
 
 

Delft University of Technology

SmartAlert
Machine learning-based patient-ventilator asynchrony detection system in intensive care
units
Pažout, Jaroslav; Němý, Milan; Mikeš, Jakub; Jirman, Jan; Kubr, Jan; Niebauerová, Eliška; Macík, Miroslav;
Babuška, Robert; Duška, František; More Authors
DOI
10.1016/j.cmpb.2025.108927
Publication date
2025
Document Version
Final published version
Published in
Computer Methods and Programs in Biomedicine

Citation (APA)
Pažout, J., Němý, M., Mikeš, J., Jirman, J., Kubr, J., Niebauerová, E., Macík, M., Babuška, R., Duška, F., &
More Authors (2025). SmartAlert: Machine learning-based patient-ventilator asynchrony detection system in
intensive care units. Computer Methods and Programs in Biomedicine, 269, Article 108927.
https://doi.org/10.1016/j.cmpb.2025.108927
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.cmpb.2025.108927
https://doi.org/10.1016/j.cmpb.2025.108927


SmartAlert: Machine learning-based patient-ventilator asynchrony 
detection system in intensive care units
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Frantǐsek Duška a,# , on behalf of VentConnect Study group
a Department of Anesthesiology and Intensive Care, 3rd Faculty of Medicine, Charles University and Kralovske Vinohrady University Hospital in Prague, Šrobárova 50, 
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A B S T R A C T

Background and Objective: Patient-ventilator asynchronies (PVA) are associated with ventilator-induced lung 
injury and increased mortality. Current detection methods rely on static thresholds, extensive preprocessing, or 
proprietary ventilator data. This study aimed to develop and validate a fully online, real-time system that detects 
and classifies PVAs directly from ventilator screen data while alerting clinicians based on severity.
Methods: The SmartAlert system was developed using ventilator screen recordings from ICU patients. It extracts 
pressure and flow waveforms from video recordings, converts them into time-series data, and employs deep 
neural networks to classify asynchronies and assign alarm levels from no urgency to most urgent. A dataset of 
381,280 double-breath units was independently annotated by two expert intensivists. Two deep learning models 
were trained: one for alarm prediction and another for asynchrony classification (ineffective triggering, double 
cycling, high inspiratory effort, no asynchrony). Performance was evaluated using accuracy, sensitivity, speci
ficity, and AUC-ROC, compared to expert consensus.
Results: SmartAlert demonstrated strong performance for alarm level prediction (overall accuracy: 83.8 %, 
weighted AUC-ROC: 0.943 [95 % CI: 0.941–0.945]) and PVA classification (weighted accuracy: 89.3 %, 
weighted AUC-ROC: 0.951 [95 % CI: 0.950–0.953]). It showed high specificity for urgent alarms (99.9 % for 
level 3) and PVA types (98.5 % for ineffective triggering, 96.9 % for double cycling, 94.8 % for high inspiratory 
effort).
Conclusions: We developed and internally validated SmartAlert, an automated system that detects PVAs, classifies 
severity, and alerts clinicians in real time. Its potential to reduce alarm fatigue, optimize ventilator settings, and 
improve patient outcomes remains to be tested in clinical trials.
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1. Introduction

Positive pressure mechanical ventilation (MV) not only provides 
essential organ support for critically ill patients but it also carries risk of 
ventilator-induced lung injury (VILI). The mechanisms of VILI range 
from shear stress-induced inflammation to classical barotrauma. Pre- 
existing lung injuries further increase susceptibility to VILI, empha
sizing the importance of optimal ventilator settings to minimize harm 
[1,2]. Evidence supports maintaining tidal volumes, plateau pressures, 
driving pressures, and mechanical power within safe limits, as recom
mended by guidelines [3–6]. However, dynamic patient physiology 
necessitates frequent ventilator adjustments by experienced operators, 
which is not always feasible in a busy ICU environment. Furthermore, 
alarm fatigue, where constant monitoring alarms desensitize providers, 
can delay responses to critical events and endanger patient care [7]. 
Moreover, clinically significant events that do not trigger alarms may go 
unnoticed. There is an urgent need for systems that strike an optimal 
balance between frequency and the detection of critical events [8]. This 
need became even more apparent during the COVID-19 pandemic, 
where barrier nursing and the use of personal protective equipment 
further limited clinicians’ ability to monitor and adjust ventilator set
tings, thereby increasing the risk of VILI.

One critical issue in ventilator management is patient-ventilator 
asynchrony (PVA), in which the ventilator’s mechanical support does 
not align with the patient’s respiratory efforts [9–11]. PVAs including 
ineffective triggering (IE), double cycling (DC), and high inspiratory 
effort (hIE), are linked to various adverse effects, such as patient 
discomfort, reduced sleep quality, increased needs for sedation and/or 
muscle relaxant, and aggravation of VILI. These complications can result 
in prolonged mechanical ventilation, and even increased mortality, 
highlighting the urgent need for timely PVA detection and management 
[11–14]. Despite these severe consequences, the true incidence of PVA 
may be significantly underestimated due to inadequate monitoring or 
clinicians’ limited experience in identifying subtle asynchronies [15].

Numerous studies have attempted to address PVA detection using 
traditional rule-based algorithms that rely on predefined thresholds or 
feature engineering. Early work by Mulqueeny et al. [16] and Blanch 
et al. [17] demonstrated automated detection of PVAs, such as IE and 
DC. However, these methods were limited by their reliance on fixed 
thresholds that do not adapt to changes in patient physiology (e.g., 
variations in respiratory effort or mechanical lung properties) and thus 
lacked the flexibility needed for real-time application in the 
ever-changing conditions of critically ill patients.

