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Abstract

Van Oord is active in the subsea cable installation industry and executes most of their cable lay
projects with their cable laying vessel: The Nexus. In this thesis the focus lies on the normal lay
phase of the cable installation, which comprises the phase when the vessel is pulling out the ca-
ble and putting it down on the seabed following the desired cable route. In order to ensure cable
integrity during cable installation, a normal cable lay analysis is executed in the dynamic analysis
software Orcaflex. The aim of the cable installation analysis is to define the installation limits in
terms of the sea state. However, the vessel motions of the Nexus can be measured instantaneously
and accurately on board of the vessel. Therefore, an assessment into the use of vessel motions for
the expression of the handling limits during cable installation is performed. The assessment is ex-
ecuted for a normal lay configuration with an export cable and a 50 meter water depth. The focus
lies on the maximum curvature and maximum tension response of the cable.

The cable dynamics result from both the vessel motions and the direct cable loads. First, the effect
of these phenomena is assessed independently with the use of Orcaflex simulations. The influence
of the vessel motions on the cable dynamics is found to be low for short wave periods, as the vessel
hardly reacts to these kinds of waves. As a result, vessel motion limit criteria are less suitable for
expressing cable installation limits at less severe sea conditions. However, the handling limits of the
cable are not likely to be exceeded during these kinds of sea states, therefore this does not directly
prevent the use of vessel motion limit criteria. Next, the most suitable vessel motion, measured at
the chute of the vessel, for application of vessel motion limit criteria is determined based on the
time lagged cross correlations between the cable response and the vessel motions. By using this
method, the vessel motion which is most linearly related to the cable response is selected. In the
case study, the heave acceleration and axial acceleration of the vessel are identified as most suitable
candidates for application of vessel motion limit criteria. Finally, the performance of the selected
vessel motion as limit parameter is compared to the use of the wave elevation, equivalent to sea
state limit criteria. The performance of both is assessed by a linear regression analysis of the peaks
in the limit parameter time history and the associated peaks in the cable response. This analysis led
to the conclusion that in the case study higher certainty can be given to vessel motion limit criteria
compared to sea state limit criteria, which eventually can lead to an increase of the workability.

Furthermore, a sensitivity analysis is performed to identify if the selected vessel motion for the ap-
plication of vessel motion limit criteria is sensitive to changes in the normal lay configuration. The
selected vessel motion and accompanied magnitude of the correlation were prone to changes in
the normal lay configuration. Therefore, the applicability of vessel motion limit criteria for the base
case in this thesis cannot straightforwardly be generalised for other normal lay configurations.

Due to the nonlinear nature of the cable lay system, all cable installation analysis are executed using
time domain simulations in Orcaflex, which are associated with large computational time. In light
of reducing the computational time for normal lay analysis, the potential use of a transfer function
for estimation of the maximum cable response is evaluated. The transfer function is set up based
on the first order frequency response of the cable system to regular waves. Before application of
the transfer function approach, the nonlinear behaviour of the system is studied on the basis of the
spectral response of the cable towards regular wave simulations in Orcaflex. Especially the contri-
bution of the higher order frequency components and the effect of the nonlinear drag term in the
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Morison equation are addressed.

In order to check the performance of the cable response transfer function, the maximum cable re-
sponse estimation of the transfer function for a three hour time duration is compared to the sta-
tistical three hour maximum resulting from non-linear Orcaflex simulations. The transfer function
is found to underestimate both the curvature and the tension response of the cable, leading to the
conclusion that this transfer function approach is not suitable for the prediction of the maximum
cable response. The underestimation is caused by the high dynamic complexity of the normal lay
system.
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Introduction

In recent years offshore wind energy has become a viable green energy production option. In order
to reduce CO; emissions, the aim of the Dutch government is to have 4450 MWe installed capacity
in the North Sea by 2023 [SER, 2013]. This is equivalent to approximately 3 of the largest gas fired
power plants in The Netherlands'. Therefore the offshore wind energy industry plays an important
role in the plans of the Dutch government to reduce CO, emissions. As a result, many new offshore
wind farms are planned for development in the North Sea.

Electricity must be transported from the production site to the consumers. In case of offshore wind
farms this means that construction of new electrical infrastructure is required. Figure 1.1 shows the
trend of the increasing distance to shore of offshore wind turbines. Larger distances to shore also
means longer cables to transport the electricity. This emphasises the need for reduced installation
cost of subsea export electricity cables. One way to achieve this is by improving the cable installation
analysis with the goal to reduce cable installation costs.
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Figure 1.1: The distance to shore for yearly installed wind turbines [IWES, 2018].

Ihttps://powerplants.vattenfall.com/#/countries=Netherlands/view=map/sort=name [Cited on: 10-01-
2020]
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1.1. Background

In cable lay analysis, the dynamic response of the cable to vessel motions and direct cable loads
is assessed. Direct cable loads are the hydrodynamics loads acting on the submerged section of
the cable directly. The aim of the cable installation analysis is to ensure cable integrity during the
installation process. The loads on the cable during installation should not exceed the specified
handling limits of the cable.

Dynamic cable lay analysis comprises the insurance of the cable integrity during the normal lay
phase of the cable installation. In this phase of the installation the Cable Laying Vessel (CLV) is
slowly moving forward, while laying the cable on the seafloor. The cable lay system is a non-linear
system, therefore the dynamic cable lay analysis is performed using time domain simulations. The
simulations are carried out for a discretised set of sea states, which contains all possible combina-
tions of Hy and T, for the considered Hs and T, range. The results are combined into workability
tables. These tables indicate whether all cable handling limits are ensured during installation for
each sea state in the discretised set of sea states. During the actual cable installation the crew inter-
prets the on-site conditions in relation to the workability tables.

1.2. Problem description

The discretisation of the wave height in the sea states for which simulations are performed, causes
a workability loss. This is caused by the discontinuity in the operational conditions, meaning cable
lay operations are executed for any sea state inside the accepted range of sea states. The true limit
might be slightly higher than the highest accepted value contained in the discretised set.

Furthermore, the loads on the cable are not the direct result of the sea state, but result from a combi-
nation of vessel motions and direct cable loads. This emphasizes the possibility to express limiting
conditions in vessel motions, instead of sea state. Vessel motions can be accurately and continu-
ously measured on the cable laying vessel, making them suitable for on board decision making.

The current approach to dynamic cable lay analysis is associated with a large number of simula-
tions. The nonlinear nature of the system makes it hard to predict which conditions will cause the
most severe cable loads, requiring simulations for all site conditions. This same nonlinear charac-
ter arises the need for time domain simulations, which are computationally expensive. Therefore
decreasing computational time involved with dynamic cable lay analysis is of interest.

Combining these aspects, results in the idea of establishing a transfer function between the vessel
motion and cable load. Before this approach can be applied in practice, its suitability and applica-
bility are to be accessed.

1.3. Literature review

Loos [2017] investigated the relation between vessel motions and the response of subsea power
cables that may be limiting cable installation. He concluded that compression in the touchdown
zone is the main limiting mechanism. He found a strong relation between the chute velocities in
the direction of the cable axis and tension loss in the touchdown zone. The effect of direct wave
loads on the cable was not considered in the relation stated above. They proved to add significant
scatter to the near-perfect relation found based on vessel motions only. Additionally, the effect of
wave shielding by the ship was not considered by Loos. The effects of wave shielding on the cable
loads are currently unclear.

Koloshkin and Saevik [2016] investigated the effect of vessel motions, in particular cyclic heave mo-
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tions, on kink formation in the cable during installation. This motion can lead to kink formation
along the catenary depending on the magnitude of the heave motions and the initial torsion utiliza-
tion. Additionally it was found that compression at the touchdown point can result from the cyclic
heave motions.

In recent years definition of cable compression limits became more common. This means that
whereas before no compression at all was allowed in the cable, now a certain amount of compres-
sion is accepted during cable installation. So all though cable compression still has to be checked,
this caused a shift in the limiting conditions for cable integrity. Here emerges the need to study ves-
sel limit criteria with respect to cable handling limits other than compression. Therefore this thesis
focuses on the maximum curvature and the maximum tension in the cable during installation.

1.4. Thesis objective and approach

The problem description and literature review are translated into the objective of this thesis. The
research questions are based on the thesis objective. Furthermore the approach to answer the re-
search questions is defined.

1.4.1. Problem definition

Combining the results of the problem definition and literature review, leads to an assessment on the
potential use of vessel limit criteria for normal lay operations. With respect to the calculation time
for normal lay analysis, a transfer function approach is chosen. It is a given fact that frequency do-
main functions are significantly faster than time domain simulations. Therefore this study focuses
on the potential use of a transfer function to estimate the cable responses during the normal lay
phase. All assessments are executed for the maximum curvature and maximum tension response in
the cable as already stated in section 1.3.

The thesis objective is defined as:

"Assess the potential use of vessel motion limit criteria for normal cable lay operations with the
aim to increase workability and decrease computational time for normal lay analysis"

In order to achieve the objective the following research questions are defined:

1. What is the independent effect of direct cable loads and vessel motions on the cable dynamics?
2. Which type of vessel motion is most suitable for application of vessel motion limit criteria?
3. Is the use of vessel motion limit criteria preferred over sea state limit criteria?

4. What is the contribution of higher order effects in the cable response with respect to the first
order contribution?

5. Can a transfer function be used to predict the cable response based on vessel motions with suf-
ficient accuracy?

1.4.2. Approach

First, a general introduction into subsea cable installation is given in Chapter 2. The assessment in
this thesis is performed on the basis of the normal lay model and base case defined in Chapter 3.
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From this point, the project can be divided into three stages. A schematic overview of these stages
is given in Figure 1.2. The methods used in each stage, and their accompanied purpose, are listed
in this figure. Each stage aims at working towards an answer to one of the research questions. The
research question belonging to each description is bold indicated, based on their numbering in
subsection 1.4.1.

The first stage is the vessel motion limit criteria assessment. The aim is to identify the strengths and
weaknesses of the use of vessel motion limit criteria. The first part of this stage is found in Chapter 4.
The application of reduced time domain simulation method is presented in Chapter 5.

In the second stage, the Discrete Fourier Transform (DFT) analysis, the frequency response of the
system to regular waves is studied. This stage focuses on providing insight in the behaviour of the
system. The results are documented in Chapter 6.

In the last stage, the transfer function definition & performance, the application of a first order trans-
fer function, to predict the maximum curvature and maximum tension response towards a certain
sea state, is assessed. The procedure and the results of the assessment are given in Chapter 7.

To conclude, the sensitivity of the DFT response of the cable towards changes in the cable properties
is evaluated. Furthermore, the sensitivity of the vessel motion selection, for the application of ves-
sel motion limit criteria towards changes in the normal cable lay model configuration, is assessed.
These results can be found in Chapter 8.
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Figure 1.2: Schematic overview of the approach.






Subsea cable installation

This chapter gives a general introduction into subsea cable installation. First the cable installation
in general is discussed. Then the cable installation vessel of Van Oord, the Nexus, is presented.
Next, an overview of the properties of subsea power cables and their handling limits is given. Last,
the cable lay mechanics during normal lay operations are discussed.

2.1. Cable installation procedure

The cable installation procedure starts with the loading of the cable onto the Cable Installation Ves-
sel (CLV). Then the CLV sails to the project site. Once at the project site, each cable is installed
following the steps presented in Figure 2.1. In general the procedure starts at the Offshore Substa-
tion (OSS) towards the end of the string. The first end pull-in comprises the installation of the first
end of the cable, during which the cable is pulled into the turbine tower or OSS. In the second phase
of the cable installation, the CLV sails towards the next turbine in the string via the prescribed cable
routing. This is known as the normal lay phase. Upon arrival at the turbine the second end pull-in
is performed, finalising the cable installation process. This thesis focuses on the normal lay phase
of the cable installation.

Phase 1 Phase 2 Phase 3
1t end pull in Normal cable lay 2" end pull in

Figure 2.1: Schematic overview of cable installation process.

2.1.1. Cable installation method

The most common method to for subsea cable installation is the S-lay cable installation method.
This method is discussed in more detail below.

In S-lay installation the cable is offloaded from the vessel horizontally. The cable is supported into
the water by a chute. This results in a S-shape configuration of the cable. After the transition from
the horizontal position into the departure angle, the behaviour of the cable can be described by
the catenary equation, which will be described in subsection 2.5.2. A graphical representation of
the installation method is given in Figure 2.2. The chute is attached at the rear of the CLV and has
a radius larger than the Minimum Bending Radius (MBR) of the cable. In general, installation in
shallow water is governed by both the effect of the bending stiffness of the cable and the stiffness

7
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Sagbend

Figure 2.2: S-lay installation with chute.

originating from the applied tension, while installation in deeper water is more governed by the
effect of the axial force stiffness only.

2.2. Cable installation vessel Nexus

Van Oord executes most of the cable lay projects with their CLV: the Nexus. Schematic overviews of
the Nexus with starboard (SB) and top view are presented in Figure 2.3 and Figure 2.4, respectively.
The storage system on the nexus consists of the carousel and loading arm. This type of cable storage
prevents the introduction of torsion into the cable due to the turning of the carousel when loading
cable. The cable is transported towards the chute by the cable transportation system. This system
consists of the Portside (PS) tensioner, the SB tensioner and the cable highway. The routing of the
cable is depicted in Figure 2.4. The cable is transported to the PS tensioner below deck, then moves
via the quadrant towards the SB tensioner, which is located just before the chute. This systems
allows for active departure angle control, where the cable on the highway acts as 'buffer’. The SB
tensioner can temporarily pay out extra cable to reduce the departure angle of the cable. In this
case the quadrant slightly moves to the aft of the vessel, and the carousel will slowly adjust its speed
to restore the cable highway to the original position. This system is required due to the slow rate at
which the pay out speed of the carousel can be changed. The cable departure system on the Nexus
comprises the chute and the Departure Angle Measurement System (DAMS). The departure system
is designed to carry out cable laying using the s-lay installation method. The nexus is equipped
with two chutes, the PS chute and the SB chute. During normal operation the Nexus uses the SB
chute. The cable thus departs off-center from the CLV. In general, the Nexus can perform normal
lay operations in sea states with a significant wave height up to 2.5m. Important vessel data of the
Nexus is provided in Table 2.1

Table 2.1: Data sheet of the Nexus.

Length overall 122.68 [m]
Breadth overall 27.45 [m]
Draft (design) 5.82 [m]

Carousel Capacity | 5000 [t]
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Figure 2.3: Schematic overview of the Nexus: Starboard view.

PS tensioner

SB tensioner Quadrant

Figure 2.4: Schematic overview of the Nexus: top side.

2.3. Subsea power cables

Subsea power cables come in a range of different types. Based on the specific application of the ca-
ble, the internal structure and properties of the cable vary. Inter array cables provide the electricity
transfer within the windfarm itself, while export cables transport the electricity to shore. Apart from
the transportation of electricity, subsea cables also transport information and enable the control of
the turbines from shore. Dependent on the distance to shore, the export cable can either be a Active
Current (AC) or Direct Current (DC) cable. The internal structure and properties of subsea power
cables and the differences between the types of subsea power cables are discussed below.

2.3.1. Internal structure

A schematic overview of the internal structure of subsea power cables is given in Figure 2.5. The
different components are listed and described below.

1. Conductor core(s) - Wires made of aluminium or copper which carry the electrical current.
The latter comprising the majority of the submarine power cables [Worzyk, 2009].

2. Conductor screen - A layer made of a semi-conducting material is present around the con-
ductor core(s). It’s purpose is to minimise the electric field strength outside of the conductor
core(s) [Thies et al., 2012].

3. Insulation - This layer is made from a material with high electrical resistance and provides
electrical insulation to the conductor core(s) [Thies et al., 2012].

4. Sheath - A metal layer around each core to provide protection against fault currents. This
layer also serves as an additional water resistant layer [Thies et al., 2012].
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Figure 2.5: Schematic overview of the internal structure of a subsea cable [DNVGL-RP-0360, 2016].

5. Optical fiber cable An optical fiber cable can be present to transport data, for example for
monitoring purposes.

6. Wire armour - One or two layers of steel cables to provide resistance against tension and
torque. Mostly two layers with opposite rotation angle (lay angle) around the inner cable are
used to create a torsion balance [Saevik, 2017].

7. Protecting Sleath - This is the outer layer of the cable. It is a water resistant layer and provides
mechanical protection and protection against abrasion [Seevik, 2017] [Thies et al., 2012].

2.3.2. Properties

For modelling purposes, it is important to have a good understanding of the properties of the power
cable. Due to the interaction between different layers of the cable, non-linear load-displacement
responses are found [Vaz et al., 1998]. It is important to keep this in mind when modelling subsea
power cables. Therefore, the different properties with respect to axial loads and bending loads are
discussed below.

Axial stiffness

The axial stiffness of a subsea power cable is a result of both the axial stiffness of the armour wires
and axial stiffness of the core. In general, the axial loads on the cable are taken up by the armour
package [Vaz et al., 1998]. The contribution of the core to the axial stiffness is dependent on the
configuration of the core itself. For cables with a single core the contribution is significant and
should be taken into account. In cables with multiple cores, like AC cables, the conductor area is so
small that the contribution can be neglected [Kurt, 1984].

When performing dynamic analysis on cables with a copper conductor it should be kept in mind
that copper has a non-linear axial stiffness. On the contrary, aluminium conductors do behave lin-
ear within the operating limits. In addition, Knapp [1979] derived a stiffness matrix for straight cable
elements based on the non-linear geometric equations, which include the non-linear internal be-
haviour of the cable. This implies the linearisation of the stiffness equations, which is useful as the
observed load-deformation response of cable is nearly-linear. Finally, Kurt [1984] states: "Both mea-
sured cable behaviour and the non-linear governing equations behave in a linear manner over the
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small strains (e, < 1 percent) typical of most operating conditions.". Indicating that cable modelling
using linear axial stiffness can provide reliable results.

Bending stiffness

Subsea cables have a low bending stiffness. This gives flexibility to the cable and allows it to bend in
the required radii during installation and in the final position. The bending stiffness is dependent on
the number, thickness and material of the layers inside the cable. Generally, the bending stiffness
of the tensile armour can be ignored for high curvatures, as these layers will have slipped for this
situation [API RP 17B, 2002].

The bending stiffness of a subsea cable is subject to hysteresis. Hysteresis is caused by the slipping
of the different layers within the cable. This effect can be described using Figure 2.6. Initially, the
cable is in the undeformed position. When gradually applying a curvature the bending stiffness
is resulting from the bending stiffness of the individual layers. In this stage, the tensile forces in
the wire elements do not overcome the friction forces between the different layers, resulting in the
linear behaviour seen in line AB. Then starting from point B, the different wire elements start to
slip, reducing the effective bending stiffness of the cable (line section BC in Figure 2.6). Reducing
the curvature of the cable leads to the same situation as before, the wire elements are hold in place
by the internal friction and a linear bending stiffness is experienced (line segment CD). Further
reduction of the curvature results in slipping between the wire elements and a non-linear bending
stiffness. It should be noted that a zero bending moment will now result in a non-zero curvature.
This process results in the hysteresis loop presented in Figure 2.6 [Tan et al., 2009]. The total bending
stiffness is thus a combination of the linear bending stiffness of each layer and the bi-linear coulomb
friction curve.

