

Delft University of Technology

Compactly representing massive terrain models as TINs in CityGML

Kumar, Kavisha; Ledoux, Hugo; Stoter, Jantien

DOI
10.1111/tgis.12456
Publication date
2018
Document Version
Final published version
Published in
Transactions in GIS

Citation (APA)
Kumar, K., Ledoux, H., & Stoter, J. (2018). Compactly representing massive terrain models as TINs in
CityGML. Transactions in GIS, 22(5), 1152-1178. https://doi.org/10.1111/tgis.12456

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1111/tgis.12456
https://doi.org/10.1111/tgis.12456

1152  |  wileyonlinelibrary.com/journal/tgis Transaction in GIS. 2018;22:1152–1178.

Received: 7 December 2017  |  Revised: 1 March 2018  |  Accepted: 2 May 2018

DOI: 10.1111/tgis.12456

R E S E A R C H A R T I C L E

Compactly representing massive terrain models as
TINs in CityGML

Kavisha Kumar  | Hugo Ledoux  | Jantien Stoter

3D Geoinformation, Delft University of
Technology, Delft, The Netherlands

Correspondence
Kavisha Kumar, 3D Geoinformation, Delft
University of Technology, Delft, The
Netherlands.
Email: k.kavisha@tudelft.nl

Funding information
Stichting voor de Technische Wetenschappen,
Grant/Award No. 13740; 3D4EM (3D for
Environmental Modeling) in the Maps4Society
program, Grant/Award No. 13740; NWO
(Netherlands Organization for Scientific
Research); Ministry of Economic Affairs;
European Research Council (ERC); European
Union’s Horizon 2020, Grant/Award No.
677312 UMnD

Abstract
Terrains form an important part of 3D city models. GIS
practitioners often model terrains with 2D grids. However,
TINs (Triangulated Irregular Networks) are also increas-
ingly used in practice. One such example is the 3D city
model of the Netherlands (3DTOP10NL), which covers the
whole country as one massive triangulation with more
than one billion triangles. Due to the massive size of ter-
rain datasets, the main issue is how to efficiently store and
maintain them. The international 3D GIS standard
CityGML allows us to store TINs using the Simple Feature
representation. However, we argue that it is not appropri-
ate for storing massive TINs and has limitations. We focus
in this article on an improved storage representation for
massive terrain models as TINs. We review different data
structures for compactly representing TINs and explore
how they can be implemented in CityGML as an ADE
(Application Domain Extension) to efficiently store mas-
sive terrains. We model our extension using UML, and
XML schemas for the extension are automatically derived
from these UML models. Experiments with massive real‐
world terrains show that, with this approach, we can com-
press CityGML files up to a factor of ~20 with one billion+
triangles, and our method has the added benefit of explic-
itly storing the topological relationships of a TIN model.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited.
© 2018 The Authors. Transactions in GIS published by John Wiley & Sons Ltd.

www.wileyonlinelibrary.com/journal/tgis
mailto:￼
http://orcid.org/0000-0002-5010-6175
https://orcid.org/0000-0002-1251-8654
https://orcid.org/0000-0002-1393-7279
mailto:k.kavisha@tudelft.nl
http://creativecommons.org/licenses/by/4.0/

     |  1153KUMAR et al.

1  | INTRODUC TION

The use of 3D city models for urban planning and management has increased in recent years. Several cities like
Rotterdam, Brussels, and Berlin have already created 3D city models for use in different applications such as noise
mapping, estimating the energy demand of buildings, and calculating building rooftop solar irradiation (Biljecki,
Stoter, Ledoux, Zlatanova, & Çöltekin, 2015). However, in practice these applications are mostly centered around
buildings; other terrain features like vegetation, roads, and water bodies are often ignored. Formal specifications
for modeling buildings in 3D space are often more prominently defined than other urban features. For example,
in the international 3D GIS standard CityGML, the concept of LODs (Levels Of Detail) is very well established for
buildings and bridges, but is vague in case of terrains and land use (OGC, 2012).

Over the last few decades, grids and TINs (Triangulated Irregular Networks) have become the two most popular
models for representing terrains. GIS practitioners often model terrains as grids. However, grids have several short-
comings. First, they cannot be used to represent terrains with vertical walls and overhangs, which are quite common
in cities (we give precise definitions of these in Section 2). Second, grids, being restricted to 2.5D, do not conform
well to the variability in terrain complexity. This might result in loss of sample points, which could be important for
spatial analysis such as points representing balconies, dormers, chimneys, vertical walls, and banks of canals (Fisher,
1997). Another disadvantage is that grids can be very large for fine‐resolution terrains (Fisher, 1997). For instance, in
case of 3D grids, the size of voxels (3D pixels) increases as the resolution of data increases, which requires more stor-
age space (Stoter & Zlatanova, 2003). On the other hand, TINs have numerous benefits. In a TIN, the local density
of points can be altered based on the variations in height of the original terrain (Kumler, 1994). For example, areas
of detailed relief can be represented in a TIN with a denser triangulation than areas with a smooth relief (Kumler,
1994). Another advantage is that the points describing balconies, dormers, chimneys, and vertical walls can be well
represented as constraints in a TIN (Kumler, 1994). However, storing TINs is more complicated than storing grids, as
it requires not only storing the TIN geometry but also efficiently storing and querying the topological relationships
between the triangles. A terrain can be stored either as one massive TIN with continuous elevation values or as a
constrained TIN with 3D objects like buildings, roads, and vegetation as constraints in the triangulation.

CityGML supports the storage of DTMs (Digital Terrain Models) as TINs but it is not efficient for storing
massive TINs. Generally, the number of triangles in a TIN is roughly twice the number of vertices used in trian-
gulation (De Berg, Van Kreveld, Overmars, & Schwarzkopf, 2000). The CityGML datasets can become very large
for massive TINs because of the redundancy in the underlying data structure, which greatly hinders web‐based
rendering and exchange of data. Moreover, there is very little topological information stored, which prevents us
from efficiently using the datasets for analysis. For instance, 3DTOP10NL (Kadaster, 2015), the 3D city model of
the Netherlands, covers the whole country (including buildings, roads, water bodies, and bridges) as one massive
triangulation with more than one billion triangles (Figure 1). CityGML requires a file size of ~700 GB just to store
the geometry of the 3DTOP10NL terrain dataset (without any topological information).

Therefore, the main focus of this article is to develop an improved representation for storing massive terrains
as TINs in the context of 3D city models. This article is an actual implementation of and extension to the ideas
that we proposed in the initial phase of the research (Kumar, Ledoux, & Stoter, 2016a, b). In this article, we review
different data structures for compactly representing TINs, and explore how they can be implemented in GML/
CityGML to efficiently store massive TINs. The research is not limited to model terrains as 2.5D TINs. It also
includes vertical walls, overhangs, and constraints in the terrain model (see Section 2). Three existing compact
TIN data structures, namely Indexed triangles (Ravada, Kazar, & Kothuri, 2009), TriStrips (Speckmann & Snoeyink,
2001), and Stars (Ledoux, 2015), are introduced as new geometry types in the GML geometry model for repre-
senting TINs. These new geometry types are extended to CityGML as an ADE (Application Domain Extension)
for compactly representing massive TIN terrains (see Section 3). We model the extension using UML (Unified
Modeling Language). XML schemas for the extension are automatically derived from these UML models. We
made a prototype to implement these TIN data structures in CityGML datasets. We tested our proposed CityGML

1154  |     KUMAR et al.

extension with several real‐world datasets and we report on the compression factors achieved in Section 4. Our
approach allows us to compress up to a factor of ~20 with massive real‐world terrain datasets. For example, the
storage space required for the 3DTOP10NL terrain in a CityGML file is reduced from ~700 GB to nearly ~40 GB.
Moreover, our method has the added advantage of explicitly storing the topological relationships of a TIN model.
We close the article with conclusions and future work in Section 5.

2  | STATE‐ OF‐THE‐ART IN MODELING TERR AINS WITH TINS

Terrain (Latin Terra meaning Earth) in simple terms refers to the lay of the land described in terms of elevation, slope,
or other attributes of the landscape (Wikipedia, 2017). Modeling the terrain surface with precision has always been a
challenge for geo‐researchers. The irregular nature of the surface makes it difficult to depict the true model of a ter-
rain. In this section, we provide an overview of different TIN representations used for modeling terrains. Several data
structures have been proposed in different domains to represent and store TINs; they exhibit data redundancy and
also store information for maintaining the adjacency relationships. We review different TIN data structures that can
be integrated efficiently in the GML3 geometry model and extended to CityGML for representing massive terrains.

