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A Scalable Distributed Dynamical Systems Approach to Learn the
Strongly Connected Components and Diameter of Networks

Emily A. Reed , Guilherme Ramos , Paul Bogdan , Senior Member, IEEE, and Sérgio Pequito

Abstract—Finding strongly connected components (SCCs) and
the diameter of a directed network play a key role in a variety of
machine learning and control theory problems. In this article, we
provide for the first time a scalable distributed solution for these
two problems by leveraging dynamical consensus-like protocols
to find the SCCs. The proposed solution has a time complexity
of O(NDdmax

in-degree), where N is the number of vertices in the
network, D is the (finite) diameter of the network, and dmax

in-degree
is the maximum in-degree of the network. Additionally, we prove
that our algorithm terminates in D + 2 iterations, which allows us
to retrieve the finite diameter of the network. We perform exhaus-
tive simulations that support the outperformance of our algorithm
against the state of the art on several random networks, including
Erdős–Rényi, Barabási–Albert, and Watts–Strogatz networks.

Index Terms—Algorithms, consensus control, control design,
control engineering, directed graphs, distributed algorithms, ma-
chine learning algorithms.

I. INTRODUCTION

S TRONGLY connected components (SCCs) and the finite diam-
eter of directed networks are important in many control theory

problems. Nowadays, networks associated with data are becoming
increasingly larger, which demands scalable and distributed algorithms
that enable an efficient determination of the SCCs and diameter of such
networks.
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The applications of distributively finding the SCCs include distribu-
tively monitoring and regulating power systems, physiological net-
works, and swarms of unmanned vehicles. For example, these systems
are often represented as structural systems [1] and are distributively
controlled [2]. More specifically, SCCs are important in determining the
structural systems properties (e.g., controllability and observability) [1]
and play a key role in guaranteeing that distributed control algorithms
function properly [2]. In the wide range of large-scale applications
mentioned above, it is common that only local information is available at
each node, and therefore, distributed algorithms, like the one proposed
hereafter, must be considered.

Computing the finite diameter is important in improving internet
search engines [3], quantifying the multifractal geometry of complex
networks [4], and identifying faults in both the power grid [5] and
multiprocessor systems [6]. More specifically, the finite diameter of the
World Wide Web determines the maximum number of clicks between
any two web pages [3]. Finding this number in a distributed fashion
is important when there are multiple processors in a computer that are
conducting different searches at the same time. In the case of identi-
fying faults in systems, such as the power grid [5] or multiprocessor
systems [6], the finite diameter of a system is calculated in real time and
is compared with the known finite diameter to determine whether a fault
has occurred. In this case, determining the finite diameter distributively
is key in quickly diagnosing where the fault has occurred in the network.
Finally, the finite diameter is important in quantifying the multifractal
geometry of networks [4], and it becomes necessary to calculate the
finite diameter distributively when the nodes of the network only have
access to local information.

Identifying the different SCCs in a directed network (directed
graph—digraph for short) leads to a unique decomposition of the
digraphG = (V, E), whereV denotes the nodes and E the set of directed
edges. We may find this decomposition, for instance, using the classic
algorithm by Tarjan [7], which employs a single pass of depth-first
search and whose computational complexity is O(|V|+ |E|). It is
worth mentioning that depending on the network sparsity, the effective
computational complexity is O(|V|2), since E ⊂ (V × V). Similar to
Tarjan’s algorithm, Dijkstra [8] introduced the path-based algorithm
to find SCCs and also runs in linear time (i.e., O(|V|+ |E|)). Finally,
Kosaraju’s algorithm uses two passes of depth-first search but is also
upper-bounded by O(|V|+ |E|) [9].

The following work presents an overview of the centralized algo-
rithms that find the SCCs, which all have computational complexity
O(|V|+ |E|) [10]. A possible alternative is to develop better data
structure algorithms that are suitable for parallelization, which can
then lead to implementations with computational complexity equal
to O(|V| log(|V|)) [11]—see also [12] for an overview of different
parallelized algorithms for SCC decomposition.

