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1 Abstract

In the past decade, protein functional prediction has dramatically shifted to-
wards the usage of large language models (LLMs). In this research, we set
out to improve upon the model of SAFPred, a model for prokaryote protein
function prediction combining LLM embedding based sequence homology pre-
diction with a synteny aware component. With a new technique referred to
as stopping layers, we successfully proved that we can remove layers from pre-
trained LLMs without sacrificing performance, ultimately giving us the ability
to reduce runtime by 70% and required GPU VRAM usage for LLM storage by
72%. Furthermore, we show that we can prune our training dataset by only us-
ing prokaryote proteins without any performance impact, reducing the training
set by 78%. Additionally, in our evaluated models we show that restricting the
amount of training matches per query protein as much as possible is beneficial
to model performance.

2 Introduction

In the game of life, proteins are the blocks that both build us, drive us, and
in a sense, form us. Having a fundamental understanding of proteins brings us
closer to having a fundamental understanding of life itself.

To understand proteins, many researchers with different specialties collaborate
to discover the function of hundreds of thousands of proteins. For instance,
at release 2024 06 the manually curated protein database Swiss-Prot boasted
a figure of 572,619 proteins where, among other relevant features, the function
has been manually verified and largely supported by experimental evidence, re-
ferring to 300,929 distinct papers. [1]

In comparison, the UniProt protein database, of which Swiss-Prot is a sub-
set, contains 254,254,987 entries of distinct proteins in the same release. That
means only 0,2% of all known proteins are manually reviewed. [1] While we
have gone a long way to discover and curate the function of proteins, there exist
many proteins which are not experimentally verified.
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Figure 1: Graph illustrating how many basepairs have been sequenced in the
GenBank Database over the years since 2006. The years 2007-2011 and 2013-
2018 have been interpolated, the rest are from GenBank publications. [2]

GenBank is a database that stores all publicly available DNA basepair se-
quences. Figure 1 indicates that the amount of sequenced DNA basepairs is
exponentially increasing. The majority of DNA sequences can eventually be
transcribed and translated to a protein. Given the establishment of Swiss-Prot
in 1986 [3] one can deduce that it will be practically impossible to manually ver-
ify both the stored proteins in UniProt and novel proteins that will be discovered
in the future.

2.1 Automated Functional Annotation

After learning the defining features of proteins, a comparison using these fea-
tures can indicate that some proteins are similar enough to predict they share
the same function. Thus, if the function of one protein were to be verified,
feature similarity might indicate that another protein has the same function.

With the sheer amount of unverified proteins, it is often faster and more prac-
tical to use automated methods to detect if unverified proteins have enough
shared features with verified proteins to predict that they share certain func-
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tionality as well. The process of predicting protein function is referred to as
Automated Functional Annotation.

2.2 Functional Prediction Strategies

2.2.1 Homology inference and Functional Prediction

A popular and effective way to predict protein function is to infer if proteins
are homologous. We speak of protein homology if two proteins share a common
ancestry. Thus, if two proteins are sufficiently similar, we infer that it is likely
that they also share a close common ancestry. [4]

Inferring that protein function has not changed since this common ancestry
is not always correct. It is very possible that the protein function between two
statistically similar proteins from different species has diverged as their biologi-
cal ‘environment‘ has also changed. Therefore, methods that focus on homology
focus on inferred orthology. Orthology is a more constrained version of homol-
ogy, where two proteins have originated from a common ancestor, only differing
in definition due to speciation events. Orthologous proteins generally retain the
same function as well. [4, 5]

Homology inference from amino-acid sequence similarity

The protein amino-acid sequence can be represented as a linear 1D string of
symbols, where the amount of distinct symbols is the amount of distinct amino-
acids. Thus, to evaluate if two proteins are homologous, we could compare these
strings of symbols for (dis)similarity.

The low complexity of this feature, the increasing ease of obtaining amino-acid
sequences, and the fact that any protein can essentially be reduced to this single
1D sequence, makes it ideal for homology inference. It is therefore no surprise
why sequence similarity is broadly used for homology inference.

Homology inference from structural similarity

Generally, protein 3D structure is the feature which confers function. It is
the amino-acid sequence which confers 3D structure (assuming the right envi-
ronmental conditions are met). Therefore, it is often thought that predicting
function using 3D structure is more accurate. [6]

However, achieving an accurate representation of protein 3D structure has proven
to be a difficult job. While there are numerous significant breakthroughs since
1969, it was only 2021 where the deep-learning paradigm showed its force into
the world of protein structural prediction with AlphaFold. [6]
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Figure 2: Graph from the original CASP14 paper indicating that CASP14,
where AlphaFold was first introduced, boasted a significant outperformance
compared to the previous years. On the x-axis we have the GDT TS, or the
Total Score of the Global Distance Test, which the paper describes as the agree-
ment metric compared to experimentally verified structural information. On
the x-axis the difficulty of the target protein is indicated. [7]

In CASP14, a biannual assessment of structural protein prediction methods,
AlphaFold made an unprecedented breakthrough. In Figure 2 we can see how
fast this paradigm shift has improved protein structure prediction. [7]

As we continue to improve our prediction of protein structure, more accurate
and reliable structure-based homology inference will become available to us. In
turn, more reliable structure-based function prediction might be possible.
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2.2.2 Synteny-based Functional Prediction in Prokaryotes

Genes are in synteny with each other if their gene order and location is conserved
in evolution. [8] It is however not instantly obvious why we can use synteny as
a feature for functional prediction. However, in prokaryotes, synteny is intrinsic
to operons.

Operons and Synteny

Figure 3: Illustration of an operon. The operon is commonly found on a prokary-
otic genome. In this illustration, we see the abstraction of a subsequence of the
genome that is related to the operon. Outside of the operon itself we can find
regulatory genes. The structural genes can eventually translate into proteins.
The Promotor and Operator are involved in the process of making proteins from
structural genes. [9]

In prokaryotes, clusters of co-regulated genes are quite common. These clus-
ters are called operons, as we can also see in Figure 3. Genes on an operon often
have a related function. [10] One could deduce that genes that are in synteny
are likely on the same operon. Thus, they are likely co-regulated and share
common functions.

Hence, if one can see that genes encoding for unknown proteins are in synteny
with genes encoding for proteins with known function, one could deduce that
the unknown genes are on the same operon as the known genes, and thus share
functionality. In fact, it has been shown that synteny with the right constraints
is an effective predictor for operon presence. [11]

2.2.3 Other Strategies

The aforementioned strategies will be the main focus of this research. However,
these strategies do not cover all usable strategies for functional annotation for
proteins. For example, proteins could be identified as part of a broader protein
family, which also tends to confer shared functionality. In turn, this could
give predictive capabilities. [12] Other effective methods might look at protein-
protein interactions to predict protein function. [13]
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2.3 Gene Ontology

It can be difficult to classify the function of a gene. ’Involved in metabolism’
can be a little vague. ’Mutant gene that promotes rapid proliferation of kidney
stem cells in mice’ might be too specific of a function.

This problem has been identified quite some time ago, and a common language
for describing gene functions was made by the Gene Ontology (GO) Consortium.
GO defines functional descriptions for three different categories.

• The category biological process refers to a biological objective to which
the gene or gene product contributes. This could both be quite broad, and
quite specific. A protein can be involved in ’cell growth and maintenance’
(broad) or ’cAMP biosynthesis’ (narrow).

• The category molecular function describes the biochemical activity of
a gene product. A broad term could be, for example, ’enzyme’. A narrow
term could then be ’adenylate cyclase’.

• The category cellular component describes the place in the cell where
the gene product is active. [14]

GO terms make functional annotation problems into a multi-class classification
problem. However, in contrast to a standard multi-class classification problem,
the GO annotation labels are hierarchical. To illustrate what this means, we
will refer to Figure 4. [15]

GO:0009056

Catabolic 

Process

More to less specific

GO:0044281

Small Mol-

ecule Meta-

bolic Process
GO:0008152

Metabolic 

Process

GO:0009987

Cellular 

Process

GO:0008150

Biological 

Process

Figure 4: Example hierarchy of GO labels with ancestors, along with a descrip-
tion. In the boxes, the GO label is visible on top, with a description in the
bottom part. The arrows point from a GO label to hierarchical parents. [15]

As we can see in Figure 4, one GO label is part of a lineage of several GO
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labels. What this hierarchy essentially means is if a protein is involved in the
catabolic process (GO:0009056), then it is also involved in a metabolic process
(GO:0008152) along with all the other GO labels in the given hierarchy. In this
example, the directed arrows indicate parent relations of GO annotations.