2.1 | Representation of terrains

A terrain is usually modeled as a grid of elevation values or as a TIN. These are also referred to as field representa-
tions in GIS (Kumler, 1994; Cova & Goodchild, 2002). A field is a model of spatial variation of an attribute over a
spatial domain (Ledoux, 2017). Fields are generally used to represent continuous geographical phenomena such as
the elevation of a terrain, surface temperature, and so on (Ledoux, 2017; Cova & Goodchild, 2002). A terrain can
be modeled as a field, by a function f(x, y) mapping each (x, y) location in the spatial domain to an elevation value
(z) [i.e. z = f(x, y)] (Figure 2a).

F I G U R E 1   Snapshot of 3DTOP10NL dataset of a part of Delft, the Netherlands. Note that the terrain is one
massive TIN with buildings, roads, water bodies, and other features. CityGML requires ~700 GB of storage space
just for storing the 3DTOP10NL terrain geometry

     |  1155KUMAR et al.

Modeling terrains by storing only one elevation value (z) for any (x, y) location is referred to as “2.5D” (Figure 2a).
Topologically, the surface depicted by a TIN is a 2‐manifold (i.e., each edge of the TIN is incident to only one or
two triangles) and the triangles incident to a vertex form either a closed or an open fan (Gotsman, Gumhold, &
Kobbelt, 2002) (Figure 3).

However, it is not possible to represent features like vertical walls, roof overhangs, caves/tunnels, and over-
folds like balconies and dormers with 2.5D field models. For instance, 3DTOP10NL terrain data has vertical walls.
Modeling it in 2.5D will result in loss of information points representing the vertical walls. Therefore, we focus
on geometrical representations which extend the field‐based 2.5D model to handle such features. In Figure 3b,
an example is shown where a location (x, y) has more than one elevation value (z) to model the vertical walls of
natural or man‐made objects like buildings. It is a so‐called “2.5D+” model, which is topologically equivalent to a
2.5D model as it is still a 2‐manifold (Penninga, 2008).

The ISO 19107:2003 Spatial Schema (ISO, 2003) standard defines GM_TIN geometry type for representing
TIN models, which i n theory should allow vertical triangles in a TIN and therefore can be referred to as a 2.5D+
data structure. Features like balconies, and overhangs of rocks and roof surfaces, are not covered by these models
and are described using 2.75D models (Tse & Gold, 2004; Gröger & Plümer, 2005). A “2.75D” model is a 2.5D+

F I G U R E 2   Different TIN representations for modeling terrains considered in this research. Semantics are
attached to the entire TIN in 2.5D/2.5D+/2.75D and to the discrete objects (e.g. buildings) embedded in the TIN
in 3D

F I G U R E 3   2‐Manifold TIN. Each edge of the TIN is incident only to one or two triangles of the TIN

1156  |     KUMAR et al.

model extended to model any 2‐manifold surface with features like balconies and overhangs (Figure 3C). These
models are described in the context of TINs and not grids. They are sufficient for applications like visualization
and watershed modeling (Lyon, 2003).

However, for some applications, even 2.5D+ and 2.75D models have limitations. For instance, applications es-
timating population and building energy demand using 3D city models require computing the volume of buildings
(Biljecki et al., 2015), which is not possible to calculate using these terrain models. To compute the volume of a
building, it should be closed at the base (i.e., modeled as a solid). Based on the above argument, we refer to the 3D
model of a terrain as a 2.5D+/2.75D model with buildings modeled as solids (Figure 2d). The boundary surfaces of
the solid can be modeled using TINs (triangles) or polygons.

The above mentioned surface representations provide the geometrical model of a terrain and do not include
explicit representation of individual terrain features (natural or man‐made) such as land use, buildings, roads, and
water bodies. A representation of terrain features is required to support semantic queries about these features.
To identify these individual terrain features one must define them as discrete objects and provide their charac-
teristics and relations to other features explicitly through semantics. In an object perspective, a terrain can be
viewed as a container populated by these objects, each with identity, spatial embedding, and attributes (Cova &
Goodchild, 2002). We see here that conceptually, field and object‐based models are not mutually exclusive in case
of terrains. Therefore, we describe a terrain as a:

“Continuous surface with elevation value(s) (can be more than one in case of 2.75D) for every lo-
cation within its spatial domain and these locations are mapped to individual terrain objects, each
with its own semantic model of information.”

2.2 | TIN representations

The simplest way of representing a TIN is to store each of its triangles as a list of vertex coordinates. Simple Feature
(OGC, 2011) is an example of such a data structure. It stores each triangle as a closed linear ring of its vertex coor-
dinates (Figure 4) (Kumar et al., 2016a). It is simple to store and represent and is supported by CityGML (GML) and
almost all other spatial databases. The ISO 19136:2007 implementation standard GML uses the Simple Feature
structure for storing object geometry (ISO, 2007). However, it has certain limitations. First, the structure exhibits
data redundancy. In the Simple Feature structure, the first vertex of every ring is repeated as the last vertex of
the linear ring (Figure 4). Given that the vertices follow a Poisson distribution, the average degree of a vertex in a
2D Delaunay triangulation is exactly 6 (Okabe, Boots, Sugihara, & Chiu, 2009). This suggests that on average each
vertex is stored 6 + (6/3) = 8 times in the Simple Feature structure (Kumar et al., 2016b). The size of the dataset
increases considerably with this repeated storage of vertex information for every triangle. Second, it has very
limited topology and does not explicitly store the adjacency relationships between the triangles which are neces-
sary for traversing the TIN.

The need for storage‐efficient representations for triangular meshes has contributed to the development of a
number of compact data structures which have different goals, such as compression and/or explicit storage of to-
pological relationships, for example Indexed Triangles (similar to OBJ), Triangles with adjacency information (referred
to here as Triangle+) (Shewchuk, 1996; Boissonnat, Devillers, Pion, Teillaud, & Yvinec, 2002), Stars (Blandford,
Blelloch, Cardoze, & Kadow, 2005; Ledoux, 2015), TriStrips (Speckmann & Snoeyink, 2001), Half‐edge or DCEL
(Muller & Preparata, 1978; Mäntylä, 1987), SQuad (Gurung, Laney, Lindstrom, & Rossignac, 2011), Grouper (Luffel,
Gurung, Lindstrom, & Rossignac, 2014), Laced Ring (Gurung, Luffel, Lindstrom, & Rossignac, 2011), Zipper (Gurung,
Luffel, Lindstrom, & Rossignac, 2013), and Tripod (Snoeyink & Speckmann, 1999).

The TIN data structures that we consider in this research are Indexed Triangles, Stars, and TriStrips. The
other data structures are also capable of reducing the storage requirements for a TIN and ensuring an efficient

     |  1157KUMAR et al.

implementation with respect to run‐time and mesh operations. They can be useful for streaming and visualiza-
tion of large TINs. CityGML, on the other hand, is an XML‐based data model for storing and representing 3D
city objects. Visualization of data is not the main task of CityGML. Storing data in XML format with highly com-
pressed data structures would require more preprocessing and later extensive decoding for comprehensibility.
Therefore, we only consider simple solutions that fit in the CityGML (GML) model and still assure interopera-
bility. We present in the following subsections the details of the data structures, and we use them for tests in
Section 4.

2.2.1 | Indexed Triangle

This stores every triangle of the TIN as references to the IDs of the three vertices forming the triangle (Kumar
et al., 2016b). The vertices are stored in a separate list with IDs and are not repeated for every triangle like in
Simple Feature. For instance, in Figure 5, a triangle T has three vertices with IDs {v1,v2,v3} each with a tuple
of location coordinates (x, y, z). With Indexed Triangle, the triangle T and its vertices are represented as shown
below:

list of vertices
 v1 = (x1,y1,z1)
 v2 = (x2,y2,z2)
 v3 = (x3,y3,z3)
list of triangles
 T = {v1,v2,v3}

3D data formats like OBJ and ITF (Intermediate TIN Format) (VTP, 2012) use this data structure for storing
triangles. The information about the adjacency and incidence relationships between the triangles of a TIN can
easily be derived using this data structure.

F I G U R E 4   Simple Feature representation for a triangle in ISO 19136:2007 implementation standard GML
(Kumar et al., 2016a). The first vertex (x1,y1, z1) of every triangle is repeated as the last vertex (x1,y1, z1) to close
the linear ring

1158  |     KUMAR et al.

Another variation of the Indexed Triangle structure is Triangle+, which stores triangles along with their ad-
jacency information. CGAL (Computational Geometry Algorithms Library) 2D triangulations (Boissonnat et al.,
2002) and Shewchuk’s Triangle (Shewchuk, 1996) use this data structure. The vertex coordinates (x, y, z) are
stored in a separate list with their IDs. Apart from storing references to the three bounding vertices {v1,v2,v3}, it
also stores references to the three adjacent triangles {T1,T2,T3} for storing the topology (Figure 6). However, the
storage requirements are increased with the presence of adjacency relationships.