Recently, machine learning (ML) has shown promise in advancing 
PVA detection. Zhang et al. [18] employed ventilator waveforms in 
image format and applied convolutional neural networks (CNNs) to 
classify various PVA subtypes. Although this image-based approach 
achieved high accuracy, it required computationally intensive pre
processing and was limited by a small dataset. Pan et al. [19] took a 
different approach by using 1D CNNs to analyze ventilator waveforms, 
offering a more efficient method for waveform-based PVA detection. In a 
subsequent study, Pan et al. [20] further improved the methodology by 
utilizing a recurrent neural network architecture, specifically a Long 
Short-Term Memory (LSTM) network, to capture the temporal patterns 
in the waveforms, thereby enhancing classification performance. While 
these methods demonstrated significant progress, they often relied on 
separate models for each PVA subtype, which limits scalability, and 
were not designed for fully online, real-time clinical applications. 
Moreover, most existing approaches depend on proprietary ventilator 
data outputs, reducing their versatility for use across diverse ventilator 
models.

During the COVID-19 pandemic, we developed an interface called 
VentConnect (see www.ventconnect.cz for details), which enables the 
encrypted online transfer of ventilator screen data to any computer 
device. This platform helps intensivists remotely monitor ventilator 
screens and identify potentially dangerous patterns, such as PVAs. As an 

extension of the VentConnect project, we aimed to further develop this 
technology into a system called SmartAlert, a fully online, real-time 
solution capable of (1) automatically detecting and classifying pat
terns like PVAs from ventilator screen data and (2) notifying clinicians 
via a custom-designed application with alerts tailored to the severity of 
detected patterns. SmartAlert is designed to ensure continuous moni
toring without overwhelming clinicians, thereby addressing one of the 
key challenges in effective PVA management.

In this paper, we describe the technical details of developing the 
SmartAlert system and present the results of a study evaluating its per
formance against a gold standard, defined as the agreement among two 
fully qualified intensivists specially trained to recognize PVAs.

2. Methods

2.1. Study workflow and system overview

This study aimed to develop a system capable of capturing ventilator 
screens in their raw visual form and, through a series of signal trans
formations and advanced machine learning techniques, detecting and 
classifying patient-ventilator asynchronies (PVA) as they appear on the 
screen. The system was designed to output an alarm level that indicates 
the severity of the situation, thereby providing actionable information to 
clinicians so that ventilator settings can be adjusted for more optimal 
lung ventilation. The workflow involved waveform digitization via the 
VentConnect system, annotation of the pressure and flow waveforms, 
and training deep learning classifiers for both PVA detection and alarm 
level prediction.

2.2. Patient selection

All adult patients admitted to the ICU at University Hospital 
Královské Vinohrady, Czech Republic, between January 2021 and 
August 2022 were included in the study. The cohort comprised a mixed 
general ICU population, including patients with major trauma, major 
elective surgery, and COVID-19. However, patients with burns, solid 
organ transplants, or those undergoing cardiac surgery were excluded. 
All included patients required mechanical ventilation.

2.3. Research ethics and data protection

The VentConnect system was originally developed during COVID-19 
pandemic to facilitate the clinical care of patients receiving mechanical 
ventilation. It enabled intensivists to remotely monitor ventilator set
tings in real time for numerous patients. Anonymized ventilatory 
waveform data were stored within the system and later used for algo
rithm training. No other individual patient data were recorded, pro
cessed, or stored for this study. The Královské Vinohrady Research 
Ethics Board reviewed the study, approved retrospective use of wave
form data, and waived the need for informed consent.

2.4. VentConnect system overview

This study utilized our in-house VentConnect system to capture and 
analyze lung ventilator waveforms. VentConnect provides access to 
video output streams from mechanical ventilators and vital signs mon
itors, enabling both real-time data streaming and retrospective analysis 
of stored snapshots.

Fig. 1 illustrates the system’s core architecture, which comprises 
hardware capture units (VentUnits), a central data server, storage 
infrastructure, and analytical components.

The system captures video from ventilator displays and automati
cally digitizes waveform data. It incorporates pattern recognition algo
rithms for detecting patient-ventilator asynchrony (PVA) and performs 
threshold-based monitoring of critical ventilation parameters. When 
potentially suboptimal ventilation states are identified, the system 
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generates alert notifications for healthcare professionals. This func
tionality forms the foundation for the analyses described in this study.

For real-time use, only the digitized time-series data are stored and 
subsequently processed. In addition, a 10-second video recording is 
captured every 15 min and stored for review purposes and for retro
spective analyses in studies like this one. In this configuration, the sys
tem processes waveform data with a total latency of approximately 
1–1.5 s from screen capture to alarm generation. Waveform extraction is 
executed locally on each VentUnit with minimal delay (50–100 ms per 
full screen), and classification is performed centrally on the VentConnect 
server, with parallelized processing to ensure responsiveness even when 
monitoring multiple ventilators simultaneously. A comprehensive 
description of the VentConnect architecture, including detailed 
component specifications and data flow, is provided in the Supple
mentary materials.

2.5. Definition of patient-ventilator asynchronies

In this study, we adopted the adult classification of patient-ventilator 
asynchronies (PVA) to annotate and classify the asynchronies most 
commonly observed in clinical practice. Among the various PVAs 
described in the literature, we focused on three severe types: ineffective 
triggering (IE), double cycling (DC), and high inspiratory effort (hIE). 
These PVAs were selected due to their prevalence and their potential to 
disrupt synchrony between the patient’s respiratory efforts and the 
ventilator’s mechanical support, posing significant risks to patient 
comfort and safety if left unaddressed.

