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Abstract. We present a numerical algorithm to solve the zero-Mach number approxi-
mation of the governing equations for laminar flames. The ingredients of the algorithm
are a Pressure Correction (PC) method to decouple the computation of velocity and pres-
sure, and a multi-level Local Defect Correction (LDC) method to solve the resulting set of
(non)linear boundary value problems. The PC method is based on a constraint equation,
rather than the continuity equation, describing expansion of the gas mixture due to combus-
tion. Moreover, we combine the PC method with implit Euler time integration to compute
steady flames. Boundary value problems for laminar flames are characterised by a high
activity region, the so-called flame front, where the solution varies rapidly. The basic idea
of the LDC method is to compute a global coarse grid solution, that is accurate enough to
represent the solution outside the flame front, and a sequence of local fine grid solutions
to capture all the details in the flame front. Moreover, these fine grid solutions are sub-
sequently used to improve the coarse grid solution by a defect correction technique. We
have applied our PC LDC algorithm to simulate a two-dimensional methane/air flame.

1 INTRODUCTION

Numerical simulation codes for laminar flames are a useful tool to study flames and/or
design burning devices. With the ever increasing power of modern computers, it is nowa-
days possible to simulate realistic combustion phenomenae; see e.g [6]. However, numerical
flame simulation is still a demanding task, for several reasons. First, in a flame many re-
actions take place involving many different species, and conservation laws for each of these
have to be solved. Consequently, the mathematical model consists of a large set of par-
tial differential equations in two- or even three-dimensional space. Second, the governing
equations are extremely stiff, meaning that they allow for solutions with largely varying

1



J.H.M. ten Thije Boonkkamp, R. Rook and R.M.M. Mattheij

time and space scales. More specifically, very rapid variations occur in the flame front,
which is a very thin zone between the unburnt and burnt gases where all the reactions
and heat production takes place, whereas outside the flame front the solution is allmost
constant. A third difficulty is that the chemical source terms are extremely nonlinear in
the temperature. Finally, transport models, e.g., for heat flux or mass diffusion, are often
very complicated and result in many coupling terms in the set of governing equations.

A numerical method for laminar flame simulation should at least satisfy the following
requirements. First, a nonuniform grid is absolutely mandatory in order to capture the
detailed structure of the flame front. Second, space discretisation methods should be
accurate in all regimes of the flow. Third, time integration methods should be efficient and
be able to handle stiff equations. Recently, time splitting methods have been applied in
flame simulations; see e.g. [25]. The basic idea is to split the set of governing equations in
several subsystems, for the sake of time integration, such that the different subsystems can
be solved efficiently; see e.g. [19] for a detailed account. Fourth, iterative solution methods
for (nonlinear) algebraic systems should be fast, and in particular, robust. Finally, a
projection method to decouple the pressure and velocity computation is highly desirable.
Projection methods were initially introduced for incompressible flow, but are nowadays
also widely used in the numerical simulation of low-Mach number compressible flow and
flames; see e.g. [1].

A lot of research on all these numerical techniques needed for flame simulation is going
on, although not always in the context of flame simulation. In this paper we focus on one
aspect of flame simulation, i.e., local grid refinement methods for boundary value prob-
lems (BVPs) characterised by a high activity region. There are basically two options, i.e.,
unstructured versus structured grids. Unstructured grids are often used in combination
with the FEM and applied to myriad problems. FEM simulations of laminar flames on
unstructured grids are presented in e.g. [9, 11]. A finite difference method leading to un-
structured grids is the Local Rectangular Refinement (LRR) method [7, 8]. This method
uses a rectangular grid with ending grid lines, that require special discretisation stencils.
On the other hand, the so-called Adaptive Mesh Refinement (AMR) methods [1] are based
on structured, rectangular grids, possibly even uniform. AMR in combination with time
splitting and a projection method is applied to laminar flames in [12]. The references
cited above are a short list of recent publications, that is certainly not exhaustive.