2.2.2 | TriStrip

A TriStrip or a triangle strip is a sequence of n + 2 vertices that represents n triangles of a triangulation (Figure 7)
(Speckmann & Snoeyink, 2001). TriStrips are based on the same concept as Indexed Triangles but are poten-
tially capable of reducing the storage by a factor of 3 (Speckmann & Snoeyink, 2001). The vertex coordinates
(x, y, z) are stored in a separate list with their IDs. To generate a TriStrip, we start with the three vertices of a
triangle, then add a new vertex, and drop the oldest vertex to form the next triangle in sequence (Speckmann &

F I G U R E 5   Indexed Triangle (Kumar et al., 2016b). Every triangle T is represented by the IDs of the three
vertices (v1,v2,v3) forming the triangle

F I G U R E 6   Triangle+ (Kumar et al., 2016b). Every triangle T is represented by the IDs of the three vertices
(v1,v2,v3) forming the triangle and its three adjacent triangles {T1,T2,T3}

     |  1159KUMAR et al.

Snoeyink, 2001). For instance, in Figure 7, the TriStrip (1,2,3,4,5,6) represents four triangles: Δ123 (formed by
the first three vertices), Δ234 (formed by dropping the first vertex and taking up the next vertex in sequence),
Δ345, and Δ456. OpenGL and 3D data standards like COLLADA support TriStrips for representing the geom-
etry of objects.

2.2.3 | Star

This is a vertex‐based, compressed, and pointerless data structure for compactly representing triangular meshes
(Blandford et al., 2005). The star of a vertex is represented as an ordered list (counter‐clockwise) of IDs of the
vertices incident on it (Ledoux, 2015); for example, in Figure 8, the star of vertex v, star(v), is represented by the
vertex list {v1,v2,v3,v4,v5,v6}. The vertex coordinates (x, y, z) are stored in a separate list with their IDs. The trian-
gles are not stored explicitly but computed on‐the‐fly. Every triangle incident to the vertex v is represented by v
and the two consecutive vertices in the list vi (e.g. Δvv1v2 is given by {v,v1,v2}).

2.3 | Storing terrains in CityGML and associated problems

The data model of CityGML consists of a core module and several thematic modules for describing urban features
such as Building, Relief, LandUse, Transportation, Vegetation, and WaterBody (OGC, 2012). In CityGML, terrains
are defined within the thematic module Relief and represented by the class ReliefFeature in LODs 0–4 (OGC,
2012). With ReliefFeature, a terrain can be represented either as a TIN (TINReflief), or as a grid (RasterRelief), or
as mass points (MasspointRelief), or as break lines (BreaklineRelief). It is also possible to represent a terrain as a
combination of different terrain types in one CityGML dataset (e.g. as a TIN with break lines or as a coarse grid
with some areas as TINs).

The CityGML class that we are interested in is TINReflief. It represents terrains as TINs using either gml:Tri-
angulatedSurface or gml:Tin (GML3 geometry types). With gml:TriangulatedSurface, the triangles of a TIN are
explicitly specified with Simple Feature geometry (gml:Triangle), whereas in gml:Tin, a list of 3D control points is
specified along with the triangles. The support for triangles (gml:Triangle) in GML3 as Linear Rings is in accordance
with the ISO 19107:2003 Spatial Schema and OGC Simple Feature Common Architecture (OGC, 2011). However,
the shortcomings of the Simple Feature structure (described in Section 2.2) are clearly visible in the CityGML
implementation when working with massive terrain datasets.

With advancements in 3D data acquisition and processing technologies, it is now possible to generate billions
of 3D points even for an area of a few square kilometers, and, therefore, the TIN generated from these points is
also massive in size. Based on the literature review and experiments conducted, we found that there are several
problems in storing these massive TINs with CityGML (Kumar et al., 2016b). First, CityGML datasets become very

F I G U R E 7   TriStrip (Speckmann & Snoeyink, 2001). The first triangle (Δ123) is formed by the first three
vertices and the next triangle (Δ234) is formed by dropping the first vertex and taking up the next vertex in
sequence

1160  |     KUMAR et al.

large with the repeated storage of vertex information in the Simple Feature data structure. Second, there is very
little topological information stored with Simple Feature. Each triangle is stored individually regardless of its neigh-
bors, which hinders spatial analysis greatly. Third, there is no referencing scheme for the vertices of a triangle in the
Simple Feature structure. Each of the triangles is specified with repetition of full vertex coordinate values, which
takes a lot of storage space (Figure 4) (Kumar et al., 2016a). This is one of the main reasons for the increased size of
CityGML datasets.

Another problem concerns the representation of vertical triangles in a TIN model. CityGML is implemented
as an application schema of GML3 (OGC, 2012). The gml:Tin is based on the ISO 19107:2003 specification of
GM_TIN, which in theory is a 2.5D+ structure and can have vertical triangles. However, there is no procedure in
CityGML/GML to explicitly handle these vertical triangles.

3  | MODELING A CIT YGML E X TENSION FOR MA SSIVE TINS

3.1 | CityGML extension modeling

Depending upon the application requirements, users may want to model objects and attributes of 3D city models
which are not covered in the data model of CityGML. For instance, CityGML does not contain explicit thematic mod-
els for embankments, excavations, and city walls (OGC, 2012). One solution can be to model these objects using the
CityGML module Generics. Generics is a semi‐structured extension mechanism where the city objects are extended
with additional objects and attributes without making any changes in the CityGML schema. But using Generics
has certain limitations. CityGML datasets with generic objects and/or attributes cannot be validated against the
schema because their names and data types are not formally defined in the schema. Moreover, name conflicts of
the generic attributes and objects may occur. Consequently, using Generics has very limited semantic and syntactic
interoperability.

The second approach that CityGML uses to specify extensions to the model is ADE. While Generics are
created at run‐time without introducing any changes in the CityGML schema, an ADE is formally specified
in a separate XSD (XML Schema Definition) file and has its own namespace (OGC, 2012). ADEs are actively
used by information communities to create application‐specific extensions such as the Energy ADE for energy
modeling (Nouvel et al., 2015), the GeoBIM ADE for BIM‐IFC integration with CityGML (de Laat & Van Berlo,
2011), the IMGeo ADE for modeling Dutch topographic data in CityGML (Brink, Stoter, & Zlatanova, 2013), and
the Noise ADE for noise modeling (OGC, 2012). The advantage of using ADEs is that the extensions are for-
mally specified, which ensures semantic and syntactic interoperability for the exchange of application‐specific

F I G U R E 8   Star (Kumar et al., 2016b). Every triangle incident to the vertex v is represented by v and the two
consecutive vertices in the list vi (e.g. Δvv1v2 is given by {v,v1,v2})

     |  1161KUMAR et al.

information. The extended CityGML instances can be validated. Additionally, it is possible to use more than
one ADE in the same dataset.

After comparing the two alternatives, we adopted the ADE approach for modeling an extension to
CityGML. ADEs can be modeled in two ways: first, directly in the XSD schema file; second, by extending the
UML model of CityGML with application‐specific attributes/objects and later generating the XML schema
from the UML model. Brink et al. (2013) describe six alternatives for modeling ADEs in CityGML. One ap-
proach is to add new application‐specific attributes directly in the existing CityGML classes. However, this
implies editing the standard CityGML schema, which is controlled by a different authority: OGC (Open
Geospatial Consortium). Alternatively, we can use ADE hooks; every CityGML feature type has a “hook”
_GenericApplicationPropertyOf<Featuretypename> in its XML schema definition which allows attaching an ar-
bitrary number of additional attributes to it in the ADEs. Another approach is to add new attributes or objects
in subclasses in an ADE package. Since we are modeling an extension to CityGML, defining the new classes as
subclasses of existing CityGML classes and adding the new attributes to these subclasses seems appropriate.
Therefore, we prefer to adopt this approach for modeling the ADE. The method of inheritance with classes
and subclasses is easy to understand with some basic knowledge of UML. This approach was also accepted as
best practice by OGC (2014).

3.2 | Modeling choices for new TIN geometry types in GML

CityGML features are spatially represented by the GML3 geometry model. The geometry model of GML3 is
based on the ISO 19107:2003 “Spatial Schema” (ISO, 2003). It consists of geometric primitives such as points,
lines, and polygons, which are combined to form complexes, aggregates, or composite geometries. Therefore,
we introduce the new geometry types in the GML3 geometry model (see Figure 9) and extend them to CityGML
feature types as an ADE.

