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Abstract

Progressive familial intrahepatic cholestasis (PFIC) is a group of rare, inherited liver diseases that af-
fect children and are characterised by impaired bile flow. Since PFIC is a paediatric ultra-rare disease,
conducting randomised controlled trials is particularly challenging, making observational data essential
for improving clinical management. This thesis analyses a large multinational observational retrospec-
tive data cohort with long-term follow-up of PFIC patients. The aim is to improve our understanding of
PFIC and support more informed decision-making in patient care through the investigation of two key
aspects of disease monitoring and progression. First, the thesis explores longitudinal trajectories of
relevant biochemical parameters, serum bile acid levels and platelet counts, in patients with a specific
subtype of PFIC, PFIC2, using latent class linear mixed models. This approach effectively identified
distinct longitudinal patterns of serum bile acids and platelet counts in patients with PFIC2. These pat-
terns highlight significant heterogeneity in the progression of laboratory parameters over time. Second,
a comparative analysis of event-free survival is conducted between two European regional cohorts of
PFIC patients, North-West Europe and South-Central Europe. Hypothesising that there are no differ-
ences in event-free survival of PFIC patients despite different care settings. This is achieved through a
weighted survival analysis combining inverse probability treatment weighting with the Kaplan-Meier es-
timator and the Cox proportional hazards model. The results suggest there are no significant regional
differences in event-free survival among PFIC2 patients between the two cohorts. Furthermore, a sen-
sitivity analysis and permutation test have been performed, which also support this result. Together,
these findings contribute to a more detailed understanding of disease progression in PFIC patients and
provide practical tools and insights that can inform patient monitoring and clinical decision-making in
the absence of randomised trials.
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1
Introduction

This thesis presents an analysis of observational data retrospectively collected from patients with the
ultra-rare liver disease progressive familial intrahepatic cholestasis (PFIC). PFIC primarily affects chil-
dren and, like many rare diseases, poses major challenges for conducting randomised controlled trials
due to ethical concerns, high costs, limited patient populations, and time constraints. In the absence
of randomised trials, observational data serve as a valuable resource for gaining clinical insights and
informing treatment strategies. The observational data used in this thesis are from a global cohort of
76 sites worldwide with long-term follow-up of patients with PFIC.

This thesis investigates two key aspects of understanding and monitoring PFIC. First, it models the
longitudinal trajectories of biochemical parameters to explore disease progression in PFIC patients.
Second, it performs a comparison of event-free survival, defined as the time until a patient experiences
their first clinical event (e.g. death), between two regional cohorts of PFIC patients within Europe.
Together, these analyses aim to improve our understanding of PFIC and to support more informed
decision-making in patient care.
The disease PFIC is first introduced in Section 1.1, after which the motivation and research objectives
of this thesis are outlined in Section 1.2.

1.1. Progressive familial intrahepatic cholestasis
PFIC is a heterogeneous group of inherited liver diseases that primarily affect children. It causes a
buildup of bile in the liver, which is typically observed early in newborns or within the first year of life.
Bile is toxic, so this accumulation can lead to cholestasis, severe liver damage, and, in many cases,
liver failure, which typically occurs between infancy and adolescence. PFIC is classified into different
subtypes, each caused by genetic mutations that affect how liver cells transport bile, which is important
for its normal production and flow [12]. The most common subtypes are PFIC1 and PFIC2, which
together account for the majority of PFIC cases; therefore, this thesis focuses on these two types.
Although the exact incidence of PFIC remains uncertain, it is recognised as an ultra-rare disease, with
estimates ranging from 1 in 50,000 to 1 in 100,000 live births [12]. In the Netherlands, this translates
to 2 to 3 cases per year, based on figures from CBS [9].

Cholestasis, a key clinical feature of PFIC, results from impaired bile flow. It is characterised by jaundice
and pruritus in early childhood. Among PFIC symptoms, pruritus is the most debilitating, particularly
in patients with PFIC1 and PFIC2 [40]. For patients and their families, it poses a considerable bur-
den [29]. Severe pruritus can lead to skin damage (often with bleeding), sleep disturbances, growth
problems, irritability, difficulty concentrating, and poor school performance. Although the exact cause
of cholestatic pruritus remains unclear, it appears to be related to increased concentrations of the bio-
chemical parameter serum bile acids (sBA) [30]. Other biochemical parameters may also reflect the
severity of the disease, such as platelet counts, alanine transaminase (ALT) and total bilirubin.

PFIC progresses rapidly to fibrosis and end-stage liver disease. Without treatment, end-stage liver
disease is ultimately fatal [29]. Management of PFIC involves both medical and surgical approaches,
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1.2. Motivation and Research Objectives 2

with the primary goal of relieving pruritus. Treatment includes the use of medications as initial ther-
apy to relieve the pruritus [40]. When these are insufficient, surgical options are considered, most
commonly surgical biliary diversion (SBD). SBD aims to reduce the recycling of bile acids between
the liver and intestines, thereby lowering toxic bile salt accumulation in the body [40]. SBD is a major
surgical procedure, and the child will be living with a stoma for ongoing care afterwards. Studies have
shown that sBA concentration is reduced in patients who respond well to SBD [39]. For 23–75% of
patients undergoing SBD, no further surgical intervention is required [29]. Of those who do not benefit,
many ultimately require a liver transplantation. Liver transplantation is indicated for patients who do
not respond to medical or surgical treatment, have developed end-stage liver disease, or suffer from
severely impaired quality of life due to persistent uncontrolled pruritus [29]. It has been shown to re-
solve cholestasis and improve symptoms in 75–100% of patients, regardless of PFIC subtype, within
a short-term follow-up period of 3 to 5 years [40].

1.2. Motivation and Research Objectives
In this thesis, we hypothesise that identifying patient subgroups based on the longitudinal trajectories
of biochemical parameters may contribute to a better understanding of PFIC and support more per-
sonalised treatment approaches. Specifically, recognising which patients are at a higher risk could
guide the development of targeted therapeutic interventions, as well as enable earlier and more effec-
tive treatment. To identify such subgroups, we focus on two potentially relevant biochemical markers:
sBA levels and platelet counts, both of which are known to be associated with disease severity. This
analysis is conducted using a latent class linear mixed model. This leads us to the first objective of this
thesis:

1. Determine and identify similarities of trajectories of the relevant biochemical parameters, sBA
levels and platelet counts in patients with PFIC2.

The clinical relevance of this analysis is substantial, as understanding these trajectories may inform
both prognosis and treatment strategies. The impact and significance of this research on the medical
community are highlighted by the acceptance of the results for presentation at two clinical conferences:
the European Association for the Study of the Liver (EASL) Congress 2025 in Amsterdam (May 2025)
and the 57th Annual Meeting of the European Society for Paediatric Gastroenterology, Hepatology, and
Nutrition (ESPGHAN) in Helsinki (May 2025). The poster presented at EASL is given in the Appendix
in Figure C.1.

Furthermore, although the dataset includes patients around the world, a substantial proportion of PFIC
originates from Europe. There may be regional differences in the care settings, how PFIC is diagnosed,
evaluated, or treated across hospitals and countries. Investigating whether these differences affect
patient outcomes could provide valuable insights. This thesis hypothesises that despite different care
settings, there are no differences in event-free survival in PFIC patients, where event-free survival is
defined as the time until a patient experiences their first clinical event, which in this context includes liver
transplantation, SBD, or death. Therefore, this thesis also explores the potential effect of geographic
region on event-free survival. The analysis compares two regional cohorts: North-West Europe and
South-Central Europe. This leads to the second objective of this thesis:

2. To perform a comparison of event-free survival between two regional cohorts of PFIC patients
within Europe.

To be able to perform a fair comparison between two cohorts in an observational study, some control
for confounding will be performed.

1.3. Thesis structure
The remainder of this thesis is structured as follows. Chapter 2 introduces the observational dataset
used in this study, including a detailed description of the variables and relevant clinical variables. Chap-
ter 3 presents the methodology for conducting the comparison of event-free survival. This includes an
overview of survival analysis techniques and the approach used to adjust for confounding, the inverse
probability of treatment weighting. The chapter concludes by integrating these components into the
final analytical framework. Chapter 4 addresses the first objective by introducing the latent class lin-
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ear mixed model, explaining its application, and presenting the resulting patient subgroups based on
longitudinal biochemical data. Chapter 5 then focuses on the second objective, presenting the results
of the event-free survival comparison between regional cohorts, as outlined in Chapter 3. Chapter 6
concludes with a discussion of the findings, a reflection on the study’s limitations, and suggestions for
future research.



2
Data

As mentioned in Section 1.1, PFIC is recognised as an ultra-rare disease, meaning it affects only a rel-
atively small number of individuals. As a consequence, limited information is available on the natural
history of PFIC. To improve the understanding of its natural history, phenotype variability, and the associ-
ation between treatments and long-term outcomes, an international multicenter initiative was launched
in 2017: the NAtural course and prognosis of PFIC and the effect of biliary diversion (NAPPED) initiative
[46].

Data were retrospectively collected from 76 centres worldwide. The consortium was initiated by the
Department of Paediatrics at the Beatrix Children’s Hospital, University Medical Centre Groningen
(UMCG). Researchers at each participating centre gathered clinical, demographic, and outcome data
by identifying all consecutive patients under 18 years of age who had received pediatric care since
1977 [47]. As of the data export date for this study, September 2024, the NAPPED dataset included
1,010 patients with a total of 7,201 measurements.

The data are stored in a longitudinal format. The general structure of this dataset is given in Table 2.1.
The variable xi,j,k is the k-th clinical, demographic or outcome value for the j-th visit of the i-th patient,
with 1 ≤ i ≤ I, 1 ≤ j ≤ ni and 1 ≤ k ≤ q. There are q = 367 variables collected per patient visit in the
NAPPED database.

Table 2.1: Structure of the longitudinal data

Patient ID Visit Variables
1 1 x1,1,1 . . . x1,1,q

1 2 x1,2,1 . . . x1,2,q

. . . . .
1 n1 x1,n1,1 . . . x1,n1,q

...
...

...
...

I 1 xI,1,1 . . . xI,1,q

I 2 xI,2,1 . . . xI,2,q

. · · . ·
I nI xI,nI ,1 . . . xI,nI ,q

Demographic variables in this study include sex, region, date of birth, etc. Each visit gives the date
of that specific visit, using this information, the age can be calculated. Clinical variables are, among
others, biochemical parameters for liver health. Every visit captured in the dataset gives the laboratory
measurements of some clinical variables; when a measurement of a certain factor is not taken at a
specific visit, the value is given as not available (NA). The data also gives the ’upper limit of normal
(ULN)’ of the biochemical parameters used in this thesis. The ULN is a crucial threshold used to define
the highest value of a measurement that is considered within the normal range for a healthy individual
[25]. The ULN is different per laboratory, since laboratories may use different analytical methods or
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5

instruments to measure the same biomarker [14]. This value is frequently used in clinical trial protocols
to define inclusion/exclusion criteria.
The outcome data are the information about the events of the patients during the time they have been
followed. These are factors which indicate, for example, whether the patient underwent a SBD, a liver
transplantation or if they died, including the dates of these events.

This thesis primarily focuses on patients with PFIC2. For the analysis of longitudinal patterns in two
biochemical parameters, only the data from PFIC2 patients are used. For the comparison of event-
free survival between two regional groups, the data from both PFIC1 and PFIC2 patients are analysed
separately, but only for the patients in Europe. Table 2.2 presents selected characteristics of the patients
in the regional groups to provide an overview of the study population. In both analyses, the data are
filtered based on specific selection criteria, detailed in the corresponding chapters. These chapters
also provide more detailed information about the characteristics of the selected data.

