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Abstract

Quantum computers allow us to solve certain problems that are unsolvable using classical
computers. In this study we focus on solving the equality problem by simulating a three
quantum computer network and using the communication complexity to determine if our
theoretical quantum advantage is still there in practice. We want to know how the noise
from realistic quantum networks that already exist affect this communication complexity. We
found that we can beat the classical solution when simulating a laboratory setup in which
the quantum computers are in close proximity to each other and when using only a small
bit strings. However, when moving to setups in which there are kilometres between quantum
computers instead of metres or when using larger bit strings as input to our problem we see
that the noise becomes too much to simulate.

1 Introduction
In computer science, being able to solve a problem "fast" and being able to solve a problem at
all often go hand in hand. Many problems have solutions, but finding these solutions for actual
real-world scenarios takes an impractical amount of time (Sometimes longer than the history of the
universe given our current computational power). Consider problems in the NP or NP-hard classes,
such as the travelling salesman or the knapsack problem. Or consider cryptography: our current
encryption is based almost entirely on the fact that classical computers are not capable doing prime
factorization in a realistic amount of time. Quantum computers allow us to actually solve some
of these problems in a realistic amount of time. These problems are part of the bounded-error
quantum polynomial time class or BQP for short, which means we can solve them in polynomial
time using quantum computers given we allow for a small error (Figure 1). Shor’s algorithm [15]
allowing quantum computers to quickly do prime factorization and possibly making our current
encryption methods obsolete in the future is probably the most famous example of this.

Figure 1: Different Problem Classes [12]

The main difference between quantum computers and classical computers is that quantum
computers use qubits. Whereas classical bits can only be in one of two states (0 or 1) at a time,
qubits can be in a superposition of different states and are therefore able to carry more information
than classical bits. We denote a qubit state as follows: |ψ⟩ = a |0⟩ + b |1⟩. This means that this
qubit is in a superposition of the states |0⟩ and |1⟩ and, when measured will produce either of the
results with probability |a|2 or |b|2. Another possible notation used is the use of vectors to denote

a certain state. In this case |0⟩ =
(
1
0

)
and |1⟩ =

(
0
1

)
. Such that |ψ⟩ =

(
a
b

)
.

Just as classical computers work by applying gates to classical bits (e.g. AND, XOR and
NOT gates), quantum computers work by applying gates to qubits. A very common gate is the
Hadamard gate, which can be used to put a qubit in a superposition: H |0⟩ = 1√

2
(|0⟩ + |1⟩) and

H |1⟩ = 1√
2
(|0⟩ − |1⟩). Just as states can be denoted as vectors, gates can be denoted as matrices.

The matrix corresponding to this gate looks as follows: H = 1√
2

[
1 1
1 −1

]
. Most gates in a quantum
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circuit are depicted as a square, with a letter in it. The Hadamard gate looks like so: H .

A very common two-qubit gate is the Controlled-X or Controlled-NOT (or CNOT for short)
gate depicted below, which works using two qubits and flips the second bit if and only if the state
of the first bit is |1⟩:

|ψ⟩

|ϕ⟩ X

Given the states |ψ⟩ = a |0⟩ + b |1⟩ and |ϕ⟩ = c |0⟩ + d |1⟩. Before the CNOT the combined
state looks like this: |Ψ⟩ = |ψ⟩ ⊗ |ϕ⟩ = ac(|0⟩ ⊗ |0⟩) + ad(|0⟩ ⊗ |1⟩) + bc(|1⟩ ⊗ |0⟩) + bd(|1⟩ ⊗ |1⟩),
where ⊗ is the tensor product. After having applied the CNOT gate the resulting state will be
|Ψ⟩ = ac(|0⟩ |0⟩) + ad(|0⟩ |1⟩) + bc(|1⟩ |1⟩) + bd(|1⟩ |0⟩). There are still tensor products between the
individual states, only it is common to leave them out when notating quantum states, so I will also
not show them in the rest of the paper. This state is entangled, because it cannot be written as
two separate states like |ψ′⟩⊗|ϕ′⟩ any more (Try it!). There are four special entangled states called
the Bell states, they are special because they are maximally entangled, which means that when
you measure one of the qubits you are guaranteed to know the value of the other qubit. One of the
Bell states is |ϕ+⟩ = 1√

2
(|00⟩+ |11⟩). We can collapse the state to either |00⟩ or |11⟩ by measuring

either one of the qubits, at which point we know what the other one is. When we entangle two
qubits and then separate them we can use this feature to transport information from one place to
another using a process called teleportation. This nonlocality, meaning that objects are not only
influenced by other objects in their direct surroundings was proven to be true in 2015 at the TU
Delft [9].