To avoid any name conflict with the existing GML elements, the new schema elements are defined in a sep-
arate XSD file iTIN_GML.xsd with a different namespace "https://godzilla.bk.tudelft.nl/schemas/iTIN_GML" and
the igml identifier. We introduce new geometry types (primitives, aggregates, and composites) in this model for
compactly representing TINs (see Table 1). New abstract classes for representing these geometry types are added
so as not to disturb the original hierarchy of the GML3 model.

• igml:_iPointPrimitive. An _iPointPrimitive is an abstract class for modeling the point geometries. It is mod-
eled as a type of gml:_GeometricPrimitive.

• igml:iPoint. An iPoint (or indexed Point) represents the geometry of an individual point (or vertex). It is
modeled as a type of igml:_iPointPrimitive. Each iPoint has an integer ID and a list of its coordinates (x, y, z)
given by <igml:id> and <igml:coordinates>, respectively. An igml:iPoint representation for a point is given
below:

<igml:iPoint>
<igml:id>1234</igml:id>
<igml:coordinates>
 85027.492 447446.125 1.51
</igml:coordinates>

</igml:iPoint>

• igml:iPointList. An iPointList (or indexed Point List) is a list of all the points (or vertices) of a surface defined
by space‐separated values of all the coordinates. It is modeled as a type of igml:_iPointPrimitive.

https://godzilla.bk.tudelft.nl/schemas/iTIN_GML

1162  |     KUMAR et al.

F
IG

U
R

E
 9

 
O

ur
 p

ro
po

se
d

ge
om

et
ry

 ty
pe

s
in

 th
e

G
M

L3
 g

eo
m

et
ric

 m
od

el
 fo

r m
as

si
ve

 T
IN

s
(p

ro
po

se
d

ab
st

ra
ct

 c
la

ss
es

 a
re

 s
ho

w
n

in
 b

lu
e

an
d

im
pl

em
en

ta
tio

n
cl

as
se

s
ar

e
sh

ow
n

in
 re

d)

     |  1163KUMAR et al.

<igml:iPointList>
<igml:coordinates>
 85027.492 447446.125 1.51
 85027.289 447446.156 1.31
 85049.219 447448.312 1.37
 85068.219 447447.332 1.64

<igml:coordinates>

</igml:iPointList>

• igml:iMultiPoint. To represent all the points of a surface, we added a new class igml:iMultiPoint.
An iMultiPoint is a collection of all the points (i.e. vertices) of a surface and is a type of gml:_
GeometricAggregate. With igml:iMultiPoint it is possible to store points either as a collection of in-
dividual igml:iPoint(s) referenced through igml:iPointMember elements or as a igml:iPointList (see
snippet below).

TA B L E 1   Proposed iTIN_GML geometry elements. Prefix “i” signifies that everything is indexed and refers to
the extension we proposed to the model. Prefix “_” indicates an abstract class in the model

iTIN_GML

Base class

GML iTIN_GML

1. _iPointPrimitive _GeometricPrimitive

2. iPoint _iPointPrimitive

3. iPointList _iPointPrimitive

4. iMultiPoint _GeometricAggregate

5. iMultiSurface _GeometricAggregate

6. iLine _Curve

7. _iSurface _Surface

8. _iSurfacePrimitive _iSurface

9. iTriangle _iSurfacePrimitive

10. iPolygon _iSurfacePrimitive

11. _iTinPrimitive _iSurface

12. iTriangulatedSurface _iTinPrimitive

13. iTriStrip _iTinPrimitive

14. iStars _iTinPrimitive

15. _iCompositeSurface _iSurface

16. iTIN _iCompositeSurface

17. iPolygonSurface _iCompositeSurface

18. _iSolid _GeometricPrimitive

19. iSolid _iSolid

20. iCompositeSolid _iSolid

1164  |     KUMAR et al.

<igml:iMultiPoint> <igml:iMultiPoint>
 <igml:iPointMember> <igml:iPointMember>
 <igml:iPoint> <igml:iPointList>

 </igml:iPoint> </igml:iPointList>
 <igml:iPointMember> </igml:iPointMember>
 </igml:iMultiPoint>
</igml:iMultiPoint>

• igml:iLine. An iLine (or indexed Line) represents the geometry of an individual line segment (or curve). It is
modeled as a type of gml:_Curve which is a subtype of gml:_GeometricPrimitive. We did not introduce any
separate abstract base class (such as _iLine) because it is a complete geometry (with points and indexes)
and hence can be reused with gml:MultiCurve. The existing hierarchy of elements in the GML model is
followed for defining new classes in the model. Each iLine has an ID given by <igml:id> and a list of IDs
of the points forming the line given by <igml:indexes>. The <igml:indexes> lists the IDs of the points
comprising the geometry instead of repeating the coordinate values of the points again. An igml:iLine
representation for a line connecting two points (with given point IDs) is defined as:

<igml:iLine>
 <igml:id>D23</igml:id>
 <igml:iPoints>

 </igml:iPoints>
 <igml:indexes>1 2</igml:indexes>
</igml:iLine>

• igml:_iSurface. For modeling the surfaces, we introduced another abstract class igml:_iSurface as a type of
gml:_GeometricPrimitive. It has three subclasses: igml:_iSurfacePrimitive for modeling individual surface
elements (polygon and triangle), igml:_iTinPrimitive for modeling TIN representations, and igml:_iCompos-
iteSurface for modeling TINs and composite polygonal surfaces.

• igml:iTriangle. An iTriangle (or indexed Triangle) represents the geometry of an individual triangle. It is
modeled as a type of igml:_iSurfacePrimitive. An igml:iTriangle is specified by the references to IDs of the
three vertices of the triangle given by gml:iPoint. It has an optional element igml:vertical to specify if the
triangle is a vertical triangle. For some applications such as flow modeling, adjacency, and network analy-
sis, it is sufficient to use a city model and its buildings as a single triangulated surface containing vertical
triangles instead of using a volumetric model (Gorte & Lesparre, 2012). The <igml:vertical> element helps
us to identify these vertical surfaces modeled in the terrain without relying on the geometry and on‐the‐
fly computation (which are prone to precision errors). This means that the model is more than 2.5D but
less than 3D; the geometry is 3D, but the underlying topology remains 2D.

<igml:iTriangle>
 <igml:id>34</igml:id>
 <igml:vertical>false</igml:vertical>
 <igml:indexes>1 2 3</igml:indexes>
</igml:iTriangle>

• igml:iPolygon. An iPolygon (or indexed Polygon) represents the geometry of an individual polygon. It is also
modeled as a type of igml:_iSurfacePrimitive and has the same geometrical representation as igml:iTriangle.
An igml:iPolygon is specified by the references to IDs of the vertices (>3) of the polygon. It also has an
optional element igml:vertical to specify if the polygon is a vertical surface.

     |  1165KUMAR et al.

<igml:iPolygon>
 <igml:id>14</igml:id>
 <igml:vertical>true</igml:vertical>
 <igml:indexes>3 4 5 6</igml:indexes>
</igml:iPolygon>

• igml:iMultiSurface. An iMultiSurface is a collection of surfaces (triangles/polygons) which can be dis-
joint, overlapping, touching, or even disconnected. It is modeled as a type of gml:_GeometricAggregate.
We did not introduce any separate abstract base class (such as _iGeometricAggregate) because it is a
complete geometry (with points and indexes) and hence can be reused in other geometry types. With
igml:iMultiSurface it is possible to store a surface either as a collection of triangles (igml:iTriangle) or as
a collection of polygons (igml:iPolygon) referenced through igml:iSurfaceMember elements (see snippet
below).

<igml:iMultiSurface> <igml:iMultiSurface>
 <igml:id>f24</igml:id> <igml:id>f24</igml:id>
 <igml:iSurfaceMember> <igml:iSurfaceMember>
 <igml:iTriangle> <igml:iPolygon>

 </igml:iTriangle> </igml:iPolygon>
 </igml:iSurfaceMember> </igml:iSurfaceMember>

</igml:iMultiSurface> </igml:iMultiSurface>

• igml:_iCompositeSurface. To model disjoint, non‐overlapping, topologically connected surfaces,
we introduced an abstract base class igml:_iCompositeSurface. It has two subclasses igml:iTIN and
igml:iPolygonSurface.

• igml:iTIN. For representing TINs, we added a new class igml:iTIN as a subclass of igml:_iCompositeSurface
(and not aggregates) because TINs represent surfaces with disjoint, non‐overlapping, and topologically
connected triangles. Apart from the above mentioned geometric primitives and aggregates, we added
three new TIN representation types: igml:iTriangulatedSurface, igml:iStars, and igml:iTriStrips as sub-
classes of igml:_TinPrimitives. In igml:iTIN the TIN vertices are represented using igml:iMultiPoint and the
TIN surface can be represented using any of these three new surface types.

