , 1 ) ; wv = wv1( 1 , 1 ) ; ww = ww1( 1 , 1 ) ;
467 dwu= dwu1( 1 , 1 ) ; dwv= dwv1( 1 , 1 ) ; dww= dww1( 1 , 1 ) ;
468 ddgamma1 = zeros ( 1 , length (wu1) ) ; dgamma1 = zeros ( 1 , length (wu1) ) ; gamma1 = zeros

( 1 , length (wu1) ) ;
469 gamma = gammaS;
470 dgamma = 0 ;
471 i n i t i a l _ c o n d i t i o n s = [wu; wv ;ww;gamma;dgamma] ;
472 M_b_opt1 = zeros ( 3 , length (wu1) ) ;
473

474 ddgamma1( 1 , 1 ) = ddgamma_fun_b(dgamma,dww,gamma,wu, wv) ;
475 ddgamma = ddgamma1( 1 , 1 ) ;
476 M_b_opt1 ( 1 : 3 , 1 ) = Mcmg_b(ddgamma,dgamma,dwu, dwv,dww,gamma,wu, wv,ww) ;
477 gamma1( 1 , 1 ) = gamma;
478 dgamma1( 1 , 1 ) = dgamma;
479 % Numerical integrat ion
480 for i = 2 : length (wv1)
481 nC = rotx ( ( TrunkRot ( i , 1 ) ) ) * roty ( ( TrunkRot ( i , 2 ) ) ) * rotz ( ( TrunkRot ( i , 3 ) +pi /2) ) ;
482 w( 1 : 3 , i ) = nC* [wu1( i ) ; wv1( i ) ;ww1( i ) ] ;
483 dw( 1 : 3 , i ) = nC* [dwu1( i ) ; dwv1( i ) ;dww1( i ) ] ;
484 wu = w( 1 , i ) ; wv = w( 2 , i ) ; ww = w( 3 , i ) ;
485 dwu= dw( 1 , i ) ; dwv= dw( 2 , i ) ; dww= dw( 3 , i ) ;
486 ddgamma1( i ) = ddgamma_fun_b(dgamma,dww,gamma,wu, wv) ;
487 ddgamma = ddgamma1( i ) ;
488 dgamma1( i ) = dgamma1( i −1) + double (ddgamma1( i ) *h2 ) ;
489 dgamma = dgamma1( i ) ;
490 gamma1( i ) = gamma1( i −1) + double (dgamma1( i ) *h2 + 0.5*ddgamma*h2^2) ;
491 gamma = gamma1( i ) ;
492

493 M_b_opt1 ( : , i ) = Mcmg_b(ddgamma,dgamma,dwu, dwv,dww,gamma,wu, wv,ww) ;
494

495 i f isnan (ddgamma) == 1
496 error ( ’ decrease time step ’ )
497 end
498 % controle ( i ) = dgamma+wg;
499 % check ( i ) = Mt/ controle ( i ) ;
500 end
501

502
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503 % Plot Generated Moments Due Walking %
504 GaitEvent = [LFO, LFS ,RFO, RFS ] ;
505 FirstEvent = find ( GaitEvent ( 1 , : ) == 0) ;
506 i f FirstEvent == 1
507 Tag1 = ’LFO ’ ;
508 Tag2 = ’LFS ’ ;
509 Tag3 = ’RFO ’ ;
510 Tag4 = ’RFS ’ ;
511 e l s e i f FirstEvent == 2
512 Tag1 = ’LFS ’ ;
513 Tag2 = ’RFO ’ ;
514 Tag3 = ’RFS ’ ;
515 Tag4 = ’LFO ’ ;
516 e l s e i f FirstEvent ==3
517 Tag1 = ’RFO ’ ;
518 Tag2 = ’RFS ’ ;
519 Tag3 = ’LFO ’ ;
520 Tag4 = ’LFS ’ ;
521 e l s e i f FirstEvent == 4
522 Tag1 = ’RFS ’ ;
523 Tag2 = ’LFO ’ ;
524 Tag3 = ’LFS ’ ;
525 Tag4 = ’RFO ’ ;
526 end
527 Tag5 = Tag1 ;
528 Tag6 = Tag2 ;
529 Tag7 = Tag3 ;
530 i f TimePoint ( 1 ) < 0.1
531 Tag1 = ’ ’ ;
532 end
533

534

535 f i g u r e ( )
536 subplot ( 4 , 1 , 1 )
537 plot ( 0 : h2 : ( Time−h2 ) ,M_b_opt1 ( 1 , : ) , ’ Linewidth ’ ,2 , ’ L inestyle ’ , ’− ’ )
538 hold on
539 plot ( 0 : h2 : ( Time−h2 ) ,M_b_opt1 ( 2 , : ) , ’ Linewidth ’ ,2 , ’ L inestyle ’ , ’−. ’ )
540 plot ( 0 : h2 : ( Time−h2 ) ,M_b_opt1 ( 3 , : ) , ’ Linewidth ’ ,2 , ’ L inestyle ’ , ’ : ’ )
541 ylabel ( ’Moment in Nm’ )
542 xlim ( [ 0 . 1 Time(end) ] )
543 ylim ( [ min(M_b_opt1 ( : ) ) max(M_b_opt1 ( : ) ) ] )
544 vl ine ( TimePoint ( 1 ) , ’ k ’ ) ;
545 t e x t ( TimePoint ( 1 ) ,max(M_b_opt1 ( : ) ) , Tag1 , ’ HorizontalAlignment ’ , ’ center ’ , ’

VerticalAlignment ’ , ’bottom ’ , ’ FontSize ’ ,11)
546 vl ine ( TimePoint ( 2 ) , ’ k ’ ) ;
547 t e x t ( TimePoint ( 2 ) ,max(M_b_opt1 ( : ) ) , Tag2 , ’ HorizontalAlignment ’ , ’ center ’ , ’

VerticalAlignment ’ , ’bottom ’ , ’ FontSize ’ ,11)
548 vl ine ( TimePoint ( 3 ) , ’ k ’ ) ;
549 t e x t ( TimePoint ( 3 ) ,max(M_b_opt1 ( : ) ) , Tag3 , ’ HorizontalAlignment ’ , ’ center ’ , ’

VerticalAlignment ’ , ’bottom ’ , ’ FontSize ’ ,11)
550 vl ine ( TimePoint ( 4 ) , ’ k ’ ) ;
551 t e x t ( TimePoint ( 4 ) ,max(M_b_opt1 ( : ) ) , Tag4 , ’ HorizontalAlignment ’ , ’ center ’ , ’

VerticalAlignment ’ , ’bottom ’ , ’ FontSize ’ ,11)
552 vl ine ( TimePoint ( 5 ) , ’ k ’ ) ;
553 t e x t ( TimePoint ( 5 ) ,max(M_b_opt1 ( : ) ) , Tag5 , ’ HorizontalAlignment ’ , ’ center ’ , ’

VerticalAlignment ’ , ’bottom ’ , ’ FontSize ’ ,11)
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554 vl ine ( TimePoint ( 6 ) , ’ k ’ ) ;
555 t e x t ( TimePoint ( 6 ) ,max(M_b_opt1 ( : ) ) , Tag6 , ’ HorizontalAlignment ’ , ’ center ’ , ’

VerticalAlignment ’ , ’bottom ’ , ’ FontSize ’ ,11)
556 vl ine ( TimePoint ( 7 ) , ’ k ’ ) ;
557 t e x t ( TimePoint ( 7 ) ,max(M_b_opt1 ( : ) ) , Tag7 , ’ HorizontalAlignment ’ , ’ center ’ , ’

VerticalAlignment ’ , ’bottom ’ , ’ FontSize ’ ,11)
558 legend ( ’$M_u$ ’ , ’$M_v$ ’ , ’$M_w$ ’ , ’ Location ’ , ’ best ’ ) ;
559

560 subplot ( 4 , 1 , 2 )
561 plot ( 0 : h2 : ( Time−h2 ) ,ddgamma1, ’ Linewidth ’ , 1 . 5 ) ;
562 ylabel ( ’ $\ddot { \gamma} $ in rad/ s$ ^{2} $ ’ )
563 xlim ( [ 0 . 1 Time(end) ] )
564 ylim ( [mean(ddgamma1) −2.3* std (ddgamma1) mean(ddgamma1) +2.3* std (ddgamma1) ] )
565 vl ine ( TimePoint ( 1 ) , ’ k ’ ) ;
566 vl ine ( TimePoint ( 2 ) , ’ k ’ ) ;
567 vl ine ( TimePoint ( 3 ) , ’ k ’ ) ;
568 vl ine ( TimePoint ( 4 ) , ’ k ’ ) ;
569 vl ine ( TimePoint ( 5 ) , ’ k ’ ) ;
570 vl ine ( TimePoint ( 6 ) , ’ k ’ ) ;
571 vl ine ( TimePoint ( 7 ) , ’ k ’ ) ;
572

573 subplot ( 4 , 1 , 3 )
574 plot ( 0 : h2 : ( Time−h2 ) ,dgamma1, ’ Linewidth ’ , 1 . 5 ) ;
575 ylabel ( ’ $\dot { \gamma} $ in rad/ s ’ )
576 % ylim ( [mean(dgamma1) −1.5* std (dgamma1) mean(dgamma1) +1.5* std (dgamma1) ] )
577 xlim ( [ 0 . 1 Time(end) ] )
578 ylim ( [ min(dgamma1 ( : ) ) max(dgamma1 ( : ) ) ] )
579 vl ine ( TimePoint ( 1 ) , ’ k ’ ) ;
580 vl ine ( TimePoint ( 2 ) , ’ k ’ ) ;
581 vl ine ( TimePoint ( 3 ) , ’ k ’ ) ;
582 vl ine ( TimePoint ( 4 ) , ’ k ’ ) ;
583 vl ine ( TimePoint ( 5 ) , ’ k ’ ) ;
584 vl ine ( TimePoint ( 6 ) , ’ k ’ ) ;
585 vl ine ( TimePoint ( 7 ) , ’ k ’ ) ;
586

