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Abstract

In order to guarantee safe operations in the offshore industry, at all time it is necessary
to predict motion behaviour of structures in specific sea states accurately. Safety is very
important for the offshore industry, which can come in jeopardy when motions are either
extreme or unexpected with regards to predicted motion behaviour. This thesis aims to
establish improved motion behaviour prediction of a barge in shallow water.

A parametric model is developed, in both frequency as well as time domain, which con-
tains flexibility for other, non-linear wave theories, as well as other non-linear effects like
viscous damping or an additional inertial force which can atone for the approaching seabed in
shallow water motions. It utilises hydrodynamic coefficients from the diffraction analysis in
ANSYS AQWA, with which motions are also verified. As no validation data were available,
this verification was very important. The accuracy of motion prediction is verified in both
Frequency Domain (FD) and Time Domain (TD), which assures its applicability. The model
subsequently is wider applicable, as it allows for non-linear wave theories or modifications by
other external forces. Parameters Ursell Number (UR), steepness S and relative depth µ are
defined which determine the validity of wave theories. These parameters display theoretical
limits of applicability and validity of the Linear Wave Theory (LWT). The parametric model
is capable of calculating associated wave forces up to second order, which can modify the
predicted motion behaviour for higher waves than the LWT allows. In the model a Vessel -
object and Wave - object are defined. The former is for this thesis a rectangular barge, while
the latter contains information on the sea state, defined by input parameters wave height H,
wave period T and water depth d. In both FD and TD vertical displacements of four vertices
are calculated, based on the heave, roll and pitch Degree of Freedom (DOF). Subsequently,
viscous effects are included based on a factor of the critical damping in each specific DOF,
which moderates the vertical motion especially near resonance. A numerical example of an
additional inertial force to account for cushioning and sticking is elaborated, which displays
effects of an approaching seabed on heave displacement. These values are based on water
particle velocities in the Under Keel Clearance (UKC), but is not verified nor validated, so
no general conclusion can be drawn. It does show nicely how the model is capable of dealing
with additional external forces and subsequently calculates resulting motions. Second order
effects increase in significance in shallow water of which set - down is an important non-linear
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shallow water effect, which has great significance in predicting ultimate vertical motions. The
numerical solutions for a mono-directional bi-chromatic wave group show that these addi-
tional displacements are in such an order of magnitude that it should be accounted for in
shallow water ship motion hydrodynamics. Viscous moderations are also within this order,
although these exist by the grace of the structure’s velocity, while set - down is a phenomenon
related to the waves, which occurs regardless of a vessel present or not.
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Chapter 1

Introduction

For fixed offshore platforms it is common procdure to be constructed in shallow water for
the exploitation of oil and gas resources. Nowadays, floating structures have also been pro-
posed to be located in shallow waters. For these operations to be safe though, the technical
challenges which come along with restricted water depths need consideration in the design
state. Incoming waves and vessel motion behavior are generally predicted under assumptions
of linearity, i.e. with deep water waves. In shallow water though, this might not be accu-
rate enough for motion prediction. Strong non-linearities in propagating waves and complex
wave-structure interactions are important aspects in this issue [6].

The rise of interest in shallow water causes to challenge common way of thinking about hy-
drodynamics, i.e. whether the assumptions of the potential theory are still valid in these
situations. Water depth has significant effects on hydrodynamic coefficients, especially on
vertical modes of motions, which could alter validity of presumed methods on motion pre-
diction and subsequently cause bottom touching of barges operating in very shallow waters
[7]. Van Oord faced issues with these situations and therefore seeks more understanding in
shallow water motion behaviour of vessels, and needs knowledge on the validity of potential
theory. Accurate motion prediction of barges in shallow water for safe pipe laying or supply
operations is necessary, for which the linearity assumptions no longer hold. Furthermore,
Van Oord also invests heavily in wind farms so this knowledge on shallow water operations
is very valuable since this part of the industry is growing fast, and these wind turbines are
usually built in shallow water. Common procedures of predicting motion behaviour through
linear transfer transfer functions of incoming waves forces to vessel motions are challenged in
these areas. Forces in such operations in shallow water can usually be split in a linear and
non-linear components. The linear part is sufficiently covered in literature, but further re-
search is required in prediction of the non-linear component. Instead of combining linearised
characteristics, found by Frequency Domain (FD) based analyses, an approach combining
empirical data or other solutions in Time Domain (TD) approach might is required [8].
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1-1 Van Oord

Van Oord is a Dutch contractor, operating globally in dredging, land reclamation and offshore
activities. Van Oord’s Shallow Water Pipelay Barge Stingray is an example of a vessel which
is subjected to the conditions where shallow water effects might be an issue. In 2013 van
Oord complemented its fleet with the Shallow Water Pipelay Barge Stingray. This vessel is
in use for the installation of pipelines in very shallow water conditions (10-100 m) in S-Lay.
Van Oord has experience in shallow water oil and gas market for decades, with a focus on
seabed intervention works as trenching and backfilling for pipeline shore approaches. The
Stingray expands Van Oord operations as it allows to offer a wider range of services in a
complete one-stop package for shallow water oil and gas developments. Furthermore, with
the acquisition of Ballast Nedam in 2014, Van Oord got ownership over Svanen. This vessel
is another example for which more insight in seabed interaction could be beneficial.

1-2 Problem Statement

Van Oord faces challenges with predicting motion behaviour of structures in shallow water
in FD. Operations with the shallow water pipe laying barge the Stingray were forced to be
cancelled in water depths of approximately d = 11 m, in swell waves of T ≈ 12 s. The struc-
tures moved along with the waves in vertical direction downwards, which increased downtime
of the operations and thus lowered overall workability. Motion behaviour of the Stingray was
hence non-linear, and could thus not have been safely estimated by linear Response Ampli-
tude Operator (RAO)s. With a design draft T = 5 m, the non-linearities clearly influenced
its motion behaviour. For the validation of numerical results obtained in shallow water, there
is not sufficient benchmark data available this present day, which makes knowledge of the
motions of large ships and floating structures in shallow water a challenging issue [9]. Van
Oord noticed that FD-based calculations done by diffraction software is not fully trusted in
(very) shallow water situations. Motion behaviour can arguably not be predicted accurately
any more by RAOs due to non-linearities.

Vast majority of research relies on potential flow theory, which neglects non-linear effects
such as breaking waves and viscosity. The effect of depth and wave amplitude on dynamic
pressure becomes however increasingly important. Panel methods in such cases can however
fail to accurately predict motions due to proximity of the seabed [10]. These effects are more
problematic in shallow water and should be included in numerical codes [9]. Moreover, in
shallow water the importance of accounting for low frequency second order effects is often em-
phasized. Slow drift excitation forces can increase seriously with decreasing water depth and
the second order velocity potential contribution can be dominant is specific frequency ranges.
Low frequency second order effects such as set-down and shoaling can result in significant
excitation of the focal vessel. It can cause large resonant motions and related mooring loads
and can ultimately cause problems in the shallow water area [11]. Wave amplitudes might
furthermore be more significant than those assumed in the Linear Wave Theory (LWT). It is
argued that the validity of the linearized theory of surface waves only holds for low values of
wave steepness S and Ursell Number (UR) [12]. Furthermore, the linearised boundary condi-
tions under the assumptions of the LWT fail to describe wave kinematics in the wave zone and
subsequently disregard of some wave loads. The resulting behaviour is however also affected,
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so not only the wave exciting part of the Equation of Motion (EOM), but hydrodynamic
coefficient added mass and potential damping are also influenced in shallow water. Added
mass is for example important to determine natural periods of structure motions, and known
to increase significantly when the seabed approaches [6, 13, 14, 15]. Non-linear effects might
be excited and affect steady state oscillations but the diffraction theory does not simulate
these effects. To overcome this issue is necessary, as more accurate prediction of in what type
of environmental conditions barge like vessels will move more / less in vertical direction is
necessary to safely predict when these vessels will approach hitting the seabed. Second order
effects like set - down will cause the mean water level to decrease, lowering the clearance be-
tween the vessel’s keel and seabed simultaneously, but also first order roll and pitch moments
can magnify the vertical motions when these are superimposed with the heave displacement.
This increases chances of bottom - touching, lowering workability, or worse. This obviously
can cause great problems, so with more detailed knowledge on non-linear effects of incoming
waves, the policy of Van Oord and its clients on allowing operations in very shallow water
can be adjusted to one with a more accurate prediction of operating window. Firstly by im-
proving knowledge on non-linear water waves, because a relationship exists between potential
flow and pressure exerted by water waves and some difficulties arise which are not covered by
assuming linear waves. Secondly, non-linear effects with lower under keel clearances affects
hydrodynamic coefficients which is also not captured by the linear potential theory [6, 9].

For the linear part, a FD based analysis in the diffraction software package suffices. For
non-linear parts of the problems in shallow water, the linear FD analysis isn’t capable of
predicting motions accurately. Second order wave loads need to be taken into account and
can only be considered an external force to the EOM in the TD analysis. One of the issues
of this is the diffraction analysis software Ansys AQWA itself. The program assumes very
small movements of source panels. Moreover, the seabed is assumed to be far away. In reality
though, when the body approaches the seabed, particles have less freedom to move, i.e. to
escape vertically from the gap.

Because of this, a parametric model is developed which can carry out calculations in both FD
and TD. This flexibility allows for verification for the motion modelling, but also for including
non-linear external wave forces or other non-linear effects on the hydrodynamic coefficients
added mass and potential damping.

1-3 Objectives

The main objective is improve workability by more accurately predict incoming wave forces
and associated motion behaviour of a barge in shallow water. Preventing the barge to hit the
seabed determines this workability, so an analysis is necessary on what additional information
is necessary next to linearity assumptions of the potential theory. It has been shown in
literature that first order forces due to incoming waves provide information which is not
accurately enough, so additions and/or modifications are necessary. For the issues in shallow
water, the objective of the thesis is two-fold. To assess safety and workability, it is necessary
to gain in depth insight in wave exciting forces on the one hand, and the hydrodynamic
coefficients added mass and potential damping on the other hand. The goals which are
created for this thesis are:
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1. Gain knowledge on wave theories and their applicability based on parameters which can
describe certain sea states

2. Describe non-linearities and capture these effects to adapt linear results in such a manner
that these effects are included to analyse the hydrodynamic loads on the structure in
shallow water

3. Developed a parametric model which can predict motion behaviour and validate it with
a deep water case

4. Develop a parametric model which can calculate forces and moments and subsequent
motion behaviour in TD to account for non-linearities and/or other additional forces

5. Say something about vertical motions in shallow water, and how and if these differ from
motion behaviour by linearised motion prediction

1-4 Approach

A parametric model is developed where based on user defined input the motion behaviour of
a barge in shallow water can be determined beyond the boundaries where AQWA diffraction
analysis is capable of doing so. Unfortunately, no reliable validation data were available, so
the research focused heavily on the verification of the methods for computations with the
parametric model, to assure validity of results. The model is therefore verified based on deep
water situations, for both incoming wave forces as well as resulting vertical motions.

Firstly the range of validity of different wave theories is investigated, to determine when to
apply what theory and what the associated forces should be. The parameters Ursell number
UR, wave steepness S and relative depth µ are used to determine the validity of the wave
theories.

Linear results are gathered by a FD based analysis in the diffraction software AQWA, from
which the hydrodynamic coefficients are used to model motion behaviour in the numerical
model in Python. In this model, Wave - object and Vessel - objects can be created based
on user defined parameters. Fluid forces are subsequently estimated through the method of
direct integration of the pressure, based on the specified Wave, on the wetted surface of the
focal Vessel. When the model identifies the need for additional pressure terms, second order
pressure can for instance be added. Subsequently, another parametric model is created which
calculates the forces on the Vessel, based on the LWT. The calculation method is validated
with displacement RAOs from the diffraction analysis in AQWA.

Even though it is common practice to use the FD analysis to simulate behaviour of floating
structures in waves because of its ease of applicability and general accuracy, this study also
covers the TD analysis. As mentioned, the FD analysis cannot take into account non-linear
effects associated with shallow water. Superposition no longer holds when non-linearities are
encountered, and the analysis needs to be done in TD, where the EOM is directly updated
every time step. Memory effects are taken into account with the retardation kernel, which is
used for the convolution integral. The TD analysis based on the Cummins equation is thus
more comprehensive on dealing with non-linear systems. Especially since the second order
contribution to the motion behaviour of the vessel is important, its inclusion in the EOM
is necessary. Second order forces and moments are determined through with a Quadratic
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Transfer Function (QTF) from the diffraction analysis. The resulting second order external
wave forces are subsequently superimposed with the first order wave forces in the TD model.

For the lower Under Keel Clearance (UKC) in shallow water and subsequent viscous effects,
an additional external force can also be added based on the critical damping of the focal vessel.
Factors which determine the additional damping force based on critical damping are based
on empirical data from literature and can be applied in the model to account for additional
forces.

Furthermore, an additional inertial force is calculated in TD, which accounts for the shallow
water effect which occurs with very low UKC. This phenomenon is known as the ’Cushion-
ing’ and ’Sticking’ effect, which captures the decrease in vertical motions due to increasing
pressures in this UKC. The model is capable of including this additional external force in TD
and it can therefore be used to as engineering approach for this phenomenon.

1-5 Document structure

The documents is structured as follows. Firstly wave theories are discussed and their validity
for specific wave parameters in Chapter 2. Next, how motion behaviour of vessels is ap-
proximated is explained in Chapter 3. In Chapter 4 firstly the first order FD based model is
explained. It explains the model used in AQWA, how the forces and motions are calculated in
Python and shows the verification of calculation methods with load and displacement RAOs.
It subsequently explains how the second order forces are calculated based on QTFs. The
model chapter furthermore elaborates on how the transformation is made to TD, and the
verification of calculation method in this domain. In Chapter 5 results from calculations with
the created models are given. Finally, in Chapter 6 at the end of the thesis the conclusions
and recommendations for future studies are given.
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Chapter 2

Waves

To determine waveloading and motions responses of offshore structures, common practice in
engineering is to rely on two basic descriptions of waves; deterministic, regular waves and
random, irregular waves [16]. The periodic (co)sine function defines what is called a regular
wave and is defined in terms of its amplitude a, wavelength λ and period T . These regular
waves can be represented as function of space x and time t and are used in the Linear Wave
Theory (LWT) to solve the flow problem in waves [2]. The distance between two successive
crests within such a wave train is the wavelength λ. The wave period T is the interval between
the passing of two successive crests at a certain point in space and time. Regular waves can
be described by several theories, among which the LWT is most often used. This, and other
wave theories, which can be applied to describe waves in specific conditions are described in
this chapter.

In shallow water some phenomena affect waves and subsequently the incoming wave forces
and therefore the different wave theories need to be discussed and understood in order to
include shallow water effects on the ship motions. With regards to wave exciting motions,
wave dynamics show many different phenomena which increase the complexity of reprenting
body motions; dispersion, diffraction, refraction, shoaling, reflection, non-linear wave-wave
interaction, bound waves, set-down, wave breaking and bottom friction are some examples
[11, 17]. In comparison to deep water situations, to predict motions motions accurately is
more problematic, due to shallow water effects as strong non-linearities and complex wave-
structures interactions [6].

2-1 Wave Theories

There is no unique theory that is applicable to all depth regions from very shallow water to
deep water. The LWT is the most commonly used theory for engineering applications for first
approximations of wave behaviour [18, 19]. As will be explained in section 2-3, this theory
assumes the wave surface profile to remain constant, i.e. very small amplitudes. There are
however cases in which the small amplitude assumption is not valid, which calls for other
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theories to be used to describe the waves. In such cases, one should resort to non-linear or
finite amplitude wave theories. In Section 2-2 the range of applicability of different wave
theories is shown as a function of water depth d, gravity g and wave period T .

In developing the wave theory, the boundary value problem with a differential equation and
boundary conditions is solved by approximation. There are two types of this approximation,
one which is developed around the wave height as parameter of perturbation and one as
function of water depth. The LWT and Stokes non-linear wave theory are examples of the
first category. Otherwise, the order remains constant and a numerical solution is sought, e.g.
the stream theory.

Some general assumptions are made in developing the wave theories. Firstly, water is as-
sumed incompressible and irrotational and continuity of flow is assumed. By means of these
assumptions, a velocity potential Φ is defined which is related to flow velocity components.
The derivative of Φ in any direction equals the flow velocity in that direction. It is a mathe-
matical way to describe flow, and a scalar of space and time. From Φ, pressures and finally
hydrodynamic forces and moments on the structures can be calculated, which is explained
in Chapter 3. Firstly, Φ is substituted in the continuity equation, with which the Laplace
equation is obtained [2, 19].

∂2Φ
∂x2 + ∂2Φ

∂y2 + ∂2Φ
∂z2 = 0 (2-1)

For steady, irrotational flow with a perfect fluid, the Bernoulli equation can be acquired. This
equation solves the kinetics (pressures and forces) of the waves. If then the Laplace equation
is solved for the boundary conditions, the potential Φ will be known which can then provide
the expression for the pressure from (2-2).

p+ ρ g z + 1
2 · ρ (u2 + v2 + w2) = Constant (2-2)

In which ρ = density of water, g = acceleration due to gravity, [u, v, w] = velocity components
in direction [x, y, z].

Boundary Conditions For Φ to be applicable in the two dimensional case, it has to satisfy
certain conditions:

1. Continuity or Laplace equation.

∇2Φ =
(
∂2Φ
∂x2 + ∂2Φ

∂z2

)
= 0 (2-3)

2. Seabed Boundary Condition. Vertical velocity of the water particles at the seabed is
zero.

∂Φ
∂z

= 0 for z = −d (2-4)
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2-2 Range of Validity of Different Wave Theories 9

3. Free Surface Kinematic Boundary Condition. Vertical velocity of water particles at free
surface of the fluid is identical to the vertical velocity of the free surface η(x, y, t) itself.

∂Φ
∂z

= ∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂z
for z = η(x, y, t) (2-5)

The vertical velocity of a water particle in free surface becomes after linearisation:

∂Φ
∂z

= ∂η

∂t
for z = η(x, t)

Which is also valid for z = 0. Differentiation to t provides the Cauchy-Poisson condition:

∂z

∂t
+ 1
g
· ∂

2Φw

∂t2
= 0 (2-6)

4. Free Surface Dynamic Boundary Condition. Pressure at the free surface equals the
atmospheric pressure (and is thus constant at the free surface).

∂Φ
∂t

+ 1
2

[(
∂φ

∂x

)2
+
(
∂φ

∂y

)2
+
(
∂φ

∂z

)2]
+ g · η = f(t) for z = η(x, y, t) (2-7)

Which becomes after linearisation:

∂Φ
∂t

+ g · η = f(t)

2-2 Range of Validity of Different Wave Theories

The parameters wave height H, period T and depth d help to determine the validity of wave
theories in general. Regions for applicability are in terms of normalized parameters H/T 2

and d/T 2 and are based on how well the theory satisfies the boundary value problem (see
Figure 2-1. Wave parameters which determine the applicability of the theories are according
to DNV-RP-C2-5 wave steepness parameter H/λ or S, shallow water parameter µ and the
Ursell number UR [5]. UR is very useful for defining the range to which the wave theories are
applicable [18]. There are arguments to combine effects of steepness and water depth, but it
is found that effects were approached better when used seperately [20].

In Figure 2-1, the values used on the axes are h0, which is the water depth, the wave height
H, gravitational acceleration g and the wave period T . In shallow water, usually the Airy
(LWT) and Cnoidal first order waves are suitable, while in deeper water, the Stokes non-linear
theory is more approproiate [19, 16].
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10 Waves

Figure 2-1: Applicability Range of Various Waves From LeMeHaute (1970)

2-2-1 Parameters for Applicability of Theories

The parameters discussed before to find the right wave theory are shortly explained.

Wave Steepness
Wave steepness S is an important parameter in determination of the applicability of the LWT,
as it determines whether or not the assumption of small amplitudes is valid. In a simple wave
travelling in a single direction, crests are know to travel faster than their associated troughs,
causing the front to continually steepen[12]. The sharpened wave crests is the most obvious
indication of non-linearity in the ocean, but the detailed description is difficult. When waves
show behaviour which departs from the linear description, crests are higher and sharper than
expected from a summation of sinusoidal waves with random phase.

S = H

λ
(2-8)

Ursell Number
To determine whether or not the LWT for surface waves is applicable, S does not suffice as
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the only parameter. It is shown that the linearized theory of surface waves is valid only if
UR and S (see (2-8)) are small [12]. The number UR indicates the degree to which surface
gravity waves are non-linear. UR is the result of studies on waves with small amplitudes ζ
and large wavelengths λ, and where λ is much larger than the water depth d. Basically, it is
the ratio of the amplitudes at second order to first order according to Stokes’ theory. It is
commonly used to determine boundaries of wave theories, as shown in 2-1, and one can see
that the boundary lies approximately at UR = 26 for LWT. The number is a function of wave
height, wavelength and water depth:

UR = H · λ2

d3 (2-9)

Relative depth The relative depth, or shallow water parameter µ is used to define the
relationship between wavelength λ and depth d. Depth is not the sole parameter to determine
whether waves are considered deep or shallow water waves. It is the relative depth parameter
which provides this measure, as the wavelength λ (or wave number k) determines to which
depth to which the orbital velocities, accelerations and pressures are significant. Hence, it is
this factor which defines whether interaction with the seabed will influence properties of the
waves.

µ = d

λ
(2-10)

2-3 Linear Wave Theory - Airy Theory

The LWT is the simplest and most used theory for waves. It is a first order theory, which
assumes that amplitude is small compared to λ, water depth and dimensions of the structures.
The regular waves described by the LWT can by means of the superposition principle be used
to describe more complex waves systems with irregular waves. It gives useful approximations
of kinematic and dynamic properties of surface waves, and under the assumption of small
amplitude it allows for the application of dynamic and kinematic boundary conditions to be
applied at the still water level instead of at the oscillating, wave disturbed surface level. In
Table 2-1 the coefficients are given for the parameters described in 2-2.

S µ UR
LWT � 1 '> 1

20 or S/µ < 0.03 < 26

Table 2-1: Parameters for the linear wave theory

For the focal maximum S, the relative depth parameter µ should be larger than 0.2 [5].

Velocity Potential Φ
The solution for Φ is found in the form of a power series in terms of a non-dimensional
perturbation parameter ε, defined in terms of the ratio between wave height H and length λ:

ε = k ·H
2 (2-11)
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12 Waves

The velocity potential Φ and free surface profile η are then defined as:

Φ =
∞∑
n=1

εn Φn

η =
∞∑
n=1

εn ηn

(2-12)

For the LWT the order is 1, and in order to find the analytical description of Φ and η in this
order the boundary conditions as described in the previous need to be solved. In the first
order (2-5) and (2-7) reduce to:

∂η

∂t
− ∂Φ
∂z

= 0 at z = 0 (2-13)

∂Φ
∂t

+ gη = 0 at z = 0 (2-14)

Combining (2-14) and (2-13)gives the combined free surface boundary condition:

∂2Φ
∂t2

+ g · ∂Φ
∂z

= 0 at z = 0 (2-15)

Solving Φ for the boundary conditions stated above, the first order velocity potential becomes:

ΦW = ζag

ω

cosh k(z + d)
cosh(kd) sin(kx− ωt) (2-16)

In the LWT, the first order free surface elevation is regular and follows from (2-13):

η = ζa cos(kx− ωt) (2-17)

And as one can see from (2-17), waves oscillate symmetrically around the mean sea water
level. In the LWT only the first order wave steepness is taken into account and terms of
higher order are neglected. Substituting Φ in (2-15) gives the dispersion relationship, which
tells that waves with different wavelengths travel at different speeds. For waves with a certain
period, or frequency (f = 1/T ), wave height H, and water depth d, λ is prescribed by this
relationship:

ω2 = g · k · tanh kd (2-18)

This relationship can be used to determine phase velocities of waves in arbitrary depths. It
depends on the depth though whether it affects the phase velocity, or wave celerity c. Water
is considered deep with respect to the waves when the ratio d/λ > 1/2, while it is consid-
ered shallow when d/λ < 1/20. Beyond the deep water limit, the water depth effect can
be neglected. Below the shallow water limit, the influence of d on c vanishes (they are not
dependent on T ) and waves become non-dispersive, and non-linear [14]. The critical velocity
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2-3 Linear Wave Theory - Airy Theory 13

cshallow =
√
g · d becomes important considering the possibility of wave breaking, as explained

in Section 2-3-3.