Local uniform grids have several advantages over nonuniform grids: they can be rep-
resented by simple data structures, allow accurate discretisation methods and there exist
efficient iterative solution methods for the resulting algebraic systems. For these reasons,
we restrict ourselves to uniform grids, and the solution method we employ is the Local
Defect Correction (LDC) method. The basic idea of the method is as follows. First, we
compute the solution on a global coarse grid, that is fine enough to represent the solution
outside the flame front. However, this coarse grid is certainly not fine enough to capture
the detailed structure of the flame inside the flame front. Therefore, we cover the flame
front with a sequence of local fine grids, and recompute the solution there using Dirichlet
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boundary data from the next coarser grid solution. Finally, we use the fine grid solutions
to improve the coarse grid solution by a defect correction technique. The LDC method
is developed and analysed for elliptic boundary value problems in, e.g., [13, 2, 3, 15], and
further extended to parabolic initial boundary value problems in [23, 24]. Applications
to flame simulation are presented in, e.g., [16], where the method is used to solve the
thermodiffusive model, and in [4], to solve the streamfunction-vorticity formulation of a
diffusion flame.

We have organized the remainder our paper as follows. In section 2 we briefly sum-
marize the governing equations. We describe the pressure correction algorithm for these
equations in Section 3. Next, in Section 4 we give an outline of the multi-level LDC
method, and subsequently in Section 5, we apply it to the BVPs derived in Section 3.
Application of our method to a two-dimensional steady methane/air flame is given in
Section 6. Conclusions are formulated in Section 7.

2 GOVERNING EQUATIONS

In this section we present a mathematical model for laminar, premixed flames under
atmospheric conditions. Typically, we consider the combustion of hydrocarbons in air.
The species in the flame are numbered 1 through Ns. Species Ns is nitrogen and is
present in abundance, while the other species are considered trace species. The governing
equations for such flames are the conservation equations of mass, momentum and energy of
the gas mixture and the balance equations of mass for the trace species. These equations
can be written in the following form [26, 28]

∂ρ

∂t
+ ∇·(ρv) = 0, (1a)

∂

∂t
(ρv) + ∇·(ρvv) = −∇p + ∇·T + ρg, (1b)

∂

∂t
(ρh) + ∇·(ρvh) −∇·

( λ

cp

∇h
)

= ∇·Jh, (1c)

∂

∂t
(ρYi) + ∇·(ρvYi) −

1

Lei

∇·

( λ

cp

∇Yi

)

= ωi, (i = 1, 2, . . . , Ns − 1). (1d)

The independent variables in (1) are the density ρ, the flow velocity v, the hydro-
static pressure p, the specific enthalpy h and the species mass fractions Yi. Other vari-
ables/constants in (1) are the (Newtonian) stress tensor T , the gravitational acceleration
g, the thermal conductivity λ, the specific heat at constant pressure cp, the enthalpy
diffusion flux Jh, the Lewis numbers Lei, assumed to be constant, and the reaction rates
ωi. The main assumptions underlying system (1) are, first, the gas mixture is Newto-
nian, second, heat transport is only determined by conduction and diffusion, and third, a
generalization of Fick’s law holds for mass diffusion. As a consequence of the latter two

3



J.H.M. ten Thije Boonkkamp, R. Rook and R.M.M. Mattheij

assumptions, the enthalpy diffusion flux Jh is given by

Jh =
λ

cp

Ns−1
∑

i=1

( 1

Lei

− 1
)

(

hi − hNs

)

∇Yi, (2)

with hi the specific enthalpy of the ith species. The first two equations in (1) are referred
to as the flow equations and the latter two as the combustion equations. Note, that we
only have to solve the conservation laws for the first Ns − 1 species and that the mass
fraction of the last species follows from the constraint

∑Ns

i=1 Yi = 1.
The conservation equations (1) have to be completed with the caloric equation of state

h = hT +

Ns−1
∑

i=1

hi,refYi, hT :=

∫ T

Tref

cp(T
′, Y1, Y2, . . . , YNs

) dT ′, (3a)

which defines h as a function of the temperature T and the species mass fractions Yi, and
the thermal equation of state

pamb =
ρRT

M
,

1

M
=

Ns
∑

i=1

Yi

Mi

. (3b)

The variables hT and hi,ref in (3a) are the specific thermal enthalpy and the specific
enthalpies of formation at reference temperature Tref , respectively. Furthermore in(3b),
R is the universal gas constant, M the average molar mas of the gas mixture and Mi the
molar mass of species i. The pressure p is set to the ambient pressure pamb in (3b), which
is valid for zero-Mach number flows [10].