Bend Moment | c

E Curvature

Figure 2.6: Schematic overview of the bending hysteresis cycle of a subsea cable [Tan et al., 2009].

2.4. Subsea cable handling limits

During subsea cable installation, different types of loads are experienced by the cable. Therefore, a
range of handling limits are in place to ensure cable integrity. Here an overview of these handling
limits is given.
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2.4.1. Maximum tension

First, the absolute maximum tension on the cable is determined by the maximum allowed strain in
the material of the conductor of the cable [McConnon et al., 2017]. For a copper conductor a strain
of approximately 0.15% is allowed. Next to the strain experienced by the conductor, the helix struc-
ture of the armour of the subsea cable causes tension in the cable to be accompanied by an internal
pressure in the cable. The maximum tension handling limits also safeguards that this compression
does not damage the internal components of the cable.

2.4.2. Minimum bending radius

The MBR (Ry,i,) specifies the minimum radius in which a cable can be bend without loss of in-
tegrity. The maximum curvature can be related to R;;;;, by Equation 2.1, where « ;4 represents the
maximum curvature of the cable. Bending in the cable leads to axial stresses in the different layers
of the cable. When this bending becomes excessive, it can lead to faults like, signal loss in optical
cables, loss of insulation integrity or water ingress [Loos, 2017]. The MBR is specified by the cable
manufacturer and defined at a specific tensile load and for a specific time during the installation
[DNVGL-RP-0360, 2016].

(2.1)

Rpin =
Kmax

2.4.3. Maximum side wall pressure

The maximum side wall pressure handling limit combines the maximum tension in the cable to
the MBR. An example of the side wall pressure handling limit is given in Figure 2.7. The allowable
tension in the cable reduces as the cable is subject to bending. The bend has the effect of multiply-
ing the tension due to frictional forces. The risk of residual strains after the installation procedure
persist if frictional coefficients are high [McConnon et al., 2017].

Tension [KN]

Permissible range

Minimum bending radius [m]

Figure 2.7: Graph of the maximum side wall pressure of a subsea cable.

2.4.4. Cable compression

The handling limit for cable compression refers to pure axial compression of the subsea cable. An
axial compression loading on a subsea cable can lead to buckling, bird-caging or loop forming dur-
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ing the installation process [Marta et al., 2015]. Until recently, there was no industry accepted stan-
dard to assess the compression limits of cables. As a result, subsea cable manufactures mostly spec-
ified that no axial compression was allowed in the cable [Reda et al., 2016]. In recent years pressure
on cable manufactures has resulted in efforts to define cable compression limits. Therefore specifi-
cations for the compression limits are now becoming available.

2.5. Cable lay mechanics

In this section the general cable dynamics in normal lay operations are discussed. First the defini-
tions used during normal lay analysis are presented in subsection 2.5.1. Then the static cable lay
problem is discussed in subsection 2.5.2. In subsection 2.5.3 the environmental loads on the cable
are presented and in subsection 2.5.4 the operational loads are discussed. The general behaviour of
the cable with respect to the curvature and tension response is presented in subsection 2.5.5.

2.5.1. Definitions

A graphical representation of the cable lay configuration is given in Figure 2.8. The general defini-
tions used in cable laying are indicated in the figure.

R
Van Oord - -

Top tension T
/f] Departure angle ¢

Water depth H Layback L

S
Touchdown point /

Bottom tension Ty
‘,—

Figure 2.8: Definitions of cable installation configuration! [Oord, 2015].

The top tension in the cable, T;,p, is defined as the tension at the connection between the vessel and
the cable. The angle between the vertical and the cable at the location where the cable leaves the
vessel is the departure angle, denoted by the symbol ¢. The Touch Down Point (TDP) is the location
where the cable first touches the seabed. The horizontal distance between the cable connection
and the TDP is the layback distance L. The tension in the cable section along the seabed is defined
as the bottom tension and marked with the symbol Tj.

2.5.2, Static cable lay problem

In this subsection the static configuration of the cable lay problem is discussed. First the static loads
are presented, followed by the catenary equation, an approximation to the static configuration.

Ihttp://dot.tudelft.nl/career/
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Figure 2.9: The system with external pressure and intrinsic-weight of the cable (a) is equivalent to the system described
by the submerged weight, the tension term (b) and the hydrostatic pressure term at the end of the cable (c).

Static loads

The static loads acting on the cable are the hydrostatic pressure forces, the volume forces and cur-
rent forces. The effect of the hydrostatic pressure forces and volume forces is presented here, the
current forcing is discussed in more detail in subsection 2.5.3.

The cable weight and hydrostatic pressure acting on the cable are illustrated in Figure 2.9a. This
system can be represented by the submerged weight of the cable, a tension term and the hydrostatic
pressure term at the top and bottom of the cable. The hydrostatic pressure term p.A, results from
a difference in hydrostatic pressure on the upper and lower side of the cable. The effective tension
is found by the tension term and hydrostatic pressure term at the ends of the cable, as found in
Equation 2.2. The cable weight can be represented as the weight per unit length of the cable. The
gravitational forces resulting from the cable weight are defined by Equation 2.3, where w, is the
weight of the cable per unit length and ds is the arc length of the cable element.

Tett =T+ peAe (2.2)

W=w.ds (2.3)

The buoyancy forces acting on the cable are related to the weight of the displaced water volume.
This principle is known as Archimedes law. According to Archimedes law, the resulting buoyancy
force acting on a cable element is given by Equation 2.4. Here g is the gravitational constant, p,,
the density of sea water and A, the area of the cross section of the cable. The weight of the cable in
water, also know as the submerged weight w;, is then defined by Equation 2.5.

B=gpyAeds (2.4)

Ws=We—gPwAe (2.5)

The system with hydrostatic pressure, tension and cable weight is equivalent to the same system
described by the submerged weight together with the effective tension term. The submerged weight
and effective tension term are depicted in Figure 2.9.
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Catenary equation

The catenary equation describes the configuration of the cable due to the application of the static
loads. The derivation of the catenary equation is based on force equilibrium in both the horizontal
and vertical direction. The catenary equation given an approximation of the shape of the cable
based on the bottom tension T and the submerged weight of the cable w;. The equation is based
on the following assumptions:

1. The bending stiffness of the cable is neglected.
2. The elongation of the cable is neglected.

3. The cable is assumed to be made out of a homogeneous material.

The bending stiffness can be neglected while retaining reasonable results as the bending stiffness
of subsea cables is small [Vaz et al., 1998]. Within the workability limits the elongation of the cable
is limited to < 1%, which justifies the assumption for neglecting the cable elongation [Kurt, 1984].
Therefore, the catenary equation is a good approximation of the cable laying system as depicted
in Figure 2.8. The general definitions found in Figure 2.8 can be approximated using the relations
below.

The catenary shape of the cable is described by Equation 2.6 and is obtained based on the horizontal
en vertical force equilibrium.

T
Catenary shape: y = ;O cosh % (2.6)
< Iy

Ws

The total arc length of the cable is found by Equation 2.7.

2Tyd
Ws

Total arclength: s* = {/d? + 2.7

The departure angle can be derived based on a simple angle calculation between the bottom tension
in the cable and the total weight hanging in the vertical direction, following Equation 2.8.

D . _ -1 TO
eparture angle: ¢ =tan ( st ) (2.8)
N

The top tension itself is defined by summation of the bottom tension and the total weight of the
catenary part of the cable, as seen in Equation 2.9.

Top tension: T = Ty + wsd (2.9)

Finally, the layback of the cable can be determined by Equation 2.10.

Ti d d
Layback distance: L= —In [1 2 \ 1+ Defy2_ 1] (2.10)
Ws To To
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2.5.3. Environmental loads

The environmental loads on the cable result from water particle movements. The movement of wa-
ter particles results from current and waves. Both types of loading are addressed separately below.

Waves

Waves introduce dynamic loads on a cable during installation. For modeling purposes it is impor-
tant to have a clear understanding of wave mechanics. Waves can, among many other ways, be
represented by regular waves or irregular waves. For regular waves, the wave crest and trough have
equal amplitude and are represented by a single period wave train. In modelling, regular waves are
represented by circular or oval water particle movements. An often used theory for regular waves
is Airy’s linear wave theory. Based on Airy’s linear wave theory, the wave-induced velocities and
accelerations can be found by Equation 2.11. Here { represents the wave elevation, w the wave fre-
quency, k the wave number and ¢ the phase angle of the wave. C; is dependent on the water depth
and wavelength. If the particle velocities and accelerations are not affected by the presence of the
seabed, the deep water approximation can be made. The different representations of C are given in
Equation 2.12. Here d represents the water depth and A the wavelength of the considered wave. The
coordinate along the vertical z starts at zero at the mean water level and runs to -d at the seabed.

u(x, 1) ={wC(z)cos(wt— kx +¢)

_ ) _ (2.11)
u(x,t) = —(w C(z)sin(wt — kx+¢)
c eks, ifd>11 212
z) = .
%, otherwise

Airy’s linear wave assumes the pressure at the mean water level to be zero. Therefore, it is not able
to properly describe the wave-induced velocities in the wave crest. Different methods are used to
predict the wave velocities and accelerations in the wave crest. Figure 2.10 depicts three different
methods used to estimate the velocities and accelerations in the wave crest.

Method A depicts Wheeler stretching. Here the wave potential calculated at the surface is assumed
to be correct at the instantaneous water surface. As a result, the wave potential is stretched and com-
pressed according to the length of the instantaneous water column. In method B the wave potential
is assumed to be correct up to the mean water level. The solution is then uniformly expanded into
the wave crest. In the last method, method C, the gradient of the profile at the mean water level is
linearly extrapolated up to the instantaneous water surface. This is known as extrapolation stretch-
ing.

The validity range of Airy’s linear wave theory is presented in Figure 2.11. The validity range is ex-
pressed as function of the Ursell number, defined as I{d—ﬁz, and the wave steepness, given by % The
Ursell number indicates the degree of non-linearity in long surface gravity waves. The wave steep-
ness is an indicator of the shape of the wave, expressed as the wave height relative to the wave
length. For deep water depths the applicability of linear wave theory is dependent on the steep-
ness of the wave, while for shallow water the Ursell number is limiting. Hedges [1995] found that
linear wave theory may be applied for some wave characteristics even outside the range presented
in Figure 2.11. The use of linear wave theory outside its validity range mainly results in an under

prediction of the wave crest elevation and celerity, the speed of propagation of the wave. Therefore
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Figure 2.10: Methods to predict wave kinematics in the wave crest SINTEF Ocean [2019].

Dominic Reeve and Fleming [2004] states: "For engineering design purposes, the main implication
of using linear theory outside its range of validity is that wave celerity and wavelength are not strictly
correct, leading to some inaccuracies in refraction and shoaling analysis." Both of these phenomena
are not of main interest in this research. All regular wave theories become inaccurate for breaking

or near breaking waves. The breaking limit of waves can be approximated by Equation 2.13 [Orcina,
cited August 2020].

Hp = —— tanh(0.98kd) (2.13)
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Figure 2.11: Approximate regions of validity of analytical wave theories Hedges [1995].

For the description of real seastates irregular waves are used. Irregular waves consists of a sum-
mation of regular waves. A sea state is described by a wave spectrum. A wave spectrum is the
power spectral density function of the vertical displacement of the sea. The spectrum relates the
frequency domain representation to the time domain representation of the sea state. It assumes
the sea state can be described as a random stationary process over a certain period of time, usually
three hours. Two standard wave spectra are the JONSWAP and the Pierson-Moscowitz spectrum.
The Pierson-Moscowitz spectrum is developed for a fully-developed sea state, while the JONSWAP
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spectrum is proposed for fetch limited seas [Faltinsen, 1990]. The JONSWAP spectrum is defined by
Equation 2.14. The peak shape factor y describes the shape of the peak of the spectrum. For y=1 the
JONSWAP spectrum reduces to the Pierson-Moscowitz spectrum.

_45_1 (fpj:ak)_4] Yexp

The wave induced velocity and acceleration based on an arbitrary wave spectrum are defined by
Equation 2.15. The random phase angle ¢ ; is sampled from a uniform distribution between [- 7, 7].
The amplitude A; is defined in Equation 2.16, where S; is the spectral density as a function of the
frequency as defined in Equation 2.14 [DNVGL-RP-C205, 2010].

%(f/fp(e’akfl)z]

S;(f) = ag?@m) ™ f P exp

(2.14)

0 % A coshk;j(z+d) @itk )

) = i ——————— t—kix+o;

u(x = jWj sinhk;d cos(w; jX+oj
(2.15)

1(x, 1) i A wZCOShkj(Z+d) sin(wit—kix+d¢;)

X, t) = Ao, ————— =k :

! = IJ sinhk;d I J

Aj=1/25;(w)Aw (2.16)

Wave statistics

For normal cable lay simulations the the statistical behaviour of sea states is of importance. A single
sea state can have infinitely many time domain representations, depending on the set of random
phase angles used to generate the time domain representation. The statistics of waves are described
based on the assumption that the wave elevation is a stationary, Gaussian process. Based on this
assumption, the distribution of the maximum crest height per wave can be described by a Raleigh
distribution, from now on denoted as Qcresc- The only parameter on which this Rayleigh distribution
is dependent is the 0™ order spectral moment, my, of the wave spectrum. The 0™ order spectral
moment is defined by Equation 2.17

rmzﬁ Se(Hdf (2.17)

Now the probability distribution of a single wave crest is known, the most probable maximum dur-
ing a time domain representation of the sea state can be estimated. The probability distribution
of the maximum wave in a time domain representation of the sea state is defined as (1 - Qcres)™,
where N is the number of waves contained in the time history. The Most Probable Maximum (MPM)
wave elevation during a sea state is equivalent to the mode of the probability distribution and can
be found by Equation 2.18.

mod(ﬁmaxmest) = V2InNymy (2.18)

Figure 2.12 shows the value of v2In N as function of N, the number of waves contained in the sea
state representation. The graph shows the value of v2In N starts to flatten for higher N, meaning
the maximum probable values becomes insensitive for additional waves added to the time domain
representation. The required simulation time for a normal lay analysis is three hours, as defined in
DNVGL-RP-N103 [2017]. For waves with a mean zero crossing period of eight seconds, the MPM
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wave elevation during a three hour simulation is given in Table 2.2, together with the effect of simu-
lation elongation on the MPM wave elevation. In this table the increase of the MPM wave elevation
with respect to the three hour simulation value is indicated by the column labeled 'Error’.

Table 2.2: The effect of simulation time for a sea state
31 with mean zero crossing period of 8 seconds.

N Simulation v2InN | Error
time

8]
!

v2In(v) [-]

1350 | 3h 3.80 -
2025 | 4.5h (+50%) 3.90 2.63%
2700 | 6h (+100%) 3.98 4.73%

T T T T T T
0 1000 2000 3000 4000 5000
N[-]

Figure 2.12: The dependency of v2In N on the number of
waves N.

Current

Current originates from the circulation systems in the ocean. Examples are the tidal circulation
or circulation due to a difference in sea water density. The result is a steady current profile with
constant velocity over a limited time span. The resulting current force originates from the drag
forces on the cable caused by the current velocity. Variations in current are generally slow, therefore
current can be considered a static load within the reference frame of cable installation. The resulting
force can be determined by the drag term of the Morison equation, which is discussed in Figure 2.5.3

Morison equation

Hydrodynamic loads result from movements of a structure through water. These movements can
be induced by the movement of the structure itself or by waves and current water particle kine-
matics, as described in subsection 2.5.3 and Figure 2.5.3. The resulting hydrodynamic loads can be
approximated by Morison’s equation, given in Equation 2.19 [Faltinsen, 1990]. The first term in this
equation is related to viscous effects and describes the drag forces on the body. The second and
third term represent the inertia forces. The inertia forces can be subdivided into the hydrodynamic
mass force and the undisturbed wave pressure force (Froude-Krylov force). Important to note is that
the undisturbed wave pressure force is independent of the movement of the body itself. Morison’s
equation is valid for slender structures, were the structure itself does not change the characteristics
of the forcing wave. Therefore it is commonly used to describe the hydrodynamic loads on subsea
power cables [Saevik, 2017].

1
dF, = EprD,nDl(un - AUy —1dz+pyw(Cy—1)A(t, - Fdz+pyAtydz (2.19)

In Equation 2.19 dF represents the force on a cable element of length dz. The diameter of the cable
is given by D and A represents the dislocated fluid per unit length. The mass and drag coefficients,
Cp and Cyy, are dependent on many different effects and parameters including, the Reynolds num-
ber, form of the body and sea-floor effects. This explains why there is no straight forward way to
determine the mass and drag coefficient for a specific situation. As a result the mass and drag coef-
ficient should be determined empirically. u; and u; represent the water particle velocity and water
particle acceleration normal to the midpoint of the element, respectively. The lift forces resulting
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from vortex shedding around the cylinder are not considered by the Morison equation. The third
element in Equation 2.19 is not dependent on the acceleration of the body, which signifies that this
represents the wave pressure force.

2.5.4. Operational loads

Vessel motions can be described by a Response Amplitude Operator (RAO). The RAO relates the in-
coming wave to the corresponding vessel motions. The RAO is defined for each degree of freedom
of the vessel and for a discretis ed set of wave headings. The RAO is a complex amplitude operator,
which means both the magnitude and phase of the corresponding vessel motion are transferred.
The relation between the wave height, RAO and heave motion of the vessel is given in Equation 2.20.
This shows that the RAO is a function of the frequency of the incoming wave. Based on this relation-
ship, it is clear that the relation between the vessel motion and wave height is linear. Therefore the
use of RAO’s exiles non-linearities between the incoming waves and the vessel motions.

Zyessel = RAO(0) Zwave (2.20)

The RAO’s of a vessel are dependent on waterdepth. This is mostly due to the effect of the seabed on
wave radiation, which effects the motion of the vessel. The roll damping of a vessel is mostly gov-
erned by viscous damping along the hull [Ultramarine, 2011]. An example of a heave RAO is given in
Figure 2.13. Based on this graph, it can be concluded that for very long period waves, corresponding
to long wavelengths, this vessel will move up and down with the wave, thus the RAO amplitude is
one. For shorter waves, the vessel is less effected in heave motion and moves in heave direction with
a specific fraction of the incoming wave height.

1.0 4

Period [s]

Figure 2.13: Example of heave RAO of CLV vessel.

2.5.5. General cable behaviour

In this section the general behaviour of the cable is explained by the use of simplified methods. The
aim is to get an impression of the effect the vessel heave motion has on the tension and curvature
found in the cable. For the tension in the cable it is generally easy to create a simplified model,
which is given in Figure 2.5.5. For the curvature the response to movements of the vessel this is
somewhat harder, therefore this effect is studied in the static configuration.
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Curvature

The changes in the curvature in the cable are studied using the catenary equation described in sub-
section 2.5.2. An important note it that the shape of the catenary is an approximation to the static
configuration, thus dynamic effects are not accounted for in this approach. However, it can be used
to get a basic understanding of the change in curvature due to a excitation of the CLV in heave di-
rection.

Figure 2.14 gives the static configuration of the cable, and the change in this static configuration due
to a Im and 2m heave excitation of the vessel. The corresponding curvature along the full arc length
of the cable is given in Figure 2.15. Based on these plots, it is concluded that the curvature in the
sagbend area increases due to heave excitation of the CLV, while the curvature near the connection
of the cable to the CLV decreases.