2.4 The CAFA Challenge

A standard way of classifying genes makes it much simpler to evaluate functional
prediction models. To further help standardize models and to stimulate the in-
vention of functional annotation methods, the Critical Assessment of protein
Function Annotation algorithms (CAFA) challenge was created. CAFA pro-
vides a dataset of genes requiring functional annotation. Models evaluated to
the CAFA dataset need to provide the most accurate GO annotations possible
[16].

A critical advantage of this challenge is that it offers a solid benchmark for
every functional annotation model to pass. The best models can easily be iden-
tified, as they demonstrate the best accuracy metrics.

Figure 5: Graph from the original CAFA3 paper showing the amount of proteins
for every benchmark species, split by focus ontology category. [16]
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However, as we can see in Figure 5, bacterial proteins only make up a small
portion of the CAFA dataset. Besides that, about 2/3 of the bacterial proteins
in CAFA3 are from one single species, E. coli. While CAFA might work great
for benchmarking method accuracy on eukaryotes, it is not quite as applicable
for prokaryotes.

2.5 Established methods

Name Year Strategy Description

BLAST [17] 2003 Sequence
Homology

BLAST can be used to infer homology by
finding sequences that have a high enough
sequence identity to the query sequence.

DIAMOND [18] 2015 Sequence
Homology

Very similar to BLAST, but faster.

HMMer/PFam
[19]

2011 Protein Family
Classification

Uses HMMer to identify profiles
commonly seen in protein families saved in
PFam. Broader than homology inference.

goPredSim [20] 2021 Sequence
Homology

Extracts embeddings from protein LLMs
and finds sequences with a high enough
embedding similarity to infer homology.

DeepGraphGO
[13]

2021 Protein
Interactions

Puts proteins with known interactions in a
graph to train a GNN to infer protein

function.

GNNGO3D [21] 2023 Structural
Homology

Matches similar experimental 3D protein
structures to infer homology.

PFresGO [22] 2023 Sequence &
Subsequence
Homology

Specifically links function to subsequences
in proteins.

SAFPred [11] 2024 Operon
Inference

Combines a goPredSim-esque component
with a component that infers operons.

Table 1: Functional annotation methods of interest with their respective strat-
egy and description.

In Table 1 we show several examples of functional annotation methods of
interest. In this research, we will specifically focus on SAFPred.
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2.6 SAFPred

SAFPred (Synteny-Aware gene Function Prediction) is a functional annotation
method specifically designed for prokaryotes. SAFPred leverages synteny to
predict protein function.

SwissProt

(1)

CD-HIT  

+ 

Filtering
Filtered 

SwissProt

(2) 

Train-Test 

Split

SAFPred 

nn

SAFPred  

Synteny

(4) 

Train

SAFPred 

DB
GTDB

(3) 

Create 

Syntenic 

Blocks

µ SAFPred

(6) Infer

(5) Combine

Test

Train

Figure 6: Graphical abstract of training and inference of SAFPred. In step
1, we take SwissProt and combine redundant sequences using CD-HIT. [23] In
step 2, we split the data into a train and a test split. In step 3, we create
SAFPredDB from representative genomes in GTDB. In step 4, we train the knn
method (SAFPrednn) and SAFPred-Synteny. In step 5, we combine the results
from both methods into one by taking the mean of predictions. In step 6, we
infer on our test set, returning predictions.

The complete training and inference pipeline used for evaluation is illustrated in
Figure 6. In the following sections we will break down every step of the process.
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2.6.1 CD-HIT and Filtering

SwissProt

(1)

Protein 

length 

[40, 1000]

CD-HIT

(2)

 Remove non-

experimental GO

(3)

 Redundancy 

Filtering

Filtered 

SwissProtIntermediate Intermediate

Figure 7: The SAFPred pre-processing pipeline including CD-HIT and filtering.
In step 1, proteins between 40 and 1000 are kept, removing the rest. In step 2,
we remove all GO labels that do not have experimental proof, also discarding
proteins that do not have labels anymore after this step. In step 3, we apply
redundancy filtering using CD-HIT.

In this pre-processing step also summarized in Figure 7, first all proteins
shorter than 40 amino-acids and all proteins longer than 1000 amino-acids are
filtered out of the dataset. Why this filtering step is included is not specifi-
cally mentioned, however, it is known that ESM-1b, the amino-acid LLM used
in both SAFPred-Synteny and the knn method, only supports proteins shorter
than 1024 amino-acids. [24]

Next, only GO annotations with enough manually verified evidence are selected.
GO annotations with evidence codes EXP, IDA, IPI, IMP, IGI, IEP, HTP, HDA,
HMP, HGI, HEP, IBA, IBD, IKR, IRD, IC, and TAS were selected to be suf-
ficiently supported by evidence. These evidence codes are also provided by the
GO resource. [15]

Finally, proteins with 95% similarity according to the CD-HIT redundancy clus-
tering algorithm are grouped and a representative sequence is selected for the
cluster. The other sequences are removed as they are deemed redundant. [23]

2.6.2 Train-Test Split

For evaluation, we split the dataset into a training and test set. In the SAFPred
paper, one organism is taken out of the original set as the test set.

Furthermore, the training set is compared to the test set using BLAST, which
returns sequence identity values between 0 and 100. Looking at the best matches
between the preliminary training and test set, we filter out all training sequences
exceeding maximum pairwise identity (PIDE) threshold x. The lower x is, the
harder it is to find training homologs to test samples. This is done to test model
robustness to missing data.
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For species we consider Escherichia coli, Mycobacterium tuberculosis, Bacillus
subtilis, Pseudomonas aeruginosa and Salmonella typhimurium. For the max-
imum PIDE we consider thresholds of 40, 50, 60, 70, 80, and 95. Combining
both splitting features we are able to make 30 distinct training-test splits.

2.6.3 Create Syntenic Blocks

GTDB

(1)

Extract 

Protein 

Products

CD-HIT
Representative 

Proteins

(2)

Redundancy 

Filtering

ODB

SAFPred 

DB
(3) Create 

Syntenic 

Blocks

Figure 8: Illustration of the creation of syntenic blocks in SAFPredDB. In step 1,
we extract all protein products for protein-coding genes in the Gene Taxonomy
DataBase (GTDB). In step 2, we apply redundancy filtering using CD-HIT. In
step 3, we create syntenic blocks from these representative proteins using gene
loci. SAFPred uses the Operon DataBase (ODB) as a reference to make the
syntenic blocks as close to a potential operon as possible.

In step 3 illustrated in Figure 8, all 45,555 representative genomes from the
GTDB [25] are used to extract 372,308 distinct representative protein sequences
produced by these genomes, again filtered for redundancy using CD-HIT [23],
keeping only CD-HIT clusters of at least 10 genes. We also note their location
on the genome, and on which DNA strand the gene is found. This process is
also mentioned in step 1 and 2 of Figure 8.

In step 3 of Figure 8, we group representative sequences together if at least
one CD-HIT cluster member is within 2000 basepairs of another on the same
strand and contig. This group is called a syntenic block.

Finally, if the intergenic distance is larger than 300 basepairs, we split up the
syntenic block if possible, or remove the block if splitting is not possible.

The proteins in the syntenic blocks are then matched to the non-redundant
SwissProt dataset using BLAST to transfer GO annotations to significant hits.

In the paper the Operon DataBase (ODB) was used as a reference to estab-
lish the hyperparameters for intergenic distance and maximum syntenic block
basepair length. [26] However, since the ODB is manually verified, it only con-
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tains 8235 unique operons, while SAFPredDB saves 406,293 distinct syntenic
blocks, which we infer to be operons.

2.6.4 K-nn training

For homology inference in SAFPred, SAFPrednn was created. It is however
very similar to goPredSim. [20]

SAFPrednn uses a protein LLM to extract protein embedding vectors from
the final hidden layer. This protein LLM generates an embedding vector per
protein amino-acid. To get a single protein embedding vector, we take the mean
over all amino-acid embeddings.

These embedding vectors represent the protein sequence themselves, and us-
ing the cosine similarity metric in Equation 1, we can compare how alike two
embedding vectors are. [11]

sim(v1,v2) =
v1 · v2

||v1|| · ||v2||
(1)

SAFPrednn and goPredSim calculate the cosine similarities between all se-
quences in the training set and the test set. For every test sequence SAFPrednn
takes the values in the top x percentile range of all possible matches, where x
is pre-defined. goPredSim takes the K highest matches, where K is pre-defined.
The GO annotations of the training set will then be conferred to the test se-
quences with the cosine similarity as a prediction metric, taking the maximum
value for every GO as prediction. [11, 20]

In the SAFPred paper it is mentioned that both ESM1b and T5 were attempted
for LLM. Since ESM-1b showed better results in preliminary experiments, it be-
came the LLM of choice. [24]

Why SAFPred adapted goPredSim instead of using goPredSim itself is not
mentioned.