Table 1 provides the definitions for these PVAs, adapted for the 
purposes of our study. These definitions formed the basis for annotating 
the training dataset and developing the classification algorithm 
described in subsequent sections.

2.6. Ventilator screen-to-signal conversion

The pressure (airway pressure) and flow (volumetric flow rate) 
waveforms analyzed in this study were recorded from two types of lung 
ventilators, the Hamilton G5 and the Dräger Evita Infinity V500, via the 
VentConnect system. To facilitate subsequent analyses, we developed a 
robust data processing pipeline to convert these video-recorded wave
forms into accurate multivariate time-series data. All processing was 
performed using MATLAB R2023a.

The pipeline begins by precisely cropping each video to isolate re
gions displaying the pressure and flow waveforms. To mitigate 
compression artifacts inherent in lossy image formats, color quantiza
tion was applied using k-means clustering.

Next, the X (time) and Y (pressure or flow) axes of the waveforms 
were digitized. Tick marks on the axes were identified, and adjacent 

numeric labels were located and processed to extract their values. Each 
numeric label, represented as a graphical element, was compared 
against a library of pre-extracted templates using the Dice coefficient to 
accurately decode its corresponding numerical value. The positions of 
the tick marks and their numerical equivalents were then used to 
compute scales for the axes, enabling the mapping of each pixel within 
the waveform region to its true temporal and amplitude values. This 
mapping provided a precise transformation of the visual waveform data 
into quantifiable time-series data.

The waveform signal itself was extracted by thresholding of the 
relevant color components in the segmented images. Minor disconti
nuities in the extracted signal, typically spanning one to two pixels and 
attributable to encoding artifacts, were rectified using linear interpola
tion to ensure continuity.

This process yielded high-fidelity, multivariate pressure and flow 
time-series data, which formed the basis for subsequent analyses, 
including the detection of inspiratory events, segmentation into double- 
breath units, and their classification.

For the purpose of this study, waveform extraction was performed 
offline as described above. However, in our real-time SmartAlert system, 
waveform extraction is performed directly on each VentConnect unit 
using code written in the C programming language. The process takes 
approximately 1 % of the time needed to fill a full screen.To accom
modate display layout variability, the system uses automated layout 
detection. This detection relies on distinctive features for each 

Fig. 1. Schema of VentConnect System Architecture with Notification system extension. Components important for notification system are highlighted 
in orange.

Table 1 
Patient-ventilator asynchronies selected for annotating respiratory cycles. 
Descriptions of these three severe types of PVAs were adopted from adult clas
sification [21] to annotate and classify ventilator waveforms.

PVA Type Definition

Ineffective Triggering 
(IE)

A patient’s inspiratory effort fails to trigger a ventilator- 
delivered breath. This is characterized by a positive 
deflection in flow and a negative deflection in airway 
pressure that is not followed by an inspiratory phase, 
increasing the patient’s work of breathing and leading to 
discomfort.

Double Cycling (DC) Two consecutive ventilator-delivered breaths triggered by a 
single patient inspiratory effort, appearing as two breaths in 
rapid succession on the pressure and flow curves. This 
phenomenon is often caused by inadequate ventilator 
settings, resulting in unnecessary mechanical insufflations.

High Inspiratory 
Effort (hIE)

An excessive decrease in pleural pressure during 
inspiration, observed as either a slower increase in 
inspiratory pressure or a negative pressure deflection in the 
initial phase of inspiration. This reflects a mismatch 
between the ventilator’s flow delivery and the patient’s 
effort, leading to discomfort and suboptimal ventilation. It 
is also known as flow dyssynchrony.

J. Pažout et al.                                                                                                                                                                                                                                  Computer Methods and Programs in Biomedicine 269 (2025) 108927 

3 



ventilation mode and layout, such as the color scheme, shapes, and 
positions of waveform panels and control buttons. Templates were 
prepared for the most common ventilation modes and settings used in 
our ICU, and personnel are instructed to use only supported layouts to 
ensure consistent extraction. Additionally, a built-in validity check 
based on visual landmarks ensures that only screenshots with complete 
and correctly aligned waveforms are processed.

2.7. Validation of screen-to-signal conversion against data logger records

To validate the accuracy of our screen-to-signal conversion pipeline, 
we compared the derived time-series data with reference signals recor
ded using the Hamilton Datalogger software. This software communi
cates with Hamilton ventilators via an RS232 interface and provides 
real-time recordings of waveforms in a tabular format. These data 
logger signals were used as a proxy for ground truth in the validation 
process.

The data logger recorded signals at a sampling frequency of 31.25 
Hz. To enable a direct comparison, both the data logger signals and our 
screen-derived time-series were upsampled to a common frequency of 
100 Hz using linear interpolation. The accuracy of the derived signals 
was assessed using the following metrics: 

1. Root Mean Squared Error (RMSE): This metric quantifies the ab
solute differences between corresponding points in the two signals 
using the formula: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑N

i=1
(xi − yi)

2

√

,

where xi and yi represent the derived and ground truth values at each 
time point, respectively, and N is the total number of points. 

2. Normalized Root Mean Squared Error (NRMSE): This metric 
normalizes the RMSE relative to the dynamic range of the ground 
truth signal, allowing for comparisons across signals of varying 
magnitudes: 

NRMSE =
RMSE

max(y) − min(y)
,

where max (y) and min (y) are the maximum and minimum values of the 
ground truth signal. 

3. Pearson Correlation Coefficient: This coefficient was calculated to 
evaluate the linear relationship between the two signals, quantifying 
how well the patterns in both signals correspond regardless of their 
magnitudes.