Using the thermal equation of state (3b), we can express the density ρ as a function of
the combustion variables T and Yi. Applying the material derivative D/Dt := ∂/∂t+v·∇
to this relation and eliminating Dρ/Dt from the continuity equation (1a), we obtain a
constraint equation of the form

∇·v = s, (4a)

where s describes expansion of the gas mixture due to conduction, diffusion and heat
production. It is given by

s : =
1

T

DT

Dt
−

1

M

DM

Dt

=
1

ρcpT

(

∇·

( λ

cp

∇h
)

+ ∇·Jh

)

+

1

ρ

Ns−1
∑

i=1

(

M
( 1

Mi

−
1

MNs

)

−
hi,ref

cpT

)( 1

Lei

∇·

( λ

cp

∇Yi

)

+ ωi

)

.

(4b)

We have derived the second equality in (4b) by replacing the material derivatives by
expressions obtained from the combustion equations (1c), (1d) and the caloric equation
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of state (3a). Note that expansion of the mixture due to pressure variations is not taken
into account by virtue of the assumption that p = pamb in (3b). Equation (4a) is referred
to as the expansion equation and will replace the continuity equation.

Summarizing, our model for laminar flames consists of the momentum equations (1b),
the combustion equations (1c) and (1d), the expansion equation (4a) and the equations
of state (3).

Finally, we note that we can derive an elliptic equation for the pressure as follows.
Writing the Navier-Stokes equations (1b) in convective form, applying the divergence
operator and combining the resulting equation with the expansion equation (4a), we
obtain

∇·

(1

ρ
∇p

)

= ∇·

(1

ρ
∇·T

)

−
(Ds

Dt
+ s2

)

+ 2Φ +
1

2
|ω|2, (5a)

where the variable Φ is the second invariant of the deformation tensor E =
(

ei j

)

, defined
by [5]

Φ :=
(

e1 1e2 2 − e1 2e2 1

)

+ (e1 1e3 3 − e3 1e1 3

)

+ (e2 2e3 3 − e2 3e3 2

)

, (5b)

and where ω := ∇×v is the vorticity.

3 SEMI-DISCRETE FORMULATION

We apply the transverse method of lines [22], i.e., discretise the time derivatives first, to
derive a set of boundary value problems for velocity, pressure and all combustion variables.
Moreover, we employ the pressure correction method to decouple the velocity and pressure
computation.

Consider the governing equations (1b)-(1d) in convective form, together with the ex-
pansion equation (4a). Introducing the species mass fraction vector Y := (Y1, . . . , YNs−1)

T

and the combustion variables vector ψ := (T, Y1, . . . , YNs−1)
T, these equations can be writ-

ten in the symbolic form

∂v

∂t
= F1[v,ψ] − ρ−1(ψ)∇p, (6a)

∂h(ψ)

∂t
= F2[v,ψ], (6b)

∂Y

∂t
= F3[v,ψ], (6c)

∇·v = s(ψ), (6d)

where F1, F2 and F3 are spatial differential operators. Note that we have explicitly
denoted the dependence of ρ, h and s on the combustion variables ψ. Obviously, these
equations should be coupled to the equations of state (3). System (6a)-(6c) is very stiff,
mainly due to the chemical source terms, implying we should use an implicit time inte-
gration method. Moreover, we have to enforce the expansion equation (6d) at each time
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level. For time accurate computations, IMEX multistep methods are very suitable; see
[19]. However, in this paper we apply the method of false transient [22] to compute the
steady solution of (6), for which the implicit Euler method is most appropriate.

Thus, applying the implicit Euler time integration method to (6) we have

1

∆t

(

vn+1 − vn
)

− F1[v
n+1,ψn+1] + ρ−1(ψn+1)∇pn+1 = 0, (7a)

1

∆t

(

h(ψn+1) − h(ψn)
)

−F2[v
n+1,ψn+1] = 0, (7b)

1

∆t

(

Y n+1 − Y n
)

− F 3[v
n+1,ψn+1] = 0, (7c)

∇·vn+1 = s(ψn+1), (7d)

where vn denotes the semi-discrete approximation of v(x, tn) at the time level tn := n∆t,
with ∆t > 0 the time step; etc. Note that (7) is a system of PDEs independent of the
time t. One of the difficulties associated with this system is the coupling between the
velocity field vn+1 and the pressure field pn+1 in equation (7a). Therefore, we apply a
pressure correction technique to (7) as follows; see e.g., [20]. First, we define a predictor
v∗ for the velocity field vn+1 by replacing pn+1 in (7a) by pn. This way we obtain for v∗

and ψn+1 the following system

1

∆t

(

v∗ − vn
)