587 subplot ( 4 , 1 , 4 )
588 plot ( 0 : h2 : ( Time−h2 ) ,gamma1, ’ Linewidth ’ , 2 ) ;
589 ylabel ( ’ $ { \gamma} $ in rad ’ )
590 xlabel ( ’Time in s ’ )
591 xlim ( [ 0 . 1 Time(end) ] )
592 ylim ( [ min(gamma1 ( : ) ) max(gamma1 ( : ) ) ] )
593 vl ine ( TimePoint ( 1 ) , ’ k ’ ) ;
594 vl ine ( TimePoint ( 2 ) , ’ k ’ ) ;
595 vl ine ( TimePoint ( 3 ) , ’ k ’ ) ;
596 vl ine ( TimePoint ( 4 ) , ’ k ’ ) ;
597 vl ine ( TimePoint ( 5 ) , ’ k ’ ) ;
598 vl ine ( TimePoint ( 6 ) , ’ k ’ ) ;
599 vl ine ( TimePoint ( 7 ) , ’ k ’ ) ;
600

601 s e t I n t e r p r e t e r ( gcf , ’ l a t e x ’ ) ;
602 % save_f ig ( gcf , ’ path ’ , ’ / Figures / ’ , ’ filename ’ , { ’ GyRAB_contour_10Nms ’ } , ’ extensions ’ , { ’

matlabfrag ’ } )
603

604 % Plot Angular Velocity Data %
605 % f i g u r e ( )
606 % plot ( 0 : h2 : ( Time−h2 ) ,w, ’ Linewidth ’ , 2 )
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607 % xlim ( [ 0 . 1 Time−h2 ] )
608 % ylim ( [ min(w( : ) ) max(w( : ) ) ] )
609 % hold on
610 % vline ( TimePoint ( 1 ) , ’ k ’ ) ;
611 % t e x t ( TimePoint ( 1 ) ,max(w( : ) ) , Tag1 , ’ HorizontalAlignment ’ , ’ center ’ , ’

VerticalAlignment ’ , ’ bottom ’ , ’ FontSize ’ , 1 1 )
612 % vline ( TimePoint ( 2 ) , ’ k ’ ) ;
613 % t e x t ( TimePoint ( 2 ) ,max(w( : ) ) , Tag2 , ’ HorizontalAlignment ’ , ’ center ’ , ’

VerticalAlignment ’ , ’ bottom ’ , ’ FontSize ’ , 1 1 )
614 % vline ( TimePoint ( 3 ) , ’ k ’ ) ;
615 % t e x t ( TimePoint ( 3 ) ,max(w( : ) ) , Tag3 , ’ HorizontalAlignment ’ , ’ center ’ , ’

VerticalAlignment ’ , ’ bottom ’ , ’ FontSize ’ , 1 1 )
616 % vline ( TimePoint ( 4 ) , ’ k ’ ) ;
617 % t e x t ( TimePoint ( 4 ) ,max(w( : ) ) , Tag4 , ’ HorizontalAlignment ’ , ’ center ’ , ’

VerticalAlignment ’ , ’ bottom ’ , ’ FontSize ’ , 1 1 )
618 % vline ( TimePoint ( 5 ) , ’ k ’ ) ;
619 % t e x t ( TimePoint ( 5 ) ,max(w( : ) ) , Tag5 , ’ HorizontalAlignment ’ , ’ center ’ , ’

VerticalAlignment ’ , ’ bottom ’ , ’ FontSize ’ , 1 1 )
620 % vline ( TimePoint ( 6 ) , ’ k ’ ) ;
621 % t e x t ( TimePoint ( 6 ) ,max(w( : ) ) , Tag6 , ’ HorizontalAlignment ’ , ’ center ’ , ’

VerticalAlignment ’ , ’ bottom ’ , ’ FontSize ’ , 1 1 )
622 % vline ( TimePoint ( 7 ) , ’ k ’ ) ;
623 % t e x t ( TimePoint ( 7 ) ,max(w( : ) ) , Tag7 , ’ HorizontalAlignment ’ , ’ center ’ , ’

VerticalAlignment ’ , ’ bottom ’ , ’ FontSize ’ , 1 1 )
624 % legend ( ’ $\omega_u$ ’ , ’ $\omega_v$ ’ , ’ $\omega_w$ ’ )
625 % s e t I n t e r p r e t e r ( gcf , ’ latex ’ ) ;
626

627 end
628

629 %% Functions
630 function [ x1 , resnorm , Gs , TFdes , x0 ] = optimization (Gs , TFdes , errorfun )
631 ub = [4500 , 3800 , 0.04 , 0.02 , 0 . 1 ] ; % Upper bounds
632

633 x0 = [ rand ( 1 ) *0.01 , rand ( 1 ) *0.001 , rand ( 1 ) *ub( 3 ) , rand ( 1 ) *ub( 4 ) , rand ( 1 ) * pi + rand
( 1 ) *−pi ] ; % I n i t i a l guess

634

635 % XS = [4500 , 3800 , 0 . 3 , 0 . 3 , 0 ] ; % Upper
bounds

636 % x0 = [ rand ( 1 ) *0.01 , rand ( 1 ) *0.001 , rand ( 1 ) *XS ( 3 ) , rand ( 1 ) *XS ( 4 ) , rand ( 1 ) * pi +
rand ( 1 ) *−pi ] ; % I n i t i a l guess

637 %
638 % ub = [ inf , inf , inf , inf , 0 . 1 ] ;
639

640 lb = [0 , 0 , 0 , 0 , −0.1] ; % Lower
bounds

641

642 options = optimoptions ( @lsqnonlin , ’ Algorithm ’ , ’ trust−region−r e f l e c t i v e ’ ) ;
643 options . MaxFunctionEvaluations = 180000;
644 options . MaxIterations = 12000;
645 [ x1 , resnorm ] = lsqnonlin ( errorfun , x0 , lb , ub , options ) ; %

Optimization function
646 k = x1 ( 1 ) ; b = x1 ( 2 ) ; Iws = x1 ( 3 ) ; Igg = x1 ( 4 ) ; gammaS = x1 ( 5 ) ; Iwt = 1/2* Iws ; Igs =

1/2* Igg ; I g t = Igs ;
647

648

649
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650 clear s
651 syms s
652 Gs = syms2tf ( subs (Gs) ) ;
653

654 end

E.2. Main File: SPCMG

1 % This s c r i p t i s made by Roemer Helwig for his master t h e s i s . I t generates
2 % the equations of motion of a SPCMG, the impedance of the SPCMG.
3 % Furhtermore , i t can optimize the impedance to mimic an a r b i t r a r y t r a n s f e r
4 % function . With the optimized parameters i t can then compute the time
5 % response .
6 % Roemer Helwig , 11−12−2019
7

8 addpath ( ’ Necessary_functions ’ )
9

10 clear
11 close a l l
12

13 % Bode options
14 PP = bodeoptions ;
15 PP . PhaseWrapping = ’on ’ ;
16 PP . FreqUnits = ’Hz ’ ;
17 PP . XLim = [1 e−4 2e2 ] ;
18 PP . Grid = ’on ’ ;
19

20 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21 %% Newton−Euler Equations of Motion
22 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
23

24 % Generate symbolic var iables
25 syms omega domega gamma m r dgamma ddgamma k g t time r b Mu Mv Mw J s J t Jg Mc w phi

theta psi
26 syms ws wt wg dwbn dws dwt dwg Igs I g t Igg Iws Iwt Iwg Ms Mt Mg s gamma0 wu wv ww

dwu dwv dww wuS wvS wwS gammaS
27 disp ( ’EoM via Newton−Euler . . . ’ )
28

29 %% Gimbal 1
30 % Unit vectors of the f i r s t gimbal f ixed frame
31 gs = [ 1 ; 0 ; 0 ] ;
32 gt = [ 0 ; 1 ; 0 ] ;
33 gg = [ 0 ; 0 ; 1 ] ;
34

35 % projection of the gimbal f ixed frame on the body f ixed frame
36 eu1 = [ cos(−gamma) ; sin (−gamma) ; 0 ] ;
37 ev1 = [−sin (−gamma) ; cos(−gamma) ; 0 ] ;
38 ew1 = [ 0 ; 0 ; 1 ] ;
39

40 g1Rb= [ eu1 ev1 ew1 ] ; % Rotation matrix from body to gimbal f ixed frame
41 bRg1= transpose ( g1Rb) ; % Rotation matrix from gimbal to body f ixed frame
42

43 % Angular v e l o c i t i e s in the gimbal frame
44 wbg_g1 = [0 ; 0 ; −dgamma] ;
45 wwg_g1 = [omega ; 0 ; 0 ] ;
46 wgb_g1 = [ 0 ; 0 ;dgamma] ;
47
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48 % Angular v e l o c i t i e s in the body frame
49 wbn_b = [wu; wv ;ww] ;
50 wbg1_b = bRg1*wbg_g1 ;
51 wg1n_b = wbn_b−wbg1_b ;
52

53 wbn_g1 = g1Rb*wbn_b ;
54

55 % Moment of i n e r t i a tensor in Gimbal frame
56 Iwheel_g1 = diag ( [ Iws ; Iwt ; Iwt ] ) ;
57 Igimbal_g1 = diag ( [ Igs ; I g t ; Igg ] ) ;
58

59 % Angular momentum in gimbal frame
60 Hwheel_g1 = Iwheel_g1 * (wwg_g1 + wgb_g1 + wbn_g1) ;
61 Hgimbal_g1 = Igimbal_g1 * ( wgb_g1 + wbn_g1) ;
62

63 % Angular acceleration of the body frame wrt the natural frame expressed in
64 % the body frame
65 dwbn_b_b = [dwu; dwv ; dww] ;
66

67 % Angular acceleration of the gimbal frame wrt the natural frame expressed in
68 % the body frame
69 dwbn_g1_b = dwbn_b_b + cross (wbg1_b , wbn_b) ;
70

71 % Angular accelerations in the gimbal frame
72 dwbn_g1_g1 = g1Rb*dwbn_g1_b ;
73 dwwg_g1_g1 = [domega ; 0 ; 0 ] ;
74 dwgb_g1_g1 = [ 0 ; 0 ;ddgamma] ;
75

76 domega = 0 ;
77

78 % Take the time d e r i v a t i v e with respect to the G frame
79 dHwheel_g1_g1 = Iwheel_g1 * ( dwgb_g1_g1 + dwbn_g1_g1 ) ;
80 dHgimbal_g1_g1 = Igimbal_g1 * ( dwgb_g1_g1 + dwbn_g1_g1 ) ;
81

82

83 % Use transport theorem to calculate d e r i v a t i v e s with respect to N frame
84 dHwheel_N_g1 = dHwheel_g1_g1 + cross ( g1Rb * ( wg1n_b) , Hwheel_g1 ) ;
85 dHgimbal_N_g1 = dHgimbal_g1_g1 + cross (g1Rb * ( wg1n_b) , Hgimbal_g1 ) ;
86 dH_N_g1 = dHwheel_N_g1 + dHgimbal_N_g1 ;
87