To ensure robust validation, we analyzed signals from 466 consec
utive full-screen recordings in SPONT ventilation mode, yielding a 
comprehensive dataset that spans multiple ventilation cycles and vary
ing conditions.

2.8. Detection of inspiratory events

For automatic classification, we first identified inspiratory events 
using proprietary in-house software. The multivariate pressure/flow 
signal was uniformly resampled to 100 Hz and subsequently low-pass 
filtered using a 25th-order Finite Impulse Response (FIR) filter, with a 
bandpass frequency of 10 Hz and a stopband frequency of 20 Hz. An 
approximate derivative of both the pressure and flow signals was then 
computed utilizing a first-order difference method.

The onset of the inspiratory event was defined as the beginning of a 
rapid rising edge, observable concurrently in both the pressure and flow 
waveforms. Candidate time points for inspiratory events were flagged 
when the derivative of the flow signal exceeded 1.5 times its standard 
deviation (calculated over a single screen length) and the derivative of 
the pressure signal was positive.

To refine these detections, the algorithm retrospectively examined 
the preceding 25 data points of the flow derivative for each candidate 
event. The definitive initiation point of the inspiratory event was 
determined as the last instance within this window where the flow de
rivative fell below its standard deviation.

Using the detected inspiratory events, the pressure/flow time series 
was segmented into sections spanning three consecutive inspiratory 
events (i.e., two complete breath cycles). These segments, referred to as 
double-breath units, formed the input for further processing and clas
sification. This segmentation approach was chosen to provide sufficient 
temporal context for detecting patterns like double cycling, which by 
definition span across adjacent breaths. It can also benefit the detection 
of other PVA types by allowing the model to evaluate short waveform 
sequences, consistent with how clinicians interpret ventilator data.

Fig. 2 presents a schematic overview of the inspiratory event 
detection algorithm.

To validate the temporal accuracy of the detected inspiration onsets, 
we compared the timing of our detection approach to the reference onset 
times using the same RS-232-based dataset described in Section 2.7. 
Temporal alignment was assessed by calculating the difference between 
the algorithm-detected onset and the reference.

2.9. Clustering-aided annotation

To enable automatic classification of the waveforms, the segmented 
double-breath units were annotated by medical experts (J. P., J. M., P. 
W., M. S.), using a custom-developed, web-based application. The ex
perts evaluated each double-breath unit to identify the type of patient- 
ventilator asynchrony (PVA) present and assign an appropriate alarm 
state. The annotated PVAs included IE, DC, hIE, as well as the absence of 
asynchrony (NO).

Alarm states were defined to indicate the severity of the condition 
(Table 2), supplementing the ventilator’s built-in alert system, with 
levels ranging from 0 (no immediate attention needed) to 3 (urgent 
attention required).

To streamline the annotation process for the large volume of signals, 
the double-breath units were initially grouped into clusters based on 
their similarity. This was achieved using partitional clustering with 
Dynamic Time Warping as the distance measure and Partition Around 
Medoids for centroid determination [22]. The signals were first 
pre-processed through z-normalization, and the optimal number of 
clusters per each ventilation mode was determined by exploring a range 
from 2 to 1000 clusters using silhouette analysis.

Annotations were performed independently by three medical ex
perts. In cases of disagreement, the experts discussed the contentious 
instances until a consensus was reached. If a consensus could not be 
achieved, the final decision was made by the most experienced expert.

For clarity, Table 3 summarizes the key characteristics of the venti
lation modes included in this study. These labels correspond to the 
modes reported by the ventilator interface and were used consistently 
throughout the clustering and annotation process.

2.10. Deep neural network architecture and training

We developed two deep neural networks (DNNs) to classify lung 
ventilator waveforms based on segmented double-breath units. Both 
models were trained on the same annotated dataset but were designed 
for distinct classification tasks: one for predicting alarm levels (ranging 
from 0 to 3) and the other for identifying the type of asynchrony (IE, DC, 
hIE, NO). Due to the different output structures and evaluation criteria, 
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and to avoid the complexity of loss balancing, we did not adopt a mul
titask learning framework. While alarm levels and PVA types are often 
related in practice, they are not perfectly aligned, and training the 
models separately allowed for better optimization and flexibility. In 
deployment, both models are applied in parallel to the same input data.

2.10.1. Input representation
The models processed two input streams: (1) variable-length time- 

series data representing the double-breath units, this input consisted of 
two channels (pressure and flow) and (2) a fixed-length numerical 
vector containing 11 features. This vector included a one-hot encoded 
representation of the ventilation mode (five selected modes and an 
’OTHER’ category) and five additional ventilation parameters: peak 
inspiratory pressure (Ppeak), expiratory tidal volume (VTE), 
inspiratory-to-expiratory ratio (I:E), expiratory minute volume 
(ExpMinVol), and respiratory rate (fTotal). Missing numerical values 
were encoded as − 1. The time-series waveform input was FIR-filtered, 
and no normalization was applied along the time or amplitude axes 
during either training or inference.

2.10.2. Model architecture
As illustrated in Fig. 3, both DNNs share a similar architecture, 

implemented using the TensorFlow/Keras functional API. The time- 
series input is first passed through a masking layer to accommodate 
sequences of different lengths. This is followed by a bidirectional Long 
Short-Term Memory (BiLSTM) layer with 128 hidden units, which 
captures temporal dependencies in the data. A dropout layer (with a rate 
of 0.5) is applied to reduce overfitting. The output from the BiLSTM is 
than concatenated with the fixed-length numerical input vector, forming 
a combined representation that feeds into subsequent layers.