− F 1[v
∗,ψn+1] + ρ−1(ψn+1)∇pn = 0, (8a)

1

∆t

(

h(ψn+1) − h(ψn)
)

−F2[v
∗,ψn+1] = 0, (8b)

1

∆t

(

Y n+1 − Y n
)

− F3[v
∗,ψn+1] = 0. (8c)

Next, we replace the term F 1[v
n+1,ψn+1] in (7a) by its predictor F 1[v

∗,ψn+1], defining
the corrector for vn+1. Denoting this by vn+1 as well, we find

1

∆t

(

vn+1 − vn
)

− F1[v
∗,ψn+1] + ρ−1(ψn+1)∇pn+1 = 0. (9)

Subtracting equation (8a) from (9) we find the relation

1

∆t

(

vn+1 − v∗
)

+ ρ−1(ψn+1)∇qn = 0, qn := pn+1 − pn. (10)

Finally, applying the divergence operator to (10) and using the constraint (7d), we obtain
the following elliptic equation for the pressure increment qn

∇·
(

ρ−1(ψn+1)∇qn
)

=
1

∆t

(

∇·v∗ − s(ψn+1)
)

. (11)
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We will refer to this equation as the pressure equation. Note that it is similar to equation
(5a) for the pressure.

Summarizing, we have the following algorithm.

PC algorithm

1. Solve system (8) for the predictor velocity v∗ and the combustion variables ψn+1.

2. Solve equation (11) for the pressure update qn.

3. Update the pressure and compute the corrector velocity vn+1 from (10).

4 MULTI-LEVEL LDC

In this section we present an outline of multi-level LDC; for a more detailed account see,
e.g., [2, 3, 13]. Thus, consider on a simply connected domain Ω ⊂ R

d (d = 1, 2, 3) the
boundary value problem (BVP)

N [u] = 0, x ∈ Ω, (12a)

B[u] = g, x ∈ ∂Ω, (12b)

where N is a nonlinear elliptic differential operator and B a boundary operator, either of
Dirichlet or Neumann type. We cover Ω with a global uniform coarse grid Ωh0

, of grid
size h0, and apply a discretisation method resulting in the nonlinear system

Nh0
[uh0

] = fh0
, x ∈ Ωh0

, (13)

where uh0
is the grid function representing all unknowns on Ωh0

and where the right-hand
side fh0

contains the boundary data g. Applying an iterative solution method to (13), we
obtain the approximation u0

h0
.

Suppose, the solution u of (12) changes very rapidly in a small subdomain of Ω, the
so-called high activity region, whereas outside this region u is very smooth. In this high
activity region, the grid size h0 is definitely too coarse to capture the detailed structure
of u. Therefore, we introduce a local subdomain Ω` ⊂ Ω enclosing the high activity
region and cover Ω` with a sequence of nested, local uniform grids Ω`,hk

of grid size
hk (k = 1, 2, . . . , kmax) as shown in Figure 1. Obviously, h0 > h1 > . . . > hkmax

, otherwise
the refinement factors σk := hk/hk−1 (k = 1, 2, . . . , kmax) are arbitrary. Let Γhk

be the set
of boundary points of Ω`,hk

, that are not on the Dirichlet boundary. We will subsequently
solve discrete BVPs on Ω`,hk

for k = 1, 2, . . . , kmax, that are defined by the discretisation
of equation (12a) on Ω`,hk

, possibly the boundary condition on ∂Ω` ∩∂Ω and the interface
condition on Γhk

, i.e.,

u = bh1
:= Ph1,h0[uh0

], x ∈ Γh1
, (14a)

u = bhk
:= Phk,hk−1[u`,hk−1

], x ∈ Γhk
, (k = 2, 3, . . . , kmax), (14b)
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Figure 1: A global coarse and three local fine grids.

where Phk,hk−1 (k = 2, 3, . . . , kmax) is an interpolation operator that maps the local grid
function u`,hk−1

on Ω`,hk−1
onto a grid function on Γhk

; a similar definition holds for Ph1,h0.
The discrete BVPs on Ω`,hk

then read

N`,hk

[

u`,hk
; bhk

]

= f`,hk
, x ∈ Ω`,hk

, (k = 1, 2, . . . , kmax), (15)

where u`,hk
is the local grid function of unknowns on Ω`,hk

and f`,hk
is the grid function

containing the boundary data g on ∂Ω` ∩ ∂Ω. Note that the dependence of u`,hk
on the

solution u`,hk−1
at one coarser level is explicitly denoted by the interface condition bhk

.
We denote the numerically computed solutions of (15) by u0

`,hk
(k = 1, 2, . . . , kmax).