88 dH1_N_b = simpli fy ( bRg1*dH_N_g1) ;
89

90 M1 = dH1_N_b − [0;0; −k * (gamma−gamma0)−b*dgamma+Mc] ;
91 %% Gimbal 2
92 % projection of the gimbal f ixed frame on the gimbal f ixed frame
93 eu2 = [ cos (gamma) ; sin (gamma) ; 0 ] ;
94 ev2 = [−sin (gamma) ; cos (gamma) ; 0 ] ;
95 ew2 = [ 0 ; 0 ; 1 ] ;
96 bRg2= transpose ( [ eu2 ev2 ew2 ] ) ; % Rotation matrix from gimbal to body f ixed frame
97 g2Rb= [ eu2 ev2 ew2 ] ;
98

99 % Angular v e l o c i t i e s in the second gimbal frame
100 wbg2_g2 = [0 ; 0 ; dgamma] ;
101 wwg2_g2 = [−omega ; 0 ; 0 ] ;
102 wg2b_g2 = [0;0; −dgamma] ;
103
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104 % Angular v e l o c i t i e s in the body frame
105 wbn_b = [wu; wv ;ww] ;
106 wbg2_b = bRg2*wbg2_g2 ;
107 wg2n_b = wbn_b−wbg2_b ;
108

109 % Moment of i n e r t i a tensor in Gimbal frame
110 Iwheel_g2 = diag ( [ Iws ; Iwt ; Iwt ] ) ;
111 Igimbal_g2 = diag ( [ Igs ; I g t ; Igg ] ) ;
112

113 % Angular momentum in gimbal frame
114 Hwheel_g2 = Iwheel_g2 * ( wwg2_g2 + wg2b_g2 + g2Rb*wbn_b) ;
115 Hgimbal_g2 = Igimbal_g2 * ( wg2b_g2 + g2Rb*wbn_b) ;
116

117 %Angular acceleration of the second gimbal fram wrt the natural frame
118 %expressed in the body frame
119 dwbn_g2_b = dwbn_b_b + cross (wbg2_b , wbn_b) ;
120

121 % Angular accelerations in the gimbal frame
122 dwbn_g2_g2 = g2Rb*dwbn_g2_b ;
123 dwwg2_g2_g2 = [−domega ; 0 ; 0 ] ;
124 dwg2b_g2_g2 = [0;0; −ddgamma] ;
125

126 dHwheel_g2_g2 = Iwheel_g2 * ( dwg2b_g2_g2 + dwbn_g2_g2 ) ;
127 dHgimbal_g2_g2 = Igimbal_g2 * ( dwg2b_g2_g2 + dwbn_g2_g2 ) ;
128

129 % Use transport theorem to calculate d e r i v a t i v e s with respect to N frame
130 dHwheel_N_g2 = dHwheel_g2_g2 + cross ( g2Rb*wg2n_b , Hwheel_g2 ) ;
131 dHgimbal_N_g2 = dHgimbal_g2_g2 + cross (g2Rb*wg2n_b , Hgimbal_g2 ) ;
132 dH_g2 = dHwheel_N_g2 + dHgimbal_N_g2 ;
133

134 dH2_N_b = simpli fy ( bRg2*dH_g2) ;
135

136 M2 = dH2_N_b − [ 0 ; 0 ; + k * (gamma−gamma0) +b*dgamma+Mc] ;
137 %% Total system
138 % Moment due to spring and dampers
139 Mc = solve (M2( 3 ) == 0 ,Mc) ;
140 M1 = subs (M1) ;
141 M_b = M1 + [M2( 1 ) ;M2( 2 ) ; 0 ] ;
142 MBODY = −M_b;
143

144 % equation of motion in body frame
145 [ I_b , Mom_b] = equationsToMatrix (MBODY( 3 ) == 0 ,ddgamma) ;
146

147 ddgamma_eq = simpli fy ( inv ( I_b ) *Mom_b) ;
148 %dwb_bn_b_b = simpli fy ( inv ( I2_b ) *Mom2_b) ;
149

150

151 %% Validation
152

153 Htot_b = bRg1*Hwheel_g1 + bRg2*Hwheel_g2 ;
154 rotphi = [1 0 0;0 cos ( phi ) −sin ( phi ) ; 0 sin ( phi ) cos ( phi ) ] ;
155 rottheta = [ cos ( theta ) 0 sin ( theta ) ; 0 1 0;− sin ( theta ) 0 cos ( theta ) ] ;
156 r o t p s i = [ cos ( psi ) sin ( psi ) 0;− sin ( psi ) cos ( psi ) 0;0 0 1 ] ;
157 Htot_N = rotphi * rottheta * r o t p s i * Htot_b ;
158

159 dHtot_b = bRg1*dHwheel_N_g2 + bRg2*dHwheel_N_g2 ;
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160 dHtot_N = rotphi * rottheta * r o t p s i * dHtot_b ;
161

162 % Validation ( Htot_N , dHtot_N ) ;
163

164

165 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
166 %% Lagrange Equations of Motion
167 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
168 disp ( ’EoM via Lagrange . . . ’ )
169

170 q = gamma;
171 dq = dgamma;
172 ddq = ddgamma;
173

174 % Kinetecs and Potential Engeries
175 T1 = 0.5 * ( ( omega* gs + dgamma* gg + g1Rb*wbn_b) . ’ * Iwheel_g1 * (omega* gs + dgamma* gg

+ g1Rb*wbn_b) + (dgamma* gg + g1Rb*wbn_b) . ’ * Igimbal_g1 * (dgamma* gg + g1Rb*wbn_b
) ) ;

176 T2 = 0.5 * ( ( omega*−gs + −dgamma* gg + g2Rb*wbn_b) . ’ * Iwheel_g2 * (omega*−gs + −
dgamma* gg + g2Rb*wbn_b) + (−dgamma* gg + g2Rb*wbn_b) . ’ * Igimbal_g2 * (−dgamma* gg +

g2Rb*wbn_b) ) ;
177 T = T1+T2 ;
178 V1 = 0.5 * ( k * (gamma−gamma0) ^2) ;
179 V2 = 0.5 * ( k * (gamma0−gamma) ^2) ;
180 V = V1+V2 ;
181 L = T−V ;
182

183 dLdq = jacobian ( L , q) ;
184 dLdqd = jacobian ( L , dq) ;
185 ddtdLdqd = jacobian (dLdqd , [ q ; dq ; wbn_b ] ) * [ dq ; ddq ; dwbn_g1_b ] ;
186

187 Qnc = −2*b*dgamma;
188

189 L_eq = simpli fy ( ddtdLdqd − dLdq . ’ − Qnc) ;
190

191 [ Inert ia ,Moment] = equationsToMatrix ( L_eq == 0 , ddq) ;
192 ddq_eq = simpli fy ( I n e r t i a \Moment) ;
193 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
194 %% Check i f Newton−Euler and Lagrange are equivalent
195 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
196 Error = simpli fy (ddgamma_eq − ddq_eq ) ;
197

198 i f Error == 0
199 disp ( ’Newton Euler and Lagrange are equivalent ’ )
200 else
201 error ( ’ Formulations are not equivalent . Please check d e f i n i t i o n s ’ )
202 end
203

204 % omega = 2513; %1500
205 I g t = Igs ;
206

207 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
208 %% Compute General Transfer functions of the system
209 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
210

211 CompAllTFs = yes_or_no ( ’Compute a l l the Transfer Functions ? ’ ) ; % function by Daniel
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Lemus
212

213 i f ( CompAllTFs )
214

215

216 %l i n e a r i z e for d i f f e r e n t gammas, s t i f f n e s s or damping
217 gammatemp = [gammaS] ;
218 % optional to use d i f f e r e n t spring s t i f f n e s s or damping
219 ktemp = [ 0 . 1 ; 0 . 5 ; 1 ; 3 ; 5 ; 1 0 ] ;
220 btemp = [ 0 . 1 ; 0 . 5 ; 1 ; 3 ; 5 ; 1 0 ] ;
221 domega = 0 ;
222 % l i n e a r i z e for s p e c i f i c anglar v e l o c i t y of the human
223 wbn_b0 = [wuS; wvS ;wwS] ;
224

225

226 for i = 1 : length (gammatemp)
227 %b = btemp( i ) ;
228 A = l i n e a r i z a t i o n ((−dH1_N_b−dH2_N_b) , [ddgamma;dgamma;gamma; wbn_b ; dwbn_b_b ] ,

gammatemp( i ) ,wbn_b0) ; % Linearization of the Moments
229 dH_lin = A* [ddgamma;dgamma;gamma−gammatemp( i ) ; wbn_b−wbn_b0 ; dwbn_b_b ] ;
230

231 ddgamma = simplify ( inv ( subs ( I_b ) ) * subs (Mom_b) ) ; % r e cal cu l ate ddgamma
232 [ Ag ] = l i n e a r i z a t i o n ( [ddgamma] , [dgamma;gamma; wbn_b ; dwbn_b_b ] ,gammatemp( i ) ,wbn_b0

) ; % Linearization of ddgamma
233 ddgamma_lin = Ag * [dgamma;gamma; wbn_b ; dwbn_b_b ] ;
234

235 dgamma = s *gamma; % Take the Laplace transforms
236 ddgamma = s ^2*gamma;
237 dwu = s *wu;
238 dwv = s *wv ;
239 dww = s *ww;
240

241 gamma = simplify ( solve ( subs ( ddgamma_lin ) − s ^2*gamma == 0 ,gamma) ) ; % solve for
gamma

242

243 sdH = simpli fy ( subs ( subs ( dH_lin ) ) ) ; % F i l l in the Laplace transforms in the
Linearized moments

244 AA = l i n e a r i z a t i o n (sdH, wbn_b , [ ] , wbn_b0) ; % Linearize again
245 dH_reduced = AA * wbn_b ;
246

247 eq1 = dH_reduced − [Mu;Mv;Mw] ; % Make equation : terms − M = 0
248 % Compute t r a n s f e r functions
249 Gsuu = comptf ( eq1 ,wu, 1 ,Mu, 1 ) ; Gsuv = comptf ( eq1 , wv, 2 ,Mu, 1 ) ; Gsuw = comptf ( eq1 ,ww