2.10.3. Alarm prediction model
For predicting alarm levels, the combined representation is passed 

Fig. 2. Workflow of the detection algorithm for inspiratory event identification. SD, standard deviation; FIR, finite impulse response filter; p(t), pressure 
waveform (time signal); Q(t), flow waveform (time signal); p’(t), approximation of the first time derivative of the pressure signal; Q’(t), approximation of the first 
time derivative of the flow signal.

Table 2 
Description of alarm levels in the SmartAlert system. PVA, patient-ventilator 
asynchrony; hIE, high inspiratory effort.

Alarm 
Level

Interpretation Typical Examples

0 No immediate attention 
needed

Regular breathing pattern with no signs 
of PVA

1 Mild abnormality, monitor 
if persistent

Occasional ineffective effort or minor 
breath stacking not yet clinically 
impactful

2 Clinically relevant issue, 
attention warranted

Recurrent double cycling, frequent high 
inspiratory effort (hIE) episodes

3 Urgent attention required Sustained PVA patterns (e.g., persistent 
hIE), combination of PVAs

Table 3 
Ventilation mode descriptions used in this study.

Ventilation Mode Description

SPONT (Spontaneous mode) A continuous positive airway pressure 
(CPAP) mode in which the patient breathes 
spontaneously, triggering pressure- 
supported breaths with flow-cycled 
termination.

ASV (Adaptive Support Ventilation) A closed-loop mode that automatically 
adapts pressure and respiratory rate based 
on patient mechanics and effort.

P-SIMV (Pressure-controlled 
Synchronized Intermittent 
Mandatory Ventilation)

Ventilator combines pressure-controlled 
mandatory breaths with spontaneous 
breathing opportunities.

SIMV (Synchronized Intermittent 
Mandatory Ventilation)

Ventilator delivers mandatory breaths at a 
set interval, with synchronization to 
spontaneous effort, but allows unassisted 
spontaneous breathing between them.

DuoPAP (Dual Positive Airway 
Pressure)

A bilevel mode in which the ventilator 
alternates between two pressure levels, 
allowing spontaneous breathing at both 
levels to support gas exchange and reduce 
patient effort.
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through a dense layer with 64 units and ReLU activation. The final 
output layer employs softmax activation for multiclass classification, 
corresponding to the four alarm levels (0 to 3). This model was trained 
using the Adam optimizer with a learning rate of 0.0001 and a sparse 
categorical cross-entropy loss function.

2.10.4. Asynchrony prediction model
This network predicted the presence of one or more asynchrony 

types (IE, DC, hIE, NO), as annotated by medical experts. Similar to the 
alarm prediction model, the combined representation from the BiLSTM 
output and the fixed-length numerical vector was processed through a 
dense layer with 64 units and ReLU activation. However, the output 
layer utilized sigmoid activation to accommodate multilabel classifica
tion. The model was trained using the Adam optimizer (with a learning 
rate of 0.0001) with a binary cross-entropy loss function.

The dataset was shuffled and divided into training (70 %), validation 
(15 %), and testing (15 %) sets. Both models were trained for up to 500 
epochs with a batch size of 64. Early stopping with a patience of 50 
epochs and model checkpointing based on validation loss were 
employed to prevent overfitting and to select the best-performing model 
based on validation metrics.

The models were implemented using TensorFlow version 2.4.1 
running in a Singularity container. This container utilized NVIDIA’s 
TensorFlow framework stack, which includes CUDA 11.2 and cuDNN 
8.1 libraries.

2.11. Statistical analysis

After training the networks, we evaluated the performance of both 
models using the testing dataset. The statistical evaluation was per
formed on separate double-breath units without consideration of their 
temporal sequence.

For the alarm prediction model, we computed overall accuracy, 
sensitivity, and specificity across the entire dataset. In addition, these 
metrics were calculated separately for each alarm level (0, 1, 2, and 3) to 

assess the model’s ability to differentiate between various degrees of 
clinical urgency. Both weighted and macro-averaged sensitivity, speci
ficity, and F1-score were reported. The weighted averages account for 
the frequency of each alarm level in the dataset, while the macro av
erages provide an unweighted assessment across all levels.

For the asynchrony prediction model, accuracy, sensitivity, and 
specificity were determined for each label (IE, DC, hIE, and NO) to 
evaluate the model’s performance in identifying each type of asyn
chrony independently. Similarly, weighted and macro-averaged ver
sions of these metrics were calculated offering both a frequency- 
weighted evaluation and an equal-weighted overview across all labels.

To further quantify model performance, we calculated one-vs-all 
AUC-ROC scores for each label or alarm level. In addition, macro- and 
weighted-average AUC-ROC scores were computed to provide both a 
balanced view across all classes and a frequency-weighted evaluation. 
Confidence intervals (CIs) for the AUC-ROC were derived using a 
bootstrapping procedure with 1000 resamples and the 95 % CIs were 
reported for both the macro- and weighted-average AUC-ROC scores, as 
well as for the one-vs-all scores of each individual label or alarm level.

High inspiratory effort (hIE) has an inherently subjective component, 
and its detectability may vary depending on the ventilation mode. To 
account for this potential variability, we performed an additional mode- 
stratified analysis. Specifically, we evaluated the distribution of hIE 
events and the performance of the classifier for each ventilation mode.

Statistical analysis was performed using Python 3.10. The analyses 
leveraged the NumPy library (v1.23.5) for numerical operations, and 
scikit-learn (v1.3.0) for computing classification evaluation metrics such 
as sensitivity, specificity, accuracy, F1-score, and AUC-ROC.