Currently the Quantum Internet Alliance (QIA) is building quantum networks throughout Eu-
rope with Delft being one of the frontrunners. In this project we will look at how close these
state-of-the-art quantum networks are to classical computer networks in solving the equality prob-
lem and find out what is currently possible or will be possible in the short term future. We want to
know how what the effect is of noise from the current best quantum computers on our theoretical
speed up, because we are currently in the noisy intermediate-scale quantum era (or NISQ-era).
In quantum computers, memory has a lifetime, called the coherence time (or decoherence time)
(tc. This is because at any given moment qubits can lose the information they hold (or decohere),
meaning they become useless. Error-correction algorithms to correct this decoherence exist, but
current quantum computers are too small to run these, hence the name NISQ-era. Knowing the
effect of the noise will allow us to get an idea of how close we are to getting an actual quantum
advantage.

2 Formal Problem Description

2.1 The Equality Problem
In communication complexity problems, solutions are sought that require minimal communication
between two or more parties. In [18] problems are studies in which three parties; Alice, Bob and a
Referee, needed to compute a function f(x, y). Alice and Bob own the two bit strings x ∈ {0, 1}n
and y ∈ {0, 1}n, while the Referee knows the function and needs to compute this while minimizing
the amount of bits sent from Alice and Bob to the Referee. For certain communication complexity
problems, there exist quantum solutions which have a lower complexity in theory than the best
classical solutions. In this paper, we will be looking into the equality problem in which the function
outputs 1 if and only if x equals y. That is:

f(x, y) =

{
1, if x = y

0, otherwise
(1)

For this problem, the theoretical speed-up when using quantum computers in a quantum net-
work is O(log n) [7]. In this study specifically, we will look at how noise in the quantum computers
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and in the quantum network will impact this speed-up. We will simulate the problem using noise
from current state-of-the-art quantum computers and will try to find the point at which the quan-
tum network will beat the purely classical network.

2.2 Solving the Equality Problem using a Noiseless Quantum Network
2.2.1 Reducing the communication complexity

Trivially, the equality problem can always be done with O(n) communication complexity if both
of the parties just send their entire bit string to the Referee. However, more efficient solutions
can be found if we allow for a small error ϵ. In this case it has been proven that the problem can
be solved classically with O(

√
n) complexity [1]. This is the lowest complexity for this problem,

unless both parties have access to a correlated random source [3].

Using qubits instead of classical bits the complexity can be brought down even more to O(log n),
even without prior entanglement between qubits at Alice, Bob and the Referee [7]. Throughout the
entire algorithm no communication between Alice and Bob is allowed. In this case, the algorithm
goes as follows. First, two bit strings of length n will be encoded using an error-correction code
into two longer bit strings of length m = 2n + 1, giving us E(x) ∈ {0, 1}m and E(y) ∈ {0, 1}m.
Using a Justesen code for this gives us a guarantee that if the original bit strings were different,
then the resulting bit strings E(x) and E(y) have a Hamming distance of at least (1− δ)m, with
δ < 9/10+1/15c, and c = m/n [7]. Justesen codes are also deterministic, so E(x) = E(y) iff x = y.

Then the two bit strings of length m need to be encoding into two smaller qubit strings. This
is done using the following encoding [7]:

|hx⟩ =
1√
m

m∑
i−1

|i⟩ |Ei(x)⟩ (2)

Where Ei(x) is the ith bit of the bit string Ei(x) and |i⟩ is the state corresponding to the binary
representation of i. This means that the final qubit string will be of length log2(m)+1 or log2(2n+
1) + 1. Finally Alice and Bob send their qubit strings to the Referee using teleportation. In
teleportation two qubits are entangled. One of which is then send from one computer to the other
and used to send over the required state. This resource is then consumed, meaning that for each
teleportation attempt two new qubits must be entangled. Depending on the measurement results,
some correction may need to be applied on the receiving end. The information on whether or not
this correction needs to be applied, and specifically which one can be sent, using 2 classical bits of
information. Meaning that each time a single qubit is being sent, we count this as 3. One for the
qubit and 2 for the 2 correction bits.

