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Abstract  

The topic of transitions in automated driving is becoming important now that cars are automated to ever greater 
extents. This paper proposes a theoretical framework to support and align human factors research on transitions 
in automated driving. Driving states are defined based on the allocation of primary driving tasks (i.e., lateral 
control, longitudinal control, and monitoring) between the driver and the automation. A transition in automated 
driving is defined as the process during which the human-automation system changes from one driving state to 
another, with transitions of monitoring activity and transitions of control being among the possibilities. Based on 
‘Is the transition required?’, ‘Who initiates the transition?’, and ‘Who is in control after the transition?’, we 
define six types of control transitions between the driver and automation: (1) Optional Driver-Initiated Driver-in-
Control, (2) Mandatory Driver-Initiated Driver-in-Control, (3) Optional Driver-Initiated Automation-in-Control, 
(4) Mandatory Driver-Initiated Automation-in-Control, (5) Automation-Initiated Driver-in-Control, and (6) 
Automation-Initiated Automation-in-Control. Use cases per transition type are introduced. Finally, we interpret 
previous experimental studies on transitions using our framework and identify areas for future research. We 
conclude that our framework of driving states and transitions is an important complement to the levels of 
automation proposed by transportation agencies, because it describes what the driver and automation are doing, 
rather than should be doing, at a moment of time.  

Keywords: human factors; automated driving; transitions; transition classification 

1. Introduction 

Car driving is becoming automated to an ever greater extent. Presently, most car manufacturers have released 
cars that are equipped with adaptive cruise control (ACC) and/or lane keeping assistance (LKA) systems, which 
are technologies that assist in the longitudinal and lateral driving tasks, respectively. In field operational tests, 
these driver assistance systems have been found to raise traffic efficiency and to reduce energy consumption 
(e.g., Alkim, Bootsma, & Hoogendoorn, 2007). Moreover, such systems may reduce the number of traffic 
accidents (Kuehn, Hummel, & Bende, 2009), most of which are currently attributed to human error (Brookhuis, 
De Waard, & Janssen, 2001; Dingus et al., 2006; Storie, 1977; Treat et al., 1979). 

The existing driver assistance systems function as supportive automation and keep the driver in the loop by 
requiring the driver to monitor the environment and control part of the driving task. More advanced technologies 
that allow the driver to be out-of-the-loop for extended periods are now starting to be introduced. Three 
authorities, namely the German Federal Highway Research Institute (BASt; Gasser & Westhoff, 2012), the 
Society of Automotive Engineers (SAE, 2014), and the United States National Highway Traffic Safety 
Administration (NHTSA, 2013) have each formulated definitions that classify automated driving systems from 
driver assistance to full automation. In fully automated driving, the automation takes care of all monitoring and 
control activities, and a driver is not strictly needed anymore other than to set a destination. However, several 
problems, such as limitations of technology, divergent public acceptance, liability issues, and human-machine 
ethics, are yet to be solved before fully automated driving can become publicly available at a wide scale (e.g., 
Kyriakidis, Happee, & De Winter, 2015).  



Previous human factors research indicates that automation resolves the imprecision and variability of human task 
performance, but also yields new types of safety concerns. It has been found that a high level of automation can 
cause out-of-the-loop problems such as complacency, skill degradation, mental underload (when the automation 
functions reliably), mental overload (when the operator suddenly needs to solve an automation-induced problem), 
and loss of situation awareness (Bainbridge, 1983; Bibby, Margulies, Rijnsdorp, & Withers, 1975; Endsley & 
Kiris, 1995; Hancock et al., 2013; Kaber & Endsley, 1997; Parasuraman & Riley, 1997; Vlakveld, 2015), which 
are issues that have also been implicated in the domain of automated driving (De Winter, Happee, Martens, & 
Stanton, 2014; Seppelt & Victor, 2016; Young & Stanton, 2002). Recently, a meta-analysis of 18 experiments on 
human-automation interaction found statistical support for the so-called lumberjack hypothesis, which postulates 
that as the degree of automation increases, the side effects of automation (e.g., performance impairment if the 
automation fails) increase as well (Onnasch, Wickens, Li, & Manzey, 2014). In the domain of automated driving, 
it has been argued that there is an ‘uncanny valley’ (Flemisch et al., 2016), whereby not the highest levels of 
automation, but intermediate levels in which the human is expected to monitor the automated driving system, 
may be particularly hazardous because humans are unable to remain vigilant for prolonged periods of time 
(Casner, Hutchins, & Norman, 2016; Norman, 2015). These studies make clear that due to the changes in the 
driver’s role in automated vehicles compared to manually driven vehicles, human factors need to be carefully 
considered by researchers, designers, and policy makers (see also Kyriakidis et al., 2016; Merat & Lee, 2012). 

Bainbridge (1983) argued that ‘taking over control’ is a primary task left for the human operator who supervises 
an automated system. Indeed, one cannot ignore the fact that automated driving systems will occasionally fail 
(Goodall, 2014), which implies that a driver has to resume control to avoid crashing. Moreover, automated 
driving systems of the near future will probably not be able to cover all traffic conditions, which implies that the 
driver has to take over control to avoid a collision or traffic violation. Empirical studies have confirmed that 
accidents and near-accidents are likely to occur in situations where drivers suddenly have to resume manual 
control from an automated driving system (e.g., De Waard, Van der Hulst, Hoedemaeker, & Brookhuis, 1999; 
Flemisch, Kelsch, Löper, Schieben, & Schindler, 2008; Jamson, Merat, Carsten, & Lai, 2013; Schermers, 
Malone, & Van Arem, 2004; Zeeb, Buchner, & Schrauf, 2015). The aforementioned out-of-the-loop problems 
exacerbate the inability of the driver taking back control from automation. Thus, it is important to investigate 
control transitions in automated driving, especially when considering that human factors studies have repeatedly 
demonstrated that humans are not good at supervisory tasks (Hancock, 2015; Mackworth, 1950). 

One issue that occurs when interpreting the experimental literature on control transitions is that the results are 
much determined by the specific automation functions, traffic conditions, and task instructions (see De Winter et 
al., 2014 for a review). To be able to derive more general conclusions on driver behaviour across different 
automated driving systems and traffic situations, this paper proposes a framework that defines and classifies 
transitions focusing on changes of driving states. This framework is intended to build a dialogue among 
researchers who share common interests in understanding how drivers behave during transitions in automated 
driving. Our concept of driving states differs from the existing BASt, SAE, and NHTSA levels of automation 
because it formally outlines possible allocations of primary driving tasks and is descriptive rather than normative. 
That is, our framework describes what the driver and automation are doing at a given moment of time 
(descriptive approach) rather than what they should be doing according to design criteria/standards of conduct 
(normative approach).  

This paper is organised as follows. Section 2 defines transitions between driving states. We explain that the 
driving states represent how the primary driving tasks of longitudinal control, lateral control, and monitoring are 
distributed between the automation and the driver, and that transitions are defined as a change from one driving 
state to another. Section 3 introduces a classification tree that categorizes different types of control transitions. In 
Section 4, we review experimental studies that are concerned with transitions in automated driving, and interpret 
the findings using our transitions framework. Finally, Sections 5 and 6 present research gaps and draw 
conclusions arising from this review and applications of the new framework. 