259
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Figure 2.14: Change in catenary configuration due to  Figure 2.15: Change in curvature along the arc length
heave excitation, for H = 25m and ws = 418N. of the cable due to heave excitation.

Tension

The simplified model for the tension response is given in Figure 2.16. The tension response in this
model is described by means of a 1-DOF dynamic model, which means only heave motions of the
vessel are considered. Here K represents the stiffness of the system, which is a combination of the
stiffness of the cable itself and the geometrical stiffness of the system with respect to vertical mo-
tions. Likewise, C represents the damping in the system to vertical movement, which is a combi-
nation of multiple mechanisms, like drag damping and internal damping in the cable. Based on an
equilibrium in the vertical direction, the tension in the cable can be found by Equation 2.21. It is
concluded that any positive vertical vessel motion is associated with an increase in the top tension
of the cable.

T = McapleXp + Cxp + Kxp + Mcaple§ 2.21)
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Figure 2.16: Left: Simplified 1-DOF cable tension model. Right: FBD of simplified tension model.



Dynamic cable lay model

The dynamic cable lay model is built in Orcaflex. Orcaflex is a 3D non-linear time-domain finite
element software for dynamic analysis of marine structures. Orcaflex is selected for the excecution
of this thesis due to its high reputation in the offshore industry, aswell as the in house expertise re-
garding the sofware package at Van Oord. First, the set-up of the normal lay model is described in
section 3.1. Second, the base case considered in this thesis is presented in section 3.2. The calcula-
tion procedure used by Orcaflex is outlined in section 3.3 and section 3.4 for the static and dynamic
calculation, respectively. Finally, the non-linearities involved with the modelling of the normal lay
installation are discussed in section 3.5

3.1. Model set-up

An overview of the model is given in Figure 3.1. The model is build out of three main components:
the cable, the CLV and an elastic shape element representing the chute of the CLV. Additionally, the
seabed and seawater are found in the model. The model, including identification of the different
components, is given in Figure 3.1. The cable is modelled as a line by the use of line segments in
Orcaflex. The cable modelling is discussed in more detail in subsection 3.1.1. The characteristics
of the elastic shape element are found in subsection 3.1.3. The modelling of the CLV, the Nexus, is
elaborated on in subsection 3.1.2. The soil model is described in subsection 3.2.3 and the friction
model in subsection 3.1.5.

Figure 3.1: Overview of the normal cable lay model in Orcalfex. A) Cable B) CLV C) Chute D) Seabed E) Seawater

23
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3.1.1. Cable

Orcaflex uses a lumped mass model to represent the
cable structure. In this type of model the masses are
lumped together and connected by springs. A detailed
overview of the lumped mass model is given in Fig-
ure 3.2. The nodes represent the lumped masses of the
cable, while the segments are the springs connecting the
lumped masses. The nodes carry the properties of the
cable, like weight, buoyancy and drag and inertial forces.
All axial and torsional properties are contained in the
springs. The bending stiffness of the cable is modelled by
a rotational spring damper system between the axial di-
rection of the node n, and the axial direction of the seg-
ment s,. Similarly, the axial stiffness is modelled by a dis-
placement spring damper system along the longitudinal
of the line segment. One end of the cable is connected
to the vessel at the top of the chute. The second end of
the cable is anchored to the seabed. The axial anchor-
ing is required to limit the size of the model, as the axial
friction must act over a long distance in order to keep the
cable in place. In this construction it is important to keep
an eye on the shear forces at the second end of the cable.
These should stay low in order to give a realistic repre-
sentation of the normal lay operation in the model and
thus govern the location of the anchoring position.

3.1.2. Vessel

The Nexus is modelled using a vessel object in Or-
caflex. The movements of the vessel are described
by the use of displacement RAOs, which were al-
ready discussed in subsection 2.5.4. The origin
of these RAOs is described with respect to the lo-
cal reference frame of the vessel, which is a right

handed axis system at the vessel origin. The wave 270

heading definitions with respect to the vessel ori-
entation in Orcaflex, together with the local ref-
erence frame of the vessel, are depicted in Fig-
ure 3.3.

Torsion spring
+damper

Axial spring .~

+damper

Bending springs /
+dampers \

Node

n, (axial direction)

Figure 3.2: Detailed overview of lumped mass
method for cable modelling.

345 0° 15
3300 4 P30
\
3150 \ 450
3000 60°
2850 s
90°
2554 T 105
X
2400 | * 1200
y
s ‘ 1350
s /] \
2100 V v 150°

195¢ 180° 165°

Figure 3.3: Wave headings and local vessel reference

3.1.3. Chute

frame.

The chute is modelled by means of an elastic shape element in Orcaflex. An elastic shape element
represents a physical barrier for lines. Upon contact between the chute and the cable, a normal force
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and frictional force are generated. This type of object allows for penetration by lines, which means
the cable penetration into the chute results from the axial stiffness of the chute. The frictional force
is defined by the friction model as described subsection 3.1.5. Therefore the elastic shape element
is used to properly model cable-chute interaction in the normal lay model.

3.1.4. Soil modelling

The seabed is modelled by the elastic seabed model. The modelling of the soil can be divided into
three sub compartments, namely the behaviour of the soil in the normal and axial and transverse di-
rection. The contact normal to the soil is modelled using distributed elastic springs and distributed
dampers. The interaction force depends on the spring stiffness and indentation depth. For each el-
ement having one or two nodes making contact with the seafloor the corresponding spring stiffness
and damping is added to the stiffness matrix and damping matrix of the element accordingly.

The axial and transverse reaction of the soil is modelled by the friction model in Orcaflex. The model
is described in subsection 3.1.5. In real life the soil-cable interaction is much more complicated, as
it includes effects like soil displacement and accumulation due to the movement of the cable.

3.1.5. Friction model

A modified Coulomb friction model is used to define Farce 4
the frictional forces in the model. The reaction forces
are modelled by a spring stiffness in combination with
a friction coefficient. The overall effect is graphically
illustrated by Figure 3.4. The frictional force acts as
a distributed spring with constant stiffness, the shear Dt
stiffness, until the maximum friction force is exceeded : +|::)crit DeﬂecﬁE
and the element starts to slide, without further force

increase. The maximum friction force is given by
ftriction,max = #R, where p is the friction coefficient and
R the normal reaction force acting on the element. The

+uR—

4 _lJ_R
corresponding D.;;; can be found as function of the
shear stiffness ks and the contact area as by Equa-
tion 3.1 UR Figure 3.4: Wave headings and local vessel
Deyir=—— 3.1 reference frame.

ksag

3.2. Model description

The analysis performed in this study are conducted using a base case. Lateron, in the sensitivity
analysis some input parameters of the model are changed to investigate their influence on the re-
sults. The changed parameters are provided in the sensitivity analysis itself. The input parameters
to the model are discussed in the following sections.

3.2.1. Cable type

The cable used in the base cable is an export cable with linear bending stiffness. A summary of
the cable properties is provided in Table 3.1. The drag coefficient of the cable is modelled as a
Reynolds dependent drag coefficient for a rough cylinder. Its dependency on the Reynolds number
is displayed in Figure 3.5. The large drop in the magnitude of the drag coefficient occurs upon the
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change from laminar to turbulent flow Triton [1988]. This is a conservative approach as the drop
seen in the drag coefficient is much larger for smooth surface cylinders.

Table 3.1: Properties of export cable in base case model. 121

Mass 100 [kg/m] ;Z

Diameter 0.267 [m] =

Bending stiffness 90 [kN-m?] 071

Axial stiffness 525-108 [kN] 06 |

Torsional stiffness | 185 [kN-m] ]

Timax 225 [kN] R R o e
MBRyin 4.10 [m]

Figure 3.5: Dependency of Cp on Reynolds number for
rough cylinder.

3.2.2. Wave parameters
10
Both regular and irregular wave simula- y=5
tions are executed for the base case. For y=exp(5.75- 1.152)
the irregular wave simulations the JON- 8-

e y=1
SWAP spectrum is used as input spec-

trum. The peak enhancement factor
of the JONSWAP spectrum is displayed 6 1
in Figure 3.6, following the DNVGL-RP-
C205 [2010] guidelines. The base case
deals with unidirectional waves with a
wave heading of 180deg.

Hs [m]

Figure 3.6: Peak shape factor for different T, and H
combinations.

3.2.3. Soil description

The soil properties used in the base case definition are summarized in Table 3.2. The soil properties
are based on typical soil properties found in API RP 17B [2002]. Damping is not included for the soil
in the base case model.

Table 3.2: The properties of the soil in the base case model.

Normal stiffness | Shear stiffness | Normal friction
100 [kN/m/m?] | 100 [kN/m/m?] 0.6 [-]

Axial friction
0.6 [-]
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3.3. Static calculation

The static configuration corresponds to the configuration where the internal loads in the structure
are in equilibrium with the external loads applied to the system. This configuration is determined
by use of the static analysis procedure. The static analysis comprises of two steps. First the line
statics are determined while all other object are fixed. This is done by the static catenary analysis
and the static finite element analysis. The static catenary analysis is based on the principles as
discussed in subsection 2.5.2. It is used as a supplement to the finite element analysis, as it is less
time consuming. It provides an initial estimate for the configuration of the cable for the static finite
element analysis.

In the first step the line statics are determined, while all other objects are fixed. In the last step of the
statics, all DOF are released and Orcaflex uses Newton-Raphson iteration to find the statics of the
whole system. In this iteration method, the incremental displacement is determined based on the
stiffness of the system in the previous configuration. Iteration is continued until the convergence
criteria are met or until the predefined number of iteration steps is reached.

3.3.1. Static configuration

The static configuration of the base case model is determined by means of the static calculation. An
important parameter to obtain static convergence is the mesh size of the cable. Therefore a mesh
size sensitivity analysis is performed during the static calculation. The goal is to obtain proper con-
vergence and smooth results along the catenary of the cable. The analysis is based on the variation
of the curvature in the static analysis. This parameter has large fluctuations along the length of the
cable due to it’s configuration and is therefore a good indicator.

The static analysis is performed for four different mesh sizes, ranging from 0.25m and 2m. The
mesh sizes considered are: 0.25m, 0.5m, 1.0m and 2.0m. Due to the catenary shape of the cable
during installation, there are three sections where the variation of the curvature is the highest: near
the connection to the CLV, in the overbend and near the TDP. In these areas the mesh size is most
critical, therefore the analysis is focused on these area’s.

The curvature near the connection to the CLV, in the overbend and around the TDP are presented
in Figure 3.7, Figure 3.8 and Figure 3.9, respectively. The two largest mesh sizes, 1m and 2m, show
quite some deviations in all of the inspected areas of the catenary. The most critical area seems to
be the area around the top of the catenary. As a rule of thumb, often a cable mesh size of 2-3 times
the diameter of the cable is used. Given this, the fact that the curvature in the sagbend area is of
most interest and the fact that decreasing mesh size increases computational time, a mesh size of
0.5m is selected. For the first element of cable Orcaflex uses a reduced mesh size by itself, making
that the selection of a mesh size of 0.5m will not compromise the accuracy in the results of the top
tension of the cable.

The tension and lay angle in the static configuration can be altered by changing the length of the
cable in the model, as the connection points remain fixed. For the base model the static configura-
tion parameters are found in Table 3.3. The parameters are chosen such that they comply with both
the allowable departure angles of the Nexus and the typical TDP tensions for a typical normal lay
configuration (Ttpp =+3-10 [kN]).
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Figure 3.8: Mesh size sensitivity in the

Figure 3.7: Mesh size sensitivity near
sagbend area.

the connection to the CLV.

Figure 3.9: Mesh size sensitivity near
the TDP of the cable.

Table 3.3: Parameters characterising the static configuration of the base case model.

TDP tension [kN]
7.37

Top tension [kN]
35.5

Lay angle [deg]
16.6

3.4. Dynamic calculation

In this thesis the dynamic calculations are carried out in time domain in order to fully account for
the non-linear behaviour of the system. The time domain simulations start with a ramp up phase, in
which the vessel motions are slowly increased to the full magnitude. This is done in order to reduce
transient responses, which eventually reduces the required simulation time.

In the dynamic analysis the equation of motion given in Equation 3.2 is solved for each time step.
Here M is the inertia load on the system, C the damping load in the system, K the stiffness load and
F the external load on the system. These loads are dependent on p, the position, v, the velocity, and
a, the acceleration, of the system, which in their turn are dependent on time. The system geometry
is updated for each time step making sure the full non-linear behaviour of the system is taken into
account. Either an implicit or explicit integration scheme can be used by Orcaflex to perform the
numerical integration.

M(p,a)+C(p,v)+K(p)=F(p, 1) (3.2)
Explicit time integration uses the current state of the system to calculate the state of the system at
the end of the time step. This means the acceleration at the beginning of the time step is determined
by the dynamic equilibrium equation. The velocity and position at the end of the time step follow
from integration of the acceleration and velocity, respectively. Explicit time integration requires a
small time step in order to produce stable results.

In an implicit scheme the dynamic equilibrium equations are solved at the end of the time step. Im-
plicit integration is an iterative process as p,v and a are unknown at the end of the time step. This
iterative nature causes the computation time of a single time step to be longer for implicit integra-
tion than explicit integration. However the method is much more stable, and therefore longer time
steps are allowed. This feature often makes the implicit time integration scheme faster, making this
the method of choice in this thesis.
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3.5. Non-linearities in cable lay model

As mentioned above the system is solved in the time domain in order to be able to fully account
for the non-linear behaviour of the system. Below, the non-linearities contained in the model are
discussed to give insight in the non-linear behaviour of the model

3.5.1. Geometric non-linearity

A geometrically non-linear system characterizes itself by a change in the geometric stiffness of the
system due to a change in the geometry. This is the case when the position of the components
becomes significantly different than the initial state. In a system subject to rotation this already be-
comes important for small angular rotations, because the linear approach assumes sin(f) = 8 and
cos(0) = 1. Therefore, geometrical non-linearity is for cables already important in small deforma-
tion analysis [Peksen, 2018] [NTNU, cited August 2020].

In Orcaflex the geometry of the cable is updated for every time step. The stiffness matrix is updated
accordingly, taking full account of the geometric non-linearities. Two causes of the geometrical
non-linearity in the cable system are rotations and tension stiffening. Tension stiffening refers to the
phenomen where an axial load in the cable contributes to the stiffness of the cable in the transverse
direction. This requires an update of the geometrical stiffness matrix of the system.

3.5.2. Non-linear boundary condition

In the dynamic analysis of the cable model as described above, the position of the TDP changes in
time. Figure 3.10 shows an example of this variation. In the figure the highlighted elements show
the variation of the TDP along the arc length of the cable. Within this range the cable sometimes
is in contact with the seabed, and sometimes not. This movement of the TDP introduces a non-
linearity into the system. For the nodes contained in the highlighted part of the cable, the inclusion
of the soil contact forces in the equation of dynamic equilibrium depends on whether the node is in
contact with the soil at its instantaneous position. The movement of the TDP is accompanied with
the introduction of impulse loads in the system. This type of non-linear behaviour is classified as
a contact of boundary non-linearity. In addition it is possible to model the hysteretic behaviour of
the soil, however in the soil model described in subsection 3.2.3 this is not included.

| — Min layback configuration
Max layback configuration
40 1 .---- static configuration

0 10 20 30 40 50 60

--+ Static configuration
—— TDPrange

z [m]
8

o] 10 20 30 40 50 60

Figure 3.10: The configuration of the cable corresponding to minimum and maximum layback together with the
corresponding TDP range displayed in the static configuration of the cable, based on a Hs=2.5m, Tp=8s seastate.
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3.5.3. Drag non-linearity

The principle of a drag force on slender structures when the structure moves through water was
already discussed in Figure 2.5.3. From Equation 2.19, it is concluded that the drag force on the cable
is proportional to the relative velocity of the cable squared, as given in Equation 3.3. Therefore, the
drag force introduces a non-linearity into the model.

Fp o< (up—7)|uy — 7l (3.3)



Vessel motion limit criteria assessment

In this chapter the vessel motion limit criteria assessment is performed. The aim of this assess-
ment is to identify the strengths and weaknesses of the use of vessel motion limit criteria in normal
lay analysis. First, the location of the maximum cable response is studied in section 4.1. Second,
the contribution of the vessel motions to the full cable dynamics is identified in section 4.2. The
most suitable vessel motion for application of vessel motion limit criteria is identified in section 4.3.
Finally, the use of vessel limit criteria is compared to the current practice, wave limit criteria, in
section 4.4.

4.1. Location of cable response

This study comprises the maximum tension response and maximum curvature response of the ca-
ble to vessel motions and direct cable loads. The location of this cable response is important when
studying the results, therefore the first step is identification of the location of the maximum cable
response of different inputs. This location is investigated on the basis of regular wave simulations.

The maximum tension in the cable is always found in the first node of the cable, which corresponds
to the top of the cable, where the cable is connected to the CLV in the Orcaflex model. The location
of the maximum curvature response of the cable is found to be dependent on both wave period and
wave height. Figure 4.1 gives the spreading of the location of maximum curvature for a variety of
wave periods and for a specific wave height. The general observation is that the spreading of the
location of the curvature increases as the wave height increases.
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Figure 4.1: The variation of the location of maximum curvature for wave periods between 3 to 25 seconds.

Figure 4.2 provides a more detailed view on the spreading of the location of the maximum curvature.

31
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In light of the results in Figure 4.2, the configuration of the cable during the occurrence of the max-
imum curvature in the cable is studied. The results are presented in Appendix A.1. Both the effect
of the wave period and the effect of the wave height on the location of the maximum curvature are
examined. It is found that the shape of the cable at the moment the maximum curvature occurs, is
changing with both the wave period and the wave height to which the system is subjected. For short
period waves, the configuration is similar to the catenary shape of the cable, resulting in a graduate
curvature change in the sagbend of the cable. Therefore the location of the maximum curvature is
prone to large changes, as the whole area is subject to significant curvatures and a small change in
the configuration can lead to a large change in the location of the maximum curvature.

For longer period waves, the shape of the cable gives a more straight profile up to the sagbend, where
the curvature along the arc length changes rapidly. For periods ranging from 10-25s, the location of
the point of maximum curvature is approximately constant relative to the TDP for each specific
wave height. However, the shape of the cable along the catenary is slightly less straight for longer
wave periods, causing it to take up slightly more cable which explains the graduate increase in the
arc length location. Increasing the wave height in this same area also results in a more straight cable
configuration, making the area near the TDP to be located at smaller arc lengths and explaining the
distinction in the location of maximum curvature for varying wave height. Concluding, the general
behaviour of the cable changes with wave height and wave period, where larger wave heights and
longer wave periods result in a more straight cable configuration compared to the more catenary
like shape for shorter periods and wave heights at the moment of maximum curvature.
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Figure 4.2: The variation of the location of maximum curvature for varying regular wave input.