Table 2.2: Characteristics of the study population.

North-West Europe
(EU N/W)

South-Central Europe
(EU S/C)

PFIC1
(n = 59)

PFIC2
(n = 228)

PFIC1
(n = 35)

PFIC2
(n = 136)

Sex:
Male: n (%)

Female: n (%)
Unknown: n (%)

38 (64.4)
20 (33.9)
1 (1.69)

97 (42.5)
125 (54.8)
6 (2.63)

25 (71.4)
10 (28.6)
0 (0)

79 (58.1)
55 (40.4)
2 (1.47)

Age at diagnosis (first visit):
median (IQR) 0.55 (0.33–1.43) 0.83 (0.24–2.26) 0.58 (0.24–2.26) 0.83 (0.34–1.92)

SBD: n (%) 24 (40.7) 59 (25.9) 17 (48.6) 33 (24.3)
Liver transplantation: n (%) 25 (42.4) 113 (49.6) 21 (60.0) 62 (45.6)
Death: n (%) 7 (11.9) 18 (7.89) 2 (5.71) 5 (3.68)
Years of follow-up:
median (IQR) 4.75 (1.42–11.1) 6.25 (2.19–12.4) 4.88 (1.84–8.05) 5.42 (1.94–13.5)

Number of visits per patient:
median (IQR) 7 (3–13) 9 (5–16) 7 (6–12) 8 (4–16)



3
Methodology for the comparison of

event-free survival between two
cohorts

One of the objectives of this thesis is to perform a comparison of the survival time distribution until the
first event of liver transplantation, SBD or death of the PFIC1 and PFIC2 patients in the two divided
regions in Europe, to study the regional effect on the survival rate of PFIC. Before proceeding with the
results of this comparison, we must first understand the methodology for performing this comparison.
This chapter focuses on explaining this methodology. We begin by introducing the survival analysis
research area. This is needed to calculate the survival time distributions and eventually perform the
comparison between the two groups.

However, we are focusing on data from an observational study. A fair comparison between two groups
in an observational study is not as straightforward due to measured and unmeasured differences in
characteristics between groups, because of the lack of randomisation [10]. To control for confound-
ing in observational studies, the inverse probability treatment weighting (IPTW) method is used. This
statistical method assigns a specific weight to each individual in the dataset, based on how repre-
sentative they are of the overall population. Individuals from underrepresented subgroups are given
higher weights, thereby increasing their contribution to the analysis. By doing so, the method creates
a pseudo-population in which the measured confounders are more equally distributed among groups
[10]. This statistical method is explained in Section 3.2.

To eventually perform the comparison of survival time distributions, the two statistical methods, survival
analysis and IPTW, are combined in Sections 3.3 and 3.4.

3.1. Survival Analysis
Survival analysis, generally called analysis of time-to-event data, is a collection of statistical techniques
for data analysis where the outcome variable of interest is time until an event occurs. One of the goals
in survival analysis is to predict the expected duration until an event occurs. In a medical setting, the
event is often clinical and could be, for example, death, disease occurrence, recovery from the disease,
surgery, or any experience that happens to an individual [23]. The time until an event occurs is often
referred to as the survival time, since a common event in these types of studies is the death of an
individual.

In survival analysis, two functions are important and often used. These are the survival function and
the hazard function. The terminology is inspired by the situation where the clinical event is death. The
survival function gives the probability that an individual is still alive after some specified time.

Definition 3.1.1 (Survival function [22]) Let X be a nonnegative random variable denoting an event

6



3.1. Survival Analysis 7

(survival) time. The survival function of X is defined as

S(t) = P (X > t) = 1− F (t), for t ≥ 0 (3.1)

where F is the distribution function of X. Note that S(t) is non-increasing function, 0 ≤ S(∞) ≤ S(0) ≤
1.

The hazard function gives ”the instantaneous potential for the event to occur, given that the individual
has survived up to time t” [23]. In other words, the hazard function reflects the danger (hazard) of
getting killed at a specific time, having survived till (just before) this time [22]. Thus, the hazard function
is also called the failure rate.

Definition 3.1.2 (Hazard function [22]) The hazard function of a discrete random variable X is de-
fined as

h(t) = P (X = t|X ≥ t) =
P (X = t)

1− F (t−)
(3.2)

F (t−) denotes the left hand limit of F at t.
The hazard function of a continuous random variable X with density f is defined as

h(t) = − d

dt
logS(t) =

f(t)

S(t)
(3.3)

The hazard function is the framework through which mathematical modelling of survival data is imple-
mented [23]. Based on equation 3.3, the survival function can be expressed in terms of the cumulative
hazard function H, where H(t) =

∫
[0,t]

h(s)ds. Indeed, S(t) = exp(−H(t)).

The basic goals of survival analysis are to estimate and interpret survival - and hazard functions from
survival data, to compare survival and hazard functions, and to assess the relationship of explanatory
variables to the distribution of the survival time [23]. To reach these goals, especially the first and
second goals, the survival function needs to be estimated. This is usually carried out using the Kaplan-
Meier method, which will be explained in Section 3.1.2. The third goal also requires somemathematical
modelling. To assess the relationship between the survival time and one or more explanatory variables,
the Cox proportional hazard regression model is most commonly used, explained in Section 3.1.4.
The explanatory variables may be variables that are specified by the experimental conditions, such as
receiving a treatment, or they may be observational variables, such as the region where the patient
lives. The latter is the explanatory variable that is focused on in this thesis.

3.1.1. Censoring
A crucial concept in survival analysis is censoring. Censoring occurs when the precise survival time is
not available for certain individuals. In the medical field, for example, in a clinical study, an individual
often gets lost to follow-up. This means that they take part in the study but suddenly disappear from it
[22]. If one wants to analyse the time until a certain event, but the individual got lost to follow-up or did
not experience the event when the study ended, this leads to right-censored data. So, right-censored
means that the true survival time is equal to or greater than the actual observed follow-up time. [23]

The right-censoring problem is modelled as follows [22]. Suppose T1, T2, . . . , Tn are i.i.d. survival
times with C1, C2, . . . , Cn the censoring times, i.i.d. of Ti and finally Y1, Y2, . . . , Yn the actual observed
follow-up times. Suppose that the observations are denoted as (Yi, δi) for i = 1, 2, . . . , n, where

Yi = min{Ti, Ci}

and
δi = I(Ti < Ci).

Here, δi indicates whether the actual observed follow-up time is due to the event or censoring.
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3.1.2. Kaplan-Meier estimator
Estimating the survival function can be carried out using the Kaplan-Meier (KM) method. The Kaplan-
Meier estimator is the nonparametric maximum likelihood estimator in the right-censoring model [22].

Suppose {t1, t2, . . . , tn} are the survival times, with m ≤ n distinct values which are denoted by u1 <
u2 < · · · < um. The derived maximum likelihood estimator of the survival function, called the Kaplan-
Meier estimator, is given in equation 3.4.

Definition 3.1.3 (Kaplan-Meier estimator [22])

Ŝ(ui) =

i∏
j=1

(
1− dj

rj

)
, (3.4)

where dj is the number of events at time uj , and rj is the number of individuals still at risk at time uj ,
which means that the individuals are still alive and are not censored at time uj .

The data used in calculating the Kaplan-Meier estimates need to consist of

• the observed follow-up time per patient,
• the status of the patient at the end of their follow-up, whether an event has occurred, or is cen-
sored,

• and the study group the patient belongs to [35].

The data is originally in a longitudinal format. This means that each patient can have multiple visits with
measured information. The format is given in Table 2.1. The relevant data need to be extracted since
we only need the above information for each patient. The follow-up times are calculated as follows

• The patient experienced an event: the follow-up time is the time between the start of the follow-up
and the date of the first event of interest, in years (survival time).

• The patient is censored from the follow-up: the follow-up time is the time from the start of the
follow-up until the date of censoring, in years (censoring time).

The mathematical description of the newly created dataset used in this thesis is given in Section 5.2.
The start of the follow-up, called the index time or baseline, has to be chosen. When we would have a
study where everyone starts the study at the same time, the index time would be the date of the start
of the study. But this is not the case in our data. What the opportunities are to choose this index time
and how to do this is explained later in Section 5.1.2.

The KM survival probabilities are plotted in a Kaplan-Meier curve. An example of a Kaplan-Meier curve
is shown in Figure 3.1. Here, the data of the European patients of the NAPPED dataset is used. The
empirical plot is plotted as a step function, which steps down to the survival probabilities as we move
from one ordered survival time to another [23]. Censored individuals are indicated on the Kaplan-Meier
curve as tick marks, these are the ’+’ signs on the plot in Figure 3.1.
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Figure 3.1: Kaplan-Meier curve for the European patients in the dataset

The estimated survival function in the Kaplan-Meier curve shows that, for example, the probability of
surviving 10 years is 34%. The estimated survival function can be used to extract estimates of specific
percentiles of interest, such as the median survival time. In the estimated survival function of Figure
3.1, the median survival time is 4.8 years, indicated with the dotted line.
The table below the Kaplan-Meier curve in Figure 3.1 shows the number of patients that were still at risk
at a certain time. This time is given as the survival time, so it is counted from the start of the follow-up
per patient, the index time. These patients, who are still at risk, are those who haven’t yet experienced
the event of interest and are not censored. Thus, censoring removes the patient from the individuals
at risk, ri in equation 3.4, which means that censoring affects the survival rates [35].

In the absence of censoring, the Kaplan-Meier estimator is an estimate of the survival function, it corre-
sponds to one minus the empirical distribution function. However, once censoring occurs, the estima-
tion becomes less direct, as it is no longer possible to determine whether censored patients would have
experienced the event at a later time. Consequently, an increasing number of censored observations
can reduce the reliability and precision of the survival curve [35]. Nevertheless, it remains essential to
include censored patients in the analysis, as their survival times up to the point of censoring provide
valuable information and contribute meaningfully to the overall estimation of the survival function.

The shaded area in the Kaplan-Meier curve is the 95% pointwise confidence interval for S(t). The
Greenwood formula is used to estimate the standard error of the Kaplan-Meier survival estimate [23]:

Var[Ŝ(t)] = Ŝ(t)2
∑
i:ti≤t

di
ri (ri − di)

(3.5)

Then, a log-transformation is applied to compute the 95% pointwise confidence interval [42]:

log Ŝ(t)± 1.96

√
Var[log Ŝ(t)].

3.1.3. Comparing survival functions
In clinical trials, the goal is often to compare different groups of patients in terms of survival. For
example, treated versus untreated (placebo) patients, female versus male, etc. To be able to perform
these comparisons, separate survival curves are estimated for the 2 groups. An example of a Kaplan-
Meier plot for two groups is given in Figure 3.2.
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Figure 3.2: Two Kaplan-Meier curves for the comparison of males versus females in the European patients of the dataset

To compare the different groups, the following hypotheses are tested. The hypothesis for this problem
is as follows [36]. Let SA(t) and SB(t) denote the survival functions for the two compared groups A
and B, respectively.

H0 : The distribution of survival times is the same for the two compared groups:
SA(t) = SB(t) for all t ≥ 0

H1 : The distribution of survival times is not the same for the two compared groups:
SA(t) ̸= SB(t) for at least one t ≥ 0.

To assess the validity of the null hypothesis, the survival curves are compared over the whole follow-
up period, and the difference needs to be quantified [35]. Statistical tests, which reject or accept a
null hypothesis, are used to test the difference in the distribution of survival times. The most famous
statistical test to test these kinds of hypotheses is the Log-Rank test, which is also used in this thesis.