2.2.2 The CSWAP gate

In order to determine whether two qubit strings |hA⟩ and |hB⟩ are equal we use the following
quantum circuit [7]:

|0⟩ H H measure

|hA⟩
SWAP

|hB⟩

There is however one issue with this circuit, which is the fact there doesn’t exist a gate which in
itself does a controlled SWAP on 2 qubit strings of arbitrary length. Just like classical computers
only implement basic gates like XORs, quantum computers have their own set of basic gates.
We need to deconstruct this gate into only single and 2-qubit gates, which are prevalent in the
SquidASM library. In Figure 5 in [8] it is shown that a CSWAP gate, which swaps 2 qubits can
be deconstructed into three gates, namely two CNOT gates and a Toffoli (or CCNOT gate) which
together form the circuit below:
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q0

q1 X X

q2 X

However, even this circuit cannot yet be directly implemented. Since the Toffoli gate is not a
single or 2-qubit gate we need to decompose it further. In Figure 1 in [14] it is shown that a Toffoli
gate can be broken down into only single and 2-qubit gates like so:

q0 T

q1 T X T † X

q2 H X T † X T X T † X T H

Finally, the CSWAP gate for swapping 2 qubits is deconstructed into only single and 2-qubit
gates. There is however one problem still, namely that T-gates (and by extension also T †-gates)
aren’t implemented in SquidASM. When we look at the matrix representation of these gates, they
look as follows:

T =

(
1 0

0 e
iπ
4

)
, T † =

(
1 0

0 e
−iπ
4

)
Luckily for us this is equal (up to a global phase) to just a rotation around the Z-axis with a

specific angle:

Rz(θ) =

(
e

−iθ
2 0

0 e
iθ
2

)

Rz(
π

4
) =

(
e

−i π
4

2 0

0 e
i π
4
2

)
=

(
e

−iπ
8 0

0 e
iπ
8

)
= e

−iπ
8

(
1 0

0 e
iπ
4

)
∼
= T

Rz(−
π

4
) =

(
e

i π
4
2 0

0 e
−i π

4
2

)
=

(
e

iπ
8 0

0 e
−iπ
8

)
= e

iπ
8

(
1 0

0 e
−iπ
4

)
∼
= T †

With this final substitution we can now implement a controlled SWAP for 2 qubits in SquidASM.
However we don’t want to swap just 2 qubits, but 2 strings of qubits. Scaling this up is not too
difficult however, because we can simply use a single CSWAP for the first qubits of the strings and
then a second CSWAP for the second qubits of each string, all the way until we have done all the
qubits. When going through all these CSWAP gates we are entangling the two states that Alice
and Bob sent through our measurement qubit. Keeping track of entangled states involving many
qubits requires keeping very large matrices in memory. This is very memory-intensive. In order to
keep these matrices more manageable, we can discard qubits when we don’t need them any more.
So, after every CSWAP we can discard the 2 qubits we just swapped, but because these are still
entangled with other qubits, discarding these can potentially change the outcome of the circuit, to
prevent this, we must apply a Hadamard gate to the measurement qubit before discarding the two
qubits. After we discarded the two qubits we apply another Hadamard and continue as if nothing
happened. A part of the circuit then looks like this:
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discard

discard

discard

discard

|0⟩ H H H H H

|hA1⟩
SWAP

|hB1⟩

|hA2⟩
SWAP

|hB2⟩

2.2.3 Interpreting the Noiseless Measurement Results

If |hA⟩ and |hB⟩ are the same then measuring the first qubit after this circuit will always result in
a 0, however if |hA⟩ and |hB⟩ are not the first qubit will be in a superposition of the two states |0⟩
and |1⟩. And measuring it can now result in a 1 with probability (1− δ2)/2 [7]. In this project we
use randomly generated bit strings for Alice and Bob. Given two random strings of length m the
expected Hamming distance is 0.5m, so we can estimate the probability of measuring a 1, given
that the two strings were not the same to be (1− 0.52)/2 = 0.375.