As final step in the analysis of the location of the maximum curvature, snapshots of the cable move-
ment are generated. The snapshots are created for Ty, ;4. = 5.5s and Ty, 4. = 12.5s5 and they show the
cable configuration at % and i wave period before and at % and i wave period after the occurrence of
the maximum curvature. This way the full cycle of the cable movement is depicted. The results are
presented in Figure 4.3 and Figure 4.4, for Ty, 4pe = 5.5s and T, 4y = 12.5s, respectively. For Ty, 4pe =
5.5s the configuration shows small fluctuations around the catenary configuration, while for T, ;..
= 12.5s the shape of the cable changes significantly during a wave cycle. In the cable response cy-
cle to a longer period wave, T, 4, = 12.5s, the straight maximum curvature configuration results
from a reduced layback distance in combination with the mid-section of the cable having a delay in
response to the new configuration, which is caused by the inertia and drag force resisting the move-
ment of the cable through the water. The TDP moves forward due to the weight of the cable itself.
In the bottom graph of Figure 4.4, which displays the behaviour of the cable after the occurrence of
the maximum curvature, the delay in the response of the mid-section is clearly visible between the
cable configuration of A—ILTwa,,e and % Twave after the moment of maximum curvature.
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Figure 4.3: Variation of the cable shape at % Twave and % Twave before and % Twave and %
Twave after the occurrence of the maximum curvature for a regular wave of T =5.5s and H =
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Figure 4.4: Variation of the cable shape at % Twave and % Twave before and % Twave and %
Twave after the occurrence of the maximum curvature for a regular wave of T = 12.5s and H =
5.0m.
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4.2, Contributions to cable dynamics

To assess the potential use of vessel motion limit criteria for normal lay analysis the individual con-
tribution of the vessel motions and direct cable loads to the cable dynamics is studied. The cable
dynamics in the two types of simulations described below are compared to the cable dynamics re-
sulting from normal regular wave simulations.

Vessel motion based simulations: Only the vessel motions resulting from the regular wave input
are included. The wave kinematics, and therefore direct cable loads, are discarded.

Direct cable loads based simulations: The movement of the vessel to the regular wave input is dis-
regarded. Hence the wave kinematics are the only dynamic input considered in these simula-
tions.

The differences in the maximum curvature and maximum tension response in the cable in the two
types of simulations described above, and in normal regular wave simulations, are presented in
Figure 4.5 and Figure 4.6, respectively. The presented results are for a wave height of five meters and
for varying wave periods. An important side note on these plots is that due to the non-linear nature
of the system, it is unknown whether the effects of direct cable loading and vessel motions cooperate
or counteract each other in the regular wave simulations. A clear example of this behaviour is seen
for a wave period of seven seconds, where the maximum curvature due to direct cable loads only, is
higher than the maximum curvature resulting from both direct cable loads and vessel motions.

The aim of this analysis is to identify the effects which govern the cable dynamics. Ideally, the han-
dling limits of the cable are described by the parameter which most effects the cable dynamics. Lack
of this relationship can result in the limit criteria being fulfilled, while other parameters that effect
the cable dynamics are changed in such a way that a handling limit is exceeded.

From inspection of both Figure 4.5 and Figure 4.6, it is found that for both the maximum curvature
and the maximum tension in the cable the vessel motions are governing for longer wave periods,
starting from eight seconds for both the maximum curvature and the maximum tension response.
This is favourable for the application of vessel motion limit criteria. However, for short period reg-
ular wave input the dynamics of the cable are to a large extent governed by the direct cable loads.
This is a direct result from the fact that the CLV hardly reacts to short period waves. Although short
period waves with a waveheight of five meter are not likely to occur in a real sea states, this effects
still persists for lower wave height simulations. This might jeopardise the use of vessel limit cri-
teria especially in areas with sea states characterised by short peak periods. However, these types
of sea states, characterised by short wave periods and low wave heights, are not likely to result in
exceedance of the cable handling limits, which is beneficial for the use of vessel limit criteria.
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4.3. Vessel motion selection

The aim of this section is to identify the vessel motion governing the tension and curvature response
of the cable. Later on, this knowledge is used for definition of the relation between the vessel move-
ments at the chute of the CLV and the cable responses. In order to provide insight in the governing
vessel motion, the Time Lagged Cross Correlations (TLCC) between the cable response and vessel
motions at the chute of the CLV are determined based on a set of irregular wave simulations. The
TLCC, detoned by the symbol pi?, Iz is defined in Equation 4.1 [Dean, R. and Dunsmuir, W,, 2016]. It

is a function of the time lagged covariance yi.f i of the two signals and the standard deviation of each
signal. The time lagged covariance can by found using Equation 4.2, where k presents the time step
for which the TLCC s calculated. The TLCC is valued between minus one and one (-1<y; ; <1). The
absolute value of the correlation gives an indication of the extent to which the signals are linearly
related, and the sign is an indication of the nature of the signal, a negative or positive relation.

k Yij
R (4.1)
o ,/alz.ai
v =L (- ) (- 1) @2)
PN U T ! '

4.3.1. Curvature

The TLCC'’s between the motion of the chute and the curvature response of the cable element which
experiences the maximum curvature during the full simulation, is presented in Figure 4.7 to Fig-
ure 4.12. The abbreviations used in the figures are documented in Table A.1 in Appendix A.2. The
correlations are determined for a significant wave height of H;=2.5m and for a peak period range
of 6.0s<T, <16.0s. In order to select the most suitable vessel motion, a set of selection criteria is
established. An outline of the selection procedure is given below.

1. The maximum absolute correlation for each simulation is compared to the maximum correla-
tion found between the cable response and the wave elevation. All vessel motions performing
worse than the wave elevation are discarded. The correlation between the cable response and
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wave elevation is set as lower boundary in order to select a parameter which performs better
than the current parameter used to define limits in dynamic cable analysis.

. Itis checked if causality is possible between the vessel motion and cable response. This crite-

rion requires the maximum absolute correlation to appear when the vessel motion is leading.
In case the maximum absolute vessel motion is present for a leading curvature signal, a de-
pendency deficiency is detected, as this correlation has no physical meaning.

. In this step the vessel motions which are unfeasible based on theoretical dynamic behaviour

of a cable are rejected. This is the case when the sign of the correlation is not in correspon-
dence with the theoretically expected behaviour, see subsection 2.5.5.

In the last step of the selection, the remaining vessel motions are rated based on the absolute
value of their correlation with the cable response.
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Figure 4.7: The TLCC of the curvature response of the cable Figure 4.8: The TLCC of the curvature response of the cable
for all vessel motions and the wave elevation, calculated
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Figure 4.9: The TLCC of the curvature response of the cable
for all vessel motions and the wave elevation, calculated

for Ty = 6.0s Hg=2.5m.

Time lagged cross correlation - wave height = 2.5m, wave period = 10.0s

curvature leads <> vessel motion leads
— [ -

— — — D~
— o~

I

—— T~ ——

—_

[ T~

— o~~~

P — ‘/_\7 : ] \/_\//

— | [

f
\
!
]
\
f
1
\
!
\

‘//*\/‘,\/ / I ———
20 -10 0 10 20
Time lag [s]

for Tp =10.0s Hg=2.5m.

WE AA AV AD SA SV SD HA HV HD

Time lagged cross correlation - wave height = 2.5m, wave period = 12.0s

| | | | | | | |
H ORI ORI ORI OHIHOHIH ORI OR RO ORI O

for Tp = 8.0s Hg=2.5m.

curvature leads <> vessel motion leads

/\ / \7/*\\

— o o~

— 5

e e e B

)if/**—\/‘\;\i/_\_/,i

| 1 ]

| | | 1

20 -10 0 10 20
Time lag [s]

Figure 4.10: The TLCC of the curvature response of the

cable for all vessel motions and the wave elevation,

calculated for T = 12.0s Hg=2.5m.

The details of the analysis are presented in Appendix A.2. Heave acceleration and axial accelera-
tion are identified as most suitable parameters for application of vessel limit criteria for the normal
lay configuration considered in this assessment. For the application of vessel motion limit criteria,
ideally a vessel motion with a as much as possible linear relationship to the cable response is se-
lected, as this implies that an increase in the magnitude of the vessel motion is indeed related to an
increase in the cable response. Thus, a vessel motion with a as high as possible TLCC is preferred.
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Figure 4.11: The TLCC of the curvature response of the Figure 4.12: The TLCC of the curvature response of the
cable for all vessel motions and the wave elevation, cable for all vessel motions and the wave elevation,
calculated for Tp = 14.0s Hg=2.5m. calculated for T, = 16.0s Hg=2.5m.

Both of these vessel motions complied with the selection criteria mentioned above and overall have
the highest absolute TLCC. The heave acceleration and axial acceleration were selected based on the
negative TLCC value. The time lag between the heave acceleration time history and the maximum
curvature response of the cable is between 2.5-3.5 seconds.

4.3.2. Tension

For the maximum tension response of the cable the same approach is followed as for the curvature
response of the cable. The corresponding plots are presented in Appendix A.2. The results show
similar behaviour as for the curvature response, only now the TLCC is positive. Therefore here also
the heave acceleration and axial acceleration are identified as most suitable vessel motions for the
application of vessel motion limit criteria.

4.4. Linear regression analysis

The last step of the vessel motion limit criteria assessment is to apply linear regression between, on
one hand the peaks in the vessel motion and the peaks in the wave elevation time history, and on the
other hand the corresponding peaks in the cable response. This can help to assess the applicability
of vessel motion limit criteria compared to sea state limit criteria, as well as give preliminary insight
in the possibilities to reduce the computational time involved with dynamic cable lay analysis. The
analysis is applied to a sea state of Hy = 2.5m and T, = 9.5s, as sea states in this range were identified
as suitable for vessel limit criteria in section 4.2.

First an outline of the approach is given. The peaks and throughs, with at least an amplitude of
50% of the maximum elevation, in the vessel heave acceleration response are identified. As seen in
section 4.3, a time lag of 2.5-3.5 seconds exists between the heave acceleration and both the tension
and curvature response of the cable. Therefore, the maximum cable response in the 4 seconds after
the occurrence of the peak/through in the heave acceleration is selected. The peaks in the heave
acceleration time history are related to the occurrence of maximum tension in the cable, while the
throughs are related with the maximum curvature response. The selected points are plotted in a
scatter diagram, to which linear regression is applied. The 95% prediction bands are identified as
well. These regions enclose 95% of the data and are an indication of the amount of spreading of
the data around the linear regression. This same procedure is carried out for the wave elevation
at the RAO origin of the vessel. However, the exact relation between the wave elevation and cable
response with respect to the time lag is not studied and is partly related to the combined pitch and
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heave response of the vessel. Based on observation of the most positive and most negative TLCC
of the wave elevation in Figure 4.7 to Figure 4.12, the search domain is extended to 8 seconds and
both the peaks and the throughs are studied in relation to the maximum tension and the maximum
curvature in the cable.

The results for the maximum curvature response are given in Figure 4.13 and Figure 4.14. The cur-
vature in relation to the wave elevation peaks is added in Appendix A.3. In the same manner, the
results for the maximum tension response are given in Figure 4.15 and Figure 4.16 for the heave ac-
celeration and wave elevation peaks, respectively. The results of the maximum tension with respect
to the wave elevation throughs is added in Figure A.10 in Appendix A.3.
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bands, between the maximum curvature and heave bands, between the maximum curvature and wave
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For the application of vessel motion limit criteria, two aspects are of importance. First of all the
slope of the linear regression line, as this identifies whether an increase in the limit parameter is also
related to an increase in the cable response. Another important aspect is the width of the 95% pre-
diction bands, which signifies the spreading of the observations around this trend. Higher spread-
ing results in a less suitable limit parameter. The slopes and accompanied band widths are given
in Table 4.1. These support the observations which can already be identified based on the plots.
The slopes associated with vessel motion limit criteria show higher values compared to the linear
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Table 4.1: Slopes and 95% prediction band widths of the linear regression.

Correlation ‘ Slope 95% prediction band width
Curvature - HA -0.076 [rii—'gsz] 0.010 [rad/m]
Curvature - WE (through) | -0.0136 [2] 0.013 [rad/m]
Curvature - WE (peak) 0.0143 [ifl—‘zi] 0.018 [rad/m]
Tension - HA 17.15 (K<) 1.62 [kN]

Tension - WE (peak) 0.8 [1%] 4.48 [kN]

Tension - WE (through) -3.4 [£1] 4.11 [kN]

trend resulting from the wave elevation, for both the maximum curvature and the maximum tension
response. Taking into account the fact that the magnitude range of the heave acceleration excita-
tion is approximately 2-3 times smaller than the wave elevation range for this sea state, the relative
steepness of the slope of the heave acceleration linear regression line is still higher. This means that
an increase in the heave acceleration is stronger related to an increase in the cable response than
the wave elevation, making heave acceleration a more suitable limit parameter. Furthermore, the
bandwidth of the 95% prediction interval is significantly smaller for heave acceleration limit crite-
ria compared to wave elevation limit criteria. This means higher certainty can be given to limits
expressed in the heave acceleration compared to wave elevation, which eventually has a positive
influence on the workability.

Finally, as a first step towards simplification of the dynamic cable lay analysis the trend observed
based on regular wave analysis is added to the plots in Figure 4.13 and Figure 4.15. For the curvature
response the regular wave results are all within 95% prediction band, but an over prediction with
respect to the linear regression is present. For the tension response the regular wave results are
providing an over prediction as well, but the results for higher regions of the heave acceleration
fall outside the 95% predictions bands. This sets the the framework for a possible options towards
simplification of the calculation of the cable responses, which will be continued in Chapter 7.






Reduced time domain simulations

In Chapter 7, the use of a transfer function to reduce the computational time of dynamic cable lay
analysis is assessed. Another in industry emerging method is the reduced time domain method. In
the reduced time domain method the cable simulation time is reduced and concentrated around
a certain maximum in the wave or vessel parameters in the model. Here, the applicability of this
method with respect to vessel motions is evaluated. Both the heave acceleration and velocity are
examined. The velocity is added on top of the heave acceleration based the proposed approach
found in industry. In this thesis the maximum tension in the cable and maximum curvature are
the main focus, therefore the applicability of this method is evaluated with respect to these two
parameters.

5.1. Reduced time domain method for vessel motions

First, a three hour time domain simulation of the vessel motions is created for a given sea state.
The maximum and minimum vessel motion reponse are then selected and a full dynamic simula-
tion, including the cable, is carried out from 125s before to 125s after the occurrence of the absolute
minimum and maximum vessel motion in the three hour simulation. Both the minimum and the
maximum is selected as different cable responses are governed by different inputs. Maximum ten-
sion is effected by upward movements of the vessel, whereas maximum curvature is governed by the
downward movements. Therefore, both domains are included in the analysis and the final result is
based on the results of both simulation domains combined.

If the cable handling limits are not exceeded during the reduced time domain analysis, the case is
accepted and deemed workable. The simulation time is thus reduced from 10800s to 500s, which
means a reduction of approximately 95%, as the computational time required for the calculation of
the vessel motion is almost negligible compared to the full cable dynamics. A graphical representa-
tion of the selected simulation domain is given in Figure 5.1.

41
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Figure 5.1: Graphical representation of the reduced time domain method. The red bars represent the selected time
domain for full dynamic simulation, selected based on the vessel motion response.

5.2. Applicability of reduced time domain method

In this section, the applicability of the reduced time domain method applied to vessel motions is
studied. The method is tested for three different cable installation configurations. An overview of
the characteristics of these configurations is given in Table 5.1.

Table 5.1: Overview of the cable installation set-ups.

‘ Set-up 1 Set-up 2 Set-up 3
Cable Export cable Export cable Array cable
Water depth 25m 50m 25m
Static departure angle | 24.9 [deg] 16.7 [deg] 25.5 [deg]
Static TDP tension 7.00 [kN] [7.371 kN 3.13 [kN]

For each cable set-up the reduced time domain method is tested for a set of sea states, which are
representable for on site conditions during a normal lay operation. The full set of sea states is given
in Table 5.2, where y is determined following Figure 3.6. Each sea state is simulated for the full
360° of wave heading angles with a step size of 15°, following the conventions given in Figure 3.3.
This brings the total of cases to 192 simulations per cable set-up. Based on this simulations set,
the applicability of the reduced time domain method with respect to the maximum curvature and
maximum tension is the cable is assessed.

Table 5.2: Overview of sea states for which the reduced time domain method is tested.

Seastate ‘ 1 2 3 4 5 6 7 8

H; [m] 10 10 15 15 20 20 25 25
T [sl 45 55 55 65 65 75 75 85
v [-] 178 1.0 180 1.0 159 10 134 1.0
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5.2.1. Results

The results of the reduced time domain method applied for the heave velocity of the vessel are
presented in Table 5.3. Equivalent results for the reduced time domain method applied for the heave
acceleration are given in Table 5.4. In order to be able to compare the results between the different
set-ups, the tension and curvature increase with respect to the maximum tension and maximum
curvature in the static configuration is studied. This tension amplitude is defined by Equation 5.1
and the curvature amplitude is found by Equation 5.2.

ATtop = Ttop,max - Ttop,static (6.1)

AKmax = Kmax — Kmax,static (5.2)

Table 5.3: The performance of the reduced time domain method, applied to the heave velocity of the vessel.

Set-up 1 Set-up 2 Set-up 3
Curvature Tension Curvature Tension Curvature Tension
Mean error 6.0 % 7.9 % 5.5% 3.4% 5.3 % 3.0%
Error std 8.8 % 9.9 % 8.9% 7.0% 8.6 % 5.3%
Successrate | 84 68 105 102 102 101
Largest error | 40.6 % 38.8% 38.3% 40.1% 39.3% 26.0 %

Table 5.4: The performance of the reduced time domain method, applied to the heave acceleration of the vessel.

Set-up 1 Set-up 2 Set-up 3
Curvature Tension Curvature Tension Curvature Tension
Mean error 5.8 % 5.3% 6.2% 3.6% 4.9 % 3.2%
Error std 8.3% 8.9 % 9.0% 7.0% 8.0% 5.4 %
Succes rate 83 97 78 99 101 94
Largest error | 33.7 % 366%  38.3% 35.9% 329 % 26 %

The mean error shows the mean under prediction in percentage of the maximum tension amplitude
and maximum curvature amplitude over all 192 cases for each set-up. The corresponding standard
deviation of the mean error is provided as well. The success rate gives the number of cases in which
the maximum cable response in the cable was found using the reduced time domain method. The
largest error is the largest error in the cable response amplitude over all 192 cases.

The general observation is that the reduced time domain method does not capture the maximum
cable response found during a full three hour time domain simulation, as is desired. The best suc-
cess rate found in this study is 105/192 = 55%, which is still relatively low. For the remaining 45%
of the cases, there exists a risk of falsely accepted installation conditions. The average error lies
between 3-10%, which could be solved by implementation of a safety factor in the reduced time
domain method. However, the standard deviation of this error as well as the extreme errors found
in this study are quite severe, making this approach less suitable. Based on the current results no
conclusion can be drawn on whether the reduced time domain method can best be applied to the
heave velocity or heave acceleration of the vessel. The performance is set-up specific and varies
dependent on the performance parameters under investigation.

The results given in Table 5.3 and Table 5.4 give the errors with respect to the cable response am-
plitude. The most severe absolute errors are given here to get a better understanding of the true
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magnitude of the under prediction. The largest absolute error in the curvature response is found for
set-up 3, when the reduced time domain method is applied to the heave acceleration of the vessel.
In this case the reduced time domain method reports a maximum curvature of 0.202 [rad/m], while
the full time domain simulation reports a maximum curvature of 0.241, which corresponds to an
error of 16.17%. Likewise, the largest error in the tension response is found for set-up 1, when the
reduced time domain method is applied to the heave velocity of the vessel. For this specific case the
maximum tension reported by the reduced time domain method is 35.71kN, against 39.75kN for the
full time domain simulation.