The Log-Rank test is a nonparametric test, which means that no assumption is made about the distri-
bution of the survival times of the two compared groups [23]. The idea behind this test is to construct
2× 2 contingency tables for each unique survival time and compare observed with expected numbers
of events.

Group 1 Group 2 Total
Event d1i d2i di
No Event r1i − d1i r2i − d2i ri − di
At risk r1i r2i ri

Denote, for each ordered survival time u(i), dji as the number of individuals who had the event at that
time in group j, and rji as the number of individuals at risk at that time in group j [23]. Let di and ri be
the total number of individuals who had the event and were at risk, respectively.

Under the null hypothesis, the survival curves of the two groups are the same, the expected number of
individuals who had the event at time uj can be estimated as:

Êji =
dirji
ri

(3.6)
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With the variance of Êji estimated as [23] [36]:

Var(Êji) =
r1ir2idi(ri − di)

r2i (ri − 1)
(3.7)

This 2 × 2 contingency table is constructed for every observed survival time u(1), . . . , u(m). Then, the
log-rank statistic is computed as described in:

X2 =

(∑m
i=1 d1i − Ê1i

)2
∑m

i=1 Var( ˆE1i)
(3.8)

Under the null hypothesis, the log-rank statistic X2 is approximately standard normally distributed [23].

The log-rank test comparing survival distributions by sex in the NAPPED European dataset (Figure
3.2) results in a test statistic of X2 = 0.499 with a p-value of p = 0.48. As the p-value exceeds the
conventional significance level of 0.05, we do not reject the null hypothesis. This suggests that there is
no difference in survival distribution between the two groups, the male and the female.

3.1.4. Cox Proportional Hazards Model
If one would like to compare two groups, such that one can investigate what the effect of a certain
covariate is, but wants to control for other variables, the Cox Proportional Hazards Model is commonly
used. This is the most well-known semiparametric regression model for survival data. The purpose of
this model is to simultaneously evaluate the effect of several covariates on survival [36].

In the Cox proportional hazard model, an individual i has a hazard rate at time t of

hi(t,X) = h0(t) exp

(
p∑

l=1

βlXil

)
, (3.9)

where

• Xi = (Xi1, . . . , Xip) denotes the vector of p covariates for an individual,
• h0(t) denotes the baseline hazard,
• β = (β1, . . . , βp) denotes the model parameters.

The baseline hazard function h0 is the hazard of an event when all covariatesX or all βl’s in β are equal
to zero. So, the baseline hazard function represents the instantaneous risk of experiencing the event
at t in the absence of any covariate effects. When covariates are introduced, those with a beneficial
effect will reduce the overall hazard relative to h0(t), while those with a harmful effect will increase it
[36].

An important property of the Cox model is that the baseline hazard h0(t) does not need to be specified
if one wants to estimate β. This is a reason why the Cox model is popular [23].

The parameters of the Cox model are estimated using the maximum partial loglikelihood, which is
obtained in the following way [36].
The probability that exactly the individual i had the event at time t, conditionally on the covariates of
this individual, is approximately equal to [22] [8]:

hi (t | Xi)∑
j∈R(t) hj (t | Xj)

=
eX

T
i β∑

j∈R(t) e
XT

i β
, i ∈ R(t),

where R(t) is the set of individuals at risk at time t. The partial log-likelihood is defined as the sum of
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the log probabilities of these individual contributions for events

ℓ(β) = logL(β)

= log

 n∏
i=1

[
eX

T
i β∑

j∈R(Ti)
eX

T
i β

]δi
=

n∑
i=1

δi

(XT
i β)− log

 ∑
j∈R(Ti)

eX
T
i β

 (3.10)

where

• δi is an event indicator
• XT

i β = β1Xi1 + · · ·+ βpXip

The maximum partial likelihood estimates β̂ obtained are asymptotically normally distributed [36]:

β̂ ∼ N
(
β0, {Ip(β0)}−1

)
, (3.11)

where

• β0 represents the true values of the parameter vector β
• {Ip(β0)} is the information matrix derived from the partial likelihood.

In our setting, the vector of covariates added to the Cox model X consists of a single binary variable
x, X = (x):

x =

{
1 Region North-West Europe
0 Region South-Central Europe

As mentioned before, the Cox model can account for confounders. The covariates for which the model
needs to be adjusted are then augmented to the vector X. Then equation 3.9, for X = (X1, X2) with
X1 the binary variable as above and X2 a continuous adjustment variable, will change to

h(t) = h0(t)e
β1X1+β2X2 (3.12)

where exp(β1) represents the comparison of the hazard of the event for individuals withX1 = 1 to those
with X1 = 0, while holding the continuous variable X2 constant.
In general, one-unit change in variableXj , where j = 1, . . . , p, corresponds to a βj change of log{hi(t)/h0(t)},
and thus increases hi(t)/h0(t) by a factor of exp(βj). If βj < 0, then exp(βj) < 1, from which it follows
that the risk will decrease [36].

Assumptions Cox model: Proportional hazards assumption
As mentioned before, the main reason to use the Cox model is that there is no assumption needed for
the distribution of the baseline hazard when estimating β. The Cox Model does make an assumption,
the proportional hazards (PH) assumption. The PH assumption requires that the hazard ratio of two
individuals is constant over time, such that the effect of a covariate on the risk of an event is constant
over time [23].

To understand the principle of the proportional hazards assumption, the formula for the hazard ratio is
derived as follows [23].

ĤR =
ĥ(t,X∗)

ĥ(t,X)

=
ĥ0(t) exp

[∑
β̂iX

∗
i

]
ĥ0(t) exp

[∑
β̂iXi

]
= exp

[
p∑

i=1

β̂i(X
∗
i −Xi)

]
= θ̂ (3.13)
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where X∗ = (X∗
1 , X

∗
2 , . . . , X

∗
p ) and X = (X1, X2, . . . , Xp) denote the set of covariates X for the two

individuals, and θ̂ does not depend on time. This derivation shows that the final expression for the
hazard ratio does not depend on time.

If the proportional hazard assumption is not satisfied, because the hazard ratio varies with time, it is
inappropriate to use a Cox PH model [23]. Therefore, it is important to assess the validity of the pro-
portional hazard assumption. The most common ways to do so are visual assessment of KM curves,
log(-log) plots and testing of scaled Schoenfeld residuals [26]. A log(-log) survival curve is a transfor-
mation of an estimated survival curve that results from taking the natural log of an estimated survival
probability twice [23].
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3.2. Weighting methods to control for confounding
As mentioned in the Introduction, Chapter 1, randomised trials are not feasible in studies involving
children with a rare disease, such as PFIC. Therefore, we rely on observational data. In randomised
controlled trials, the randomisation ensures that two cohorts are comparable, both in terms of measured
and unmeasured baseline characteristics. This comparability allows for a more reliable estimation of
the causal effect, as any observed differences in outcomes are more likely to result from the exposure
rather than from pre-existing differences.

However, in non-randomised studies, such as observational studies, there is a risk of exposure-selection
bias, since individuals are not assigned randomly but instead are assigned based on their characteris-
tics. As a result, the two groups may differ systematically in ways that are also related to the outcome
[5]. This creates a major challenge for causal inference, as any observed association between expo-
sure and outcome may be confounded by these pre-existing differences, rather than reflecting a true
causal relationship.

Confounding occurs when one aims to determine the effect of an exposure on the occurrence of a
disease, but then actually measures the effect of another factor, a confounding factor [21]. This can lead
to an over- or underestimation of the true causal effect. The confounding factor is an external variable
that influences the variables under study, leading to misleading conclusions about their relationship
[32].

Due to confounding, the real effect of a variable that you want to determine is disturbed, which is why
confounding needs to be controlled as much as possible. Several statistical methods have been devel-
oped for this purpose. One widely used approach in the context of causal inference is the propensity
score method. In particular, inverse probability of treatment weighting (IPTW) is a technique that uses
estimated propensity scores to create a so-called pseudo-population in which the distribution of base-
line covariates is comparable for the exposed groups [10]. This method, used in this thesis, helps to
reduce the confounding bias and supports a more valid causal interpretation of the exposure effect.
The next section will introduce the IPTW method in more detail.

3.2.1. Inverse probability treatment weighting
IPTW involves two main steps. First, the propensity score - the probability that an individual is sub-
jected to a particular exposure (e.g. receiving treatment or geographic region) given their observed
characteristics - is estimated. In the second step, each individual is assigned a weight equal to the
inverse of the probability of receiving the treatment they actually received [10]. This weighting process
creates a pseudo-population in which the distribution of measured confounders is balanced between
the exposed and unexposed groups, thereby approximating the conditions of a randomised experiment.
In the created pseudo-population, the weights conceptually do represent not only the individual itself
but actually w individuals, given that w represents the weight [10]. So in this pseudo-population, based
on observed characteristics, some individuals are up-weighted and some down-weighted. Individuals
with a lower probability of exposure are assigned larger weights, thereby increasing their influence in
the weighted comparison [10].

Propensity scores
The purpose of propensity scores in observational research is to adjust for measured confounders by
ensuring balance in characteristics between the groups to be compared [10].
The propensity score was first defined by Rosenbaum and Rubin [38] and has been used by many
researchers to estimate the treatment effects in observational studies [49] [1]. The propensity score
is defined as the conditional probability of receiving a particular exposure, given a set of observed
covariates [38]. The term ”exposure” can refer to various forms of assignment, such as receiving
a specific treatment, belonging to a certain sex or residing in a particular region. In this thesis, the
exposure of interest is defined as belonging to a particular region, North-West Europe or South-Central
Europe.
Let Zi be an indicator of exposure for the ith patient, in our case Zi is defined as:

Zi =

{
1 Region North-West Europe
0 Region South-Central Europe
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LetXi be the row vector of observed covariates, the confounders, for the i-th patient. Then the propen-
sity score

e(Xi) = P (Zi = 1|Xi), (3.14)

for the i-th patient is the probability of exposure given the observed covariates Xi [49].

Assuming a binary exposure variable, the propensity score is typically estimated for each individual
using a logistic regression model

e(Xi) =
exp(Xiβ)

1 + exp(Xiβ)
, (3.15)

where β represents a vector of parameters to be estimated from the data [49].

A key theoretical property of the propensity score is described in Theorem 1.

Theorem 1 Treatment assignment and the observed covariates are conditionally independent given
the propensity score, that is

X ⊥ Z | e(X)

[38]

This property implies that, if we condition on the propensity score, the distribution of the observed
covariates is the same in the treated and untreated groups. In other words, once we adjust for the
propensity score, treatment assignment behaves as if it were randomised. So, this property allows for
the creation of weighted samples that mimic randomised controlled trials. By creating these balanced
samples, the confounding bias can be minimised, as the two groups become more comparable.

The variables Xi to include in the propensity score model are all baseline covariates that could con-
found the relationship between the exposure and the outcome, and covariates known to be associated
only with the outcome [10]. When, according to the literature, one confounding variable is expected to
be dependent on another confounding variable, interactions need to be included in the model.
It is important to note that the propensity score can only adjust for measured confounders [10].