, 3 ,Mu, 1 ) ;
250 Gsvu = comptf ( eq1 ,wu, 1 ,Mv, 2 ) ; Gsvv = comptf ( eq1 , wv, 2 ,Mv, 2 ) ; Gsvw = comptf ( eq1 ,ww

, 3 ,Mv, 2 ) ;
251 Gswu = comptf ( eq1 ,wu, 1 ,Mw, 3 ) ; Gswv = comptf ( eq1 , wv, 2 ,Mw, 3 ) ; Gsww = NaN;
252

253 % clear gamma dgamma ddgamma dws dwt dwg
254 % syms gamma dgamma ddgamma
255 % % Comute t r a n s m i s s a b i l i t y
256 % eq2 = gamma2 − gamma;
257 % H1 = comptf ( eq2 ,wu, 1 ,gamma, 1 ) ;
258 % H2 = comptf ( eq2 , wv, 2 ,gamma, 1 ) ;
259 %
260 % H3 = comptf ( eq2 ,ww, 3 ,gamma, 1 ) ;
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261 % Hs = [H1 H2 H3 ] ;
262 %
263 % Hs . InputName = ’Moment’ ;
264 % Hs . OutputName = ’omega ’ ;
265 % H = bodeplot (Hs, PP) ;
266 % setoptions (H, ’ FreqUnits ’ , ’ Hz’ , ’ PhaseVisible ’ , ’ on ’ ) ;
267 % hold on
268 % grid on
269

270 end
271

272 end
273

274 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
275 %% Load Optimal Parameters
276 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
277 LoadPar = yes_or_no ( ’Load the best paramters ? ’ ) ;
278 i f ( LoadPar )
279 close a l l
280 % addpath ( ’ Par_Scissored ’ )
281 i t = 100;
282 n_par = 5 ;
283 x = zeros ( n_par , i t ) ;
284 resnorm = ones ( 1 , i t ) *1e10 ;
285 x0 = zeros ( n_par , i t ) ;
286

287 % Load r e s u l t s of the optimizations
288 for j = 1 : i t
289

290 parameter ( j ) = load ( [ ’ opt_parameter_ ’ num2str ( j ) ’ . mat ’ ] , ’ x ’ , ’ resnorm ’ , ’Gs ’ , ’ x0 ’ ) ;
291 x ( : , j ) = parameter ( j ) . x ;
292 resnorm ( j ) = parameter ( j ) . resnorm ;
293 Gs ( : , j ) = parameter ( j ) . Gs ;
294 x0 ( : , j ) = parameter ( j ) . x0 ;
295

296 end
297

298 % Find the best parameters , Gs and i n i t i a l guess
299 [~ , col ] = find (min( resnorm ) == resnorm ) ;
300 col = max( col ) ;
301 x_best = x ( : , col ) ;
302 Gs = Gs ( : , col ) ;
303 x0 = x0 ( : , col ) ;
304 % k = x_best ( 1 ) ; b = x_best ( 2 ) ; Iws = x_best ( 3 ) ; Iwt = x_best ( 4 ) ; Igs = x_best ( 5 ) ;

I g t = Igs ; Igg = x_best ( 6 ) ; gammaS = x_best ( 7 ) ;
305 k = x_best ( 1 ) ; b = x_best ( 2 ) ; Iws = x_best ( 3 ) ; Igg = x_best ( 4 ) ; Iwt = 1/2* Iws ; Igs =

1/2* Igg ; I g t = Igs ; gammaS = x_best ( 5 ) ;
306

307 gamma0 = gammaS;
308

309 sortRes = sort ( resnorm , ’ descend ’ ) ;
310

311 % Create desired t r a n s f e r function
312 kp = 100;
313 kd = 32;
314 Jdes = 0 . 5 ; bdes = 5 ; kdes= 30;
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315 % TFdes = syms2tf ( +( kp+kd* s ) / s ) ;
316 TFdes = syms2tf (−(bdes* s ) / s ) ;
317 % Find the poles , zeros , and the natural frequency
318 Gpole = pole (Gs) ;
319 [wn, zeta ] = damp(Gs) ;
320 Gzero = zero (Gs) ;
321

322 % wuS = 0 . 1 ; wvS = 0 . 1 ; wwS = 0 . 1 ;
323 % omega = 2513;
324 % GsvvTemp = syms2tf ( subs ( Gsvv ) ) ;
325

326 BodeGraph(Gs , TFdes )
327

328 % Plot the Resnorm in descending order
329 % f i g u r e ( )
330 % semilogy ( sortRes , ’mo’ , . . .
331 % ’ LineWidth ’ , 1 . 5 , . . .
332 % ’ MarkerEdgeColor ’ , ’ k ’ , . . .
333 % ’ MarkerFaceColor ’ , [ . 4 9 1 . 6 3 ] , . . .
334 % ’ MarkerSize ’ , 1 0 )
335 % t i t l e ( ’ Optimizations Sorted by Resnorm ’ )
336 % ylabel ( ’ resnorm ’ )
337 % xlabel ( ’Number of I te r a t i o ns ’ )
338 end
339

340 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
341 %% Optimization of the Transfer Functions
342 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
343 i f LoadPar == 0
344 OptTF = yes_or_no ( ’ Optimize the Transfer Function ? ’ ) ; % function by Daniel Lemus
345 i f (OptTF)
346

347 % F i l l in unoptimizable parameters
348 I g t = Igs ;
349 Igs = 1/2* Igg ;
350 Iwt = 1/2* Iws ;
351 wuS = 0 ; wvS = 0 ; wwS = 0 ;
352 omega = 1500;
353

354 % Create desired t r a n s f e r function
355 kp = 100;
356 kd = 32;
357 Jdes = 0 . 5 ; bdes = 5 ; kdes= 30;
358

359 % Weights for the Cost function
360 w1 = 100; %best 100
361 w2 = 1 ;
362 % Parameters that w i l l be optimized
363 par = [ k b Iws Igg gammaS] ;
364 % Create frequency vector in Hz
365 wHz = logspace (−2 ,1 ,2e2 ) ;
366 % Create frequency vector in rad/ s
367 w = wHz*2* pi ;
368 num_opt = 100;
369

370 TFdes = −(Jdes * s^2 + bdes* s + kdes ) / s ;
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371 % TFdes= +(kp+kd* s ) / s ;
372

373 s = 1 j *w; %
substitude s for jw

374 Gsn = subs ( subs ( Gsvv ) ) ;
375 TFdes1 = subs ( subs ( TFdes ) ) ;
376 C1 = w1* ( imag ( TFdes1−Gsn) ) ; % Phase

part of costfunction
377 C2 = w2* ( r e a l ( TFdes1−Gsn) ) ; %

Magnitude part of costfunction
378 C = C1+C2 ;
379 errorfun = matlabFunction (C, ’ Vars ’ , { par } ) ;
380

381

382 for j = 1 :num_opt
383 [ x , resnorm , Gs , ~ , x0 ] = optimization ( Gsvv , TFdes , errorfun ) ;
384 save ( [ ’ opt_parameter_ ’ num2str ( j ) ’ . mat ’ ] , ’ x ’ , ’ resnorm ’ , ’Gs ’ , ’ x0 ’ )
385 end
386

387

388 clear s
389 syms s
390

391

392

393 load gong . mat ;
394 sound ( y , Fs ) ;
395

396

397 else
398 % k = 3 0 . 2 0 ; b = 2 0 . 1 3 ; omega = 2.513e+03; Iws = 0.1238; Iwt = 0.0116; Igg = 0 . 1 5 3 ;

gammaS = −1.891; gamma0 = gammaS; Igs = 0 . 0 0 1 ; I g t = 0 . 0 0 1 ;
399 end
400 end
401

402 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
403 %% F i l l in Parameters and compute Frequency response
404 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
405 i f ( CompAllTFs )
406 SubsTF = yes_or_no ( ’ F i l l in parameters in TFs and compute Freq Response ? ’ ) ;
407

408 i f ( SubsTF )
409 wuS = 0 . 1 ; wvS = 0 . 1 ; wwS = 0 . 1 ;
410 Gsuu = zpk ( syms2tf ( subs (Gsuu) ) ) ; Gsvu = zpk ( syms2tf ( subs ( Gsvu ) ) ) ; Gswu = zpk (

syms2tf ( subs (Gswu) ) ) ;
411 Gsuv = zpk ( syms2tf ( subs ( Gsuv ) ) ) ; Gsvv = zpk ( syms2tf ( subs ( Gsvv ) ) ) ; Gswv = zpk (

syms2tf ( subs (Gswv) ) ) ;
412 Gsuw = zpk ( syms2tf ( subs (Gsuw) ) ) ; Gsvw = zpk ( syms2tf ( subs (Gsvw) ) ) ; Gsww = zpk (

syms2tf ( subs ( 0 ) ) ) ;
413

414 Gstot = [Gsuu Gsvu Gswu; Gsuv Gsvv Gswv ; Gsuw Gsvw Gsww] ;
415 Gstot . InputName = ’omega ’ ;
416 Gstot . OutputName = ’Moment ’ ;
417 f i g u r e ( )
418 bodeplot ( Gstot , PP)
419 fh = gcf ;
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420 lh = f i n d a l l ( fh , ’Type ’ , ’ Line ’ ) ;
421 arrayfun (@( x ) set ( x , ’ LineWidth ’ , 2 ) , lh )
422

423 end
424 end
425

426 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
427 %% Comp Time Response from Gait Data
428 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
429 CompTimeResp = yes_or_no ( ’Compute time response from g a i t data ? ’ ) ;
430 i f (CompTimeResp)
431 close a l l
432 clear s dwu dwv dww gamma dgamma ddgamma wu wv ww
433 syms dwu dwv dww gamma dgamma ddgamma t time wu wv ww
434

435

436 FrameRate = 100; % per second
437 h = 1/FrameRate ; % time step
438 h2 = 0.01*h ; % time step for interpolat ion
439

440 omega = 1500;
441

442 ddgamma_eq = subs (ddgamma_eq) ;
443 M_b_opt = subs ( subs (MBODY) ) ;
444

445 Condition = 1 ;
446

447 % Load g a i t data
448 addpath ( ’ Matlab Motion Data ’ )
449 AngVel = load ( [ ’ AngVel ’ num2str ( Condition ) ’ . t x t ’ ] ) ;
450 AngAcc_temp = load ( [ ’AngAcc ’ num2str ( Condition ) ’ . t x t ’ ] ) ;
451 AngAcc = zeros ( length ( AngVel ) , 3 ) ;
452 AngAcc ( 2 : end−1 , : ) = AngAcc_temp ;
453 TrunkRot = wrapTo360 ( load ( [ ’ TrunkRot ’ num2str ( Condition ) ’ . t x t ’ ] ) ) ;
454 EventData = xlsread ( [ ’ Events ’ num2str ( Condition ) ’ . x l s x ’ ] ) ;
455 [LFO, LFS ,RFO, RFS , TimePoint ] = RecEvent ( EventData ) ;
456 t = ( 0 : length ( AngVel )−1) ’ *h ;
457 % t2= (h : length ( AngAcc ) ) ’ *h ;
458