2. Definition of transitions in automated driving 

Most studies on transitions in automated driving have defined a ‘transition’ as either an activation or a 
deactivation of a function (Gold, Damböck, Lorenz, & Bengler, 2013; Miller, Sun, & Ju, 2014; Nilsson, Falcone, 
& Vinter, 2015; Pauwelussen & Feenstra, 2010; Toffetti et al., 2009), or a change from one level of automation 
to another (Merat, Jamson, Lai, Daly, & Carsten, 2014; Varotto, Hoogendoorn, Van Arem, & Hoogendoorn, 
2015; Willemsen, Stuiver, Hogema, Kroon, & Sukumar, 2014). Similarly, Merriam-Webster defines a ‘transition’ 
as ‘a change from one state or condition to another’, whereas Flemisch et al. (2012) stated that a transition is the 
period between two different states. In summary, it can be argued that determining the ‘states’ based on driving 
tasks is a prerequisite for defining a ‘transition’ in automated driving. 



2.1. Driving tasks 

Car driving is a highly complex task that can be modelled at different levels of control with different levels of 
temporal granularity (e.g., Michon, 1985). We parsimoniously consider the following three primary driving tasks: 
(1) lateral control, (2) longitudinal control, and (3) monitoring, which are also present in the BASt, SAE, and 
NHTSA definitions of levels of automated driving. Our distinction between longitudinal and lateral control is 
also congruent with many models of vehicle control (e.g., Rajamani, Tan, Law, & Zhang, 2000) and driver 
performance (e.g., Nash, Cole, & Bigler, 2016), and with well-known taxonomies of driving tasks that 
distinguish between longitudinal (starting, accelerating, stopping) and lateral (steering, lane changing, curve 
driving) manoeuvres (e.g., McKnight & Adams, 1970). 

Although the BAST, SAE, and NHTSA definitions differ from each other, the criteria these organisations adopt 
to classify the levels of automation are similar (SAE, 2014). The essential criteria are how the three primary 
driving tasks (i.e., lateral control, longitudinal control, and monitoring) are distributed between the driver and the 
automation. For example, the difference between Assisted Driving (AD) and Partially Automated Driving (PAD) 
as defined by BASt is that in PAD the automation takes over both lateral and longitudinal control, while only 
one of these is automated in AD. This distinction between AD and PAD is equivalent to the distinction between 
Driver Assistance and Partial Automation in the SAE definition, and between ‘Level 1 Function-Specific 
Automation’ and ‘Level 2 Combined Function Automation’ in the NHTSA definition. Furthermore, the BASt 
definition says that the difference between PAD, HAD, and Fully Automated Driving (FAD) is the required 
monitoring frequency which decreases from ‘permanently’ in PAD, to ‘need not permanently’ in HAD, and 
‘need not’ in FAD. This decrease of monitoring frequency with increasing level of automation is also present in 
the SAE and NHTSA definitions. Two other criteria that have been used to define the levels of automation are (1) 
system capability (i.e., the type of scenario [e.g., low speed traffic jam, merging] that the automated driving 
system is able to drive in) and (2) fall-back agent (i.e., whether the automation or the driver is expected to take 
back control of monitoring and control tasks after an automation failure), see SAE (2014). These latter two 
criteria are important from a legal and design perspective, but are not adopted in the present study because they 
mix expected behaviour (i.e., what the driver and the automation should be doing in specific environmental 
conditions) with actual behaviour. 

When describing the distribution of the primary driving tasks between driver and automation at a given moment 
of time, a diagram can be drawn as shown in Figure 1. This figure illustrates the lateral/longitudinal control and 
monitoring of a vehicle by the automation and the driver. Here, Input is the state of the vehicle (e.g., velocity and 
acceleration) and environmental information (e.g., traffic signs and surrounding road users). Output is the state 
of the vehicle in the environment, one system step after the input. The Driver decision maker (a human agent) 
and the Automation decision maker (a computer agent) acquire and analyse the Input and determine the steering 
and acceleration target signals. Note that both the driver and automation decision makers are higher-level 
information processors rather than low-level trajectory-following controllers. (Sax, Sdx) and (Say, Sdy) allocate 
control for the longitudinal and lateral directions between driver and automation, respectively, and (Kax, Kdx) and 
(Kay, Kdy) represent proportional weights of driver and automation. The target signals (e.g., steering angles and 
acceleration) are fed to the longitudinal and lateral driver or automation controllers, the switches, and the 
proportional parameters. The longitudinal and lateral controllers constitute transfer functions that generate 
steering and throttle/brake control signals. The vehicle actuators implement these signals to move the vehicle.  
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Figure 1. Diagram describing the distribution of driving tasks (lateral control, longitudinal control, monitoring) 
between the driver and the automation. dx = driver longitudinal; dy = driver lateral; ax = automation longitudinal; 
ay = automation lateral; S = switch, K = proportional gain. In this diagram, the decision makers determine a 
target signal which is executed by lower-level longitudinal and lateral controllers.  



Note that Figure 1 does not include a switching unit that sets the switches, and therefore does not establish who 
initiates a control transition and what the transition criteria are. Moreover, our framework is concerned with 
defining actual transitions (rather than attempted transitions or the consequences of transitions gone wrong), and 
so does not depict failure modes such as a sensor or actuator failure, exceedances of functional constraints, or 
mode errors (cf. Sarter & Woods, 1995). Furthermore, it is worth emphasizing that Figure 1 describes the current 
state of the driver-automation system; it does not describe the temporal sequence of a transition from the start of 
a transition (e.g., driver input or take-over request) to the end of a transition (i.e., when the agents have control of 
the task they were requesting or requested to have). 

In Figure 1, it is assumed that the automation permanently monitors the environment because repetitive 
monitoring is where machines excel with respect to humans (cf. Fitts, 1951; De Winter & Hancock, 2015). The 
driver, on the other hand, is not a permanent monitor of the environment. The alpha level represents how much 
input information is fed to the Driver decision maker. Specifically, alpha at a particular moment should be 
regarded as a one-dimensional variable that describes the driver’s monitoring activity for gaining situation 
awareness (cf. Endsley, 1995). Alpha is dependent on the driver’s mental status, such as his workload and 
arousal level. We use alpha = 0 to represent a situation where the driver does not monitor the road and so 
receives no information and achieves no awareness of the current driving situation, such as when the driver is 
asleep behind the wheel. Alpha = 1 means that the driver actively monitors the environment so that he/she is 
fully aware of ‘what is going on’. 

The recommended level of alpha in automated driving is a function of the primary driving task allocation. In a 
review article, Flemisch et al. (2012) described the relationships between driver ability, responsibility, and 
control. Their framework shows that (1) responsibility motivates control, (2) control causes responsibility, and (3) 
control is enabled by ability. From their framework, we infer that if the driver is controlling, the driver has to 
monitor as well (i.e., alpha = 1) for the driving condition to be safe, or put differently, it is irresponsible to 
control a car without monitoring. 

2.2. Definition of static driving states  

Before defining transitions in automated driving, we need to define the driving states of automated driving. A 
driving state represents the primary driving tasks (lateral control, longitudinal control, monitoring) which the 
driver and automation are executing at a given moment.  