<igml:iTIN>
 <igml:id>A24</igml:id>
 <igml:iTinPoints>
 <igml:iMultiPoint>

 </igml:iMultiPoint>
 </igml:iTinPoints>
 <igml:iTinSurface>

 <igml:iTinSurface>
</gml:iTIN>

• igml:iPolygonSurface. For representing topologically connected polygon surfaces, we added a new class igm-
l:iPolygonSurface as a subclass of igml:_iCompositeSurface. Points are represented using igml:iMultiPoint and
the polygons are represented using igml:iPolygon geometry referenced through igml:iPolygonPatch elements.

1166  |     KUMAR et al.

<igml:iPolygonSurface>
 <igml:id>A22</igml:id>
 <igml:iPoints>

 </igml:iPoints>
 <igml:iPolygonPatch>
 <igml:iPolygon>

 </igml:Polygon>
 <igml:iPolygonPatch>
</gml:iPolygonSurface>

• igml:iTriangulatedSurface. An iTriangulatedSurface stores triangles either as a collection of individual ig-
ml:iTriangle referenced through igml:iTrianglePatch elements or as igml:iTriangleList (see snippet below).
An igml:iTriangleList is a space‐separated list of IDs of the vertices of all the triangles.

<igml:iTriangulatedSurface> <igml:iTriangulatedSurface>
 <igml:id>{A24}</igml:id> <igml:id>A24</igml:id>
 <igml:iTrianglePatch> <igml:iTriangleList>
 <igml:iTriangle> 1 2 3 2 3 4 3 4 5..

 </igml:iTriangle> </igml:iTriangleList>
 </igml:iTrianglePatch>
 </igml:iTriangulatedSurface>
</igml:iTriangulatedSurface>

• igml:iTriStrip. An iTriStrip is a collection of triangles represented by igml:iTStrip elements. In each iTstrip
the first triangle is formed from first, second, and third vertices. Each subsequent triangle is formed from
the next vertex in sequence, reusing the previous two vertices. Each igml:iTriStrip can have any number
of igml:iTstrip elements to depict local connectivity.

<igml:iTriStrip>
 <igml:id>B54</igml:id>
 <igml:iTstrip id = "1"> 1 2 3 4 5 </igml:iTstrip>
 <igml:iTstrip id = "2"> 11 12 13 14 </igml:iTstrip>

</igml:iTriStrip>

• igml:iStars. An iStars is a collection of igml:iStar elements defined for every vertex of a triangulated sur-
face. For every vertex, an iStars stores an ordered list of IDs of the vertices incident to it (see snippet
below). Every triangle incident to a vertex is represented by the ID of that vertex and the IDs of two
consecutive vertices in the list.

<igml:iStars>
 <igml:id>A34</igml:id>
 <igml:iStar id = "1">2 3 4 5 6 7</igml:iStar>
 <igml:iStar id = "2">3 4 7 8 9 11</igml:iStar>

</igml:iStars>

• igml:_iSolid. For representing solids, we introduced another abstract class igml:_iSolid. It is modeled as a type
of gml:_GeometricPrimitive.

• igml:iSolid. This is modeled as a type of igml:_iSolid with the exterior and interior of the solid modeled as

     |  1167KUMAR et al.

a composite surface igml:_iCompositeSurface. The exterior shell and interior of the solid can be modeled
either as a TIN (igml:iTIN) or as a polygonal surface (igml:iPolygonSurface) referenced through igml:iExte-
rior and igml:iInterior elements.

<igml:iSolid>
 <igml:id>A234</igml:id>
 <igml:iExterior>
 <igml:iTIN>

 </igml:iTIN>
 </igml:iExterior>
 <igml:iInterior>
 <igml:gml:iPolygonSurface>

 </igml:gml:iPolygonSurface>
 </igml:iInterior>
</igml:iSolid>

• igml:iCompositeSolid. This is modeled as a type of igml:_iSolid. It is a collection of solids (igml:iSolid) refer-
enced through igml:iSolidMember elements.

<igml:iCompositeSolid>
 <igml:id>A1234</igml:id>
 <igml:iSolidMember>
 <igml:iSolid>

 </igml:iSolid>
 </igml:iSolidMember>

</igml:iCompositeSolid>

3.3 | Extending CityGML for massive terrains

For modeling terrains as TINs, the iTIN_GML elements are added to CityGML using an ADE. The initial idea was
to integrate these TIN representations directly in the GML model so as to use the same namspace and identifier
of GML. CityGML would then inherit these geometry types automatically from the enhanced GML model. This
would have eliminated the need to extend the existing CityGML classes with these new geometrical representa-
tions. However, both GML and CityGML are controlled by a formal authority: OGC. It would have been unwise to
change the original GML and CityGML model without the approval of the OGC.

Therefore, to show the benefits of this approach, we developed it as an ADE. We created a separate package
to model the new TIN geometry types and added them to CityGML by extending the existing CityGML classes
in an ADE package. Moreover, these geometry types can easily be added to the original GML/CityGML model, if
approved by the OGC.

The new classes are modeled as subclasses of the existing CityGML classes (marked with stereotype <<fea-
tureType>>) and can have their own properties (Table 2). The CityGML Relief module is extended to include the
iTIN_GML elements for modeling terrains (see Figure 10). Similarly, we extended other CityGML modules, Relief,
Building, Vegetation, Transportation(Road), WaterBody, and LandUse to include the iTIN_GML elements for rep-
resenting TINs. These elements can be used independently for compact geometrical representation of terrain and
its features such as buildings, roads, and vegetation. The ADE classes are defined in a separate file CityGML_iTINs_
ADE.xsd with a different namespace "https://godzilla.bk.tudelft.nl/schemas/iTINs_ADE" and the itin identifier.

https://godzilla.bk.tudelft.nl/schemas/iTINs_ADE

1168  |     KUMAR et al.

• iTINRelief. In the CityGML Relief module, a new relief component called iTINRelief is introduced as a
subclass dem:TINRelief. iTINRelief extends all the properties of the base class like name, description,
and LOD, and has igml:iTIN geometrical representation (Figure 11). In the original dem:TINRelief class,
the LOD is specified using dem:lod element. Here, we introduced separate geometrical representations
for the relief LODs (0–4) using lod0iTIN, lod1iTIN, lod2iTIN, lod3iTIN, and lod4iTIN elements. Another
element called iExtent is also introduced to mark the extent of the TIN using igml:iPolygonSurface
geometry. To represent the break lines in a TIN, we introduced an element called iBreaklines with ge-
ometry igml:iLine.

<cityObjectMember>
 <dem:ReliefFeature>
 <gml:name> Example iTINRelief </gml:name>
 <dem:lod> 1 </dem:lod>
 <dem:reliefComponent>
 <itin:iTINRelief>
 <dem:lod> 1 </dem:lod>
 <itin:iTINobject>
 <itin:lod1iTIN>
 <igml:iTIN>
 ...
 </igml:iTIN>
 <itin:lod1iTIN>
 </itin:iTINobject>
 </itin:iTINRelief>
 </dem:reliefComponent>
 </dem:ReliefFeature>
</cityObjectMember>

• iLandUse. In the CityGML LandUse module, a new component called iLandUse is introduced as a subclass
luse:LandUse. iLandUse extends all the properties of the base class like name, description, and LOD. It
can be represented either with igml:iTIN, or igml:iPolygonSurface, or igml:iMultiSurface geometrical rep-
resentations at different LODs (0–4) (Figure 12).

• iPlantCover. In the CityGML Vegetation module, a new component called iPlantCover is introduced as
a subclass veg:PlantCover. The Vegetation module has class veg:SolitaryVegetationObject to model
single vegetation objects, and class veg:PlantCover to model areas filled with a specific vegetation
type. Solitary vegetation objects are usually modeled with implicit geometries, therefore we added
iTIN_GML representations only to veg:PlantCover. Vegetation can be represented with iPlantCover
using either igml:iTIN, or igml:iPolygonSurface, or igml:iMultiSurface geometrical representations at
different LODs (0–4) (Figure 13).

TA B L E 2   New classes in the CityGML ADE (iPS = iPolygonSurface, iMS = iMultiSurface)

CityGML iTINs ADE CityGML module

iTIN_GML geometry

iTIN iPS iMS iSolid

1 iTINRelief Relief ✓

2 iWaterBody WaterBody ✓ ✓ ✓

3 iRoad Transportation ✓ ✓ ✓

4 iPlantCover Vegetation ✓ ✓ ✓

5 iLandUse LandUse ✓ ✓ ✓

6 _iAbstractBuilding Building ✓ ✓ ✓

     |  1169KUMAR et al.

F
IG

U
R

E
 1

0
 

Pr
op

os
ed

 c
la

ss
es

 in
 C

ity
G

M
L

iT
IN

s
A

D
E

fo
r m

as
si

ve
 te

rr
ai

ns
 (A

D
E

cl
as

se
s

sh
ow

n
in

 g
re

en
)

1170  |     KUMAR et al.