It is clear that with one measurement it is impossible to know whether or not the two original
bit strings were the same or not. In fact, if one keeps getting 0s then we can never know for sure
if they are the same or we are just getting a very improbable streak. For this project we want to
be 99.9999999% sure that we determine whether the two strings were equal or not. Our error rate
should be ϵ < 10−9. In order to achieve this Alice and Bob must create their respective states
multiple times and send them to the Referee. The Referee then creates a measurement record. If
we measure a 1, we can immediately report that the two strings were not the same. If we keep
measuring 0s however, we need to repeat this n times to be sure enough that they are the same.
Where we can find n using the following formula: (1−0.375)n < 10−9. Which results in n > 44.09,
so we must repeat the experiment 45 times.

P (0) P (1)
The same 1.0 0.0
Different 0.675 0.375

Table 1: The estimated noiseless measurement probabilities

2.3 Simulating Noise
2.3.1 Realistic Noise

Unfortunately, real quantum computers don’t generate perfect results like this. Multiple imperfec-
tion parameters have been determined in quantum computer, which together significantly reduce
the efficiency of these algorithms [17]. In this study, we will specifically look at coherence time tc,
fidelity of the Bell states Fb, and the fidelity of single and 2-qubit operations F1/2. Fidelity simply
means how close the actual state is to the theoretical state we expect. In the noiseless case, all
fidelities were 1. Now, however they are somewhere between 0 and 1. The Bell states are necessary
to teleport qubits from one quantum computer to another. They are states in which 2 qubits are
maximally entangled. Single qubit gates refer to gates that only act on single qubits, while 2-qubit
gates refer to gates that act on 2 qubits, which in our circuit is only the CNOT gate.

Coherence time might need a bit more explanation. Coherence time is sometimes also referred
to as decoherence time. In a quantum computer, there always exists the chance that a qubit loses
its prepared state and becomes useless. The coherence time is the time during which we can safely
assume that the qubit retains its state. However, because this is probabilistic it is always possible
that a qubit has already decohered and is useless while we still need it. In order to prevent this,
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there exist quantum error-correction algorithms which are able to reinstate qubits in their required
state. We will not use these algorithms during this project.

Each of these parameters influences the probability of getting a wrong measurement [13]:

Probability of a single 1-qubit gate failing: P1−qubitgate =
2
3 (1−

√
F1−qubitgate)

Probability of a single 2-qubit gate failing: P2−qubitgate =
4
5 (1−

√
F2−qubitgate

Probability of a getting a wrong Bell state: Pteleport =
4
5 (1−

√
FBellstate

Probability of a single qubit decohering: Pdecohere = 1− e−
w
tc

(3)

With w begin the window during which the qubit should be active. This includes the time it
takes to teleport, as well as the time it takes for the Referee to complete the CSWAP circuit. All
these together decide the probability of something going wrong in the entire process. If something
goes wrong we cannot say what the outcome will be, so we assume we get a fifty-fifty chance to
either get a 0 or a 1.

P50−50 = 1− (1− Pdecohere)
2Nq+1(1− P1−qubitgate)

N1(1− P2−qubitgate)
N2(1− Pteleport)

2Nq (4)

With Nq being the amount of qubits Alice and Bob send to the Referee (so together they send
2Nq qubits). And N1 and N2 being the total amount of 1- and 2-qubit gates respectively. With
this probability we can now estimate the new measurement probabilities:

P (0) P (1)
The same (1− P50−50) + 0.5P50−50 0.5P50−50

Different 0.675(1− P50−50) + 0.5P50−50 0.375(1− P50−50) + 0.5P50−50

Table 2: The estimated noisy measurement probabilities

2.3.2 Interpreting the Noisy Measurement Results

When introducing noise, the probabilities to get a 0 or a 1 for our measurement change to make
it more difficult to determine whether the bit strings are the same or different. In order to know
whether two bit strings were the same or not, we will again create a measurement record M ∈
{0, 1}x, where x is the amount of times we have already repeated the simulation. We then use
the probabilities from Table 2 to determine the probabilities that this measurement record is the
result of two bits strings that are the same or different:

P (M | The same) = P (0 | The same)n0 × P (1 | The same)n1

P (M | Different) = P (0 | Different)n0 × P (1 | Different)n1

(5)