We define a static driving state as a situation where control is performed either by the driver or by the 
automation. This means that Kax, Kdx, Kay and Kdy are equal to 1, and only one switch is turned on in each pair of 
switches (Sax, Sdx) and (Say, Sdy). Six static driving states are possible according to the state of the switches and 
the monitoring level alpha: 

• State 1: Sdx and Sdy are both switched on, Sax and Say are both switched off, and alpha is 1. This state is 
manual driving. 

• State 2.1: Sax and Sdy are both switched on, Sdx and Say are both switched off, and alpha equals 1 
(because the driver is still engaged in lateral control tasks). This state represents driving assistance with 
longitudinal automation such as ACC. 

• State 2.2: Sdx and Say are both switched on, Sax and Sdy are both switched off, and alpha equals 1 (for the 
same reason as in State 2.1). This state represents driving assistance with lateral automation only (cf. 
Carsten, Lai, Barnard, Jamson, & Merat, 2012; Young & Stanton, 2007). 

• State 3: Sax and Say are both switched on, Sdx and Sdy are both switched off, and alpha is still 1. This 
state maps to driving with lateral and longitudinal automation. The driver is monitoring permanently to 
be able to take over control anytime needed. 

• State 4: Sax and Say are both switched on, Sdx and Sdy are switched off, but unlike State 3 the driver is not 
monitoring permanently (i.e., alpha is between 0 and 1). 

• State 5: The conditions of the switches are the same as in States 3 and 4, but the driver is not monitoring 
at all (i.e., alpha equals 0). 

It is worth emphasizing that the above states represent what the driver and automation are actually doing, not 
necessarily what they should be doing or are capable of doing. For example, a driver-automation system with a 
driver who is monitoring permanently is classified as State 3, whereas for another driver who is using the same 
automation technology but does not monitor permanently, this human-automation system is classified as driving 
State 4. 



The driving states listed above do not include ‘irresponsible’ driving states. Such driving states could in principle 
be added without altering the topology of Figure 1. An example is when Sdx and Sdy are both switched on, Sax 
and Say are both switched off, and alpha is smaller than 1, which corresponds to distracted manual driving (cf. 
Dingus et al., 2016). Moreover, we cannot ignore the fact that situations may exist in which both the automation 
and the driver do not control one or both of the primary control tasks. Such a situation occurs when Sax and Sdx 
are both switched off, and/or Say and Sdy are both switched off. We did not classify such situations as a driving 
state because neither agent actually performs the driving task. If such a situation is safety-critical, the automation 
may attempt a pre-programmed action to bring the car into minimal risk condition (see also SAE, 2014).  

2.3. Dynamic driving state  

It is also possible that the human and automation are jointly executing the same control task whereby the degree 
of control is dynamically adjusted to the momentary situation. One type of such human-machine interaction is 
shared control (Abbink, Mulder, & Boer, 2012; De Winter & Dodou, 2011; Johns et al., 2016; see also Sheridan, 
2002; Sheridan & Verplank, 1978), a concept which has been extended towards a framework of ‘cooperative 
control’ (Flemisch, Bengler, Bubb, Winner, & Bruder, 2014). A distinction between dynamic and static driving 
states has also been made by Inagaki (2003) who stated: “Sharing and trading are distinguished to clarify the 
types of human-automation collaboration” (p. 147).  

Accordingly, we define a dynamic driving state as a situation where the driver and automation are executing at 
least one driving control task together. This means that both switches are turned on in one or both pairs of the 
switches (Sax, Sdx) or (Say, Sdy). The weight variables (Kax, Kdx), (Kay, Kdy) can be set according to the level of 
control of driver and automation. Note that some authors have proposed a ‘coupling valve’, rather than binary 
switches, as a conceptualization of the extent to which driver, automation, and vehicle are cooperatively in 
control of the driving task (Baltzer, Altendorf, Meier, & Flemisch, 2014). Also note that in Figure 1, we showed 
the weight variables as proportional gains for reasons of simplicity and interpretability; the actual control system 
design can obviously be more complex than this. As with any mathematical-psychological model (MacCallum, 
2003), the model shown in Figure 1 does not fully account for all complexities of real driving, but aims to 
parsimoniously represent the key phenomena of interest. 

In shared control, the driver always executes a control task, which may alleviate out-of-the-loop problems such 
as loss of situation awareness (e.g., Abbink et al., 2012). Several assistance systems currently make use of shared 
control, whereby an assistive force is provided on the accelerator in order to support car following or eco-
friendly driving, or on the steering wheel in order to guide the driver back into its lane or to prevent colliding 
with a road user in the blind spot (see Petermeijer, Abbink, Mulder, & De Winter, 2015, for a review). The BASt, 
SAE, and NHTSA levels of automated driving do not account for the concept of shared control, because these 
definitions characterize the driving tasks in terms of ‘trading’ of control (cf. Inagaki, 2003) through terminology 
such as ‘taking over control’ and by allocating monitoring, task-execution, and fallback-performance functions 
to the human driver versus the automated driving system. It is currently being investigated what the role of 
shared control may be in future automated driving systems (Johns et al., 2016; Mok, Johns et al., 2015). The 
results thus far indicate that shared control may be promising as an optional driving mode to keep the driver 
informed and involved, especially when the automation drives imperfectly (Abbink et al., 2012; Flemisch et al., 
2014; Mok et al., 2015). 

2.4. Definition of transitions 

Based on the above concept of driving states, a transition can be defined as a process during which the driver-
automation system changes from one driving state to another driving state. For example, a transition from State 4 
to 1 means that the driver resumes both longitudinal and lateral control, and that the monitoring level is set to 1.  

Flemisch et al. (2008) included all possible control transitions in a spectrum of automation. We refine this 
spectrum by making a distinction between monitoring transitions and control transitions. Transitions among 
States 3, 4, and 5 concern changes in the driver’s monitoring status. A transition of control refers to a transition 
that involves a reallocation of the longitudinal or lateral control task between the driver and the automation. For 
some of the control transitions, the corresponding changes of monitoring level (e.g., monitoring level increases 
from 0 to 1 during the transition from State 5 to State 1) are not shown, because the recommended level of 
monitoring is determined by the whether or not the human is in control, as explained above. Figure 2 illustrates 
the overall concept.  



  

Figure 2. Monitoring transitions and control transitions between different driving states. Solid lines represent 
control transitions, whereas dashed lines represent monitoring transitions. 

3. Classification of transitions of control 

Transitions of control have a direct influence on the speed and path of the vehicle, and therefore have a direct 
relationship with road safety. A classification of control transitions facilitates understanding of the task demands 
on drivers during a transition. We classify transitions of control based on a retrospective account of a 
successfully completed transition, to avoid ambiguities regarding causality of attempted or unsuccessful 
transitions. 

In a prior literature review, Martens et al. (2008) classified the possible control transitions in automated driving. 
In their research, three questions were used to classify control transitions between the driver and automation: (1) 
Who has ‘it’?, (2) Who should get ‘it’?, and (3) Who initiates transition?, yielding four types of transitions: (1) 
driver-initiated, from the driver to the automation (Di→A), automation-initiated, from the driver to the 
automation (D→Ai), (3) driver-initiated, from the automation to the driver (Di←A), and (4) automation-initiated, 
from the automation to the driver (D←Ai). Hoeger et al. (2011) provided an extended notation by including 
transitions between different levels of automation. For example, a driver-initiated transition from highly 
automated (HA) driving to driver-assisted driving was designated as follows: DAi←HA. Furthermore, Hoeger et 
al. introduced a notation for describing failed/refused transitions, which may occur when the activation of a 
particular automation mode is impossible. 