2.6.5 Train SAFPred-Synteny

To obtain meaningful functional predictions from the previously created SAF-
PredDB, the component SAFPred-Synteny is constructed. SAFPred-Synteny
works by calculating the embedding vector for every sequence in SAFPredDB.
Then, syntenic blocks are summarized by taking the average of all embedding
vectors for sequences in these blocks. [11]

To query the best matching syntenic block for test sequences, we calculate the
cosine similarity defined in Equation 1 between test sequence embeddings and
average syntenic block embeddings. The syntenic blocks in the highest x per-
centile are the most likely syntenic blocks for the query protein. We multiply
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the frequency of the GO terms in the syntenic block by the cosine similar-
ity of the test sequence to the syntenic block embedding to calculate the final
SAFPred-Synteny prediction. [11]

2.6.6 Combine and Infer

Combining the results of SAFPrednn and SAFPred-Synteny is done by simply
adding the results together and dividing the totals by two. We can then infer
any dataset by using the training set as a reference in SAFPrednn and SAFPred-
Synteny. [11]

2.6.7 Evaluation Metrics

For evaluation on the SwissProt dataset, SAFPred uses the same evaluation
methods as CAFA. For metrics, we look at the maximized F1-score (Fmax) and
the minimum semantic distance (Smin) described in Radivojac et al. 2013. [27]
Additionally, SAFPred looks at the coverage, or the percentage of test proteins
annotated with at least one GO term at the threshold which maximizes the
F1-score. [11]

2.7 Problem Statements

SAFPred gave us a starting point for a synteny-based prediction method. How-
ever, there are several possible avenues of improvement to explore in SAFPred.

2.7.1 Research Question 1

At the core, we would first like to see refine the current model without chang-
ing too much fundamentally. This would for example mean looking for better
hyperparameters and changing the underlying LLM in safprednn. Therefore,
our first research question is formulated as: How can we refine SAFPred
without fundamentally changing SAFPred itself?

It is hard to really give a hypothesis for this research question. We do ex-
pect there to be room for improvement beyond fundamentally changing the
model. However, good avenues for refinement would be updating older sub-
models to newer superior ones, or giving a more comprehensive grid search for
hyperparameter selection.

2.7.2 Research Question 2

SAFPred is specifically written for prokaryotes as it leverages the operon struc-
ture seen in prokaryotes. However, training the model has been done using the
full SwissProt dataset.

It would be interesting to see how prediction would hold up if we prune the
SwissProt dataset so that it only includes prokaryote proteins. If this proves
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effective, we can save a good amount of resources and time for training. We
formulate our second research question as: Can we effectively restrict our
prediction to only use prokaryote-sourced data?

We do not expect the pruned dataset to confer better predictions. However,
we expect that the predictions using the pruned dataset are about as accurate
as predictions using the full dataset.

2.7.3 Research Question 3

SAFPred makes predictions based on both synteny and sequence homology.
However, we have seen in GNNGO3D that structural information can be just
as effective. [21] The downside of GNNGO3D is that it requires experimental
structural data, which is quite restrictive.

We would like to provide a less restrictive way to predict functionality on struc-
tural homology. We formulate our third research question as: Can we add
a functional prediction method utilizing structural homology to im-
prove predictions?

2.7.4 Research Question 4

SAFPrednn and SAFPred-Synteny are combined by taking the mean of the two
predictions. This method of combination is quite simple, but there is no eval-
uation of the effectiveness of this method. We believe there might be room for
improvement.

Therefore, we would like to improve the method by adding a more advanced
method of combining predictions. Additionally, we want to properly evaluate if
there is any value found in combining two predictions. We formulate our fourth
research question as: Can we create a better method for combining two
functional predictions?

2.7.5 Research Question 5

With the Fmax from CAFA, we can make quite a good estimate of the predic-
tive potential of a model. However, the Fmax might not be entirely realistic
metric when we would evaluate our model performance on unseen data without
a known ground truth.

CAFA does include an evaluation on unevaluated proteins at the start of the
challenge. By the end of the challenge, these unevaluated proteins are experi-
mentally checked as well, and the final performance on these unevaluated pro-
teins is checked so we can see how models perform on real unseen data with a
pre-set threshold. Unfortunately, this workflow is not available to us, as exper-
imentally evaluating proteins is not part of our research scope.
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Therefore, we would like to conceptualize a performance metric that can es-
timate our model performance on test data, given that the test labels are un-
known. We formulate our fifth research question as: Can we define a metric
for evaluating model accuracy on unknown data?
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3 Materials and Methods

3.1 Datasets

3.1.1 SwissProt for Benchmarking Datasets

For benchmarking the models, we use proteins taken from the SwissProt database.
[3] We distinguish between three different benchmarking datasets: the 2021 04
release of the dataset (as used on SAFPred) (SwissProt-SAFPred), the new
(2024 05) release of the dataset (SwissProt-Full), and the prokaryote SwissProt
dataset (SwissProt-Prokaryote), where only prokaryote proteins are included.

For preprocessing and making the train-test splits, we mostly keep the same
steps described in Section 2.6. For making the train-test splits, we used DIA-
MOND instead of BLAST due to its’ superior speed.

Organism SwissProt-
SAFPred

SwissProt-
Full

SwissProt-
Prokaryote

Escherichia Coli 3454 3493 3493

Mycobacterium Tuberculosis 1666 1736 1736

Bacillus Subtilis 1636 1631 1631

Pseudomonas Aeruginosa 1014 1057 1057

Salmonella Typhimurium 774 827 827

Table 2: Amount of proteins in all 5 test sets for every benchmarking dataset.
In the first column, the source organism for the test set is denoted. In the next
three columns, the benchmarking dataset is denoted.

Organism 40 50 60 70 80 95

Escherichia Coli 92119 97378 100503 102088 103019 104161

Mycobacterium Tuberculosis 98934 103236 105174 105821 105996 106033

Bacillus Subtilis 96624 101679 104341 105516 105903 106068

Pseudomonas Aeruginosa 97172 101683 104588 106069 106563 106687

Salmonella Typhimurium 102299 104256 105296 105858 106212 106916

Table 3: Amount of proteins in the training sets for SwissProt-SAFPred. In the
first column, the organism that has been split out of the training set has been
denoted. In the other columns, the number of proteins per header-indicated
PIDE split is denoted.
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Organism 40 50 60 70 80 95

Escherichia Coli 90193 95320 98324 99884 100801 101926

Mycobacterium Tuberculosis 96456 100826 102829 103479 103647 103689

Bacillus Subtilis 94251 99448 102093 103251 103634 103795

Pseudomonas Aeruginosa 94893 99340 102254 103739 104244 104368

Salmonella Typhimurium 99734 101797 105296 103497 103864 104594

Table 4: Amount of proteins in the training sets for SwissProt-Full. In the
first column, the organism that has been split out of the training set has been
denoted. In the other columns, the number of proteins per header-indicated
PIDE split is denoted.

Organism 40 50 60 70 80 95

Escherichia Coli 12002 15195 17515 18911 19810 20936

Mycobacterium Tuberculosis 17447 20453 21938 22495 22657 22699

Bacillus Subtilis 15712 19136 21219 22262 22644 22805

Pseudomonas Aeruginosa 15922 19027 21364 22754 23254 23378

Salmonella Typhimurium 19482 21009 21935 22507 22874 23604

Table 5: Amount of proteins in the training sets for SwissProt-Prokaryote. In
the first column, the organism that has been split out of the training set has
been denoted. In the other columns, the number of proteins per header-indicated
PIDE split is denoted.

Discrepancy Training-Test Splits SAFPred Paper

For the training-test splits in SwissProt-SAFPred the test splits for Escherichia
coli and Bacillus subtilis are slightly polluted. For the test split Escherichia coli,
11/3454 proteins actually belong to Mycobacterium tuberculosis, and 1/3454 of
proteins actually belong to Yersinia Pestis. In Bacillus subtilis, 3/1636 proteins
actually belong to Bacillus cereus.

3.1.2 GO Database for Functional Labels

For functional labels, since the original SAFPred paper never mentioned a GO
Database release, we re-used the GO hierarchy obo file provided in the SAFPred
repository to match with the 2021 04 release of the SwissProt dataset. For the
newer two SwissProt releases, we used GO release 2024-11-03. [28]

Like in the SAFPred paper, we propagate any GO prediction and SwissProt
ground truth value to every GO hierarchical parent. Additionally, we only
benchmark on every single GO category (Cellular Component, Biological Pro-
cess, Molecular Function) seperately.
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3.1.3 NCBI Genomes for Gene Loci

To obtain gene loci for synteny block creation, we used genomic data from the
NCBI datasets. [29] (Accession date: 20/12/2024) From the NCBI datasets we
downloaded 20,476 representative genomes for bacteria and 734 representative
genomes for archaea.