Combining these observations, the reduced time domain method does not capture the absolute
maximum as found during the required full three hour dynamic simulation time as specified in
[DNVGL-RP-N103, 2017]. On top, the variation in the error is quite large making the required safety
factor high, which is undesirable. Therefore, the reduced time domain method is not deemed ap-
plicable for normal cable lay analysis based on the results obtained in this study.



Spectral Analysis

In the spectral analysis, Airy’s linear wave theory is used to generate the wave input for the simu-
lations. Simulations for waves exceeding the breaking limit ,as described in subsection 2.5.3, are
excluded from the analysis. This chapter focuses on acquiring a fundamental understanding of the
behaviour of the cable during normal lay operations. Then the non-linearities of the system with
respect to the frequency response of the cable are studied using Discrete Fourier Transform (DFT)
analysis in section 6.1. In section 6.2 extra attention is given to the effect of the non-linear drag in
the normal lay model. In the next section, section 6.3, the behaviour of the cable with respect to the
input amplitude of the waves and the corresponding cable response amplitude is examined. Then,
the contribution of higher order components in the cable response to the total response of the cable
is studied in section 6.4. Finally, the governing loading regime in the normal lay model is identified
in section 6.5, to support the understanding of the system behaviour.

6.1. Discrete Fourier Transform analysis

A DFT analysis is carried out to give insight in the non-linearities of the cable lay system with re-
spect to the maximum tension and maximum curvature response. The analysis is carried out using
regular wave simulations.

The DFT determines the frequency domain representation of a time domain signal, therefore it
is an helpful tool to identify the frequency components contained in a time domain signal. The
maximum frequency the DFT is able to capture is known as the Nyquist frequency and defined as
Joyquist = 0.5fs, where f; is the sampling frequency of the time history. The minimum frequency
is limited by the length of the signal and thus fyin = o The single sided DFT ranges from
[fmin,fhyquist] and is calculated by Equation 6.1, where x;, represents the signal. The DFT is complex
valued and thus encodes both the amplitude and the phase of the sinusoidal signal component.
The amplitude and phase of the response are found by Equation 6.2 and Equation 6.3, respectively.
The curvature time history of the node experiencing the maximum curvature during the full sim-
ulation time is used as input for the curvature DFT. The tension DFT is determined based on the
tension time history in the first node of the cable model, which corresponds to the node of maxi-
mum tension as seen in section 4.1. In this section the focus is on the amplitude spectrum of the
cable responses.

2 = .mk
— Z Xmexp—2mwi— (6.1)
n = n
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X)) =/ (Re(X ()2 + (Im(X())? 6.2)
) ImX(f)
o(f) = arctan(—Re ) ) (6.3)

6.1.1. Curvature

The curvature response spectrum was studied for a wide range of input waves with wave heights
in the range of 1.0 < Hy 4y < 2.5 and periods in the range of 3.0 < Ty, 4. < 16.0. The curvature
response spectrum to a regular wave input of [T, 4,=10s,H,,4,.=2.5m] is given in Figure 6.1.
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Figure 6.1: The amplitude spectrum of the maximum curvature response (arclength from vessel connection = 65m) for
Twave=10[sl,Hwave=2.5[m].

The following observations are done based on the curvature DFT analysis:

1. Multiple period components are present in the period response of the curvature. This is an
indication of the non-linearity in the system, as only a single input period was given.

2. The periods contained in the period response can be identified as a fraction of the input pe-
riod, where the denominator is given by n=1,2,3,4,5.

3. For an input wave period with T>10s, the amplitude of the sinusoidal complex component of
the DFT reduces as the period corresponding to the component reduces. For shorter input
periods, the decreasing order is disturbed, most often by the % component.

Observation 1 and observation 2 show the generation of sum frequencies in the cable response.
This means multiple integers of the input frequency of the system are present in the response. This
is a general characteristic of non-linear systems. Another often seen characteristic in non-linear
systems is difference frequency generation. A difference frequency is a frequency with a magnitude
equal to the difference between two other frequency components in the response. This difference
can for example be between the input frequency and a frequency component introduced by a non-
linearity in the system.
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An example of such a non-linearity is the drag force in the Morison equation. In case this force is
applied to a nonmoving structure, the frequency components contained in the signal can be iden-
tified by the Fourier series of the drag force time history. The drag force on a rigid pile is of the form
seen in Equation 6.4, where i is the amplitude of the wave particle velocity.

Fp o % sin(wt) - sign(sin(wt)) (6.4)

This type of signal is odd and contains a half-wave symmetry. Based on Fourier series theory, this
means that the drag force will contain uneven integer multiples of the input frequency (f1, 3, f5,...)-
The contribution at each frequency reduces as the frequency increases [Osgood, 2007].

However, the drag force implemented in the normal lay model is dependent on the movement of
the cable itself. The resulting time history of the drag force is thus dependent on the velocity of
the cable. As a result, the signal loses its half wave symmetry and odd nature and is influenced
by the frequencies in the velocity response of the cable. Therefore, none of the coefficients in the
Fourier series reduces to zero and all integer multiples of the input frequency are likely to, to some
extent, be represented in the drag force time history. Furthermore, the effect of the seabed is tested
based on an one degree of freedom mass spring system, where the spring is supplemented with
a Heaviside step function component. The Heaviside function in this simplified model represents
the different stiffness with regards to up and downward movement of the cable. This showed that
this kind of non-linearity introduces a significant component at the second frequency component,
equal to twice the input frequency to the system.

The presence of both sum frequency generation and difference frequency generation in non-linear
systems makes it difficult to pinpoint the frequency components to specific non-linearities in the
system. In order to further investigate the effect of the non-linear drag in the system, a drag lineari-
sation is applied. The approach and results are outlined in section 6.2.

6.1.2. Tension

The DFT of the tension response is studied in a similar way as for the curvature response. The
tension response spectrum to a regular wave input of [T, 4,=10s,H,4,.=2.5m] is presented in Fig-
ure 6.2. The observations are listed below the figure.
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Figure 6.2: The amplitude spectrum of the top tension response for [T, 41¢=10s,H=2.5m].

1. In general, the tension response shows relatively smaller peaks for higher order components
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in the response, compared to the curvature response.

2. The % period element in the DFT of the maximum tension response in the cable is often higher
than the % period element.

Based on observation 1, it is concluded that the tension response of the cable is less affected by
the non-linearities in the system then the curvature response of the cable. Furthermore, the high
frequency components in the tension response of the cable are likely to be affected by the movement
of the TDP of the cable. The cable making contact with the seabed introduces an impulse through
the cable as a result of the instantaneous introduction of reaction forces with the seabed. In the DFT
of the cable response this is represented by low frequency components in the DFT.

6.2. Drag linearisation

In this section the drag in the normal lay model, described in section 3.1, is linearised. The DFT of
the original model is compared to the DFT of a normal lay simulation executed with the linearised
drag model, to provide insight in the effect of the non-linear drag in the cable response.

6.2.1. Model set-up

Orcaflex does not allow for drag linearisation directly. Therefore the normal lay model is adjusted in
order to allow drag linearisation in normal lay simulations.

The linearised drag model is created by the use of spar bouys. Spar buoys are cylindrical 6D buoys
in Orcaflex, which allow for a linear damping force to be implemented on the spar buoy. These spar
bouys are attached to cable in order to take over the drag force on the cable. The drag coefficient
of the cable itself is set to zero and the linear damping force of the spar bouys is then used for the
implementation of the drag linearisation. The inertia force is still taken into account by the actual
cable in the model.

One spar buoy is attached to each cable node. This means the spar buoys have a length of 0.5m
and are rigidly attached to the node by means of a constraint. Each spar buoy thus spans half of the
cable element above the node, and half of the cable element below the node. The spar buoys have
a diameter in the order of 10™!2m and the weight is set so that the spar buoy is neutrally buoyant.
This small diameter, and consequently small weight, aim at reducing the effect of the spar buoy on
the inertia forces in the model.

The last step is the implementation of the linearised drag force by means of the linear damping force
of the spar buoys. The linear damping force of the spar buoys is defined by Equation 6.5, where UDF
is the Orcaflex User Defined Function, which in this application represents the damping force value.

fp=—UDFuvy¢ (6.5)

Now, the UDF is set to the linearised form of the drag force as defined in Equation 6.6

1
UDF = EPWCDAZKL (6.6)

Here K} is the drag linearisation coefficient. The full procedure to obtain the value of this coefficient
is explained in Appendix B.2. The drag linearisation coefficient is dependent of the relative velocity
of the cable node to which the spar buoy is attached. Therefore, the drag linearisation coefficient
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has a different value for each of the spar buoys attached to the cable. Furthermore, the calculation
of the drag linearisation is an iterative process, as the relative velocity of the cable is dependent of
the magnitude of the drag force itself. A flowchart of the procedure followed for the execution of
linear drag simulations is shown in Figure 6.3.

Input relative velocity
amplitude (Vrel,in) Calculate drag Perform Orcaflex
from nonlinear drag linearisation simulation with linear
simulations as initial coefficient K drag
estimation

Calculate
€ = IVrel in - Vrel,out!

Process simulation
data

Update relative
velocity

Vrel,in = Vrel,out

Figure 6.3: Flowchart of the iterative process for the excecution of linear drag simulations in Orcaflex.

6.2.2. Model verification
After building the model, the first step is the verification of the new normal lay model.
Static

The static results of the original normal lay model and the new spar buoy model are presented in
Table 6.1. Both the top tension and the maximum curvature along the catenary of the cable are
equal and the curvature occurs at the same node. In addition, the layback is checked and found to
be equal for both models. Therefore, the spar buoy model is a good representation of the original
normal lay model in the static state and considered statically verified.

Table 6.1: Static validation of the drag linearisation model in Orcaflex.

Model Top tension Maximum curvature

35.54 [kN] 0.04626 [rad/m]

Original cable model (node 139)

35.54 [kN] 0.04626 [rad/m]
Spar buoy model (node 139)
(£0.00%) (£0.00%)
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Dynamic

The next step is the dynamic verification of the drag linearisation model. In the original model, a
Reynolds number dependent drag coefficient was used. As a spar buoy does not allow for a Reynolds
dependent drag coefficient, additional simulations of the original model with a constant drag coef-
ficient of Cp = 1.2 are executed. These results are compared to the results obtained from the spar
buoy model, where the drag coefficient of the spar buoys is set equal to Cp = 1.2. The drag area
of the spar buoy is modified so that it corresponds to the drag area of a single cable element. The
comparison between the results of these simulations is provided in Figure 6.4 and Figure 6.5.

The curvature and tension response of the cable shows a similar shape and magnitude. The error
in the maximum magnitude of the curvature response is -0.1% and the error in the maximum mag-
nitude of the tension response is +0.2 %. The slight variation might be the result of the really small
weight of the spar buoys on the cable. The curvature is then decreased by the slightly higher inertia
force in the spar buoy model based on the diameter of the spar buoys, while the extra weight causes
the magnitude of the tension variation to slightly increase.
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Figure 6.4: Comparison between the maximum curvature Figure 6.5: Comparison between the maximum tension
response of the original and the spar buoy model. response of the original and the spar buoy model.

6.2.3. Results

A short sample of the time history of the tension response of the cable, for a simulation with quadratic
drag and a simulation with linear drag, is presented in Figure 6.6. Similarly, a short sample of these
time histories of the curvature response of the cable are given in Figure 6.7. The plots clearly show
that the maximum tension response of the cable and the maximum curvature response of the cable
are reduced due to the drag linearisation in the normal lay model.

The DFT of the tension of the cable for quadratic drag and linear dragis presented in Figure 6.8. Note
that the DFT for quadratic drag is not exactly the same as the one presented in Figure 6.2, as now
the drag coefficient is kept constant in order to comply with the spar buoy model. The plot shows
that the first order component is increased, the second order component is decreased and the third
order component is increased again, as linear drag is implemented. Based on theory, particularly a
reduction of the third component would be expected. This because the linear drag force will mainly
represent itself at the input frequency, while the quadratic drag also has a significant component at
the third sum frequency. Thus, the dynamic complexity of the system is such that no direct conclu-
sion can be drawn based on the results of drag linearisation. Furthermore, the quadratic drag DFT
contains more higher frequency components. This might result from the fact that the quadratic
drag term includes more higher frequency components in combination with the generation of sum
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Figure 6.6: Comparison between the time history of the
tension response for a linear and a quadratic drag regular
wave simulation with Ty 4pe=10s and Hyygpe=2.5m.
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frequencies with these frequency components. By inspection of Figure 6.10, which shows the lin-
ear and quadratic drag profile for a non-moving structure, the linear drag clearly shows a single
frequency component, while the quadratic shows also significant influence of the third frequency
component. The principle of sum frequency generation with linear drag is shown in Equation 6.7.
This same principle in combination for the third order component of the quadratic drag in shown
Equation 6.8. This can cause the shift towards higher frequency components for quadratic drag

compared to the linear drag model.
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Figure 6.8: The DFT of the maximum tension response of the cable for [Ty 4pe=10s,Hyyqave=2.5m] based on simulation
with linear and quadratic drag.

Linear drag = {

Quadratic drag = { f+h=f

h+h=/3
h+f=/a 6.0
B+f=fs (68

The DFT of the curvature response of the cable for both quadratic and linear drag is presented in
Figure 6.9. The first and second component of the DFT are reduced due to the implementation of
drag linearisation. The reduction of the first component might be the result of the overall reduction
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Figure 6.9: The DFT of the maximum curvature response of the cable for [T;4ye=10s,Hyyqve=2.5m] based on simulation
with linear and quadratic drag.
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Figure 6.10: Profiles of the quadratic and linear drag in time.

of the magnitude of the signal. With respect to the higher order component, the observation is that
the higher order components increase due to the linear drag definition. This might imply that the
higher order components of the curvature response are dominated by difference frequency genera-
tion instead of sum frequency generation, following the same reasoning as for the tension response
of the cable.

As stated above, both the maximum tension and the maximum curvature response of the cable were
decreased as a results of the implementation of linear drag into the normal lay model. A possible ex-
planation for this behaviour is change in the shape of the drag profile as a function of time, upon the
change from quadratic towards linear drag in the model. An example of the shape of both profiles is
given in Figure 6.10. Later on, in section 6.3, it is discussed that the relative velocity in the sagbend
of the cable is dominated by the movement of the cable itself, therefore v,,; = 0 around the extreme
curvature instance of the cable. It is seen that in the extremes of the cable curvature response ( V¢;
=~ 0), the linear drag force contains slightly more impulse than the quadratic drag force. Hence, in
the extremes of the cable movement, the movement of the cable itself is slightly less counteracted
by the quadratic drag force than by the linear drag force. As a result, the cable in the quadratic drag
mode is 'overshooting’ a little more, resulting in a higher extreme curvature.

6.3. Spectral amplitude of the cable response

It is clear that the period of the input to the cable lay system affects the response. In the previous
section the effect of the non-linearities of the system on the frequencies contained in the cable
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response were discussed. In this section the relation between the amplitude of the input and the
amplitude of the output of the system is studied. The peak in the DFT of the cable response at the
input period is scaled by the wave height, see Equation 6.9. The result provides insight in the non-
linear behaviour of the cable with respect to the input amplitude. Only the first order component
of the response is chosen instead of the total magnitude of the response in light of the application
of the first order component in a cable response transfer function, see Chapter 7. In this section
the system is considered positively non-linear if a doubled input amplitude results in a more than
doubled cable response. Likewise, the system is considered negatively non-linear if a doubled input
amplitude results in a less than doubled cable response.

Xresponse | T=Tinput

Xscaled = (6.9)

I_Iinput
6.3.1. Curvature

The maximum curvature response of the cable for unit vessel wave height based on the first order
DFT component of the response is given in Figure 6.11.
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Figure 6.11: The maximum curvature response of the cable for unit wave height determined based on regular wave input
of H=1.0m,H=2.5m,H=4.0m and H=5.0m.

Based on Figure 6.11 the following observations are made:

1. The system shows non-linearities with respect to the input wave amplitude, as the lines show
variation with respect to eachother. Due to the linear properties of the use of RAO’s for vessel
motion calculation it can be concluded that the cable curvature response is non-linear with
respect to the amplitude of the vessel motions.

2. For Ty 4pe>10s, the system is positively non-linear.

3. For Ty ape<10, the system is in most cases negatively non-linear.

To get a better understanding of the behaviour of the cable as discussed above, the drag and inertia
forces on the cable are studied.

The inertia force consist of two components, the hydrodynamic mass force, which is dependent
on the relative acceleration of the cable, and the Froude-Krylov force, which is independent of the
movement of the cable itself. The drag on the cable is dependent on the relative velocity of the
cable. The sea, cable and total acceleration in the horizontal direction is studied for three different
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sea states, with peak periods varying between T, ;,e= 6.0s, Tyyqpe= 10.0s and T, 4= 16.0s. The
results for T,,4,.=10s are given in Figure 6.12. The results for T,,,,.=6s and T,4,.=16s are given in
Appendix B.1. In addition, the sea, cable and total velocity in the horizontal direction are studied for
the three sea states specified above. The results for T,,,,.=10s are given in Figure 6.13. Noticeable
is that for both the relative acceleration and the relative velocity the movements of the cable itself
have a significant effect on the total relative acceleration and total relative velocity of the cable. The
acceleration and velocity of the cable itself is most significant in the sagbend area of the cable, where
mostly the maximum curvature response is experienced.
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Figure 6.12: The acceleration of the sea, cable and total
acceleration for Ty 4ye=10s and H = 2.5s along the full
catenary of the cable at four instances during the regular
wave period.

Figure 6.13: The velocity of the sea, cable and total velocity
for Tyyave=10s and H = 2.5s along the full catenary of the
cable at four instances during the regular wave period.

The movement of the cable can be approximated by a sinusoidal function, as given in Equation 6.10.
Consequential, the velocity and acceleration of that same point on the cable can be found by Equa-
tion 6.11 Equation 6.12, respectively. This implies that for higher frequencies an increase in the
amplitude of the movement of the cable results in a larger increase of the inertia force and drag
force compared to the same amplitude increase for lower frequencies. The part of the inertia force
resulting from the cable acceleration itself will be counteracting that same movement. Likewise,
the part of the drag force resulting from the cable velocity counteracts the cable movement as well.
Therefore, for higher frequencies the positive non-linear cable geometry, meaning higher scaled ca-
ble responses for higher inputs, is diminished by the effect of the inertia and drag force resulting
from the cable movement itself.

x=A-sin(wt) (6.10)
v=—wA-cos(wt) (6.11)
a= —wZA-sin(wt) (6.12)

6.3.2. Tension

The maximum top tension response of the cable for unit wave height is presented in Figure 6.14.
The observations made based on Figure 6.14 are stated below.
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1. The graph shows multiple scaled tension results per input period depending on input wave
height. This signifies that the system has a non-linear relationship between the input wave
height and tension response of the cable.

2. For T>7s, the tension response is positive non-linear with respect to the input amplitude.

3. For T<7s, it is quite unpredictable whether the system is positively or negatively non-linear
with respect to the input amplitude for the top tension. The results vary for the input period
within this range.