The solutions mentioned above require the knowledge of the overall
structure of the system digraph, which may not be suitable for large-
scale applications in control systems or in machine learning. Subse-
quently, we propose for the first time a scalable distributed algorithm
to determine the SCCs that relies solely on control systems tools,
specifically max-consensus-like dynamics. Furthermore, our algorithm
converges in D + 2 iterations and thereby enables us to determine the
finite diameter D of the network. State-of-the-art methods to determine
the finite diameter of a directed network include the Floyd–Warshall
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algorithm, which has a computational complexity of O(|V|3) [13]. The
main contributions of the article are as follows.
1) We provide for the first time a scalable distributed algorithm to

find the SCCs and finite diameter of a digraph with computational
time-complexity O(NDdmax

in-degree).
2) We provide ample numerical evidence of the outperformance of our

algorithm against the state of the art on several random networks
including Erdős–Rényi, Barabási–Albert, and Watts–Strogatz.

A. Preliminaries and Terminology

Consider a digraph G = (V, E), where V is the set of vertices
with |V| = N , and E ⊂ V × V is the set of edges, where the max-
imum number of edges is |E| = |V × V| = N2. Given G = (V, E),
the in-degree of a vertex v ∈ V is din-degree(v) = |{(u, u′) : (u, u′) ∈
E , u′ = v}|, and we denote the maximum in-degree of G by dmax

in-degree =

max
v∈V

din-degree(v). Moreover, given a vertex v ∈ V , we define the set of

its in-neighbors as N−
v = {u : (u, v) ∈ E}.

A walk in a digraph is any sequence of edges where the last vertex
in one edge is the beginning of the next edge, except for the beginning
vertex of the first edge and the ending vertex of the last edge. Notice
that a walk does not exclude the repetition of vertices. In contrast, a
path is a walk where the same vertex is not the beginning or ending of
two nonconsecutive edges in the sequence. The size of the path is the
number of edges that constitute it. If the beginning and ending vertex of
a path is the same, then we obtain a cycle. Additionally, a subdigraph
Gs = (V,′ E ′) is described as any subcollection of vertices V′ ⊂ V and
the edges E′ ⊂ V′ × V′ between them. If a subgraph has the property
that there exists a path between any two pairs of vertices, then it is a
strongly connected (di)graph.

Definition 1: An SCC is any maximal strongly connected subgraph.
Any digraph can be uniquely decomposed into SCCs. A digraph

G′ = (V,′ E ′) is said to span G = (V, E), denoted by G′ = span(G), if
V′ = V and E′ ⊆ E . Finally, given a digraph G = (V, E), we define its
finite digraph diameter D.

Definition 2: The finite digraph diameter is the size of the longest
shortest path between any two vertices inV for which such a path exists.

II. PROBLEM STATEMENT

We propose to address the following two problems.
(P1): Given a digraph G = (V, E), determine the unique decom-

position of m ∈ N SCCs by finding the maximal subgraphs Gs =
(Vs, Es), s = 1, . . . ,m, where each subgraph is an SCC such that
Vs ∩ Vq = ∅ for s �= q with q = 1, . . . ,m, Vs,Vq ⊂ V , Es ⊂ (E ∩
(Vs × Vs)), and ∪m

s=1Gs ≡ (∪m
s=1Vs,∪m

s=1Es) = span(G).
(P2): Given a digraph G = (V, E), determine the finite digraph

diameter D.
Next, we provide the solution to the above problems in both a

centralized and distributed fashion that enables a scalable approach
to determine all the SCCs and the finite digraph diameter of a given
network. Notice that a digraph has a unique decomposition into m
SCCs, but we do not require a priori knowledge of such number.

III. SCALABLE DISTRIBUTED DYNAMICAL SYSTEMS APPROACH TO

LEARN THE SCCS AND DIAMETER OF NETWORKS

To determine a solution to (P1) and (P2), we leverage a max-
consensus-like protocol.

Definition 3 ([14]): Consider G = (V, E), where each vertex vi ∈
V, i = 1, . . . , N , has an associated state ri[k] ∈ R at any time k ∈ N.
Then, we have the following max-consensus-like update rule:

ri[k + 1] = max
vj∈N−

vi
∪{vi}

rj [k] (1)

for each node vi, whereN−
vi

denotes all of the nodes vj such that there is
an edge (vj , vi) ∈ E . We simply say that consensus is achieved if there
exists an instance of time h such that for all h′ ≥ h, ri[h′] = rj [h

′],
for all vi, vj ∈ V, i ∈ {1, . . . , N}, j ∈ {1, . . . , N}, and for all initial
conditions r[0] = [r1[0]

ᵀ . . . rn[0]ᵀ]ᵀ. ◦

Definition 3 is similar to the max-consensus update, but in addition
to considering the information from the neighbors, Definition 3 also
considers the information from the node itself. Furthermore, it is worth
emphasizing that from Definition 3, it follows that every node only
needs to be able to receive information from its in-neighbors, (i.e.,
the nodes connected to it). Hence, each node only needs the local
information, which is pertinent to distributed algorithms. Furthermore,
we note that each node uses a unique ID, which for simplicity consists
of N consecutive positive integer numbers from 1 to N . A node is able
to obtain the information from its in-neighbors, including the unique
IDs of its in-neighbors and any other associated variables. Next, we
present Algorithm 1, which can be used to find the solutions to (P1)
and (P2).