Next, we use the fine grid solutions u`,hk
(k = 1, 2, . . . , kmax) to improve the accuracy

of the global coarse grid solution u0
h0

. To this end we have to estimate the local dis-
cretisation error of the coarse grid problem (13) and of the fine grid problems (15) for
k = 1, 2, . . . , kmax − 1, which are defined as, respectively,

dh0
:= Nh0

[u] − fh0
, (16a)

dhk
:= N`,hk

[u; bhk
] − f`,hk

, (k = 1, 2, . . . , kmax − 1), (16b)

where u is the exact solution of (12) and where the interface conditions bhk
are computed

from (14) with uh0
replaced by u. Therefore, we replace u in (16) by the fine grid solution

u0
`,hk+1

at one level finer, wherever available, restricted to Ω`,hk
. This way we obtain the

local defects D[u0
h0

; u0
`,h1

] and D[u0
`,hk

; u0
`,hk+1

] (k = 1, 2, . . . , kmax − 1) as approximations
of the local discretisation error on Ω`,h0

:= Ω` ∩ Ωh0
and Ω`,hk

(k = 1, 2, . . . , kmax − 1),
respectively. At grid points of Ω`,hk

where the (restriction of the) solution u0
`,hk+1

is not

available, we set D[u0
`,hk

; u0
`,hk+1

] = 0. Once we have computed the defects, we add these
to the corresponding systems, to get for i = 0,

Nh0
[uh0

] = fh0
+ D[ui

h0
; ui

`,h1
], x ∈ Ωh0

, (17a)

N`,hk
[u`,hk

; bhk
] = f`,hk

+ D[ui
`,hk

; ui
`,hk+1

], x ∈ Ω`,hk
(k = 1, 2, . . . , kmax − 1). (17b)
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We subsequently solve (17) iteratively for k = kmax−1, kmax−2, . . . , 0, to find the approx-
imations u1

h0
and u1

`,hk
(k = 1, 2, . . . , kmax−1), that are presumably better approximations

than their zeroth order counterparts. These solutions can again be used to compute
interface conditions, new fine grid solutions; etc.

This procedure gives rise to the following algorithm; see also Figure 2.

Multi-level LDC algorithm

a. Initialization, i = 0

– Solve the basic coarse grid problem (13) for ui
h0

.

– For k = 1, 2, . . . , kmax do

• Compute the interface condition (14) for u`,hk
.

• Solve the fine grid problem (15) for ui
`,hk

.

b. Iteration, i = 1, 2, . . .

– For k = kmax − 1, kmax − 2, . . . , 0 do

• Compute the defect D[ui−1
`,hk

; ui−1
`,hk+1

] or D[u0
h0

; u0
`,h1

].

• Solve the updated problem (17) for u`,hk
or uh0

.

– For k = 1, 2, . . . , kmax do

• Compute the interface condition (14) for u`,hk
.

• Solve the fine grid problem (15) for ui
`,hk

.

Convergence of this algorithm is very fast, usually only one or two iterations are needed
for convergence [3]. The final solution is the composite grid solution, i.e., the solution at
the finest level available.

To demonstrate the feasibility of LDC, consider the following two-point BVP

u′′ + f(u) = 0, 0 < x < 1, (18a)

u(0) = u`, u(1) = ur, (18b)

with f(u) := 2α2u(1 − u)(u − 1
2
). The solution of (18) is of the form

u(x) = 1
2

(

1 + tanh(α(x − x0))
)

,

characterised by an interior layer at x = x0 when α � 1. We have computed a numerical
solution of (18) for the parameter values x0 = 0.33 and α = 25. For space discretisation
we use the standard central difference scheme. We have computed a global coarse grid
solution with H = 1/16 and a local fine grid solution on Ω` := (0.2, 0.5) with h = 1/64
to resolve the interior layer, the results of which are shown in Figure 3. The left figure
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Figure 2: Schematic representation of the initialization procedure and one iteration step of the four-level
LDC method. The meaning of the identifiers is as follows: S stands for solve discrete system, I for
computation interface conditions, D for defect computation and C for solve updated system.