Water Particle Velocity
Particle velocities are the gradient of the potential in the direction in which the derivative is
taken, and can be expressed for horizontal x and vertical z direction as:

u = ∂Φ
∂x

= ζa · ω
cosh k(z + d)

sinh kd · cos(kx− ωt)

ud = ζa ω ekz · cos(kx− ωt)

us = ζaω ·
1
kd
· cos(kx− ωt)

w = ∂Φ
∂z

= ζa · ω
sinh k(z + d)

sinh kd · sin(kx− ωt)

wd = ζa ω ekz · sin(kx− ωt) for deep water

ws = ζaω ·
1
kd
· cos(kx− ωt) for shallow water

Where the subscripts s and d denote the velocities for shallow and deep water respectively.
Water Particle Motions
Water particles move in patterns; they have their own orbits, both horizontally as well as
vertically, which is illustrated in Figure D-2 in Chapter ??. These motions are influenced by
water depth; as water depths decreases, the motions become more elliptical. For the LWT,
the difference in velocities around the mean positions are so small that these differences can
be neglected and are thus linearised.

x = −ζa · ω
cosh k(z + d)

sinh kd · sin(kx− ωt)

z = ζa · ω
sinh k(z + d)

sinh kd · cos(kx− ωt)
(2-19)

The change of the particles trajectories as a result of the approaching seabed can considered a
primary causation of structure motions [14]. The hyperbolic decay terms for the trajectories
can be mathematically expressed as:

Dh = cosh k(z + d)
sinh kd and Dv = sinh k(z + d)

sinh kd (2-20)

Limitations of LWT in shallow water and for high waves in deep water, suggest a need to
consider non-linear or finite-amplitude wave theories for some engineering applications. This
is because a velocity asymmetry (the distance travel forward under the crest must be done in
less time, while travelling back under the trough will be done in more time, peak velocities
under the crest will exceed those under the trough) rises which is not predicted by the LWT
[18].

2-3-1 Pressure

Substitution of the velocity potential in the linearised Bernoulli equation (2-2) yields the
following expression for the pressure in the wave:
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14 Waves

p = ρgz + ρgζa ·
cosh k(z + d)

cosh kd · cos(kx− ωt) (2-21)

In which ρgz is the hydrostatic part and the second term contains the dynamic, time-
dependent part.

2-3-2 Shoaling

As waves travel into shallow water, they begin to be affected by the bottom, making the
water particles no longer return to their original position. In shallower water, the free surface
elevation η is greater than in deeper water, i.e. H changes. Waves start to feel the bottom
when d/λ ≤ 1/20; they exhibit a reduction in λ and celerity c while keeping the same
frequency, which results in sharper crests. Ultimately, the wave shape becomes sharp-crested
up until the point particle velocities exceed the group velocity, and break. After breaking, the
waves become translatory waves. To adjust for the wave height from deep to shallow water,
it is argued that the energy flux must be equal for both cases, which results in the following
coefficient [2, 14]:

Hshallow

Hdeep
=
√

1
tanh(kd[1 + 2kd

sinh 2kd ])
(2-22)

As one can see in (2-22), the shoaling coefficient is a function of water depth and affects the
wave height subsequently [14]. in Figure 2-3 KS is plotted over a depth range, and it can be
seen that indeed this coefficient approaches one for deeper water. In the right figure it can be
seen that the coefficient is higher for lower frequencies, and highest for a difference frequency
∆ω.

Figure 2-2: Shoaling Coefficient
Figure 2-3: Shoaling Coefficient two
frequencies

In shallow water waves thus steepen and this implies that the waves will break ultimately.
Higher parts of the waves thus travel faster. The balance between steepening in shallow water
and the acceleration of water particles is expressed in terms of UR, i.e. when the steepness
grows faster than the wave height, the wave will break.
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2-3 Linear Wave Theory - Airy Theory 15

2-3-3 Breaking

The mentioned shallow water steepening is the primary cause for waves to break [21]. For
a given d and wave period T , there is a limit to H before the wave becomes unstable and
breaks. The Stokes criterion for wave breaking is that the velocity of the particles at the crest
reaches the celerity. A higher velocity will make these particles pass the crest, and cause the
wave to break [2].

General assumptions for the breaking wave is firstly that the breaking wave is the highest
possible wave and that breaking occurs when the maximum water particle velocity in the
wave equals the wave speed. When waves approach breaking, the presence of non-linearities
in waves increases, which, during breaking, redistributes energy within the spectrum. In
shallow water the maximum wave height is usually limited by this breaking limit. A rough
estimate for a wave to break is when its height becomes approximately 0.78 times the depth
in place (2-23). For the entire range of relative depths, the breaking wave height is given by
(2-24).

Hb = 0.78 · d (2-23)

Hb = 0.14 · λ · tanh
(2πd

λ

)
(2-24)

2-3-4 Irregular Waves

The former described the regular waves, while in reality the ocean surface is highly irregular.
An irregular wave model enables realization of stochastic sea state which will offer a better
representation. The relationship between frequency and amplitude in this superposition can
be characterized by a wave spectrum, which defines how the wave energy is distributed over
a frequency range which is representative for a certain sea state. Spectra can be used in
developing a wave elevation time series, consisting of the sum of many regular waves of
different frequencies. The non-linear wave elevation is then a summation of first order solution
and second order correction terms. In this manner surface elevation can be represented as a
function of time, see Figure 2-4.

The wave elevation of a irregular sea can because of superposition written as a summation of
of the individual amplitudes, frequencies and phases:

ζ(t) =
N∑
n=1

ζan cos(knx− ωnt+ εn) (2-25)

2-3-5 Bi-Chromatic Wave

Regular waves are waves with one frequency, i.e. they are monochromatic. The presence of a
regular wave group induces a wave with a Low Frequency (LF) long wave, which is important
for second order wave forces. The simplest form of irregular waves is the bi-chromatic wave.
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Figure 2-4: Superposition of regular waves

The difference of ωi of the components of the bi-chromatic waves, makes that the LF part of
the wave elevation results in:

(
ζ(1)(t)

)2
=

N∑
i=1

N∑
j=1

1
2ζ

(1)
i · ζ

(1)
j · cos ((ωi − ωj)t+ (εi − εj)) (2-26)

The simplest form is a ’group’ of two waves:

ζ(t) =
2∑
i=1

ζi · sin(ωit+ εi) = ζ1 · sin(ω1t+ ε1) + ζ2 · sin(ω2t+ ε2) (2-27)

In modulated form this becomes:

ζ(t) = A(t) · sin(ω0t+ ε) (2-28)

Where the summation over all ζi squared is the wave envelope A(t), which contains informa-
tion with respect to grouping of waves, see (2-29) in Section 2-3-5.

A(t) =

√√√√ N∑
i=1

N∑
i=1

ζiζj · cos ((ωi − ωj)t+ (εi − εj)). (2-29)

The wave envelope is an imaginary curve joining successive wave crests within a wave group
and contains information with respect to the grouping of waves. The entire water surface
motion takes place with the area enlosed by these two cruves [2].
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2-4 Finite amplitude waves 17

2-4 Finite amplitude waves

For the application of the LWT the requirements of H/d and S << 1 must be satisfied.
When S becomes higher though, one should resort to finite amplitude tehories. Basic feature
of the finite amplitude is that the amplitude cannot be considered small any more compared
to either wavelength or depth. In the LWT, crests and troughs are equal, so the wave is
evenly distributed among the still water level. In the finite amplitude theories however,
this distribution is no longer equal, the crests are more peaked while the troughs are flatter,
meaning that the crests are higher above the mean water level than the troughs are below this
level. It becomes necessary to use higher-order approximation to take the non-linear aspect
of the wave into account. The physical difference with the LWT is that in these theories
the influence of the wave itself on its properties is considered. Properties are in this theory
functions of the actual wave height (d+ ζa) [18, 22]. Most finite amplitude wave theories are
developed for a specific range of wave height H, wave period T , and water depth d as can be
seen in Figure 2-1.

2-4-1 Stokes

In Stokes’ derivations, perturbation is commonly used. At z = 0, a Taylor expansion is
applied, which linearises the wave potential. This can be justified for small surface elevations,
but in extreme sea states wave kinematics must be included to describe wave loads. The
accuracy of the potential problem increases as more terms are added in the perturbation
technique, allowing for better prediction of wave loads. Stokes found a method to extend the
validity range of theory by taking non-linear terms into consideration for wave kinematics
and boundary conditions, which were neglected in the development of the LWT. Stokes
assumed all variation can be written as perturbation expansions in terms of a parameters
which incresases with wave height [4].

A disadvantage of the perturbation techniques is that the potential loses its superposition
property. Furthermore, it is only applicable for wave amplitudes smaller than all other length
scales. Despite these shortcomings, higher order Stokes is still helpful in studying non-linear
wave kinematics. In interacting wave components, Stokes second order theory accounts for
the positive and negative interaction terms, meaning that terms are included in the equations
of sum of the frequencies and negative interaction terms by the difference of the frequencies
of the first-order components. The positive terms produce the sharpening of the crests and
the flattening of the troughs which is associated with second-order Stokes waves. Negative
interaction terms give the set-down of the water level under wave groups [20].

Wave characteristics (velocity potential Φ, celerity c, surface profile η, etc.) are described by
means of higher orders of ε. The Stokes theory is applicable for waves that are not very long
and not very high and mostly applicable in deep water and in a portion of the intermediate
depth range. The Stokes theory should be applied for values where ε and UR small, and is
generally applicable for UR < 10 [19, 18, 4].
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18 Waves

Stokes Second Order

For the Stokes’ theory, the Laplace equation looks similar as described by (2-1) as well as the
seabed boundary condition (2-4). The free surface conditions however are different for higher
terms of ε.

S µ UR
Stokes Second Order < 0.04 [19] 1

7 −
1
10 [18] 26 - 40

Table 2-2: Parameters for Stokes Second Order Theory

The first order terms as given in (2-14) and (2-15) are the same, but they are extended by
the second-order term by:

∂2Φ2
∂t2

+ g · ∂Φ2
∂z

= −η1
∂

∂z

[
∂2Φ2

2
∂t2

+ g
∂Φ1
∂z

]
− ∂

∂t

[(
∂Φ1
∂x

)2
+
(
∂Φ1
∂z

)2]
at z = 0 (2-30)

and

η2 = −1
g

[
∂Φ2
∂t

+ η1
∂2Φ1
∂z∂t

+ 1
2

(
∂Φ1
∂x

)2
+ 1

2

(
∂Φ1
∂z

)2]
at z = 0 (2-31)

Velocity Potential
Under the assumption of weak non-linearity the potential of the wave train is perturbed in
the order of ε = ηk � 1; η = η(1) + εη(2) + ε(2)η(3)....

The Stokes expansion can be used to describe steeper crests and flatter troughs, the increase
in phase velocity with the increase in S and non-linear wave characteristics up to second
order. This is presented in terms of the velocity potential by:

Φ = εΦ1 + ε2Φ2 (2-32)

Both Φ1 and Φ2 satisfy the boundary conditions, and Φ2 should thus give similar solutions
except that k is replaced by 2k and the cos(x) part by cos(2x). The wave potential is then
given by [18]:

Φw = ζag

ω

cosh k(z + d)
cosh(kd) sin(kx−ωt)+ 3

g

πC H

kT

(
πH

λ

)
· cosh kd(z + d)

sinh4 kd
·sin 2 (kx−ωt) (2-33)

It is reasonable to suppose that non-linear wave surface elevation could be approximated by
an amplitude modulated wave [19, 18].

W.E. Zwart Master of Science Thesis
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η = η1 + 1
2 · η

2
a

η = ζa cos(kx− ωt) + πH2

8λ
cosh kd
sinh3 kd

· [2 + cosh 2kd] · cos 2(kx− ωt)
(2-34)

Water Particle Velocities
The water particle velocities are given by (2-35).

u = πH

T
· cosh k(z + d)

sinh kd · cos(kx− ωt) + 3(πH)2

4Tλ · cosh 2k(d+ z)
sinh4 kd

· cos 2(kx− ωt)

w = πH

T
· sinh k(z + d)

sinh kd · sin(kx− ωt) + 3(πH)2

4Tλ · sinh 2k(d+ z)
sinh4 kd

· sin 2(kx− ωt)
(2-35)

Pressure field
From here, the dynamic pressure is obtained by the substitution of Φw into the complete
Bernoulli equation (2-2) for f(t) = 0 and without hydrostatic pressure [19].

p = ρgζa
cosh k(z + d)

cosh kd cos(kx− ωt)

+3
4ρg

πH2

λ

1
sinh 2kd ·

[cosh 2k(z + d)
sinh2 kd

− 1
3

]
· cos 2(kx− ωt)

−1
4ρg

πH2

λ

1
sinh 2kd · [cosh 2k(z + d)− 1] (2-36)

In Stokes second order the linear dispersion relationship is still valid. The solution of the
second order boundary value problem is valid if the convergence criterion and the ’no bump’
criterion are met. The convergence criterion means that the second part of (2-33) should be
much smaller than unity. Second, the physical properties of the wave profile requires that in
the trough of the wave no small second wave exists, i.e. there should be no ’bump’ in the
trough. An example is given in Figure 2-5.

Figure 2-5: An example of a wave modelled with Second Order Stokes wave elevation, with large
S. This creates the hump in the trough
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Increasing S in the second order causes peaking at crests when two components are in phase,
and flatter troughs when they are out of phase. The through becoming horizontal is a limit
beyond which this theory is no longer valid. At this point, S can be approximated by (2-37).
This can be expressed in terms of a maximum S:

S = sinh3 kd

π cosh(kd) · (2 + cosh 2kd)) (2-37)

In deep water this limit is approximately Smax = 1
7 . When the relative depth µ ≤ 0.1, limit

becomes 0.021. This restricts the application of the second order theory [18].

An lastly, with the increasing S, the other effect to consider is of course the breaking limit.
These three limits are shown in Figure 2-6, which can be helpful in distinguishing whether or
not the waves can be approximated by this theory.

Figure 2-6: Limiting Conditions for applicability of Stokes Second Order Theory

Values on the right of the crossing lines are valid values for the focal theory. To model for
this limitations, numerical models should be given these limits.

Stokes Fifth Order

The Stokes fifth order wave theory is applicable for fairly long waves, in deep water with a large
wave height [23]. In shallower water it requires many terms to approach the right solutions
[4]. As such, the theory is not considered for this study. The theory only has significant effect
close to the free surface, which makes it useful for analysing floating structures. The theory
has been popular for design, but it fails to converge for shallow water conditions [24]. When
waves become relatively longer, the Cnoidal theory is argued to be more applicable in shallow
water, see also Figure 2-1 [4, 19]. For completeness however, the values for determining
parameters are given in this section.
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S µ UR
Stokes Fifth Order < 0.14 [18] 1

10 [4] < 40 [?]

Table 2-3: Parameters for Stokes Fifth Order Theory

Velocity Potential
The fifth order velocity potential is written as:

Φ = c

k

5∑
n=1

L coshnk(z + d) sinn(kx− ωt) (2-38)

Where L is a function of kd. The details are beyond the scope of this thesis and can be found
in [19].

2-4-2 Cnoidal Theory

Finite amplitude long waves of permanent form in shallow water are hard to be described
by the Stokes theory. The Cnoidal Theory is in these case better applicable. It is describes
a periodic, long, sharp crested wave [4, 25]. The period of a Cnoidal wave depends on both
the wavelength and amplitude, while the wave period of a linear sinusoidal wave is only
dependent on the wave length. However, for a given wavelength, the period of a Cnoidal
wave converges to the linear, sinusoidal wave when the amplitude of the Cnoidal wave tends
to become infinitesimally small.

S µ UR
Cnoidal Theory < 0.125 1

50 <d< 1
8 [19, 5] 26 - 40 [?, 19]

Table 2-4: Parameters for Cnoidal Theory

For values of 10 < UR < 26 both Stokes and Cnoidal theory are equally applicable [18].
Depending on S, the cut-off point lies either in the intermediate water depth region d/λ > 0.1
or ultimately at the shallow water limit d/λ = 0.1 [18]. The Cnoidal waves are solutions of the
Korteweg - de Vries equation in Jacobi elliptic functions cn. The Jacobian elliptical function
is periodic and modulus lies in between 0 and 1. The wave profile can be described in terms
of these functions cn by:

η = ηt +Hcn2[2K(kcn)
(2π
λ
− 2π
T
t

)
, kcn] (2-39)

In which ηt is the elevation of the trough, K(kcn) the complete elliptical integral of the first
kind. Both K(kcn) and cn are functions of the elliptical parameter kcn which determines the
shape of the Cnoidal wave. The applicability of the theory is extremely complex, so it is
often recommended to use other theories to cover as much information as possible. Figures
by Wiegel as shown in Figure 2-7 (1964) help find the basic parameters [18, 19].

For Cnoidal theory in the first order the pressure distribution is essentially hydrostatic. It is
a function of the distance below the water surface:
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Figure 2-7: Solution for basic parameter of Cnoidal Wave Theory. Modified by Sorensen from
Wiegel 1964.

pcn = ρ g (η − z) (2-40)

Calculation of water particle velocity and acceleration components can be found in literature,
but are very difficult involving becuase of cn. Due the complexity, the solitary wave theory
has often been used to calculate characteristics in very shallow water [18].

2-4-3 Solitary Waves

The Cnoidal wave becomes a solitary wave in the limiting case of infinite wave length and
period, thus when the modulus becomes 0. The profile only exists above mean water level
and consists of a single crest [18]. In reality, waves will break before a true solitary wave is
reached. As the solitary wave does not represent a train of waves, it is not applicable for
offshore design [24]. An example is given in Chapter D.

2-5 Stream Function Waves

Dean’s stream function is a numerical non-linear wave theory which is used for finite ampli-
tude waves throughout the range of relative water depths. The stream function Ψ is used
to define the wave field rather than the velocity potential Φ [18]. It is a purely numerical
procedure for approximating a wave profile. So, instead of assuming perturbation expansions
for the coefficients as done by Stokes, the coefficients are calculated numerically by solving
non-linear equations [5]. The stream theory has a wider range of applicability than Stokes
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waves, up to nearly breaking. However, the stream function applicability is not ideal for
design purposes [4, 19, 18]. More details on the theory are given in Chapter D.

Summary Applicability
A good starting point for selecting which theory to apply is Figure 2-1. The first modification
to be done is by predicting H change from one depth to another by the shoaling coefficient
(2-22), which is argued to be valid for S not to be too large. Given a new wave height H with
known T and d, this allows for calculation under assumptions of LWT. For finite amplitude
wave theories, the change in wave height also depends on initial steepness, i.e. on µ as well
as S. The application range for the LWT is usually extended as far as possible, because of its
ease of application. The parameters which determine the theory of choice, are summarized
in Table 2-5 [5, 4, 18, 19]:

S µ UR
LWT < 0.01 1

20 or S/µ < 0.03 < 26
Stokes Second Order < 0.04 1

10 −
1
7 26 - 40

Stokes Fifth Order < 0.14 1
10 < 40

Cnoidal Theory < 0.125 1
50 <d< 1

8 26 - 40
Stream Function Theory - - -

Table 2-5: Parameters for the applicability of right wave theory

In the next chapter is explained how the motion behaviour of offshore structures can be
determined.
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Chapter 3

Ship Motions

What loads enforce the waves upon a floating structure within those waves is an impor-
tant question and detailed information on hydrodynamic properties is necessary for accurate
motion prediction.

Research has shown that effects of wave steepnesss S, wave frequencies ω and body dimensions
affect wave exciting forces on barges. A reduction of d from deep to finite water enhances
all wave exciting forces. Second order harmonics of heave force and pitch moment increase,
but second order effects can generally be neglected for the surge Degree of Freedom (DOF).
When the body is allowed to move, influence of water depth on surge and heave force is that
these reduce in first order harmonics, while pitch moments tend to increase, especially when λ
approaches the dimensions of the structure of interest. Furthermore, in heave DOF the water
depth effect for first-order harmonics is significant, i.e. it has great impact on motions [1]. This
chapter explains therefore how diffraction analyses approximate motions and what additional
or adjusted calculation need to be performed of shallow water ship motion behaviour. It
firstly explains how this is done linearly (first order), after which second order motions are
discussed because these can cause large loads in shallow water.

3-1 Frequency Domain

Potential theory is a Frequency Domain (FD) based approximation of the motions of vessels,
based on the assumption of Linear Wave Theory (LWT). The hydrodynamic coefficients aij
and bij depend on ω only and wave exciting forces have a linear relation with wave amplitude
ζ. In irregular waves, the response of a body can be determined by using the superposition
principle.

3-1-1 Degrees of Freedom

The first order motions of a vessel can be described after an analysis in the FD. Resulting
motion in irregular waves are summations of the vessel’s response to regular harmonics waves
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DOF Name Symbol Unit Description
1 Surge x [m] Motion in x
2 Sway y [m] Motion in y
3 Heave z [m] Motion in z
4 Roll φ [rad] Rotation around x-axis
5 Pitch θ [rad] Rotation around y-axis
6 Yaw ψ [rad] Rotation around z-axis

Figure 3-1: Degrees of Freedom Ship Motions

with different amplitudes and phases. For a wave energy spectrum, this results in response
spectrum in one of the DOF. These DOF are shown in Figure 3-1.

3-1-2 Motions

These motions are calculated around the Centre of Gravity (COG). Responses in regular
waves are according to LWT are given by the following:

z = za cos(ωt+ εz,ζ) (3-1)

Where za the amplitude of the heave response and εz,ζ the phase shift between wave elevation
and heave displacement of the COG of the vessel. The associated velocity and acceleration
for this degree of freedom are given in (3-2).

ż = −ω za sin(ωt+ εz,ζ)
z̈ = −ω2 za cos(ωt+ εz,ζ)

(3-2)

The phase shift of ship motion is considered positive when the ship motion passes zero at
a specific moment in time t, before the wave elevation passed zero at this same t. Decreas-
ing water depth can have a great impact on motions of structures due to the phenomena
mentioned in Chapter 2, but also on the frequency dependent coefficients directly. Shallow
water conditions make the importance of non-linearities bigger, which changes the accuracy
of motion prediction by the linear response amplitude operators [6]. In shallower water, heave
and pitch motions decrease due to increasing added mass. In the Low Frequency (LF) region
though, pitch motions can increase [9, 1]. It is furthermore shown that pitch is relatively
most sensitive to wave steepness [1].

The effect in shown in Figure 3-2. It can be seen that all forces increase when d decreases.