We chose NCBI datasets instead of GTDB as the NCBI datasets are signifi-
cantly smaller in size. In SAFPred, GTDB was used, however, the pipeline to
infer gene loci using Prokka [30] was unmentioned in the SAFPred paper and
not documented anywhere else, making SAFPred-Synteny difficult to retrain
properly.

In total, our NCBI genome dataset contains 80.2 million distinct protein-coding
genes. Using linclust from the MMSEQS2 package, we clustered all proteins
with 95% identity for the smallest sequence together to reduce redundancy. For
this step we use linclust instead of CD-HIT as linclust clusters in linear time,
making it significantly faster than CD-HIT. It should be noted that linclust is
somewhat less sensitive than CD-HIT. However, from 70% sequence identity
and up, the sensitivity difference becomes increasingly small. [31]

Since the NCBI dataset is significantly smaller than the GTDB dataset, we
set our cluster size threshold lower than 10. Setting our threshold at 10 would
net us 170,021 clusters of proteins instead of the 372,308 bacterial representative
sequences included in SAFPred. However, setting the threshold at 7 would net
us 342,942 bacterial and archaeal representative sequences.

3.2 Methods

3.2.1 SAFPrednn and goPredSim comparison

In the SAFPred paper, the knn method SAFPrednn that is used and evaluated
in conjunction with SAFPred-Synteny is mentioned to be designed in a similar
manner to goPredSim. However, there is no reason given why to deviate from
the K-nn method of goPredSim and to use the percentile method described in
SAFPred.

To evaluate if either method has a clear advantage, we provide a comprehensive
comparison using relevant evaluation methods outlined in Section 3.3.

3.2.2 LLM Embedding Extraction

In the SAFPred paper, the bio embeddings package had been used to extract
embedding vectors from protein sequences. [32] However, we found that this
package had not been maintained since 2022, and we experienced quite some
compatibility issues.
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Figure 9: Adapted Illustration from Vaswani et al. 2017, elucidating where we
extract embeddings from a protein LLM. [33]

Hence, we made our own module to extract embedding vectors from protein
sequences. In Figure 9 we see at which step of the LLM mechanism we generally
extract our output embedding vectors.

3.2.3 Different amino-acid LLMs

The underlying LLM that was chosen for the nearest-neighbor methods in SAF-
Pred, ESM1b, has been released quite some time ago. [24] A newer version of
ESM, ESM2, has been released as well. [34] ESM2 scores relatively high on the
Diverse Genomic Embedding Benchmark (DGEB), an amino-acid embedding
model benchmark. [35]

We evaluate the performance of ESM2 as an underlying embedding model of
goPredSim using metrics outlined in Section 3.3.
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3.2.4 Lighter LLMs with Stopping Layers

It is quite common to use the final hidden layer to extract embedding vectors
from sequences in LLMs, as is done in goPredSim and SAFPred [11, 20]. How-
ever, since every layer of an LLM is trained in unison using back-propagation,
earlier hidden layers should have the potential to encode defining features of
sequences. Since using earlier hidden layers for embedding vector inference
would skip out on multiple layers of calculation, the model becomes signifi-
cantly lighter.

Note N in Figure 9, indicating the amount of transformer heads that are in
succession before reaching the final output. A stopping layer in relation to the
transformer architecture would simply be taking a value lower than N as our
output transformer head, ignoring the rest of the successive transformer heads.

We will evaluate the most interesting hidden layers to analyze in Section 3.3.3
and we will provide a performance comparison of goPredSim using earlier hid-
den layers of ESM1b using the methods outlined in Section 3.3.

Additionally, we will evaluate the potential improvement of ESM1b using stop-
ping layers with regards to runtime and storage VRAM usage on the GPU, by
plotting the stopping layer in regards to the runtime and storage VRAM on the
GPU, and taking a ridge regression to indicate a linear relationship on both
plots.

3.2.5 Structural Homology Prediction

GNNGO3D revealed the potential of structural data for homology inference.
However, a limitation of GNNGO3D is that it is based on experimentally veri-
fied protein structures. [21] These are non-trivial to construct, and as such, not
every protein will have a verified protein structure available to us.

Since sequence data is more readily available, we extend structural homology
prediction to sequence analysis with ESMfold [34]. Using ESMfold, we extract
structural embedding vectors from sequence data. These embedding vectors can
then be used in goPredSim.

We evaluate the potential of using ESMfold embedding vectors in goPredSim
using the methods outlined in Section 3.3.
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3.2.6 SBGraph
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Figure 10: Visual representation of SBGraph. In step 1, we extract syntenic
blocks by grouping all genes together that are on the same contig, the same
strand, and where the distance between the end of the first gene and the begin-
ning of the second gene (the intergenic distance) does not exceed a set threshold.
In step 2, we transfer GO annotations to syntenic blocks by using DIAMOND
to find training set homologs in syntenic blocks. In step 3, we predict GO terms
by predicting homology to block members.

In SAFPredDB, every syntenic block is identified by the average embedding
of all included genes. In SAFPred-Synteny, the best suiting syntenic blocks are
then identified by taking the cosine similarity of the test protein to the average
embeddings of all syntenic blocks in SAFPredDB.

There is however no reason that indicates the genes in syntenic blocks are sim-
ilar sequences. Hence, the average embedding could deviate significantly from
the embeddings of the members.

Additionally, we introduce SBGraph, a method similar to SAFPred-Synteny.
However, instead of taking the similarity of test protein sequences to average
embeddings, we take the similarity of test protein sequences to sequences found
in the NCBI genome dataset.

Once we infer homology to protein sequences in the NCBI genome dataset,
we conclude that this protein sequence is found in a constructed syntenic block
that the homolog sequence is a member of. We can then transfer GO terms
based on the frequency in the syntenic block.
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3.2.7 SAFPred-Synteny Reconstruction

To evaluate the extent exchanging GTDB with the NCBI Genomes dataset, ex-
changing BLAST with DIAMOND, and exchanging CD-HIT with MMSEQS2-
Linclust, we also evaluate a reconstruction of SAFPred-Synteny, aided with
SAFPredDB created with these exchanges.

3.2.8 Multi-Class Complementary Learning Step

In SAFPred, the predictions for SAFPrednn and SAFPred-Synteny are com-
bined by simply taking the mean of the normalized predictions for both meth-
ods. While this method of combination is simple, there are several potential
downsides.

We first define predictions p1 and p2 and combined prediction p1,2. The integer
denotes the underlying prediction method. We establish that the predictions
are for the same GO class and for the same test protein.

If we define p1,2 = p1+p2

2 as in SAFPred there are three logical things that
can happen:

• Both p1 and p2 are non-zero, and p1,2 = p1+p2

2 .

• Either p1 or p2 is non-zero, p1,2 = p1

2 if p2 = 0 or p1,2 = p2

2 if p1 = 0

• Both p1 and p2 is zero so pc = 0

We also define P1 and P2, the set of all GO predictions for every protein given
by method 1 and 2 respectively. We establish that predictions are very sparse,
as only a fraction of all GO annotations describes one protein at the same time.

26



Figure 11: Example to illustrate what can go wrong with taking the mean
of two predictions to combine them. There are three example illustrated 1D
predictions, all predicting the same GO term. The predictions are linearly
rescaled to be between 0 and 1. On the top, hypothetical method 1 is used for
prediction. In the middle, hypothetical method 2 is used for prediction. On
the bottom, the mean is taken. The integers in the subscript of the predictions
indicate the method. The letters in the subscript indicate the protein. The
threshold for every method, in this example established in conjunction with
other unseen GO predictions, is denoted with θn. Predictions where the ground
truth is negative are indicated in light brown. The predictions where the ground
truth is positive are indicated in blue.

To illustrate what can go wrong with this, we constructed a small example
in Figure 11. In this example, the combined method does not perform better
than the individual methods for this particular GO. However, if we introduce
a different way to normalize the values, we are able to improve the combined
method significantly.

The sigmoid function has the following definition:

σ(x) =
1

1 + e−x
(2)

The following features of the sigmoid function can be leveraged for our normal-
isation function:

• The output is between 0 and 1

• The output is centered at 1
2 (x=0)

To coerce the same shape for every prediction, we require the following features:

• The output is between 0 and 1.

• The output is 1
2 when the input is equal to our threshold (x=θ) that

maximizes the F1 score.

• The output is 1 at our maximum possible prediction.
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The following function using the sigmoid has these features:

f(pn, θn, Pn) = σ(
pn − θn

max(Pn)− pn
) (3)

We will further refer to this process as Trained Sigmoid (TS) normalization. In
Section 3.3.1 we explain how to establish θn as well. It should be noted that we
do not know θn without the ground truth. Therefore, we can not establish θn
for our test set regularly. We illustrate how to estimate θn further in Section
3.3.6.
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Figure 12: Example to illustrate how TS normalization can improve combined
predictions. Figure is the same as Figure 11, however, the axes for method 1
and 2 are rescaled using TS normalization. The predictions of the bottom 1D
plot is the mean of the two TS normalized methods above.