Algorithm 1 is performed on each node vi and obtains a setS∗
i , which

consists of the nodes that belong to the same SCC as node vi, and a
scalar ki, which is one more than the number of iterations.

Briefly speaking, Algorithm 1 works as follows. For each node vi,
we first find the set of nodes that have a directed path ending in node vi.
Next, we record the size of this set. Finally, we add the nodes contained
in the same SCC as node vi to the set S∗

i .
More specifically, Algorithm 1 starts by initializing the local (i.e.,

at node vi) sets and parameters for the algorithm. In particular, we set
S∗
i = ∅, ki = 0,xi[0] = {i}, yi[0] = 1, zi[0] = ∅, andwi[0] = FALSE.

At each iteration of the algorithm, Step 1 finds the set of state “ids”
(or, equivalently, nodes’ indices) that form directed paths that end in
node vi. Step 2 records the size of the set of directed paths to node
vi. Step 3 determines the nodes that are contained in the same SCC as
node vi, where ∧ denotes the logical “AND” operation. In Step 4, if the
maximum size of the set of directed paths to vi has been obtained, then
an indication to end the algorithm for node vi is provided. Step 5 tracks
the iterations, which is important for finding the finite digraph diameter.
The algorithm terminates when no new information is received. Lastly,
Step 6 sets S∗

i , which is the set of nodes contained in the same SCC
as node vi. The following lemma is key in proving the correctness of
Algorithm 1.

Lemma 1: If, for any two nodes vi and vj , we have that yi[ki + 1] =
yj [ki] (as in Step 2) and vj ∈ ⋃

vl∈N−
vi

∪{vi} xl[ki] (as in Step 1), then

vi and vj are in the same SCC.
Proof: Suppose for a contradiction that yi[ki + 1] = yj [ki] and

vj ∈ ⋃
vl∈N−

vi
∪{vi} xl[ki], but vi and vj are not in the same SCC. This

would mean that there is not a direct path from vi to vj or there is
not one from vj to vi. However, if vj ∈ ∪vl∈N−

i
∪{i}xl[ki], then vj can

reach node vi, so there is a direct path from vj to vi. Furthermore, if
yi[ki + 1] = yj [ki], then there must also be a direct path from vi to

Authorized licensed use limited to: TU Delft Library. Downloaded on May 11,2023 at 14:06:45 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 5, MAY 2023 3101

vj or we would have yi[ki + 1] > yj [ki]. Therefore, there is a direct
path from vi to vj and from vj to vi, so vi and vj must be in the
same SCC. �

The next lemma is key in giving a stopping criteria for Algorithm 1.
Lemma 2: If yi[ki + 1] == yi[ki] and |zi[ki + 1]| == |zi[ki]|, for

all i = 1, . . . , N (as in Step 4), then all the SCCs have been found.
Proof: At each iteration of the algorithm, the number of elements

in set xi either increases or it remains the same. If from one iteration
to the next, the number of elements in xi stays the same for all nodes
vi, then every node has received all of the information that it possibly
can. Furthermore, each node knows the other nodes that can reach it as
captured by the set xi. Since yi records the size of the set of nodes that
can reach node vi, then if yi remains the same from one iteration to
the next, then it is clear that the number of elements in xi also remains
the same. Furthermore, if yi remains the same from one iteration to
the next, then the network cannot communicate any new information.
Additionally, if the set zi, which is the set of nodes that are contained
in the same SCC as node vi, remains the same from one iteration to the
next, then all SCCs have been found.