3. Results

3.1. Patient characteristics

A total of 1863 patients from a mixed general ICU population were 
included in the study. This cohort encompassed patients with major 

Fig. 3. Architecture of the deep neural networks for classifying lung ventilator waveforms. The models take two inputs: (1) variable-length time-series data of 
pressure and flow signals (two channels) and (2) a numerical vector comprising one-hot encoded ventilation modes and additional ventilation parameters. The time- 
series input is processed through a masking layer, a bidirectional LSTM (BiLSTM) layer with 128 units, and a dropout layer (rate = 0.5). The BiLSTM output is 
concatenated with the numerical input vector, followed by a dense layer with 64 units and ReLU activation. Two separate outputs are generated: (A) alarm level 
probabilities (softmax activation, 4 classes) predicting the urgency of attention required, and (B) probabilities of asynchrony types (sigmoid activation, multilabel 
classification for ineffective triggering [IE], double triggering or cycling [DC], high inspiratory effort [hIE], and no asynchrony [NO]).
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trauma, major elective surgery, and COVID-19 cases, while excluding 
those with burns, solid organ transplants, or cardiac surgery. The mean 
age of patients was 58.4 ± 17.8 years, with the first and third quartiles at 
44.8 and 73.0 years, respectively. The majority of patients were men (n 
= 1174, 63.0 %). The most frequent primary diagnoses were respiratory 
failure (n = 448, 24.0 %), trauma (n = 318, 17.1 %), COVID-19 (n = 260, 
14.0 %), postoperative complications (n = 245, 13.2 %), and stroke (n =
199, 10.7 %). The overall ICU mortality rate was 11.9 %. Detailed cohort 
characteristics are presented in Table 4.

3.2. Validation of screen-to signal conversion and inspiration onset 
detection

The accuracy of the derived signals from the screen-to-signal con
version pipeline was evaluated by comparing them to the ground truth 
signals recorded using the Hamilton Datalogger. Three metrics were 
used in this evaluation: Root Mean Squared Error (RMSE), Normalized 
Root Mean Squared Error (NRMSE) relative to the signal range, and the 
Pearson correlation coefficient.

For the airway pressure signal, the RMSE was 0.698 cmH2O, the 
NRMSE was 2.56 %, and the Pearson correlation coefficient was 0.984 (p 
< 0.001). For the flow signal, the RMSE was 3.633 l/min, the NRMSE 
was 1.47 %, and the Pearson correlation coefficient was 0.993 (p <
0.001).

Next, we assessed the temporal accuracy of the detected inspiration 
onset. The mean temporal difference between the algorithm-detected 
and reference onsets was − 0.035 s (SD 0.027 s), with a median of 
− 0.030 s (IQR: − 0.050 s to − 0.020 s).

3.3. Signal preprocessing and transformation

The dataset for training the classification algorithm was derived from 
an extensive collection of 635,806 video recordings of ventilator 
screens, each lasting 10 s. These recordings were processed to extract 
and parse double-breath units for model training.

After applying optical character recognition to the video recordings, 
464,097 recordings were identified as originating from Hamilton ven
tilators, 97,058 from Dräger ventilators, and 74,651 were deemed 
unrecognizable or faulty. Among the Hamilton recordings, 223,373 
were captured in active (non-standby) mode while 240,724 in standby 
mode. For the Dräger recordings, 54,608 were in non-standby mode and 

42,450 in standby mode. Due to the significantly smaller number of 
recordings from the Dräger devices, only the active recordings from 
Hamilton devices were retained for the subsequent analysis.

From the non-standby recordings, a total of 219,929 Hamilton re
cordings were successfully parsed into complete sets of segmented 
waveforms along with their associated statistics. For further processing, 
only the largest subsets, SPONT, ASV, P SIMV, DuoPAP, and SIMV, were 
retained, while the remaining 22,496 recordings representing a mixture 
of ventilation modes with low counts, were excluded. As shown in 
Table 5, the SPONT mode accounted for the largest subset with 90,808 
recordings, followed by ASV with 43,205 recordings and P SIMV with 
34,258 recordings.

The segmented waveforms were then transformed into double- 
breath units, which serve as the fundamental input for the classifica
tion algorithm. Table 5 provides details on the segmentation and clus
tering outcomes for Hamilton ventilators. In total, Hamilton ventilators 
contributed 381,280 double-breath units across all ventilation modes, 
organized into 2490 clusters. Out of these, 340,871 double-breath units 
were successfully annotated for subsequent training of the classification 
model.

The annotation process involved identifying and excluding clusters 
and recordings that contained artifacts or excessive noise, ensuring that 
only high-quality data were used for model training.

3.4. Prevalence of patient-ventilator asynchronies and alarm level in 
annotated samples

We used a total of 289,739 annotated double-breath units for 
training (85 % of the sample) and validation of the deep learning clas
sifiers, while 51,132 double-breath units (15 % of the sample) were 
reserved for final testing (Table 6). The dataset included annotations for 
both PVA types and alarm levels, with the distribution of each category 
remaining consistent across the training and test sets. Based on the full 
dataset, the “no asynchrony” (NO) label was the most common, ac
counting for 55.80 % of all double-breath units, followed by hIE at 34.93 
%, DC at 13.71 %, and IE at 5.70 %. Regarding alarm levels, the majority 
of units were classified as non-urgent (level 0, 60.92 %), with progres
sively fewer instances for levels 1 (29.55 %), 2 (9.24 %), and 3 (0.29 %).

3.5. Performance of deep learning models to recognise patient-ventilator 
asynchronies

The performance of the deep learning classifier for predicting alarm 
levels is summarized in Table 7. The overall accuracy (Exact Match), 
which represents the proportion of instances where all predicted alarm 
levels exactly matched the true levels, was 0.838. The per-class 

Table 4 
Baseline characteristics and outcomes of patients with mechanical 
ventilation. Data represent the number of patients (percentage) for categor
ical variables. Continuous variables are reported as mean ± standard 
deviation.