459 % Create function of the g a i t data
460 % omega_func = @( t _ i ) interp1 ( t , AngVel , t _ i ) ;
461 % wv_func = @( t _ i ) interp1 ( t , AngVel ( : , 2 ) , t _ i ) ;
462 % wu_func = @( t _ i ) interp1 ( t , AngVel ( : , 1 ) , t _ i ) ;
463 % dww_func = @( t _ i ) interp1 ( t , AngAcc ( : , 3 ) , t _ i ) ;
464

465 % Create function of the moments and ddgamma
466 Mcmg_sc = matlabFunction (M_b_opt , ’ f i l e ’ , ’Mcmg_sc ’ ) ;
467 ddgamma_fun_sc = matlabFunction (ddgamma_eq, ’ f i l e ’ , ’ddgamma_fun_sc ’ ) ;
468

469 % % Create function handle and use ode15s for numerical integrat ion
470 % ddgamma_func = @( t , y ) ddgamma_fun_b( y ( 2 ) ,dww_func( t ) , y ( 1 ) , wu_func ( t ) , wv_func ( t ) ) ;
471 % [ t , y ] = ode15s (ddgamma_func, [ 0 3 ] , [ 0 1 ] ) ;
472

473 wu1 = AngVel ( : , 1 ) ;
474

475 dwu1 = AngAcc ( : , 1 ) ;
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476 dwv1 = AngAcc ( : , 2 ) ;
477 dww1 = AngAcc ( : , 3 ) ;
478

479 Time = length (wu1) *h ;
480 % Interpolate to improve integrat ion
481 wu1 = interp1 ( 0 : h : ( Time−h) ,wu1, 0 : h2 : ( Time−h2 ) , ’PCHIP ’ ) ;
482 wv1 = AngVel ( : , 2 ) ;
483 wv1 = interp1 ( 0 : h : ( Time−h) ,wv1 , 0 : h2 : ( Time−h2 ) , ’PCHIP ’ ) ;
484 ww1 = AngVel ( : , 3 ) ;
485 ww1 = interp1 ( 0 : h : ( Time−h) ,ww1, 0 : h2 : ( Time−h2 ) , ’PCHIP ’ ) ;
486

487 dwu1 = interp1 ( 0 : h : ( Time−h) ,dwu1, 0 : h2 : ( Time−h2 ) , ’PCHIP ’ ) ;
488 dwv1 = interp1 ( 0 : h : ( Time−h) ,dwv1 , 0 : h2 : ( Time−h2 ) , ’PCHIP ’ ) ;
489 dww1 = interp1 ( 0 : h : ( Time−h) ,dww1, 0 : h2 : ( Time−h2 ) , ’PCHIP ’ ) ;
490

491 TrunkRot = interp1 ( 0 : h : ( Time) , TrunkRot , 0 : h2 : ( Time) , ’PCHIP ’ ) ;
492 % Create i n i t i a l conditions
493 w = zeros ( 3 , length (wu1) ) ;
494 dw = zeros ( 3 , length (wu1) ) ;
495 wu = wu1( 1 , 1 ) ; wv = wv1( 1 , 1 ) ; ww = ww1( 1 , 1 ) ;
496 dwu= dwu1( 1 , 1 ) ; dwv= dwv1( 1 , 1 ) ; dww= dww1( 1 , 1 ) ;
497 ddgamma1 = zeros ( 1 , length (wu1) ) ; dgamma1 = zeros ( 1 , length (wu1) ) ; gamma1 = zeros

( 1 , length (wu1) ) ;
498 gamma = gammaS;
499 dgamma = 0 ;
500 i n i t i a l _ c o n d i t i o n s = [wu; wv ;ww;gamma;dgamma] ;
501 M_b_opt1 = zeros ( 3 , length (wu1) ) ;
502

503 ddgamma1( 1 , 1 ) = ddgamma_fun_sc(dgamma,gamma,wu, wv) ;
504 ddgamma = ddgamma1( 1 , 1 ) ;
505 M_b_opt1 ( 1 : 3 , 1 ) = Mcmg_sc(ddgamma,dgamma,dwu, dwv,gamma,wu, wv,ww) ;
506 gamma1( 1 , 1 ) = gamma;
507 dgamma1( 1 , 1 ) = dgamma;
508

509 % Numerical integrat ion
510 for i = 2 : length (wv1)
511 nC = rotx ( ( TrunkRot ( i , 1 ) ) ) * roty ( ( TrunkRot ( i , 2 ) ) ) * rotz ( ( TrunkRot ( i , 3 ) +pi /2) ) ;
512 w( 1 : 3 , i ) = nC* [wu1( i ) ; wv1( i ) ;ww1( i ) ] ;
513 dw( 1 : 3 , i ) = nC* [dwu1( i ) ; dwv1( i ) ;dww1( i ) ] ;
514 wu = w( 1 , i ) ; wv = w( 2 , i ) ; ww = w( 3 , i ) ;
515 dwu= dw( 1 , i ) ; dwv= dw( 2 , i ) ; dww= dw( 3 , i ) ;
516 ddgamma1( i ) = ddgamma_fun_sc(dgamma,gamma,wu, wv) ;
517 ddgamma = ddgamma1( i ) ;
518 dgamma1( i ) = dgamma1( i −1) + double (ddgamma1( i ) *h2 ) ;
519 dgamma = dgamma1( i ) ;
520 gamma1( i ) = gamma1( i −1) + double (dgamma1( i ) *h2 + 0.5*ddgamma*h2^2) ;
521 gamma = gamma1( i ) ;
522

523 M_b_opt1 ( : , i ) = Mcmg_sc(ddgamma,dgamma,dwu, dwv,gamma,wu, wv,ww) ;
524

525 i f isnan (ddgamma) == 1
526 error ( ’ decrease time step ’ )
527 end
528

529 end
530
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531 % Plot Gait Data
532 GaitEvent = [LFO, LFS ,RFO, RFS ] ;
533 FirstEvent = find ( GaitEvent ( 1 , : ) == 0) ;
534 i f FirstEvent == 1
535 Tag1 = ’LFO ’ ;
536 Tag2 = ’LFS ’ ;
537 Tag3 = ’RFO ’ ;
538 Tag4 = ’RFS ’ ;
539 e l s e i f FirstEvent == 2
540 Tag1 = ’LFS ’ ;
541 Tag2 = ’RFO ’ ;
542 Tag3 = ’RFS ’ ;
543 Tag4 = ’LFO ’ ;
544 e l s e i f FirstEvent ==3
545 Tag1 = ’RFO ’ ;
546 Tag2 = ’RFS ’ ;
547 Tag3 = ’LFO ’ ;
548 Tag4 = ’LFS ’ ;
549 e l s e i f FirstEvent == 4
550 Tag1 = ’RFS ’ ;
551 Tag2 = ’LFO ’ ;
552 Tag3 = ’LFS ’ ;
553 Tag4 = ’RFO ’ ;
554 end
555 Tag5 = Tag1 ;
556 Tag6 = Tag2 ;
557 Tag7 = Tag3 ;
558 i f TimePoint ( 1 ) < 0.1
559 Tag1 = ’ ’ ;
560 end
561

562

563 f i g u r e ( )
564 subplot ( 4 , 1 , 1 )
565 plot ( 0 : h2 : ( Time−h2 ) ,M_b_opt1 ( 1 , : ) , ’ Linewidth ’ ,2 , ’ L inestyle ’ , ’− ’ )
566 hold on
567 plot ( 0 : h2 : ( Time−h2 ) ,M_b_opt1 ( 2 , : ) , ’ Linewidth ’ ,2 , ’ L inestyle ’ , ’−. ’ )
568 plot ( 0 : h2 : ( Time−h2 ) ,M_b_opt1 ( 3 , : ) , ’ Linewidth ’ ,2 , ’ L inestyle ’ , ’ : ’ )
569 ylabel ( ’Moment in Nm’ )
570 xlim ( [ 0 . 1 Time(end) ] )
571 ylim ( [ min(M_b_opt1 ( : ) ) max(M_b_opt1 ( : ) ) ] )
572 vl ine ( TimePoint ( 1 ) , ’ k ’ ) ;
573 t e x t ( TimePoint ( 1 ) ,max(M_b_opt1 ( : ) ) , Tag1 , ’ HorizontalAlignment ’ , ’ center ’ , ’

VerticalAlignment ’ , ’bottom ’ , ’ FontSize ’ ,11)
574 vl ine ( TimePoint ( 2 ) , ’ k ’ ) ;
575 t e x t ( TimePoint ( 2 ) ,max(M_b_opt1 ( : ) ) , Tag2 , ’ HorizontalAlignment ’ , ’ center ’ , ’

VerticalAlignment ’ , ’bottom ’ , ’ FontSize ’ ,11)
576 vl ine ( TimePoint ( 3 ) , ’ k ’ ) ;
577 t e x t ( TimePoint ( 3 ) ,max(M_b_opt1 ( : ) ) , Tag3 , ’ HorizontalAlignment ’ , ’ center ’ , ’

VerticalAlignment ’ , ’bottom ’ , ’ FontSize ’ ,11)
578 vl ine ( TimePoint ( 4 ) , ’ k ’ ) ;
579 t e x t ( TimePoint ( 4 ) ,max(M_b_opt1 ( : ) ) , Tag4 , ’ HorizontalAlignment ’ , ’ center ’ , ’

VerticalAlignment ’ , ’bottom ’ , ’ FontSize ’ ,11)
580 vl ine ( TimePoint ( 5 ) , ’ k ’ ) ;
581 t e x t ( TimePoint ( 5 ) ,max(M_b_opt1 ( : ) ) , Tag5 , ’ HorizontalAlignment ’ , ’ center ’ , ’