We chose to deviate from the above transition classifications for several reasons. First, we argue that if a 
transition occurs then control will always transfer from one agent to the other (i.e., from the automation to the 
driver, or from the driver to the automation), and so there is no need of including both agents in the definition of 
a transition. Second, because we are concerned with actual transitions rather than with intended transitions, we 
did not consider failed transitions in our classification. Moreover, what is an intended and failed transition will 
be difficult to define in formal terms (for insightful reflections on the definition of ‘error’, see Sharit, 2006; 
Reason, 2013). Third, the underlying reasons for transitions are not included in the above classifications, in 
particular whether the transition is required or optional. 

3.1 Classification tree of transitions of control 

Our first dimension in the classification of control transitions is ‘Who initiates the transition?’, defined as who 
actually initiates the transition of the control task (i.e., not including changes in monitoring activity). Prior 
research indicates that who initiates a transition (i.e., human or automation) is an important question in the 
design of adaptive automation and function allocation in general. Thus, a distinction can be made between 
human-initiated transitions and automation-initiated transitions (Hancock, 2007; Inagaki & Sheridan, 2012; 
Scerbo, 1996).  

The second dimension is ‘Who is in control after transition?’ This dimension includes two possibilities 
(automation and driver). It is important to define who is in control after a transition, because whoever is in 
control is responsible for the safe execution of the driving task. 

Because the initiation of a transition is a discrete event while the control abilities of driver and automation are 
continuously changing, we use ‘initiation of transition’ and ‘control after transition’ as the first and second 
branch of our classification tree (Fig. 3). The corresponding two transition categories are ‘driver-initiated 
transitions’ and ‘automation-initiated transitions’. Each of the two primary categories is divided into two 
subcategories: ‘driver in control’ and ‘automation in control’. Based on these two criteria, we identify four types 
of transitions: ‘Driver Initiates transition, and Driver in Control after (DIDC)’, ‘Driver Initiates transition, and 
Automation in Control after (DIAC)’, ‘Automation Initiates transition, and Driver in Control after (AIDC)’, and 
‘Automation Initiates transition, and Automation in Control after (AIAC)’. 

The third level in the classification refers to the underlying reason of the transition. At this third level, transitions 
are clustered into two categories: optional transitions and mandatory transitions. An optional transition occurs 

State 2.1 State 2.2 State 3 State 4 State 5State 1



when there is no requirement or decision rule that stipulates that a transition should happen (i.e., the transition is 
voluntary), and the driver who prefers a transition implements the transition. Conversely, a mandatory transition 
occurs when the agent that is in control before the transition follows a rule or is required to relinquish control 
(i.e., the transition has to happen). Thus, optional transitions can be described as will-based, whereas mandatory 
transitions can be understood as ability-based or rule-based. In our framework, optional transitions are always 
initiated by the driver. At the present state of technology, automation does not have the option (‘free will’) to 
choose the control tasks based on its preference, because the decision rules that are used by automation are built 
in its software. We recognize that developments in artificial intelligence may eventually lead to synthetic 
consciousness and create the possibility of optional automated-initiated transitions, but this is beyond our current 
scope. Thus, driver-initiated transitions can be optional or mandatory, whereas automation-initiated transitions 
can only be mandatory. Similarly, Varotto et al. (2015) classified transitions while driving with ACC as 
mandatory and discretionary transitions. 

Achieving better and safer performance is one of the reasons for using automation. How and when to use 
automation are difficult questions that have been debated for over a century or more (e.g., Hollnagel, 2012). The 
answers to these questions are not only a matter of technology, but also involve social and ethical dimensions 
(e.g., Hancock, 2014; Hancock, 2015; Sheridan, 1970; Sheridan, 1980). Well known in science fiction are the 
‘three laws of robotics’ by Asimov (Asimov, 1942). Some alternative principles have also been developed based 
on real world situations (Murphy & Woods, 2009). Within the scope of this paper, we will not discuss social or 
ethical aspects in much detail. Nevertheless, we propose the following practical function allocation criteria 
inspired by Asimov’s laws: 1) in case of an imminent collision, the automation should take control in order to 
protect humans by avoiding collision or by reducing the severity of impact, and 2) the automated car (with or 
without the driver inside) should try to avoid damage to itself, but not in such a way that it harms a human or 
conflicts with the driver’s orders. Of course, these simple rules do not solve all ethical intricacies such as trolley 
problems of various kinds (cf. Bonnefon, Shariff, & Rahwan, 2015; Goodall, 2014), but they may be a useful 
starting point for defining mandatory versus optional transitions. 

3.2 Use case analysis for each category of the control transitions 

Below, we adopt a use case analysis to analyse the interactions between the driver and the automated driving 
system for various types of transitions as defined in Figure 3. 
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Driver Initiation

Optional

Transition of control

Driver in Control

Automation in Control
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Automation in Control
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Figure 3. Classification tree of transitions of control. 

  

3.2.1 Optional Driver-Initiated transitions 

During an optional DIDC or optional DIAC transition, both the automation and the driver will usually have the 
ability to control the vehicle. An example is a driver who turns on (i.e., optional DIAC transition) or turns off 
(i.e., optional DIDC transition) the ACC on the highway in a non-critical situation. Because both agents are able 
to drive, this use case is less critical for safety than mandatory transitions where one of the agents is unable to 
control the vehicle. In this use case, the automation may suggest to the driver that it is possible to make a 
transition. Note that if the automation offers a suggestion about a possible transition, this does not make it an 
automation-initiated transition, because it is still the driver who makes the decision and initiates the transition of 
control. The low criticality and ordinary character of DIAC and DIDC transitions may explain why much of the 
research on optional driver-initiated transitions has investigated when, where, and why drivers initiate a 
transition of control (Klunder, Li, & Minderhoud, 2009; Pauwelussen & Feenstra, 2010; Varotto et al., 2015; 
Viti, Hoogendoorn, Alkim, & Bootsma, 2008). Of course, not all optional DIAC and DIDC transitions are safe; 



it is possible that the driver initiates a transition at an inappropriate moment or by accident, whereby he hands 
over control to the automation while the automation is less able than the driver in the current environmental 
conditions (e.g., when driving in snow), or conversely, where the driver takes control while the automation is 
more capable than the driver (e.g., close car following in a high-speed platoon or when alpha is low).  

3.2.2 Mandatory Driver-Initiated transitions 

A mandatory DIDC transition can be initiated when the driver diagnoses that the automation is unable to drive, 
whereas a mandatory DIAC transition is initiated when the driver thinks he himself is unable or not allowed to 
drive. For instance, a DIDC transition can be initiated when the driver diagnoses an automation failure without 
warning from the automation. A DIAC transition can happen when the driver has a physical emergency, such as 
heart attack, or a ‘cognitive emergency’, such as information overload. Another example is that in future 
intelligent traffic consisting of platoons of automated vehicles (e.g., Hsu, Eskafi, Sachs, & Varaiya, 1993; Van 
Arem, Tampere, & Malone, 2003), entering a platoon may require a DIAC transition to let the host vehicle’s 
automation cooperate with other vehicles and infrastructure automatically. Overall, driver-initiated transitions 
require clear information on the automation’s (in)capability of driving, signalling the need for a proper human-
machine interface (Inagaki, 2003).  