Characteristic

n 1863
Age (yr) 58.4 ± 17.8
Weight (kg) 86.9 ± 21.7
Height (cm) 174.6 ± 9.5
BMI 28.5 ± 6.9
Sex (M/F) 1174/689 (63.0 %/37.0 %)
Length of Stay (days) 8.1 ± 10.0
ICU Mortality 221 (11.9 %)
Major diagnosis ​

Respiratory Failure 448 (24.0 %)
Trauma 318 (17.1 %)
COVID-19 260 (14.0 %)
Postoperative 245 (13.2 %)
Stroke 199 (10.7 %)
Traumatic Brain Injury 117 (6.3 %)
Sepsis 95 (5.1 %)
Resuscitation 60 (3.2 %)
Poisoning 19 (1.0 %)
Epilepsy 17 (0.9 %)
Other 85 (4.6 %)

Table 5 
Counts of segmented, clustered, and annotated double-breath units. The 
"Double-Breath Count in Clusters" column represents the total number of 
segmented units, while the "Number of Clusters" indicates how these units were 
grouped for annotation. The "Annotated Double-Breath Count" reflects the 
number of high-quality units retained after excluding recordings with artifacts 
or noise. Abbreviations used include: SPONT (Spontaneous mode), ASV 
(Adaptive Support Ventilation), P SIMV (Pressure Synchronized Intermittent 
Mandatory Ventilation), DuoPAP (Dual Positive Airway Pressure), SIMV (Syn
chronized Intermittent Mandatory Ventilation).

Ventilation 
mode

Recording 
Count

Double- 
Breath 
Count in 
Clusters

Number of 
Clusters

Annotated 
Double-Breath 
Count

SPONT 90,808 90,729 800 69,463
ASV 43,205 165,079 600 161,255
P SIMV 34,258 81,858 530 72,714
DuoPAP 14,767 36,385 400 31,095
SIMV 13,945 7229 160 6344
Total 196,983 381,280 2490 340,871
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accuracies for alarm levels 0, 1, 2, and 3 were 0.884, 0.848, 0.947, and 
0.997, respectively. Sensitivity showed a decreasing trend with 
increasing alarm severity (0.915 for level 0, 0.733 for level 1, 0.681 for 
level 2, and 0.372 for level 3). Conversely, specificity increased with 
alarm severity (0.836 for level 0, 0.897 for level 1, 0.974 for level 2, and 
0.999 for level 3). The classifier achieved AUC-ROC scores exceeding 
0.950 for all alarm levels except level 1, which had an AUC-ROC of 
0.915. Aggregated results showed weighted accuracy of 0.880, reflect
ing the model’s performance adjusted for the frequency of each alarm 
level in the dataset, while the macro accuracy, which treats all alarm 
levels equally, was higher at 0.919, underscoring the classifier’s 
balanced performance across all levels. The weighted AUC-ROC was 
0.943, and the macro AUC-ROC reached 0.956, further confirming the 
model’s robust classification capabilities across all alarm levels.

The performance of the deep learning classifier for predicting PVA 
types is detailed in Table 8. Among the four PVA types, the classifier 
achieved the highest accuracy for ineffective triggering (IE) at 0.960, 

followed by double cycling (DC) at 0.918, no asynchrony (NO) at 0.888, 
and high inspiratory effort (hIE) at 0.878. Sensitivity varied across PVA 
types, with the highest sensitivity observed for NO (0.913), followed by 
hIE (0.745), DC (0.596), and IE (0.539). Specificity was consistently 
high across all PVA types, ranging from 0.840 for NO to 0.985 for IE. The 
classifier achieved AUC-ROC scores exceeding 0.940 for all PVA types, 
with the highest AUC-ROC observed for NO (0.954 [95 % CI: 
0.953–0.956]) and the lowest for DC (0.940 [95 % CI: 0.937–0.942]). 
Aggregated metrics further highlight the model’s performance with a 
weighted accuracy of 0.893, reflecting the overall performance adjusted 
for the frequency of each PVA type and a macro accuracy of 0.940, 
emphasizing the model’s balanced performance across the types.

An additional analysis showed that the occurrence of hIE and the 
performance of the classifier in detecting hIE varied across ventilation 
modes. As shown in Supplementary Table 1 and Supplementary Table 2, 
hIE was most frequent in SPONT (57.1 %) and least in DuoPAP (22.4 %). 
Sensitivity of the prediction ranged from 0.574 (DuoPAP) to 0.876 
(SIMV), while AUC-ROC values remained high across all modes, from 
0.870 (SPONT) to 0.968 (SIMV).

Performance metrics for the training and validation sets of both 
models are provided in the Supplementary materials (Supplementary 
Table 3, 4, 5, 6) for comparison.

4. Discussion

4.1. Main results

In our study, we present the development and validation of the 
SmartAlert system, a machine learning-based tool designed to enhance 
the detection of patient-ventilator asynchronies (PVAs) in ICU settings. 
The system uses state-of-the-art signal processing techniques and deep 
learning models to analyze data from ventilator screens, capturing and 
classifying PVAs. SmartAlert operates solely on the graphical informa
tion displayed on ventilator screens, making it adaptable to a wide range 
of lung ventilator models with only minimal adjustments to the 

Table 6 
Distribution of PVA types and alarm levels in the full and test datasets. The 
counts represent annotated double-breath units, and the percentage of PVAs 
does not necessarily add up to 100 % because more than one PVA can be present 
in the same double-breath unit. Here IE stands for ineffective triggering, DC for 
double cycling, hIE for high inspiratory effort, and NO for no asynchrony.