As we can see in Figure 12, a perfect prediction suddenly becomes possible
through TS normalization as we were able to flip the location of P1,2c and P1,2b.
Any prediction close to the threshold stays near the threshold, but any predic-
tion far from the threshold gets pushed away.

Please note that the illustrated thresholds and predictions are arbitrary; the
ability to flip these two predictions by first aligning the prediction thresholds
before taking the mean is central.

In Section 3.3.6 we explain how we evaluate that TS normalization is of added
value for combining two complementary predictions.
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3.3 Evaluation

3.3.1 Maximized F1-Score

Radivojac et al (2013) [27] defines the maximized F1-Score, or Fmax, as follows:

Fmax = max
θ

2 · pr(θ) · rc(θ)
pr(θ) + rc(θ)

(4)

Specifically for GO annotation evaluation, the following is defined for precision
pr(θ):

pri(θ) =

∑
f I(f ∈ Pi(θ) ∧ f ∈ Ti)∑

f I(f ∈ Pi(θ))
(5)

pr(θ) =
1

m(θ)
·
m(θ)∑
i=1

pri(θ) (6)

In Equation 5, we calculate the precision for protein i by taking the amount of
true predictions and dividing it by the total amount of predictions. Function
I(x) is the standard indicator function, which is 1 if logical operation x is true
and 0 if not. We sum over every class f to get a total prediction pri(θ) for every
protein.

In Equation 6, we take the mean of the test protein precisions, only includ-
ing test proteins that have one or more predictions at threshold θ.

rci(θ) =

∑
f I(f ∈ Pi(θ) ∧ f ∈ Ti)∑

f I(f ∈ Ti)
(7)

rc(θ) =
1

n
·

n∑
i=1

rci(θ) (8)

Equation 7 and 8 are very similar to Equations 5 and 6, however, we divide by
the amount of true values for calculating rci (false negatives + true positives)
and for calculating rc we take the mean over every protein, not just the proteins
with at least one prediction at threshold θ,

The Fmax essentially calculates our F1 score in optimal conditions.

3.3.2 Estimated F-score Ratio for Robustness Evaluation

To evaluate the robustness of predictions made by every method, we introduce
the Estimated F-score Ratio. In practical terms, we estimate the threshold
for our model by looking at the thresholds that maximize the F score in other
training-test splits.

θ̂s =
1

|S \ {s}|

S\{s}∑
θ (9)
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In Equation 9 we estimate θs for split s by taking the mean of the θ for other
splits, defined as the set S \ {s}. We can then plug in θ̂ in the calculation of

the F score to get F (θ̂) = 2·pr(θ̂)·rc(θ̂)
pr(θ̂)+rc(θ̂)

. Using the equations from Section 3.3.1

we can then get an F-score for our estimated θ.

Fratio =
F (θ̂)

Fmax
(10)

To get the Estimated F-score Ratio, we apply Equation 10.

3.3.3 LLM Stopping Layer Analysis

To evaluate the usability of stopping layers in functional annotation, we calcu-
late the Fmax for our test splits on goPredSim using ESM1b with a stopping
layer for every transformer layer in ESM1b.

To identify changes between embedding outputs from successive layers, we cal-
culate the cosine similarity defined in Equation 1 between embedding vectors
given by the last layer and embedding vectors given by earlier layers.

Furthermore, we will plot the embedding runtime and storage VRAM on GPU
for every stopping layer on ESM1b to illustrate the required computational load
for ESM1b truncated using stopping layers, comparing it with the full model as
well. Furthermore, we run a ridge regression [36] on both plots, as they indicate
a linear relation.

3.3.4 Grid Search Hyperparameter Selection

For safprednn and goPredSim, we hypothesise that the respective hyperparam-
eters percentile and K are of high importance to the final performance of the
model. To evaluate this importance, we apply a grid search for the best hyper-
parameters, looking at the Fmax and θ that achieves the Fmax.

3.3.5 Complementarity Metric

To evaluate if two methods are complementary and if there is potential to com-
bine the methods, we define the complementarity metric.

l1 =
1

n

∑
|pi − yi| (11)

In Equation 11, we define the L1-loss over a single GO class. With n test pro-
teins, we take the mean over the absolute value of the difference of the prediction
and the ground truth.
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cf1,f2g = lf11 − lf21 cf1,f2g >= 0 (12)

The complementarity of function f1 and f2 for a single GO prediction g is found
in Equation 12. We clip negative negative values to 0, as we want to evaluate
how much of the loss in f1 can be fixed by f2. If predictions are the same,
the loss is the same. However, if predictions are different, one method will be
complementary to the other.

cf1,f2 =
1

|G|

g∈G∑
cf1,f2g (13)

To get the average complementarity, we take the mean of all GO complementary
metrics. To get a better indication of cases where GO predictions can actually
be improved, we define G as the set of GO classes g where cf1,f2g >= 0 or

cf2,f1g >= 0.

In essence, the higher both cf1,f2 and cf2,f1 are, the stronger we can conclude
that method f1 and method f2 can fix the loss of one another for more than
one GO class, and thus these methods are complementary. If only one of these
metrics is high, say cf1,f2, then we can only conclude that f2 can fix issues in
f1, but not the other way around.

3.3.6 Complementary Learning Assessment

To evaluate if our complementary learning method is superior to taking the mean
of predictions, we compare the Fmax for the standard mean combination where
inputs have been minmax scaled with the TS normalized mean combination and
the Fmax for the two uncombined methods.
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4 Results

4.1 Reproduction of SAFPred results

(a) Mean Fmax scores of all test splits for our reproduction of SAFPred. The un-
derlying dataset for this reproduction is SwissProt-SAFPred. For SAFPred-nn, the p
variable stands for the percentile, and the underlying LLM is also given. None that
the SAFPRed-synteny Reproduction only has a result for PIDE = 95. Additionally,
we plot our evaluation of the original SAFPred-Synteny and SAFPred predictions,
denoted by ’Original’.

(b) Fmax results of benchmarked methods from Urhan et al. 2024 [11].

Figure 13: Fmax results for both the reproduction of SAFPred and the SAFPred
paper itself. The y-axis indicates the Fmax for the given method at the given PIDE
on the x-axis. The bars are set on the average over all 5 test splits, and the errorbars
indicate the standard deviation over all 5 test splits.
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In Figure 13a we can see the reproduction of methods also benchmarked in
the SAFPred paper. In this benchmark, we have reproduced BLAST, as well as
SAFPred-nn with p = 99 as mentioned in the paper. We have also reproduced
SAFPred-synteny, only for a PIDE of 95. We have also benchmarked SAFPred-
nn with p = 99.999. Additionally, we have plotted our calculated Fmax for the
predictions made for the original SAFPred paper.

As we did not have direct access to the sequences that were used to build
SAFPredDB, it was not possible to reproduce the step to identify training sam-
ples too close to test samples with BLAST, and therefore, we could not run
SAFPred-synteny for different splits of PIDE. Additionally, the SAFPredDB
entries trained on the actual test samples could not be removed either, so we
would expect data leakage.

4.1.1 Fmax reproducible for BLAST and SAFPred-nn

If we look carefully, we can see that for BLAST and SAFPred-nn (p = 99.999),
the averages line up in Figures 13a and 13b. This indicates that our repro-
duction of both methods, as well as our Fmax calculation, should be properly
calibrated as well.

However, when we use the p = 99 as suggested by the SAFPred paper, we
see that the average is significantly lower. This indicates that the suggestion to
use p = 99 was most likely an inaccuracy.

For future comparison, it is important to verify that we are able to get the
same results as the SAFPred paper. Moving forward, we can be confident that
we are on the same grounds of comparison for both BLAST and SAFPred-nn,
since we are able to get a similar average.

While there are slight differences in standard deviation between Figures 13a and
13b, the highest difference in standard deviation is about 0.05 on Fmax = 0.6
(PIDE = 40, for method BLAST). This could be caused by the fact that we
use DIAMOND instead of BLAST in an earlier step to remove training entries
that exceed the PIDE to a test entry.

4.1.2 Reproduction issues SAFPred-synteny

While BLAST and SAFPred-nn have proven to be reproducible, the perfor-
mance of the reproduced SAFPred-synteny, as shown in Figure 13a, is signifi-
cantly lower than originally benchmarked in Figure 13b.

Since SAFPred-synteny is the main contribution of the SAFPred paper, it was
an important goal to reproduce SAFPred-synteny. However, despite finding and
fixing multiple issues in the SAFPred repository and despite active help from
the main author of the SAFPred paper, we have not been able to come close to
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the original benchmarked performance.