In the following theorem, we prove the correctness of Algorithm 1.
Theorem 1: Let S∗

i be the set of nodes that results after Algorithm 1
is executed on node vi ∈ V . Then,

⋃
i∈{1,...,N} (S∗

i , (S∗
i × S∗

i ) ∩ E) is
a solution to P1. ◦

Proof: The algorithm iterates until yi[ki + 1] = yi[ki] and |zi[ki +
1]| = |zi[ki]|, for all i = 1, . . . , N , at which point all of the SCCs have
been found—see Lemma 2. At each iteration, Step 1 forms the set
of nodes that reach node vi and is recorded in set xi. Step 2 finds
the cardinality of the set xi. Step 3 finds the set of nodes that are
contained in the same SCC as node vi—see Lemma 1—and is recorded
in set zi. Step 4 determines whether the maximum set of nodes that can
reach node vi has been found, whether the size of the set of nodes
contained in the same SCC has increased, and it serves as a stopping
criteria for the algorithm. Step 5 tracks the iterations, and Step 6 records
the set of nodes that are contained in the same SCC as node vi in
the set S∗

i . Finally, the SCCs are formed in the following subgraphs
G∗
i = (S∗

i , (S∗
i × S∗

i ) ∩ E) as mentioned in the statement of Theorem
1. Any duplicate subgraphs of SCCs are eliminated by taking the union
of all the subgraphs

⋃
i∈{1,...,N} G∗

i . Hence, we obtain the SCCs of
G(V, E). �

Next, we show the computational time-complexity for Algorithm 1.
Theorem 2: Algorithm 1 has computational time-complexity

O(N2Ddmax
in-degree), where N is the number of vertices, D is the finite

diameter of the network, and dmax
in-degree is the maximum in-degree of the

network. ◦
Proof: Algorithm 1 executes for all nodes vi ∈ V, i = 1,

. . . , N . Furthermore, Algorithm 1 contains a single while loop, where
the number of iterations is upper-bounded by the diameter since xi

finds the longest shortest path to node vi. The steps inside the while
loop are Steps 1–5. Step 1 is upper-bounded by the size of the network
times the maximum in-degree of the network (i.e.,O(Ndmax

in-degree)) since
the union has complexity O(N) and we take the union for all of the
in-neighbors. Step 2 is upper-bounded by a constant. Similar to Step 1,
Step 3 is upper-bounded O(Ndmax

in-degree). Finally, Steps 4–6 are upper-
bounded by a constant. Hence, the computational time-complexity is
O(N2Ddmax

in-degree), where N is the number of nodes, D is the finite
digraph diameter of the network, and dmax

in-degree is the maximum in-degree
of the network.

The following result demonstrates the scalability of Algorithm 1.
Corollary 1: Algorithm 1 can be implemented in a dis-

tributed fashion and is scalable with computational time-complexity
O(NDdmax

in-degree). ◦
Proof: This readily follows from Theorem 2 and from noticing

that Steps 1–6 can be performed locally for each node vi, where
i = 1, . . . , N . Therefore, the algorithm can be computed in a distributed
fashion, which eliminates an N in the complexity in Theorem 2.

While we have provided the computational complexity of the al-
gorithm for the worst-case scenario, we observe that intuitively the

maximum in-degree is negatively correlated with the diameter, so (on
average) this may allow for a lower time complexity.

The space-complexity for performing Algorithm 1 on each node vi,
where i ∈ {1, . . . , N}, in a distributed fashion is O(N), where N is
the number of nodes in the network. Next, we give the computational
time-complexity to find the SCCs.

Theorem 3: Finding the sets of nodes that contain the
SCCs,

⋃
i∈{1,...,N}S∗

i , requires a computational time-complexity of
O(NDdmax

in-degree).
Proof: As shown in Theorem 1, for each node vi, where i =

1, . . . , N , Algorithm 1 finds the set of nodes S∗
i that are contained

in the same SCC as node vi, which, according to Corollary 1, has
a computational time-complexity of O(NDdmax

in-degree) when executed
distributively. To find the sets of nodes that contain the SCCs, we
compute

⋃
i∈{1,...,N}S∗

i , which requires the addition of a term N , so
O(NDdmax

in-degree +N). Thus, it readily leads to O(NDdmax
in-degree).

Next, we provide a table comparing the computational time com-
plexities of several different algorithms that find the SCCs of a given
directed network.

While asymptotically the computational time-complexity of our dis-
tributed algorithm does not outperform the state-of-the-art centralized
algorithms that find the SCCs (since the number of edges |E| in the
graph is bounded by N × dmax

in-degree), our proposed algorithm can be
implemented in a distributed manner, whereas the other algorithms
shown in the table above cannot be. Furthermore, as we will show in the
simulation results, our centralized algorithm empirically outperforms
Kosaraju’s algorithm on several randomly generated networks. In the
next result, we give a solution to (P2).