Where n0 is the amount of 0s in M and n1 is the amount of 1s in M . Then we can use Bayes’
theorem to find the probability of the two strings being the same or different given our current
measurement record:

P (The same | M) =
P (M | The same)P (The same)

P (M)

P (Different | M) =
P (M | Different)P (Different)

P (M)

(6)

In the study we randomly decide whether we use the same bit string or two different ones with
50% probability each, so P (The same) = P (Different) = 0.5. And P (M) = P (M | The same) ×
P (The same)+P (M | Different)×P (Different). Now, if either P (The same | M) or P (Different | M)
is larger than ϵ = 10−9 we can return our answer. If not, we do another round of the simulation
and add that result to our measurement record, after which we will again check if we can now
safely say whether the two bit strings were the same or not.
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3 Experimental Setup and Results

3.1 Classical Solution
The scaling of the classical solution has been determined to be

√
3n + O(

√
n) in [1]. We will

multiply this by 2, because we receive bits from 2 computers, and get 2
√
3n as our scaling. And

the probability of getting the correct result is 6
11 [1].

3.2 The Simulation
The code for the simulation is written in Python version 3.10.6 and makes heavy use of the library
SquidASM, which in turn relies on NetSquid. The code can be found on Github.

3.3 Network with Trapped Ions in a Laboratory
We run the simulation using two different sets of parameters. The first set is to mimic a setup
in a laboratory. This means that the distance between the quantum computers in the network is
small (meters) and the parameters are generally better. For the quantum computers themselves
we will use trapped-ion quantum devices just like in [17]. The state-of-the-art parameters for such
a network are:

Parameter Value
F1−qubitgate 0.999934 [11]
F2−qubitgate 0.9991 [11]
FBellstate 0.990025 [5]
tc 62 ms [17]
Psuccess 0.0087 [17]
tattempt 16.95 µs [17]

Table 3: The state-of-the-art parameters for a laboratory scale network using trapped ions.

The final two parameters are the probability of any given entanglement succeeding and the time
each attempt takes. These alone don’t influence the probabilities, but together with the coherence
time can have a great influence on the chances of the circuit succeeding. With these parameters
we are now ready to run the simulation and we get the following results:

From this graph it follows that for bit strings of length up to n = 127, we can beat the classical
solution. However, we do get closer to the classical solution as the amount of qubits increases.
Unfortunately, from n = 128 onward we require more qubits than the simulation is capable of
running. With n = 127, we create qubit strings of 9 qubits, meaning our Referee needs to handle
2 × 9 + 1 = 19 qubits. More powerful computers may allow us to simulate a couple more qubits,
but even then it is unlikely we will be able to simulate bit strings larger than n = 4095. If we want
to know whether we have an actual advantage, we would need to be able to simulate bit strings of
roughly n = 300000, because around that point the classical solution overtakes the trivial solution
of just sending the entire bit string.

In order to get a better sense of which parameters cause the most noise, we run the simulation
again. Only now we set all the parameters to perfect except for one. Then we find value for this
parameter where the quantum solution is equal to the classical solution. We run the simulation
using n = 31 and we keep Psuccess = 0.0087 and tattempt = 16.95 µs when finding the minimum
value for for the decoherence time.

Parameter Minimum required value State of the art value
F1−qubitgate 0.978 0.999934 [11]
F2−qubitgate 0.979 0.9991 [11]
FBellstate 0.930 0.990025 [5]
tc 58 ms 62 ms [17]

Table 4: The state-of-the-art values compared with the minimum required values.
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Figure 2: The results from running the simulation using the parameters of a network involving
trapped-ion quantum devices in a laboratory. It shows that for small bit strings the noisy simulation
(green dotted line) beats the classical solution (red line), despite being a lot worse than the noiseless
quantum solution (blue dashed line). The noisy simulation does appear to scaling faster than the
classical solution. This is because the noise quickly scales with the amount of qubits and because
it gets harder and harder to teleport all the qubits before the first ones have decohered.