IPTW
Using the propensity score defined in equation 3.14, the IPTW weights for the i-th individual are calcu-
lated as the inverse probability of being exposed :

Wi =
Zi

e(Xi)
+

(1− Zi)

1− e(Xi)
(3.16)

After assigning the calculated IPTW weights and generating the pseudo-population, it is essential to
assess whether balance has been achieved between the observed individual characteristics of the two
groups. This is typically done by evaluating the standardised mean differences (SMDs) for all baseline
covariates between the exposed and unexposed groups, both before and after weighting [10]. The
SMD is defined as [4]:

SMD =
X̄T − X̄C√
(S2

T + S2
C) /2

, (3.17)

where X̄T and X̄C are the sample mean of the covariate in exposed and unexposed individuals, re-
spectively, and S2

T and S2
C are the sample variance of the covariate in exposed and unexposed groups,

respectively. The SMD formula for weighted observations is the same except that the weighted sample
means and sample variances are used, which are given in:

X̃T =

∑
i∈T wiXi∑
i∈T wi

(3.18)

S2
T =

1∑
i∈T wi

∑
i∈T

wi

(
Xi − X̃T

)2
(3.19)

Most researchers consider balance to be achieved when the absolute value of SMD is < 0.1. Guide-
lines indicate that 0.1 represents a reasonable cut-off point for acceptable standardised biases; larger
standardised biases would indicate a too large difference between groups for reliable comparison [41].
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Some individuals are likely to have a very high or low probability of being exposed. Taking the inverse
of the propensity score can then lead to extreme weight values, which inflate the variance and confi-
dence intervals of the effect estimate [10]. To deal with extreme weights, weight stabilisation or weight
truncation can be used, which will be explained below.

When the original weights in equation 3.16 are used, the size of the pseudo-population is multiple times
that of the original study population. To properly adjust for confounding, we aim to create a pseudo-
population where the probability of receiving a certain exposure is the same for everyone, so this means
that in the pseudo-population, assignment to an exposure does not depend on the confounders. To
achieve this, the pseudo-population is created by applying weights that simulate a scenario where
assignment to an exposure is random, with the same probability p for everyone, regardless of their
confounders [19]. Thus, the IP weights are then p

e(Xi)
for the exposed and 1−p

1−e(Xi)
for the unexposed.

These weights are referred to as the stabilised weights. These weights also reduce the weights of
exposed individuals with low propensity scores and unexposed individuals with high propensity scores
[49]. By limiting the influence of extreme values, stabilised weights typically result in more precise
estimates with lower variance [43]. The stabilised weights are calculated as in:

SWi =
pZi

e(Xi)
+

(1− p)(1− Zi)

1− e(Xi)
, (3.20)

where p represents the probability of being assigned to an exposure without accounting for covariates.
[49] With these stabilised weights, the size of the pseudo-population equals that of the original study
population, illustrated in [49].

An additional strategy for reducing extreme weights is to set them to a less extreme value, called weight
truncation or trimming. The weights are truncated by setting any values below the p-th percentile to
the value of the p-th percentile, and any values above the (100 − p)-th percentile to the value of the
(100 − p)-th percentile [11]. The 1st and 99th percentile can, for example, be used for this truncation
[10].
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3.3. Adjusted Kaplan-Meier estimator and weighted log-rank test
As mentioned before in Section 3.2, in a non-randomised clinical trial or observational study, the sam-
ples may be biased due to some confounding variables. Estimating a survival function using the Kaplan-
Meier estimates may then be biased due to the unbalanced distribution of confounders. To overcome
this problem, [48] has developed an adjusted Kaplan-Meier estimator using IPTW. Using this adjusted
Kaplan-Meier estimator, one can provide comparable estimates when studying survival curves of two
groups [48]. For comparing group differences of survival functions, a weighted log-rank test is also
proposed by [48]. The formulas for the adjusted Kaplan-Meier estimator and weighted log-rank test will
be given here. However, for details about the derivations and more information, we refer the reader to
[48].

We use the formula for the standard Kaplan-Meier estimate as a starting point, given in equation 3.4.
Using the IP weights Wi of equation 3.16, Zi the indicator of the exposure, the weighted number of
events at time ui, dwj , and the weighted number of individuals still at risk at time ui, rwi , are defined as:

dwj =
∑

i:Ti=uj

WiδiI(Zi = 1) (3.21)

rwj =
∑

i:Ti≥uj

WiI(Zi = 1) (3.22)

Using weighted formulas, the adjusted Kaplan-Meier estimate is defined as [48]:

Ŝk(t) =
∏

j:uj≤u

(
1−

dwj
rwj

)
, (3.23)

The adjusted Kaplan-Meier estimate maximises a pseudo-likelihood function for survival data. Consid-
ering the case with only two groups, denoted by Zi = 0 and Zi = 1, the log-pseudo-likelihood of one
group, where Zi = 1, is defined as:

n∑
i=1

Zi

pi
[δi log (Si (Ti − 0)− Si (Ti)) + (1− δi) log (Si (Ti))]

where Si(Ti − 0) includes but Si(Ti) excludes the probability of death exactly at Ti, and where Zi

pi

equals the weightWi, applied only to the individuals in the group where Zi = 1 [48]. For the derivation
of this pseudo-likelihood function and the proof that the adjusted Kaplan-Meier estimate maximises this
pseudo-likelihood function, we refer the reader to [48].

To provide the formula of the weighted log-rank test, the formula of the standard log-rank test statistic
is used, given in equation 3.8. The weighted number of events and the weighted number of individuals
at risk need to be combined into a pooled sample; therefore, the weights need to be adjusted in each
group [48]. At time uj , j = 1, . . . ,m, the weight is reassigned as rj1 × Wi/

∑
i:Zi=1 Wi, for individual

i in the group where Zi = 1, and rj0 × Wi/
∑

i:Zi=0 Wi for individual i in the other group. In this way,
the weights are proportional to the number of individuals at risk in each group [48]. Denote dwj and
rwj as the weighted total number of individuals who had the event and were at risk, respectively. The
weighted log-rank statistic under the null hypothesis is proposed as

X2 =
(Gw)2

V ar(Gw)
, (3.24)

where

Gw =

m∑
j=1

(
dwj1 −

dwj r
w
j1

rwj

)
(3.25)

and

Var (Gw) =

m∑
j=1

dj (rj − dj)

rj (rj − 1)

rj∑
i=1

(rwj0
rwj

)2

W 2
i Zi +

(
rwji
rwj

)2

W 2
i (1− ri)

 (3.26)
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3.4. Inverse Probability Weighted Cox Models
In the unweighted partial loglikelihood in the standard Cox model, given in equation 3.10, all patients
contribute equally to estimating the regression coefficients. But this is not desirable when the data
contain some confounding covariates. Section 3.2 describes how to account for those confounding
covariates. For this situation, a weighted version of the Cox regression model is needed that includes
patients of all subgroups but assigns them individual weights based on their subgroup affiliation [28].
The weights derived in the IPTW model have been used. Each weight reflects how much influence the
corresponding individual has on the estimation of the regression coefficients [28].

An inverse probability weighted Cox model is fitted, similarly to the original Cox model explained in
Section 3.1.4, by maximising a partial likelihood. But in the IP-weighted Cox model, this is the weighted
partial log likelihood.
The probability that exactly the individual with index i had the event at time t from baseline is now
approximately equal to [8]:  eX

T
i β̂∑

j∈R(t) ŵje
XT

j β̂


ŵi

, i ∈ R(t),

The weighted partial log-likelihood for a Cox model is therefore defined as [7]:

ℓ(β̂) =

n∑
i=1

ŵiδi

XT
i β̂ − log

 ∑
j∈R(Ti)

ŵje
XT

j β̂

 (3.27)

where

• exp(β) is the marginal hazard ratio associated with a one-unit increase in exposure X, after
adjusting for confounding and selection bias,

• The adjustment is achieved through the IP-weight ŵi(t), which incorporates the effects of covari-
ates used to control confounding,

• β̂ is the pseudo-maximum likelihood estimator.

The vector X can now also, similar to the original Cox model, consist of other covariates that need
adjustment. When those covariates were already added to the PS model, they were doubly adjusted
for any residual confounding. The covariates for which the balance was not achieved after IPTW can
then tried to be adjusted for any residual confounding again.

In the pseudo-population that is created during IPTW, some individuals contribute more than others to
the estimation of the exposure effects, which could be interpreted as they appeared ”more than once”,
although this isn’t literally the case. Each individual is still a distinct observation in the dataset, so
you don’t lose statistical independence in the strict sense. However, because individuals are weighted
differently, the resulting pseudo-population does not behave like a simple random sample anymore.
As a result, standard error may be biased if standard (unweighted) methods are used. That is why it
is important to use robust variance estimators when analysing IPTW-weighted data, as is used in the
weighted Cox proportional hazards model.



4
Longitudinal trajectories of

biochemical parameters using the
latent class linear mixed model

This chapter addresses the first objective of this thesis: to determine and identify similarities of trajec-
tories of relevant biochemical parameters, specifically sBA levels and platelet counts, in patients with
PFIC2.

The dataset includes longitudinal laboratory measurements from PFIC patients, allowing us to explore
how these biomarkers evolve over time. We hypothesise that the identification of patient subgroups
by analysing longitudinal biochemical parameters may help better understand the disease and treat
patients. In particular, distinguishing patients at a higher risk could support the development of targeted
therapeutic interventions and enable earlier, more effective treatments.

To explore this, we focus on two parameters potentially indicative of disease severity: sBA levels and
platelet counts. Their longitudinal trajectories are analysed using the latent class linear mixed model
(LCLMM). This is a statistical method that identifies subpopulations (latent classes) based on similarities
in individual progression patterns over time [17]. The LCLMM assumes a heterogeneous population
composed of K latent classes, each defined by a distinct mean trajectory profile [34].

Before presenting the results in Section 4.3, Sections 4.1 and 4.2 explain themodel. The first section will
first focus on the (homogeneous) linear mixed model, and the second section focuses on the extension
of this model, the heterogeneous linear mixed model, which is the LCLMM.

4.1. Homogeneous linear mixed model
The usual linear mixed model is a common approach for analysing longitudinal Gaussian outcomes
over time and evaluating the impact of covariates [27].

Two key components of the linear mixed models are the fixed effects and the random effects:

• fixed effects describe how specific covariates influence the average longitudinal evolution
• random effects describe how specific regression coefficients deviate from the overall mean de-
scribed by the fixed effects. The random effects also model the correlations in the repeated
measurements.

In the linear mixed model, it is assumed that the vector of observations for the i-th individual, with ni

number of measurements, can be modelled as [45]

yi = Xiβ + Zibi + ei, i = 1, . . . , N (4.1)

with bi ∼ N (0,D) and ei ∼ N (0, σ2Ini) and where:

19
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• yi is an ni × 1 vector of longitudinal observations for individual i, where ni is the number of
measurements for individual i, at different time points.

• Xi is an ni × p1 design matrix for the fixed effects
• β is a p1 × 1 vector of fixed effects
• Zi is an ni × q design matrix for the random effects
• bi is an q × 1 vector of random effects
• D is the variance-covariance matrix (symmetric positive definite) of the random effects
• ei is an ni × 1 vector of random error terms with variance σ2Ini

• Furthermore, bi and ei are independent.

Each individual in the population has their own individual-specific mean response profile over time,
represented by the sum Xiβ + Zibi. The term Xiβ corresponds to the fixed effects, which describe
the population-average trajectory, while the term Zibi captures individual-specific deviations from this
average trajectory through the random effects.

4.2. Heterogeneous linear mixed model - LCLMM
The homogeneous linear mixed model assumes that the population of N individuals is described at the
population level by a single average trajectory, given by Xiβ [34]. This expression corresponds to the
unconditional expectation of the response vector yi. The heterogeneous linear mixed model extends
this homogeneous model, in that each individual’s longitudinal data is modelled as a mixture ofK linear
mixed models, where each one of the K linear mixed models corresponds to one latent class. This
extended linear mixed model, called the heterogeneous linear mixed model or LCLMM, now allows one
to identify distinct trajectories of the marker and group individuals based on these different trajectories
[33].

Each individual belongs to one latent class. For the i-th individual, let cik be the indicator variable that
denotes whether individual i belongs to class k, for i = 1, . . . , N and k = 1, . . . ,K, i.e.

cik =

{
1 if individual i is a member of class k,

0 if individual i is not a member of class k.