4. The tension response shows approximately linear behaviour between 6.25<T<7.25s with re-
spect to the input amplitude to the system.
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Figure 6.14: The maximum top tension response of the cable for unit wave height determined based on regular wave
input of H=1.0m,H=2.5m,H=4.0m and H=5.0m.

6.4. Contribution of higher order effects to total cable response

The contribution of the higher order components of the DFT to the total response of the cable are
studied in this section. In order to determine the contribution of the higher order components
detected by the DFT of the cable response, the maximum cable response amplitude with respect
to the static configuration to a regular wave with a specific period and wave height is compared
to the corresponding first order component of the amplitude DFT. The results for the maximum
curvature response are presented in Figure 6.15 and the results for the maximum tension in the
cable are given in Figure 6.16. Based on these plots it is concluded that the contribution of the
higher order components the cable response is most significant between T,,4,.=8s and T, 4y.=12s.
Furthermore a positive relationship between an increase in the wave height and the contribution of
the higher order components in the cable response to the total response is detected for the curvature
as well as the tension response of the cable. This information is relevant during the assessment of
the performance of the first order regular wave transfer function in Chapter 7.



6.5. Dominating loading regime 56

Waveheight = 1m Waveheight = 2.5m Waveheight = 5m

1°¢ order DFT component
Max. response to reqular wave

Curvature [radfm]

002 | o~ ] N\f\\/,/_\ 1 V"‘/\/'\/

5.0 75 10.0 125 150 5.0 75 0.0 125 15.0 5.0 75 10.0 125 150
period [s] period [s] period [s]

Figure 6.15: The amplitude of the first order component of the DFT of the maximum curvature response and the
maximum curvature response amplitude with respect to the static configuration found from regular wave simulations
for varying wave periods and wave heights.
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Figure 6.16: The amplitude of the first order component of the DFT of the maximum tension response and the
maximum tension response amplitude with respect to the static configuration found from regular wave simulations for
varying wave periods and wave heights.

6.5. Dominating loading regime

The Keulegan-Carpenter (KC) number is defined by Equation 6.13. Here u;,4y is the maximum wave
particle velocity at the sea surface. Ty, 4y, is the wave period and D the diameter of the cable. The
KC number provides an indication of the loading regime on the cable. The different loading regimes
are defined below [Journée and Massie, 2001].

K, = umuxDTwave (6.13)

KC<3 The system is inertia dominated. In this region the potential flow theory is applicable (I).
3<KC=45 Both the contribution of the inertia and drag force are significant (I & D).

KC>45 The system is drag dominated. In this region the frictional forces on the cylinder dominate
the force response (D).

To get an idea of the dominating loading regime in the normal lay simulations the KC number in the
simulations is calculated for various regular wave inputs. The results are presented in Table 6.2. The
results show that for higher periods the system tends to be drag dominated, while for lower periods
the inertia force starts to contribute as well. Furthermore, the drag force has a larger effect at the
top of the catenary, but since the drag force tends to reduce faster than the inertia force, the inertia
force becomes more dominant in the lower parts of the catenary i.e. at the location of maximum
curvature. This is due to the quadratic nature of the drag force.
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Another point of interest is that quite some cases where both the inertia and drag force have a signif-
icant effect where detected. For the range of KC numbers 10-25 the Morison equation is limited in
application because of a contradiction [Sarpkaya, 2010]. The definition of the inertia force is based
on the potential flow theory, which in turn is based on the assumption of an inviscid flow, while
the drag force in the Morison equation originates from frictional forces. In this region the effect
of the randomness of the few vortices that form around the cylinder are effecting the accuracy of
the Morison equation. This inaccuracy is mostly covered by the mitigating effects of the sea envi-
ronment, like omidirectional wave spreading. In this study omnidirectional wave spreading is not
implemented, possible resulting in some inaccurate load estimations of the Morison equation.

Table 6.2: Keulegan-Carpenter numbers for in normal lay simulations.

Twave [S] 6 6 6 10 10 10 16 16 16
Hyave [m] 1.0 25 |50 1.0 25 |50 1.0 25 | 5.0
KC number [-] 12 29 58 12 30 60 17 38 75
Loadingregime | I&D | I&D | D |I1&D |I&D | D |I&D |I&D | D







Transfer function set-up & performance

In this chapter the use of a transfer function to calculate the maximum cable response is evaluated.
The transfer function is based on the first order response of the cable to regular waves. The set-up
of the transfer function is discussed in section 7.1. In addition, the calculation of the RAO of the
vessel for the selected vessel motions found in section 4.3 is presented in subsection 7.1.1, as this
is required for the application of the transfer function. Next, in section 7.2, the performance of the
transfer function for approximating the maximum cable response is evaluated. The procedure fol-
lowed to obtain the cable response based on the transfer function is outlined in subsection 7.2.1. In
the same way, the procedure used to obtain the maximum response based on the statistics of Or-
caflex simulations is described in subsection 7.2.2. Next, the results of the transfer function and the
Orcaflex simulations are compared in subsection 7.2.3. Finally, the cable response spectrum calcu-
lated by the transfer function is compared to the cable response spectrum resulting from Orcaflex
simulation to provide insight in the behaviour of the transfer function.

7.1. Transfer function set-up

The transfer function is established with the use of the DFT representation of the cable response to
regular waves. This approach allows for the set up of the transfer function without requiring long
expensive simulations, as regular wave simulations are significantly faster and once in steady state,
repetitive. Taking only the first order component means all higher order effects are neglected. How-
ever, the total response to an irregular sea state generally does not contain all frequencies, while in
the case of a transfer function a continuous range of frequency components is excited. The DFT re-
sponse of the cable to regular waves was already discussed in section 6.3. The first order component
comprises the peak of the DFT found at the frequency at which the system is excited, in this case
corresponding to the wave period of the regular wave given as input to the simulation. The transfer
function is then defined by Equation 7.1 and provided with respect to the heave acceleration of the
CLV. This choice is based on the findings in section 4.3 and the definition of the RAO of the chosen
vessel response in subsection 7.1.1.

Xres lr=T;

ponse \ 1 =1inpur

RAOqp1e = X (7.1)
HAlT=T,ps

Following this approach, the transfer function is defined in the range between 2.5-25 seconds. The
lower boundary of this range is set by the lower bound for which the RAO’s of the Nexus are defined.

59
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Figure 7.1: Transfer function for the maximum curvature response of the cable.
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Figure 7.2: Transfer function for the maximum tension response of the cable.

The upper boundary on the other hand is based on the JONSWAP spectrum, which does not show
significant values above this upper limit for sea states with a peak period up to at least 12 seconds,
which is a reasonable upper boundary for the peak periods found at a specific site.

Due to the non-linear amplitude behaviour of the first order component, as discussed in section 6.3,
a worst case scenario approach is used for the set-up of the transfer function. The Nexus is able to
perform normal lay up to significant wave heights of 2.5m. Therefore, the maximum expected wave
height is approximately five meter, see subsection 2.5.3. Regular wave simulations with H=1.0m,
H=2.5m and H=5.0m are performed and the worst case result is selected for the transfer function.
This approach, together with the final transfer function, is presented in Figure 7.1 and Figure 7.2 for
the curvature and the tension response, respectively. These plots only span the transfer function
between 4-25 seconds, due to the high values below this range a full range plot reduces the detail of
the plot. The full transfer function is provided in Appendix C.1.

7.1.1. RAO transformation

The displacement of the vessel is defined at the RAO origin. For the application of the transfer func-
tion, is required to have a transfer function for the selected vessel motion at the chute of the vessel.
For the axial acceleration the RAO is dependent on the movement of the cable, namely the depar-
ture angle. This complicates the definition of the RAO for axial acceleration of the chute. However,
the transformation of the displacement RAO’s at the RAO origin into the RAO of the heave acceler-
ation at the chute is quite straightforward. Therefore it was chosen to define the transfer function
with respect to the heave acceleration of the vessel. First the displacement RAO is found by Equa-
tion 7.2. As the current case contains a wave heading of 180°, the yaw component does not have to
be included, as its contribution is approximately zero. Based on the assumption that the movement
of the chute of the vessel can be represented by a sinusoidal function, the acceleration RAO at the
chute is defined by Equation 7.3.
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RAO;—chute = RAO;+ RAOgX + RAOgz+ RAOypy (7.2)
Zehute = _szAOz—chute (7.3)

7.2. Transfer function performance

The next step is to test the performance of the transfer function in estimating the maximum cable
response expected during a certain duration of cable simulation.

7.2.1. Transfer function approach

A flowchart of the steps to estimate the maximum cable response with the use of the transfer func-
tion is given in Figure 7.3. Each one of the steps is clarified below.

1. 4. 5.
Determlne peak " Find Most Probable
o L S, rragmen | camenaners | ot
P P response P cable response

Figure 7.3: Flowchart of the procedure to estimate the maximum cable response with the use of the transfer function.

1. The cable response spectrum is calculated by Equation 7.4. Here S¢(f) is the wave spectrum
of the considered sea state and RAO; the response amplitude operator for the heave acceler-
ation of the Nexus.

Scable (f) = St (F)IRAO3[*| RAOcqple* (7.4)

2. In this step the distribution of the peaks in the cable response (CR) is selected. The time
history of the cable response found by the transfer function approach is built up out of two
components, the static cable response and a dynamic component, which is defined by the
transfer function, see Equation 7.5.

CR = CRstatic + CRdynamic (7.5)

First the procedure to obtain the time history of the dynamic component of the cable response
is outlined. The time history representation of the dynamic part of the cable response, based
on the transfer function, is defined in Equation 7.6.

. n .
CRaynamic = Ae? = Y Aje'?i (7.6)
j=1
The amplitude of the cable response A; is found from the cable response spectrum by Equa-
tion 7.7 and the phases ¢ ; are uniform distributed between [-7,7].

Aj=\/2"Scapie () Af 7.7)

The amplitude of the total cable response A is Rayleigh distributed if a) the phases ¢ are uni-
form distributed between [-7,7] and b) the amplitudes A; are random and statistically inde-
pendent [Beckmann, 1962]. Assumption a is fully fulfilled by the definition of the time history
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response of the cable. Assumption b is assumed to be correct as the error involved is ac-
ceptable, similarly to the way the wave height resulting from a wide JONSWAP spectrum is
assumed fit a Rayleigh distribution [Holthuijsen, 2015].

3. The scale parameter of the Rayleigh distribution can be found from the cable response spec-
trum by Equation 7.8.

o= mo = ﬁ ‘Scable(f) 'df (7.8)

The first order moment of the cable response spectrum gives the variance of the time history
response, which also corresponds to the scale parameter of the Rayleigh distribution, see Ap-
pendix C.2. The probability that any peak in the cable response is below a certain value x is
given by the Cumulative Distribution Function (CDF), from now on defined as Q. The CDF of
the Rayleigh distribution is found in Equation 7.9 and is fully defined by the scale parameter

o2,

2

Q=p(CR<x) = l—exp(%) (7.9)

4. The distribution of a single peak of the cable response is extended to the extreme value dis-
tribution over a period of three hours. This extreme value distribution is calculated by Equa-
tion 7.10, where the number of peaks contained in a three hour time representation, Npeaks
is estimated based on the mean zero up-crossing period of the signal.

Qs, = [Q]Npeks (7.10)

The zero up-crossing period of the signal is calculated by Equation 7.11. m( and m; are the
zeroth and second moment of the cable response spectrum, respectively. The n’* order mo-
ment of the cable response spectrum can be found by Equation 7.12.

- m
T=,/=2 (7.11)
mp

My = fo - Seavief)-d f (7.12)

A graphical representation of the transformation of the single peak distribution towards the
extreme value distribution over a period of three hours is depicted in Figure 7.4. The figure
clearly shows the asymptotically behaviour of the extreme value distribution with respect to
increasing the number of peaks contained in the time frame.

5. The MPM cable response during a three hour time history of the cable response is identified.
For the Rayleigh distribution this corresponds to the 37 percentile of the extreme value dis-
tribution found in step 4. The MPM is chosen based on the DNVGL standards as defined in
[DNVGL-RP-N103, 2017].

The approach outlined above is used to estimate the MPM curvature response in the cable and MPM
tension response in the cable during a three hour time domain representation of the cable response
for a specific sea state. Later on, the results are compared to the Orcaflex simulations.
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Figure 7.4: The extreme value distribution of the fluctuating component of the maximum tension response for sea state
[Hs=2.5m,T=8.5s]. Intermediate stages are shown to demonstrate asymptotic behavior of extreme value distribution
for increasing N.

7.2.2. Orcaflex simulation approach

In this section the estimation of the MPM cable response based on Orcaflex simulations is ex-
plained. A flowchart of the approach is given in Figure 7.5. The steps are explained below.

1. 2. 3. 4. 5. 6.
P_erforrq Orcaf!ex Select peaks in cable 'Select. ERPIEIELD . Establish extreme Find MPM cable
simulations with e —— simulation length for Distribution fitting Vallieldistribution ey
JONSWAP spectrum P distribution fitting P

Figure 7.5: Flowchart of the procedure to estimate the maximum cable response based on Orcaflex simulations.

1. The maximum cable response time history is generated by a Orcaflex simulation for a specific
sea state.

2. The peaks in the cable response are selected. The aim is to select one peak between two suc-
cessive zero up-crossings. The peak selection in an arbitrary sample of the maximum tension
response in the cable is shown in Figure 7.6.
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Figure 7.6: Peak selection in the maximum tension response in the cable for sea state [Hg=2.5m,T,=8.5s].

3. The next step is to select an appropriate simulation length for the fitting of a probability dis-
tribution to the data set. The required simulation length is selected based on the convergence
of the properties of the data set. The properties considered here are the mean, standard de-
viation, skewness and kurtosis. Once these properties have converged, additional simulation
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time will not significantly improve the accuracy in the distribution fitting. An example of the
development of the properties of the peak data set of the maximum tension response is given
in Figure 7.7. The figure shows that the kurtosis converges much slower than the other prop-
erties given in the plot. This is due the fact that the kurtosis is a function of the fourth central
moment of the data set, meaning it is highly influenced by the extreme values in the data set.
Hence, explaining the slow convergence rate of this property.
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Figure 7.7: The development of the properties of the data set containing the peaks in the maximum tension response

4.

time history for sea state [Hs=2.5m,T ;,=8.5s].

Now the data set is ready, the actual distribution fitting is executed. The data set is fitted to
a list of 12 potential distribution functions. An example of the distribution fitting is given in
Figure 7.8. The number of distributions presented in this plot is reduced for clarity.

For each fit the Kolmogorov-Smirnov (KS) Goodness-of-Fit test is applied, where the hypothe-
ses read:

Hy: The data is drawn from distribution 'x.

H: The data is not drawn from distribution ’x’

gamma
lognorm
weibull_max
genextreme
burr
gumbel_r

PDF [-]

T T
46 48 50

Tension [kN]

Figure 7.8: Distribution fitting of the maximum tension response for sea state [Hs=2.5m,T},=8.5s] to the gamma
distribution, the log-normal distribution, the weibull distribution, the generalized extreme value distribution, the Burr

distribution and the Gumbel distribution.
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The KS test returns a p-value. High p-values indicate a good fit. An alpha-level of 5% is se-
lected. This means if the p-value is below 0.05, meaning there is less than 5% chance the data
is selected from the specified distribution, the distribution is rejected.

In addition, the Least-Squares Error (LSE) between the fitted distribution and the normalized
histogram of the actual data set is calculated to give more insight in the Goodness-of-Fit. The
least-squared error between the data set and fitted distribution is calculated by Equation 7.13,
where y; represents the height of the bin of the normalized histogram of the dataset and f(x;)
the values of the PDF of the fitted distribution at the midpoint of the histogram bin.

n

LSE=Y (y,- —f(x,~))2 (7.13)

i=1
From the distributions which are not rejected based on the KS-test, the one with the lowest
least-squared error between the actual data-set and probability distribution is selected.

The final result of this step is a distribution describing the probability that a given peak in the
cable response is below a certain value x, see Equation 7.14

Q=p(CR=x) (7.14)

5. Step 5 is equal to step 4 in the approach for the transfer function. The extreme value distribu-
tion for a thee hour simulation is determined using Equation 7.10.

6. In order to comply with the approach followed for the transfer function, in this step the 37®
percentile of the extreme value distribution in step 5 is selected. Note that this is not the MPM
in case another distribution than the Rayleigh distribution was selected.

7.2.3. Results comparison

The performance of the transfer function is tested using the approaches outlined above. Eight sea
states are selected and the results are compared. These eight sea states represent a likely range of
sea states at an installation site. The sea states are given in Table 7.1

Table 7.1: Overview of sea states for which the reduced time domain method is tested.

Seastate | 1 2 3 4 5 6 7 8

H; [m] 10 1.0 15 15 20 20 25 25
T) [sl 45 55 55 65 65 75 75 85
v [-] 1.7 1.0 180 1.0 159 10 134 1.0

For the Orcaflex simulation results, the distribution that overall fits the data best is selected. For the
maximum tension response of the cable the generalized extreme value distribution is selected. For
the maximum curvature response the beta distribution is selected. Some additional fitting analysis
by means of P-P plots are executed for the distribution fitting of both the maximum tension and the
the maximum curvature distribution fitting, because none of the fitted distributions was accepted
following the KS-test for all the considered sea states. In P-P plots the empirical CDF of the data
set is plotted against the CDF of the fitted distribution. The P-P plot is thus an indication of the
deviation of the fitted distribution with respect to the actual data. An example of the P-P plot is
given in Figure 7.9. The more the blue dots are concentrated around the red indicator line, the
better the fit.
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Figure 7.9: P-P plot between the curvature response of the cable and the beta distribution for sea state 2.

Main focus in these plots is on the 90™" percentile an up, as these will dominate the shape of the
extreme value distribution. In addition, the errors introduced by the distribution fit with respect
to the actual data are calculated for the sea states which were not accepted based on the KS-test.
The errors at the single peak distribution function are calculated for the 95 and the 99" percentile,
while the error in the extreme value distribution for N=1000 is calculated for the 37" percentile. For
the tension response distribution fit all of the errors mentioned above are below 0.4% and for the
curvature response distribution fit all errors stay below 0.6%. Based on these numbers, the extreme
value distribution is used for the tension response of the cable and the beta distribution is applied
for the maximum curvature response of the cable. A complete overview of the distribution selection
is presented in Appendix C.3.

The comparison between the transfer function results and the Orcaflex simulation results is pre-
sented in Table 7.2 and in Table 7.3 for the maximum tension and the maximum curvature response
in the cable, respectively. The error provided in these tables represents the error introduced by the
use of the transfer function compared to the actual Orcaflex simulation distribution fit results. The
negative value of this error indicates that the transfer function underestimates the most probable
cable response, leading to the conclusion that the cable response can not be approximated by the
first order response of the cable towards regular waves. In addition, the maximum cable response
in an arbitrary three hour Orcaflex simulation is presented. This, in order to allow for comparison
with the value based on the Orcaflex distribution fit of the cable response. The results show that
indeed, due to the randomness involved with seed selection, in some cases the cable response is
underestimated by analysing only a three hour simulation analysis.