shows the results before defect correction. Clearly, the coarse grid solution is poor in the
entire domain, and consequently, the interface conditions for the fine grid solution are very
inaccurate. The fine grid solution does not really improve the accuracy of the coarse grid
solution. However, in Ω` the structure of the fine grid solution is a fair approximation of
the interior layer, although the absolute errors are still large. The right figure shows the
composite grid solution after one iteration step. Obviously, this solution is much better
than the one before defect correction. More LDC iterations are not needed. Actually, we
can show that in this case further iterations do not improve the solution [14].
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Figure 3: Numerical solution of the two-point BVP (18) before (left) and after (right) defect correction.
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5 LDC FOR LAMINAR FLAMES

In this section we will combine the PC algorithm from Section 3 with the multi-level LDC
algorithm from Section 4. In the PC algorithm, we have to solve two BVPs, i.e., one
corresponding to system (8), to compute v∗, ψn+1, and one corresponding to the pressure
equation (11), to compute qn. We will subsequently solve both BVPs using the LDC
algorithm.

For (space)discretisation of (8) we use the cell-centred finite volume method on a
staggered grid in combination with an exponential scheme for the computation of the
numerical fluxes; for more details see [17, 18]. Moreover, for the pressure gradient at
the cell boundaries we take the central difference scheme. We apply these discretisation
schemes on a global coarse grid Ωh0

, of typical grid size h0, and on a sequence of local
fine grids Ω`,hk

, of typical grid size hk. This way, we obtain for (8) a nonlinear algebraic
system on Ωh0

, which can be symbolically written as

N h0

[

v∗h0
,ψn+1

h0

]

= fh0
, x ∈ Ωh0

, (19a)

where v∗h0
, ψn+1

h0
and fh0

are (vector-valued) grid functions on Ωh0
. Likewise, we have on

Ω`,hk
the fine grid discretisations

N `,hk

[

v∗hk
,ψn+1

hk
; v∗hk−1

,ψn+1
hk−1

]

= fhk
, x ∈ Ω`,hk

, (k = 1, 2, . . . , kmax). (19b)

Note that we use a slightly different notation than in Section 4 to denote the dependence
of N `,hk

on the grid functions v∗
hk−1

, ψn+1
hk−1

at one coarser level through the interface con-
dition. After solving the nonlinear systems (19) we can compute the corresponding defects
on the grids Ω`,hk

(k = 0, 1, . . . , kmax − 1), which we denote by D
[

v∗hk
,ψn+1

hk
; v∗hk+1

,ψn+1
hk+1

]

.
For space discretisation of (11) we use the finite volume method as well, this time

combined with central differences to approximate the fluxes. This way, we obtain kmax +1
linear algebraic systems, which can be symbolically written as

Lh0
(ψn+1

h0
)
[

qn
h0

]

= gh0
, x ∈ Ωh0

, (20a)

L`,hk
(ψn+1

hk
)
[

qn
hk

; qn
hk−1

]

= ghk
, x ∈ Ω`,hk

, (k = 1, 2, . . . , kmax), (20b)

where the notation Lh0
(ψn+1

h0
) indicates that the linear differential operator Lh0

depends

on the combustion variables ψn+1
h0

; likewise for L`,hk
. From the numerical solutions of (20)

we can compute the defects D[qn
hk

; qn
hk+1

].
Next, we add the defects to the corresponding systems, to give

N h0

[

v∗
h0

,ψn+1
h0

]

= fh0
+ D

[

v∗
h0

,ψn+1
h0

; v∗h1
,ψn+1

h1

]

, (21a)

N `,hk

[

v∗
hk

,ψn+1
hk

; v∗hk−1
,ψn+1

hk−1

]

= fhk
+ D

[

v∗hk
,ψn+1

hk
; v∗hk+1

,ψn+1
hk+1

]

,

(k = 1, 2, . . . , kmax − 1), (21b)

Lh0
(ψn+1

h0
)
[

qn
h0

]

= gh0
+ D

[

qn
h0

; qn
h1

]

, (21c)

L`,hk
(ψn+1

hk
)
[

qn
hk

; qn
hk−1

]

= ghk
+ D

[

qn
hk

; qn
hk+1

]

(k = 1, 2, . . . , kmax − 1), (21d)

11
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from which we can subsequently compute the updated solutions at the levels k = kmax− 1,
kmax − 2, . . . , 0. These updated solutions are subsequently used to determine interface
conditions, compute fine grid solutions, etc.