F I G U R E 1 2   iLandUse modeled in CityGML iTINs ADE using iTIN_GML

F I G U R E 11   iTINRelief modeled in CityGML iTINs ADE using iTIN_GML

     |  1171KUMAR et al.

• iRoad. In the CityGML Transportation module, a new component called iRoads is introduced as a subclass
tran:Roads. The road is represented as a tran:TransportationComplex in CityGML with different geomet-
rical representation at different levels of detail. At LOD 0, iRoads use igml:iLine geometry for representing
roads. For LODs 2–4, iRoads can be represented using either igml:iTIN, or igml:iPolygonSurface, or igm-
l:iMultiSurface geometrical representations (Figure 14). In CityGML, objects such as Track, Road, Railway,
and Square are also modeled as a type of tran:TransportationComplex. These objects are beyond the
scope of this study and, therefore, are not included in the ADE. However, we assure that these objects
can be extended in a similar manner for representation.

• iWaterBody. In the CityGML WaterBody module, a new component called iWaterBody is introduced as
a subclass of wtr:WaterBody. Water can be represented with iWaterBody using either igml:iTIN, or igm-
l:iPolygonSurface, or igml:iMultiSurface geometrical representations at different LODs (0–4) (Figure 15).
Theoretically, in CityGML, any WaterBody can also be represented by a solid, bounded by thematic surfaces,

F I G U R E 1 3   iPlantCover modeled in CityGML iTINs ADE using iTIN_GML

F I G U R E 1 4   iRoad modeled in CityGML iTINs ADE using iTIN_GML

1172  |     KUMAR et al.

at LODs 2–4 (OGC, 2012). In real‐world scenarios it is usually modeled as a surface and therefore we do not
take solid representation into account. However, it can be added to the ADE in the same way as surface
representation.

• _iAbstractBuilding. In the CityGML Building module, a new abstract class _iAbstractBuilding is added as
a subclass of bldg:_AbstractBuilding. _iAsbtractBuilding has two subclasses: iBuilding and iBuildingPart.
Buildings and building parts can be represented either with igml:iSolid, or igml:iTIN, or igml:iPolygon-
Surface geometric representation (Figure 16). _iAsbtractBuilding is modeled for LODs 0–3. Openings and
boundary surfaces are also represented for modeling LOD 3. LOD 4 with building interior can be modeled
in the same manner.

4 | IMPLEMENTATION AND E XPERIMENTS WITH
RE AL ‐WORLD DATA SETS

4.1 | iTIN_GML and CityGML iTINs ADE schema generation

We used the ShapeChange (https://shapechange.net) tool to derive the XML schemas of the iTIN_GML and
CityGML iTINs ADE from the UML model. ShapeChange is a Java‐based tool which implements UML to GML
encoding rules described in ISO 19136, ISO 19118, and ISO 19109. We only generated the XML schema for
the GML and CityGML extensions and not for the whole data models as they are already publicly available.
The generated CityGML ADE schema only requires importing the existing CityGML schema and the gen-
erated iTIN_GML schema containing new geometry types for representing TINs. These dependencies are
resolved by ShapeChange during the transformation from UML packages to XML schema. The UML mod-
els and XML schemas for iTIN_GML and CityGML iTINs ADE are available at https://github.com/tudelft3d/
CityGML_iTINs_ADE.

4.2 | Prototype testing

The terrain datasets used for testing the implementation are as follows.

1. AHN3 TIN. AHN3 (Actueel Hoogtebestand Nederland version 3) (AHN2015, 2015) is the national height
model of the Netherlands and contains billions of 3D points (more than 10 points/m2). AHN3 Tile#

F I G U R E 1 5   iWaterBody modeled in CityGML iTINs ADE using iTIN_GML

https://shapechange.net
https://github.com/tudelft3d/CityGML_iTINs_ADE
https://github.com/tudelft3d/CityGML_iTINs_ADE

     |  1173KUMAR et al.

37EN/1 (size 5 × 6.25 km2) of the AHN3 point cloud is used as input for generating the TIN using
Lastools (Hug, Krzystek, & Fuchs, 2004). The dataset is generated in streaming mesh format (*.sma)
(Isenburg, Lindstrom, Gumhold, & Snoeyink, 2005).

2. 3DBGT. 3DBGT (3D Basisregistratie Grootschalige Topografie) is the 3D city model of the Netherlands created
using the open‐source software 3dfier (https://3d.bk.tudelft.nl/opendata/3dfier/). 3DBGT is a constrained tri-
angulation generated from AHN3 point cloud and 2D BGT (large‐scale 2D topographic dataset of the
Netherlands) footprints (BGT, 2016). 3dfier takes 2D topographic datasets and lifts every 2D polygon to the
required height to make them 3D. This height information is obtained from the point cloud data. We used
3DBGT TIN of the Amsterdam area for testing. The dataset is available in OBJ format (*.obj).

3. 3DTOP10NL. 3DTOP10NL is the 3D city model of the Netherlands, which covers the whole country, including
buildings, terrain, roads, canals, and so on in 1,368 tiles. It is generated by adding the height information from
AHN2 point cloud to the 2D topographic objects in TOP10NL (Elberink, Stoter, Ledoux, & Commandeur, 2013).
The layer that we are interested in for the 3DTOP10NL dataset is the “terreinVlak_3D_LOD0’ which contains the
terrain model with more than 1 billion triangles. The dataset is available in ESRI GeoDatabase format (*.gdb).

The details of the input terrain datasets along with their size in CityGML format are given in Table 3. A prototype
was created to introduce new TIN representations in CityGML datasets. The prototype reads the input datasets and
maps the Simple Feature representation of triangles to the index‐based structure of igml:iTIN. The resulting storage
sizes of the prototype testing are given in Table 3, along with the achieved compression factors.

We also compared the time taken to generate data in CityGML and CityGML iTINs ADE formats from original
test datasets (Table 4) to observe the performance of the system in handling massive terrain data. These tests were
performed on a Linux Godzilla server with 40 Intel Xeon E5‐2650 v3 CPUs, 128 GB RAM, 3.3 GHz base clock speed,
and 3.6 GHz turbo boost speed. The three test datasets are available in three different formats (OBJ, SMA, and GDB)
and the time taken to generate output data from these datasets differs significantly. From Table 4 we can see that

F I G U R E 1 6   _iAbstractBuilding modeled in CityGML iTINs ADE using iTIN_GML

https://3d.bk.tudelft.nl/opendata/3dfier/

1174  |     KUMAR et al.

it takes less time to generate CityGML data from the 3DTOP10NL GeoDatabase. This can be attributed to the fact
that both CityGML and Esri GeoDatabase follow the Simple Feature structure for representing geometry. While
generating iTIN_GML geometry types from this Simple Feature structure most of the time is consumed in cleaning
the vertices (removing duplicates), generating integer IDs for the vertices, and assigning these indexes to the triangles
for representing the geometry. However, in case of other formats like OBJ and SMA, which already follow a simple
indexing scheme, the igml:iTriangulatedSurface structure is generated very quickly. For igml:iTriStrip and igml:iStars
the data generation time is a bit high as it also includes the time taken to compute the neighboring triangles/vertices
(required for TIN traversal).

We also tested for the storage size of quantized vertices (Isenburg, Lindstrom, & Snoeyink, 2005). A vertex
is called quantized when we store only the difference of its coordinates from the centroid vertex (or any other
vertex) and not the full vertex coordinates. The centroid vertex is the centroid of the vertices of the TIN or can
also be selected randomly. We also tried storing the difference of the coordinates from the first vertex of the TIN.
However, storing quantized vertices did not change the compression factors significantly. As this was not the main
objective of our study, we did not test it further.