3-2 Response Amplitude Operators

Ship motions are usually initially calculated in FD, which gives an adequate first approxima-
tion of motion behaviour. Wave exciting forces, added mass and potential damping are terms
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Figure 3-2: Effect of water depth and incident wave frequency on wave exciting forces. (a) Drift
Force (b) Surge Force (c) Heave Force and(d) Pitch Moment. Obtained from Wang et al. (2016)
[1]

in (3-3) which are dependent on wave frequencies [9, 6]. The motion amplitude, for example
heave za and phase shift εz,ζ can then be written in proportion to the wave amplitude ζa.
These transfer functions are known as Response Amplitude Operator (RAO)s and define the
first order motion of a vessel in response to waves with given period and amplitude. They
are found using potential theory. The amplitude relates the amplitude of the vessel motion
to the amplitude of the wave (za/ζa) and the phase defines the phase lag from the time the
wave crest passes the RAO origin until the maximum positive excursion is reached (εz,ζa).
Load RAOs represents the magnitude and phase of the force (surge, sway, heave) or moment
(roll, pitch, yaw) (Fa/ζa). RAOs are obtained through the analysis of dynamic behaviour of
a vessel as a result of an incoming harmonic wave. The displacement RAOs for the six DOF
are determined by solving the following relation for Xj :

{−ω2 · (Mij +Aij(ω)) + iω ·Bij(ω) + Cij} ·Xj(ω) = Fi(ω) for i = 1, ..6 (3-3)

The right hand side of the Equation of Motion (EOM) consists of wave exciting forces and
moments by waves coming in on the restrained body, around the COG. Finally, when the
RAOs are calculated, the motion response spectra are found. With a given wave spectrum,
and frequency characteristics of a vessel, motion responses can be determined by:

Si(ω) =
∫ π

−π
Sζ(ω, µ) ·RAOi(ω, µ)2dµ (3-4)

Where the subscript i denotes the DOF, Si the response spectrum and Sζ the wave spectrum.

Specifications of the RAO can be crucial in determining whether or not to operate in specific
sea states. As mentioned in Chapter 2, incoming waves might change by moving into shallower
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Figure 3-3: Calculation of motion responses for a floating structure

water (with reference to the above deep water equations). The hydrodynamic coefficients in
Aij and Bij however might also change due to shallow water. These hydrodynamic coefficients
and their sensitivity to shallow water conditions are discussed in the following. Firstly, the
wave exciting forces are explained as this external factor induces motions. Next, the radiation
force is discussed, containing Aij and Bij .

3-3 Forces and Moments

Wave exciting forces are those on a body due to the unsteady fluid pressure of water waves,
where the body is retained from moving. The forces consist of the Froude-Krylov (FK) and
diffraction forces and follow from integration of pressure on the submerged part of the body
SH . Assuming a structure is subjected to linear waves, the total first order velocity potential
Φ(1) can be written as a summation over the velocity potentials at each ω:

Φ(1)(x, y, z, t) = Re

 6∑
j=1

φje
iωjt

 (3-5)

The lower case velocity potential φj is the space dependent part belonging to one specific
frequency ωj . The potential under the assumption of the LWT is the superposition of three
parts, the potential of the undisturbed incoming wave ΦI , the radation potential ΦR and the
diffraction potential ΦD [6, 2]:

Φ = ΦI + ΦD + ΦR

Φ(X,Y, Z) e−iωt =
[
(ΦI + ΦD) +

6∑
i=1

Φjxj

]
e−iωt

(3-6)

The incident wave potential ΦI used to describe to flow of the undisturbed incoming waves,
the FK forces. ΦD is the diffraction potential and is used to describe the disturbances of flow
due to a body in this flow. Added to the undisturbed wave potential, it describes the total
potential of the incoming waves, ΦW . ΦR is the radiation potential and exsists for each of
the six DOF of a body in waves and it is calculated for oscillation in still water [2, 26].
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The Diffraction Problem

As a watertight body is considered, the kinematic boundary condition on the body must be
zero. The potentials ΦI and ΦD can be written in a space and time dependent part for the
undisturbed wave and diffraction potential respectively:

ΦI = Re{φW · iωζaeiωt}
ΦD = Re{φD · iωζaeiωt}

(3-7)

With the space-dependent part:

φW = ζag

ω2 e
kzei(kx cosµ+ky sinµ) (3-8)

The velocity potential given by (2-16) where x is the space dependent part given in (3-8).
The diffraction potential is determined through diffraction analysis in software intended to
do so. For this thesis Ansys AQWA is used, which uses Green’s theorem. Through the
Haskind relations the diffraction potential then only depends on incoming wave potential φI
and radiation potential φR. ΦI is subsequently used to find pressures due to incoming and
diffracted waves, which ultimately gives the description for total wave forces by (3-9). The
forces and moments on the body also include the radiation forces FR, which is discussed in
Section 3-3-1.

FD + FW = −
∫∫
SH

(p · −→nk) dS = ρω2ζae
iωt
∫∫
S

(φW + φD) dSH (3-9)

−→
M = −

∫∫
SH

p · (−→r ×−→n ) dSH (3-10)

In which −→n is the outward normal vector on the surface and −→r the position vector of surface
dSH in the coordinate system. For the LWT, the steepness of the wave is considered small,
and the second order terms in the above equation are ignored. The resulting pressure due to
water waves is then:

p = −ρ∂Φ
∂t
− ρgz = −ρ

(
∂ΦI

∂t
+ ∂ΦR

∂t
+ ∂ΦD

∂t

)
− ρgz

p = −ρgz + ρgζa ·
cosh k(d+ z)

cosh(kd) · cos(kx− ωt) (3-11)

For a complete determination of forces and moments of the body in waves, the hydrodynamic
loads need to be included. As can be seen from (3-3), the pressure is split in four parts.
Therefore, forces and moments −→F and −→M are split in those four parts as well:

Ftotal = FI + FD + FS + FR (3-12)
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• FI : hydrodynamic forces and moments on the body due to undisturbed incoming wave
• FD: hydrodynamic forces and moments due to the diffracted waves.
• FS : hydrodynamic forces and moments due to hydrostatic buoyancy and loads due to
changes in water plane area.
• FR: hydrodynamic forces and moments due to radiating waves from the oscillating body

Diffraction analysis calculates displacement and load RAOs respectively of incoming wave
loads. This load RAO is used to describe the wave exciting force on the vessel:

FW = FA,ζa · ζa cos(ωt− εF,ζ) (3-13)

Where FA,ζa is the amplitude of the load RAO at ω, and ζa the incoming wave amplitude.
The linear hydrodynamic and hydrostatic forces are also based on coefficients determined in
the diffraction analysis, which is discussed in the Section 3-3-1.

3-3-1 The Radiation Problem

Incoming wave forces will cause the floating structures to oscillate, inducing wave creation
which will radiate from the body. The associated force in six DOF can be expressed as the
radiation force FR. These radiation forces contain the coefficients of added mass and potential
damping, aij and bij . Added mass is the additional force necessary to accelerate the fluid
particles surrounding the vessel, compared to oscillation in air, and potential damping is the
damping due to generation of waves by oscillation of the vessel, which withdraws energy from
the motions of the vessel. These terms are shown in the Aij and Bij respectively as function
of frequency of oscillation, as shown in (3-3) [2].
Shallow water affects added mass and potential damping significantly by firstly the proximity
of the seabed and secondly the more intensive free surface fluctuations [6, 15, 9, 27]. Espe-
cially in the vertical modes of motion the effects are noteworthy. Research has shown that
a fundamental change of motion behavior is observed due to great increase of added mass
[14, 7]. Several phenomena discussed in Chapter 2 can thus cause challenges for accurate
prediction of these coefficients, which affects the degree to which a good analysis of motion
responses of floating bodies in waves can be done [6, 28].
With regards to damping, potential damping might not suffice and an additional damping
term might be needed. Especially near resonance this is important, as the damping term
dominates the equation of motion near these frequencies [2]. LF effects such as set-down
and shoaling can result in significant excitation when hulls have little damping against these
motions. This combination can cause significant resonant motions and related mooring loads
[11].
In the following the determination of the hydrodynamic coefficients is discussed, after which
the effect of shallow water is further elaborated.

Added Mass and Potential Damping

The accuracy of aij and bij directly influences the numerical simulations of the motions of
a vessel. Using the velocity potentials, hydrodynamic pressure can be calculated from the
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linearised Bernoulli equation, and added mass and potential damping terms are subsequently
calculated by the pressure distribution on the hull. The radiation potential ΦR can be written
in potential in each DOF:

∂Φ
∂n

=
6∑
j=1

vj · fj(x, y, z) with fj = ∂φj
∂n

(3-14)

The mean wetted part SH of the hull is approximated by panel elements, representing a distri-
bution of source singularities. These sources contribute to the velocity potential, describing
the flow at any point in the domain. The total radiation force FR on SH is follows from
integration of the pressure:

FR =
∫∫
SH

(p · nk) dS = ρ

∫∫
SH

(
∂ΦR

∂t

)
−→n dSH (3-15)

In which −→n is the matrix including the direction cosines on the partial surface elements.
It should be noted that the forces and moments which are the solution of the ΦR can be
expressed in terms of added mass and potential damping in the EOM:

Mij · Ẍj(ω) = FWi + FDi + (−Cij ·Xj(ω)) + (−Aij(ω) · Ẍj(ω)−Bij(ω) · Ẋj(ω)) (3-16)

In which the following can be recognized:

FSi = (−Cij ·Xj(ω))
FRi = (−Aij(ω) · Ẍ)j(ω)−Bij(ω) · Ẋj(ω))

(3-17)

The only unknown is the space dependent term of the radiation potential φj . The potential
φ can be found by the panel method. According to this method, SH is approximated by a
large number of panel elements to use for calculations. Once ΦR for the six DOF is known,
calculation of aij and bij is next:

∫∫
SH

(
ρ
∂Φj

∂t
· ni
)

dSH = −aijẌj − bijẊj (3-18)

aij = Re {−ρ
∫∫

(φj · ni) dSH} (3-19)

bij = −ωIm {−ρ
∫∫

(φj · ni) dSH} (3-20)

These coefficients aij and bij are sensitive to water depth for shallow water conditions. Most
significant changes in hydrodynamics will affect the vertical DOF, with the seabed becoming
closer [17, 6, 10, 7]. The heave added masss and pitch added mass are underestimated by the
linear radiation-diffraction calculations when viscosity is not taken into account. Experiments
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with barges in wave basins have shown that the added mass is highly sensitive to reduction
of water depth for values lower than d/T ≤ 1.35 [6]. In the case of determination where a
vessel might hit the seabed, heave added mass plays an important role. Not only because of
the possible bottom grounding, but also its effect on the other DOF. Roll added mass is for
example little changed by shallow water effect, but the main contribution on its added mass
comes from the heave induced component (while the roll-induced component is small) [15, 27].
Added mass is furthermore a critical factor to determine natural periods of structure motions,
as its magnitude is comparable to other terms in the EOM [29]. These natural periods could
decrease significantly, inducing the LF wave exciting forces. The fact that added mass is
affected by shallow water, is shown in Figure 3-4.

Figure 3-4: Increase in added mass in shallow water

Behaviour of the added mass at three different DOF is shown in top three plots, at three
different water depths: 3, 5 and 30 m, for a draft T of 1 m. The shallow water effect on Bij
is shown in the lower three plots. One can see that the coefficients gradually increase and
converge to a constant value as ω gets higher for added mass, while radiation wave damping
decreases and ultimately goes to zero, which is also shown by literature [28]. This increase
in added mass in vertical DOF causes the motions in these directions to decrease. Wave
frequency motions, i.e. heave and pitch, are found to decrease with decreasing water depths,
which can be explained by the fact that the added mass indeed increases as can be seen in
Figure 3-4, i.e. more force is needed to move the structure. The water column thus pushes the
vertical moving structures, the ’Cushioning Effect’. Pitch motions are also known to decrease
at shallower water. For the LF range however, vertical motions and pitch especially have
shown to become significantly [9]. These results are agued to be due to the increasing wave
drift forces, which will be explained further on [7, 30].
It however also gets harder for the barge to move upwards again: the water needs some time
to flow back into the gap which will be created for the upwards movement. This phenomenon
is known as the ’Sticking Effect’. The approaching seabed can hence have a dramatic effect
particularly when the body is being raised from the seabed [31]. This could arguably be
approached by the method developed by Brennen (1982) [31], which is explained in Chapter 4.
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Here is firstly viscosity discussed, since this is ignored in potential theory, and becomes of
greater importance in shallow water, especially near resonance.

3-3-2 Viscous Damping

Research has demonstrated that the effect of water depth on damping is very clear, where
generally trends are that the damping increases with a decreasing water depth [29]. In shallow
water, motions are often over predicted by diffraction analysis, or in other words; the damping
is under predicted. Complex hydrodynamic effects play a role to the viscous damping due to
the small distance between the structure and the seabed which causes large velocities of flow
around it. Especially for mooring in shallow water, it has shown that viscous damping is one
of the major issues in the LF area due to the LF reaction forces. And since the focus of this
thesis lies on shallow water motion behaviour, where LF second order wave effects increase,
the viscous effects increase in significance.

Resulting discrepancies in diffraction theory prediction and reality found motions are argued
to be a consequence of neglecting these viscous effects, and therefore a viscous damping factor
needs to be added to the EOM [14, 13]. The assumption of inviscid low limits amount of
hydrodynamic damping, and the potential flow solution needs to be augmented with viscous
effects.

Research by Clauss et al. (2009) has shown that motion behaviour already changes in shallow
water (d/T ≤ 1.3) due to neglectence of viscous damping [14]. Other experiments have shown
similar results, with a rectangular barge in a basin with adjustable depth, where the damping
significantly increased for [2.72 ≥ d/T ≥ 1.36] [29]. So in shallow water, viscous effects need
consideration, as they can possibly affect significance of results, especially in motion modelling
near resonance [2, 29, 14, 32, 6]. It is however not an easy task to find the proper viscous
damping coefficient owing its non-linearity. The contribution can be derived experimentally,
as factor of critical damping ξ, or as a term based on drag as an empirical input [13, 14]. The
viscous effects can subsequently be added to the EOM as an external damping force in Time
Domain (TD)[14, 22].

Critical Damping Factor
Common practice is to add a linearised viscous damping term to account for non-linearities
in damping. This term is taken as fraction of the critical damping [33]:

Bvi = ξ ·Bcrit = ξ · 2 ·
√

(A(ω) +M(ω) · C (3-21)

The damping factor ξ is usually obtained from experimental data or estimated from simplified
hydrodynamic models [5]. In their research, Clauss et al. [14] derived ξ experimentally and
found 1.2 % and 2 % for heave and pitch motion respectively. The resonance peak in the
LF of heave RAO due to heave-pitch coupling was eliminated as a result. Other research on
damping has found values of approximately 4% of the critical roll damping to be added to
the radiation damping [34, 33].

The viscous damping coefficient is widely investigated for cylindrical bodies, with or without
heave plates of different diameters. But also for a diameter ratio of 1, a viscous damping
coefficient (as fraction of critical damping) is found. These damping ratios ξ lie in the range
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of 1%− 2% [35, 14].

Roll viscous damping factor based on decay tests
Based on free decay test, of pure rolling in still water B4v is obtained as the viscous damping
coefficient in roll motion. For rectangular barges experiments have resulted in an empirical
estimation for roll ξ:

ξ = ξ1 + ξ2 · φa (3-22)

In which φa is the roll angle and constants ξ1 and ξ2:

ξ1 = 0.0013 ·
(
B

T

)2
and ξ2 = 0.50 (3-23)

In which B is the breadth and T the draft of the barge [36]. From the figure it can be
concluded that an approximation of ξ = 1% − 4% would be valid. Generally, for large
B/T ratios, potential damping dominates. It could however be a manner to model viscous
damping due to shallow water effects. In Figure 3-5 these coefficients are shown for a range
of roll angles.

Figure 3-5: Roll Damping Coefficients Based on Experiments. From: Journée [2]
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Viscous Drag Constant CD
Another method to determine viscous effects on the motions is by including a drag force. A
widely used approach to calculate these forces is the Morison’s equation. The drag load on a
body is by definition the component of the force in the direction of the velocity of the flow.
These forces are then directly calculated from wave kinematics and it thus does not require
the velocity potential to solve this. The method is however usually applicable for slender
structures, where the characteristic length scale is smaller than ≤ 1

5 shortest wavelength
[18, 2]. More details on this method are given in Chapter D.
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3-4 Second Order Wave Forces and Moments

Generally speaking, magnitudes of first order harmonics are the large part of the wave exciting
moment, but in shallow water second order harmonics increase in significance. In shallow
water, first order analysis usually isn’t sufficient in predicting a particular vessel’s motions
accurately enough. Especially for the heave force and pitch moment these nonlinear effects
cannot be ignored [1]. In second order approximations fluid pressures and wave loads are either
linear with wave amplitude or proportional to the square of this amplitude. The solution of
the second order results in a mean force and forces oscillating with the difference and sum
frequencies in addition to the linear solution. Especially the occurrence of wave set-down
in irregular waves demands for wave force description up to second order, as shallow water
effects play an important role in these wave drift forces [6].

Non-linear second order motions in the horizontal DOF (x, y, ψ) have often been subject
of research. Horizontal drift forces are major contributor on practical applications in the
offshore shallow water operations, and in particular for mooring lines design these are heavily
investigated. Second order drift forces in the vertical plane however are much less widely
investigated [37, 7].

Response of a structure in irregular waves includes three important components:

First Order

1. An oscillating displacement of the vessel at frequencies which correspond to those of
the waves, caused by the first order waves forces.

Second Order

1. A mean displacement of the vessel as a result from a constant load, caused by the mean
drift force. This is caused by second order wave potential effects. This mean wave drift
force is proportional to the incident wave amplitude squared. These loads determine a
new equilibrium position.

2. An oscillating displacement of the structure of the vessel at frequencies lower than those
of the irregular waves, caused by low-frequency drift forces.

The first order loads are discussed in the previous sections. Both contributions of the second
order loads are a result of non-linear behaviour in waves. The first part is time-independent
and causes a mean off-set of the average position of the body in waves. The difference
frequency component will induce slowly varying motions [38]. The contributions of wave
phenomena on the resulting wave forces is schematically given in Figure 3-6 and explained in
the following.

3-4-1 Set-Down
Freely propagated waves generated by wind are complemented by bound waves, which are
a significant population of the total ocean surface. Wave set-down is a non-linear effect in
irregular waves, when long waves bound to short waves. Set-down produces a depression of

W.E. Zwart Master of Science Thesis



3-4 Second Order Wave Forces and Moments 37

Figure 3-6: Wave Phenomena

the mean water surface level, which subsequently affects drift forces [30, 39, 11, 6]. Wave
elevations are then related to second order pressure disturbance in the wave field. Bound
waves move at speeds near those of their parents waves and appear to affect LF forces more
than first order forces. This effect is in shallow water is dominated by the second order
potential Φ(2). The set-down phenomenon does not affect the mean value of second order
forces, but only slowly varying part.

Figure 3-7: Set-Down

Set-down will stimulate large wave exciting forces at the LF area [17, 6, 37, 40, 41]. The
effect is widely known to be necessary to consider in the design for mooring systems, but also
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for the vertical DOFs, it surely is important [17, 6, 37, 7]. It is a contribution proportional
to first order wave heights squared, i.e. it can be calculated from quadratic products of first
order quantities [2, 38]. In the bi-chromatic wave of two regular Airy waves, the second order
potential implicitly includes the second order incident potential effects.

Set-Down Calculation Interactions between the waves can help to explain the mechanism
which creates the higher crests and flatter troughs in shallow water. The second-order wave
elevation, set-down, can be approximated through a correction of the first order wave eleva-
tion. The model by Longuett-Higgins, and later extended by Sharma and Dean (1979), for
the second-order waves with amplitudes Am and An has N2 corrections over sum-frequencies
and N2 corrections over difference-frequencies helps to do so. The second order wave is then
modelled as η2 = η1 +4η2 with the second-order correction:

4η2 =
N∑
m=1

N∑
n=1

AmAnE
(+)
mn cos [(ωm + ωn) t+ (εm + εn)]

+
N∑
m=1

N∑
n=1

AmAnE
(−)
mn cos [(ωm − ωn) t+ (εm − εn)] (3-24)

With sum and difference frequency contributions respectively:

E(+)
mn (ωm, ωn) = 1

4g (ω2
m + ω2

n) and E(−)
mn (ωm, ωn) = − 1

4g | ω
2
m − ω2

n | (3-25)

These equations are for infinite water depths, and that’s where the correction by Sharma
and Dean (1979) gives a better description for the wave surface. These waves have shown by
experiments that the difference frequency drift forces increase dramatically for small depth
over wavelength ratios [38]. The second order correction by Sharma and Dean for finite water
depth is the following [42, 20]:

η(2) = 1
4

N∑
m=1

N∑
n=1

AmAn
{
K− cos(ψm − ψn) +K+cos(ψm + ψn)

}
(3-26)

Where K− and K+ are complicated kernels, which express interactions between the frequen-
cies and water depth, and details are given in Chapter ??. The positive kernels are associated
with the sharper crests and flatter troughs which are associated with Stokes second order
waves. The negative parts describe the set-down effect [20]. The positive interaction has a
frequency approximately double that of the linear component waves, and have positive peaks
in phase with both crests and troughs of linear parts. The negative interaction term has a
frequency of the difference frequency. The interaction kernel K− for these is negative, which
causes this second-order wave to be negative under high wave groups.
Another formulation of the set - down is developed by Voogt (2005) [43]. The additional
second order term his work is the following:

ζ(2) =
N∑
i=1

N∑
j=1

ζi · ζjD(ωi, ωj , ki, kj , d) · cos((ωi − ωj)t+ εi − εj − (ki − kj)x) (3-27)
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The transfer function D can also be read from Figure 3-8. The figure also shows that the
effect is in phase with wave group, and that it amplifies in shallow water (dotted arrow)
[43, 37, 41].

Figure 3-8: Set-down Voogt

In Chapter D, in Section D-3-1 the details for A are given.
The total second order wave forces and moments are given in Section 3-4-2. When two non-
linear Stokes waves are considered, the set-down needs an additional correction by the work
of [44]. In Stokes second order waves there is often a term neglected which accounts for an
additional free surface decrease, i.e. set-down, which adds to the set-down resulting from
quadratic product of the first order potential. Ignoring this additional set-down related to
a monochromatic second order Stokes wave causes inconsistency in the vertical drift force
where the difference frequency is zero [38, 44]. For this thesis, these cases are not considered,
but the correction is given in Chapter D.