The probabilities πik of latent class membership explained according to covariates νi are given by the
multinomial logistic regression model [2] [17]:

πik = P (cik = 1 | νi) =
exp (ξ0k + ν ′

iξ1k)∑K
j=1 exp (ξ0j + ν ′

iξ1j)
, (4.2)

for k = 1, . . . ,K and i = 1, . . . , N and where

• νi are variables related to the membership of the class for the individual i
• ξ0k is the intercept for class k and ξ1k is the vector of class membership parameters for class k.
For identifiability, the constraints ξ0K = 0 and ξ1K = 0 are included.

The K mean profiles are modelled over time and covariates using latent class-specific mixed models.
Within each class, the profiles are modelled by a standard linear mixed model [34].

Furthermore, given that individual i is in class k, the general formulation of the LCLMM for individual i
is defined as:

yi = X2iβ +X3iγk + Zibi + ei (4.3)

where:

• X2i is an ni × p1 design matrix for the fixed effects (common over all classes)
• β is an p1 × 1 vector of fixed effects (common over all classes)
• X3i is an ni × p2 design matrix for the class-specific fixed effects
• γk is an p2 × 1 vector of class-specific fixed effects for class k
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• Zi is an ni × q design matrix for the random effects
• bi is an q× 1 vector of random effects. These distributions are now class-specific, that is, for indi-
vidual i in class k: bik ∼ N (0,Dk) where Dk = ω2

kD with D an unspecified variance-covariance
matrix and ωk a proportional coefficient for class k which adjusts the class-specific intensity of
individual variability. For identifiablity, ωK = 1 [33][34].

The design matrix for the fixed effects from equation 4.1 is split in the design matricesX2i andX3i, but
also in an extra matrix X1i that contains covariates for the class-membership part [33]. So these are
the covariates predicting latent class membership via multinomial logistic regression. The equation for
the probabilities πik in equation 4.2 can then be changed to

πik = P (cik = 1 | X1i) =
eξ0k+X⊤

1iξ1k∑K
j=1 e

ξ0j+X⊤
1iξ1j

(4.4)

It is important to note that the parameters in β apply to all individuals, as they are linked to the values of
the corresponding column in the design matrix X2i. In contrast, the class-specific parameters γk differ
across latent classes and capture the unique characteristics of each class [16].

Given that individual i is in class k, cik = 1 and the parameters β,γk,D, σ2 the distribution of the
observations is then given by

yi | (cik = 1,β,γk,D, σ2) ∼ N
(
E[yi | cik = 1,β,γk,D, σ2],Var[yi | cik = 1,β,γk,D, σ2]

)
(4.5)

with

E[yi | cik = 1,β,γk,D, σ2] = X⊤
2iβ +X⊤

3iγk

Var[yi | cik = 1,β,γk,D, σ2] = Z⊤
i DkZi + σ2Ini

,

which leads to the marginal distribution of yi being a finite mixture of K distributions:

yi | πi,β,γ,D, σ2 ∼
K∑

k=1

πikN
(
X⊤

2iβ +X⊤
3iγk,Z

⊤
i DkZi + σ2Ini

)
(4.6)

[17]

4.2.1. Estimation
The LCLMM is estimated using maximum likelihood estimation. Let θK denote the complete parameter
vector, with estimation conducted for a fixed number K of latent classes. The value of K is specified
by the statistician a priori, but to choose the optimal number of classes, some information criteria have
been used. More details about the selection will be explained at the end of this section.
The individual contribution to the likelihood of an LCLMM is:

Li(θK | yi) =

K∑
k=1

πikϕik(yi | θK)

=

K∑
k=1

πikN
(
X⊤

2iβ +X⊤
3iγk,Z

⊤
i DkZi + σ2Ini

)
(4.7)

where πik is given in equation 4.4 and ϕik is the density function of a multivariate normal distribution.
The log-likelihood of the model,

li(θK) =

N∑
i=1

log(Li(θK | yi)),

can be maximised using different algorithms, like the EM algorithm. But in the R package used in this
research, the lcmm package, the extended Marquardt algorithm is used [34]. When the number of
latent classes K is fixed, the algorithm simultaneously estimates two types of parameters:
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• The trajectory parameters that describe how each class evolves over time (e.g., intercepts, slopes,
and other effects within each class)

• The probability that an individual belongs to a particular latent class.

To choose the optimal number of classes, one has to estimate models with different fixed numbers
of latent classes and select the best model according to some criterion [33]. The log-likelihood, the
Akaike’s Information Criterion (AIC), the Bayesian Information Criterion (BIC), and the posterior propor-
tion of each class have been used for the estimation process [34].

In model selection, a higher log-likelihood indicates a better fit to the data. The AIC, where lower values
indicate a better fit, is computed as AIC = −2L+ 2P, where P is the number of parameters. The BIC,
the lower the better, is computed as BIC = −2L+ P log(N), where N is the number of individuals.

After model estimation, individuals are assigned to the class for which they have the highest posterior
probability. For an individual i in latent class k the posterior probability of membership is computed
using the Bayes theorem and results as follows [34] [33]:

π̂
(y)
ik = P (cik = 1 | X1i,X2i,yi, θ̂K) =

πikϕik(yi | cik = 1, θ̂K)∑K
j=1 πijϕij(yi | cij = 1, θ̂K)

, (4.8)

where ϕik(Yi | cik = 1, θ̂K) is the density function of a multivariate normal distribution derived in equa-
tions 4.5 and 4.6.
This probability tells us how likely it is that an individual i belongs to a certain class given their observed
data.
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4.3. Results identified trajectories of sBA levels and platelet counts
As explained at the beginning of this chapter, this part of the thesis aims to determine and identify
similarities of trajectories of the biochemical parameters, sBA levels and platelet counts, in patients
with PFIC. Actually, the focus on this part of the study is on patients with PFIC2, since this is the largest
group in the dataset. This section gives the results of the LCLMM for identifying the trajectories.

The dataset used in this thesis, introduced in Chapter 2, consists, among others, of longitudinal labo-
ratory measurements of the biochemical parameters sBA levels and platelet counts. The trajectories
of these markers are modelled separately using the LCLMM model according to the age covariate.

To perform the analysis, a selection of patients and visits was made, the flowchart in Figure 4.1 shows
the exclusion criteria. This gives a selection of 167 patients and 946 measurements, with a median of
4 (IQR: 2-8) measurements per patient.

Figure 4.1: Flowchart of the exclusion criteria for the selection of patients for the LCLMM analysis

In the latent class mixed model, we have added time dependency to the model using nonlinear terms
of age as fixed and random effects. Spline functions are used to include this nonlinearity. If we were to
include the age effect as a main effect, it would give the assumption that the effect of age is linear. To
relax this assumption, nonlinear terms have to be included. Using splines allows the age effect to be
modelled more flexibly [37].

Splines are piecewise polynomials. This means that they are polynomials within intervals of X that are
connected across different intervals of X [18]. The limits of these intervals are defined by the knots of
the spline, with two boundary knots and a number of internal knots [37]. A cubic spline is a function
defined by cubic polynomials that are spliced together at knot locations [13]. They can be made to be
smooth at the knots by forcing the first and second derivatives of the function to agree at the knots
[18]. Natural cubic splines have the additional constraints of having a second derivative of zero at the
boundaries [13].

The locations of the knots have to be specified in advance. Placing knots at fixed quantiles of the
marginal (empirical) distribution of the predictor is a good approach in most datasets, according to
literature [18]. This thesis consists of small data samples, and therefore, according to [18], the natural
cubic spline function with three knots (one interior, and two boundary knots) has been used in this
research, and the recommended equally spaced quantiles for these knots are 0.10, 0.5, 0.90.

The spline functions can be expressed as a linear combination of basis functions, Nl(t), and weights βl:
f(t) = β0+

∑m
l=1 βlNl(t) [13], withm the number of knots. The basis functionsNl(t) can be numerically
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determined given the boundaries, interior knot locations, and the continuity and derivative constraints.
This is done using the ns() function in R.

The following latent class mixed model is considered, where k denotes the class, i denotes the in-
dividual, and j denotes the repeated measurement. The basis spline function for age is denoted as∑m

l=1 Nk(age). Equations 4.9 and 4.10 denote the LCLMMs for platelet counts (PLT) and sBA levels,
respectively. Given that individual i is in class k the model is defined as:

PLTij = β0 +

3∑
l=1

βlNl(ageij) + bi0 +

3∑
l=1

bilNl(ageij) + εij , (4.9)

(log sBA)ij = β0 +

3∑
l=1

βlNl(ageij) + bi0 +

3∑
l=1

bilNl(ageij) + εij , (4.10)

where bi ∼ N (0, D) and εij ∼ N (0, σ2), using the same terminology as in the general LCLMM given in
equation 4.3, also for the fixed and random effects β and bi. The term

∑3
l=1 Nl(ageij) denotes the basis

for a natural cubic spline with 3 knots. In both the LCLMMs for PLT and sBA, the fixed and random
effects are modelled as ’non-linear age effects using splines’. This means that age is deemed as an
overall fixed effect that models the ’effect of shared age’ between all individuals. The mixture of the
spline function of age means that the spline function of age is considered for the class-specific fixed
effects. Here, age is used to define separate average trajectories for each latent class. It’s fixed within
each class but differs across classes.
The random part is bi0 +

∑3
l=1 bilNl(ageij). This random effects part models individual deviations from

their latent class’ trajectory, which means that each person can follow their age curve. To improve the
normality of the residuals, we have log-transformed the sBA values before adding them to the latent
class mixed model.

As the number of classes is unknown, models withK = 1, 2, 3 classes are evaluated. The hlme function
of the R package lcmm is used to model the latent class mixed models [34]. For the estimation of the
model withmore than one class (K > 1), the initial valuesmust be given since it is an iterative estimation.
The initial values are crucial for the convergence of the algorithm to the true maximum [34]. We have
used the gridsearch function, which is used to run an automatic grid search. The procedure involves
running the estimation function hlme for a maximum ofm iterations from B randomly chosen vectors of
initial values. The initial values from the maximum likelihood estimates of the 1-class model are used
for this. The set of parameters that provides the best log-likelihood after m iterations is then used as
the initial value for the final parameter estimation [34].

The class-specific predictions can be computed after the latent class mixed model is fitted, using the pa-
rameter estimates from the model. The predicted mean trajectory of the longitudinal outcome variables,
the biochemical parameters PLT and sBA in our case, according to a hypothetical profile of covariates,
age in our case, can be computed and presented using the functions ′predictY ′ and the plot function
applied on ′predictY ′ objects of the lclmm package in R [34]. The uncertainty around the predicted
trajectories is assessed by this R function by approximating the posterior prediction distribution using
a Monte Carlo method [34]. The 2.5%, 50% and 97.5% percentiles provide the mean prediction and
its 95% simulated prediction bands.

The identified classes for the sBA and PLT latent class mixed models across each value ofK are shown
in Figures 4.2 and 4.3. The percentages of individuals assigned to each class per model are given in
Table 4.1. To determine the optimal number of classes, the information criteria, AIC and BIC, were
calculated for each model, as shown in Table 4.1. Detailed information about these information criteria
is given in the previous section. In theory, the model with the lowest value of the information criterion
used should be selected. However, in practice, additional factors such as interpretability and class
size must also be considered. Therefore, we selected the model in which all latent classes comprised
more than 10% of the study population. This approach avoids selecting models with extremely small
classes — for instance, one model included a class representing only 2% of participants. Such small
classes typically add little value to the model, as they may reflect random variation or outliers rather
than meaningful subgroups, and are often difficult to interpret.
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The results of the LCLMM for sBA indicate that when 3 classes are estimated, one class only consists of
2.40% of the study population, which means that this model is not considered. While the log-likelihood,
AIC, and BIC values improve from 1 to 3 classes, the 2-class model offers the best balance between
model fit and class stability. Therefore, the 2-class solution is considered the most appropriate for the
sBA model.