As can be observed from the results, the highest compression factor of 20.1 is achieved using the iTriStrip
referencing scheme for storing TINs in place of the Simple Feature structure. The data structures in decreasing
order of storage requirements are:

iStars > iTriangulatedSurface > iTriStrip

Although the inclusion of triangle strips (iTriStrips) provides maximum reduction in storage size, it has certain
topological restrictions. We used the TriangleStripifier module of the PyFFI python package to generate triangle
strips for our datasets (PyFFI, 2011). TriangleStripifier is a python adaptation of the NvTriStrip library (NVIDIA,
2004) and converts triangles into a list of strips. A triangle strip enters each triangle at one edge (known as the
entry‐edge) and exits that triangle on the left or the right remaining edges (known as exit‐edges) (Speckmann &
Snoeyink, 2001). The triangle strip alternates between left and right exit‐edges with each successive triangle
until it reaches a triangle with no forward connections (Speckmann & Snoeyink, 2001). For the remaining trian-
gles, the same process is repeated until all the triangles are placed in triangle strips. The process of generating
triangle strips from the test datasets is depicted in Figure 17. Therefore, for a single TIN, we can have a number of

TA B L E 3   Details of the input datasets showing the number of triangles in each terrain dataset and the storage
space required for storing each dataset in CityGML and CityGML iTINs ADE format (CF = Compression Factor, iTS
= iTriangulatedSurface)

Terrain dataset
Number of
triangles CityGML file size

iTS iTriStrip iStars

size CF size CF size CF

3DBGT 13,688,402 4.65 GB 337.92 MB 14.32 236.54 MB 20.1 816.13 MB 5.83

Tile #37EN/1 40,788,573 13.98 GB 952.32 MB 15.13 747.52 MB 19.22 2.28 GB 6.13

3DTOP10NL 1,156,641,666 698.74 GB 46.64 GB 14.38 37.43 GB 18.67 108.33 GB 6.45

TA B L E 4   Time taken to generate CityGML and CityGML iTINs ADE data from test datasets

Terrain dataset CityGML (min) iTS (min) iTriStrip (min) iStar (min)

3DBGT (obj) 25.63 15.68 63.83 27.21

Tile #37EN/1 (sma) 52.19 38.87 93.77 54.32

3DTOP10NL (gdb) 38.54 121.63 194.31 166.91

     |  1175KUMAR et al.

disconnected triangle strips storing the mesh triangles (Figure 18). This means there is local topological connectiv-
ity within the individual triangle strips but no overall connectivity for the entire TIN. Certain operations are thus
not possible in constant time, such as finding the adjacent triangles of a given triangle.

This is not the case with Stars. When all the stars in a TIN are represented, each triangle is present in exactly
three stars (its three vertices) and each edge is present in exactly two stars (its two vertices) (Ledoux, 2015). There
is a significant overlap in the stars from which we can derive the adjacency and incidence relationships of the
triangles of a TIN (Ledoux, 2015). For a given vertex we can easily find the incident edges or triangles using stars.
Therefore, these data structures in increasing order of topology can be represented as:

iTriStrip < iTriangulatedSurface < iStars

F I G U R E 1 7   Flow diagram for generating triangle strips from the CityGML test datasets

F I G U R E 1 8   A single TIN can have a number of disconnected triangle strips. There is local connectivity within
each strip (shown in red) but no overall connectivity for the entire TIN

1176  |     KUMAR et al.

5  | CONCLUSIONS AND FURTHER RESE ARCH

This article presents a new CityGML extension for efficiently storing massive TIN terrains in CityGML. We in-
vestigated several TIN data structures for their storage requirements and topology storage, and explored how
they can be implemented in CityGML for storing massive TINs. We introduced three new index‐based geometry
types (Indexed Triangles, TriStrips, and Stars) for representing TINs in the GML schema and extended them to
CityGML as an ADE. Our approach allows us to store TIN terrains in CityGML with nearly 20 times less storage
than the Simple Feature structure in CityGML. This CityGML ADE addresses the issues of massive size of TIN
terrain datasets, and explicit handling of vertical triangles in these datasets. It is a stepping stone in the direc-
tion of reducing the large size of CityGML datasets while still maintaining usability for different applications.

CityGML differentiates five consecutive LODs (LOD 0 to LOD 4), wherein features become much more de-
tailed in their geometry and semantic differentiation with each increasing LOD (OGC, 2012). This LOD concept is
very well established in the case of buildings, bridges, and roads; however, this is not the case with other CityGML
modules like relief (terrain), land use, and vegetation (Biljecki, Ledoux, & Stoter, 2016; Löwner, Gröger, Benner,
Biljecki, & Nagel, 2016). For instance, the LOD of a relief object is expressed as integer attribute gml:lod with
values between 0 and 4. We added new elements lod1iTIN, lod2iTIN, …, lod4iTIN in the CityGML Relief (and other
modules) to model different LODs of the terrain. However, the proper specification to model the geometry and
semantics of terrains at each LOD is still missing in the CityGML specifications. The CityGML specifications do not
distinguish between different terrain LODs at the geometric and semantic level, although it is possible to model
different levels of terrain (Luebke, 2003). Since a terrain is a depiction of location–elevation values, it cannot
always be an otherwise flat LOD 0 model with one elevation value per triangle in a TIN. A terrain model can also
have vertical walls and overhangs. Our future plan is to extend the concept of LODs for terrains and include it in
the CityGML semantic model of the ADE.

The next step is to integrate this ADE into the database to see its overall performance in handling terrain data.
We plan to use 3DCityDB (https://www.3dcitydb.org/) (PostgreSQL) for the database implementation of the
ADE. Our previous tests have shown that it takes a significantly larger amount of time to populate and index the
TIN datasets with the Simple Feature structure than the index‐based data structures in the database (Kumar et
al., 2016a, b). In the case of the ADE, we expect that the loading time from the CityGML ADE file to the database
will most likely improve. The spatial index will be smaller as it does not require creating a complex spatial index
like giST (in case of Simple Feature). The indexing can be accomplished at the vertex level with a simple B‐tree
(Ledoux, 2015; Kumar et al., 2016a, b).

CityGML is designed for the storage and exchange of 3D city models and not for visualizing them. To visu-
alize CityGML models over the web, they are usually converted to commonly used 3D graphics formats. We
expect the CityGML iTINs ADE datasets to load faster over the web owing to their small file sizes and index‐
based geometry representations. The CityGML iTINs ADE datasets can also be used for other applications
utilizing CityGML models, such as noise modeling, flood modeling, visibility analysis, visualization for navigation
purposes, and so on.

ACKNOWLEDG MENTS

This work is part of the research project 3D4EM (3D for Environmental Modeling) in the Maps4Society program
(Grant No. 13740) which is funded by the NWO (Netherlands Organization for Scientific Research), and partly
funded by the Ministry of Economic Affairs. For her contribution to this research, the third author (Jantien Stoter)
was funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and in-
novation program (Grant No. 677312 UMnD).

https://www.3dcitydb.org/

     |  1177KUMAR et al.

ORCID

Kavisha Kumar http://orcid.org/0000-0002-5010-6175

Hugo Ledoux https://orcid.org/0000-0002-1251-8654

Jantien Stoter https://orcid.org/0000-0002-1393-7279

R E FE R E N C E S
AHN3. (2015). Actueel Hoogtebestand Nederland version 3. Retrieved from https://www.pdok.nl/nl/ahn3-downloads
BGT. (2016). Basisregistratie Grootschalige Topografie. Retrieved from https://www.pdok.nl/nl/producten/

pdok-downloads/download-basisregistratie-grootschalige-topografie
Biljecki, F., Ledoux, H., & Stoter, J. (2016). An improved LOD specification for 3D building models. Computers, Environment

& Urban Systems, 59, 25–37.
Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., & Çöltekin, A. (2015). Applications of 3D city models: State of the art

review. ISPRS International Journal of Geo‐Information, 4(4), 2842–2889.
Blandford, D. K., Blelloch, G. E., Cardoze, D. E., & Kadow, C. (2005). Compact representations of simplicial meshes in two

and three dimensions. International Journal of Computational Geometry & Applications, 15(1), 3–24.
Boissonnat, J.‐D., Devillers, O., Pion, S., Teillaud, M., & Yvinec, M. (2002). Triangulations in CGAL. Computational Geometry:

Theory & Applications, 22, 5–19.
Brink, L., Stoter, J., & Zlatanova, S. (2013). UML‐based approach to developing a CityGML application domain extension.

Transactions in GIS, 17(6), 920–942.
Cova, T. J., & Goodchild, M. F. (2002). Extending geographical representation to include fields of spatial objects.

International Journal of Geographical Information Science, 16(6), 509–532.
De Berg, M., Van Kreveld, M., Overmars, M., & Schwarzkopf, O. C. (2000). Computational geometry. Berlin, Germany: Springer.
de Laat, R., & Van Berlo, L. (2011). Integration of BIM and GIS: The development of the CityGML GeoBIM extension. In

T. H. Kolbe, G. König, & C. Nagel (Eds.), Advances in 3D geo‐information sciences Lecture Notes in Geoinformation and
Cartography, (pp. 211–225). Berlin, Germany: Springer.

Elberink, S. O., Stoter, J., Ledoux, H., & Commandeur, T. (2013). Generation and dissemination of a national virtual 3D city
and landscape model for the Netherlands. Photogrammetric Engineering & Remote Sensing, 79(2), 147–158.

Fisher, P. (1997). The pixel: A snare and a delusion. International Journal of Remote Sensing, 18(3), 679–685.
Gorte, B., & Lesparre, J. (2012). Representation and reconstruction of triangular irregular networks with vertical walls.