3-4-2 Wave Drift Forces and Moments

Wave drift forces are generally assumed to be second order wave forces, where forces are
quadratic functions of wave height [2, 37]. Second order difference frequency forces (drift
forces) increase significantly in shallow water [6, 38, 7]. Where the mean drift froces are
calculated from first order quantities, this osciallatory component requires the calculation of
the second order potentials. This contribution is avoided in deep water, but this cannot be
done in shallow water situations [7]. These require full Quadratic Transfer Function (QTF)s,
which can become time-consuming [38]. As mentioned in Section 3-3-1, wave frequency mo-
tions decrease in shallow water, while LF increase [17, 14, 41]. Shallow water effects thus play
an important role, both in horizontal as well as in vertical drift forces [6, 39, 38, 7].
Second order potential effects are large contributing aspect to this increase of drift forces,
and should be included in the calculations. Newman’s approximation does not consider these
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second order potential effects and subsequently underestimates heave LF drift forces in shallow
water [6, 38, 40]. It can underestimate second order wave loads and provide wrong phase shifts
since the approximation is a real function while the QTF is a complex function.
The second order wave forces and moments are defined as in (3-28). For the derivation and
explanation of these, reference is made to the work of Pinkster [37] Journée et al. [2]. After
the perturbation analysis over the wetted surface, the second order wave exciting forces and
moments can be written as:

−→
F (2) = −1

2 · ρ g
∮
WL

(
ζ(1)
r

)2
· −→n · dl

+1
2 · ρ g

∫∫
S0

(−→
5Φ(1)

)2
· −→n · dS

+ρ
∫∫
S0

(
−→
X (1) ·

−→
5 ∂Φ(1)

∂t

)
· −→n · dS

+m ·R(1) ·
−−→̈
X

(1)
g

+ρ
∫∫
S0

(
∂Φ(2)

∂t

)
· −→n · dS

−→
M (2) = −1

2 · ρ g
∮
WL

(
ζ(1)
r

)2
· (−→r ×−→n ) · dl

+1
2 · ρ g

∫∫
S0

(−→
5Φ(1)

)2
· (−→r ×−→n ) · dS

+ρ
∫∫
S0

(
−→
X (1) ·

−→
5 ∂Φ(1)

∂t

)
· (−→r ×−→n ) · dS

+I ·R(1) ·
−−→̈
X

(1)
g

+ρ
∫∫
S0

(
∂Φ(2)

∂t

)
· (−→r ×−→n ) · dS (3-28)

As can be seen from (3-28), the second order force and moments consists of five parts:

• The first part is caused by the effect of relative wave height
• The second part is caused by the pressure drop due to first order velocity potential
• The third part is caused by the pressure due to the product of the gradient of first order
pressure and first order motion
• The fourth part is caused by the effect of the product of first order rotational motion
and the inertia force
• The fifth part is the second order potential term and is related to the long wave induced
by the presence of regular wave groups

The first four contributions depend on first order quantities, and these are referred to as
the quadratic forces and moments. These second order wave exciting forces/moments due
to first order waves and motions responses result in pairs of regular incident waves. Sum
and differency frequency components result from interaction of the first order velocities. For
analyses done in frequency domain, the time independent QTFs of second order forces and
moments are used, which is explained in Section 3-4-4 [45, 39].
The fifth part depends on the second order potential Φ(2), it is therefore referred to as the sec-
ond order potential force or moment. This contribution must be considered in shallow water
to find accurate results [46, 7]. Pinkster made an extensive investigation on three dimensional
bodies and found an approximatino of the Φ(2) which was good when the difference frequency
of components in bi-chromatic waves was small [37, 7]. The velocity potential related to a
case with two incident harmonic waves, must also satisfy the Laplace equation, as well as
bottom and radiation conditions. Furthermore, Φ(2) must comply with the free surface and
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body boundary conditions and it must satisfy the radiation condition on vertical boundaries
and bottom impermeability condition . This method has been proven not too differ too much
from a full second order potential calculation and can thus be used [38].

3-4-3 Approximation Second Order Potential
The LF part represents a long wave induced by the presence of the regular wave group. It is
assumed that a first order wave of which the frequency equals the difference frequency of a
bound wave can be used to describe this bound wave.

Figure 3-9: Second Order Potential Contribution. From Journee (2001) [2]

In shallow water difference frequency drift force can increase significantly due Φ(2) and cannot
be ignored [39, 38]. The non-linear nature of free surface condition and complexity of body
boundary conditions makes calculation of the contribution due to the second order potential
difficult. There have been succesful efforts though which can estimate the velocity potential
of incoming second order LF bound wave that belongs to the bi-chromatic wave group as a
function of first order wave numbers, frequencies and water depth [37, 47]: The combination
of two first order waves carry a second order wave with wavenumber ki − kj . The second
order wave potential can then be approximated by [37, 39]:

Φ(2) = −
2∑
i=1

2∑
j=1

ζi · ζj ·Aij ·
cosh((ki − kj) · (z − d))

cosh((ki − kj) · d)

× sin [(ki − kj)x− (ωi − ωj)t+ (εi − εj)]

Where Φ(2) is the LF part of the second order incoming wave potential, (ki − kj) the wave
number of the LF bound wave. The vertical drift force ultimately can then be approximated
by:

F (2)
z (ωi − ωj) ≈ ζi · ζj ·

Aij (ωi − ωj)
g

· F (1)
z (ki − kj) (3-29)

Where F
(1)
z (ki − kj) is the first order vertical wave induced force and Aij a function of

(ωi, ωj , ki, kj , d), which is explained in more detail in Chapter D. In short, it assures the
functions to assure that the wave transformed wave force to one with a difference frequency
still meets the dispersion relationship, and that the right first order wave potential is used.
This approximation Φ(2) as part of the total second order wave forces can also be expressed
in terms of contributions to Pij and Qij [39, 2]. These transfer functions are explained in the
following.
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3-4-4 Quadratic Transfer Functions
Where RAOs are linked to each individual wave, QTFs are applied to each pair of wave
components to translate that pair’s contribution to the second order wave load. It is composed
of two distinct parts; one dependent on quadratic product of first order wave fields and another
contributed by second-order incoming and diffraction potentials [48].

F (2)(ω1, ω2) = F (2)
q (ω1, ω2) + F (2)

p (ω1, ω2) (3-30)

LF QTF is defined as second order wave loads occurring at ∆ω of two frequencies (ω1 and
ω2) in bi-chromatic waves. The contribution from this bi-chromatic wave has a frequency
equal to the difference between ω1 and ω2. Wave pairs of equal frequencies give a constant,
zero frequency contribution, and the sum of these give a mean static offset of the vessel, i.e.
set-down. Component pairs near each other in frequency give LF load contributions; the
slowly varying part of the wave drift load causing slow drift motions. Larger differences are
generally less important. It is shown that a full QTF approach is needed, as the Newman
approximation underestimates LF responses of floating vessels in shallow water [6, 38]
For the LF part, Pij and Qij are time-independent in- and out-phase part of the quadrature
parts of QTF. QTFij describes the force amplitude and phase (QTF = P + i Q) with respect
to the incoming wave group. The second order force becomes:

F (2)
q (t) =

N∑
i=1

N∑
j=1

ζiζj · Pij · cos [(ωi − ωj)t+ (εi − εj)]

+
N∑
i=1

N∑
j=1

ζiζj ·Qij · sin [(ωi − ωj)t+ (εi − εj)]
(3-31)

The amplitude of the QTF is defined as:

Tij =
√
P 2
ij +Q2

ij (3-32)

The spectral density of the LF part of the wave drift force is then:

SF (ωi − ωj) = 8
∞∫
0

Sζ(ω1) · Sζ(ω2) · |T (ω1, ω2)|2 · dω (3-33)

3-4-5 Second Order Motions
Vertical motions are affected by vertical second order drift forces. These are calculated by
applying pressure integration over the hull wetted surface SH , with the five contributions in
(3-28). It is shown that the fifth contribution due to Φ(2), dominates in case of zero forward
speed in shallow water [39]. A steady drift offset occurs in surge DOF mainly, and increases
in shallow water [38]. Usually, second order heave motion is very small, it is however shown
that it incresases significantly for shallow water, especially around ωn [38].
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3-5 Time Domain Calculations
When considering irregular waves the FD EOM (3-3) is no longer applicable. The hydro-
dynamic coefficients however can be used to derive the TD coefficients [2, 16]. The linear
frequency response functions are transformed to TD, after which the TD-functions will con-
tain a convolution integral to account for memory effects. The formulation of EOM in TD
relates the instantaneous values of forces, moments and motions. This allows for non-linearity
and coupling between components [34]. To calculate motions, velocities and accelerations, a
solution of the EOM based on Newton’s second law is sought:

−→
F = d

dt
(m · −→U ) (3-34)

In which −→F is the force acting of the COG of the vessel and −→u is the instantaneous velocity
of the COG. The interaction and influences of surrounding fluid on a vessel’s motion are
captured in the Cummins’ equation through a reduced radiation impedance Impulse Response
Function (IRF) and infinite frequency added mass terms, as explained in Section 3-5-1. The
hydrodynamic coefficients are calculated at a position representing an equilibrium position at
still water level. However, once the body and fluid are in motion, things change dynamically
and this effect is not captured in FD analyses.

3-5-1 Cummins equation
The advantage of analysis in TD is the fact that external forces can be embellished with
non-linear components taking into account. A popular approach in TD analysis is the hybrid
FD - TD analysis in which radiation forces are calculated through a convolution integral of
motion history and the IRF [3]. Cummins proposed the hydrodynamic formulation in TD,
where radiation forces are calculated using infinite frequeny added mass, convolution of the
memory function with the velocity of the vessel and the hydrodynamic restoring coefficient
based on geometry [49, 50]. Hydrodynamic coefficients are frequency-dependent but when
the system contains multiple frequencies, these frequency-dependent parameters lose their
deterministic meaning. For this reason, the second step is introduced, where these parameters
are transformed to TD and the Cummins method is applied to solve the time-dependent
problem [51, 2, 3, 52]. The latter approach is used here. Usually use is made of classic
formulation by Cummins [53] with FD solution of Ogilvie [54]. Basically, the formulation
starts with an impulsive displacement. The floating object is at rest at initial position t = t0,
after which it is given an impulsive displacement 4x over constant velocity V .

4 x = V · 4t (3-35)

This impulsive displacement affects motions of the fluid during this period, but also further
on in time, for which is retardation function Rij is used. For an arbitrarily time-dependent
varying motion, this motion can thus be considered to be a succession of all small impulse
displacements, while still accounting for previous displacements. For TD analyses, the retar-
dation functions Rij(t) and Rkj(τ) are included in the equation of motion, which represent
the fluid-memory effects that capture the energy transfer from motion of structure to the
radiated waves [6, 2]. These retardation functions and the additional inertia can be approxi-
mated by a numerical solution of the integral up to a certrain ω and the values for frequency
dependent damping and added mass values at one frequency [54]. The linear EOMs which
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describe motion of ships and offshore structures provided linearity assumption is satisfied, in
TD become:

6∑
j=1
{(Mij +Aij) · ẍj +

t∫
−∞

Rij(t− τ) · ẋj(τ)dτ + Cij · xj} = F
(1)
ext(t) (3-36)

Knowing the displacement and its time derivatives, a simulation can be continued with a small
time step predicting the velocity from acceleration and known time histories [55]. Supposing
that the velocity is a unit impulse, the radiation forces in (3-36) are represented by the
convolution integral [56].

Frad(ẋ, t) = −A∞ · ẍj −
t∫

−∞

Rij(t− τ) · ẋj(τ)dτ (3-37)

The convolution operation is commutative, i.e. x[n]∗v[n] = v[n]∗x[n] [57], and after replacing
τ with t − τ while changing the integration boundaries, the radiation part can be rewritten
in a more convenient form [2, 52].

Frad(ẋ, t) = −A∞ · ẍj −
∞∫
0

Rij(τ) · ẋj(t− τ)dτ (3-38)

The first part represent pressure forces due to accelerations and A∞ is the constant positive
definite added mass matrix. The second term represent the fluid-memory effects, which
capture energy transfer from motion of the vessel to radiated waves. The convolution part is
known as the fluid-memory model. The relation between TD amd FD quantities is given by
Ogilvie [54, 52].

aij(ω) = Aij(∞)− 1
ω

∫ ∞
0

Rij(t) sin(ωt) dt

bij(ω) = Bij(∞) +
∫ ∞

0
Rij(t) cos(ωt) dt

(3-39)

Where Bij(∞) = 0. The damping coefficient bij(ω) holds for individual frequencies, so damp-
ing coefficients are needed for all possible frequencies B(ω) :∈ [0,∞).

Convolution Integral

What can be recognized in (3-37) is the following convolution integral of input signal u(t)
with output y(t) [56, 57]:

y(t) =
t∫

−∞

H(t− σ)u(σ)dσ (3-40)

When both functions overlap, the numerical values are multiplied over this specific range.
Before solving the convolution integral of Cummins’ equation, the IRF, Rij(t) must be com-
puted for every instant t. These follow from the Fourier transform in FD and TD respectively
[52, 56]:
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Rij(τ) = 2
π

∫ ∞
0

bij(ω) · cos(ωτ) · dω

Rij(jω) =
∞∫
0

Rij(τ)e−jωtdω = b(ω) + jω [A(ω)−A∞]
(3-41)
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Chapter 4

Model

In predicting motions of vessels, the linearised Frequency Domain (FD) analysis is a common
procedure and therefore extensively studied, the time-dependent problem has however gotten
less attention. The Linear Wave Theory (LWT) allows for calculations to be done in FD,
because the system behaves linearly dependent on displacement, velocity and acceleration.
For the shallow water problem however, a Time Domain (TD) analysis is necessary to account
for non-linearities in either the wave exciting forces or the radiation problem. For the current
study, firstly a FD analysis is done though. The aim of this FD analysis is to validate the
calculation method of the code developed in Python, where the hydrodynamic loads are
evaluated numerically. This Python-model is created which evaluates what theory to apply
and helps predict ship motions. It allows to include memory, where motions in a specific
interval are also influenced by what has happened through motions before this interval [2].
This chapter firstly explains the model in AQWA which is used to obtain data. Secondly, the
model in Python is described and how it is used to compute motions and forces by pressure
integration. Next, it is explained how calculations are transformed from FD to TD, and how
this method is applied for this research. After that the second order problem is explained,
and how Quadratic Transfer Function (QTF)s are used to determine the second order wave
loads. Then, it is explained how motions are evaluated in TD including these second order
effects. At the end of the chapter a section is given where the verification of the model is
shown for the different domains.

4-1 Frequency Domain Calculations
In Chapter 3 the methods for FD analyses are described. The preliminary analysis for this
study is based on these assumptions, and a model is developed in the diffraction software
AQWA.

Model in AQWA

In AQWA, a model is created of a rectangular barge with dimensions B×L×W = 20×20×1 in
m×m×m. The mass of the vessel ism = 410000 kg. The hydrodynamic analysis is performed
on a discretized geometric model of these dimensions. The potential flow is described on the
principle of Green’s theorem. In AQWA the water depth, range of wave frequencies, frequency
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step and position of the body in global coordinate system are defined. The mesh parameters
and tolerance define the allowable frequencies and computation time. The accuracy depends
on the size of the panels, and AQWA has set up requirements for each panels, which is further
explained in Chapter B. Most important restrictions are the fact that its sizes should be small
compared to the wavelengths and that the centres of the panels should be above the seabed:

dmax = 1
7 · λand zp + d ≥ rp (4-1)

The following mesh input is used:

Tolerance Max Element Size No. of Nodes No. of Elements
1 m 0.5 m 5696 5561

Table 4-1: Mesh Details Used in AQWA

The focal mesh input allowed for the vessel to be analysed in the diffraction software package
at a water depth op d = 1.09 m in the most shallow situation. The model in Python is
developed to analyse ship motion behaviour beyond the limits of the diffraction analysis of
AQWA. It allows for including non-linear waves, but also viscous forces or other non-linear
external loads because it can do analyses both in FD as well as TD. The latter, as explained,
allows for this flexibility of adding multiple external forces at every time step. The total
model is shown in Figure 4-1 below.
For a clear understanding of how it can be used and what it can give as output, it is explained
step by step. Firstly, the first order motions and forces are highlighted, after which the
transformation to TD is explained.

4-2 First Order Motions
To calculate the forces on the rectangular barge over time, a model is created which calculates
forces and moments through multiplying the pressure with the area of the (created) panels.
These forces are compared to load Response Amplitude Operator (RAO)s as calculated by
AQWA, and the associated displacement are compared to the displacements as predicted by
displacement RAOs. These should be the same for deep water cases, to assure validity of the
calculations in the model.
Python is an object-oriented language, which makes the creation and application of class and
objects an easy manner to work with. A class is a variable which defines the set of attributes
that characterize any object in the class. Within the class, methods, definitions are created
which help solve the problems. For the determination of motions of a vessel in waves two
classes are created: a Wave and a Vessel-object. With those classes, objects are constructed;
waves and vessels with parameters which can be defined by its user.
In Figure 4-2 the work flow to determine the motions responses by the model in Python is
given by a schematic overview. Firstly, a hydrodynamic analysis has been set up in AQWA
in order to calculate the hydrodynamic coefficients and first order wave forces and moments.
This output is used in Python to calculate the wave forces and motions with the model, in
combination with the environmental conditions, which are stored in the Wave - object. The
orange box in Figure 4-2 displays these conditions and in Python the model is capable of
determining what theory to apply, recalculate wave numbers and wavelengths, the shoaling
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Figure 4-1: Flowchart model in Python

coefficient, waves, and pressures and give these as output for the user defined input. The wave
amplitude is subsequently multiplied with the load RAO to find first order incoming wave
force, with which the Vessel is excited. A hydrostatic force is also applied, after which the
acceleration is calculated with the total mass (mass + added mass). The resulting acceleration
is integrated, which gives the velocity at that time step. This is multiplied with the potential
damping coefficient to give the damping force FD, which is then also applied at the Vessel.
This velocity is simultaneously integrated to give the displacement. The relative displacement
to the initial position of the Centre of Gravity (COG) is used to calculate the hydrostatics
FS . To assure the calculation method is done correctly, the displacement computed in this
manner should equal the displacement RAO, which is highlighted in Figure 4-2 by the green
boxes. That this is indeed the case is shown in Section 4-6.
The model is capable of calculation these forces and displacement for every Degree of Freedom
(DOF). From the diffraction analysis in AQWA the 6×6 - matrices are obtained and used to
calculate the FS , FD, Ftotal by taking the inner products with the displacements, velocities
and accelerations. This process is repeated for every time step t.
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Figure 4-2: Flowchart of FD analysis to determine motions responses

4-2-1 Environmental Conditions

In the Wave - object in the Python model the environmental conditions are stored. The
user defines a wave height H, wave period T and water depth d. Current and wind forces
are not taken into account. The body is subjected to forces resulting from fluctuations in
water surface elevation over time. As discussed in Chapter 2 wave surface elevation can be
created based on a summation of multiple regular waves. For this thesis, the spectrum is
constructed based on the frequencies used in AQWA. An example what such a time series of
surface elevation looks like is shown in Figure 4-3.

4-2-2 Rotation Matrix

To account for both translational as well as rotational displacements, the rotation matrix is
applied to the motions in DOFs roll, pitch and yaw mode:

Rx(φ) =

1 0 0
0 cosφ − sinφ
0 sinφ cosφ

 , Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 , Rz(ψ) =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 (4-2)

After matrix multiplication, where the inner product of the three rotation matrices in (4-2),

W.E. Zwart Master of Science Thesis



4-3 First Order Forces 51

Figure 4-3: Time Series of Surface Elevation, H = 1 m, [0.6 ≤ ω ≤ 1.3] rad/s

a rotation can be obtained where phi, theta, psi are used to find the new coordinates in x, y, z
due to these rotations.

R = Rz(ψ) ·Ry(θ) ·Rx(φ) (4-3)

4-3 First Order Forces
Wave exciting are calculated at each time step, by multiplication of the pressure with the area
of the Vessel. This part of the model is used to calculate incoming wave forces by integration
of pressure over the number of panels.

4-3-1 Pressure Integration

The Froude-Krylov (FK) - force associated with the incident wave potential is calculated by
the direct integration method, so integration of associated pressure over the wetted hull SH
under the undisturbed wave profile. It is hereby assumed that the moments due to vertical
forces and horizontal levers are substantially larger than the horizontal forces and vertical
levers in the estimation of the roll and pitch rotating moments. Therefore, these are assumed
to be dominated by vertical pressures on the bottom of the discretized Vessel - object. This
is done in the Python model to allow for higher order non-linear waves as input for the wave
force. In order to do so in a later stadium, firstly the first order wave forces are calculated
which should be equal to the wave force as computed by the load RAO. The incident wave
forces are evaluated by integration of incident wave pressure and hydrostatic pressure ρ · g · z
over SH by the instantaneous position of the hull under this incident wave surface. This
position is gathered by the position vector and rotation matrix and obtained at every time
step as explained in the previous.
In Figure 4-4 the work flow is shown for the verification of the first order wave forces. The
wave forces are in the model evaluated at every time step t, and compared to values from
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Figure 4-4: Flowchart of FD analysis to determine motions responses

AQWA’s diffraction analysis. This method implicitly assumed that the structure responds
linearly to the loads, i.e. the relationship between the load and responses remains linear
given by the response functions. This assumption might no longer be valid as the wetted hull
surface changes a lot. Just like with the determination of motion responses by Python, this
work-flow starts with the same diffraction analysis in FD in AQWA. With the environmental
conditions in the Wave - object the model gets the pressure for the focal Vessel - object. For a
position x and depth z on the vessel, the pressure is calculated and multiplied by the bottom
area of the vessel. The resulting force is superimposed with the gravitational force, to get
the total incoming force on the structure. Subsequently, the damping force is calculated with
the structure’s velocity due to these incoming forces, which gives the total force acting on the
structure with which the acceleration, velocity and displacement are calculated.

4-3-2 The Radiation Problem

Not only the wave exciting forces are sensitive to changes in water depth, but also hydrody-
namic loads related to added mass and potential damping [6, 14]. Some thoughts one these
phenomena are evaluated in the model.
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Added Mass

In potential theory masses are assumed to stay in position. Forces are assessed at this position
and related motion behaviour is calculated. In shallow water however, added masses are
known to increase altogether [6]. What the potential theory neglects to represent, is the
deviation of added mass over the course of the movement of the vessel. Taken this into
account is however not easily done, as more phenomena come in play. For instance, one
should think about the relocation of water, the mass flow rate, thus the fact that a body
pushes water away which demands some additional force. This also means that somewhere
else, the amount of water increases (as it cannot vanish). Another variable what ought to
be considered in that case is the impulse in place. The linear momentum is calculated in
a constrained control volume, where the mass flow is calculated assuming a constant flow
rate. The amount of mass leaving this control volume minus the amount of mass entering
this control volume per unit of time thus determines the linear momentum rate. Newton’s
second law in (3-34) assumes mass to be constant, while as soon as this linear momentum
rate is taken into consideration, this no longer holds:

−→
F = d

dt
(m · −→U ) = d

dt

−→
G

−→
F = dm

dt
·
−→
U + d

−→
U

dt
·m

(4-4)

The linear momentum is calculated for a specified control volume, with a flow rate Q which
is equal everywhere:

d

dt

−→
G =

∑
out

˙LM −
∑
in

˙LM (4-5)

Where the linear momentum flow rate equals the mass rate times the velocity of the fluid:

−−→
LM = ṁ ·

−→
U

= ρ ·Q ·
−→
U

(4-6)

For the scope of this thesis, only some research is done on how much the hydrodynamic
coefficients added mass and potential damping alter because of the motion, but difficulties
mentioned prior are not considered and no further conclusions can be drawn. Shortly a
description is given, which can be used for further research.

Position dependency of hydrodynamic coefficients

As the vessel moves in heave, it could be argued that coefficients are needed to be expressed as
functions of time, or position. In Figure 4-5 this is schematically drawn. This is done by firstly
examining the hydrodynamic coefficients of a barge in a single, regular wave in FD-analysis.
The hydrodynamic coefficients are determined and used to evaluate the motion behaviour.
Next, the aij and bij are determined at the most extreme position in this motion, and applied
for a second analysis to determine the effects of these changes on the hydrodynamic behaviour.
The hydrodynamic coefficients are extrapolated over the range of motion with some data
points and established as functions of position. For a water depth of d = 5 m and wave

Master of Science Thesis W.E. Zwart



54 Model

Figure 4-5: Actual Motion of Body Based on heave RAO

frequency ω = 0.7 rad/s, the following values for aij and bij are obtained from AQWA in
Table 4-2:

Depth Added Potential AM % - PD % -
in [m] Mass [kg] Damping [kg/s] change change
4.3 3770200 2753700 9.9 10.1

4.475 3668100 2681700 7.0 7.2
4.65 3580200 2618400 4.4 4.7
5 3429700 2501800 0.0 0.0

5.35 3303500 2395200 -3.7 -4.3
5.525 3258400 235000 -5.0 -6.1
5.7 3208100 2302600 -6.5 -8.0

Table 4-2: Added Mass and Potential Damping Deviations

What can be concluded from these data is that on the course of the motion of the vessel in
waves, added mass and damping do experience some reasonable change, even though this is
only based on assumptions of potential theory. For the sake of visualization, the motions of
the vessel are evaluated at these ’extreme’ conditions, i.e. for the highest values of added
mass and potential damping the vessel can experience. The results of this analysis are shown
in Chapter D

Cushioning and Sticking Effect The cushioning and sticking effect as explained in Chapter 3
is a phenomenon which can be considered to alter over course of its motion as well: especially
the sticking part. It could be argued that it seems that in shallow water, the vessel in heave
remains longer in the lowest positions (closest to seabed) due to this effect. It is however
difficult to determine what this should actually should be. Furthermore, one should be aware
not to account for these effects twice. Hence when for example viscosity effects are considered
in damping, the ’stickiness’ might already be captured to some degree.
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Potential Damping

Also for the potential damping value, this could be considered not only as a function of
frequency, but also of position. For the same reasons discussed before, only research is done
on the degree to which these values could differ, but no further analysis and subsequently
conclusions are drawn.