VerticalAlignment ’ , ’bottom ’ , ’ FontSize ’ ,11)
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582 vl ine ( TimePoint ( 6 ) , ’ k ’ ) ;
583 t e x t ( TimePoint ( 6 ) ,max(M_b_opt1 ( : ) ) , Tag6 , ’ HorizontalAlignment ’ , ’ center ’ , ’

VerticalAlignment ’ , ’bottom ’ , ’ FontSize ’ ,11)
584 vl ine ( TimePoint ( 7 ) , ’ k ’ ) ;
585 t e x t ( TimePoint ( 7 ) ,max(M_b_opt1 ( : ) ) , Tag7 , ’ HorizontalAlignment ’ , ’ center ’ , ’

VerticalAlignment ’ , ’bottom ’ , ’ FontSize ’ ,11)
586 legend ( ’$M_u$ ’ , ’$M_v$ ’ , ’$M_w$ ’ , ’ Location ’ , ’ best ’ ) ;
587

588 subplot ( 4 , 1 , 2 )
589 plot ( 0 : h2 : ( Time−h2 ) ,ddgamma1, ’ Linewidth ’ , 1 . 5 ) ;
590 ylabel ( ’ $\ddot { \gamma} $ in rad/ s$ ^{2} $ ’ )
591 xlim ( [ 0 . 1 Time(end) ] )
592 ylim ( [mean(ddgamma1) −2.5* std (ddgamma1) mean(ddgamma1) +2.5* std (ddgamma1) ] )
593 vl ine ( TimePoint ( 1 ) , ’ k ’ ) ;
594 vl ine ( TimePoint ( 2 ) , ’ k ’ ) ;
595 vl ine ( TimePoint ( 3 ) , ’ k ’ ) ;
596 vl ine ( TimePoint ( 4 ) , ’ k ’ ) ;
597 vl ine ( TimePoint ( 5 ) , ’ k ’ ) ;
598 vl ine ( TimePoint ( 6 ) , ’ k ’ ) ;
599 vl ine ( TimePoint ( 7 ) , ’ k ’ ) ;
600

601 subplot ( 4 , 1 , 3 )
602 plot ( 0 : h2 : ( Time−h2 ) ,dgamma1, ’ Linewidth ’ , 1 . 5 ) ;
603 ylabel ( ’ $\dot { \gamma} $ in rad/ s ’ )
604 % ylim ( [mean(dgamma1) −1.5* std (dgamma1) mean(dgamma1) +1.5* std (dgamma1) ] )
605 xlim ( [ 0 . 1 Time(end) ] )
606 ylim ( [ min(dgamma1 ( : ) ) max(dgamma1 ( : ) ) ] )
607 vl ine ( TimePoint ( 1 ) , ’ k ’ ) ;
608 vl ine ( TimePoint ( 2 ) , ’ k ’ ) ;
609 vl ine ( TimePoint ( 3 ) , ’ k ’ ) ;
610 vl ine ( TimePoint ( 4 ) , ’ k ’ ) ;
611 vl ine ( TimePoint ( 5 ) , ’ k ’ ) ;
612 vl ine ( TimePoint ( 6 ) , ’ k ’ ) ;
613 vl ine ( TimePoint ( 7 ) , ’ k ’ ) ;
614

615 subplot ( 4 , 1 , 4 )
616 plot ( 0 : h2 : ( Time−h2 ) ,gamma1, ’ Linewidth ’ , 1 . 5 ) ;
617 ylabel ( ’ $ { \gamma} $ in rad ’ )
618 xlabel ( ’Time in s ’ )
619 xlim ( [ 0 . 1 Time(end) ] )
620 ylim ( [ min(gamma1 ( : ) ) −0.00000000001 max(gamma1 ( : ) ) +0.00000000001])
621 vl ine ( TimePoint ( 1 ) , ’ k ’ ) ;
622 vl ine ( TimePoint ( 2 ) , ’ k ’ ) ;
623 vl ine ( TimePoint ( 3 ) , ’ k ’ ) ;
624 vl ine ( TimePoint ( 4 ) , ’ k ’ ) ;
625 vl ine ( TimePoint ( 5 ) , ’ k ’ ) ;
626 vl ine ( TimePoint ( 6 ) , ’ k ’ ) ;
627 vl ine ( TimePoint ( 7 ) , ’ k ’ ) ;
628

629 s e t I n t e r p r e t e r ( gcf , ’ l a t e x ’ ) ;
630

631

632 % f i g u r e ( )
633 % plot ( TimePoint , [ LFO, LFS ,RFO, RFS ] , ’ x ’ , ’ MarkerSize ’ , 1 0 , ’ LineWidth ’ , 2 )
634 % hold on
635 % plot ( 0 : h2 : ( Time−h2 ) ,w, ’ Linewidth ’ , 2 )
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636 % legend ( ’LFO’ , ’ LFS ’ , ’RFO’ , ’ RFS ’ , ’wu’ , ’ wv’ , ’ww’ )
637 end
638

639 function [ x1 , resnorm , Gs , TFdes , x0 ] = optimization (Gs , TFdes , errorfun )
640 ub = [4500 , 3800 , 0.04 , 0.02 , 0 . 1 ] ; % Upper bounds
641

642 x0 = [ rand ( 1 ) *0.01 , rand ( 1 ) *0.001 , rand ( 1 ) *ub( 3 ) , rand ( 1 ) *ub( 4 ) , rand ( 1 ) * pi + rand
( 1 ) *−pi ] ; % I n i t i a l guess

643

644 % XS = [4500 , 3800 , 0 . 3 , 0 . 3 , 0 ] ; % Upper
bounds

645 % x0 = [ rand ( 1 ) *0.01 , rand ( 1 ) *0.001 , rand ( 1 ) *XS ( 3 ) , rand ( 1 ) *XS ( 4 ) , rand ( 1 ) * pi +
rand ( 1 ) *−pi ] ; % I n i t i a l guess

646 %
647 % ub = [ inf , inf , inf , inf , 0 . 3 ] ;
648

649 lb = [0 , 0 , 0 , 0 , −0.3] ; % Lower
bounds

650

651 options = optimoptions ( @lsqnonlin , ’ Algorithm ’ , ’ trust−region−r e f l e c t i v e ’ ) ;
652 options . MaxFunctionEvaluations = 180000;
653 options . MaxIterations = 12000;
654 [ x1 , resnorm ] = lsqnonlin ( errorfun , x0 , lb , ub , options ) ; %

Optimization function
655 k = x1 ( 1 ) ; b = x1 ( 2 ) ; Iws = x1 ( 3 ) ; Igg = x1 ( 4 ) ; gammaS = x1 ( 5 ) ; Iwt = 1/2* Iws ; Igs =

1/2* Igg ; I g t = Igs ;
656

657

658

659 clear s
660 syms s
661 Gs = syms2tf ( subs (Gs) ) ;
662

663 end

E.3. Extra Functions
E.3.1. Linearization

1 function [A] = l i n e a r i z a t i o n ( f , x ,gamma,wbn)
2

3 gamma = gamma;
4 gamma0 = gamma;
5 dgamma = 0 ;
6 ddgamma = 0 ;
7 ws = wbn( 1 ) ;
8 wt = wbn( 2 ) ;
9 wg = wbn( 2 ) ;

10 wu = wbn( 1 ) ;
11 wv = wbn( 2 ) ;
12 ww = wbn( 3 ) ;
13 dws = 0 ;
14 dwt = 0 ;
15 dwg = 0 ;
16 dwu = 0 ;
17 dwv = 0 ;
18 dww = 0 ;
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19

20 A = jacobian ( f , x ) ;
21 A = subs ( subs (A) ) ;
22

23

24 end

E.3.2. Compute Transfer Function

1 function sys = comptf ( fun , anguler_velocity , angular_axis ,Moment, Moment_axis )
2 eq1 = fun ( Moment_axis ) ;
3 gamma = 0 ;
4 i f angular_axis == 1
5 wt = 0 ;
6 wg = 0 ;
7

8 wv = 0 ;
9 ww = 0 ;

10 e l s e i f angular_axis == 2
11 ws = 0 ;
12 wg = 0 ;
13

14 wu = 0 ;
15 ww = 0 ;
16 e l s e i f angular_axis == 3
17 ws = 0 ;
18 wt = 0 ;
19

20 wu = 0 ;
21 wv = 0 ;
22 end
23

24 i f Moment_axis == 1
25 Mt = 0 ;
26 Mg = 0 ;
27

28 Mv = 0 ;
29 Mw = 0 ;
30 e l s e i f Moment_axis == 2
31 Ms = 0 ;
32 Mg = 0 ;
33

34 Mu = 0 ;
35 Mw = 0 ;
36 e l s e i f Moment_axis == 3
37 Ms = 0 ;
38 Mt = 0 ;
39

40 Mu = 0 ;
41 Mv = 0 ;
42 end
43 eq1 = subs ( subs ( eq1 ) ) ;
44

45 w = solve ( eq1 == 0 , anguler_velocity ) ;
46 M_w = Moment/w;
47 M_w = simpli fy ( subs (M_w) ) ;
48 sys = M_w;
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49

50 % i f numel( symvar (M_w) ) == 0
51 % sys = t f ( double (M_w) , 1 ) ;
52 % end
53 %
54 % i f numel( symvar (M_w) ) == 1
55 % sys = syms2tf (M_w) ;
56 % end
57 % i f numel( symvar (M_w) ) > 1
58 % sys = 0 ;
59 % end
60

61

62 end

E.3.3. Bode Plots

1 function BodeGraph(Gs , TFdes )
2 % Makes a bode plot of two t r a n s f e r function . For the t r a n s f e r function Gs
3 % the poles and zeros w i l l be marked .
4

5

6 Gpole = pole (Gs) ;
7 [wn, ~ ] = damp(Gs) ;
8 Gzero = zero (Gs) ;
9

10 w = logspace (−4 ,6 ,700000) ;
11

12 w = sort ( [w 0 . 5 ] , ’ ascend ’ ) ;
13 SkipPole = 0 ;
14 i f isempty ( Gpole ) == 1
15 SkipPole = 1 ;
16 [~ , wixZ1 ] = min( abs (w−abs ( Gzero ( 1 ) ) ) ) ;
17