In Figure 13a, we have also plotted our calculated Fmax for the original SAFPred-
synteny predictions, as well as the original SAFPred predictions. Comparing
them with Figure 13b, we do see that the predictions that were originally made
are actually as accurate as originally evaluated.

From this, we can conclude that while SAFPred-synteny is not quite repro-
ducible to us, we can rule out that the lower values have to do anything with
issues regarding the evaluation method. This also makes it likely that the re-
production issues are mainly on the prediction side.

While it is unfortunate that we were not able to reproduce SAFPred-synteny,
issues with paper reproduction are not uncommon, and even pervasive in the
field of bioinformatics. [37]
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4.2 Sequence homology inference methods optimally re-
quire few matches per query protein

(a) Mean Fmax results of several sequence homology methods on the selected
SwissProt-SAFPred dataset. For goPredSim, we use a K of 1. Both BLAST and
DIAMOND have no restriction to the amount of significant matches per test protein.
For DIAMOND (k=1), we restrict the maximum amount of significant matches to 1.
The lower and upper errorbars signify the 25th and 75th percentile respectively. On
the x-axis, the PIDE threshold for the train-test splitting mechanism is given.

(b) Mean Fmax and threshold θ for differ-
ent values of hyperparameter K in goPred-
Sim. In this analysis we excluded E. coli
as a test species due to technical limita-
tions.

(c) Mean Fmax and threshold θ for dif-
ferent values of hyperparameter p in
SAFPred-nn. In this analyisis we excluded
E. coli as a test species due to technical
limitations.

Figure 14: Mean Fmax results for selected sequence homology methods are
plotted in Figure 14a. In Figures 14b and 14c the plots illustrate the effect of
different hyperparameters on goPredSim and SAFPred-nn. In all figures the
lower and upper errorbars signify the 25th and 75th percentile respectively.

35



In Figure 14 our main goal was to show that any of the evaluated sequence
homology methods is optimized by inferring as few as possible homologs for
every test sample. Chronologically, our first experiment was to show that either
goPredSim and the similar method SAFPred-nn has a better performance when
the amount of matches is low.

To minimize the amount of matches in goPredSim, we take a value of K that
is as low as possible. As we can see in Figure 14b, the Fmax is indeed optimal
at K=1, dropping down as we gradually increase the value of K. We also notice
that the thresholds that lead to the maximum F-score generally increase as K
goes up.
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Figure 15: Illustrations to help explain why a higher K in goPredSim can cause
both a lower Fmax and a higher θ. The dots depict proteins in an arbitrary
spatial domain. ptn depicts a training protein that confers correct GO labels to
their respective query protein. ptx depicts a training protein that confers wrong
GO labels. pqn depicts a query protein. dna and dnb represent the distance
between a query protein and a training protein.

To help reason why this can happen, we refer to Figure 15. If K=1, we see that
the correct training proteins are matched to our query proteins. However, when
we set K to 2, we see that pq1, with only one good training example, is linked
to a false training protein. pq2 is also linked to pt1, which is not exactly a right
match.

This should not be a problem in itself. We could simply use a higher threshold
to get rid of false matches. However, in this case, we see that d1b is smaller than
d2b. In this case, we can not find a threshold anymore that makes the prediction
perfect, and our Fmax suffers.

From this intuition, we speculate that the main reason why goPredSim suffers
from a higher K is because query proteins that are close to secondary matches
with less accurate GO labels actively hinder the inclusion of primary matches
to query proteins that are further away, but still accurate.

From the same intuition, we predict that the threshold has to be set higher
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at a higher K to compensate the linkage of secondary matches with worse accu-
racy than the primary match.

In Figure 14c we also see that a higher percentile in SAFPred-nn confers a
better accuracy and a lower threshold. Since a higher percentile means more
restriction in matches, we can see that this effect is analog to the effect in go-
PredSim. Due to the high similarity of the two methods, it is likely that the
same reasoning holds to this effect as well.

4.2.1 BLAST and DIAMOND have a similar performance

In this section we also wanted to support the use of DIAMOND as an alternative
to BLAST. The main reason to use DIAMOND over BLAST is the significant
speed advantage. While DIAMOND was praised to be as sensitive as BLAST
[18], we needed to show that this is the case for use in functional annotation as
well.

In Figure 14a we see that BLAST and DIAMOND have a very similar Fmax at
the mean and both percentiles in the errorbars. This indicates that we should be
able to use DIAMOND as an alternative to BLAST with no significant change
to performance.

4.2.2 Restricting matches in DIAMOND makes it almost as power-
ful as the knn methods

Extending the earlier findings regarding the restriction of the maximum amount
of matches per query protein, we wanted to see if this holds in DIAMOND as
well. Since our findings indicate that we want to restrict the amount of matches
as much as possible, we tried to use DIAMOND with only 1 match per query
protein at most.

In Figure 14a we see that when we apply this restriction in DIAMOND, the
Fmax gains a significant boost to such an extent that it becomes only slightly
worse than goPredSim and SAFPred-nn.

4.2.3 goPredSim and SAFPred-nn have similar performance

From Figure 14a we infer that goPredSim and SAFPred-nn with the given hy-
perparameters have a highly similar performance. When comparing these two
results to DIAMOND (k=1), we see that while DIAMOND (k=1) attains a
similar performance at a higher train-test split PIDE, at lower PIDE values the
outperformance of SAFPred-nn and goPredSim methods is distinctly visible.

Moving forward, we will use goPredSim as our reference knn method of choice,
as we have experienced it to be faster and easier to work with.
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4.3 Model application on different SwissProt datasets

4.3.1 Models become slightly less accurate with SwissProt-Full in-
stead of SwissProt-SAFPred

Figure 16: Mean Fmax comparison of DIAMOND (k=1) and goPredSim on
the SwissProt-SAFPred and the SwissProt-Full dataset. The x-axis denotes the
PIDE for the train-test splitting mechanism. The y-axis denotes the Fmax. The
height of the bars indicate the mean over all test splits at the given PIDE. The
lower and upper errorbars indicate the 25th and the 75th percentile respectively.

Before we can make an accurate evaluation of SwissProt-Prokaryote, we must
first establish whether our baseline using SwissProt-Full is any similar to using
SwissProt-SAFPred.

In Figure 16, we see that for both DIAMOND (k=1) and goPredSim predictions
have gotten slightly worse. However, as this is possibly due to some random
fluctuation as both the SwissProt dataset and the GO labels have evolved over
three years, we believe this is not something we can prevent.
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4.3.2 Pruning non-prokaryote data does not negatively impact model
performance

Figure 17: Mean Fmax comparison of DIAMOND (k=1) and goPredSim on
the SwissProt-SAFPred and the SwissProt-Full dataset. The x-axis denotes the
PIDE for the train-test splitting mechanism. The y-axis denotes the Fmax. The
height of the bars indicate the mean over all test splits at the given PIDE. The
lower and upper errorbars indicate the 25th and the 75th percentile respectively.

In Figure 17 we see that both evaluated methods enjoy a similar perfor-
mance when we prune non-prokayote protein data from our dataset, as we do
in SwissProt-Prokaryote. The only noticable difference is seen at PIDE 40 for
DIAMOND (k=1), where it is possible that the prokaryote proteins removed by
the training-test splitting mechanism had to be substituted by similar eukary-
ote/viral proteins.

This result is helpful, as we can essentially remove about 78% of our data
without expecting detrimental effects. The pruning of our training set ensures
that the models need less computational actions to train and infer functional
annotations.
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4.4 Early stopping layers in embedding models do not
negatively impact goPredSim model performance

Figure 18: Mean Fmax for goPredSim on the SwissProt-Prokaryote dataset. In
this figure, we vary the transformer output embedding layer (stopping layer)
in ESM1b before use in goPredSim. The x-axis denotes the stopping layer for
ESM1b. The y-axis denotes the mean Fmax. The height of the bars indicate
the mean over all test splits at the given PIDE. The lower and upper errorbars
indicate the 25th and the 75th percentile respectively.

In Figure 18 we can see that from stopping layer 9 and up both the Fmax

means and the errorbars stabilize around the same accuracy. At this point we
identify two potential causes: the output of layer 9-33 is virtually the same,
or the output of layer 9-33 is not the same, but the changes in the embedding
space do not change labels too much anymore.
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Figure 19: Cosine similarity of 200 random protein embeddings made at the
stopping layer given at the x-axis compared to the protein embedding output
at the final (33rd) embedding layer.

Figure 19 suggests that the embedding vectors do indeed change for the
outputs at layer 9-33 in ESM1b. So, from the information of Figure 18 and 19,
we observe that the embedding space changes in these layers are present, but
do not actually change the accuracy of goPredSim.
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4.4.1 Early stopping layers significantly improve embedding speed
and GPU VRAM

(a) VRAM usage of ESM1b on the GPU
given the stopping layer on the x-axis. The
y-axis indicates the MB amount of VRAM
on the GPU.