The results of the LCLMM for PLT indicate that the AIC remains relatively stable across models with
different numbers of classes. The log-likelihood improves from the 1-class to the 3-class model, sug-
gesting a better fit with more classes. However, the BIC increases from 1 to 3 classes. These mixed
results make it unclear which model provides the best overall fit. While the 1-class model may oversim-
plify the data and fail to capture heterogeneity between individuals, the 3-class model does not offer a
substantial improvement over the 2-class model. Therefore, the 2-class model is preferred for the PLT
data.

Figure 4.2: Predicted mean sBA trajectories of the LCLMM with K = 1, K = 2, and K = 3 classes, respectively.

Figure 4.3: Predicted mean PLT trajectories of the LCLMM with K = 1, K = 2, and K = 3 classes, respectively.

Table 4.1: Information criteria of the results of the latent class mixed models for sBA and PLT

K loglik AIC BIC %Class1 %Class2 %Class3
sBA model 1 -956.16 1932.31 1963.49 100.0
sBA model 2 -921.39 1870.78 1914.43 84.43 15.57
sBA model 3 -914.35 1864.71 1920.83 83.8 2.40 13.77
PLT model 1 -5299.76 10619.52 10650.70 100.0
PLT model 2 -5295.94 10619.89 10663.54 13.17 86.83
PLT model 3 -5291.69 10619.37 10675.50 16.77 14.97 68.26
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Therefore, we can identify two distinct trajectory classes for the sBA and also two distinct trajectory
classes for the PLT model. Figure 4.4 shows the observed sBA and PLT measurements before and
after the patients have been identified in classes by the latent class mixed model. The dots represent
the observed measurements. Lines connect observations from the same individuals. The predicted
mean trajectories of both sBA and PLT are added to these observed measurements plots and shown
in Figure 4.5. The bold solid lines indicate the predicted mean trajectories of the longitudinal sBA and
PLT parameters, and the shaded areas indicate their corresponding 95% prediction bands.

Figure 4.4: The two left plots show the observed sBA and PLT measurements of the selected PFIC2 patients. The plots on the
right indicate the different classes that had been identified by the latent class mixed models.

Characteristics of the sBA and PLT trajectories stratified by class are given in Table 4.3. We will focus
on some interesting observations from these results:

The results show that the Classes sBA1 and PLT1 contain more patients compared to the Classes
sBA2 and PLT2, respectively.
The follow-up duration characteristic in Table 4.3 shows that Class sBA2 has been followed over a
longer time compared to the patients in Class sBA1, this is probably because the patients in Class
sBA1 experienced more first events.
Another interesting observation is that almost half of the patients in Class PLT2 experienced a liver
transplantation at the end of their follow-up.

Analysing the results from a clinical perspective gives the speculation that the patients in the Class
PLT2 have a more progressive course in platelet counts, which could perhaps identify patients with a
more rapid development of overactive spleen (hypersplenism).
Another interesting result from a clinical perspective is Class sBA2, which is a rather unexpected obser-
vation for patients with PFIC2, since the values of the sBA levels are relatively low from a very low age.
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Therefore, a detailed analysis is performed on two patients in this class to be able to provide a clearer
explanation to clinicians that these patients do exist with PFIC2. Figure 4.6 gives the observed sBA
measurements of two patients of Class sBA2. Both patients are BSEP2 patients, which is a specific
form of the PFIC2 disease. From the observed measurement of patient 1, this patient seems to have
had no high sBA levels throughout childhood, which could indicate that the patient did not suffer from
severe cholestasis. Patient 2 had some high levels of sBA, with low levels in between. This seems to
qualify as an episodic form of PFIC, but this is not indicated as such in the dataset. Thus, the patterns
indicated by the latent class mixed model allow for better identification of subgroups, including even
quality control, as well as better identification of patients with an episodic phenotype.

Figure 4.6: The observed measurements of 2 patients of the Class sBA2.

Table 4.2 shows the cross-table of the distribution of individuals across the classes. Only one patient
falls into both Class sBA2 and PLT2, which highlights a clear distinction between these two classifica-
tions.

Table 4.2: Cross-table distributions classes

Class PLT1 Class PLT2
Class sBA1 120 21
Class sBA2 25 1

The results show that there are distinct longitudinal sBA and PLT patterns identified in patients with
PFIC2. These patterns reveal substantial heterogeneity in the course of laboratory parameters over
time. This offers potential for trajectory-specific management strategies that could improve patient care
and outcomes for patients with PFIC2.

For the interested reader, the code to reproduce these LCLMM results is available in the Github repos-
itory 1.

1https://github.com/paulinexhuisman/Code-Master-Thesis-Pauline-Analysis-of-PFIC-data
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5
Comparison of survival time

distributions using IPTW

This chapter presents the results of the comparison of survival time distributions between the two re-
gional groups, North-West Europe and South-Central Europe, using IPTW. In Chapter 3, the method-
ology for performing this analysis is explained. To be able to perform a valid comparison, we need to
have a balance of the characteristics, using IPTW. Using this technique helps by creating a hypothetical
randomised trial which is perfectly balanced between the two groups. This hypothetical randomised
trial is called the target trial. The first section of this chapter explains more about this target trial and
how the target trial is emulated, which leads to the final dataset used in the analysis. Sections 5.2 and
5.3 give the mathematical notation and characteristics of the selected dataset. Following, the process
and results of the IPTWmethod are given in Section 5.4. After which the results of the weighted Kaplan-
Meier and weighted Cox regression model are presented, to give the final result of the second objective
of this thesis, in Section 5.5. Finally, we tested the hypothesis of no difference between regional groups
using another (type of) test, the permutation test.

For the interested reader, the code to reproduce the results explained in this chapter of the comparison
of survival time distributions using IPTW is available in the Github repository 1.

1https://github.com/paulinexhuisman/Code-Master-Thesis-Pauline-Analysis-of-PFIC-data
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5.1. Target Trial
The data used in this thesis are the data collected from the NAPPED database. As mentioned before,
the second objective of this thesis is to perform a comparison of the survival until the first event of liver
transplantation, SBD or death of the PFIC1 & PFIC2 patients in the two divided regions in Europe.
The countries in Europe have been divided into the following two regions, also visible in Figure 5.1,
where the red countries indicate North-West Europe and the blue ones South-Central Europe:

North-West Europe South-Central Europe
Denmark Albania
Estonia Cyprus
Finland Greece
Iceland Italy
Norway Portugal
Sweden Spain
Belgium Austria
France Bulgaria
Ireland Croatia

Luxemburg Czech Republic
Netherlands Germany

United Kingdom Hungary
Latvia
Poland
Romania
Russia
Serbia
Slovakia
Slovenia

Switzerland
Ukraine

Figure 5.1: Division of Europe into the 2 different regions

The comparison is made between Western and Northern Europe versus Central and Southern Europe.
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These regions are grouped to ensure approximately balanced group sizes of the patients in these
regions, which is needed to perform a valid comparison and supports stable estimation in the IPTW
procedure.

To perform a valid comparison between these two created regional groups, we first want to create a
balance of the characteristics of the groups. We would like to have a hypothetical randomised trial
which is perfectly balanced between the two groups, which is called the target trial. By emulating the
target trial, we aim to approximate the effect estimates that such a trial would have produced. There are
a few key components of the target trial protocol that are important for our analysis: eligibility criteria
and the follow-up period (the choice of the time zero of follow-up) [20]. Section 5.1.1 gives a selection
of the data using eligibility criteria, and Section 5.1.2 explains how to determine the follow-up period.

5.1.1. Data selection
The observational analysis should apply the same eligibility criteria used in the target trial. These are
criteria which only include patients who are critically ill, and include the patients that we want to focus
the research on:

1. The patient’s age must be between 1 and 18 years.
2. The patient must be diagnosed after the year 1990.
3. The sBA level concentration must be ≥ 3× ULNsBA.
4. The alanine transaminase (ALT) concentration must be ≤ 15× ULNALT .
5. The patient must have clinical genetic confirmation of PFIC1 or PFIC2.
6. The patient did not undergo a liver transplant or SBD on or before the index time date.

By applying these criteria to the data, we had to make some assumptions. In the original data, there
were a lot of missing values in the variablesULNsBA andULNALT . So we have chosen that for missing
values of all ULN values, the most frequent value of the specific ULN within the same hospital is used.
When no ULN value for a hospital is given, the most frequent value of the ULN within the country is
used for the remaining missing ULNs. Figure 5.2 shows the flow chart for the selection of the database.
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Figure 5.2: Selection of the NAPPED database using the selection criteria

All visits of patients that meet these criteria are called eligible.

5.1.2. Index time
A crucial component of the emulation of the target trial is the determination of the start of follow-up in
the observational data, which is called the index time, time zero or baseline. The eligibility criteria must
be met at that specific time [20]. From the date of this index time, the follow-up starts. The follow-up
times are calculated per individual as the time from the selected index time to the first clinical event that
occurs, or until the last day of follow-up. The different clinical events we take as endpoints are death,
liver transplantation, and SBD.

The eligibility criteria can be met at many different times for the same individual, this is presented
schematically in Figure 5.3. The blue bar represents one individual from the EU North-West region, and
the green bar represents one individual from the EU South-Central region. The visits of an individual
are represented by a diamond. An eligible visit (yellow) means that the individual has fulfilled all the
inclusion and exclusion criteria at that time.
When an individual has multiple eligible visits, we have to decide on how to choose the time zero. The
goal is that the two data cohorts are as similar as possible. We will try different index times to see
if there is any difference in the results in a sensitivity analysis. The options we will investigate are
selecting a random eligible visit per individual, selecting the first eligible time per individual, or selecting
the last eligible time per individual. In Figure 5.3, selecting the first index time and random index time
of all eligible visits is schematically shown.

We will perform a sensitivity analysis for these different index times to determine the degree to which
this selection procedure affected study outcomes. The results of the sensitivity analysis are given in
Section 5.5.1.
We take the first eligible visit as the selected index time as the standard index time in all the plots
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given throughout this thesis, except as indicated, because using this index time the events occur with
maximum possible follow-up.

Figure 5.3: Schematic visualisation of the selection of the index time. The blue bar represents one individual from the EU
North-West region with their ineligible and eligible visits, indicated with diamonds. And the green bar represents one individual
from the South-Central region. This visualisation shows the difference in selecting the first eligible visit as the index time or a

random eligible visit.

5.2. Mathematical notation for the selected dataset
The dataset that is created after applying the eligibility criteria and selecting the index times (baseline)
no longer has the longitudinal format. The dataset now consists only of the baseline variables of each
eligible patient. This dataset consists of the covariates which are chosen for a clinical reason, because
these are the covariates for which we want to assess the balance. This newly created data is used in
the following part of this research and is described mathematically as follows.

Denote the selected dataset by S as S = {(Bi,Ci, ti, ei)}ni=1, where the total number of patients is
n = 165. Each i-th patient has:

• Bi ∈ Rnnum represents the nnum = 4 numerical covariate features at baseline:

Bi =


Age at baseline
sBA at baseline
ALT at baseline

Total Bilirubin at baseline


• Ci ∈ Zncat represent the ncat = 2 categorical covariate features:

Ci =

(
Sex

Genetic severity based PFIC type

)
• ti ∈ R represents the follow-up time
• Indicator ei indicates the status at the end of the follow-up:

ei =

{
1 Patient i experiences an event
0 Patient i does not experiences an event; the event is censored
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5.3. Selected data characteristics and information
For clarity, to illustrate the data characteristics and information of the selected data, we use the selected
index time as the first index time.