Theorem 4: By running Algorithm 1 on every node vi ∈ V , with
i ∈ {1, . . . , N}, we get the solution to (P2) to be D = max

vi∈V
ki − 3. ◦

Proof: We will show that Algorithm 1 converges after D + 2 itera-
tions, where D is the finite digraph diameter of the input digraph. From
Lemma 1, the algorithm terminates when no new information is being
received by any node from its neighbors (or itself) at a subsequent time
step and all of the SCCs have been found. If we assume that the digraph
has diameter D, this implies that there exists a pair of nodes u and v
such that the size of the shortest path between u and v is D. First, we
will show that no new information is received in D iterations. Suppose
that node v receives all the information of node u in k < D iterations
where the information travels to the neighbors of each node in exactly
one iteration. Then, there must be another path fromu to v with k edges,
which contradicts the fact that the shortest path between u and v has
size D.

Now, suppose that no new information is communicated to any
node in the network after k > D iterations. This means that there is
information from node u that only reaches node v after k iterations.
However, since information is sent to the neighbors at each iteration,
then the shortest path between u and v has size k, which contradicts
the fact that the longest shortest finite path has size D.

Therefore, no new information is being communicated in D itera-
tions, which is verified in the next iteration, i.e., the D + 1th iteration.
Then, zi is finished updating afterD + 1 iterations since it is dependent
on all of the information having been received. It is verified that zi is
finished updating at the next iteration, i.e., theD + 2th iteration. Hence,
the diameter will be two less than the maximum number of iterations
among all nodes. Since Step 5 increments ki before terminating, then
ki denotes the number of iterations (for vi) plus one. Conveniently,
D = maxvi∈V ki − 3 since maxvi∈V ki finds precisely the maximum
number of iterations plus one among all nodes vi, so three is subtracted
to obtain the finite digraph diameter D. �

We emphasize that computing the finite digraph diameter requires
the number of iterations of Algorithm 1 for each node. Furthermore,
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we notice that we can compute the finite digraph diameter and the
digraph diameter. For example, if there is more than one SCC, then
the digraph diameter is infinite, else the two quantities are equivalent.
Next, we give the computational time-complexity for computing the
finite digraph diameter.

Theorem 5: Computing the finite digraph diameter requires a com-
putational time-complexity of O(NDdmax

in-degree).
Proof: Following from Theorem 4, we obtain the finite digraph

diameter by executing Algorithm 1 on every single node vi ∈ V .
Hence, from Corollary 1, we see that Algorithm 1 has a computational
time-complexity of O(NDdmax

in-degree) when executed distributively. To
determine the maximum number of iterations among all of the nodes vi,
where i ∈ 1, . . . , N , a final term N is added in the complexity, so
O(NDdmax

in-degree +N). Thus, it readily leads to O(NDdmax
in-degree). �

We provide a table comparing the computational time-complexity
of the state-of-the-art Floyd–Warshall algorithm to our proposed dis-
tributed algorithm. We notice that our proposed distributed algorithm
performs no worse than the Floyd–Warshall algorithm.

Finally, we explore the expected computational time-complexity of
Algorithm 1 in some special random networks.

Corollary 2: For an Erdős–Rényi network with N nodes
and m edges, the expected time-complexity of Algorithm 1 is

O
((

log(N)−γ
log(2˜m/N)

+ 1
2

)
2m

)
, where γ is the Euler–Mascheroni con-

stant.
Proof: The average degree of an Erdős–Rényi network is 2m

N
, and

the average path length is log(N)−γ
log(2m/N)

+ 1
2

[16]. Thus, by Corollary 1,

the expected time-complexity is O
((

log(N)−γ
log(2m/N)

+ 1
2

)
2m

)
, where γ

is the Euler–Mascheroni constant. �
Corollary 3: For a Barabási–Albert network with N nodes and m

edges added to a new vertex at each step, the expected time-complexity

of Algorithm 1 is O
(
2mN

(
log(N)−log(m/2)−1−γ
log(log(N))+log(m/2)

+ 3
2

))
.