(b) Runtime in minutes for creating an
embedding vector for all proteins on
SwissProt-Prokaryote given ESM1b with
a stopping layer on the x-axis. The run-
time in minutes is indicated on the y-axis.

Figure 20: The runtime and GPU VRAM usage for model storage of ESM1b
with SwissProt-Prokaryote. In both plots, a ridge regression is overlaid to high-
light the linear relationships between the axes.

Figure 20 highlights what we stand to gain by applying stopping layers in
ESM1b for use in goPredSim. In essence, if we use a stopping layer of 9, as
Figure 18 indicates to give no impact in performance, the ridge regression in-
dicates that we would need 720,59 MB of VRAM to store the model instead
of 2608,91 MB, and generating the embedding vectors would take 5,37 minutes
instead of 17,61 minutes. This cuts runtime to 30.4% and storage VRAM to
27,6% compared to the model without a stopping layer (l = 33).

It is important to note that model storage is not the only user of VRAM in
the GPU. Both inference calculations and input data also take up some space.

This finding does not only help us in making currently available LLM mod-
els faster and lighter, but it would make heavier LLM models requiring more
runtime and GPU memory available to weaker hardware for the use of embed-
ding extraction. As ESM1b only has 6̃50 million parameters, and the current
biggest model in the DGEB leaderboard (progen2) has 6,4 billion parameters
[35], we see that this 10-fold increase in parameters could be overcome using
stopping layers.

Additionally, while 17,61 to 5,37 minutes does not sound like an important re-
duction, note that we only embed the 24.431 proteins in SwissProt-Prokaryote.
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We go from 1.387 proteins per minute to 4.549 proteins per minute, assuming
a stable rate with similar protein lengths.

If we wish to embed a dataset that is significantly larger, say the entirety of
UniProt, normally that would take us 183.312 minutes, or 127 days. Using the
stopping layer l = 9, this would take us 55.892 minutes, or 39 days, without a
worse performance in GO annotation.

Naturally, we should consider using CD-HIT or linclust as well to reduce the
dataset redundancy of UniProt before embedding, which would net us another
significant time save.

4.4.2 Using batches in protein embedding can result in a lower per-
formance

Figure 21: Figure to illustrate the effect on goPredSim of embedding multiple
proteins in batches. The x-axis denotes the PIDE for the train-test splitting
mechanism. The y-axis denotes the Fmax. The height of the bars indicate the
mean over all test splits at the given PIDE. The lower and upper errorbars
indicate the 25th and the 75th percentile respectively.

To look for potential speed optimizations in the embedding process, we tried
embedding proteins in batches. However, we never really expected the negative
effect batch embeddings could bring us.

In Figure 21 we see what significant negative effect batch embedding has on
goPredSim. We see that as we increase the amount of proteins per batch (b),
the mean Fmax drops rapidly.
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We suspect this has to do with the fact that ESM1b embedding output is over
amino-acids, which we convert to protein embeddings by taking the mean over
all amino-acid embeddings. If we implement batching, the transformer input
includes padded empty amino-acid characters so that every protein is the same
length. If we include the transformer output of the padding in the mean amino-
acid embedding, the protein vectors will be skewed by the output caused by the
padding.

We predict that we could fix this issue by ignoring the padded additions of
the proteins when calculating the mean amino-acid embeddings. However, as
unbatched protein embedding achieved quite a good speed in itself, we decided
to not investigate this issue further.

4.5 New goPredSim-ESM2 does not outperform goPredSim-
ESM1b, even with larger models

Figure 22: Figure to evaluate the impact of using ESM2 instead of ESM1b in
goPredSim. The x-axis denotes the PIDE for the train-test splitting mechanism.
The y-axis denotes the Fmax. The height of the bars indicate the mean over all
test splits at the given PIDE. The lower and upper errorbars indicate the 25th
and the 75th percentile respectively.

Since previous studies indicate that ESM2 outperforms ESM1b [34, 35], we
imagined that using ESM2 instead of ESM1b in goPredSim would be quite a
simple improvement for use in functional annotation.

However, Figure 25 suggests the opposite. We see that goPredSim, using
ESM1b, is still the best performing model, even compared to goPredSim-ESM2
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with 3 billion parameters.

This came as quite a surprise, and we are still not exactly sure why this would
be the case. We would have at least expected roughly the same performance,
but not worse.

One possible speculation would be that the underlying dataset for ESM2 was
somewhat different than for ESM1b. It could be possible that this earlier dataset
for ESM1b was better representative for SwissProt-Full compared to the dataset
for ESM2.

In any case, this finding highlights that we should not take any previous finding
at face value, and if we were to try a different LLM than ESM1b in goPredSim,
we should not expect that better LLMs in the literature also perform better in
goPredSim.

4.6 Proposed structural homology method goPredSim-ESMfoldv1
not viable

Figure 23: Figure to evaluate the impact of using ESMfold instead of ESM1b in
goPredSim. The x-axis denotes the PIDE for the train-test splitting mechanism.
The y-axis denotes the Fmax. The height of the bars indicate the mean over all
test splits at the given PIDE. The lower and upper errorbars indicate the 25th
and the 75th percentile respectively.

Since GNNGO3D indicated the effectiveness of structural data for functional
annotation, we wanted to see if we could expand SAFPred with a component
that uses structural data as well. However, the key limitation with GNNGO3D
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is that we require experimental structural data, which is only possible for prop-
erly researched proteins. [21]

We wanted to see if we could use a LLM specifically made for structural in-
ference to extract embedding encoding this structural information. In this way,
we could get embedding vectors that could be used for structural homology in-
ference. We chose ESMfold, as it is quite close to ESM1b that we already use
in goPredSim.

However, in Figure 25 we see that goPredSim-ESMfold is vastly underperfor-
mant in comparison to our established methods for all PIDE.

This result indicates that this proposed strategy of using ESMfold in goPred-
Sim for structural homology inference is not a good strategy for the purposes
of functional annotation. A possible interpretation of the underperformance of
goPredSim-ESMfold could be that we are essentially predicting on a structural
prediction, and predicting the structure of proteins is a hard problem.

We could revisit this strategy as structural prediction methods become more
powerful. However, it could very well be that this strategy is mostly fit for
sequence-based homology inference.
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4.7 Estimated F-score Ratio slightly better for DIAMOND
(k=1)

Figure 24: Estimated F-score ratio plotted for all PIDE splits. The methods
evaluated are DIAMOND (k=1) and goPredSim (ESM1b 650M). On the y-
axis the ratio between the F-score using an estimated threshold and the Fmax

is given. On the x-axis the PIDE for the training-test splitting mechanism is
given. The lower and upper errorbars indicate the 25th and the 75th percentile
respectively.

We were interested to investigate whether the Fmax was actually well repre-
sentative for an F-score for any test species. Hence, we calculated the F-score
using an estimated threshold, and divided it by the Fmax.

In Figure 24 we see that both DIAMOND (k=1) and goPredSim give F-scores
that are quite close to the Fmax, suggesting that the Fmax gives quite a good
indication for the actual model performance, with little deviation.

We see however that the Fmax for DIAMOND (k=1) is still a bit more reli-
able than the Fmax for goPredSim, as the ratio for the former is higher than
the latter.

However, as both ratios are relatively close to 1, we can safely say that both
methods are still quite reliable at predicting an unknown dataset given an esti-
mated threshold.

It would be interesting to apply this analysis to other state-of-the-art func-
tional annotation methods. If the Fmax of a method appears high, but the θ

47



that confers the Fmax is very dependent on the test species, then we might not
be able to reach this Fmax reliably, making the model weaker than it appears.

4.8 Current implementation SBGraph underperforms in
comparison to established methods

Figure 25: Figure to evaluate the performance of SBGraph in comparison with
established methods. The x-axis denotes the PIDE for the train-test splitting
mechanism. The y-axis denotes the Fmax. The height of the bars indicate the
mean over all test splits at the given PIDE. The lower and upper errorbars
indicate the 25th and the 75th percentile respectively.

Since we were having trouble to reproduce the results for SAFPred-synteny
from the SAFPred repository, we figured that, given synteny is an effective
method for functional prediction in prokaryotes, we should be able to make a
method similar to SAFPred-synteny on our own terms that might overcome
some latent issues.

However, SBGraph was not able to perform well in the current implementa-
tion. Unfortunately, until we know the root cause of the underperformance of
SAFPred-synteny in comparison to the original SAFPred-synteny results, we
might not know for sure what the issue is that is holding SBGraph back, and if
it a similar issue that is holding SAFPred-synteny back.
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4.9 Combination of methods using TS-Normalization in-
conclusive

f1 / f2 goPredSim (ESM1b) goPredSim (ESMfold)

goPredSim (ESM1b) 0.00 4.17 ∗ 10−4

goPredSim (ESMfold) 4.53 ∗ 10−3 0.00

Table 6: Mean complementarity comparing goPredSim (ESM1b) and goPredSim
(ESMfold) on E. coli with a PIDE of 95 to the training set. The method in the
row is f1, the method in the column is f2. In this comparison, we estimate the
mean of the loss f2 can fix in f1.