From this test we can deduct that the coherence time tc is the biggest creator of noise in our
system. All of the other parameters are already super close to their theoretical maximimum (1).
In order to confirm this we ran anther test, wherein we estimated the P50−50 from our measurement
results. We again run the simulation by setting all parameters to perfect, except for the one we
want to find P50−50 for, which we set to its state-of-the-art value, again using n = 31:

Parameter Value P50−50

F1−qubitgate 0.999934 [11] 0.04
F2−qubitgate 0.9991 [11] 0.05
FBellstate 0.990025 [5] 0.07
tc 62 ms [17] 0.42

Table 5: Estimated P50−50 for the state-of-art values for each parameter, given that the others are
perfect. It is now clear that most of the noise comes from the coherence time. Which includes
both the time it takes for teleportation as well as for the CSWAP circuit.

3.4 Network with NV-centers in between Cities
For our second test we use the parameters from an actual real world experiment from [16]. This
is a network between Delft and The Hague with nitrogen-vacancy centers as its quantum devices.
The distance between the quantum computers here is about 25 kilometres, while in the previous
setup is was just meters. The parameters for this network are:
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Parameter Value
F1−qubitgate 0.999 [13]
F2−qubitgate 0.97 [2]
FBellstate 0.965 [10]
tc 687 µs [4]
Psuccess 0.0000072 [16]
tattempt 200 µs [16]

Table 6: The parameters for a metropolitan scale network using NV-centers.

It is clear that these parameters are a lot worse than those from the previous paragraph. Partially
this is because NV-centers are just worse than trapped ions, but mainly because the network is a
lot bigger and a lot more can go wrong. It is clear that with these parameters it becomes very hard
to get multiple qubits sent to the Referee without the first one decohering. In fact, the minimal
amount of qubits in a string is equal to log2(2×1+1)+1 = 3. With 200 µs per attempt, and with
a coherence time of 687 µs it is technically possible to get a definitive answer, but the probability
of it happening is very low. So low, in fact that all the results from the simulation are basically
just random noise.

4 Responsible Research
Quantum computers can be a very powerful tool. It is scary to know that all our current encrypted
data can be decrypted using quantum computers, however this does not mean that we should not
research quantum computers. As long as we proceed with caution and acknowledge the capabilities
of our quantum computers we can make sure to stay aware of their dangers and find solutions to
potential risks. For instance, the ability to break our current encryption has already sparked a
new area of research called post-quantum cryptography in which researchers try to find encryption
methods which cannot be broken by quantum algorithms. And in [6] among others they have
found one possible solution.

The fact that quantum computers can be such a powerful tool is only more of an argument to
do build them and to research them. We have only scratched the surface of their capabilities and
if we are to learn from the development of classical computers their capabilities are probably being
underestimated. We, as humanity, stand for a plethora of incredibly difficult problems in which
quantum computers can potentially aid us to find solutions.

5 Conclusion
We set out to see how close current real world quantum networks are to the classical computer
networks that are everywhere around us. We did this by attempting to solve the equality problem in
a setup with three quantum computers in a network. By using a noise model and noise parameters
which mimic current state-of-the-art quantum computers, we can see what is currently possible.
We can use the communication complexity of the solution to see with how much noise we can still
beat the classical solution.

We have seen that in ideal cases we are already capable of beating classical networks on a small
scale. However, we can also see that the noise our current best setups have increases quickly as
the amount of qubits increases. Though in this study we didn’t see if and when the noisy quantum
simulation eventually loses to the classical solution, using more powerful computers to simulate
this quantum network may allow us to add on a few more qubits, but the fact that even with a
relatively small amount of qubits the simulation becomes very hard to run already points towards
the quantum solution losing out to the classical solution in the long run. Also, when using quantum
networks that cover any meaningful distance we can see that sending over multiple entangled qubits
is currently very hard, if not impossible. This is in line with other results from the NISQ-era. On
a small scale we can make things work, but if we want to get to a point where we can get a real
quantum advantage we still have a long way to go.
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From the parameters we used; coherence time, fidelity of the Bell states, single qubit gate
fidelity and two qubit gate fidelity, we found that coherence time is by far the most important one.
This, together with the difficulty of getting two entangled qubits in different places, accounts for
most of the noise. So much even that for networks that are bigger than a single laboratory we are
unable to solve the equality problem at all. Again, this is in line with the NISQ-era. Where in the
future maybe quantum error-correction algorithms can help us mitigate the effects of decoherence
this is not yet possible.
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