Proof: Since the average degree is 2m, and the average path length
is log(N)−log(m/2)−1−γ

log(log(N))+log(m/2)
+ 3

2
[16], by Corollary 1, the average time-

complexity reduces to O
(
2mN

(
log(N)−log(m/2)−1−γ
log(log(N))+log(m/2)

+ 3
2

))
. �

Corollary 4: For a Watts–Strogatz network with N nodes, K edges
per vertex, and rewiring probability p, the expected time-complexity of

Algorithm 1 is O
(

N2

2

)
as p → 0 and O

(
NK log(N)

log(K)

)
as p → 1.

Proof: The Watts–Strogatz network has an average degree of K,
and the average path length is N

2K
as p → 0 and log(N)

log(K)
as p → 1 [17].

Hence, by Corollary 1, the average time-complexity of Algorithm 1 for

the Watts–Strogatz network is O
(

N2

2

)
as p → 0 and O

(
NK log(N)

log(K)

)

as p → 1. �

IV. PEDAGOGICAL EXAMPLES

In this section, we present a pedagogical example to illustrate how
Algorithm 1 works and demonstrate its computational time-complexity.
In what follows, when referring to each of the SCCs, we will only
mention the indices of the nodes contained in that particular SCC (i.e.,
if vi ∈ Vs, then with some abuse of notation we refer to that node as
i ∈ Vs) as we are implicitly assuming that their edges are formed by
Es = ((Vs × Vs) ∩ E).

A. Example 1

Fig. 1 shows a network with six nodes that contains the following
SCCs: {1, 2}, {3, 4}, and {5, 6}. Table I shows the trace of running
Algorithm 1 on Example 1 for each node vi, where P is the set of
parameters for the algorithm and k is the total number of iterations. It
shows in column one that it takes seven iterations (k = 7) to identify

Fig. 1. This network has SCCs {5, 6}, {3, 4}, and {1, 2}.

TABLE I
VALUES OF THE PARAMETERS (P) AT EACH ITERATION (k) OF ALGORITHM 1

FOR ALL NODES vi WHEN EXECUTED ON EXAMPLE 1

the SCCs for Example 1. Here, the diameter of the network is 5, which
is two less than the total required iterations and is consistent with the
results in Theorem 4. Additional examples can be found in [18].

V. SIMULATION RESULTS

In this section, we compare the performance of our centralized
algorithm with the current state-of-the-art that find the SCCs and the
finite digraph diameter. We start by comparing the run-times of our
algorithm against Kosaraju’s algorithm [9] to find all the SCCs on
a series of random networks, including the Erdős–Rényi, Barabási–
Albert, and Watts–Strogatz networks. We compare the run-times of
both our algorithm against Kosaraju’s algorithm as the parameters of
the networks vary, including the diameter, the maximum in-degree, the
number of SCCs, and the number of nodes. We ran all the algorithms
using Wolfram Mathematica on a MacBook Pro with an Apple M1
and 8 GB RAM. For each type of random network (i.e., Erdős–Rényi,
Barabási–Albert, and Watts–Strogatz), we randomly generated 50 net-
works in the following manner. For five different sets of nodes, we
randomly generated ten different networks, where the sets of nodes
were 100, 200, 300, 400, and 500 nodes. Furthermore, to generate the
random networks, we selected two different sets of parameters for each
type of random network.

A. Erdős–Rényi

The Erdős–Rényi network requires two parameters, the number of
nodes and the number of edges. For the first set of parameters (see
Figs. 2 and 3), the number of nodes were chosen to be 100, 200, 300,
400, 500, and the number of edges were chosen to be the number of
nodes raised to the 2/3 power. In the second set of parameters (see
Figs. 4 and 5), again the number of nodes remained the same, but the
number of edges was fixed to 500 for all the sets of nodes.

In Fig. 2, we see the comparison between different properties
of the network, including the maximum in-degree, diameter, and
total number of SCCs, with the run-times of both our algorithm and
Kosaraju’s algorithm. In this first set of parameters, the number of
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Fig. 2. Relationship between the network properties of some randomly
generated Erdős–Rényi networks and their run-times for both our pro-
posed algorithm and Kosaraju’s algorithm.

Fig. 3. Comparison of the run-times of both our proposed algorithm
and Kosaraju’s algorithm for several randomly generated Erdős–Rényi
networks. We see that our algorithm performs better on networks with a
higher number of nodes.

Fig. 4. Relationship between the network properties of some randomly
generated Erdős–Rényi networks and their run-times for both our pro-
posed algorithm and Kosaraju’s algorithm.