We tried to see if we could combine goPredSim-ESM1b and goPredSim-
ESMfold to obtain better predictions by leveraging potential complementarity.
In Table 6 we see that, on average, there is not a lot of loss to be solved by either
method, suggesting that either method is not complementary to each other.

Method / Organism Escherichia
coli

Mycobacterium
tuberculosis

Bacillus
subtilis

Pseudomonas
aeruginosa

Salmonella
ty-

phimurium

goPredSim (ESM1b) 0.56 0.58 0.83 0.78 0.85

goPredSim
(ESMfold)

0.34 0.23 0.38 0.36 0.69

Combination TS
Normalization

0.52 0.50 0.72 0.68 0.82

Combination
MinMax Scaling

0.52 0.49 0.69 0.67 0.80

Table 7: Fmax values calculated for goPredSim (ESM1b), goPredSim (ESMfold),
their combination with TS normalization, and their combination with MinMax
scaling. The predictions are all for a 95 PIDE train/test split.

When trying to combine the two methods in Table 7, we do see a slight preference
towards the TS Normalization combination method. However, overall, we are
still better off not combining the methods at all, and sticking with goPredSim-
ESM1b as a prediction method.

We can not strongly conclude much yet from the potential of TS-Normalization,
as goPredSim-ESM1b and goPredSim-ESMfold are not actually very comple-
mentary to each other. It would be important to find two examples which are
actually complementary before we can evaluate if TS-normalization has any
potential for prediction improvement.
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5 Conclusions

We have delved into possible improvements to existing methods pertaining to
SAFPred, and there are quite some findings that prove useful to the functional
prediction of prokaryote proteins. We will first try to put every finding in
relation to our research questions.

5.1 Research Question 1

How can we refine SAFPred without fundamentally changing SAF-
Pred itself? There were various ways which we could refine SAFPred, espe-
cially pertaining to goPredSim/safprednn.

Perhaps the most interesting findings here is that we can apply stopping layers
to ESM-1b, and possibly to various other LLMs, without loss of prediction accu-
racy. This means that, for embedding-based inference, we can safely drop 70%
and possibly more of the model. This makes for a significantly lighter model
and faster model, which also makes it possible to utilize heavier models with
less resources.

We have shown that the sequence homology methods DIAMOND, safprednn
and goPredSim prefer to have as few as possible matches for every query pro-
tein.

We found that safprednn, while interesting, brings not much more to the table
than goPredSim already did. These methods can be used interchangably with
no severe impact on accuracy.

To our surprise, we found that ESM2, even with larger models, is inferior to
ESM1b in the context of embedding-based protein functional prediction. We
strongly expected that, due to the boasted performance compared to ESM1b,
ESM2 would surely produce better representative embedding vectors than ESM1b.

5.2 Research Question 2

Can we effectively restrict our prediction to only use prokaryote-
sourced data? It is safe to say that, for all our benchmarked methods, pre-
dictions on the SwissProt dataset pruned to only contain prokaryote proteins
are about as good as the predictions on the full SwissProt dataset. This finding
helps us dramatically cut down on training set size, which makes benchmarking
faster and use less resources.

5.3 Research Question 3

Can we add a functional prediction method utilizing structural homol-
ogy to improve predictions? The answer to this question is not necessarily
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no, however, the strategy we attempted was unfortunately ineffective. When we
use ESMfold embeddings in goPredSim, we ultimately predict on a prediction,
which gives an extra possible layer of failure.

Perhaps when protein structural embedding models become more powerful, this
method could have more potential. However, a method more directly predicting
on verified structural data might be our best bet right now.

5.4 Research Question 4

Can we create a better method for combining two functional predic-
tions? We still have have too few results to conclude that this method is better
than taking the mean of linearly normalized predictions. We should look for
more effective methods to try to combine.

5.5 Research Question 5

Can we define a metric for evaluating model accuracy on unknown
data? We have defined the Estimated F-score ratio and evaluated this metric
on the given methods. From this, we have seen that we can reach quite close to
the Fmax in goPredSim and DIAMOND (k=1) using an estimated θ.

While CAFA gives us good indications for the potential performance of a model,
their method of using unverified proteins is not easily reproduced by indepen-
dent research. Therefore, this metric, or a similar metric with the same idea,
gives non-participants to CAFA a good alternative for an F-score robustness
check.

5.6 Additional Findings

5.6.1 Batch Embeddings

We never expected batch embedding to give problematic output, and we stum-
bled on this issue by accident. However, carelessly embedding proteins in
batches for use in goPredSim gave us degenerate embeddings that conferred
worse predictions than embeddings that have not been created in batches.

5.6.2 Synteny Method Underperformance

We went into this research assuming that synteny was of considerable value in
the functional prediction of proteins in prokaryotes. However, every synteny-
based method, even the method from SAFPred, gave us results that did not
match the performance of the SAFPred paper.

As the original predictions have been cross-checked to be correct by us, it is
likely that we are still missing an important piece of the puzzle that made
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SAFPred-synteny so well performant. Unfortunately, that missing piece is still
unknown.

6 Discussion

6.1 Reproduction Issues SAFPred

Issues around reproducing SAFPred have been a central theme in our research.
Sadly, even with collaboration with the author, the reproduction of the original
paper has been quite a challenge.

While fixing technical issues within SAFPred have never been a goal of this
research, a good portion of the contribution of this thesis has been towards fix-
ing these technical issues. One of the more glaring issues we came across in the
SAFPred repository, was that there were multiple bugs in the function for the
Fmax.

The function calculates the Fmax in a loop for every threshold. There had
been a count for the number of proteins (n). At the end, we divide the sum
of all protein recalls by the number of proteins to get the mean recall. How-
ever, this number of proteins was not re-initialized every threshold, so for higher
threshold, the denominator would become extraordinarily high, and our recall
would be very low. However, this division is only done on eval mode=full, and
the default is eval mode=partial. While there is no indication with which the
figures are made, it is likely that only eval mode=partial was used.

The more impactful issue was that in the calculation of the protein-centric
precision metric, the amount of true positives was divided by the amount of GO
terms, regardless if they exceed the threshold or not. Instead, we should divide
by the amount of predictions that exceed the threshold.

However, with the right Fmax calculation it is still possible to reproduce the
metrics for BLAST and safprednn. The impact of this issue might have been
limited.

Additionally, there are several instances of files being missing or wrong files
that have been placed in place of the missing files. Quite some time has been
invested into figuring out why the file that turned out to be from the toy exam-
ple gave terrible results. As of right now, these files have been recovered, and
it should be possible to run the full SAFPred pipeline with minimal tinkering.

Inside the provided files, there are numerous cases where the given arguments
do not reproduce the original predictions. In the main script given in the repos-
itory, there is a possibility to give the SAFPred-nn percentile as a parameter.
However, this parameter never gets passed to the function itself. Instead, the
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default percentile of 99 gets used, which results in a high amount of predictions
and a low performance.

Additionally, the argparse store true had been misinterpreted to ’be true on
default’. However, this flag actually means that the parameter is false on de-
fault, and true if the parameter is ’stored’. Therefore, the parameters ’norm sim’
and ’keep singletons’ should have been true, but were actually false.

6.2 Stopping Layers in Other Applications

Embedding-based prediction is not only reserved for protein functional pre-
dictions. There are quite some methods that use embeddings as features for
classification problems, which could benefit by the use of Stopping Layers as
well. Stopping Layers would not only make inference faster and less resource
intensive, it would make inference on significantly larger models possible on
smaller hardware.

There is a variety of applications of using text-embeddings for the purpose
of classification. [38] However, the VRAM that is required for these models is
increasing rapidly. Take the largest text model, Falcon 180B, which requires up
to 320 GB VRAM for inference.

We would require a substantial budget if we wanted to use this model. How-
ever, if we only need embedding vectors from this model, we could consider
using stopping layers so that we do not need to store the entire model at once.
We might be able to cut the model down to 80 GB of VRAM.

However, we would still have to find out if stopping layers are also effective
for the task at hand. We could do this by testing on a smaller LLM, and seeing
if our accuracy maximizes earlier than at the final layer.

6.3 Taxonomy Level as Supporting Prediction Feature

Since prokaryote proteins can comfortably be predicted by only using other
prokaryote proteins as a training set, we could conceptualize a method that
pre-filters a training set on taxonomy before applying a model. Perhaps even
more specific taxonomies could be effective.
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