In the following we supress the superscripts n, ∗ and n+1 indicating a time level, in
order to keep the notation tractable. Thus we have v = v∗, ψ = ψn+1 and q = qn.
Instead, we add as superscript the iteration level. Combining the PC-algorithm and the
LDC-algorithm and putting everything together, we obtain the following algorithm.

Multi-level PC LDC algorithm

1. Compute the predictor velocity v and the combustion variables ψ.

a. Initialization, i = 0

– Solve the coarse grid problem (19a) for vi
h0

and ψi
h0

.

– For k = 1, 2, . . . , kmax do

• Compute the interface conditions for vhk
and ψhk

.

• Solve the fine grid problem (19b) for vi
hk

and ψi
hk

.

b. Iteration, i = 1, 2, . . .

– For k = kmax − 1, kmax − 2, . . . , 0 do

• Compute the defect D
[

vi−1
hk

,ψi−1
hk

; vi−1
hk+1

,ψi−1
hk+1

]

• Solve the updated problem (21a) or (21b) for vhk
and ψhk

– For k = 1, 2, . . . , kmax do

• Compute the interface conditions for vhk
and ψhk

.

• Solve the fine grid problem (19b) for vi
hk

and ψi
hk

.

c. Converged solution: vhk
,ψhk

(k = 0, 1, . . . , kmax) .

2. Compute the pressure increment q.

a. Initialization, i = 0

– Solve the coarse grid problem (20a) for qi
h0

.

– For k = 1, 2, . . . , kmax do

• Compute the interface conditions for qhk
.

• Solve the fine grid problem (20b) for qi
hk

.

b. Iteration, i = 1, 2, . . .

– For k = kmax − 1, kmax − 2, . . . , 0 do

• Compute the defect D
[

qi−1
hk

; qi−1
hk+1

]

• Solve the updated problem (21c) or (21d) for qhk
.

12
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– For k = 1, 2, . . . , kmax do

• Compute the interface condition for qhk
.

• Solve the fine grid problem (20b) for qi
hk

.

c. Converged solution: qhk
(k = 0, 1, . . . , kmax).

3. Compute the new pressure and velocity from (10).

Note that in the algorithm above, N `,h0
and L`,h0

should be interpreted as N h0
and Lh0

,
respectively.

For all nonlinear systems we use block-Gauss-Seidel iteration (outer iteration) in com-
bination with quasi-Newton iteration (inner iteration) and we use GMRES to solve all
linear systems. The PC-LDC algorithm is carried out each time step until all (discrete)
time derivatives are smaller than 10−6.

6 NUMERICAL RESULTS AND DISCUSSION

We apply the multi-level PC LDC algorithm to simulate a two-dimensional methane/air
flame on (a section of) a slit burner, the domain of which is shown in Figure 4. Reference
solutions for the methane mass fraction and the pressure, computed on a very fine uniform
grid of approximately 50, 000 control volumes, are also shown in this figure. The boundary

30 mm

O

WI

S S

1.5 mm 5 mm

y

x

Figure 4: Section of a slit burner as computation domain (left) and the reference solution for the methane
mass fraction (middle) and the pressure (right), computed on a uniform fine grid.
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Figure 5: The methane mass fraction on the global coarse grid (left), the local finest grid (middle) and
the composite grid (right).

conditions for this problem are as follows:

inflow (I) u = 0, v = v0

(

1 −
(x

d

)2)

, T = Tin, Yj = Yj,in,

outflow (O)
∂f

∂n
= 0 (f = u, v, T, Yj), p = pamb,

symmetry (S) u = 0,
∂f

∂n
= 0 (f = v, T, Yj),

wall (W) u = v = 0, T = Twall,
∂Yj

∂n
= 0,

where v0 = 2.6 m/s, d = 1.5 mm, Tin = Twall = 400 K, and where the inlet species mass
fractions Yj,in correspond to an equivalence ratio ϕ = 0.95. The one-step model for
methane/air combustion is used [21].