3.2.3 Automation-Initiated transitions 

An automation-initiated transition can be triggered by the automation’s diagnosis regarding the driving inability 
of the automation itself, or regarding the inability of the driver who was controlling the vehicle before the 
transition. An AIDC transition may be caused by an exceedance of the automation’s operational limits or by a 
computer failure that is detected by on-board diagnostics, a scenario also known as a ‘take over’ (Gold, 
Damböck et al., 2013). Another possibility is ‘adaptive automation’, whereby the automation hands over control 
to the human in an attempt to raise the driver’s situation awareness or to reduce other out-of-the-loop problems 
(Gonçalves & Bengler, 2015; Hoeger et al., 2011; Merat et al., 2014; Rauch, Kaussner, Krüger, Boverie, & 
Flemisch, 2009; Whitmore & Reed, 2015). In modern traffic jam assistance systems, for example, the 
automation may disengage when the driver does not have his/her hands on the steering wheel for a period of time 
(e.g., between 10 and 30 s, depending on the manufacturer). For such a transition, the driving State is 3, 4, or 5 
before the transition, and the driving State is 1 after the transition. This is a mandatory AIDC transition, with the 
hands-off interval being a predefined rule that is programmed into the automation. 

An AIAC transition does not imply that the automation should overrule the human. We recommend that the 
automation should not make decisions and implement actions without human consent, except in the cases where, 
through inaction, the human will get hurt. For example, when a driver fails to drive safely during a heart attack, 
the automation should take over control if it can reliably determine this from a physiological monitoring system. 
Likewise, if a manual driver fails to react to other vehicles, the automation may temporarily take over control 
and initiate autonomous emergency braking (AEB) or an evasive manoeuvre. Moreover, similar to mandatory 
DIAC transitions, mandatory AIAC transitions occur when the driver is required to hand over control according 
to the rules and regulations of the automated traffic system.  

3.2.4 Safety criticality of transitions 

Similar to how active safety and passive safety are defined, we can classify DIDC and AIAC (which are self-
activated transitions) as active transitions, and AIDC and DIAC (which are triggered interventions) as passive 
transitions. In active transitions (AIAC and DIDC), the agent who initiates the transition is the same as the agent 
who ends up with control. In these two transition types, whoever initiates the transition is usually prepared to 
take over control afterwards. On the other hand, in passive transitions DIAC and AIDC, the initiating agent and 
the resulting driving agent are different and whoever is in control after the transition may have been forced to 
take over control from the other agent. In DIAC and AIDC transitions, the agent who is in control before the 
transition needs to ascertain that the other agent has the ability to drive, and get the other agent prepared for the 
transition. A lack of preparation may lead to unsafe situations.  

In a mandatory DIAC transition, the driver is in control before the transition, and automation control could be 
unstable after the automation may have been forced to take over control of the car, depending on the situation 
and environmental conditions. As for AIDC transitions, if drivers do not respond timely and properly, the 
transition could lead to an accident. The fact that AIDC transitions are essential to the safety of automated 
driving may explain why these transitions have been extensively studied in driving simulator experiments by 
human factors researchers. The most common AIDC (i.e., take-over) scenario can be summarized as follows: 
due to an automation limitation (e.g., the automation detects an accident in front of the host vehicle and cannot 



cope with this situation), participants are warned to take over control by braking and/or steering within a time 
margin (e.g., Gold, Damböck et al., 2013; Lorenz, Kerschbaum, & Schumann, 2014; Radlmayr, Gold, Lorenz, 
Farid, & Bengler, 2014; Naujoks, Purucker, Neukum, Wolter, & Steiger, 2015; Petermeijer, De Winter, & 
Bengler, 2016; Telpaz, Rhindress, Zelman, & Tsimhoni, 2015; Willemsen et al., 2014; Zeeb et al., 2015). AIDC 
transitions have drawn attention of not only human factors scientists, but also of automotive engineers who are 
solving the controllability problems that AIDC transitions may cause. For example, Nilsson et al. (2015) 
proposed a concept whereby AIDC transitions are classified as safe or unsafe by calculating whether the current 
and predicted vehicle states are within the estimated driver capabilities. 

Setting up experimental driving scenarios for a certain transition use case is a challenge, because everything is 
possible regarding future technologies. The proposed classification tree (Fig. 3) could provide guidance for 
designing scenarios with a theoretical basis. 

4. A brief survey of human factors research on transitions of control 

In this section, we review previous experimental studies using the above framework of driving states and 
transitions categories. The goal of this literature review is to interpret the representative empirical literature in 
light of our framework, and accordingly derive conclusions and recommendations for further research.  

Broadly speaking, experimental human factors research on transitions can be clustered into two groups. The first 
group of research involves transitions between driving States 2/3 and driving State 1, or vice versa. In driving 
States 2 and 3, the driver constantly monitors the automation status and the outside environment, so the driver is 
situationally aware. Several human factors studies regarding these three driving states have focused on driver 
behavioural adaptation and manual driving behaviour after having used the automated driving system (Bianchi, 
Piccinini et al., 2013; Hoedemaeker & Brookhuis, 1998; Young & Stanton, 2007). Researchers have also 
examined at which moments drivers activate and deactivate their automation (ACC) system, and have modelled 
the impact of these transitions on traffic flow (e.g., Klunder et al., 2009; Pauwelussen & Feenstra, 2010; Varotto 
et al., 2015; Viti et al., 2008). 

Our focus is on the second group of research: transitions where the driving state changes from State 4 or 5 to a 
lower state. A meta-analysis by De Winter et al. (2014) showed that drivers’ overall workload while driving in 
SAE level 3 (driving States 3 and 4) automation is substantially lower than while driving with ACC (driving 
State 2.1). This low-workload situation is sometimes followed by a high-workload safety-critical AIDC 
transition (De Winter et al., 2014). In driving States 4 or 5, the driver is not in control and does not constantly 
monitor the outside environment (alpha < 1). If a control transition involves driving States 4 or 5, this means that 
the monitoring status will also change during the transition (Fig. 2). The following section discusses control 
transition studies that involve driving States 4 and 5, and AIDC transitions in particular.  

We reviewed experimental research based on the following inclusion criteria: (1) The control transition should 
involve driving State 4 or 5, (2) The study should focus on driver behaviour during a transition (i.e., studies on 
long-term adaptation to automated systems were not included), (3) The paper should be in English. We observed 
that most research on driver behaviour during control transitions clustered into two periods: the late 1990s and 
the 2010s. 