18 e l s e i f i s r e a l ( Gpole ) == 1
19

20 [~ , wixP1 ] = min( abs (w−abs ( Gpole ( 1 ) ) ) ) ;
21 [~ , wixP2 ] = min( abs (w−abs ( Gpole ( 2 ) ) ) ) ;
22 [~ , wixZ1 ] = min( abs (w−abs ( Gzero ( 1 ) ) ) ) ;
23 [~ , wixZ2 ] = min( abs (w−abs ( Gzero ( 2 ) ) ) ) ;
24 [~ , wixZ3 ] = min( abs (w−abs ( Gzero ( 3 ) ) ) ) ;
25 else
26 [~ , wixP1 ] = min( abs (w−abs (wn( 1 ) ) ) ) ;
27 [~ , wixP2 ] = min( abs (w−abs (wn( 2 ) ) ) ) ;
28 [~ , wixZ1 ] = min( abs (w−abs ( Gzero ( 1 ) ) ) ) ;
29 [~ , wixZ2 ] = min( abs (w−abs ( Gzero ( 2 ) ) ) ) ;
30 [~ , wixZ3 ] = min( abs (w−abs ( Gzero ( 3 ) ) ) ) ;
31 end
32

33

34

35 [magGs, phaseGs ] = bode (Gs ,w) ;
36 phaseGs = wrapTo180 ( phaseGs ) ;
37 [magTFdes , phaseTFdes ] = bode ( TFdes ,w) ;
38 phaseTFdes = wrapTo180 ( phaseTFdes ) ;
39

40
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41 f i g u r e ( 1 )
42 subplot ( 2 , 1 , 1 )
43

44 % Magnitude
45 loglog (w, squeeze (magGs) , ’b ’ , ’ Linewidth ’ ,2 , ’ L inestyle ’ , ’− ’ )
46 hold on
47 loglog (w, squeeze (magTFdes) , ’ r ’ , ’ L inestyle ’ , ’−− ’ , ’ Linewidth ’ , 2 )
48 ylim ([10 e−2 10e3 ] ) ;
49

50 % Magnitude Poles
51 i f SkipPole ==1
52 e l s e i f wixP1 == wixP2
53 loglog (w( wixP1 ) , magGs( 1 , 1 , wixP1 ) , ’ x ’ , ’ MarkerSize ’ ,15 , ’ LineWidth ’ ,2 , ’ Color ’ , ’ blue ’ )
54 loglog (w( wixP2 ) , magGs( 1 , 1 , wixP2 ) , ’+ ’ , ’ MarkerSize ’ ,15 , ’ LineWidth ’ ,2 , ’ Color ’ , ’ blue ’ )
55 t e x t (w( wixP2 ) , (max(magGs) *1e2 ) , [ ’p_ {1 ,2}= ’ num2str ( r e a l ( Gpole ( 2 ) ) , 3 ) ’ \pm’ num2str (

imag ( Gpole ( 2 ) ) , 3 ) ’ i ’ ] , ’ HorizontalAlignment ’ , ’ l e f t ’ , ’ VerticalAlignment ’ , ’bottom
’ , ’ FontSize ’ ,11)

56

57 else
58 <<<<<<< HEAD: Matlab/ Necessary_functions /BodeGraph .m
59 t e x t (w( wixP1 ) , (max(magGs) *1e2 ) , [ ’ p_1= ’ num2str ( Gpole ( 1 ) , 3 ) ’ ’ ] , ’ HorizontalAlignment

’ , ’ center ’ , ’ VerticalAlignment ’ , ’bottom ’ , ’ FontSize ’ ,11)
60 t e x t (w( wixP2 ) , (max(magGs) *1e2 ) , [ ’ p_2= ’ num2str ( Gpole ( 2 ) , 3 ) ’ ’ ] , ’ HorizontalAlignment

’ , ’ l e f t ’ , ’ VerticalAlignment ’ , ’bottom ’ , ’ FontSize ’ ,11)
61 =======
62 t e x t (w( wixP1 ) , (max(magGs) *1e3 ) , [ ’ p_1= ’ num2str ( Gpole ( 1 ) , 3 ) ’ ’ ] , ’ HorizontalAlignment

’ , ’ l e f t ’ , ’ VerticalAlignment ’ , ’bottom ’ , ’ FontSize ’ ,11)
63 t e x t (w( wixP2 ) , (max(magGs) *1e3 ) , [ ’ p_2= ’ num2str ( Gpole ( 2 ) , 3 ) ’ ’ ] , ’ HorizontalAlignment

’ , ’ r i g h t ’ , ’ VerticalAlignment ’ , ’bottom ’ , ’ FontSize ’ ,11)
64 >>>>>>> a87887ad2f846ad954ea31c4f8e904e62f822533 : Matlab/BodeGraph .m
65 loglog (w( wixP1 ) , magGs( 1 , 1 , wixP1 ) , ’ x ’ , ’ MarkerSize ’ ,15 , ’ LineWidth ’ ,2 , ’ Color ’ , ’ blue ’ )
66 loglog (w( wixP2 ) , magGs( 1 , 1 , wixP2 ) , ’ x ’ , ’ MarkerSize ’ ,15 , ’ LineWidth ’ ,2 , ’ Color ’ , ’ blue ’ )
67

68 end
69

70 % Magnitude Zeros
71 i f Gzero ( 1 ) > 0
72 loglog (w( wixZ1 ) , magGs( 1 , 1 , wixZ1 ) , ’o ’ , ’ MarkerSize ’ ,16 , ’ LineWidth ’ ,2 , ’ Color ’ , ’ blue ’ )
73 end
74 i f wixZ1 == wixZ2
75 loglog (w( wixZ2 ) , magGs( 1 , 1 , wixZ2 ) , ’o ’ , ’ MarkerSize ’ ,10 , ’ LineWidth ’ ,2 , ’ Color ’ , ’ blue ’ )
76 <<<<<<< HEAD: Matlab/ Necessary_functions /BodeGraph .m
77 t e x t (w( wixZ2 ) ,magGs( 1 , 1 , wixZ2 ) *1000000 ,[ ’ z_ {1 ,2}= ’ num2str ( r e a l ( Gzero ( 2 ) ) , 3 ) ’ \pm’

num2str ( imag ( Gzero ( 2 ) ) , 3 ) ’ i ’ ] , ’ HorizontalAlignment ’ , ’ center ’ , ’
VerticalAlignment ’ , ’bottom ’ , ’ FontSize ’ ,11)

78 loglog (w( wixZ3 ) , magGs( 1 , 1 , wixZ3 ) , ’o ’ , ’ MarkerSize ’ ,16 , ’ LineWidth ’ ,2 , ’ Color ’ , ’ blue ’ )
79 t e x t (w( wixZ3 ) ,magGs( 1 , 1 , wixZ2 ) *1000000 ,[ ’ z_3= ’ num2str ( Gzero ( 3 ) , 3 ) ’ ’ ] , ’

HorizontalAlignment ’ , ’ l e f t ’ , ’ VerticalAlignment ’ , ’bottom ’ , ’ FontSize ’ ,11)
80

81 e l s e i f wixZ2 == wixZ3
82 % t e x t (w( wixZ1 ) ,magGs( 1 , 1 , wixZ2 ) *1000000 ,[ ’ z_1 = ’ num2str ( Gzero ( 1 ) , 3 ) ’ ’ ] , ’

HorizontalAlignment ’ , ’ center ’ , ’ VerticalAlignment ’ , ’ middle ’ , ’ FontSize ’ , 1 1 )
83 loglog (w( wixZ2 ) , magGs( 1 , 1 , wixZ2 ) , ’o ’ , ’ MarkerSize ’ ,10 , ’ LineWidth ’ ,2 , ’ Color ’ , ’ blue ’ )
84 t e x t (w( wixZ2 ) ,magGs( 1 , 1 , wixZ2 ) *1000000 ,[ ’ z_ {2 ,3}= ’ num2str ( r e a l ( Gzero ( 2 ) ) , 3 ) ’ \pm’

num2str ( imag ( Gzero ( 2 ) ) , 3 ) ’ i ’ ] , ’ HorizontalAlignment ’ , ’ center ’ , ’
VerticalAlignment ’ , ’bottom ’ , ’ FontSize ’ ,11)
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85 loglog (w( wixZ3 ) , magGs( 1 , 1 , wixZ3 ) , ’o ’ , ’ MarkerSize ’ ,16 , ’ LineWidth ’ ,2 , ’ Color ’ , ’ blue ’ )
86

87 e l s e i f wixZ1 == wixZ2 && wixZ2 == wixZ3
88 % t e x t (w( wixZ1 ) ,magGs( 1 , 1 , wixZ2 ) *1000000 ,[ ’ z_1 = ’ num2str ( Gzero ( 1 ) , 3 ) ’ ’ ] , ’

HorizontalAlignment ’ , ’ center ’ , ’ VerticalAlignment ’ , ’ top ’ , ’ FontSize ’ , 1 1 )
89 loglog (w( wixZ2 ) , magGs( 1 , 1 , wixZ2 ) , ’o ’ , ’ MarkerSize ’ ,10 , ’ LineWidth ’ ,2 , ’ Color ’ , ’ blue ’ )
90 t e x t (w( wixZ2 ) ,magGs( 1 , 1 , wixZ2 ) *1000000 ,[ ’ z_ {2 ,3}= ’ num2str ( r e a l ( Gzero ( 2 ) ) , 3 ) ’ \pm’

num2str ( imag ( Gzero ( 2 ) ) , 3 ) ’ i ’ ] , ’ HorizontalAlignment ’ , ’ center ’ , ’
VerticalAlignment ’ , ’bottom ’ , ’ FontSize ’ ,11)

91 =======
92 t e x t (w( wixZ2 ) , (min(magGs) *0.000001) , [ ’ z_ {1 ,2}= ’ num2str ( r e a l ( Gzero ( 2 ) ) , 3 ) ’ \pm’

num2str ( imag ( Gzero ( 2 ) ) , 3 ) ’ i ’ ] , ’ HorizontalAlignment ’ , ’ center ’ , ’
VerticalAlignment ’ , ’bottom ’ , ’ FontSize ’ ,11)

93 loglog (w( wixZ3 ) , magGs( 1 , 1 , wixZ3 ) , ’o ’ , ’ MarkerSize ’ ,16 , ’ LineWidth ’ ,2 , ’ Color ’ , ’ blue ’ )
94 t e x t (w( wixZ3 ) , (min(magGs) *0.000001) , [ ’ z_3= ’ num2str ( Gzero ( 3 ) , 3 ) ’ ’ ] , ’

HorizontalAlignment ’ , ’ l e f t ’ , ’ VerticalAlignment ’ , ’bottom ’ , ’ FontSize ’ ,11)
95