4-4 Second Order Forces
The second order wave forces are frequency dependent, and the transfer functions in this
degree are quadratic. The computed vertical wave drift force can be translated into the
TD by using Impulse Response Function (IRF) techniques [39]. For this thesis, waves of
same directions are assumed. When multi-directional waves are considered, the problem’s
complexity increases, as a small difference in the direction of two first order wave components
can already lead to a very different direction for the bound second order wave [47].

4-4-1 Quadratic Transfer Functions

The second order loads are calculated corresponding to the wave pairs in (3-31). The QTFs
account for all five contributions of the second order wave load. AQWA includes the contri-
butions of the undisturbed incoming waves as well as diffracted waves for the second order
velocity potential. TheQTFs are obtained from AQWA and used in Python to calculate forces
and motions for the bi-chromatic wave. The time series for the wave force due to difference
frequencies, is a summation of all incident wave pairs:

F (2)(t) = Re

 N∑
i=1

ζiζi QTF−j (ωi, ωi) +
N−1∑
(i−j)

N−(i−j)∑
j

ζiζj QTF−j (ωi, ωj) · ej(ω(i−j))t

 (4-7)

In which the first term corresponds to the mean drift loads and equals the sum of the terms
of the diagonal of the QTF. The second term represents the slow drift load and corresponds
to the off-diagonal terms in the QTF. To obtain the force in a real sea state, the coefficients
must be multiplied by the complex amplitude of both waves [16].
The first second order term, the mean drift load, is a result from quadratic interactions of the
first order problem and can therefore be computed without requiring solution of the second
order potential. It is only dependent on diagonal terms of the difference frequency QTF.
For a bi-chromatic system, with components (ζi, ωi, εi) , (ζj , ωj , εj) the second order wave
force of the incident bi-chromatic wave group can be described as function of the first order
parameters for ωi > ωj as follows:

F (2)
ex = ζ2

1 · P11 + ζ2
2 · P22

+ ζ1 · ζ2(P12 + P21) · cos ((ω1 − ω2)t+ (ε1 − ε2))
+ ζ1 · ζ2(Q12 −Q21) · sin ((ω1 − ω2)t+ (ε1 − ε2))

(4-8)

The case where ωi = ωj is the mean drift force, and thus independent of second order potential:

F
(drift)
ext = ζ2

i · Pii + ζ2
j · Pjj (4-9)
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4-4-2 Frequency range
For the determination of the drift force, the difference frequencies ∆ω are calculated. Firstly,
simulations in AQWA are done with frequency steps of 0.1 rad/s for a frequency range of
[0 ≤ ωi ≤ 2.5] rad/s. The focal frequencies are used to distinguish the hydrodynamic coeffi-
cients of the Vessel of interest. Their importance of motion behaviour of the body in waves
rises near the resonance area, i.e. around ωn. When these are calculated in FD, these change
as a result of the frequency dependence of aij . This gets easier in TD, where the added mass
is calculated to a single value for frequneices of interest, and one can thus distinguish what
the ωn is to focus on for these second order drift forces. For a preliminary analysis, the values
for three different water depths are shown, to get a sense of the effects of water depth on the
resonance area. These are given for a barge in d = 5, 2, 1.09 m, which is subject to the wave
force of an incoming wave with direction −180◦ for DOF heave z and pitch θ.

d in [m] ωnh in [rad/s] ωnp in [rad/s]
5 0.57 - 1.2 1.28 - 1.88
2 0.4 - 0.74 0.77 - 1.25

1.09 0.21 - 0.26 0.34 - 0.42

Table 4-3: Natural frequencies for heave and pitch

Where subscript h and p represent heave and pitch respectively. The QTF should be calcu-
lated where the difference frequency, ∆ω of the bi-chromatic wave is equal to these natural
frequencies ωn. The difference frequency should thus lie in the range of the natural frequen-
cies. This means that for the d = 5 m case in heave motion one should focus on the case
where the differences are somewhere in between ∆ω = 0.6− 1.2.
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4-5 Time Domain Calculation
For the TD analysis in Python, firstly, the FD parameters are obtained; the RAOs and the
QTFs. Hydrostatic terms are furthermore calculated. Next, the retardation function Rij
in TD from aij and bij in FD are obtained. With these data the transformation to TD
can be done, which will be explained in this section. This allows for simulating the motion
behaviour of the Vessel - object in TD, where reality can better be approximated by means
of adding external forces which simulate non-linear effects in shallow water. After this first
order analysis, the method to determine second order wave forces and moments is explained,
which can be added to the first order solution in TD.
In Figure 4-6 the calculation loop is shown for the Equation of Motion (EOM) which includes
the convolution integral.

Figure 4-6: Simulation Scheme for Including Retardation Function with Convolution Integral

In Figure 4-1 the total calculation scheme is shown, where the retardation function is used to
calculated Frad, as shown in the figure above.
Firstly, the solution for Rij(t) as given in (3-41) is evaluated in Python for potential damping
values available after the diffraction analysis in AQWA. These values are multiplied by the
matrix of cosine associated with the focal frequency and moment in time of defined time range
τ :

Mcos = cos




ω1
ω2
...
ωN

 ·
[
τ1 τ2 .. τN

]
 (4-10)

Which gives a matrix of size Nω × Ntau, which is subsequently used to determine the re-
tardation functions for all DOF by taking the dot product of the potential damping matrix
with the calculated cosine matrix, as shown in (4-10), multiplied by M ω and 2

π , see (3-41).
This gives the 6× 6 matrix for the retardation function Rij(τ) at every value of τ . The total
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damping force is then calculated by re-creating the convolution integral, thus the velocity
over time is ’flipped’, and multiplied by the values of the retardation function Rij . This is
done because values closest to time t, i.e. those at t− 1 should count more than those further
away in history of motion. The resulting force matrix gives the forces in every DOF.
The spring coefficient is based on ship geometry and is thus equal to the value used in FD
analyses. The added mass coefficient needs to be re-calculated though following (3-39). The
hydrodynamic mass coefficient follows from:

Ai,j = ai,j(ω =∞)

When this coefficient is not available for an infinite frequency, it can be calculated from a
mass coefficient at a frequency Ω.

Aij = aij(Ω) + 1
Ω ·

Tc∫
0

Rij(τ) · sin(Ωt) · dτ (4-11)

Where Tc is the cut-off time for the time lag to store sufficient memory. The chosen integration
length of the convolution integral is at least the time for waves with shortest wavelengths to
travel to a different structure [58]. This is to assure every wave its impact is considered in
the simulation. The added mass term in TD can then be determined using equation 3-39.
A disadvantage of TD identification is that the integral (3-41) can only be computed up to
finite upper frequency Ω, and that the starting point is only a distortioned version of the true
impulse response Rij(t). When determining Rij(ω) a tructation error might subsequently
occur in this limited frequency range 0 ≤ ω ≤ Ω instead of 0 ≤ ω ≤ ∞ [3, 50, 52]. The
response should therefore be expressed as:

Rij(τ) = 2
π

∫ ∞
0

W (ω) · bij(ω) · cos(ωτ) · dω (4-12)

Where W (ω) is a window function which entries for different frequency range are defined as:

W (ω) =


n
Nω
· bij(ω1) if 0 < ω ≤ ω1

1 if ω1 < ω ≤ Ω
bij(Ω) ·

(
Ω
2π

)−3
if ω > Ω

Where Nω is the number of frequencies, n the element in Nω, ω1 and Ω are the first and
last potential damping values respectively in the output diffraction analysis data. W (ω) is
assumed to decay linearly to zero, while for the higher frequencies in the tail the values are
approximated based on the highest frequency by a factor, which is normalized for the value at
Ω [50, 52]. The window function W (ω) is necessary, as numerical approximation show errors
for Rij when time series exceed a certain value related to ∆ω used in the AQWA (Trep = 2π

∆ω ).
W (ω) causes this Trep to increase significantly, allowing for this function to be applied.
Furthermore, IRF is multiplied by a cut-off scaling function, to assure the IRF decays to zero
as τ goes to infinity. This coefficient is dependent on τ and a user defined cut-off time Tc:

c(τ) = e−
(

3τ
Tc

)2

(4-13)

The scaling is smoothly over t, and is assumed to be justified when sufficient time lag is taken
to account for enough memory. It improves results over sudden truncation, as no residual
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value causes negative damping and thus unexpected acceleration (free energy), which would
not be present in real life situations.

4-5-1 Second Order Forces Time Domain
The second order forces are included in the formulation of motion for the vessel in TD, as in
this manner the external forces are evaluated at each time step. After the QTFs are obtained
and used to calculate the second order wave forces F (2), this force is considered an external
force in TD analysis with memory effects, for the determination of the motion behaviour. The
motions computations are carried out in irregular waves under influence of first order wave
loads and low frequency second order drift forces (F (t) = F (1)(t) + F (2)(t)). Second order
sum frequency wave loads are not included in this evaluation. The TD equation is similar to
the first order TD equation (3-36), but with second order wave excitation force on the right
hand side [16]:

6∑
j=1
{(Mij +Aij) · ẍj(2) +

t∫
0

Rij(t− τ) · ẋ(2)j (τ)dτ + Cij · x(2)
j } = F

(2)
ext(t) (4-14)

To calculate the total motions, these can be superimposed. Alternatively, these motions can
be included in the equation of motion simultaneously by including the first- and second order
wave excitation forces on the right hand side:

6∑
j=1
{(Mij +Aij) · ẍj(tot) +

t∫
0

Rij(t− τ) · ẋ(tot)j (τ)dτ +Cij · x(tot)
j } = F

(1)
ext(t) + F

(2)
ext(t) (4-15)

The second order wave loads are calculated with the use of QTFs. The model in Python
takes the difference frequency QTFs from AQWA, after determination of frequencies by the
user. Two waves are created with the Wave - Object. The model calculates both mean and
Low Frequency (LF) drift forces and these forces are superimposed with both first and second
order wave loads. The damping forces are subsequently with the retardation functions.
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4-5-2 Viscous Damping
Viscous damping needs to be added to the EOM in shallow water, the issue is however that
AQWA doesn’t account for the viscosity effects. The model in Python in TD is capable
of calculating an additional damping term, based on empirical data and the potential flow
hydrodynamic coefficients. The TD method allows for inclusion of an additional force to
account for viscosity effects in shallow water. Viscous damping can then be included in the
term

∞∫
0
Rij(t − τ)Ẋ, by re-evaluation of the damping coefficients in the matrix calculations

as they are related to the motion velocity of the vessel [6].
The EOM including the viscous forces becomes:

6∑
j=1
{(Mij +Aij) · ẍj +

t∫
0

Rij(t− τ) · ẋj(τ)dτ + bvisc · ẋj(t) + Cij · xj} = Fext(t) (4-16)

The non-potential damping effects are usually obtained from model tests. Since for this study
these tests are not carried out, coefficients are obtained from literature.

Critical Damping Factor

As discussed in Section 3-3-2 in Chapter 3 an additional damping factor can be included
based on the critical damping for a DOF. Based on empirical data from literature, a damping
ratio should lie in the range of ξ = 4−5% to account for viscosity. [14, 34, 13]. A preliminary
estimate is taken from research from Clauss et al. (2009) [14]:

ξ2 = 2 %
ξ4 = 1.2 %

Viscous Drag Damping Factor

Another method to be applied is calculation an additional damping force based on a drag
constant CD. A viscous drag load can subsequently be calculated with (D-17). Based on
several empirical models for the calcuation of quadratic heave, pitch and roll damping, this
drag term can be included with value CD = 2 [13].
The method applied in this study is a viscous damping term based on the critical damping
factor ξ, as the one based on CD is one which is usually applied for long slender structures in
the Morison equation. More data is available therefore on the viscous damping term related
to the critical damping in literature and therefore this value seems more reliable.
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4-5-3 Approaching Seabed

As discussed in Section 3-3-1 the cushioning effect causes the floating structure not to hit
the seabed. It is argued that this phenomenon can be captured by including an additional
force in the acceleration part of the EOM, i.e. as some sort of additional added mass term.
This can benefit motion prediction, as AQWA fails to calculated hydrodynamic added mass
and potential damping coefficients when the seabed approaches, see Chapter ??. Reference
can be made to the work of Brennen (1982) [31], which concentrates on fluid inertial forces
due to acceleration and discusses the forces due to the creates of a low Under Keel Clearance
(UKC) when approaching the seabed. It comes up with an engineering approaching with
the associated forces, for the lifting of a plate near the seabed, which can be a comparable
situation to the one of the barge in shallow water. It derives a force where to body width
needs to be very large compared to the UKC, which is the case in this study. The velocity
and acceleration in positive z - direction are dh/dt and d2h/dt2, see Figure 4-7

Figure 4-7: Plate near the seabed

The heave motions induces a horizontal velocity which increases as the UKC gets lower:

h · ux = −dh
dt
· x (4-17)

The pressure distribution in the gap is the following for the case where frictional forces and
viscous forces are not present:

p = pedge + ρ

2(a2 − x2) · h ·
∂( 1

h)2

∂t2
(4-18)

By integration the added mass for the fluid on the plate per unit length becomes:

F = 2
3 · ρ

a3

h

{
∂h2

∂t2
− 2
h

[
∂h

∂t

]2}
(4-19)

Where a is the width, as shown in Figure 4-7. The UKC h(t) is replace by d− T , where d is
the water depth and T the draft of the Vessel - object. The re

F = 2
3 · ρ

a3

d− T

{
z̈ − 2

(d+ z) · ż
}

(4-20)

The resulting additional force can be included in the EOM:
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6∑
j=1
{(Mij +Aij)·ẍj+

t∫
0

Rij(t−τ)·ẋj(τ)dτ+bvisc·ẋj(t)+Cij ·xj} = Fext(t)−
2
3 ·ρ

a3

d+ z

{
z̈ − 2

(d+ z) · ż
}

(4-21)
The value for h(t) is in the model defined as ’gap’, and equals d−T +z and is thus dependent
on the oscillation vertically. As one can see, the force is dependent on both acceleration and
velocity of the body. The additional inertial force is only determined for vertical motions,
and the first part is included in the function which calculates the acceleration.
This force is added as an additional function in the model, as function of wave height in the
Wave - object and water depth in the Vessel - object.
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4-6 Verification
To allow for addition of non-linear parts, i.e. non-linear wave forces or non-linear reaction
forces, one must be sure that the model calculates the desired output. In this section the
verification is shown by considering a deep water case, thus a case where the wave can surely
be seen as a regular wave based on the parameters Ursell Number (UR), S, µ.
This section shows that for both FD and TD wave forces and resulting shop motions are
predicted well by the numerical model. Time series plots of motions calculated and those
prescribed by RAOs overlap nicely. However, to be sure that the results hold for all ω, the
Fast Fourier Transform (FFT) is performed. For every ω, a Wave is created for with which
forces acting on the Vessel are calculated in a time loop. The FFT is explained in Chapter B.
The Fourier transform decomposes the time signal into the frequencies that contribute to it
and shows its magnitude and phase. In this manner the amplitudes of displacements and
the associated phases can be plotted as function of ω of the focal Wave and these can be
compared to the displacement RAOs.

4-6-1 First Order Motion
The accelerations, velocities and displacements calculated in the Python model are verified
by comparing these with the RAO amplitude obtained from the diffraction analysis at the
specific frequencies. A deep water case is considered, to assure calculation method.

z = ζa ·RAO · cos(ω t− εz,ζ)
ż = ω · ζa ·RAO · cos(ω t− εz,ζ + π/2)
z̈ = −ω2 · ζa ·RAO · cos(ω t− εz,ζ)

(4-22)

In Figure 4-8 a time series of heave displacement as calculated by the model and by the
displacement RAOs. As one can see lines overlap. In Figure 4-9 the amplitudes and phases
for all frequencies are shown, and one can see that the calculation method is verified for all
frequencies. In Figure 4-10 and Figure 4-11 is shown that the same holds for pitch and roll
DOF. The results hence show that the displacement of the created Vessel - object, based on
values in the Wave - object are the same as those determined through RAOs, and it can thus
be concluded that the model can be used to determine ship motion behaviour.

4-6-2 First Order Forces
To compare results calculated with the model with the results from AQWA, the pressure are
calculated as if the barge would lay still in water. The pressure equals the amount of water
pushed away by the vessel, with a hydrostatic part (draft) and dynamic part (oscillation).
An incoming wave is considered with H = 0.1m, ω = 1rad/s at a water depth of d = 30m.
The water wave parameters are:

• UR = 0.004
• S = 0.01
• µ = 3

Which thus fall in within the limits of LWT.
The incoming wave forces are calculated based on pressure distribution on the hull. As shown
in Figure 4-4, this wave force should equal the load RAO. In Figure ?? both wave forces are
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Figure 4-8: Heave Motion Time Series Caculated and Estimated with RAOs

Figure 4-9: Heave motions calculated with model and with RAO for a range of ω

shown, i.e. the one calculated by the pressure distribution in the Python model and the one
with the load RAO.
A FFT is done to determine these wave forces for all ω. In Figure 4-13 the results are shown.
In the upper plot the wave forces are shown when calculated with the load RAO, where the
coloured dots show the wave force and the crosses identify the direct calculation of load RAO
with wave amplitude. The lower plot shows the same for the crosses, while the coloured dots
identify the wave forces calculated through pressure integration.
Ultimately, one is interested in resulting motions at all frequencies, so these are also compared
to the displacement RAOs, at every ω. These results are shown in Figure 4-15 and Figure ??
for heave and pitch respectively.

W.E. Zwart Master of Science Thesis



4-6 Verification 65

Figure 4-10: Pitch calculated with model and with RAO for a range of ω

Figure 4-11: Roll calculated with model and with RAO for a range of ω

This implies the computation strategy is right and can be utilized for other conditions or
dimensions of Vessel - objects.
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Figure 4-12: Wave Forces

Figure 4-13: Wave Forces
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Figure 4-14: Wave Forces

Figure 4-15: Wave Forces
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4-6-3 Time Domain

After transforming the EOM to TD, the resulting motion behaviour should be approximately
be the same as the analysis done in FD.
In Figure 4-16 the retardation function for heave is shown as calculated with the described
method in Section 4-5. This figure is given to show what this damping function does: it gives
most damping to the system at t = 0, and lesser through the course of time. This could be
expected and should give the right results when applied in the EOM.

Figure 4-16: Retardation for heave for d = 5 m,ω = 1 rad/s

Forces In Figure 4-17 the forces are compared individually, calculated by the model in FD
with the RAOs and the one with the retardation function in TD.

Figure 4-17: Forces Comparison FD and TD calculation
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Motions Memory effects should cause the system to damp out when an impulse is applied
to the Vessel - object. As shown in Chapter 4, the retardation function is developed correctly,
so it should give approximately the same results for the damping when multiplied with the
velocity and integrated over time. The system should be damped when no additional external
forces are applied to it. An impulse is given to the Vessel - object, to see whether motions
indeed approach zero. The result of this impulse for both heave and pitch motion are shown.
For d = 5 m and ω = 1 rad/s (at which the initial velocity is determined in the velocity
RAO) the following impulse responses are calculated:

Figure 4-18: Heave Figure 4-19: Pitch

So, also with regards to motion behaviour, the model correctly applies the largest force and
calculates the associated largest displacement at the moment in time this force is applied. The
system damps out nicely, and does so faster for smaller external forces than larger external
forces. The next step would be to see if the motion behaviour indeed is the same in this TD
analysis as it is in FD, for same, - deep water - , input values.
In Figure 4-20 the magnitude and phases of the heave displacement are shown for the deep
water case as explained in the previous, with damping used which is calculated by the convo-
lution integral. Two Vessel - objects’ displacements are evaluated and compared and one can
see that the retardation function computes approximately the same as when the displacements
is approximated by the hydrodynamic coefficients directly.
It differs a little, which is not surprising as the added mass has increased and the damping
has also changed somewhat. The deviations are reasonable though, the displacements are
not very far apart, 6 % at the most. The retardation function can thus be used to evalute
motions in TD with the purpose of allowing additional non-linear forces.
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Figure 4-20: Heave Displacement with potential damping and with retardation function
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Chapter 5

Results and Discussion

In this chapter the results are given of the parametric model developed Python to approximate
motion behaviour in shallow water. It firstly describes the Frequency Domain (FD) results,
and gives a numerical example of the application of Stokes second order wave theory on a
Vessel - object. Next, Time Domain (TD) analysis is elaborated and how the results are in
line with the FD results for vertical motions of four vertices of the barge. It furthermore
shows how wave forces in this domain are calculated based on direct pressure integration
after which results are given for including viscous damping effects for three d. A numerical
example is subsequently given for including another Fex(t), namely the additional inertial
force as discussed in Section 4-5-3. Lastly, the second order wave forces and motions are
discussed and their importance on final vertical motions.

5-1 Frequency Domain Analysis
In the Wave - object specifics of the waves are user defined which act upon the Vessel - object.
As described in Chapter 2, there is a range of applicability of the Linear Wave Theory (LWT),
by Ursell Number (UR) and wave steepness S. The model shows for the range of ω used in
the diffraction analysis, which waves can be described by the LWT by the input H and d.
For example, for a H = 0.25 m and d = 5 m, the majority falls within the limits of the LWT,
only the lowest ω (ω =0.1, 0.2, 0.3 rad/s) can better be described by the cnoidal wave theory
and the highest ω by Stokes second order theory. When the wave frequency ω = 1 rad/s
one can thus be sure that wave forces and subsequent ship motions can still be described by
the LWT. The small amplitude assumption must be satisfied, and this is done by selecting a
value of S of 0.01. In the Wave - object a wave is created with H = 0.25 m and ω = 1 rad/s
in d = 5m. This gives the following values for the parameters which determine the validity:

S µ UR
d = 5 m 0.002 0.124 1.29

Table 5-1: Values for parameters for d = 5 m, H = 0.25 m and ω = 1 rad/s

In this section, the parameters are given numerically but in Chapter D the maximum wave
height are given according to the limited values for UR and S (for the LWT) in schematic

Master of Science Thesis W.E. Zwart



72 Results and Discussion

overview in Figure D-1. The hydrodynamic coefficients associated with this case, are obtained
from the diffraction analysis in AQWA, and given in Table 5-2.

m 410000 [kg]
a 2787100 [kg]
b 2562500 [kg · s]
c 4020.7 [kN/m]

Fa 1880 [kN/m]
εF,ζ -1.28 [rad]
RAO 0.7 [m/m]
εz,ζ 0.08 [rad]

Table 5-2: Hydrodynamic coefficients and displacement and load RAO with magnitude and phase
at d = 5 m, ω = 1 rad/s

In Section 4-6 it is shown that the calculation method for the first order forces is verified, and
it is assumed that it can be modified by adding higher order wave pressure. When the wave
height for example increases to H = 1 m, the wave should theoretically best be described by
the Stokes second order wave theory, see values for the parameters in Table 5-3. How the
wave pressure, and subsequent wave forces differs from the LWT description for the same
input parameters, is shown in Figure 5-5.