The resulting dataset consists of the selected patients, their individual follow-up time, and the events
that occurred. In addition, patient demographics and characteristics, represented by the vectors Bi

and Ci introduced in the previous section, are included. The covariates in this vector, such as age and
various clinical measurements, were originally measured at multiple time points. However, the values
used in this dataset are those measured at baseline.

Figure 5.4 shows the plots of the timeline of events by patient, split by the EU North-West and EU
South-Central patients. For each patient, the line represents the follow-up time in years, starting from
the start of their follow-up and ending at an event or when they were lost to follow-up. A blue line indi-
cates a male patient and a pink line a female patient. If a patient experienced an event, it is indicated
by a cross (death), a circle (liver transplantation) or a triangle (SBD). When no figure is present at the
end of a line, it means the patient is lost to follow-up and has experienced no event. The results show,
for example, that very few patients died.
Figure 5.5 presents the same data as Figure 5.4, but with the x-axis now representing patients’ ages
rather than survival time. Each line shows a patient’s follow-up period, starting from their age at base-
line. The figure reveals that most patients begin follow-up at a young age, though some start later, for
example, after the age of 10.

Table 5.1 gives the baseline demographics and characteristics of the selected data. The baseline de-
mographics of the PFIC2 patients are also given in the left part of Table 5.2. Continuous variables are
expressed asmedian values with interquartile range (IQR) and were compared using theMann-Whitney
U test, for continuous non-normal outcomes, or Student’s t-test, for continuous normal outcomes. Cate-
gorical variables are expressed as numbers and percentages and were compared using the Chi-square
test. For most variables, the results show that there are imbalances present between the patients with
PFIC2 from North-West European and South-Central European populations. Therefore, it is needed to
perform some weighting methods to assess the balance of these covariates.
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(a) EU North-West (b) EU South-Central

Figure 5.4: The timeline of events by patient, split by the EU North-West and EU South-Central patients. A line represents the
individual follow-up from the start until the end in years. The events, if observed, are indicated by a cross (death), liver

transplantation (circle) and a triangle (SBD). The patients are grouped according the similar events. The pink lines indicate
female patients, and the blue lines indicate male patients.

*Patient IDs were randomly assigned and are not traceable to the original IDs, ensuring anonymity.
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(a) EU North-West (b) EU South-Central

Figure 5.5: The timeline of events by patient, split by the EU North-West and EU South-Central patients, on the age scale. A
line represents the years of follow-up, indicated by the age of the patient. The events are indicated by a cross (death), liver
transplantation (circle) and a triangle (SBD). The patients are grouped according the similar events. The pink lines indicate

female patients, and the blue lines indicate male patients.
*Patient IDs were randomly assigned and are not traceable to the original IDs, ensuring anonymity.
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5.4. Balancing data cohorts using weighting methods
As explained in the previous chapter, some imbalances are present in the background characteristics.
These imbalances can cause bias in the regional selection and, therefore, could give a biased result
when comparing the two regions. The goal is therefore to assess the balance of the characteristics in
the regional groups and obtain a better idea of the effect of the region on the event-free survival.

To adjust for the imbalances, the IPTW procedure was performed. The method behind this procedure
is explained in Section 3.2. We start by calculating the propensity score using logistic regression as
the probability of being in region North-West Europe versus region South-Central Europe. The known
baseline confounders that are included in the model as covariates are the covariates in the vectors Bi

and Ci in Section 5.2, but we will list them here again:

• Age at baseline
• Sex
• Clinical measurements of ALT
• Clinical measurements of sBA levels
• Clinical measurements of total bilirubin
• Type of PFIC*

For the liver biochemistry covariates, the logarithms of the baseline values were included in the model.
*The variable for indication of the type of PFIC is not included in the model as a covariate, but the
analysis needs to be stratified for the PFIC type, which means that the analysis is done separately for
the patients with PFIC1 and PFIC2. The results for PFIC2 are shown first.

The propensity score for the i-th PFIC2 patient is defined as:

e(Xi) = P (Zi = 1|Xi), (5.1)

where

• Xi = (age, sex, log(ALT), log(sBA), log(total bilirubin))

• and Zi =

{
1 Region North-West Europe
0 Region South-Central Europe

.

Since the balance is already present by only adding the main effects in the logistic regression model,
we do not need to revisit the propensity model by including, e.g. interactions, transformations or splines.
When the balance is not present by only adding the main effects of these confounders in the logistic
regression model, the propensity model needs to be revisited by including, for example, interactions,
transformations or splines [3] [5]. Some analysis has already been performed to see which interactions
could then, for example, be added. The correlations between the baseline confounders, which are
added to the model, have been checked to see if there are some variables with a high correlation
in this dataset. If this is the case, the additional interactions of these variables can be added to the
model, because then the confounding effect of one of these variables will vary by the other variable
[31]. Figure 5.6 gives the correlation plot for the baseline confounders. Overall, the variables exhibit
low to moderate correlations. However, a bit stronger correlations are observed among the biochemical
parameters.
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Figure 5.6: Correlation plot for the baseline confounders for PFIC2 patients

The logistic regression model gives the probability, or propensity score, of belonging to a certain region
for each patient given their characteristics [10]. The distribution of the propensity scores by the two
regional groups (for PFIC2 patients) is given in Figure 5.7. Evaluation of these distributions checks
for sizeable overlap among the groups, demonstrating whether the groups are comparable. Figure 5.7
shows a large overlap in propensity scores.

Figure 5.7: Distribution of the propensity scores by the groups North-West EU and South-Central EU, for PFIC2 patients using
first visit index time.

From each calculated propensity score, the relative inverse probability of treatment weight and the
stabilised inverse probability of treatment weight are calculated as described in equations 3.16 and
3.20. The first check of the weights is performed by plotting the boxplot of the stabilised weights,
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shown in Figure 5.8. The weights are already quite small, so there is no need for weight truncation.
The stabilised weights for each patient were used as the final IP weights.

Figure 5.8: Boxplot of the stabilised weights for PFIC2 patients, split by the regional groups. Region 0 indicates the
North-West region, and region 1 indicates the South-Central region.

After assigning each patient their corresponding IP weight, the covariate balance between the two
groups is checked. This is done by assessing the standardised mean differences of the baseline char-
acteristics included in the propensity score model before and after weighting. These standardised
mean differences are displayed in Figure 5.9. The blue dots indicate the standardised mean differ-
ences between the North-West and South-Central European PFIC2 patients before weighting, and the
red squares after weighting. The vertical black solid line represents the borders for the standardised
mean difference of ±0.10 and the dotted lines for ±0.05. Balance is achieved when the standardised
mean difference of all covariates is within the borders ±0.10.

The results in Figure 5.9 show that before the weighting, balance was indeed not present for all co-
variates, except for the sBA covariate. This corresponds with our expectations based on the values
in Table 5.2. The results after the IPTW adjustment show that the standardised mean difference of
all covariates is within the borders ±0.05, which indicates a good covariate balance. The Figures A.1
and A.2 in the Appendix A give figures in which balance in density and eCDF plots is displayed for the
covariates added to the propensity score model, before and after IPTW adjustment. Perfectly overlap-
ping lines indicate good balance. These figures also indicate that, after adjustment, the covariates are
balanced.
Since the balance is already present by only adding the main effects in the logistic regression model,
we don’t need to revisit the propensity model by including, e.g. interactions, transformations or splines
[3] [5].

In addition to the previously discussed baseline characteristics before weighting, Table 5.2 additionally
presents the baseline characteristics after applying the IP weights. After IPTW adjustment, the sum
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of weights in the North-West Europe region is 64.1, and in the South-Central Europe region is 68.9.
The sample sizes of the two regions in the pseudo data differ only slightly from the original sample
sizes. Which is correct since we have used the stabilised weights, explained in Section 3.2. For the
comparison of the continuous and categorical variables after IPTW adjustment, the weighted Mann-
Whitney U test, weighted Student’s t-test and weighted Chi-square test are used. The p-values before
and after IPTW adjustment indicate that, following adjustment, there is stronger evidence in favour of
the null hypothesis, suggesting no significant difference in the specific variable between the two regional
groups.

Figure 5.9: Plot of the covariance balance before and after weighting. The standardised mean differences are plotted for each
covariate added to the propensity score model.

A similar analysis was conducted for PFIC1 patients. Extensive efforts were made to evaluate the
balance within the PFIC1 group. However, the sample sizes in this group are limited, with only n = 18
for the North-West European region and n = 14 for the South-Central European region. Due to the
small sample size and therefore insufficient statistical power, the balance could not be achieved. As a
result, we have decided to exclude the PFIC1 patients from the final analysis in this thesis.

5.5. Results comparison of long-term outcomes
This section presents the results of the comparison of the event-free survival functions of North-West
Europe versus South-Central Europe of PFIC2 patients. After presenting the results using the first visit
index time, we also give the sensitivity analysis using the other possible index times.

The hypothesis for this comparison is defined as:

H0 : The distribution of the event-free survival times is the same for North-West Europe and
South-Central Europe:
SEUSC

(t) = SEUNW
(t) for all t ≥ 0

H1 : The distribution of the event-free survival times is not the same for North-West Europe and
South-Central Europe:
SEUSC

(t) ̸= SEUNW
(t) for at least one t ≥ 0.

To perform this comparison, we first use the adjusted Kaplan-Meier estimator to compute the survival
functions. The calculated IP weights derived in the previous section are used. The Kaplan-Meier curve
after adjustment for age, sex, ALT, sBA and total bilirubin using IPTW is given in Figure 5.10. From
the Kaplan-Meier curve, we can already see that the event-free survival functions of the two regions
are very similar. To obtain a measure of the regional effect on the survival time distributions, we need
to calculate the hazard ratio between the two European regions. Here, the weighted Cox regression
model is used.
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Figure 5.10: The adjusted Kaplan-Meier curve for the comparison of the survival time distribution for North-West Europe
versus South-Central Europe for PFIC2 patients.

Before applying the weighted Cox regression model, we must verify the proportional hazards assump-
tion. As explained in Section 3.1.4, the PH assumption requires that the hazard ratio is constant over
time, so that the effect of a covariate on the risk of an event is constant over time. This is assessed
using both statistical tests and graphical diagnostics based on the scaled Schoenfeld residuals [23].
Under the PH assumption, these residuals should be independent of time; therefore, any systematic
pattern in their plot over time may indicate a violation.
The results of the test are given in Figure 5.11. The plot shows the Schoenfeld residuals (β) for the
regional covariate. The smooth black solid curve is relatively flat, although with a slight rise at the end,
but the wide confidence interval suggests this rise is not statistically meaningful. Therefore, the effect of
the regional covariate appears to be constant over time. The p-value of the test is also not statistically
significant, so we can conclude that there is no violation of the proportional hazards assumption.
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Figure 5.11: Schoenfeld residuals for the regional covariate.

The weighted Cox regression model gives the adjusted hazard ratio (HR) of 0.993, with a 95% con-
fidence interval (CI) of 0.614 to 1.606, and the p-value of the weighted log-rank test of 0.971. The
adjusted HR is very close to 1, which suggests almost no difference in the hazard between the two
regions in Europe. In addition, the p-value of the weighted log-rank test is much higher than the signifi-
cance threshold of 0.05, therefore, the result is not statistically significant, and we do not reject the null
hypothesis of having the same survival times distribution between the European regions.