4.1. Control transition studies in the late 1990s 

The first period covers the late 1990s during which several human factors experiments focused on the automated 
highway system (AHS). Control transitions were necessary when changing lanes from the manual driving lane to 
the automated driving lane, and vice versa. These studies tried to answer where and how to transition control 
when entering and leaving the automated lane, and measured the effects on traffic flow efficiency and the 
driver’s preferences. For example, Levitan, Golembiewski, and Bloomfield (1998) argued that a control 
transition from driving State 1 to driving State 5 should happen before entering the automated lane. Buck and 
Yenamcndra (1997) found that automation-initiated transitions are more time efficient than driver-initiated 
transitions while entering the automated lane in terms of traffic flow. Furthermore, De Vos, Hoekstra, and 
Hogema (1997) found that one-step transitions from driving State 5 to driving State 1 were more subjectively 
preferred than gradual transitions. Note that these studies were based on the anticipation of autonomous vehicles 
and separated lanes in an AHS. Details regarding driver behaviour during transitions, such as eye gaze patterns, 
workload, and responses to transitions, were not found to be greatly covered in the 1990s. Results of these early 
studies generally showed that driver acceptance and driving performance were better when the automation 
carried on more tasks (i.e., towards the higher side of our driving state scale). 

4.2. Control transitions studies from around 2010 



The second period started around 2010 with an increasing number of control transition studies. These more 
recent studies appear to be more practically relevant than much of the research from the 1990s, because the 
recent studies are based on already existing driver assistance systems (cf. 1990s research focusing on envisioned 
but non-existing AHSs; e.g., De Waard et al., 1999). In addition, these recent experiments focused on driver’s 
behaviour and cognitive states, including such factors as reaction times, control actions, attention allocation, and 
workload. As we discussed in section 3.2.4, AIDC transitions that require the driver to get back into the control 
loop are crucial for safety. We selected experimental studies on AIDC transitions based on the following criteria.  

First, studies had to describe the type of transition and the driving states before and after the transition in 
sufficient detail. If the experimental protocol required the driver to engage in a non-driving task that required 
constant visual attention of the driver (such as the Surrogate Reference Task, SuRT), or if the scenario did not 
offer any visual information prior to the transition (such as simulation screen blackout), with no reported control 
of the vehicle and monitoring of the road prior to the transition, we defined the driving state before the transition 
as State 5. If the participants were requested/reported to engage in an intermittent non-driving task (i.e., a task 
only took part of their visual attention) or no non-driving task was offered while automation longitudinally and 
laterally controlled the vehicle, we defined the driving state before the transition as State 4. We noticed that the 
non-driving task requirements prior to the transition were often reported ambiguously. We emphasize herein that 
a description of the automated driving technology alone cannot represent how the driver uses the technology. 
Information on how drivers were tasked and how drivers actually behaved is essential in order to be able to 
interpret the results from the experiments. The second inclusion criterion was that a description of the transition 
scenario had to be reported. The reason for this inclusion criterion is that the driving behaviour is highly related 
to the environmental conditions (e.g., Antonson, Mårdh, Wiklund, & Blomqvist, 2009; Kaiser, Wölfing, & 
Fuhrer, 1999). Third, the physical design and functionalities on the human machine interface (HMI) used for 
transitions had to be provided or illustrated. As Norman (1990) and many others have argued, feedback about 
automation status is an important determinant of how humans behave when interacting with automation. An 
appropriate HMI enables the human to recognize the automation’s intentions and to perceive the automation’s 
limitations. HMIs have been used extensively with the aim to improve driver performance and reduce human 
out-of-the-loop problems in automated systems (Inagaki, 2006; Kaber, Wright, & Sheik-Nainar, 2006).  

Table 1 provides an overview of the retrieved studies on AIDC transitions. In several of the experiments, the 
HMI was an independent variable. Toffetti et al. (2009), for example, observed that adding vocal messages to a 
visual-auditory warning increased the drivers’ general level of awareness and yielded shorter reaction times in 
some of the driving scenarios. Naujoks, Mai, and Neukum (2014) found that visual-auditory warnings decreased 
drivers’ reaction times compared to a visual-only warning. Moreover, Lorenz et al. (2014) showed that 
displaying a heads-up safety corridor in addition to a displayed icon for the driver to steer towards after receiving 
a take-over request had a positive influence on driving performance compared to driving without the heads-up 
display. Not only visual, auditory (vocal or acoustic) warnings have been used to bring drivers back to driving 
State 3 or lower; tactile feedback has been applied as well. Telpaz et al. (2015) found that tactile feedback leads 
to a faster response time compared to control sessions without tactile feedback, and orients the drivers’ attention 
to the relevant stimuli in the environment. 

Table 1 shows that in the AIDC transition experiments, the HMI usually offered a visual-auditory warning. Van 
den Beukel and Van der Voort (2013) used an auditory warning only, and Merat et al. (2014) used a visual 
indication only. The use of auditory warnings as take-over requests may be suboptimal when considering that a 
number of driving studies (Adell, Várhelyi, & Hjälmdahl, 2008; Biondi, Rossi, Gastaldi, & Mulatti, 2014) have 
shown that beeps can have negative effects on driver performance and satisfaction. 

In addition to the display aspects of the HMI, the physical input of the HMI is a relevant design parameter as 
well. As shown in Table 1, almost all experiments used the steering wheel and pedals to deactivate the 
automation. In some cases, a button or lever could also be used to deactivate the automation. Furthermore, 
Kerschbaum, Lorenz, and Bengler (2014) suggested that a coupled steering wheel without visible spokes could 
improve driving performance during transitions, while decoupled steering wheels (i.e., remaining stationary 
during automated driving) might not cause negative effects on the transition processes. 

A number of experiments assessed driver behaviour after making a transition from driving State 5 to State 3 or 
lower (Gold, Damböck et al, 2013; Radlmayr et al., 2014; Van den Beukel & Van der Voort, 2013). Generally, it 
has been found that: 1) The shorter the lead time, the worse the take-over quality (expressed in terms of e.g., 
percentage of accidents, maximum lateral and/or longitudinal acceleration), and 2) The higher the traffic density, 
the more time drivers need to regain situation awareness and take over manual control.  



Finally, the effects of the drivers’ monitoring level (cf. alpha in Fig. 1) on performance after the transition have 
been studied in experiments where the driving state was State 4 before the transition, that is, in the cases that 
drivers’ monitoring level alpha was between 1 and 0 (Dogan, Deborne, Delhomme, Kemeny, & Jonville, 2014; 
Merat et al., 2014; Zeeb et al., 2015). Dogan et al. (2014) compared driving performance in conditions where 
transitions could be and could not be anticipated. Merat et al. (2014) added additional systems in the experiment 
to make sure that the driver was temporarily monitoring and hence did not obtain a monitoring level alpha of 0. 
Specifically, drivers were required to take control when they were looking away from the road for more than 10 
s or periodically after every 6 min of automated driving with ACC and LKA. Zeeb et al. (2015) classified drivers 
into low, medium, and high risk types based on their gaze allocation during automated driving, and their reaction 
to transitions were compared. In general, these studies concluded that drivers’ anticipation of transitions and 
higher levels of monitoring are beneficial for safety, improving driving performance after the transition. An 
increase of the monitoring level alpha, which leads to improved driver situation awareness, could change a 
potential AIDC transition to a DIDC transition, and increase the safety on road. Similarly, Gold, Damböck et al. 
(2013) proposed a concept for improving transition quality by providing drivers with a monitoring request before 
the critical event became manifest (i.e., transition steps: State 4 → State 3 → State 1). More generally, research 
has shown that the adaptive allocation of tasks from automated systems to human operators has a positive effect 
on the detection of automation failures (e.g., Parasuraman, Mouloua, & Molloy, 1996). 