S µ UR
d = 5 m 0.025 0.124 12.9

Table 5-3: Values for parameters for d = 5 m, H = 1 m and ω = 1 rad/s

5-1-1 First Order Motions
With values from Table 5-1 it is established that the focal case can be described by the LWT,
and the total motions of the barge can thus be calculated by superposition of motions due to
multiple Degree of Freedom (DOF). Four points on the barge are chosen for evaluation, and
quite logically these lie on the vertices of the rectangular barge as can be expected that these
will hit the seabed first.

x y z
P1 10 −10 −1
P2 10 10 −1
P3 −10 10 −1
P4 −10 −10 −1

Figure 5-1: Points on barge

Based on model dimensions these points are modelled in Python and can be chosen accord-
ingly. For the vertical motions three DOF are involved in the total vertical displacement:

zp = z − xp · θ + yp · φ (5-1)

The magnitude of vertical displacement for the focal points is shown in Figure 5-2. Those
are plotted with the heave displacement only, to show what the effect of angular motions is
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in comparison to the motion of the Centre of Gravity (COG).

Figure 5-2: Vertical Displacement 4 Corners, H = 0.25 m.

The figure shows that the overall vertical motions of the barge has its largest amplitudes at
the frequency range [1.0 ≤ ω ≤ 2.0] rad/s according to the LWT. For these input values, this
range lies safely within the range of validity of the LWT, which means that theoretically this
motion prediction is accurate. When wave height increases to input values of Table 5-3 though,
the motion prediction increases linearly, i.e. the increase in H can be recognized directly in
magnitude of response. However, results are theoretically not to be trusted anymore, as the
frequency range in which the LWT is applicable is exactly 1 frequency in this case, at ω = 0.8
rad/s. For [0.1 ≤ ω ≤ 0.7] rad/s waves can better be described by the cnoidal wave theory,
while for frequencies [0.9 ≤ ω ≤ 1.4] rad/s the waves are theoretically Stokes second order
waves.
In the following section a numerical example is given for the calculation of direct pressure
integration with second order pressures, described by this theory. The associated wave forces
are given as well as the resulting motions.

5-1-2 Second Order Stokes Waves
When wave heights increase, and one should resort to the Second order stokes theory, where
pressure differs than the one calculated by the linearised version in (2-21). For the values
shown in Table 5-3, theoretically the wave forces should be described by this theory. In
Figure 5-3 the blue dot shows this wave and that it meets validity limits.
The pressures can be calculated with Stokes second and the values are compared to the values
as they are computed by the LWT, as well as those for the incoming wave forces. As one can
see, the pressures and forces remain symmetric, but these are no longer sinusoidal.
The displacements as a result of these different pressures are calculated by assuming that
the wave pressure can be multiplied by the wetted area and that subsequently the same
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Figure 5-3: Position of Wave within limits of Stokes Second

procedure can be followed as if it were first order pressure. Based on input parameters the
model gives for this H and d the validity frequency range is [0.9 ≤ ω ≤ 1.4rad/s], for which
the amplitudes of displacements are shown in Figure 5-6. However, as argued, these wave
forces can not boldly be altered, firstly a transformation to TD needs to be done to include
these in the Equation of Motion (EOM), for the calculation of associated displacement of the
Vessel.

Figure 5-4: Pressure Figure 5-5: Wave Force

The difference with the first order results in Figure 5-6 are a result of the asymmetry in
the vertical velocity component. The description of the pressure according to this theory
consists of three terms, where the last (see (2-36) is a non-cyclic term which is zero at the
bottom of the seabed. This meets the requirements that if d = 0, there can be no vertical
momentum flux, i.e. the time averaged pressure must be in balance with the weight of the
water above the seabed, also time-averaged. Moving away from the bottom, there is a vertical
momentum owing to this asymmetry of the focal second order stokes waves (higher crests,
flatter troughs), causing an dynamic pressure component larger than zero which adds to the
usual higher frequency second order term.
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Figure 5-6: Linear Wave Theory and Stokes Second Order Theory
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5-2 Time Domain Analysis

The vertical motions of the Vessel in TD can be evaluated at the desirable depth and wave
height. For the values in Table 5-1 the amplitudes of the motions are given in Figure 5-7.

Figure 5-7: Magnitude and Phase of heave, roll and pitch in Time Domain. H = 0.25 m, d =
5 m.

The vertical motion of the four corners is calculated with the Rij and shown in comparison
to the displacement RAO in Figure 5-8.

Figure 5-8: Points in Time Domain, H = 0.25 m, d = 5 m.

In the figure the black +’s highlight the displacement directly calculated from the RAO
superposition of the three DOF, see (5-1). The coloured dots are the amplitudes calculated
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in TD and one can see that values generally are in great agreement, although there are some
slight differences. However, the damping as well as the added mass has changed due to the
transformation to TD, so this is an expected result. Furthermore, in the calculations done in
Python, all DOF are included, while the black crosses only represent the absolute values of
amplitudes of z, φ, θ. Incoming waves come from direction µ = −180◦ in this situation, which
explains why the two upper and two lower plots are similar because there is practically no
roll moment, and the x position are the same, creating the same pitch moment and overall
same amplitude of displacement.

5-2-1 Motions with Force Model
The force model which calculates the incoming wave forces and resulting motions as a result
of the water wave pressure is subsequently used to determine the incoming wave forces in
TD. Two Vessel - objects are created and firstly motions are compared to assure these
calculations are still valid. It is subsequently possible to determine the second order Stokes
- pressure field and use the latter to evaluate motion behaviour. The resulting wave forces
and motions still are comparable to RAOs, which makes it possible to use it to define other,
non-linear, incoming waves as well. In Figure 5-9 the wave forces, pressures and resulting
displacement are shown for one Wave - object of ω = 1 rad/s and H = 0.25 m in d = 5 m.
The upper left figure shows the wave forces prescribed by the load RAO and the restoring
force, and the upper right figure shows the wave forces calculated with the pressure model,
both in FD and TD. In Figure 5-10 the results are shown for all ω, which shows that is
predicts approximately same displacements. The pressure difference is marginal, where some
deviations can be attributed to the differences in added mass and potential damping in FD
and FD which has its effects on accelerations, velocities and displacements and since the latter
are used to determine pressure on the barge at every time step, the values can be expected to
not be exactly the same. The effect on the ultimate displacement is however still negligible
and it can therefore be assumed that it is accurate.
Now, we want to see if we can calculate the incoming wave forces through the calculation of
pressure with Stokes second order theory.
In Figure 5-14 the vertical displacement of one of the corners is shown. It is assumed that
the incoming wave force are described by the Stokes second order pressure and subsequently
the z, φ and θ are used to determine zp as previously done. In the upper plot only heave is
shown, and the lower zp.

ω d

[rad/s] [cm]
0.7 2.75
0.8 3.87
0.9 5.2
1.0 6.8
1.1 8.3
1.2 9.3
1.3 10.7

Table 5-4: Differences with reference to LWT

A numerical example is given in Table 5-4. The largest increases are for this case 20% more
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Figure 5-9: Wave Force, Pressure, Displacement in FD and TD for ω = 1rad/s

Figure 5-10: Wave Force, Pressure, Displacement in FD and TD for all ω

than considered with Airy waves, the absolute values of the differences in displacement in
cm are given for a frequency range in which the Stokes second order theory is valid. These
are considerable values and can help to predict a safe workability range when these values
are added to the first order displacement. When letting the depth decrease in the model,
the results show similar graphs, but in these situations other effects will influence motion
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Figure 5-11: Pressure Figure 5-12: Wave Force

Figure 5-13: Heave Displacement H = 1 m, ω = 1 rad/s with LWT and Stokes Second Order
Theory

behaviour. Furthermore, waves can not only be considered individually, especially in shallow
water where the second order effects become more and more significant. The viscous damping
effects and bi-chromatic waves and the effects of these groups of waves are therefore discussed
in the following.

5-2-2 Viscous Damping

As discussed in Chapter 3 in Section 3-3-2, research has shown that viscous effects need
consideration in shallow water when d/T ≤ 1.3. In this case, also a water depth of d = 2 m,
i.e. d/T ≤ 2 is evaluated, as damping has shown to increase significantly around this value,
see Chapter 3. After the transformation to TD the Bcrit can be determined at the desired
depth. With (3-21) the viscous damping Bv is calculated.
One can see in Table 5-5 that the ωn of the three DOF decrease, and that the Bv increases.
Furthermore, the relative magnitude of Bij versus the Bcrit is given in last column of the
tables. These values are given to highlight the relative magnitude of viscous effects; as the
Bij is approximately 30% of Bcrit, the factor of Bcrit which determines the viscous part,
is actually not that small with reference to the overall damping of the system. So for a
preliminary analysis, this damping factor is used for determination of viscous damping.
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Figure 5-14: Vertical Displacement of one of the Corners of the Barge with LWT and Stokes
Second Order Theory

d ωn Bcrit Bv Bij/Bcrit
in [m] in [rad/s] in [kN s/m] in [kN s/m] [-]

5 1.0 7863.15 393.16 0.11 - 0.34
2 0.66 12219.45 610.9 0.16 - 0.39

1.09 0.26 31186.89 1559.34 0.013 - 0.24

d ωn Bcrit Bv Bij/Bcrit
in [m] in [rad/s] in [kN s/m] in [kN s/m] [-]

5 1.6 1652738.7 8136.93 7.8 e-4 - 0.21
2 1.08 244604.41 12230.22 0.005 - 0.27

1.09 0.41 638120.31 31906.0 9.8 e-3 - 0.15

d ωn Bcrit Bv Bij/Bcrit
in [m] in [rad/s] in [kN s/m] in [kN s/m] [-]

5 1.6 1652738.7 8137.30 7.8 e-4 - 0.21
2 1.08 244604.42 12230.22 0.005 - 0.27

1.09 0.41 638120.31 31906.0 9.8 e-3 - 0.15

Table 5-5: Damping, Critical Damping and Viscous Damping for Heave, Roll and Pitch at
different depths

Vertical Motions

In Figure 5-8 was shown how the model the vertical displacements calculates for an incoming
wave of µ = −180◦. In this section, the situations is re-calculated, including an additional
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damping accounting for the viscosity. The Bv based on Bcrit is included in the EOM in TD
and motion behaviour of the four corners is calculated. In the following figures the differences
with reference to zp without viscosity are shown, for two wave directions, µ = −180◦ and
µ = −145◦, for wave with wave height H = 1 m.

Figure 5-15: Vertical displacement of four corners at d = 5 m with and without viscosity, with
µ = −180◦

Figure 5-16: Vertical displacement of four corners at d = 5 m with and without viscosity, with
µ = −145◦

In the figures can be recognized that the zp increases in shallow water, near the resonance of
the pitch moment, which is lower for d = 2 m than for d = 5 m, which can be noticed in the
maximum displacements at the different ω. Because the case of d = 2 m can become more
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Figure 5-17: Vertical displacement of four corners at d = 2 m with and without viscosity, with
µ = −180◦

Figure 5-18: Vertical displacement of four corners at d = 2 m with and without viscosity, with
µ = −145◦

problematic, this situations is numerically further investigated and discussed.
For an incoming wave from direction µ = −145◦, the points 1 and 3 are mainly displaced
by the heave DOF, apparently a negative roll moment is counteracted by a positive pitch
moment and vice versa. So for long λ, the vessel will follow the motions of the wave, and the
displacement equals the wave amplitude. This effect is also recognized in Figure 5-16. The
fact that point 2 and 4 do show an additional vertical displacement is explained by the fact
that the wave travels underneath the bottom of the vessel, and has a different length than the
dimension of the vessel. This is not the case in point 1 and 3, which are exactly in line with the
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wave crests and trough for a wave coming from this direction. The results in the graphs and
tables show however that when the incoming wave has direction µ = −180◦, the rotations due
to φ and θ amplify the vertical motion behaviour. There is no roll moment, so the θ rotation
causes the additional vertical displacement at the corners of the vessel. In Table 5-2-2 the
numerical results for d = 2 m are given, for both with and without viscosity and for both
wave directions. In the second and third columns the magnitudes of displacement are given,
and in row four and five the ∆zp, which means the difference in vertical displacement when
viscosity is considered. These values can arguably thus be subtracted from the values in row
two and three for motion prediction.
For point 1, 3, in µ = −180◦ the vessel the largest displacements are around ω = 1 and
ω = 1.6 rad/s, which is in line with the ωnh and ωnp respectively. The displacement of points
3 and for is slightly bigger than those of 1 and 2, which can be explained by the fact that
for these points lie on the negative x - axis and for a positive θ thus add to z. The largest
displacement of these points is at ω = 0.8 rad/s, while for points 1 and 2 this is at ω = 1.0
rad/s. The largest ∆zp is for these points found at the same frequencies.
For µ = −145◦ the maximum displacement is found at ω = 0.9 rad/s, although the dis-
placement at the frequencies ω = 0.8 and ω = 1.0 rad/s is still larger than the largest for
µ = −180◦. The largest ∆z are also found in this range.

ω zp1 zp2 ∆zp1 ∆zp3
0.5 0.65 0.73 0.02 0.03
0.6 0.62 0.87 0.01 0.07
0.7 0.68 0.93 0.01 0.09
0.8 0.80 0.97 0.05 0.12
0.9 0.90 0.95 0.11 0.15
1.0 0.90 0.87 0.14 0.16
1.1 0.91 0.72 0.13 0.13
1.2 0.81 0.55 0.09 0.09
1.3 0.66 0.41 0.06 0.06
1.4 0.52 0.3 0.04 0.03

ω zp1 zp2 ∆zp1 ∆z2
0.5 0.44 0.82 0.03 0.02
0.6 0.41 0.80 0.05 0.01
0.7 0.33 0.87 0.04 0.02
0.8 0.25 0.98 0.02 0.07
0.9 0.19 1.0 0.01 0.13
1.0 0.15 0.96 0.01 0.15
1.1 0.12 0.82 0.01 0.13
1.2 0.09 0.66 0.00 0.09
1.3 0.07 0.54 0.00 0.07
1.4 0.05 0.43 0.00 0.05

Table 5-6: Left table: Vertical Displacements Point 1 and 3, for d = 2 m, µ = −180◦. Right
table: Vertical Displacements Point 1 and 2, for d = 2 m, µ = −145◦

In the situation of d = 1.09 m, the model gives unrealistic results when ∆ω = 0.1. This is due
to the fact that the retardation matrix gives negative damping values, because the bij beyond
a certain frequencies starts to give negative values, after which this ’damping’ adds energy to
the system and keeps doing time step after time step. In Figure 3-4 an example was given
of aij and bij at three water depths, and where those damping coefficients approaches zero
(which one would expect), those of the limit-case of d = 1.09 m cross this zero-line and give
negative values (which one would not expect). Therefore, a ∆ω = 0.05 rad/s is evaluated
for d = 1.09 m. Even with viscosity effects included, the increase of displacement around
ωn is large, and it would therefore arguably be necessary to do additional research on the
cushioning and sticking effect, as well as the viscous forces, as these are expected to be quite
important in this situations.
In Figure 5-19 it can be seen that the heave motion increases enormously around its ωn,
causing the high peaks in the vertical motions of the four points in Figure 5-20 and Figure 5-21.
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Figure 5-19: Heave, roll and pitch at d = 1.09 m with and without viscosity

Figure 5-20: Vertical displacement of four corners at d = 1.09 m with and without viscosity,
with µ = −180◦

For an Under Keel Clearance (UKC) of 0.09 cm, these results would have drastic consequences.
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Figure 5-21: Vertical displacement of four corners at d = 1.09 m with and without viscosity,
with µ = −145◦
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5-2-3 Approaching Seabed

Because AQWA is at a certain point not capable anymore of calculating aij and bij when the
UKC decreases, it is proposed that the additional forces which are present can be approx-
imated by the argumentation of Brennen (1982) [31]. The results of the additional inertial
force in the EOM are indeed such that heave responses decrease, and it could therefore ar-
guably used to adjust for aij . Under the assumption that the focal model can be considered
a flat plate as used in this paper, the results are shown here. To show what influence depth
has on this, three different depths are analysed. The results show that for heave, the total
force reduces, which could be used to account for an additional added mass term, i.e. the
so-called ’Cushioning’ effect.
In figreffig:resultFbrennen the additional force (4-20) is shown for three different water depths
d = 5, 2, 1.09 m respectively:

Figure 5-22: Additional force due to approaching seabed

It is clear that a lower UKC affects this force most. In Figure 5-23 the total forces are shown
with and without the additional bottom force term taken into account. An incoming wave of
ω = 1 rad/s and H = 1m is used.

5 m 2 m 1.09 m
Fmax 1.7 % 2 % 17 %
zmax −2 % −1 % −2 %

Table 5-7: Differences with and without inertial force

5 m 2 m 1.09 m
Fmin 3 % 5.5 % 6.7 %
zmin 1 % 1 % 23 %

Table 5-8: Differences with and without inertial force
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Figure 5-23: Displacement including the inertial force

In Table 5-7 and Table 5-8 the deviations are given. Especially for d = 1.09 m the difference
is quite large: the displacement deviates 23% from the value as calculated without this inertial
force. The deviation in motion response deviation is thus largest in the most shallow water
situation. The steady state response in heave hence decreases by including this additional
forces term. This would be in line with other research, which shows that heave motions
decrease in shallow water. However, no verification nor validation data are available for these
results, and since the focal method is based on some assumptions no general conclusions can
be drawn based on these numerical results. It should be noticed though that in general the
results are what can be expected, and that the model is thus capable of dealing with these
external loads.
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5-3 Second Order Wave Forces

When a bi-chromatic wave is considered, the presence of this regular wave group induces a
long wave. The largest contribution in shallow water is due to the bound wave, with the
frequency of the envelope, ∆ω. The forces associated with such a bi-chromatic wave group
are calculated with Quadratic Transfer Function (QTF)s, which is shown in this part.
To assure the right set-down is added to the vertical motion behaviour, in this analysis two
incoming regular waves are considered. This assures that no set-down is ignored, as argued
by Chen [44].

Figure 5-24: Dispersion Limits

The curves are in the figure the λ as function of ω and the dashed lines are the dispersion limits,
for shallow water (d/λ = 1/20). On the right of the intersection waves can be considered as
deep water waves, and they propagate freely. On the left region of the intersection though, the
dispersion relation does not hold, and interaction among waves becomes non-linear. Bound
waves are in this region created. It is worth noting, that for the ωn computed with the TD
values for the hydrodynamic coefficients (see Table 5-5), the natural frequencies for both
heave and pitch(and roll) for d = 5 m lie in the dispersion area. In in shallower water though,
d = 2 m, bound waves become more important. For d = 1.09 m it is clear that the ωn are
one the left side of the intersection of the curve and the dashed line.
For values on the right hand side of these intersections it is reasonable to expect that there
are no significant changes in the potential flow solution.
In (4-8) the equation for wave force of the bi-chromatic wave is given, which is used to
calculate the second order wave forces. In Figure 5-25 these forces are shown, the mean drift
part as well as the Low Frequency (LF) slowly varying part. It can be noticed from the graph
that the new mean position is negative, and thus causes a negative offset of the equilibrium
position of the vessel.
AQWA calculates the QTFs based on the approximation by Pinkster, as explained in Chap-
ter 3, which is in good alignment with reality for small ∆ω. Therefore, it would not be
reasonable to say something about motion behaviour ∆ω = 1.0 or even larger, so these are

W.E. Zwart Master of Science Thesis



5-3 Second Order Wave Forces 89

Figure 5-25: Second Order Forces of a bi-chromatic wave with ∆ω = 0.1rad/s

not considered here. And since the lower frequency ωn are encountered in more shallow water
conditions, this is not an issue for this thesis.

5-3-1 Set - Down

Set-down is as explained also referred to as ’mean drift forces’, they thus cause a mean offset
of the equilibrium position of the vessel in shallow water. In Figure 5-26 the first and second
order wave forces of two waves in d = 5 m are plotted, including the set - down term as
calculated by (3-24). This can also be seen in the deviation in height of the peaks of first
and second order waves forces, as well as the resulting heave displacement. The fact that the
set - down is lower under higher wave can be explained by means of radiation stress. The
horizontal flux of momentum at given location is caused by the pressure acting on a vertical
plane normal to the direction of flow, plus the transfer of momentum through that plane.
This transfer of momentum is the momentum of the flow times the flow rate across the plane.
The momentum flux will remain the same from one location to another, unless an external
force acts upon the control volume, i.e. the fluid in the flow direction, which changes the flux
of momentum. The radiation stress is given by:

Sxx = ρgH2

8

(
kd

sinh kd

)
(5-2)

Which is thus a function of H. The set down is caused by the increase in Sxx in decreasing
water depth. So before waves will break, i.e. their height increases, the radiation stress
increases, inducing the set-down effect. This interaction is captured in the interaction kernel
K− between two waves.
When the set - down term falls within the frequency range of slow drift motions of the focal
vessel, which is often in the same range as the ωn of offshore structures, it has major impact
on resulting motions. As discussed, Φ(2) is included in the determination of the QTFs, so
the set - down term is implicitly included when these are used to determine the second order
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Figure 5-26: First and Second Order Wave Forces at d = 5 m.

wave forces and associated forces.
In Section 3-4-1 has been discussed how the set-down term is calculated. It is argued that
Φ(2) is the main contributor to this phenomenon in the LF drift forces in shallow water. The
fact that the transfer function D described by Voogt (2005) [43] uses the same parameters
for its calculation of the term, endorses this. In the evaluations for the vertical motions of
the four zp of the barge, it is shown that the model can accurately predict in both FD and
TD. However, the set - down causes the mean water level to decrease, which needs to be
included in the final vertical motion prediction. Because no validation data was available for
this thesis, it the following some cases are defined, which calculate the set - down and show
the resulting effect.

Evaluation

Set - down is a quadratic effect, so increases drastically by changing wave heights. For the
focal evaluations, H = 0.1 m is used, to assure the waves can still be described, or at least
apporached, by the LWT.
For the d = 2 m case, we have seen in Figure 5-17 and Figure 5-18 that the largest vertical
motions lie in the range of [0.6 ≤ ω ≤ 1.3], so in these situations the set - down term can
cause most danger. These data are result of evaluations at H = 1 m, meaning that for this
wave height, the zp would move the value given.
For the d = 1.09 m case, no really reliable data on the vertical motions are present. What
can be noticed though, is that the area where most vertical motions occur, is in a much
lower frequency part. Therefore, the set - down term is this situations is evaluated at these
frequencies.
These values are indeed quite significant. What can be recognized, is that the set down
is larger for shallow water, as well as that it magnifies for larger ∆ω, which was expected
[43]. Considering the vertical displacements found in the previous, see for example Table 5-
2-2, these values are in the same order of magnitude. For d = 2 m for instance, the set -
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∆ω = 0.1 ∆ω = 0.3 ∆ω = 0.5
ωi ωj Set - Down ωi ωj Set - Down ωi ωj Set - Down

d = 5 m 0.1 0.2 0.01 0.1 0.4 0.02 0.1 0.6 0.12
1 1.1 0.013 1 1.4 0.005 1 1.6 0.012

d = 2 m 0.6 0.7 0.011 0.6 0.9 0.033 0.6 1.3 0.007
1.2 1.3 0.004 1 1.3 0.014

∆ω = 0.1 ∆ω = 0.2 ∆ω = 0.4
ωi ωj Set - Down ωi ωj Set - Down ωi ωj Set - Down

d = 1.09 m 0.1 0.2 0.6 0.1 0.3 0.5 0.1 0.5 0.7
0.2 0.3 0.64 0.3 0.5 0.32 0.3 0.7 0.18

Table 5-9: Set-Down Results

ωi ωj zp1 zp12 ∆p1 zp3 zp32 ∆p3
∆ω0.1 0.6 0.7 -0.134 -0.156 -0.022 -0.183 -0.205 -0.022

1.2 1.3 -0.115 -0.124 -0.009 -0.093 -0.097 -0.004
∆ω = 0.3 0.6 0.9 -0.132 -0.137 -0.005 -0.156 -0.165 -0.009

1 1.3 -0.14 -0.15 -0.010 -0.127 -0.134 -0.007
∆ω = 0.6 0.6 1.2 -0.111 -0.124 -0.013 -0.132 -0.152 -0.020

Table 5-10: Second Order Motions d = 2m

down is largest in the resonance area of the heave DOF of the Vessel - object, where thus
motion behaviour is already largest. For H = 0.1 m, the maximum vertical displacement
is approximately 0.09 m, so when the set - down is added of 0.033 m, the situation changes
drastically. Adding these values to the vertical displacement of zp, would provide an estimation
of the difference in vertical motions of the vessel in shallow with reference to linear motion
prediction.