Fig. 5. Comparison of the run-times of both our proposed algorithm
and Kosaraju’s algorithm for several randomly generated Erdős–Rényi
networks. We see that our algorithm performs better on networks with a
higher number of nodes.

Fig. 6. Relationship between the network properties of some randomly
generated Barabási–Albert networks and their run-times for both our
proposed algorithm and Kosaraju’s algorithm.

SCCs plays a much larger role in determining the run-time of the
algorithm. In Fig. 3, we see the comparison between the run-times of
both our algorithm and Kosaraju’s algorithm on different randomly
generated Erdős–Rényi networks using the first set of parameters. Our
algorithm outperforms Kosaraju’s.

The results from the second set of parameters for Erdős–Rényi
networks are shown in Figs. 4 and 5. In these networks, the diameter
and maximum in-degree are much larger, so they increase the run-time
of our algorithm. Fig. 5 shows that the run-time of our algorithm only
outperforms Kosaraju’s algorithm when there are more nodes in the
network.

B. Barabási–Albert

The Barabási–Albert networks require two parameters, including the
number of nodes and the number of edges added to a new vertex at each
step.

For the first set of parameters (see Figs. 6 and 7), the numbers of
nodes were fixed to 100, 200, 300, 400, and 500, and the numbers
of edges added at each step were chosen to be the numbers of nodes
divided by 5. In the second set of parameters (see Figs. 8 and 9), again
the number of nodes remained the same, but the number of edges added
at each step was fixed to 50 for all the sets of nodes.

In Fig. 6, we see that the maximum in-degree plays a larger role
in determining the run-time of the algorithm. In Fig. 7, we see the
comparison between the run-times of our algorithm and Kosaraju’s
algorithm on different randomly generated Barabási–Albert networks.
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Fig. 7. Run-times of both our proposed algorithm and Kosaraju’s algo-
rithm for several randomly generated Barabási–Albert networks. We see
that our algorithm performs better on networks with a higher number of
nodes.

Fig. 8. Relationship between the network properties of some randomly
generated Barabási–Albert networks and their run-times for both our
proposed algorithm and Kosaraju’s algorithm.

Fig. 9. Comparison of the run-times of both our proposed algorithm
and Kosaraju’s algorithm for different randomly generated Barabási–
Albert networks.

Our algorithm performs better for networks with more nodes. The
results from the second set of parameters for Barabási–Albert networks
are shown in Figs. 8 and 9. The results from the two sets of parameters
do not present much difference. Again, our algorithm performs better
on networks with a higher number of nodes.

C. Watts–Strogatz

Finally, the Watts–Strogatz networks require the following two pa-
rameters: the number of nodes and the rewiring probability.

The first set of parameters includes the nodes 100, 200, 300, 400,
and 500 with a rewiring probability of 0.8, and the results are shown in
Figs. 10 and 11. For the second set of parameters, the set of nodes is
the same, but the rewiring probability is reduced to 0.2 with the results
shown in Figs. 12 and 13.

In Fig. 10, we see that the diameter dominates the complexity.
In Fig. 11, we see the comparison between the run-times of ours

Fig. 10. Relationship between the network properties of some ran-
domly generated Watts–Strogatz networks and their run-times for both
our proposed algorithm and Kosaraju’s algorithm.

Fig. 11. Comparison of the run-times of both our proposed algo-
rithm and Kosaraju’s algorithm for several randomly generated Watts–
Strogatz networks.

and Kosaraju’s algorithm on the randomly generated Watts–Strogatz
networks. Our algorithm underperforms compared to Kosaraju’s.

The results from the second set of parameters for the Watts–Strogatz
networks are shown in Figs. 12 and 13. The results from the two
sets of parameters do not present much difference. It is clear that
Kosaraju’s algorithm outperforms our algorithm. We believe that the
reason Kosaraju’s algorithm outperforms ours has to do with the number
of edges in the network.

D. Determining the Diameter of a Network

From the results of Theorem 4, our algorithm can determine the
finite digraph diameter of the network. Here, we illustrate the relation-
ship between the number of iterations required before terminating our
algorithm compared with the finite digraph diameter plus two.

Fig. 14 shows the results from running our algorithm on the random
networks using the second set of parameters. We see that the number
of required iterations is identical to the network diameter plus two.