The data in Table 7.2 and Table 7.3 shows that the estimation of the transfer function becomes worse
for higher sea states. Likely, this results from the fact that higher order components start to have a
larger effect on the cable response for these sea states, see section 6.4. The underestimation in
the maximum curvature by the transfer function is larger than the underestimation found in the
maximum tension prediction of the transfer function. This is most probably related to the fact that
the curvature response (section 6.1) of the cable shows more higher order components in the cable
response, which were neglected upon creation of the transfer function.
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Table 7.2: Comparison between the maximum tension in the cable calculated based on the transfer function approach
and the maximum tension in the cable determined based on Orcaflex simulations.

Sea state ‘ 1 2 3 4 5 6 7 8

Transfer function Tpyax [KN] 36.88 36.88 37.53 37.73 38.34 39.18 40.02 41.16
Orcaflex: distribution fit Tyax [kN] 37.18 37.23 38.20 3869 39.87 41.40 43.47 46.91
Error Tiax [%] -0.8 -0.9 -1.7 -2.5 -3.5 -5.4 -79  -12.3

Maximum tension response 3h

. . 3738 37.32 38.35 38.93 40.68 41.74 43.23 45.84
Orcaflex simulation [kN]

Table 7.3: Comparison between the maximum curvature in the cable calculated based on the transfer function approach
and the maximum curvature in the cable determined based on Orcaflex simulations.

Sea state 1 2 3 4 5 6 7 8

Transfer function xmax
[rad/m]

Orcaflex: distribution fit
Kmax [rad/m]

0.0499 0.0497 0.0512 0.0520 0.0536 0.0559 0.0583 0.0605

0.0567 0.0561 0.0589 0.0630 0.0662 0.0693 0.0754 0.0891

Error K max [%] -12 -11.1 -13 -17.5 -19 -19.4 -22.7 -32.2
Maximum curvature
response 3h Orcaflex 0.0564 0.0560 0.0597 0.0626 0.0645 0.0704 0.0731 0.0874

simulation [rad/m]

7.2.4. Response spectrum comparison

In order to provide more insight in the behaviour of the transfer function approach, and to get a
better understanding of the cause of the under prediction, the cable response spectrum resulting
from the transfer function approach is compared to the cable response spectrum resulting from a
three hour Orcaflex simulation for an arbitrary sea state. In Figure 7.10, the comparison is shown for
the tension response of the cable. The peak at the peak frequency of the sea state, f,, in the tension
response is only slightly underestimated by the transfer function. However, the higher frequencies
in the response, including the second peak which is located at approximately 1.5f;, are not pre-
dicted correctly and under estimated by the transfer function. This is because the transfer function
completely leaves out these higher order effects in the cable response. The response at 1.5f, is now
only based on the response of the CLV at this frequency, which will be small because the CLV hardly
responds to higher frequencies and the sea state given as input to the calculation rapidly reduces as
the respective frequency is further away from the peak frequency.

Based on the size of the underestimation found in subsection 7.2.3 and the accompanied compar-
ison between the cable response spectra of the tension, suspicions with regards to the assumption
that the transfer function cable response follows a Rayleigh distribution are raised. Taking into ac-
count that the transfer function only represents the dynamic part of the tension response, the under
prediction seems to be quite large in light of the amount of variation between the Orcaflex and trans-
fer function approach cable response spectra. Furthermore it is found that for sea states with lower
peak periods, the under prediction in the main peak in the tension response of the cable increases.

The same comparison for the curvature response is presented in Figure 7.11. The shape of the re-
sponse is similar to the response spectrum of the tension. However, for the curvature response not
only the peak at approximately f=1.5f, is mispredicted by the transfer function, also the main peak
in the curvature response, located at the peak frequency of the wave spectrum, is underestimated.
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Figure 7.10: The response spectrum of the curvature response of the cable based on the transfer function approach and
resulting from a three hour Orcaflex simulation for T, = 5.0s

This results from the high dynamic complexity of the curvature response of the cable, demonstrated
in the spectral analysis in Chapter 6. This leads to the large under prediction of the transfer function
for the maximum curvature response.
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Figure 7.11: The response spectrum of the curvature response of the cable based on the transfer function approach and
resulting from a three hour Orcaflex simulation for T, = 10.0s



Sensitivity Analysis

In this chapter a sensitivity analysis is performed. First, the sensitivity of the DFT analysis is evalu-
ated. In this analysis the different frequency components in the cable response were studied. In the
sensitivity analysis the effect of a change in the bending stiffness and axial stiffness of the cable is
studied. These cable properties are more complex to estimate than properties like for example mass
or diameter. Therefore it sometimes occurs that the estimated values for these properties change
along the course of a project on the basis of e.g recently performed tests. The procedure and results
are discussed in section 8.1.

Second, the effect of a change in the normal cable lay configuration on the selection of the governing
vessel motion for the use of vessel limit criteria is studied. For the practicality of the use of vessel
limit criteria it is desirable that the selected vessel motion is not strongly affected by deviations in
the normal lay configuration. This analysis is described in section 8.2.

8.1. DFT analysis

The DFT response of the cable is determined as described in section 6.1. In this study the bending
stiffness and the axial stiffness are both reduced by 10 and 50%, respectively. All other properties of
the normal lay configuration are kept unchanged.

8.1.1. Bending stiffness

The results for the reduction of the bending stiffness on the curvature of the cable are presented
in Figure 8.1. The same plot for the tension response of the cable is given in Appendix D.1. As
expected, the reduction of the bending stiffness causes an increase in the maximum curvature in
the cable. The total increase of the maximum curvature with respect to the static curvature is +3.7%
and +27.0%, for a reduction of respectively 10% and 50% of the bending stiffness. Based on the plot
in Figure 8.1, the reduction of the bending stiffness most significantly increases the contribution of
higher components in the signal. This results from the amplified movements of the cable, which
highlight the non-linear geometry, as the bending stiffness itself is linear.

Although the effect of the reduction of the bending stiffness on the tension response is small, it still
results in a small increase of the tension response. Here also the third component of the DFT of the
tension response in the cable is affected the most.
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Figure 8.1: Plot depicting the sensitivity of the DFT of the curvature response of the cable towards a reduction in the
bending stiffness of the cable.

8.1.2. Axial stiffness

The system is quite insensitive to a change in the axial stiffness of the cable. The total amplitude of
the curvature response of the cable is reduced by only 0.07% and the tension response is increased
by 0.16%, for a 50% reduction of the axial stiffness. The results for both the tension and curvature
in the cable are presented in Appendix D.1. Some shifts occurs in the contributions of the different
components to the total response. The curvature response for a 50% decrease in the axial stiffness,
shows that the higher contributions increase, while the total response and first order component
decrease. This is favorable in case the axial stiffness changes along the course of a project, as most
likely the original analysis can still be assumed to be useful.

8.2. Vessel motion selection

In section 4.3, the governing vessel motion for the application of vessel motion limit criteria was
studied for the normal lay configuration described in section 3.1. In this section the same analysis is
performed for two different normal lay configurations. In the first case the export cable is changed
to an array cable. This type of cable is located in-field of an offshore wind farm, which means they
they transport lower amounts of electrical energy than an export cable. Consequently these types
of cables are generally lighter and have a lower axial, bending and torsional stiffness compared to
export cables. In the second case the water depth is decreased to 25m, with respect to 50m in the
base case.

In Table 8.1 an overview of the normal lay configurations is presented. The properties of the array
cable mentioned in Table 8.1 are given in Table 8.2. For comparison purposes, the properties of the
export cable, which were already presented in Table 3.1, are also added to this table.
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Table 8.1: Overview of the normal lay configurations in the sensitivity analysis

Configuration Case 1l Case 2 Case 3
Specialty - Water depth  Cable type
Cable type Exportcable Arraycable Exportcable
Water depth [m] 50 50 25
Static top tension [kN] 35.5 24.50 9.32
Static departure angle [°] 16.6 24.78 24.25
Static TDP tension [kN] 7.37 6.99 3.13

Table 8.2: The cable properties of the subsea cables in the sensitivity analysis.

Cable type ‘ Export cable Array cable
Mass [kg/m] 100 29
Diameter [m] 0.267 0.136
Bending stiffness [kN-m?] 90.0 11.1
Axial stiffness [kN] 525,000 385,000
Torsional stiffness [kN-m] 185.0 6.2
Tmax [kN] 225.0 155.9
MBRpin [m] 4.10 2.22

The results of the vessel motion selection analysis for Case 2 and Case 3 are discussed in subsec-
tion 8.2.1 and subsection 8.2.2, respectively. The full details of each analysis are documented in
Appendix D.2.

8.2.1. Case 2

Case 2 comprises a normal lay configuration with an array cable. The approach for the vessel motion
selection described in section 4.3 is used. By inspection of the tension response of the cable in
relation to the correlation with the vessel motions at the chute of the vessel, the heave acceleration
and axial acceleration are selected. This is in agreement with the results obtained from case 1.

For the curvature response, none of the vessel motions shows higher correlations than the wave
elevation. From all inspected vessel motions, the heave acceleration still shows the best results,
which is in correspondence with the findings for case 1.

8.2.2. Case 3

Case 3 comprises the reduction of the water depth. Studying the tension response of the cable by
the same approach as for the base case, the heave velocity and axial velocity of the CLV are selected
instead of the heave acceleration and the axial acceleration. Although the heave acceleration and
axial acceleration are not rejected based on either a dependency deficiency or performance below
the sea state limit criteria, the absolute magnitude of the cross correlation of the heave velocity
and axial velocity outperformed those of the heave acceleration and the axial acceleration. The
shift is most likely the result of the shorter cable length caused by the reduction of the water depth.
Therefore, the system is less dominated by the inertia of the cable itself and other effects, like drag,
start to dominate.

In the analysis with respect to the curvature response of the cable, none of the inspected vessel mo-
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tions performed overall better than the wave elevation. In this case this means that the average cor-
relation between the cable response and the wave elevation is higher than the correlation between
the cable response and any of the vessel motions. The correlation between the wave elevation and
curvature response slightly decreased with respect to case 1, but the correlations between the cur-
vature response and the vessel motions show quite a significant decrease. A possible explanation is
the fact that in shallower water a larger fraction of the catenary is affected by wave forces.

The overall reduction of the magnitude of the correlations can be attributed to the reduction of the
water depth, which in general moves the system towards less linear behaviour. The top excitation
by the CLV is relatively larger compared to the total length of the system, highlighting the non-linear
geometry of the system and in addition, a larger fraction of the cable is affected by the non-linear
drag term.

8.2.3. Sensitivity of vessel motion selection

Overall, the sensitivity of the vessel motion selection for vessel limit criteria showed that the selected
vessel motion for application of vessel motion limit criteria is subject to change upon variation in
the normal lay configuration. Furthermore, for both inspected normal lay configurations the wave
elevation showed higher correlations with respect to the curvature response of the cable than any
of the inspected vessel motions.

Both observations reduce the attractiveness of the implementation of vessel motion limit criteria.
First of all, it is undesirable that the used limit parameter shifts upon a change in the cable lay con-
figuration. Furthermore, the curvature seems to cause problems for the implementation of vessel
motion limit criteria, as the correlation between the curvature response of the cable and the vessel
motions in general reduced quickly with the reduction of the water depth.



Conclusion & Recommendations

In this chapter the conclusions of this thesis report are documented and recommendations for fu-
ture research are made.

9.1. Conclusion

The direct cable loads on the cable govern the cable dynamics for short period waves during nor-
mal lay operations with the lay configuration considered in this study. Starting from waves with
a wave period of 8 seconds, the vessel motions take over and govern both the curvature and ten-
sion response of the cable. The latter is favorable for the application of vessel limit criteria, as it is
desirable that installation limits are expressed in terms of the parameter which affects the cable dy-
namics the most. Short period waves are not likely to occur in combination with large wave heights,
and in combination with low wave heights they are not likely to exceed the handling limits of the
cable. Therefore, the independence of the cable dynamics on the vessel motions for short period
waves is not preventing the use of vessel motion limit criteria for normal lay operations.

In order to apply vessel motion limit criteria, a vessel motion must be selected. This selection is
based on the TLCC’s between the cable response and the vessel motions at the chute of the CLV.
Ideally, a limit parameter with an as much as possible linear relationship with respect to the cable
response is selected, as this implies that an increase in the limit parameter is indeed related to an
increase in the cable response. Based on the assessment, it was found that both heave acceleration
and axial acceleration are most suitable for application of vessel motion limit criteria for the base
case considered in this thesis.

Next, the use of vessel motion limit criteria was assessed with the use of a linear regression analy-
sis on data of the heave acceleration of the chute of the CLV and the peaks in the cable response.
It was found that higher certainty can be given to limits expressed in the heave acceleration of the
vessel compared to the wave elevation, which eventually positively affects the workablility of the
operation. This conclusion is based on the bandwidth of the 95% prediction bands and the relative
steepness of the slopes of the linear regression lines between, on one hand, the cable response and
heave acceleration of the CLV chute, and on the other hand, the cable response and the wave ele-
vation. However, it should be kept in mind that the use of vessel motion limit criteria does come
with the inability to express limits for short period sea states, especially at installation sites where
sea states with short periods and relatively high significant wave heights occur. This is caused by the
small response of the vessel to short period waves.
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Furthermore, the principle of RTDM, namely that the maximum cable response occurs around the
extremes in the vessel motions of the chute, was not found applicable for normal lay analysis. The
method was not able to capture the maximum cable response when applied to either heave velocity
or heave acceleration of the CLV.

In the sensitivity analysis, the sensitivity of the vessel motion selection towards a change in the
normal lay configuration was investigated. For the tension response, a shift in the selected vessel
motion was detected, from heave and axial acceleration towards heave and axial velocity, for the
case which considered a reduction of the water depth. Furthermore, in both of the normal lay con-
figurations studied in the sensitivity analysis, the wave elevation had a higher TLCC with respect to
the curvature response than any of the vessel motions at the chute of the CLV. Both of these obser-
vations reduce the attractiveness of the implementation of vessel motion limit criteria. Therefore,
the statement that vessel motion limit criteria are preferred over sea state limit criteria can not be
generalised for all normal lay analysis.

To inspect the frequency response of the cable, a spectral analysis is performed. This showed that
the curvature response of the cable contains more higher order components than the tension re-
sponse of the cable. Additionally, the contribution of the higher order components of the response
is most significant between T, 4,.=8s and T, ,,.=12s and increasing wave height results in general
also in an increase of the contribution of higher order components in both the curvature and ten-
sion response. Most likely, this is because the dynamics of the curvature response of the cable are
more affected by the non-linearties in the model compared to the tension response. Furthermore,
drag linearisation was applied to the base case model. Drag linearisation results in a reduction of
the maximum curvature response as well as the maximum tension response in the studied case.
This is caused by a change in the profile of the drag force upon linearisation.

Finally, the use of a transfer function for estimation of the maximum cable response was evalu-
ated. This transfer function is based on the first order response of the cable towards regular waves
simulations. The approach is found unsuitable for estimation of both the maximum tension and
maximum curvature response of the cable. The use of this method results in an underestimation
of the extreme cable responses. This underestimation is found to be more severe for the curvature
response than for the tension response of the cable and increases with an increase of the severity of
the sea state.

9.2. Recommendations

Based on the work in this thesis, recommendations for future research are provided. With respect
to the vessel motion limit criteria assessment a couple of suggestions are given. First of all, it is
recommended to extend the number of cases to which the vessel motion limit criteria assessment
is applied. Expansion of the number of wave headings and cable lay configurations is suggested.
The area in which the vessel motions are dominating the cable dynamics should be investigated for
each cable configuration, including the effect of a change in the wave heading. Next, the successive
steps of the vessel motion limit criteria assessment, the vessel motion selection and linear regression
analysis, must be applied to each new case. Furthermore, the effect of current is not considered
throughout the case study conducted in this thesis and thus it is recommended to implement this
in the extension of the vessel motion limit criteria assessment. This, in order to identify the full
range for which vessel motion limit criteria are preferred over sea state limit criteria.

Another point of attention is the application of vessel motion limit criteria at short peak period sea
states. Although it is expected that the inability of vessel motion limit criteria to express limits at less
severe sea states is not directly preventing the use of vessel motion limit criteria, it is recommended
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to further investigate the practical implications involved with this matter.

With regards to the transfer function approach, a couple of recommendations are made. First of all,
the fact that the transfer function underestimates the cable response, leads to the recommendation
to redefine the transfer function based on a conservation of energy approach. In this approach
the total energy contained in the cable response towards a regular wave is transported to the input
frequency of the system and the corresponding data point in the transfer function. This aims to
reduce the underestimation of the transfer function, by taking into account all components of the
response. Furthermore, the cable response spectrum comparison implicated that the assumptions,
made during the set up of the distribution of the maximum cable response based on the transfer
function, are not accurate. Therefore, is it recommended to test the performance of the transfer
based on a time domain representation of the cable response calculated by the transfer function.
This way, the dependency of the performance check on the assumption that the transfer function
cable response follows the Rayleigh response is eliminated.

Last, a deeper research into the reliability of the current practice of a three hour time domain sim-
ulation for normal lay analysis is suggested. The difference between the results obtained from a
three hour time domain simulation and the Orcaflex cable response distribution fit showed that
this approach can result in falsely accepted cases in the cable installation analysis. The focus lies on
mapping the size of the error introduced by this practice.
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Vessel motion limit criteria assessment

This appendix contains additional material of the vessel motion limit criteria assessment. In Ap-
pendix A.1 the plots concerning the cable configuration upon maximum curvature are documented.
The data and plots used for the vessel motion selection procedure of the base case are given in Ap-
pendix A.2. Additional plots regarding the linear regression analysis are given in Appendix A.3.

A.1. Cable configuration upon maximum curvature response
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Figure A.1: Variation in cable shape upon maximum curvature for changing wave periods.
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A.2. Vessel motion selection
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Figure A.2: Variation in cable shape upon maximum curvature for changing wave heights.

A.2. Vessel motion selection

The TLCC data of the vessel motion selection for the curvature response of the cable is provided in
Table A.2. The TLCC plots of the tension response of the cable and accompanied data overview are
presented in Figure A.3 to Figure A.8 and Table A.3, respectively.
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Figure A.3: The TLCC of the tension response of the cable
for all vessel motions and the wave elevation, calculated
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Figure A.5: The TLCC of the tension response of the cable
for all vessel motions and the wave elevation, calculated
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Figure A.7: The TLCC of the tension response of the cable
for all vessel motions and the wave elevation, calculated
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Figure A.4: The TLCC of the tension response of the cable
for all vessel motions and the wave elevation, calculated
for Tp = 8.0s Hg=2.5m.
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Figure A.6: The TLCC of the tension response of the cable
for all vessel motions and the wave elevation, calculated
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Abbreviation | Description

HD Heave displacement at the chute of the CLV
HV Heave velocity at the chute of the CLV

HA Heave acceleration at the chute of the CLV
SD Surge displacement at the chute of the CLV
SV Surge velocity at the chute of the CLV

SA Surge acceleration at the chute of the CLV
AD Axial displacement at the chute of the CLV
AV Axial velocity at the chute of the CLV

AA Axial acceleration at the chute of the CLV

Table A.1: Overview of abbreviations used in the TLCC plots.