5. Discussion 

In this paper we described automated driving states (static states and dynamic states) based on the allocation of 
three primary driving tasks: longitudinal control, lateral control, and monitoring. A transition in automated 
driving was defined as the process of changing from one driving state to another.  

Our concept of driving states differs from the BASt, SAE, and NHTSA levels of automated driving, because 
these levels of automation describe how the driver and automation should drive, whereas our proposed driving 
states describe what the driver and the automation are doing at a certain moment in terms of longitudinal control, 
lateral control, and monitoring. By setting the switches, our framework can be used to describe automation that 
engages temporarily (Fig. 1). Examples are automated lane changes, automated obstacle avoidance, and AEB. 
The framework also allows for shared control (dynamic driving states), which according to Mok et al. (2015) “is 
not classified directly under National Highway Traffic Safety Administration’s current Levels of Automation 
Model” (p. 389). Another limitation of the BASt, SAE, and NHTSA levels is that they conflate 
expected/required behaviour with actual behaviour. For example, BASt defines highly automated driving as 
follows: “The system takes over longitudinal and lateral control; the driver is no longer required to permanently 
monitor the system. In case of a take-over request, the driver must take-over control with a certain time buffer” 
(Gasser & Westhoff, 2012; emphasis added). In this definition, which describes a properly functioning system 
that may be deployed on the roads, it is unclear how to classify a situation where the driver monitors the system 
but no take-over request is provided due to a technological malfunction or limitation (e.g., a failure to detect an 
object, resulting in a failure to provide a take-over request), or a situation where the automation produces a take-
over request but the driver fails to take over control. An accident with present-day automated driving technology 
would represent a discrepancy between normative and actual behaviour. According to car manufacturers, drivers 
should permanently monitor the system and be prepared to take over control at any time, which would classify 
this as partially automated driving. In reality, however, a driver may not monitor as he should, and therefore is in 
State 4 as defined in Section 2.2. The BASt, SAE, and NHTSA definitions cannot describe such incidents and 
accidents. Finally, our approach offers a more fine-grained interpretation than the levels of automation. For 
example, technologies that offer only lateral automation or only longitudinal automation are classified at the 
same level of automation in the definitions provided by BASt, SAE, and NHTSA, even though driver’s workload 
and situation awareness are known to be different with lateral automation than with longitudinal automation 
(Carsten et al., 2012; De Winter et al., 2014; Stanton & Young, 1998; Young & Stanton, 2007).  

Note that a temporary interruption of control without changing the actual state is not considered as a transition in 
our framework. For example, when a driver changes various setpoints during ACC driving without actually 
turning off the ACC, this would not be regarded as a transition. Furthermore, an attempted but unsuccessful or 
uncompleted transition does not classify as a transition. In addition, we acknowledge that factors like distraction, 
fatigue, and drowsiness will lower the driver monitoring level in States 1 and 2. Such unsafe driving states were 
not explicitly listed in our proposed driving states. However, such states could in principle be added without 
altering the framework of Figure 1. For example, one may define a distracted driving state as follows: Sdx and Sdy 
are both switched on, Sax and Say are both switched off, and alpha is smaller than 1. 

In our framework, we made a distinction between monitoring transitions and control transitions. Monitoring 
transitions involve changes of the monitoring level of the driver, whereas control transitions involve changes of 



allocation of control tasks. Three criteria were used to classify transitions of control: ‘who initiates the 
transition?’, ‘who is in control after transition?’ and ‘mandatory or optional?’. Our analysis showed that there are 
six possible categories of transitions: DIDC mandatory, DIDC optional, DIAC mandatory, DIAC optional, AIDC 
mandatory, and AIAC mandatory. In addition, we defined DIDC and AIAC transitions as active transitions (self-
activation), and DIAC and AIDC transitions as passive transitions (triggered interventions). Lack of preparation 
for the agent who is in control after passive transitions may lead to unsafe situations. The duration of a transition 
from initiation to completion, and whether mandatory transitions are time-critical or not, are other important 
factors that were not explicitly included in our binary classification tree. We acknowledge that time criticality 
can also be used to classify transitions. However, it is problematic to formally distinguish between time-critical 
(emergency) and non-time-critical (non-emergency) transitions by means of a clear-cut criterion, because what is 
considered critical depends on numerous factors such as the specific spatiotemporal relationships of the scenario, 
the driver’s reactions, the road characteristics, visibility, etc.  

AIDC transitions have been extensively studied in driving simulator experiments. However, we recommend to 
not ignore other types of transitions, even if they do not have an obvious relationship with safety. If automation 
cannot warn the driver about its failure or if the sensors do not detect a road hazard, then a DIDC mandatory 
transition is the only option to avoid a dangerous situation. Moreover, results from studies on optional DIDC and 
DIAC transitions in ACC systems may just as well be applicable to automated systems at SAE Levels 3, 4, and 5. 
A few studies on DIDC transitions have shown that the higher level of automation, the slower the drivers’ 
reaction times (Dambock, Weissgerber, Kienle, & Bengler, 2013; Strand, Nilsson, Karlsson, & Nilsson, 2014), a 
finding that corresponds to decades of research in psychological vigilance and human-automation interaction 
(see Cabrall, Happee, & De Winter, 2016; Onnasch et al., 2014, for reviews). However, questions such as ‘How 
long does it take for drivers to detect a failure of an automated driving system?’ still remain to be answered (cf. 
Moray & Rotenberg, 1989).  

DIAC and AIAC mandatory transitions may be due to the driver’s lack of ability to control the vehicle. The 
former implies the driver’s own awareness of his/her driving inabilities, and the automation needs then to be 
robust enough to take control when the driver relinquishes control. The latter may involve a driver state 
monitoring system that diagnoses the driver’s abilities. However, the association between psychophysiological 
measurements and the cognitive state of drivers still needs to be better understood (Whitmore & Reed, 2015). Of 
course, AIAC transitions can also be implemented in critical-event scenarios irrespective of assessing driver state, 
such as is currently done in AEB. 

Automotive displays have undergone various refinements in the last decades (Akamatsu, Green, & Bengler, 
2013), but their design may need to change significantly in order to inform drivers about both the transitions and 
automation status. As discussed in Section 4.2, the signal for getting the driver into the driving State 3 or lower is 
typically a visual, vocal, acoustic, or tactile warning (or combinations of these). Because of the diverse designs, 
research questions, and lack of detailed information, questions like ‘which method is more effective?’ or ‘what 
parameter should be set for the interface?’ need to be further elaborated. It has been argued that take-over 
requests should be multimodal rather than unimodal, because different sensory modalities can complement each 
other (Petermeijer et al., 2016). For example, a vibrotactile warning in the driver’s seat can be a useful alerting 
device when a person is visually distracted or engaging on a conversation, while auditory feedback is preferred 
to vibrotactile feedback when the driver is driving on an uneven road, wears thick clothing, or is not in 
permanent contact with the seat. 