Finally, we compared the run-time of our algorithm with the Floyd–
Warshall algorithm [13] on the Erdős–Rényi, Barabási–Albert, and
Watts–Strogatz networks. We randomly generated ten different Erdős–
Rényi networks, using 25 nodes and 50 edges. For the Barabási–Albert
network, we used 25 nodes and three edges added to each new vertex at
each time step to generate ten different networks. Finally, we generated
ten different Watts–Strogatz networks using 25 nodes and a rewiring
probability of 0.2. In Fig. 15, we see that our algorithm outperforms
the Floyd–Warshall algorithm for all networks.

E. Discussion

The proposed distributed algorithm to compute the SCCs in a digraph
can achieve a lower time complexity than Kosaraju’s algorithm in
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Fig. 12. Relationship between the network properties of some ran-
domly generated Watts–Strogatz networks and their run-times for both
our proposed algorithm and Kosaraju’s algorithm.

Fig. 13. Comparison of the run-times of both our proposed algo-
rithm and Kosaraju’s algorithm for several randomly generated Watts–
Strogatz networks.

instances when there is a large number of edges that exceed the number
of nodes times the finite diameter times the maximum in-degree. In other
instances, Kosaraju’s algorithm will have a better time complexity. For
example, in the worst case, a network can have its maximum in-degree
and finite diameter equal to the number of nodes in the network, which
would mean that the time complexity of our distributed algorithm would
be O(N3). However, the time complexity of Kosaraju’s algorithm in
the worst case isO(N2) since the number of edges could be on the order
of N2. Therefore, we conclude that our distributed algorithm may or
may not outperform Kosaraju’s depending on the network’s topology.

In the case of the centralized algorithm, we provide evidence through
exhaustive simulations that suggests that our algorithm outperforms
the state-of-the-art Kosaraju algorithm on certain network topologies.
However, we remark that this may not always be the case. For instance,
when considering the same worst-case network, where the maximum
in-degree and finite diameter are equal to the number of vertices in
the network, our proposed centralized algorithm will have a time
complexity of O(N4), which is worse than the time complexity of
Kosaraju’s algorithm (i.e., O(N2) in the worst case).

When contrasting our proposed distributed algorithm to compute the
diameter of a digraph to the state-of-the-art Floyd–Warshall algorithm,
we notice that in the worst case, our algorithm’s time complexity is
no worse than the time complexity of the Floyd–Warshall algorithm
(i.e., O(N3)). The time complexity for our centralized algorithm is
O(N4) in the worst case, which is worse than the Floyd–Warshall
algorithm in the worst case; however, our simulations suggest that our
centralized algorithm can outperform the Floyd–Warshall algorithm in
some instances.

It is important to remark that the results presented here focused on the
time complexity to enable a direct comparison with the algorithms in

Fig. 14. Relationship between the number of iterations needed before
terminating our algorithm and the diameter plus two of several randomly
generated networks.

Fig. 15. Comparison of the run-times of computing the finite digraph
diameter when using our algorithm against the Floyd–Warshall algo-
rithm on several randomly generated networks, including Erdős–Rényi,
Barabási–Albert, and Watts–Strogatz.

the literature. Nonetheless, the nature of distributed algorithms requires
the assessment of the communication complexity. Depending on the
protocol being used to exchange information (e.g., IDs), it could further
increase the complexity by O(N log(k)), where k is the number of bits
needed to transmit the N th ID. Further investigation should consider
the design of suitable communication protocols within their specific
applications to improve the overall performance of a new class of
distributed algorithms, for which the foundation is laid out in this article.

VI. CONCLUSION

We provided for the first time a scalable distributed algorithm to
find the SCCs and finite diameter of a directed network. The proposed
solution has a time complexityO(NDdmax

in-degree), whereN is the number
of vertices, D is the finite diameter, and dmax

in-degree is the maximum
in-degree of the network. We demonstrated the performance of our
centralized algorithm on several random networks. We compared the
run-time of our centralized algorithm against Kosaraju’s algorithm
and found that our centralized algorithm outperformed Kosaraju’s
for certain network topologies. Additionally, we provided exhaustive
simulations that support that our centralized algorithm outperformed
Floyd–Warshall’s in computing the finite digraph diameter on every
tested random network.

In our future work, we seek to understand how the time complexity
may be improved for different types of densely directed networks.
Furthermore, we plan to examine how to find the SCCs and diameter
while taking privacy into consideration such that the ID of the nodes
can be hidden in the process of sharing information. Finally, our future
work will focus on developing possible asynchronous protocols capable
of determining the SCCs and finite diameter of a digraph.
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