Motion | Mean correlation Maximum correlation Minimum correlation

HD min -0.762 -0.875 -0.622
HD max 0.839 0.901 0.673
HV min -0.830 -0.898 -0.637
HV max 0.826 0.906 0.639
HA min -0.854 -0.918 -0.619
HA max 0.754 0.860 0.591
SD min -0.676 -0.748 -0.478
SD max 0.667 0.769 0.470
SV min -0.713 -0.814 -0.441
SV max 0.678 0.780 0.451
SA min -0.724 -0.855 -0.423
SA max 0.713 0.800 0.412
AD min -0.777 -0.875 -0.615
AD max 0.837 0.907 0.664
AV min -0.830 -0.893 -0.627
AV max 0.817 0.911 0.629
AA min -0.844 -0.914 -0.608
AA max 0.757 0.851 0.581
WE min -0.780 -0.798 -0.765
WE max 0.780 0.834 0.673

Table A.2: Overview of time lagged cross correlation results for curvature response of the cable for Hg=2.5m.
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Motion | Mean correlation Maximum correlation Minimum correlation

HD min -0.902 -0.931 -0.846
HD max 0.874 0.918 0.788
HV min -0.857 -0.885 -0.820
HV max 0.939 0.956 0.898
HA min -0.884 -0.923 -0.820
HA max 0.914 0.931 0.883
SD min -0.792 -0.874 -0.715
SD max 0.815 0.875 0.732
SV min -0.815 -0.851 -0.769
SV max 0.864 0.900 0.819
SA min -0.881 -0.910 -0.801
SA max 0.854 0.885 0.790
AD min -0.897 -0.927 -0.854
AD max 0.893 0.929 0.834
AV min -0.838 -0.872 -0.771
AV max 0.943 0.958 0.943
AA min -0.893 -0.926 -0.851
AA max 0.900 0.911 0.875
WE min -0.780 -0.836 -0.673
WE max 0.769 0.865 0.598

Table A.3: Overview of time lagged cross correlation results for tension response of the cable for Hg=2.5m.
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Spectral analysis

This appendix contains complementary content to the spectral analysis in this thesis. In Appendix
B.1, the velocity and acceleration profiles along the catenary of the cable for two additional wave
periods are presented. Furthermore, the draglinearisation applied in the spectral analysis is worked
out analytically in Appendix B.2.

B.1. Relative acceleration and velocity
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Figure B.1: The acceleration of the sea, cable and total Figure B.2: The acceleration of the sea, cable and total
acceleration for T=6s and H = 2.5s. acceleration for T=16s and H = 2.5s.
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B.2. Drag linearisation

This appendix explains the linearisation of the drag force in the Morison equation and is based on
[NTNU, 2015]. The drag force on the cable is given by Equation B.1. The linearised form of the drag
force can be written by Equation B.2.

1
qNL=5'p'CD'D'Al~(uw—f)'|uw—f| (B.1)

1
QLZE'P'CD'D'AI'KL'(uw—f) (B.2)

Here K is the drag linearisation coefficient and u,, the water particle velocity, which can be repre-
sented by a harmonic function, see Equation B.3

Uy = uUgcos(wt) (B.3)
The displacement of the cable can also be described by a harmonic function, however not neces-

sarily with the same phase as the water particle velocity. Therefore, the displacement ,and conse-
quently the velocity of the cable, can be represented as Equation B.4 and Equation B.5, respectively.

r(t)=ricos(wt) + rpcos(wt) (B.4)

't =—wr;sin(wt) + wry cos(wt) (B.5)

The total relative velocity can than be written as Equation B.6, where the amplitude A is given by
Equation B.7. The phase is not considered as the drag force is a function of the relative velocity only.

u, = Acos(wt) (B.6)
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A= \/(uu—wrg)z +w?r? (B.7)

Based on this new expression for the relative velocity of the cable, the non-linear and linear defini-
tion of the drag force can be written as Equation B.8 and Equation B.9, respectively. For simplicity,
the notation in Equation B.10 will be used in the derivation from now on.

1
qNL:5.p-CD-D-Al-AZ-cos(wt)l-cos(a)t)l (B.8)
1
qui-p-CD-D-Al-A-cos(wt) (B.9)
.1

Linearisation of the drag force will introduce an error. The error can be found by the difference
between the linear drag force and the non-linear drag force. The squared error is given by Equa-
tion B.11.

e’ = (qL- qn)’ (B.11)

The best possible linearisation is obtained for the linearisation coefficient for which the linearisa-
tion error over the full wave period is minimal. The squared error over the full wave period is defined
by Equation B.12, and consequently the squared error is minimized by Equation B.13.

T
&= fo (q1— qn1)? (B.12)
d—éz =0 (B.13)
dK; ’

Implementation of Equation B.8 and Equation B.9 into Equation B.12 gives Equation B.14. Inserting
the total error over a wave period into Equation B.13 given Equation B.15.

T T
ézzf (qL_qNLF:f Ch2[KLA— A%|cos(wD)]]* cos? (wndt (B.14)
0 0
déz r %2 2 2
—=f 2C; " A[KLA— A% cos(wi)|] cos™(wr)dt=0 (B.15)
dKp Jo

Further solving of Equation B.15 results in Equation B.17. By standard integration the optimal lin-
earisation coefficient is found to be defined by Equation B.18.

T T
f KLAcosz(wt)dt—f A% cos®(wt)| cos(wt)|dt =0 (B.16)
0 0

T i
f KLAcosz(wt)dt—4-f A?cos®(wt)dt =0 (B.17)
0 0
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K =& (B.18)



Transfer function approach

This Appendix contains content supporting the transfer function approach described in Chapter 7.
The extended version plots of the transfer function are displayed in Appendix C.1. The method used
to obtain the distribution of the cable response, based on the cable response spectrum obtained on
the basis the transfer function, is provided in Appendix C.2. Last, the distribution selection for the
irregular wave Orcaflex simulations is documented in Appendix C.3.

C.1. Full transfer function

* Waveheight = 1m
74 Waveheight = 2.5m
= Waveheight = 5m

= Tranfer function

spectral amplitude [rad s?/m?]

T T T T T T T T
2.5 5.0 7.5 10.0 125 15.0 17.5 20.0 22.5 25.0
Period [s]

Figure C.1: Full transfer function for the maximum curvature response of the cable.
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Figure C.2: Full transfer function for the maximum tension response of the cable.
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C.2. Rayleigh distribution scale parameter

This Appendix describes the procedure and assumptions made to obtain the cable response dis-
tribution based on the cable response spectrum, which is obtained following the transfer function
approach described in Chapter 7. The information in this note is based on [Holthuijsen, 2015].

Assumption a: The cable response spectrum is a narrow spectrum

Assumption b: The cable response is a stationary Gaussian process.

The average time interval between two successive up-crossings through level CR can be expressed
in terms of the spectrum by Equation C.1.

2
i} Mo X

_ _ C.1
Tcr 2/eXp 1m0 (C.1)

Thr probability that any peak in the cable response spectrum is above a certain height x is given by
Equation C.2

number of peaks with (CRpeqx > %) in duration D D/ T¢p

P(CR>x)= (C.2)

total number of peaks in duration D ~ DITp

Using the definition of the average time interval between zero up-crossings the probability that a
peak of the cable response exceeds a certain values x can be written as:

- / my
Ty e X2

P(CR>x) === e S=expg— (C.3)
m,
CR /Wg/exp_zx_m0 0

Then the cumulative distribution function can be written as in Equation C.4.

2
P(CR<x):1—P(CR>x):l—exp(—%) (C.4)
0

This corresponds to a Rayleigh distribution for which the scale parameter o is equal to the zeroth
order moment of the cable response spectrum.

C.3. Distribution selection

In this note a full overview of the probability distribution selection for the maximum curvature and
maximum tension response in the cable is provided.

C.3.1. Simulation length selection

The limits of convergence are set to 5% for the mean, standard deviation and skewness of the data
set. Due to the high fluctuation in the kurtosis for some data sets and limited calculation resources,
no absolute limit is set for the kurtosis of the data set, but the convergence of the kurtosis is checked
by means of graph inspection. The simulation time is considered long enough when the mean,
standard deviation and skewness stay within this limit for increased simulation time and the kurto-
sis has reached reasonable convergence.
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The required simulation time for the tension response peaks in the maximum tension response
signal is 30 hours. The peaks in the maximum curvature response of the cable shows slightly more
variation in the properties of the data set. Following the same approach as for the tension, arequired
simulation length of 45 hours is selected for the distribution fitting of the peaks in the curvature
response of the cable.

C.3.2. Tension distribution selection

The data set of the tension response peaks is fitted to 12 probability distributions. The results of
the KS-test for the tension response are presented in Table C.1. In addition, the LSE between the
distribution fit and the normalized histogram of the data set is given in Table C.2. The generalized
extreme value distribution shows overall to be the best fit in both tables. The generalized extreme
value distribution was not accepted for two sea states in this study. For those sea states a P-P plot is
created, see Figure C.3 and Figure C.4 for sea state 1 and sea state 5, respectively. Finally, the error
introduced by the distribution fit for the sea states for which the generalized distribution was not
accepted based on the KS-test is evaluated in Table C.3.

Distribution Sea Sea Sea Sea Sea Sea Sea Sea Total
state  state state state state state state state | v/
1 2 3 4 5 6 7 8
Beta X v X X X X X X 1
Burr X X X X X X v v 2
Chi X v X X X X X X 1
Frechet X X X X X X X X 0
Gamma X v X X X X X X 1
General extreme | X v v v X v v v 6
Gumbel X X X X X X v X 1
Log normal v 4 X X X X X X 2
Normal X X X X X X X X 0
Pearson 3 X v X X X X X X 1
Rayleigh X X X X X X X X 0
Weibull X v v v X X v X 4

Table C.1: KS-test results for the tension response of the cable.
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Distribution Sea Sea Sea Sea Sea Sea Sea Sea Total
statel state2 state3 state4 state5 state6 state7 state8

Beta 0.2668 0.1761 0.1815 0.1166 7.7332 4.7795 2.7133 1.3936 | 17.3606
Burr 0.5412 0.3756 0.1846 0.0746 0.0480 0.0229 0.0086 0.0048 | 1.2603
Chi 0.2587 0.1757 0.1173 0.1197 0.0566 10.3211 0.0298 1.0317 | 12.1091
Frechet 3.3074 1.3453 0.9252 0.6635 0.2933 0.2093 0.1550 0.0833 | 6.9823
Gamma 0.2664 0.1757 0.1221 0.1197 0.0494 0.0332 0.0297 0.0176 | 0.8138
General extreme | 0.1539 0.2083 0.0948 0.0769 0.0340 0.0205 0.0105 0.0043 | 0.6032
Gumbel 0.5350 0.3876 0.1669 0.1183 0.0886 0.0213 0.0083 0.0074 | 1.3334
Log normal 0.1572 0.2083 0.1050 0.1002 0.0404 0.0242 0.0161 0.0058 | 0.6572
Normal 1.8128 2.1464 0.7594 0.4651 0.2087 0.2111 0.1659 0.1245 | 5.8939
Pearson 3 0.2666 0.1756 0.1173 0.1197 0.0494 0.0333 0.0297 0.0176 | 0.8092
Rayleigh 19.8927 6.9042 5.7431 4.0346 1.8544 0.8535 0.4334 0.1291 | 39.8450
Weibull 0.1502 0.2052 0.0948 0.0769 0.0340 9.3749 0.0105 0.0074 | 10.2599

Table C.2: The LSE for the distribution fit of the tension response data set.
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Figure C.3: P-P plot of the tension response for sea state 1.

Error Seastatel Seastate5
N=1at95% -0.012 -0.010
N =1 at 99% +0.050 +0.160
N =1000 at 0.37% +0.269 +0.372

100

Table C.3: Error in results between the ECDF of the actual data set and the results from distribution fit tot he generalized

extreme value distribution.
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C.3.3. Curvature distribution selection

The data set of the curvature response peaks is fitted to 13 probability distributions. The results
of the KS-test for the curvature response are presented in Table C.4. In addition, the LSE between
the distribution fit and the normalized histogram of the data set is given in Table C.5. The beta
distribution shows overall to be the best fit in both tables. The beta distribution was not accepted
for two sea states in this study. For those sea states a P-P plot is created, see Figure C.3 and Figure C.4
for sea state 1 and sea state 2, respectively. Finally, the error introduced by the distribution fit for the
sea states for which the generalized distribution was not accepted based on the KS-test is evaluated

in Table C.3.

Distribution Sea Sea Sea Sea Sea Sea Sea Sea Total

state  state state state state state state state | v

1 2 3 4 5 6 7 8
Beta X X v v v v v v 6
Betaprime X X X X X X X X 0
Burr X X X X X X X X 0
Chi X X X X X X X v 1
Frechet X X X X X v v X 2
Gamma X X X X X X X v 1
General extreme | X X X v v X X v 3
Gumbel X X X X X X X X 0
Log normal X X X X X X 4 v 2
Normal X X X X X X v X 1
Pearson 3 X X X X X X v v 2
Rayleigh X X X X X X X X 0
Weibull X X X X X X X X 0

Table C.4: KS-test results for the curvature response of the cable.

Distribution Sea Sea Sea Sea Sea Sea Sea Sea Total

statel state2 state3 state4 state5 state6 state7 state8
Beta 9641 6423 876 1216 702 660 279 126 19797
Betaprime 1240006 1400897 3793 408391 148955 63638 3479 44573 | 3269159
Burr 526668 798367 4507 176841 44270 65587 73550 512 1689790
Chi 1649865 7414 3307 1553 689 259856 127287 126 2049971
Frechet 38388 1835347 716072 561931 264019 638 111893 62302 | 3528288
Gamma 9746 7414 1789 1653 920 1046 241 126 22809
General extreme | 14508 9060 3970 1284 445 1177 1243 156 31687
Gumbel 18117 17036 5069 8917 6627 7305 5556 375 68626
Log normal 13060 9555 3330 1836 959 1050 241 140 30031
Normal 56136 49910 27394 6121 1970 1025 238 2134 142794
Pearson 3 9743 7412 1789 1654 920 1046 241 126 22805
Rayleigh 185981 242068 9652 42410 61155 34592 25676 3391 601534
Weibull 1188836 1714814 4251 495356 259085 296743 118150 65689 | 4077235

Table C.5: The LSE for the distribution fit of the curvature response data set.
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Figure C.6: P-P plot of the curvature response for sea state 2.

Error Seastatel Seastate 2
N=1at95% -0.032 +0.003
N =1 at99% -0.285 -0.115
N =1000 at 0.37% -0.561 -0.571

Table C.6: Error in results between the ECDF of the actual data set and the results from distribution fit tot he generalized
extreme value distribution.






Sensitivity analysis

This Appendix contains complementary data supporting the sensitivity analysis presented in Chap-
ter 8. Additional plots of the sensitivity of the DFT analysis are provided in Appendix D.1. A complete
overview of the TLCC data used in the sensitivity analysis of the vessel motion selection procedure
is given in Appendix D.2.

D.1. Sensitivity plots of DFT analysis
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Figure D.1: Plot depicting the sensitivity of the DFT of the tension response of the cable towards a reduction in the
bending stiffness of the cable.
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Figure D.2: Plot depicting the sensitivity of the DFT of the curvature response of the cable towards a reduction in the
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axial stiffness of the cable.
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Figure D.3: Plot depicting the sensitivity of the DFT of the tension response of the cable towards a reduction in the axial
stiffness of the cable.
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D.2. Vessel motion selection sensitivity

Motion ‘ Mean correlation Maximum correlation

Minimum correlation

HD min
HD max
HV min
HV max
HA min
HA max
SD min
SD max
SV min
SV max
SA min
SA max
AD min
AD max
AV min
AV max
AA min
AA max
WE min
WE max

-0.689
0.764
-0.767
0.718
-0.742
0.694
-0.631
0.633
-0.685
0.632
-0.676
0.658
-0.733
0.757
-0.765
0.691
-0.717
0.708
-0.730
0.730

-0.725
0.850
-0.802
0.761
-0.795
0.760
-0.786
0.741
-0.830
0.715
-0.763
0.794
-0.759
0.807
-0.796
0.746
-0.771
0.762
-0.863
-0.863

-0.664
0.642
-0.709
0.645
-0.623
0.598
-0.448
0.454
-0.491
0.489
-0.601
0.460
-0.692
0.649
-0.710
0.634
-0.615
0.641
-0.667
-0.667

Table D.1: Overview of time lagged cross correlation results for curvature response of the cable for Hg=2.5m for case 2 in

the sensitivity analysis.
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Motion | Mean correlation Maximum correlation Minimum correlation

HD min -0.902 -0.953 -0.803
HD max 0.856 0.885 0.807
HV min -0.842 -0.889 -0.805
HV max 0.932 0.954 0.898
HA min -0.864 -0.906 -0.768
HA max 0.885 0.913 0.803
SD min -0.726 -0.774 -0.623
SD max 0.775 0.862 0.672
SV min -0.758 -0.812 -0.622
SV max 0.816 0.904 0.720
SA min -0.840 -0.929 -0.729
SA max 0.772 0.826 0.648
AD min -0.885 -0.922 -0.803
AD max 0.894 0.908 0.868
AV min -0.803 -0.888 -0.702
AV max 0.928 0.952 0.895
AA min -0.868 -0.901 -0.799
AA max 0.846 0.908 0.786
WE min -0.807 -0.887 -0.705
WE max 0.761 0.849 0.665

Table D.2: Overview of time lagged cross correlation results for the tension response of the cable for Hg=2.5m for case 2
in the sensitivity analysis.

Motion | Mean correlation Maximum correlation Minimum correlation

HD min -0.611 -0.668 -0.492
HD max 0.692 0.796 0.513
HV min -0.700 -0.752 -0.566
HV max 0.640 0.712 0.464
HA min -0.700 -0.757 -0.576
HA max 0.628 0.702 0.549
SD min -0.553 -0.744 -0.298
SD max 0.556 0.682 0.329
SV min -0.602 -0.771 -0.351
SV max 0.569 0.680 0.395
SA min -0.600 -0.704 -0.368
SA max 0.577 0.751 0.301
AD min -0.654 -0.723 -0.507
AD max 0.680 0.748 0.521
AV min -0.696 -0.747 -0.571
AV max 0.616 0.685 0.468
AA min -0.675 -0.725 -0.574
AA max 0.645 0.705 0.549
WE min -0.705 -0.850 -0.563
WE max 0.735 0.774 0.617

Table D.3: Overview of time lagged cross correlation results for the curvature response of the cable for Hs=2.5m for case
3 in the sensitivity analysis.
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Motion | Mean correlation Maximum correlation Minimum correlation

HD min -0.827 -0.890 -0.732
HD max 0.777 0.803 0.738
HV min -0.766 -0.803 -0.672
HV max 0.862 0.908 0.769
HA min -0.802 -0.839 -0.760
HA max 0.839 0.882 0.783
SD min -0.642 -0.685 -0.539
SD max 0.686 0.792 0.547
SV min -0.677 -0.765 -0.488
SV max 0.731 0.825 0.621
SA min -0.756 -0.874 -0.601
SA max 0.701 0.753 0.601
AD min -0.813 -0.862 -0.737
AD max 0.816 0.866 0.747
AV min -0.733 -0.774 -0.674
AV max 0.860 0.907 0.763
AA min -0.811 -0.840 -0.775
AA max 0.805 0.845 0.771
WE min -0.747 -0.835 -0.616
WE max 0.715 0.812 0.622

Table D.4: Overview of time lagged cross correlation results for tension response of the cable for Hy=2.5m for case 3 in
the sensitivity analysis.
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