5-3-2 Second Order Motions

The model is furthermore capable of calculating the motion behaviour of the vessel with
QTFs. Firstly, it must be checked whether both waves are ones which can be described by
LWT. Secondly, the F (2)

ex is calculated in accordance with (4-8), after with this force can be
superimposed with F (1)

ex and the resulting motions can be computed, see (4-15). The resulting
forces are subsequently used to determine the vertical motions of point 1 and point 3, as these
show different motion behaviour for a monochromatic situation. Waves in the bi-chromatic
case both come from direction µ = −180◦. Both waves have H = 0.1 m. In Figure 5-27 and
example is given for point 1 and point 3 on the barge, and it is clear that indeed the second
order effects act at the most extreme values. The numerical values for some ∆ω, for both d
= 2 m and d = 1.09 m are given in Table 5-10 and Table 5-11.
The values for zp1 and zp3 respectively are the vertical displacements induced by the two
incoming monochromatic waves. The values for zp12 and zp32 represent the calculated dis-
placement with including the second order wave forces, i.e. the quadratic interactions and
the contribution due to Φ(2) after calculating the forces with the QTFs. The ∆p1 and ∆p3
show the differences. From the latter values it can be concluded that these indeed increase
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Figure 5-27: Vertical displacements points 1,3 at d = 2 m., ωi = 0.6, ωj = 0.7 rad/s

ωi ωj zp1 zp12 ∆p1 zp3 zp32 ∆p3
∆ω = 0.1 0.1 0.2 -0.145 -0.163 -0.018 -0.178 -0.185 -0.007

0.3 0.4 -0.288 -0.304 -0.016 -0.350 -0.352 -0.002
∆ω = 0.2 0.1 0.3 -0.150 -0.265 -0.115 -0.259 -0.444 -0.185

0.3 0.5 -0.230 -0.226 0.003 -0.281 -0.301 -0.021
∆ω = 0.4 0.1 0.5 -0.144 -0.276 -0.133 -0.172 -0.297 -0.125

0.3 0.7 -0.064 -0.070 -0.006 -0.217 -0.223 -0.007

Table 5-11: Second Order Motions d = 1.09 m

when the water depth decreases. Furthermore, it can be concluded that the largest additional
displacement for d = 2 m occurs around ω = 0.6 − 0.7, where the longest λ is considered,
which thus causes the mean water level to drop. However, in the bottom row, where ∆ω = 0.6
rad/s, the additional motion is also larger, which can be attributed to the fact that this is
arond the ωn for the heave DOF. The d = 1.09 case shows larger ∆p1, especially for ∆ω = 0.2
rad/s. This can again be attributed to the ωn of the heave DOF.

5-4 Resulting Vertical Motion
Consider the results of zp for the monochromatic case, where is shown that the maximum
displacement occur in the range [0.5 ≤ ω ≤ 1.3] for a d = 2 m. These values are based
on linearity, so when H = 0.1 m was used as input in the Wave - object, this implies that
the results would have been one tenth of the values given. So when these numbers are then
compared to the second order additional displacement shown in the previous section, the
latter become quite appreciable. When a bi-chromatic wave group of ωi = 0.6 and ωj = 0.7
rad/s is for example considered, the set - down of this group makes the mean water level drop
approximately 1.3cm, which adds substantially to the zp of approximately 7 cm. So for LF
motion in shallow water, which are quite common for barge in this environment, the second
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order effect should definitely be accounted for in motion prediction. The viscous damping
displacement can have moderating effects on these vertical displacement, however, the second
order wave forces and especially set - down are not yet concerned with a vessel within the
waves and a viscous damping part does not change whether or not set - down will occur. The
subsequent viscous damping could however differ from the calculated vessel, since the UKC
would lower even more because of the set - down effect. This is however not considered in
this thesis due to time constraints.
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Chapter 6

Conclusions and Recommendations

6-1 Conclusion
For operations in shallow water, Van Oord faced issues with determination of vertical motions.
The research therefore aimed to shed light on shallow water issues, in which the issue is divided
in two parts; firstly the effects of shallow water on water waves and secondly the effects on
hydrodynamic reactions. In this chapter a conclusion is given based on the objectives which
were set in Chapter 1.

1. Gain knowledge on wave theories and their applicability based on parameters
which can describe certain sea states
Wave theories are divided in ranges of applicability based on three parameters:

• Ursell Number (UR): the non-linearity parameter which indicates the degree of
non-linearity with respect to the Linear Wave Theory (LWT)
• S: wave steepness parameters
• µ: shallow water parameter

2. Describe non-linearities and capture these effects to adapt linear results in
such a manner that these effects are included to analyse the hydrodynamic
loads on the structure in shallow water

• Wave exciting part: for higher S, the Stokes second order theory can give more
reliable results for wave forces, which can be used in the Python model to deter-
mine the second order pressure and subsequent incoming wave forces based on the
perturbation approach
• Reaction part: added mass increases significantly in shallow water, and a rea-
sonable amount of time of this project has been invested in describing this hy-
drodynamic coefficient based on its position, i.e. the position dependence of this
coefficient instead of the usual frequency dependence. In Chapter ?? some results
of these analyses are given, but unfortunately no reliable conclusions can be drawn
from this phenomenon, as some very rough estimations had to be made which
cannot be safely applied in accurate prediction. Another method which is used to
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account for the added inertia due to increasing virtual mass is an additional ex-
ternal force. Based on the approaching seabed, an inertial force required to move
the body away from the sea bed can be estimated in the model, to account for the
so-called ’Cushioning’ and ’Sticking’ effect. The force is however developed based
on several assumptions:
– Total fluid velocity can be obtained by linear additional of fluid velocities

caused by each component of the body motion. Both equation for fluid flow
and boundary conditions need therefore to be linear. This is not generally the
case.

– The boundary (seabed) is rigid, which might not always be the case.
– It neglects viscous effects.
– Eddies and vortices are not taken into account (there are no frictional forces

considered): the vertical upward velocity is directly related to the horizontal
flow velocity.

– Free surface effects are neglected.
– The proposed formula for additional forces has not been proven by model tests.

The resulting force calculated should therefore be considered no more than a rough
estimate to account for additional fluid forces in proximity of the seabed. On the
damping part of the reaction, viscosity increases in importance with lower Under
Keel Clearance (UKC) and therefore an additional damping factor based on Bcrit
has been added to the Equation of Motion (EOM). This can account for the
decrease in heave and pitch motion in shallow water, due to the damping of the
water column, on top of the wave making damping as calculated by the potential
damping

3. Developed a parametric model which can predict motion behaviour and val-
idate it with a deep water case
A parametric model in Python is created, where objects can be user-identified: Wave -
objects and Vessel - objects. With the model, firstly an analysis is done in Frequency
Domain (FD), to make sure the output could be verified with the diffraction analysis
from Ansys AQWA. Based on the hydrodynamic coefficients the Python model calcu-
lates the total forces. The incoming wave forces are calculated based on load Response
Amplitude Operator (RAO)s, the damping forces based on potential damping and ve-
locity of the Vessel, restoring forces based on stiffness and resulting motions. With
these incoming forces the total force is obtained with which the acceleration, velocity
and displacements can be calculated with the total mass of the focal Vessel - object.
The resulting motions are verified with the displacement RAOs from AQWA.
Next, the incoming wave forces are calculated in the parametric model based on the
fluid pressure. The Vessel - object is for this part subdivided in panels, on which the
pressure is calculated and subsequently the incoming wave force on the Vessel. The
resulting forces are compared to the incoming wave force based on load RAOs, and
these correspond. Ultimately, the resulting motions are in agreement with the displace-
ment RAOs. This calculation method allows for determining other wave forces than
the incoming wave forces based on LWT. The second order pressure based on Stokes
second order theory can be applied, which gives more flexibility than the hydrodynamic
diffraction analysis of AQWA.
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4. Develop a parametric model which can calculate forces and moments and
subsequent motion behaviour in Time Domain (TD) to account for non-
linearities and/or other additional forces
Non-linearities which arise in shallow water, demand for a transformation to TD anal-
ysis. Therefore, a TD model is created, where a retardation kernel based on a inverse
Fourier transformation, with bij parameters is developed. The convolution with the
history of velocities of the Vessel gives the damping in TD, and together with the re-
evaluated added mass, the radiation force is transformed to TD. This model is verified
by comparing motions calculated in TD versus those in FD with the same input pa-
rameters and these correspond as well. Subsequently, external forces can added on the
right hand side of the EOM. Most importantly in this manner are the second order
forces in shallow water situations. A full Quadratic Transfer Function (QTF) analysis
has proven to be necessary and drift forces are calculated at several depths. This addi-
tional force and the accompanying excitation are verified by considering a deep water
situation firstly, of which is expected that motions are dominated by first order wave
forces. This is indeed the case and therefore the model can be used to calculate wave
forces and resulting motions in more shallow water situations.

5. Say something about vertical motions in shallow water, and how and if these
differ from motion behaviour by linearised motion prediction
An analysis is executed on the vertical motions of four points on the bottom of the rect-
angular barge as can be expected that Ãŋf the barge hits the seabed, these will first. It
is shown that the motions are indeed sensitive to water depth and that the inclusion of
second order wave forces predict a much larger vertical displacement in shallow water.
It is argued that this force is mainly created by the second order wave potential effect,
which is calculated based on wave numbers and wave frequencies of the wave group of
the bi-chromatic wave. This Low Frequency (LF) drift force causes the set-down of the
mean water level, inducing larger vertical motions of the Vessel in negative heave direc-
tion. Both set - down as well as resulting vertical motions including second order wave
forces are calculated, and both show that an additional displacement can be expected
due to the LF shallow water wave drift forces. This would mean that based on first
order motion prediction, the estimated vertical motion is smaller than would occur in
reality. Bottom touching would therefore happen sooner than expected. It is therefore
necessary to include these second order contributions in the EOM.
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6-2 Recommendations
• In the current study, a parametric numerical model is created in Python. In addition to
linear RAOs in FD, second order wave forces are evaluated after a model is created in
TD with the retardation functions. It would be interesting for further research to test
whether motions predicted by the model, thus when the depth decreases further than
AQWA can handle, are in line with the numerical results.

• The convolution integral can become computationally very demanding, as for every time
step the entire FD analysis needs to be evaluated. The convolution integral representing
the memory effect is frequently found to be a problem in solving the dynamic equation.
To overcome difficulties, some methods are developed, of which the Prony method
and state-space realisation method [3, 52] are two most popular methods [59], which
are shortly explained in Chapter A. the convolution integral representing the memory
effect can become computationally very demanding and require significant amounts of
computer memory. It could therefore be very interesting to model this by approximation
the fluid-memory effects by a linear time invariant parametric model in state-space, see
Chapter A.

• As discussed in Chapter 2, the Cnoidal Theory can be applied in shallow water, while
the Stokes theory is generally more applicable in deep water. Some preliminary study
in done on this Cnoidal theory, which on first sight seems hard, but actually it should
be interesting the see if waves can described by means of this theory instead of regular,
sinusoidal waves. Some information on it is given in, as well as on Solitary Waves
Chapter D.

• Viscous damping is now estimated based on Bcrit and a factor based on literature.
Model tests could more accurately find the viscous damping, by calculating the Bcrit
based on Bij and find the resulting damping which can then be ascribed to viscosity
Bv. These can then be added to the equation, just like in (3-23) proposed by [36].

• Include wave spreading. Second-order low frequency loads in shallow water are sensitive
to wave angular spreading [40, 47]. A next step could thus be to apply it to multi-
directional wave systems.

• Ansys AQWA is capable of a Time Response analysis for regular and irregular wave
responses. The calculated forces with the numeric model in Python could be validated.

• Do additional research on the position dependency of the vessel and the associated
hydrodynamic coefficients, and aij in particular as this is highly sensitive to water
depth changes. The results shown in this thesis have shown some interesting values,
which demand for more in depth and thorough analyses.
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Fourier Transforms

The basis of Fourier transformations is the assumption that random signals can be represented
by the sum of a number of sinusoids or wavelets, each with a specific amplitude, frequency
and phase angle. A spectrum can also be used to recreate a time signal. By assuming that
the phase angle is distributed randomly, harmonic waves can be created based on the power
spectral density at each separate frequency, combined with a randomly picked phase angle

Figure A-1: FFT and IFFT

When the power spectral density is plotted as a function of frequency, we find a power (or
energy) density spectrum, psd, auto spectrum or just spectrum.
Non-linear effects are usually analysed by time series analysis, and for more information on
wave height associated with different wave periods, a time series analysis can be applied. For
a sinusoidal wave, travelling in x-direction, the description in terms of wave height and period
is te following:

η(x, t) = a sin(kx− ωt+ ε) (A-1)

In which ε is the phase angle.
As mentioned, the random sea can be described as a summation of individual linear waves.

η(x, t) =
∑

i = 1nan sin(knx− ωnt+ εn) (A-2)
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Figure A-2: Fourier Transform

This time series x(t) can be transformed to the frequency domain by the Fourier Transform:

x(ω) = 1
2π

∫
x(t)e−ωtdt (A-3)

And its inverse:

x(t) =
∫
x(ω)eiωtdt (A-4)

Fourier analysis of a discretely sampled signal (e.g. a wave record) can erroneously introduce
a component with a higher frequency, an alias of the original wave component. To prevent
this aliasing effect, a cut-off frequency must be defined, above which no frequencies should be
included in the Fourier series. This is the so-called Nyquist frequency. The highest frequency
component of the frequency domain representation should be limited to q = N/2.
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A-1 Convolution
Given two discrete time signals x[n] and v[n], the convolution of those is defined by:

x[n] ∗ v[n] =
∞∑

i=−∞
x[i]v[n− 1] (A-5)

The sum on the right hand side is calle the convolution sum. It is important to note that the
convolution operation is commutative, i.e.:

∞∑
i=−∞

x[i]v[n− 1] =
∞∑

i=−∞
v[i]x[n− i] (A-6)

For a causal system, i.e. x and v are zero for integers n < 0, the x[i] = 0 for all integers i < 0
and v[n− i] = 0 for all integers n− i < 0. This means:

x[n] ∗ v[n] =

 0 if n = −1,−2, ..
∞∑
0
x[i]v[n− 1] if n = 0, 1, 2, .. (A-7)

A-1-1 Non Causal

For noncausal lsystems, the unit pulse response h[n] will not be zero for n < 0 and the
summation for comupting y[n] must run from i=0 to i = ∞. Furtermore, it must start at
i =∞. The input/output convolution expression becomes [57]

y[n] = h[n] ∗ x[n] =
∞∑
i=∞

h[i]x[n− i] (A-8)

A-2 Approximations Convolution Integral
In this section approximations are given for the time consuming convolution integral. These
could be interesting for future research on the topic.

Prony’s Method

Prony’s method can be used to approximate the impulse response function in every Degree
of Freedom (DOF) with a sum of damped complex exponential. It extracts information from
an uniformly distributed signal and constructs series of damped complex exponentials (or
sinusoids). Prony’s function will add equations to the dynamic system. The memory effect
is:

Frad(ẋ, t) =
t∫

−∞

Rkj(t− τ) · ẋj(τ)dτ

=
t∫

0

N∑
k=1

αke
βk(t−τ)ẋj(τ)dτ

(A-9)
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The impulse response function has large function for small values of t, and approaches zero
for large enough time. This type of impulse response function can be approximated by
exponential fitting:

R(t) ≈ R(n) ≈
N∑
r=1

αre
βrn =

N∑
r=1

αr · µnr (A-10)

Where n = 0, 1, 2 .. N − 1, the number of equally space samples of the impulse response
function, N is the order of the Prony function and αr and µr are complex coefficients [?].
These are calculated in three steps, in the first the linear prediction model

d = D a (A-11)

is solved. Vector d and matrix D are created from the impulse response function to be
approximated:

d =


Rij(n)

Rij(n+ 1)
...

Rij(N − 1)

 (A-12)

D =


Rij(N − 1) Rij(N − 2) .. Rij(0)
Rij(N) Rij(N − 1) .. Rij(1)

...
... . . . ...

Rij(n− 2) Rij(n− 3) .. Rij(n−N − 1)

 (A-13)

The system in (A-11) is usually overdetermined, and it can be solved by approximation for a
by a least-squares method. The components of the vector a are components of the polynomial:

µN − a1µ
N−1 − a2µ

N−2 − ..− aN−1µ− aN = 0 (A-14)

Find the roots µr is the second step in the analysis. These roots are subsequently used to
build a system of linear equations:

Rij(0)
Rij(1)

...
Rij(n− 1)

 =


µ0

1 µ0
2 .. µ0

N

µ1
1 µ1

2 .. µ1
L

...
... . . . ...

µn−1
1 µn−1

2 .. µn−1
N



α1
α2
...
αN

 (A-15)

Solving this for α is the final step. Again, the least squares methods can be applied [59]
The main disadvantage of the Prony method is that additional equations required additional
calculating time for solving the dynamic equations.
Sheng et al. [59] found a new method based on the above, but calculated the memory effect
through a recursive approach. Only one step previous value is of the memory integral and
velocity are used.

R(t)(n+ 1) = Rk(n)eβk4t + ẋ4 αk 4 eβk4t/2 (A-16)
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State Space Approximation

Another method is to approximate the convolution integral by a state-space model. The
concept of convolution in time-domain is well established in linear system for linear time-
invariant systems. Convolution integrals are closely related to Laplace transforms and state-
space models [56, 55]. Equation of motion for a surface vessel can be reformulated in such a
state-space force, which can not only decrease calculation time but also provides additional
insight into the radiation problem [3, 56]
The convolution term in (3-37) is replaced by τrad, which is the output of a linear system
with input ẋ and kernel Rkj(t), which is calculated from (3-41).

(Mkj +Akj) · ẍj · τrad(ẋ, t) + Ckj · xj} = Fext(t)
ż(z, ẋ, t) = A′z(t) +B′ẋ(t)

τrad(z, ẋ, t) = C ′z(t) +D′ẋ(t)
(A-17)

Where z and ż are initial state vectors and A′,B′,C′,D′ constant matrices. The convolution
integral in (3-36) is approximated by a state space, where the memory of the fluid is trans-
formed using a Laplace transformation. This results in a transfer function R(s) in frequency
domain, which can be written as a parametric function R̂(ω).
The approximation state space model can be obtained by system identification. This can be
solved in either time or frequency domain, depending on the value for Rkj as represented in
(3-41).
When the retardation function is identify in frequency domain, the model obtained is the
following. After the convolution term is formulated in state-space, the transfer function can
be derived as:

H(s) = C(sI−A)−1 +D (A-18)
Where s is the complex frequency s = jω. It can also be expressed in system identification.
The associated approximate transfer function of the state space model is then a rational
transfer function approximation:

R(s) ≈ R̂(s) = Pkj(s, ω)
Qkj(s, ω) = pms

m + pm−1s
m−1 + ..+ p0

sn + qn−1sn−1 + ..+ q0
(A-19)

An important aspect of any identification is the a priori knowledge available about the system,
which can be used to set constraints on the model structure and parameters. For the identi-
fication of the parameters in (A-19), some properties are discussed in detail by Taghipour et
al. [3] which help identify the parameters of the approximating model.
Once the parameters in (A-19) are known, a state space realisation can be obtained. The
unknown matrices can be identified in several manners, as outlined by Taghipour et al. [3].
The convolution terms are replaced by alternative models based on the complex hydrodynamic
coefficients A(jω) and B(jω) the retardation functions Rkj(t) and Rkj(ω), the force to motion
frequency response function HFM (jω). Depending on type of data, the identification either
is done in frequency or time-domain.

Frequency Domain Identification of Fluid Memory Model

The constraints discussed above and in more detail by Taghipour et al. and Perez et al.
[3, 52] are more easily incorporated in the frequency domain identification of the parameters,
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Figure A-3: System Identification. From Taghipour et al. [3]

while these are not easy to impose in the time domain identification methods. By curve
fitting of the frequency response of fluid memory models to obtain these parameters, the
frequency response function Rij can be computed for a finite set of frequencies. One way to
obtain the parameters for the identification methods is the impulse response curve fitting.
The coefficients of the state-space representation are parametrized in terms of the vector of
parameters θ.

ż(t) = A′(θ)z(t) +B′(θ)ẋ(t)
y(t) = C ′(θ)z(t)

(A-20)

This approximated can be characterized, in least-squares:

θ∗ = argmin
∑
l

wlε
∗
l εl (A-21)

Where the notation * means the transpose complex conjugate, wl are weight coefficients and
εl:

εl = Rij(jωl)−
Pij , θ

Qij , θ
(A-22)

And θ is the vector of parameters which is defined as:

θ = [pr, .., p0, qn−1, .., q0]T (A-23)

Once the approximation for Rij is found, the added mass and damping terms can be found
[3, 52, 59]
As it is an approximation to the convolution integral, it is important io identify errors in-
volved and if they are small enough to be acceptable. Frequency dependent hydrodynamic
coefficients are required for obtaining the state space models. The Frequency Domain (FD)
identification method is carried out by establishment of the frequency response function of
the convolution integrals, which are beforehand constructed from frequency dependent hy-
drodynamic coefficients. Rational transfer functions are then fitted to the frequency response
functions by regression which are then converted into the state-space model [3].
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Appendix B

ANSYS AQWA

B-1 Calculation of the potential

For the incoming wave potential (3-8), as well as potentials φj at a point (x, y, z) on the
mean wetted surface SH can be represented by continuous distribution of source on this body
surface. At each panel, a source strength σ is calculated, taking influences of other panel into
account with the use of the Green’s function. Potential software program Ansys AQWA is
used for this manner. Ultimately, all σ are determined, and the Φ, aijandbij and wave forces
are calculated. With these values, the motions are determined.
Green functions, containing interactions between the source and field points (be it on the
surface of the hull itself or on the seabed), are usually calculated on the same position.
Meaning, that it should be noted that these influence functions are calculated with respect
to the initial body position and distance from the seabed, while the linearised free surface
conditions are used.

B-1-1 Mass Matrix

The mass matrix defines the mass coefficients of the body in six Degree of Freedom (DOF).
The masses consist of the solid mass or solid mass moments of inertia of the ship and the
added mass masses or added mass moments of inertia by the disturbed water. The added
mass is discussed in Section 3-3-1.

B-1-2 Stiffness Matrix

The stiffness matrix represents the restoring terms which affect motions in the vertical plane
(i.e. heave, roll and pitch motions). The spring terms for these 3 DOF are:

czz = ρgAWL

cφφ = ρg5 · ¯GM
cθθ = ρg5 · ¯GML

(B-1)

Hydrostatic stability due to the righting moments, see Journee [2] .
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Three dimensional panel methods are commonly used numerical tools to find the hydrody-
namic behaviour of structure with large volume in waves. It is based on the potential theory,
and the surface of the strucutre is represented by series of diffraction panels. AQWA employs
a method where it combines modelling large-volume components by diffraction panels and
small cross sectional components by Morison elements.