ISPRS‐International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 38–4(C26), 15–19.
Gotsman, C., Gumhold, S., & Kobbelt, L. (2002). Simplification and compression of 3D meshes. In A. Iske, E. Quak, & M. S.

Floater (Eds.), Tutorials on multiresolution in geometric modelling (pp. 319–361). Berlin, Germany: Springer.
Gröger, G., & Plümer, L. (2005). How to get 3‐D for the price of 2‐D? Topology and consistency of 3‐D urban GIS.

Geoinformatica, 9(2), 139–158.
Gurung, T., Laney, D., Lindstrom, P., & Rossignac, J. (2011). SQuad: Compact representation for triangle meshes. Computer

Graphics Forum, 30(2), 355–364.
Gurung, T., Luffel, M., Lindstrom, P., & Rossignac, J. (2011). LR: Compact connectivity representation for triangle meshes.

ACM Transactions on Graphics, 30(4), 67.
Gurung, T., Luffel, M., Lindstrom, P., & Rossignac, J. (2013). Zipper: A compact connectivity data structure for triangle

meshes. Computer‐Aided Design, 45(2), 262–269.
Hug, C., Krzystek, P., & Fuchs, W. (2004). Advanced LiDAR data processing with LasTools. In Proceedings of the 20th

International Society for Photogrammetry and Remote Sensing (pp. 12–23). Istanbul, Turkey: ISPRS.
Isenburg, M., Lindstrom, P., Gumhold, S., & Snoeyink, J. (2005). Streaming formats for geometric data sets. Retrieved from

https://www.cs.unc.edu/~isenburg/research/sm/download/streaming_formats.pdf
Isenburg, M., Lindstrom, P., & Snoeyink, J. (2005). Lossless compression of predicted floating‐point geometry. Computer‐

Aided Design, 37(8), 869–877.
ISO. (2003). 19107: 2003(E) Geographic information: Spatial schema. Retrieved from https://www.iso.org/standard/26012.

html
ISO. (2007). 19136: 2007(E) Geographic information: Geography Markup Language (GML). Retrieved from https://www.iso.

org/standard/32554.html
Kadaster. (2015). 3DTOP10NL. Retrieved from https://www.kadaster.nl/-/3d-kaart-nl
Kumar, K., Ledoux, H., & Stoter, J. (2016a). A CityGML extension for handling very large TINs. ISPRS Annals of

Photogrammetry, Remote Sensing & Spatial Information Sciences, 4–2(W1), 137–143.
Kumar, K., Ledoux, H., & Stoter, J. (2016b). Comparative analysis of data structures for storing massive TINs in a DBMS.

International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 41–B2, 123–130.

http://orcid.org/0000-0002-5010-6175
http://orcid.org/0000-0002-5010-6175
https://orcid.org/0000-0002-1251-8654
https://orcid.org/0000-0002-1251-8654
https://orcid.org/0000-0002-1393-7279
https://orcid.org/0000-0002-1393-7279
https://www.pdok.nl/nl/ahn3-downloads
https://www.pdok.nl/nl/producten/pdok-downloads/download-basisregistratie-grootschalige-topografie
https://www.pdok.nl/nl/producten/pdok-downloads/download-basisregistratie-grootschalige-topografie
https://www.cs.unc.edu/~isenburg/research/sm/download/streaming_formats.pdf
https://www.iso.org/standard/26012.html
https://www.iso.org/standard/26012.html
https://www.iso.org/standard/32554.html
https://www.iso.org/standard/32554.html
https://www.kadaster.nl/-/3d-kaart-nl

1178  |     KUMAR et al.

Kumler, M. (1994). An intensive comparison of triangulated irregular networks (TINs) and digital elevation models (DEMs).
Cartographica, 31(2), 1–99.

Ledoux, H. (2015). Storing and analysing massive TINs in a DBMS with a star‐based data structure. Delft, the Netherlands:
Delft University of Technology Technical Report.

Ledoux, H. (2017). Representation: Fields. In D. Richardson, N. Castree, M. F. Goodchild, A. Kobayashi, W. Liu, & R. A.
Marston (Eds.), The international encyclopedia of geography (pp. 1–15). New York, NY: John Wiley & Sons.

Löwner, M. O., Gröger, G., Benner, J., Biljecki, F., & Nagel, C. (2016). Proposal for a new LOD and multi‐representation con-
cept for CityGML. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Informational Sciences, 4–2(W1), 3–12.

Luebke, D. P. (2003). Level of detail for 3D graphics. San Francisco, CA: Morgan Kaufmann.
Luffel, M., Gurung, T., Lindstrom, P., & Rossignac, J. (2014). Grouper: A compact, streamable triangle mesh data structure.

IEEE Transactions on Visualization & Computer Graphics, 20(1), 84–98.
Lyon, J. G. (2003). GIS for water resource and watershed management. Boca Raton, FL: CRC Press.
Mäntylä, M. (1987). An introduction to solid modeling. New York, NY: Computer Science Press.
Muller, D. E., & Preparata, F. P. (1978). Finding the intersection of two convex polyhedra. Theoretical Computer Science,

7, 217–236.
Nouvel, R., Bahu, J.‐M., Kaden, R., Kaempf, J., Cipriano, P., Lauster, M., & Casper, E. (2015). Development of the CityGML

application domain extension energy for urban energy simulation. In Proceedings of Building Simulation 2015.
Hyderabad, India.

NVIDIA. (2004). NvTriStrip library. Retrieved from https://www.nvidia.com/object/nvtristrip_library.html
OGC. (2011). OpenGIS R implementation specification for geographic information—Simple feature access—Part 1: Common

architecture (OGC Document version 06–103r4). Retrieved from https://www.opengeospatial.org/standards/sfa
OGC. (2012). OGC City Geography Markup Language (CityGML) encoding standard 2.0.0
OGC. (2014). Modeling an application domain extension of CityGML in UML (OGC Best Practice Document reference 12–

066). Retrieved from https://portal.opengeospatial.org/files/?artifact_id=49000
Okabe, A., Boots, B., Sugihara, K., & Chiu, S. N. (2009). Spatial tessellations: Concepts and applications of Voronoi diagrams.

New York, NY: John Wiley & Sons.
Penninga, F. (2008). 3D topography: A simplicial complex‐based solution in a spatial DBMS. (Unpublished Ph.D. Dissertation).

Delft University of Technology, Delft, the Netherlands.
PyFFI. (2011). Package PyFFI: Class TriangleStripifier. Retrieved from https://pyffi.sourceforge.net/apidocs/
Ravada, S., Kazar, B. M., & Kothuri, R. (2009). Query processing in 3D spatial databases: Experiences with Oracle Spatial

11g. In J. Lee, & S. Zlatanova (Eds.), 3D geoinformation sciences (Lecture Notes in Geoinformation and Cartography,
pp. 153–173). Berlin, Germany: Springer.

Shewchuk, J. R. (1996). Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. In M. C. Lin & D.
Manocha (Eds.), Applied computational geometry: Towards geometric engineering (Lecture Notes in Computer Science,
Vol. 1148, pp. 203–222). Berlin, Germany: Springer.

Snoeyink, J., & Speckmann, B. (1999). Tripod: A minimalist data structure for embedded triangulations. In Proceedings of
the Workshop on Computational Graph Theory and Combinatorics. Miami, FL: ACM.

Speckmann, B., & Snoeyink, J. (2001). Easy triangle strips for TIN terrain models. International Journal of Geographical
Information Science, 15(4), 379–386.

Stoter, J., & Zlatanova, S. (2003). 3D GIS, where are we standing? In Proceedings of the ISPRS Joint Workshop on Spatial,
Temporal and Multi‐dimensional Data Modelling and Analysis. Québec City, QUE, Canada: ISPRS.

Tse, R., & Gold, C. (2004). TIN meets CAD—extending the TIN concept in GIS. Future Generation Computer Systems, 20(7),
1171–1184.

VTP. (2012). ITF Format: virtual terrain project. Retrieved from https://vterrain.org/Implementation/Formats/ITF.html
Wikipedia. (2017). Terrain. Retrieved from https://en.wikipedia.org/w/index.php?title=Terrain&oldid=805193455

How to cite this article: Kumar K, Ledoux H, Stoter J. Compactly representing massive terrain models as
TINs in CityGML.Transaction in GIS. 2018;22:1152–1178. https://doi.org/10.1111/tgis.12456

https://www.nvidia.com/object/nvtristrip_library.html
https://www.opengeospatial.org/standards/sfa
https://portal.opengeospatial.org/files/?artifact_id=49000
https://pyffi.sourceforge.net/apidocs/
https://vterrain.org/Implementation/Formats/ITF.html
https://en.wikipedia.org/w/index.php?title=Terrain&oldid=805193455
https://doi.org/10.1111/tgis.12456