Our multi-level LDC method uses a global uniform coarse grid (level 0) of 780 control
volumes and three nested local uniform fine grids of 240 (level 1), 720 (level 2) and 2048
(level 3) control volumes, respectively, that tightly enclose the flame front in the lower
left corner of the domain. The grid size of the finest local grid (level 3) is the same as the
grid size of the global fine grid for the reference solutions. We carried out only one LDC
iteration. The computation of the numerical solution on the finest grid is the most time
consuming part of the algorithm, since this grid contains the largest number of control
volumes. The numerically computed methane mass fraction is shown in Figure 5. From
this figure we conclude the following. The global coarse grid solution is fairly accurate
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Figure 6: The pressure on the global coarse grid (left), the local finest grid (middle) and the composite
grid (right).

outside the flame front, where all variables are virtually constant, however, it clearly does
not capture the detailed structure of the flame front. The solution on the finest grid gives
an accurate representation of the flame in the flame front. Finally, the composite grid
solution closely resembles the reference solution, however, computed with approximately
13 times less control volumes, leading to a significant reduction in CPU time. The same
conclusions hold for the numerically computed pressure, shown in Figure 6.

We have compared our LDC algorithm with the Local Uniform Grid Refinement
(LUGR) method [27]. Rougly speaking, LUGR is a multi-level solution method for time
dependent PDEs that combines a global coarse grid solution with local fine grid solutions.
Unlike LDC, the fine grid solutions are not used in a defect correction step. Time inte-
gration on the local grids is carried out with a time step smaller than the one used for
the global grid. Since we are only interested in steady solutions, we use only one time
step for all grids. This version of LUGR is in fact the initialisation procedure of the LDC
algorithm; see Figure 2. For the flame problem above, we found hardly any difference
between the LDC and the LUGR solutions. The reason for this is that the interface con-
dition provided by the initial coarse grid solution is already accurate enough to guarantee
accurate solutions on the local fine grids. Thus, for this problem the defect correction
steps are actually not necesarry.

The performance of LDC iteration depends critically on the quality of both the global
coarse grid solution and the local fine grid solutions. In a proper application of LDC, the
coarse grid size h0 should be small enough to resolve all scales outside the flame front,
however, it is definitely too large for a correct approximation of the detailed solution in
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the flame front (preheat zone, inner layer and oxydation layer). This is taken care of by
the local fine grids, which should tightly enclose the flame front. If the initial coarse grid
solution provides the correct interface condition on Γh0

, then defect correction is in fact
not necessary anymore. This can occur if we choose the refinement region far to wide,
which is of course not very wise to do, or if we have an accurate initial solution, as often
happens in a time stepping procedure using a small time step. In fact, we can prove that
LDC iteration has converged once the interface conditions have converged [2]. On the
other hand, when the initial interface condition on Γh0

is not correct, a defect correction
is needed. This might happen, for example, if we have a poor initial guess or when we want
to compute solutions close to quenching or blow off. In these situations, LDC iteration
will improve the LUGR method. Consequently, LDC is more robust than LUGR, since it
does not rely on accurate interface conditions, allowing to compute a numerical solution
from a poor initial guess, provided all nonlinear systems still can be solved. Therefore, a
robust nonlinear solver in combination with LDC is an efficient numerical tool for laminar
flame simulation.

To conclude, LDC is a general solution strategy for laminar flames, applicable to differ-
ent models (simple/complex chemistry and/or transport). It can be combined with any
discretisation method and (iterative) solution method. Simple structured grids should
be used, allowing accurate discretisations and efficient (iterative) solution methods. Our
version of LDC is only applicable to steady problems. Its extension to time dependent
PDEs is described in [23].

7 CONCLUSIONS

In this paper we have combined the PC method, to decouple the velocity and pressure
computation, with the LDC method, to solve BVPs characterised by a high activity re-
gion. The PC method is based on the expansion equation as constraint, rather than the
continuity equation. The basic idea of LDC is to compute a global coarse grid solution
and a local fine grid solution, and subsequently use the latter to improve the coarse grid
solution in a defect correction manner. The method is extended recursively to include
several levels of refinement. Moreover, this procedure can be repeated iteratively, how-
ever, usually one iteration step is sufficient for convergence. The main advantage of this
approach is that we can use structured grids, possibly even uniform, allowing accurate
discretisation methods resulting in algebraic systems for which efficient iterative solution
methods are available.

We have applied a four-level LDC method to compute a methane/air flame on a slit
burner. Our LDC solution has the same accuracy as a reference solution computed on
a much finer grid, containing 13 times more control volumes. We have also carried out
a numerical simulation with the LUGR method, and have virtually found no difference
between the two solutions.
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