96 e l s e i f wixZ2 == wixZ3
97 t e x t (w( wixZ1 ) , (min(magGs) *0.000001) , [ ’ z_1= ’ num2str ( Gzero ( 1 ) , 3 ) ’ ’ ] , ’

HorizontalAlignment ’ , ’ center ’ , ’ VerticalAlignment ’ , ’ middle ’ , ’ FontSize ’ ,11)
98 loglog (w( wixZ2 ) , magGs( 1 , 1 , wixZ2 ) , ’o ’ , ’ MarkerSize ’ ,10 , ’ LineWidth ’ ,2 , ’ Color ’ , ’ blue ’ )
99 t e x t (w( wixZ2 ) , (min(magGs) *0.000001) , [ ’ z_ {2 ,3}= ’ num2str ( r e a l ( Gzero ( 2 ) ) , 3 ) ’ \pm’

num2str ( imag ( Gzero ( 2 ) ) , 3 ) ’ i ’ ] , ’ HorizontalAlignment ’ , ’ center ’ , ’
VerticalAlignment ’ , ’bottom ’ , ’ FontSize ’ ,11)

100 loglog (w( wixZ3 ) , magGs( 1 , 1 , wixZ3 ) , ’o ’ , ’ MarkerSize ’ ,16 , ’ LineWidth ’ ,2 , ’ Color ’ , ’ blue ’ )
101

102 e l s e i f wixZ1 == wixZ2 && wixZ2 == wixZ3
103 t e x t (w( wixZ1 ) , (min(magGs) *0.000001) , [ ’ z_1= ’ num2str ( Gzero ( 1 ) , 3 ) ’ ’ ] , ’

HorizontalAlignment ’ , ’ center ’ , ’ VerticalAlignment ’ , ’ top ’ , ’ FontSize ’ ,11)
104 loglog (w( wixZ2 ) , magGs( 1 , 1 , wixZ2 ) , ’o ’ , ’ MarkerSize ’ ,10 , ’ LineWidth ’ ,2 , ’ Color ’ , ’ blue ’ )
105 t e x t (w( wixZ2 ) , (min(magGs) *0.000001) , [ ’ z_ {2 ,3}= ’ num2str ( r e a l ( Gzero ( 2 ) ) , 3 ) ’ \pm’

num2str ( imag ( Gzero ( 2 ) ) , 3 ) ’ i ’ ] , ’ HorizontalAlignment ’ , ’ center ’ , ’
VerticalAlignment ’ , ’bottom ’ , ’ FontSize ’ ,11)

106 >>>>>>> a87887ad2f846ad954ea31c4f8e904e62f822533 : Matlab/BodeGraph .m
107 loglog (w( wixZ3 ) , magGs( 1 , 1 , wixZ3 ) , ’o ’ , ’ MarkerSize ’ ,20 , ’ LineWidth ’ ,2 , ’ Color ’ , ’ blue ’ )
108 e l s e i f wixZ1 == 1
109

110 loglog (w( wixZ2 ) , magGs( 1 , 1 , wixZ2 ) , ’o ’ , ’ MarkerSize ’ ,16 , ’ LineWidth ’ ,2 , ’ Color ’ , ’ blue ’ )
111 t e x t (w( wixZ2 ) ,magGs( 1 , 1 , wixZ2 ) *1000000 ,[ ’ z_2= ’ num2str ( Gzero ( 2 ) , 3 ) ’ ’ ] , ’

HorizontalAlignment ’ , ’ center ’ , ’ VerticalAlignment ’ , ’bottom ’ , ’ FontSize ’ ,11)
112

113 loglog (w( wixZ3 ) , magGs( 1 , 1 , wixZ3 ) , ’o ’ , ’ MarkerSize ’ ,16 , ’ LineWidth ’ ,2 , ’ Color ’ , ’ blue ’ )
114 t e x t (w( wixZ3 ) ,magGs( 1 , 1 , wixZ2 ) *1000000 ,[ ’ z_3= ’ num2str ( Gzero ( 3 ) , 3 ) ’ ’ ] , ’

HorizontalAlignment ’ , ’ center ’ , ’ VerticalAlignment ’ , ’bottom ’ , ’ FontSize ’ ,11)
115

116 else
117

118 loglog (w( wixZ2 ) , magGs( 1 , 1 , wixZ2 ) , ’o ’ , ’ MarkerSize ’ ,16 , ’ LineWidth ’ ,2 , ’ Color ’ , ’ blue ’ )
119 <<<<<<< HEAD: Matlab/ Necessary_functions /BodeGraph .m
120 t e x t (w( wixZ1 ) ,magGs( 1 , 1 , wixZ2 ) *1000000 ,[ ’ z_1= ’ num2str ( Gzero ( 1 ) , 3 ) ’ ’ ] , ’

HorizontalAlignment ’ , ’ center ’ , ’ VerticalAlignment ’ , ’bottom ’ , ’ FontSize ’ ,11)
121 t e x t (w( wixZ2 ) ,magGs( 1 , 1 , wixZ2 ) *1000000 ,[ ’ z_2= ’ num2str ( Gzero ( 2 ) , 3 ) ’ ’ ] , ’

HorizontalAlignment ’ , ’ center ’ , ’ VerticalAlignment ’ , ’bottom ’ , ’ FontSize ’ ,11)
122

123 loglog (w( wixZ3 ) , magGs( 1 , 1 , wixZ3 ) , ’o ’ , ’ MarkerSize ’ ,16 , ’ LineWidth ’ ,2 , ’ Color ’ , ’ blue ’ )
124 t e x t (w( wixZ3 ) ,magGs( 1 , 1 , wixZ2 ) *1000000 ,[ ’ z_3= ’ num2str ( Gzero ( 3 ) , 3 ) ’ ’ ] , ’
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HorizontalAlignment ’ , ’ center ’ , ’ VerticalAlignment ’ , ’bottom ’ , ’ FontSize ’ ,11)
125 =======
126 t e x t (w( wixZ1 ) , (min(magGs) *0.001) , [ ’ z_1= ’ num2str ( Gzero ( 1 ) , 3 ) ’ ’ ] , ’

HorizontalAlignment ’ , ’ center ’ , ’ VerticalAlignment ’ , ’bottom ’ , ’ FontSize ’ ,11)
127 t e x t (w( wixZ2 ) , (min(magGs) *0.000001) , [ ’ z_2= ’ num2str ( Gzero ( 2 ) , 3 ) ’ ’ ] , ’

HorizontalAlignment ’ , ’ center ’ , ’ VerticalAlignment ’ , ’bottom ’ , ’ FontSize ’ ,11)
128

129 loglog (w( wixZ3 ) , magGs( 1 , 1 , wixZ3 ) , ’o ’ , ’ MarkerSize ’ ,16 , ’ LineWidth ’ ,2 , ’ Color ’ , ’ blue ’ )
130 t e x t (w( wixZ3 ) , (min(magGs) *0.000001) , [ ’ z_3= ’ num2str ( Gzero ( 3 ) , 3 ) ’ ’ ] , ’

HorizontalAlignment ’ , ’ center ’ , ’ VerticalAlignment ’ , ’bottom ’ , ’ FontSize ’ ,11)
131 >>>>>>> a87887ad2f846ad954ea31c4f8e904e62f822533 : Matlab/BodeGraph .m
132

133

134 end
135

136 vl ine ( ( 0 . 0 1 ) *2* pi , ’ k ’ ) ;
137 vl ine (10*2* pi , ’ k ’ ) ;
138

139

140 grid
141 xlabel ( ’ Frequency in rad/ s ’ )
142 ylabel ( ’ Magnitude in dB ’ )
143 % Phase
144 subplot ( 2 , 1 , 2 )
145 semilogx (w, squeeze ( phaseGs ) , ’b ’ , ’ Linewidth ’ , 2 )
146 hold on
147 semilogx (w, squeeze ( phaseTFdes ) , ’ r ’ , ’ Linewidth ’ ,2 , ’ L inestyle ’ , ’−− ’ )
148 % Phase Markers
149 semilogx (w( wixP1 ) , phaseGs ( 1 , 1 , wixP1 ) , ’ x ’ , ’ MarkerSize ’ ,15 , ’ LineWidth ’ ,2 , ’

MarkerEdgeColor ’ , ’b ’ )
150 i f wixP1 == wixP2
151 semilogx (w( wixP2 ) , phaseGs ( 1 , 1 , wixP2 ) , ’+ ’ , ’ MarkerSize ’ ,15 , ’ LineWidth ’ ,2 , ’

MarkerEdgeColor ’ , ’b ’ )
152 else
153 semilogx (w( wixP2 ) , phaseGs ( 1 , 1 , wixP2 ) , ’ x ’ , ’ MarkerSize ’ ,15 , ’ LineWidth ’ ,2 , ’

MarkerEdgeColor ’ , ’b ’ )
154 end
155

156 % semilogx (w( wixZ1 ) , phaseGs ( 1 , 1 , wixZ1 ) , ’ o ’ , ’ MarkerSize ’ , 1 6 , ’ LineWidth ’ , 2 , ’ Color ’ , ’
blue ’ )

157 i f wixZ1 == wixZ2 | | wixZ2 == wixZ3
158 semilogx (w( wixZ2 ) , phaseGs ( 1 , 1 , wixZ2 ) , ’o ’ , ’ MarkerSize ’ ,10 , ’ LineWidth ’ ,2 , ’ Color ’ , ’

blue ’ )
159 else
160 semilogx (w( wixZ2 ) , phaseGs ( 1 , 1 , wixZ2 ) , ’o ’ , ’ MarkerSize ’ ,16 , ’ LineWidth ’ ,2 , ’ Color ’ , ’

blue ’ )
161 end
162 semilogx (w( wixZ3 ) , phaseGs ( 1 , 1 , wixZ3 ) , ’o ’ , ’ MarkerSize ’ ,16 , ’ LineWidth ’ ,2 , ’ Color ’ , ’

blue ’ )
163 vl ine ( ( 0 . 0 1 ) *2* pi , ’ k ’ ) ;
164 vl ine (10*2* pi , ’ k ’ ) ;
165

166 grid
167 xlabel ( ’ Frequency in rad/ s ’ )
168 ylabel ( ’ Phase in deg ’ )
169 legend ( ’M_v/\omega_v ’ , ’ TFdes ’ ) ;
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170 h = gca ;
171 h . YTick = −180:90:180;
172

173 end
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