5.5.1. Sensitivity Analysis
As described in Section 5.1.2, there are different possibilities to determine the index time. To determine
the degree to which the selection procedure affected the event-free survival time distribution, we will
perform a sensitivity analysis for the different index times, selecting a random eligible visit per individual
and selecting the last eligible time per individual. The results are given in Figure 5.12. Across all three
indexing strategies (first, random, and last eligible visit), the results are not statistically significant, which
suggests no statistical association between the regional effect and the event-free survival, regardless
of how the index time is defined.

The sensitivity analysis also consists of the results of the unadjusted model, the model where there is
no adjustment for some covariates. There is a small (negligible) difference compared to the adjusted
IPTW model.

Figure 5.12: PFIC2 sensitivity analysis; for the unadjusted, IPTW and Cox adjusted models, the first visit index time is used.
The HR gives the hazard for North-West Europe relative to the hazard of South-Central Europe.

It is also possible to compare the event-free survival function of the two European regions using a Cox
proportional hazards model on its own. In this approach, the regional indicator is included as a binary
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covariate, along with the same set of covariates originally used in the propensity score model. The
results of this Cox model are also presented in Figure 5.12 under the label ”Cox Adjusted”. These
findings are consistent with those obtained from the other analytical approaches.

5.6. Permutation test
This section gives the results of a different type of test, the permutation test, for testing the null hy-
pothesis of no difference between regional groups. A permutation test is a non-parametric procedure
for determining statistical significance based on rearrangements of the labels of a dataset [15]. A per-
mutation test builds sampling distributions by resampling the observed data, e.g. by assigning each
individual to a different group.

The null hypothesis for the permutation test is: H0 : the group labels assigning samples to classes are
interchangeable [15].
The original test statistic, for the original group division, is compared with the sampling distribution of
permutation values. These permutation values are computed similarly to the test statistic, however,
under a random rearrangement (permutation) of the group labels in the dataset [24]. The significance
of a permutation test is represented by its p-value, which is the probability of obtaining a result at
least as extreme as the test statistic, given that the null hypothesis is true [24]. Obtaining a significant
p-value indicates that the group labels are not interchangeable and therefore that the original group
labels are relevant to the data. The p-values are calculated by performing a number N of permutations
and computing the proportion of the N permutation values that are at least as extreme as the original
test statistic obtained from the data before the permutations [24].

We have performed the permutation test for the IPTW weighted model. This means that, after every
permutation, the IPTW weights are recalculated. These IPTW weights are then used to create a distri-
bution of weighted log-rank statistics under the null hypothesis:
H0 : The group labels for assigning patients to the region of North-West Europe or South-Central Europe
are interchangeable. Which, in other words, is the hypothesis that there is no difference in event-free
survival between North-West Europe and South-Central Europe.

We also performed the permutation tests for the unadjusted model, and the IPTW adjusted and unad-
justed model with the random visit index time as a sensitivity analysis. All permutation tests have been
performed with 1000 permutations, and the results are given in Table 5.3. Figures B.1 and B.2 in the
Appendix B show the histogram of the unweighted and weighted model with the first visit index time
and random visit index time, respectively. The red dotted line indicates the original log-rank statistic,
and the histogram bars give the sample distribution of the log-rank test statistics after permutations. It
is visible that the red line falls within the sample distribution for all models.

Table 5.3: Results of the permutation tests

Original Log-Rank Statistic Permutation p-value
Unadjusted (first eligible visit) 0.00137 0.98
IPTW adjusted (first eligible visit) 0.00095 0.981
Unadjusted (random eligible visit) 0.0933 0.745
IPTW adjusted (random eligible visit) 0.269 0.574

From the p-values of the permutation tests, we can also conclude that for all models, the p-values
are not statistically significant and therefore indicate strong evidence for the null hypothesis, that the
group labels for assigning patients to the region of North-West Europe or South-Central Europe are
interchangeable. These results match the results from the weighted Cox regression model in Section
5.5.
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6
Conclusion and Discussion

In this chapter, we present the main conclusions of our research in Section 6.1, Section 6.2 reflects on
our findings and discusses the key challenges encountered. And finally, suggestions for future work
are given.

6.1. Key findings
6.1.1. Longitudinal trajectories of the biochemical parameters sBA levels, and

platelet count
To address the first objective of this thesis, to determine and identify similarities of trajectories of the
relevant biochemical parameters, sBA levels and platelet counts in patients with PFIC2, the latent
class linear mixed model was used. Two LCLMMs are used to identify the subgroups of sBA levels and
platelet counts separately. The models both identify two classes for the sBA model and two classes for
the PLT model:

Results for the sBA model:
Class sBA1 shows a slight increase in sBA levels following an initial decline. In contrast, Class sBA2
exhibits consistently low levels from an early age onward. The majority of the patients, 84%, are
classified in Class sBA1, while the remaining 16% belong to Class sBA2.
From a clinical perspective, Class sBA2 is an unexpected finding in patients with PFIC2, as they typically
exhibit elevated sBA levels. Detailed analysis of the patients of this group reveals a group of patients
with the episodic form of PFIC.

Results for the PLT model:
Class PLT1 shows a slow reduction in platelet count values, whereas Class PLT2 exhibits a more rapid
decrease. Again, the majority of the patients, 87%, are classified in Class PLT1, and the remaining
13% belong to Class PLT2.
From a clinical perspective, the patients in Class PLT2 could indicate patients with a more rapid devel-
opment of an overactive spleen.

By combining the findings from both latent class mixed models, we conclude that this approach effec-
tively identifies longitudinal patterns of sBA levels and platelet counts in patients with PFIC2. These pat-
terns highlight significant heterogeneity in the progression of laboratory parameters over time. These
insights enhance the understanding of the disease and hold potential for improving patient care. Specif-
ically, they may support the development of targeted therapeutic strategies, enabling earlier and more
effective intervention for patients at higher risk.

6.1.2. Comparison of event-free survival in PFIC patients of cohorts within Eu-
rope

The second objective of this thesis was to perform a comparison of event-free survival between two
regional cohorts of PFIC patients within Europe. This comparison can indicate the statistical regional

47
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effect on event-free survival. To assess this second objective, a weighted survival analysis has been
performed, using the combination of the IPTW and the Kaplan-Meier estimator and the Cox regression
model.

The results from the weighted Log-rank test and weighted Cox regression model indicate that the null
hypothesis of having the same distribution of the event-free survival times for North-West Europe and
South-Central Europe is not rejected. The additional permutation test gives the same results. This
indicates that there is no statistical regional effect on the event-free survival of PFIC2 patients, at least
for the regions North-West Europe versus South-Central Europe.

Sensitivity analyses have been performed to check if different options for choosing the index time will
change the results. The results of the sensitivity analyses of the weighted Cox regression model and
the permutation test both indicate that for all chosen index times, the p-values for the null hypotheses
are still not statistically significant. There are some slight differences, which will be discussed in the
next section.

6.2. Discussion
In this section, we reflect on some key findings and discuss aspects of the study that could be improved.

The results of the sensitivity analysis in Section 5.5.1 indicate a minimal change in the hazard ratio and
p-value after IPTW adjustment compared to the unadjusted model. The result of the permutation test
in Table 5.3 also indicates this minimal difference in the permutation p-values. This minimal change
suggests that the influence of measured confounding on the regional effect on the event-free survival
may be limited. Alternatively, the small difference could also indicate that the IPTW procedure was
not sufficiently effective in correcting for imbalance, perhaps due to some unobserved confounders. If
unobserved confounders are present, residual bias can remain no matter which method is used [43].
So it could be the case that some confounders are missed and not added to the propensity score model.

The confidence intervals of the hazard ratios in the sensitivity analysis are very wide. This reflects
uncertainty and suggests potentially low statistical power. As a result, the possibility of a moderate sta-
tistical regional effect cannot be entirely excluded. However, the consistency of the findings across all
index time definitions, each having hazard ratios close to 1 and lacking statistical significance, strength-
ens the case for the conclusion that there is no meaningful statistical regional effect on the event-free
survival in this dataset.

A complication we ran into during my thesis was the interpretation of the data. Given that the dataset
contains data of patients of a rare disease, it involves considerable medical terminology and requires
specific medical knowledge to fully understand. Since the data are collected by different centres, there
could be inconsistencies in how some data is filled in. This gave mostly some difficulties in understand-
ing the units of the biochemical parameters and to make sure these are all consistent to use this data
in the analysis. This process might have been streamlined if the data had been pre-checked by some
laboratory technicians to ensure consistency in how each value was recorded and labelled.

6.3. Suggestions for future work
Based on the challenges and limitations encountered in this research, we propose two directions for
future research.

The original aim of the comparison of cohorts in terms of event-free survival was to compare the dataset
used in this thesis with a dataset of treated patients. This comparison could have provided insights into
the impact of treatment on event-free survival of PFIC patients. However, due to the unavailability of the
additional dataset within the project timeline, the focus was shifted to comparing two regional cohorts
within Europe to allow the use of the same methodology. Even though the original aim could not be
achieved, the analytical methods investigated in this project remain applicable when the necessary
dataset of treated patients is available. As soon as this is available, this approach, together with the
corresponding code, will be ready for immediate use. Therefore, the primary recommendation for future
research is to apply this methodology to the originally intended comparison with the dataset of treated
patients as soon as it is available.
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Another limitation lies in the variable selection process for the propensity score model used in IPTW.
When acceptable covariate balance is not achieved after only including the main effects, the propensity
score model must be revisited, often by adding interaction terms. According to the literature, in practice,
this process relies heavily on clinical knowledge and iterative trial-and-error, evaluating whether added
interactions or nonlinear transformations improve balance, and adjusting the model accordingly. We
believe this approach can be made more efficient and less reliant on the clinicians.
Several variable selection techniques have been proposed to guide the process of variable selection
in the propensity score model, such as the LASSO method [44]. However, fitting a propensity score
model using LASSO regularisation with a shrinkage parameter selected via cross-validation typically
prioritises prediction accuracy of treatment assignment, rather than optimising covariate balance or
treatment effect estimation [6], which are the primary objectives of using the propensity score model in
this thesis. Nonetheless, recent literature shows that LASSO regularisation with a shrinkage parameter
selected to directly target covariate balance is feasible [6]. We recommend that future research explore
this approach to improve variable selection for propensity score modelling in IPTW.
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A
Results IPTW

This section presents additional results of the IPTW. Figure A.1 shows the density plots of the distri-
butional balance for all the covariates added to the propensity score model. Figure A.2 shows the
empirical CDF plots of the distributional balance for the four continuous confounding variables. In both
figures, perfectly overlapping lines indicate good balance.
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B
Results permutation tests

This section presents the results of the permutation test. The histograms of Log-Rank statistics of the
unweighted and weighted models with the first visit index time and random visit index time are given in
Figures B.1 and B.2 respectively. The red dotted lines indicate the original log-rank statistic, and the
histogram bars give the sample distribution of the log-rank test statistic after 1000 permutations.
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(a) Unweighted model

(b)Weighted model

Figure B.1: Histograms of Log-Rank statistics of the unweighted and weighted model with the first visit index time. The red
dotted line indicates the original log-rank statistic, and the histogram bars give the sample distribution of the log-rank test

statistics after permutations.
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(a) Unweighted model

(b)Weighted model

Figure B.2: Histograms of Log-Rank statistics of the unweighted and weighted model with the random visit index time. The red
dotted line indicates the original log-rank statistic, and the histogram bars give the sample distribution of the log-rank test

statistics after permutations.



C
Poster Conference EASL

In this final section, Figure C.1 shows the presented poster at the European Association for the Study
of the Liver (EASL) Congress 2025 in Amsterdam in May 2025.
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