Previous research has investigated whether transition quality can be improved by means of applying intermediate 
states. For instance, systems that encourage monitoring before a transition (e.g., State 4 → State 3 → State 1) or 
which deactivate the longitudinal or lateral control tasks in sequence (State 5 → State 2 → State 1) have been 
designed (De Vos et al., 1997; Gold, Lorenz et al., 2013; Willemsen et al., 2014), but the evaluated systems were 
not found to significantly improve driving performance or comfort. Dynamic driving states (shared control)—
defined as a situation where human and automation are carrying out tasks simultaneously—may facilitate 
smooth control transitions (Inagaki, 2003; Sheridan, 2011). Control systems need to be integrated with 
manual/biomechanical control models describing how driver steer, brake, and accelerate during transitions, in 
order to understand the pros and cons of discrete versus continuous transitions. Nilsson, Strand, Falcone, and 
Vinter (2013) found that when drivers encounter an automation failure, they were more likely to steer than to 
apply the brakes. Similarly, driving simulator research by Levitan et al. (1998) found that drivers preferred to 
take over control from automation by first steering and then using the accelerator, instead of vice versa. Thus, the 
development of HMIs and control algorithms for safely transferring control between automation and drivers is a 
major challenge for human factors researchers in automated driving. 



A final consideration, which was not explicitly included in our framework, is that of adaptive automation. 
Previous research has demonstrated that adaptively allocating the control task between humans and automation 
can be beneficial for effective human-machine interaction (Hancock et al., 2013; Kaber & Endsley, 2004; 
Parasuraman et al., 1996). For this purpose, one may need to create a switching agent that allocates tasks to the 
driver and/or the automation (Sheridan, 2011) and that can determine whether transitions should happen. 
Recently, Baltzer et al. (2014) built a prototype of their Mode Selection and Arbitration Unit (MSAU), which 
distributed responsibility and control between the automation and the driver. The ideal design of the switching 
agent should not only consider the conditions of the environment and automation, but should also have 
knowledge of the states, habits, and experience level of the driver (e.g., Beggiato, Pereira, Petzoldt, & Krems, 
2015; Whitmore & Reed, 2015). For example, as Larsson, Kircher, and Hultgren (2014) showed, when drivers 
get accustomed to ACC, they become more aware of the system’s limitations and respond quicker to emergency 
situations. Klein (2008) argued that humans tend to execute actions they have experienced before, instead of 
acting optimally in time-limited tasks. This advocates for an automatic switching agent as opposed to a human 
one. Furthermore, through training and experience, drivers can learn to work around automation problems.  

6. Conclusion 

In summary, this paper defines the different driving states from a descriptive (i.e., not a normative) function 
allocation perspective taken at the level of a joint team of both driver and automation. In turn, transitions in 
automated driving are defined based on the proposed driving states. Our spectrum also clarifies and incorporates 
the concept of both control transitions and monitoring transitions. Moreover, we propose a classification tree that 
distinguishes six possible types of transitions, and we provide use cases for these transition types. By using the 
elements of initiation entity and the resultant control entity of actual transitions, and by distinguishing between 
active and passive transitions, we assessed the safety criticality of each of the transition type. All of the above 
aspects taken together should support automated driving research and development as well as problem/solution 
design space explorations that go beyond the classic ‘take-over’ (AIDC) scenario.  

Case in point, we applied the proposed framework to review the literature on experimental research of transitions 
in automated driving, and accordingly to identify convergent and divergent results and gaps in the literature. We 
believe that our framework can contribute to a fruitful and productive dialogue among researchers on the topic of 
transitions in automated driving. This paper also reminds us that human factors engineering is crucial when 
introducing automation to a human-machine system (and see Bainbridge, 1983; Parasuraman & Riley, 1997; 
Sheridan & Parasuraman, 2005). Until the driving task is wholly automated under all possible circumstances and 
humans are prohibited from driving manually (e.g., because the automated car does not have a steering wheel 
anymore), transitions between the driver and the automation will remain a key element of automated driving. 
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Table 1  

Retrieved experimental studies on AIDC transitions. 

Paper Traffic scenario Driving state HMI 

Before 
transition 

After 
transition 

Informing interface Deactivation interface 
Visual Vocal Acoustic Tactile Button/

Lever 
Steering 
wheel 

Pedals 

Toffetti et al., 
2009 

The drivers needed to take control from automation (automated 
driving was realized using the Wizard of Oz technique) when 
the car exited the automated driving lane, automation failed, or 
infrastructure was out of order. 

State 4 State 1 * * *  * * * 
*  *  

Gold, 
Damböck, 
Lorenz, & 
Bengler, 2013 

The drivers needed to take control to avoid a car accident in two 
time-to-collision conditions (5 s, 7 s).  

State 5 State 1 *  *  * * * 

Van den Beukel 
& Van der 
Voort, 2013 

The drivers needed to take control due to an emergency brake of 
the leading car in three time-to-collision conditions (1.5 s, 2.2 s, 
2.8 s).  

State 5 State 1   *   * * 

Dogan et al., 
2014 

The drivers needed to take control from a Traffic Jam Assist 
system under two conditions: when traffic jam resolved and the 
speed exceeded 50km/h (anticipated situation) and when drivers 
were still in a dense traffic jam (unanticipated situation). 

State 4 State 1 *  *  * * * 

Kerschbaum et 
al., 2014 

Drivers were requested to take over approximately 150 m 
before the construction site, and followed the yellowed guide 
lines by using a decoupled steering wheel or a coupled steering 
wheel with hidden spokes. 

State 5 State 1 *  *  * Decoupled  * 

Spoke 
hidden 

Lorenz et al., 
2014 

The drivers needed to take control to avoid the sudden car 
accident in 7 s time-to-collision conditions with heads-up 
information of safe corridor or accident area in addition to a 
display icon. 

State 5 State 1 Safe 
corridor 

 *   * * 

Accident 
area 

 *  

Merat et al., 
2014 

The automation was disengaged based on time or drivers’ gaze 
allocation to keep drivers visual attention on the road. Near the 
end of the drive, drivers were required to resume control due to 
a three lane highway reducing to one lane situation. 

State 4  State 1 *     * * 

Naujoks et al., 
2014 

The drivers needed to take control under three traffic 
conditions: missing lane markings (easy), temporary lane 
changing (moderate), and high curvature lane (difficult), which 
automation could not control. 

State 4 State 1 *    * *  
*  *  

Radlmayr et al., 
2014 

The drivers needed to take control under four different traffic 
conditions in terms of density and driving lane that automation 
could not control with two different non-driving tasks. 

State 5 State 1  *  *   * * 



Telpaz et al., 
2015 

Five scenarios with different road types (5 or 2 lane freeway), 
driving lane, and transition events (static object or slow moving 
cars) were designed where drivers needed to take back control, 
to test spatial vibration strategy from haptic seat. 

State 5 State 1 *  * *  * * 

*  *  

Zeeb et al., 
2015 

The drivers needed to take control due to a broken car in front 
in three time-to-collision conditions (4.9 s, 5.7 s, 6.6 s) with 
automated deceleration. 

State 4 State 1 *  *  * * * 

Note:1) “*” means this kind of interface was used during the experiment. 2) Control conditions are not included.  
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