Mesh This mesh discretizes the geometry using diffracting panels. The user can manually
control the size of these panels. Too many panels will increase calculation time and will
only give unnecessary details and too little panels will not give a good representation of the
geometry. This inaccuracy is caused by the fact that Aqwa averages the source and potential
strengths over the area of the panel.
The next step is to choose wave directions and frequencies to evaluate and options regarding
QTF and drift forces can be included.

B-2 Limits
Non-linear forces have an inertia and a lift part. As the body oscillates close to the seabed, the
non-linear force is due to high accelerations of flow in the gap, which induces the inertia part.
Furthermore, the movement with reference to the actual under keel clearance is relatively
high, while AQWA assumes these movements to be small. Source panels are in this assumed
to be move only slightly, and the seabed is assumed to be distant. For computations, the
equations in the software are linearised and the time variation of source strength is neglected,
which makes the software unable to calculate non linear parts of the inertia force near the
seabed.

Theoretical Limitations

• Fluid assumed irrotational

• Fluid is assumed incompressible

• Fluid is assumed inviscid.

B-2-1 Green’s Theorem
The panel method, also known as the boundary integral equation method, has been widely
used for the purpose of finding the radiation and diffraction potentials. Fundamentally, it is
a form of Green’s theorem, in which the velocity at any point in the fluid is represented by
surface distributions of singularities over the hull surfaces. The essential steps are:

1. The potential is represented by a source distribution of unknown strength.

2. The body surface is subdivided in a large number N panels, which approaches its shape.

3. the source strength and dipole strength are assumed constant on each panel individually.
This gives a total of N unknowns.

4. when formulated in source terms, the normal derivative of the potential is evaluated at
the center of the panels, each one individually, and set equal to the normal velocity at
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that point. The potential is formulated at the same point directly, which gives a total
number of N linear equations for the unknown source strengths (/potentials).

5. After the potential is found through these evaluations, the pressure is evaluated and
integrated over the wetted surface to find the required forces and moments.

The function by Green which calculates these source strengths:

G(~x, ~ξ) = 1√
(x− ξ)2 + (y − η)2 + (z − ς)2 + 1√

(x− ξ)2 + (y − η)2 + (z + 2d+ ς)2 (B-2)

B-2-2 Mesh
To use the panel method a right mesh is needed. The diffraction software AQWA uses the
following ’rules’ to generate a mesh.

• The aspect ratio

• The size difference between the panels is as low as possible

• The centroid of one panel should not be close to those of other panels: dmin =
√

area
π

• Panels must be regular

• Panel size must be small compared to the wave lengths: dmin ≤ 1
7λ

• Center must be above the seabed at a minimal distance
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Appendix C

Coefficients as Function of Depth

In this chapter some values and graphs are given for the preliminary study of the effect of
position / wave height on the hydrodynamic coefficients added mass and potential damping.
As discussed in the main file, more research is necessary to draw general conclusions on these
results.

M 410000 [kg]
A 3211100 [kg]
B 679930 [kg · s]
C 4020700 [N/m]

Fa 3090000 [N/m]
εF,ζ -0.11 [rad]
RAO 0.99 [m/m]
εz,ζ 0 [rad]

Table C-1: Hydrodynamic coefficients and RAOs

Amax 3218000 [kg]
Amin 3208800 [kg]
Bmax 687670 [kg · s]
Bmin 669870 [kg · s]

Table C-2: Max/min values for added mass and damping at depth = 30 m and ω = 0.5 rad/s

A max 3094000 [kg] @ 4.3 m
A min 2591200 [kg] @ 5.7 m
B max 2812700 [kg · s]
B min 2364600 [kg · s]

Table C-3: Max/min values for added mass and damping at depth = 5 m and ω = 1 rad/s

Heave motion of the vessel with different added mass values, which starts at a water depth of
5 meter is shown in Figure C-1. The maximum displacement as a result of the changing added
mass values, and the difference with respect to the original added mass value in percentage
is given in Table C-4.
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Figure C-1: Heave motion of the barge with am and pd values as function of position at ω = 0.7
rad/s

Figure C-2: Heave motion of the barge with am and pd values as function of position at ω = 0.7
rad/s
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Added mass [kg] z(max) [m] difference [%]
A 0.69888 0
A max 0.718266 2.77
A (z) 0.708351 1.36

Table C-4: Relative effect of changing the added mass values of those at the extreme positions
in heave motion

Figure C-3: Heave motion of the barge with am and pd values as function of position at ω = 0.7
rad/s
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Appendix D

Additional Information

D-1 Wave Theory

In the results section it is described that the Linear Wave Theory (LWT) limits the wave
height H based on Ursell Number (UR) and S. The maximum values for specific cases are
shown in Figure D-1. Based on these values it can be established where the LWT can safely
be applied. The limiting values are shown in color scale, where red means that the waves
cannot be described by the linear wave theory, where the values in the green cells fall within
the limits of UR and S. The limiting steepness for the linear wave theory to be applicable is
set at Smax = 0.01

Figure D-1: Maximum Wave Height, limited by UR and S

D-1-1 Orbital Motion

Orbital motions of water particles under the assumption of LWT.
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Figure D-2: Orbital motion of wave particles. Obtained from Chakrabarti (1987)

D-1-2 Trochoidal or Gerstner Waves

The trochoidal waves or Gerstner wave is a non-linear wave, which is not irrotational. It was
the first exact non-linear solution for waves of finite amplitude on deep water. The trochoidal
wave satisfies continuity and surface conditions. It is used to describe the surface profile and
particle orbits of finite amplitude, non-sinusoidal waves. The profile is a trochoid and the
fluid particle motion is rotational versus the usual irrotational motion for waves. A trochoid
is the curve traced out by a point inside a circle when the circle is rolled along a straight line,
and if the circle is below the line it will be found that the resulting curve is sharper at the
crest than at the trough.
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ζ = ζa cos kx+ 1
2kζ

2
2 cos 2kx− 1

2kζ
2
a (D-1)

P (x, z, t) = x+ Σ(QiAi ·Dix · cos(ωiDi · (x, y) + φit)) (D-2)

In which Qi is a parameter for the steepness of the wave. For Qi = 0 it gives an usual sine
wave, while Qi = 1/(ωiAi) gives a sharp crest. In figreffig:Trochoid and example of the shape
of a trochoidal wave is given.
The fact that the flow field is rotational, makes finding a solution for waves difficult because
vorticity has to be taken into account. Furthermore, the phase speed is independent of the
amplitude of the wave. From hydordynamic point of view the trochoid is not convenient as
there is a mass transport in fintie amplitudes. Furthermore, the flow field is rotational, which
makes the Stokes wave more applicable [4].

D-1-3 Cnoidal Wave Theory

For very shallow water, the LWT is not applicable and one could possible resort to the Cnoidal
theory to describe waves. Short procedure is given in Figure D-4
An extreme Cnoidal wave, where the elliptic equals zero, the wave becomes translatory and
can be described by the Solitary Wave theory. The m in the figure is the elliptic parameter,
which determines the shape of the Cnoidal wave.

D-1-4 Solitary Wave

At the limit case of the Cnoidal wave where crest amplitude equals wave height, the surface
profile given in (2-39) defines the profile of the solitary wave [18]:

η = Hsech2[

√
3H
4d3 (x− ct)] (D-3)

Where celerity c is given as:

c =
√
gd

(
1 + H

2d

)
(D-4)

D-1-5 Stream Theory

Regular Stream Function
The boundary value problem solution is sought in the same way as with the LWT, as a
function of the Laplace equation:

∂2Ψ
∂x2 + ∂2Ψ

∂z2 = 0 (D-5)

The boundary conditions in terms of this stream function are:

∂Ψ
∂x

= 0 at z = −d (D-6)
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∂Ψ
∂x

=
(
∂Ψ
∂z
− c
)
· ∂η
∂x

at z = η (D-7)

1
2

[
(∂Ψ
∂x

)2 + (∂φ
∂z
− c)2

]
+ g · η = Q at z = η (D-8)

Where Q is the total energy with respect to still water elevation. The stream function for
small-amplitude waves becomes:

Ψ(x, z) = c · z +
N∑
n=1

Xn sinhnk(z + d) cos(nkx) (D-9)

In which c = celerity, N the order aimed of the theory, determined by the wave steepness S
and µ. X(n) is the coefficient for each specific order required to require the dynamics free
surface condition (D-8). The closer to the breaking limit, the more terms needed to find
accurate results. In Figure D-6 it is graphically shown which order N is needed.
The free surface form is found by substituting z = η in (D-9) which becomes:

η = Ψ(x, η)
c

− 1
c

N∑
n=1

Xn sinhnk(z + d) cosnkx (D-10)

The problem is to evaluate X(n) to the desired order, find k and a value for Ψ to satisfy the
boundary condition in (D-8). This is done by finding the right value for Q along the certain
points on the wave through trial and error [18]. The theory is consistent over most of the
wave parameter domain except at the very low region where values of H/T 2 and d/T 2 are
small. In Figure D-6 one can see that the stream theory has a wider range of applicability
than Stokes waves, up to nearly breaking. However, the stream function applicability is not
ideal for design purposes [4, 19, 18].

D-1-6 Shoaling
In Chapter 2 it was argued that a preliminary modification could be the change in H due
to shoaling [14]. The effect of shoaling is checked by calculating the shoaling coefficient Ks

from (2-22) for two different frequencies, ω = 1rad/s and ω = 0.5rad/s in d = 5m. These
values are chosen within the limits of LWT shown in Table 2-1. The pressure and forces are
given as percentages of those calculated without the shoaling coefficient. As one can see in
Table D-1, is deviates less than 0.1% and is not considered further.

ωin[rad/s] µ Ks ps/p Fp,s/Fp
1 0.12 0.95 100.02 % 100.04 %
0.4 0.058 1.22 0.999 % 0.98 %

Table D-1: Pressures and Forces including Shoaling Coefficient Ks

W.E. Zwart Master of Science Thesis



D-1 Wave Theory 117

Figure D-3: Shape of a Trochoid

Figure D-4: Approximation for elliptic integrals for m > 1/2. Obtained from Fenton [4]

Figure D-5: Surface profile for a Solitary Wave. From: Sorenson (2006) [?]
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Figure D-6: The required order of N, such that the stream function wave theory is best applicable.
Obtained from DNV [5]

W.E. Zwart Master of Science Thesis



D-2 Damping 119

D-2 Damping

D-2-1 Ikeda’s Method

Unlike other Degree of Freedom (DOF), roll damping is known to be highly non-linear. The
viscous roll damping is particularly significant at a frequency near the roll natural frequency.
An often used method for these non-potential parts of the roll damping, is the so-called
’Ikeda-method’. All contributions to this damping are shown in Figure D-7.

Figure D-7: Roll damping contributions as a function of forward speed. Obtained from Journee
(2001)

Ikeda’s method is a widely used method to predict the roll damping in the design state. The
method divides roll damping into several components shown in Table D-2.

Abbreviation Component Linearity
BF Friction damping Non-linear
BW Wave making damping Linear
BE Eddy damping Non-linear
BBK Bilge Keel damping Non-linear
BL Lift damping Linear

Table D-2: Components of damping according to the Ikeda Method

BF , BE and BBK are non-linear terms can’t be used in the frequency domain equations, so
an equivalent is found;

beq = b
(1)
44 + 8

3π · x4 · ω · b(2)
44 (D-11)

In which b(1)
44 is the linear lift damping + linear forward speed correction and b(2)

44 the sum-
mation of non-linear friction damping, the non-linear eddy damping and the non-linear bilge
keel damping.

Master of Science Thesis W.E. Zwart



120 Additional Information

The lift damping BL is only applied in the case of forward speed, and thus not considered
here. Furthermore, no bilge keel is used in this model, so this term is also not taken into
consideration.

Skin Friction Skin friction accounts for for both laminar and turbulent flow and can become
appreciable in non-circular bodies in motion [32]. Kato’s formulation is used by Himeno and
Ikeda to find a damping term expressed in terms of an equivalent linear damping coefficient
BF [60, 2]:

Bfriction = 0.787 · ρ · S · r2
e ·
√
ων ·

1 + 0.00814
(
r2
f ·R2

0 · ω
ν

)0.386 (D-12)

In which ν is the kinematic viscosity, R0 the roll radius of rotation,cf is a frictional coefficient,
rf the average radius from the axis of rolling, Sf the wetted surface area. The kinematic
viscosity is chosen based on ρ = 1025 kg/m3 based on the following figure:

Figure D-8: Eddy damping value

These parameters can be calculated by the following equations [?]:

cf = 1.328
(

3.22 · r2
f · φ2

a

Tφ · ν

) 1
2

rf = (0.887 + 0.145 · Cb)(1.7 ·W + Cb ·B)− 2 ·OG
π

Sf = Lpp · (1.75 · d+ Cb ·B)

(D-13)

Where φa is the roll amplitude, Cb the block coefficient (=1) Tφ the roll period, ν the dynamic
coefficient of viscosity, OG the vertical distance from water surface Centre of Gravity (COG)
(downward is positive) and W the draft.

Eddy Damping Eddies can have substantial circulation around them which makes them a
concern for operations at sea. It rises from pressure variation due to separation at sharp
corners of a body in water. Damping for the barge geometry due to eddy making at zero
forward speeds can become very large. The area coefficient affects this eddy making, meaning
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that the sharper the corner, the more fluid seperation and eddy making. Taking a closer
look at Figure D-7, it is clear that eddy damping can become a large contributor to the total
damping [60, 2].
A formula which is suitable for rectangular shaped barges:

Beddy = 2
π
· ρ · L ·D4 ·

(
H2

0 + 1− OG

D

)
·
(
H2

0 +
(

1− OG

D

)2
)
·R0 · ω (D-14)

H0 is 1/2 Beam-to-draft ratio, R0 amplitude of roll [61]

Figure D-9: Eddy damping value

Lift Damping The lift damping is another factor, which will increase when the roll centre
is above the mean water level. It occurs in the form of a lift moment when the ship moves
with a forward speed [15, 60].

D-2-2 Morison’s Equation

The Morison equation is usually applied for long, slender structures, like vertical piles, in
oscillatory flow [2]. The structure is small compared to the wave particle orbit dimension,
so that the assumed flow past the structure is reasonably valid. Otherwise, force are for the
largest part best described by diffraction [62]. The drag force FDRAG can be described by:

FDRAG = 1
2ρCd ·A · u · |u| (D-15)

Drag Coefficient

In Chapter 3 it is discussed that an additional force can be added to the Equation of Motion
(EOM) based on a drag coefficient. The velocity in vertical direction for a point on the barge,
when viscous forces are included is:

vvisc(t) = ż − xb · θ̇ + yb · φ̇ (D-16)

Viscous drag acts both in horizontal and vertical direction as a function of the fluid velocity
along the vessel’s hull. The drag load dFdrag on area dA can then be calculated with (??)
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Fdrag(t) = −1
2 · ρ · Cd ·

∫
A
vvisc(t) · | vvisc(t) | · dA

Mdrag(t) = 1
2 · ρ · Cd ·R ·

∫
A
vvisc(t) · | vvisc(t) | · dA

(D-17)

CD typically depends on motion amplitude of structure under consideration [13]. For shallow
water, the equation from Seelig et al. (1992) [63] is can be used [64, 63]:

CDt = CD + (CD1 − CD) ·
(
T

d

)K
CD0 = 0.22 · L ·

√
A

B · ∇

(D-18)

In which K is a dimensionless coefficient and from labatory tests it is shown that a value of 2
is applicable for most barges. CDl is suggested to be 3.2 for most cases [63]. In Figure D-11
in Chapter ?? the values for CDt for various values of CD0 are shown [63]. Using this figure,
it can be concluded that CDt ≥ 1, From this figure: CDt ≥ 1. Experiments have shown the
sensitivity of CD to depth in current, as shown in Figure D-10. It can be concluded from
the figure, even though in this study no current is considered, the CD could be estimated in
the range of 1.5 − 2. Other literature has shown values for CD which are of same order of
magnitude [65, ?, 66]

Figure D-10: CD Values for Various Depths

In Chapter ?? some other estimation methods are shown, which would give very rough guesses
as the shapes used are not submitted to the same boundary conditions as the barge in water
(it for example shows long slender structures, or flat plates).
Even though no current is accounted for in this study, it could be argued that a current
drag is present based on increased flow velocities due to lower Under Keel Clearance (UKC).
In Figure D-11 drag coefficient are given for given ship dimensions (ξ) and shallow water
parameter. ξ =

√
A
B·∇ and is 20 for the model in this study. It can be seen that CDt ≥ 1

approximately [63].
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Figure D-11: Drag Coefficient Estimation

Figure D-12: CD by DNV

Estimation of CD based on standards

Shapes for estimation of CD values as proposed by DNV [65]
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Figure D-13: CD by DNV

Figure D-14: CD by DNV
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D-3 Second Order
D-3-1 Approximation Second Order Potential
In shallow water difference frequency drift force can increase significantly due to this second
order potential and cannot be ignored [39, 38]. The non-linear nature of free surface condition
and complexity of body boundary conditions makes calculation of the contribution due to the
second order potential difficult. There have been succesful effort though which can estimate
the velocity potential of incoming second order Low Frequency (LF) bound wave that belongs
to the bi-chromatic wave group as a function of first order wave numbers, frequencies and
water depth [37, 47].
The second order potential force contribution (part 5) can be approximated based on the
assumption that it is dominated by the undisturbed incoming waves. The method is based on
the transformation of first order force in a wave with the same wave number as the associated
force with a set-down wave. The first order diffraction and radiation ΦD and ΦR potentials
are small compared to the undisturbed wave potential Φw. The amplitude of wave load is
modified to estimate wave forces related to set-down of the incoming wave; the combination
of two first order waves carry a second order wave with wavenumber ki − kj . The second
order wave potential can then be approximated by [37, 39]:

Φ(2) = −
2∑
i=1

2∑
j=1

ζi · ζj ·Aij ·
cosh((ki − kj) · (z − d))

cosh((ki − kj) · d)

× sin [(ki − kj)x− (ωi − ωj)t+ (εi − εj)]

Where Φ(2) is the LF part of the second order incoming wave potential, (ki − kj) the wave
number of the LF bound wave and Aij defined as:

Aij = 1
2 · g

2 · Bij + Cij
(ωi − ωj)2 − (ki − kj) · g · tanh((ki − kj) · d) (D-19)

In which Bij and Cij are:

Bij = k2
i

ωi · cosh2(ki · d)
−

k2
j

ωj · cosh2(kj · d)

Cij = 2 · kikj(ωi − ωj) · (1 + (tanh(ki · d)(tanh(kj · d)))
ωi · ωj

(D-20)

The LF part represents a long wave induced by the presence of the regular wave group. It is
assumed that a first order wave of which the frequency equals the difference frequency of a
bound wave can be used to describe this bound wave. The incoming waves due to LF second
order potential have a wave number equal to ki−kj and frequency ωi−ωj , which doesn’t meet
the dispersion relationship (2-18). To overcome this issue, the diffracted waves are allowed to
have the same wave number as the incoming waves. Differences will occur in diffracted waves
further away from the body. The ordinary first order wave exciting force on the body in a
regular wave is then solved for a wave number ki − kj .
The frequency for this bound wave will satisfy the dispersion relationship in shallow water.
Furthermore, the gravitational acceleration constant g is also altered:

Master of Science Thesis W.E. Zwart



126 Additional Information

Figure D-15: Second Order Potential Contribution

gij = (ωi − ωj)2

(ki − kj) · tanh ((ki − kj) · d) (D-21)

This factor must be taken into account when transforming the initial force F (1) to a second
order wave force with frequency ωi−ωj . Another requirement to be met is that the amplitudes
of the potential must be equal. This means that a first order wave potential must be selected
so that:

ζ(1)
a = ζi · ζj ·

Aij (ωi − ωj)
gij

(D-22)

Which is a second correction factor to F (1) to give F (2). Ultimately, the fifth contribution, the
vertical drift force due to incoming and diffracted second order potential can be approximated
by:

F (2)
z (ωi − ωj) ≈ ζi · ζj ·

Aij (ωi − ωj)
g

· F (1)
z (ki − kj) (D-23)

Where F (1)
z (ki − kj) is the first order vertical wave induced force [39].

Python To validate calculation method to find the approximation Φ(2), the first order ver-
tical wave induced force for a wave number of ∆k = ki − kj is plotted against a first order
wave with wave number ki where the latter ki equals ∆k.

Figure D-16: Vertical Drift Force for dif-
ference wavenumber (ki − kj)

Figure D-17: Vertical drift force for differ-
ence frequency (ωi − ωj)
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Now the drift force can be calculated by the transformation parameters Aij , Bij , Cij in (D-19)
and (D-20), which is shown in Figure D-17 for a water depth of d = 5m, and frequencies
ωi = 0.2rad/s and ωj = 0.1 rad/s. The depth effects on these second order drift forces is
shown in Figure D-18.

Figure D-18: Vertical drift force at different depths

Set-down Correction

In the case of difference frequency second order loads in heave DOF, there appears an in-
consistency which is sometimes ignored. In Stokes second order waves there is often a term
neglected which accounts for an additional free surface decrease, i.e. set-down, which adds
to the set-down resulting from quadratic product of the first order potential. When second
order Stokes waves are considered and this term is ignored, the estimated set-down will be
smaller and the steady vertical second order force will subsequently be underestimated. Ig-
noring this additional set-down related to a monochromatic second order Stokes wave causes
inconsistency in the vertical drift force where the difference frequency is zero [38, 44].
It can be proven that the contribution to set-down is much more significant than classical
Stokes derivation [44]. The classical correction for set-down in the second order Stokes wave
is the following:

D = − k · ζ2
a

2 · sinh(2kd) (D-24)

The correction by Chen (2005) [44] is found as an addition to this D through the derivation
of the second order incident bi-chromatic wave potential.

Φ(2) = Re
{
φ

(2)
1 · e

(−i2ω1t)
}

+ Re
{
φ

(2)
2 · e

(−i2ω2t)
}

= −(C1 + C2)gt+ Re
{
φ

(2)
+ · e(−i(ω1+ω2)t)

}
+ Re

{
φ

(2)
− · e(−i(ω1−ω2)t)

} (D-25)

The first order potential of a bi-chromatic wave become the potential of a regular wave with
the amplitude doubled, when ω1 → ω2 and ε1 → ε2 performed at the same time. When
the difference approaches zero, the results are matched with the classical form of the second
order stokes elevation (2-34). To keep consistency, the components at double frequency and
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set-down of second-order potential in bi-chromatic waves are quadruple of those in regular
waves:

φ
(2)
1 + φ

(2)
2 + φ

(2)
+ → 4 · φ(2) (D-26)

In the limit, where ωi − ωj → 0, this constant C can be found:

C = kζ2
a

4

[
4S + 1− tanh2(kd)
4S2kd− tanh(kd)

]
(D-27)

With:

S = sinh(2kd)
2kd+ sinh(2kd) (D-28)

The vertical mean drift force in monochromatic wave accounting for bi-chromatic wave set-
down effects is then given by:

T3jj(ωj) = P3(ωj) +R3 (D-29)

Thus when a bi-chromatic wave is considered of two second order stokes waves, this additional
set-down term needs to be include in the determination of vertical motions of the vessel. It is
important to take account for both set-down terms to maintain consistency between second-
order mean vertical fore in regular wave and low-frequency forces in bichromatic waves [?].
The additional steady vertical second order force is then simply given by:

R3(ω) = ρgAWLηc (D-30)
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