Category Full dataset Test dataset

Count Percentage, % Count Percentage, %

PVA type ​ ​ ​ ​
IE 19,421 5.70 2894 5.66
DC 46,742 13.71 7046 13.78
hIE 119,056 34.93 17,799 34.81
NO 190,216 55.80 28,578 55.89
Alarm level ​ ​ ​ ​
0 (no urgency) 207,649 60.92 31,156 60.93
1 100,732 29.55 15,091 29.51
2 31,502 9.24 4700 9.19
3 (most urgent) 988 0.29 185 0.36

Table 7 
Performance of the deep learning classifier to predict alarm levels. Metrics include accuracy, sensitivity, specificity, AUC-ROC with 95 % confidence intervals (in 
square brackets), F1 score, and mean absolute error (MAE). These metrics are evaluated both per alarm level (0, 1, 2, and 3) and as aggregated results. Aggregated 
metrics are reported as weighted averages (weighted by the frequency of each alarm level) and as macro averages (unweighted mean across classes). Overall Accuracy 
(Exact Match) represents the proportion of instances where all predicted alarm levels exactly match the true levels.

Alarm level Accuracy Sensitivity Specificity AUC-ROC F1 score MAE

Per-Class Metrics ​ ​ ​ ​ ​ ​
0 0.884 0.915 0.836 0.952 [0.951–0.954] 0.906 0.092
1 0.848 0.733 0.897 0.915 [0.913–0.918] 0.741 0.267
2 0.947 0.681 0.974 0.967 [0.965–0.969] 0.703 0.366
3 0.997 0.372 0.999 0.990 [0.987–0.993] 0.449 1.014
Aggregated Metrics ​ ​ ​ ​ ​ ​
Overall Accuracy (Exact Match) 0.838 ​ ​ ​ ​ 0.171
Overall (Weighted) 0.880 0.838 0.867 0.943 [0.941–0.945] 0.837 0.171
Overall (Macro) 0.919 0.675 0.926 0.956 [0.955–0.957] 0.700 0.435

Table 8 
Performance of the deep learning classifier to predict PVA types. Metrics include accuracy, sensitivity, specificity, AUC-ROC with 95 % confidence intervals (in 
square brackets), and F1 score, evaluated per PVA type (IE, DC, hIE, NO) and as aggregated results. Aggregated metrics are reported as weighted averages (weighted by 
the frequency of each PVA type) and macro averages (unweighted mean across types). IE stands for ineffective triggering, DC for double cycling, hIE for high 
inspiratory effort, and NO for no asynchrony.

PVA type Accuracy Sensitivity Specificity AUC-ROC F1 score

Per-Class metrics ​ ​ ​ ​ ​
IE 0.960 0.539 0.985 0.941 [0.937–0.945] 0.605
DC 0.918 0.596 0.969 0.940 [0.937–0.942] 0.667
hIE 0.878 0.745 0.948 0.952 [0.950–0.953] 0.809
NO 0.888 0.913 0.840 0.954 [0.953–0.956] 0.915
Aggregated Metrics ​ ​ ​ ​ ​
Overall (Weighted) 0.893 0.808 0.894 0.951 [0.950–0.953] 0.839
Overall (Macro) 0.940 0.638 0.957 0.962 [0.961–0.963] 0.699
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measuring system. This universality ensures that the system can be 
easily deployed across different clinical setups.

The SmartAlert system accurately identified various types of PVAs, 
closely matching expert clinician assessments and correctly triggering 
alarms tailored to the needs of intensivists. Addressing a multi-class 
classification problem, one that requires distinguishing between multi
ple categories simultaneously, is inherently more complex than binary 
decision-making. This added complexity often results in lower perfor
mance metrics, as documented in machine learning research [23]. 
Despite these challenges, SmartAlert achieved an overall accuracy of 
83.8 % for alarm level predictions, with a weighted sensitivity, of 83.8 
%, specificity of 86.7 %, and a weighted AUC-ROC of 0.943 [95 % CI: 
0.941–0.945]. Its performance in detecting PVA matched methods using 
hysteretic lung mechanics (≥89.5 % sensitivity, ≥96.8 % specificity) 
and is comparable to Zhang et al.’s image-based approach (~90 % ac
curacy) [18,24]. Per-class analysis revealed particular strengths; for 
instance, the detection of alarm level 0 achieved an F1 score of 0.906 
and an AUC-ROC of 0.952 [95 % CI: 0.951–0.954]). Although alarm 
level 3 was less prevalent, its high specificity (99.9 %) minimized false 
alarms, and the low mean absolute error (MAE) for lower alarm levels 
reflected the model’s precision in ranking severity. Even when pre
dictions deviated, the classifier consistently assigned high alarm levels 
to critical cases, effectively maintaining the distinction between critical 
and non-critical alarms.

Similarly, the classifier for PVA types performed robustly, with a 
weighted accuracy of 89.3 % and AUC-ROC of 0.951 [95 % CI: 
0.950–0.953]. It demonstrated strong detection of ineffective effort (IE), 
double cycling (DC), and high inspiratory effort (hIE), achieving speci
ficities exceeding 94 %. For cases labeled as no asynchrony (NO), the 
classifier achieved the highest sensitivity (91.3 %) and an F1 score of 
0.915. These results confirm the model’s ability to capture clinically 
relevant patterns while maintaining a low false-positive rate, an essen
tial criterion for deployment in the ICU.

The detection of high inspiratory effort, in particular, deserves 
further consideration, as this asynchrony type includes an inherently 
subjective component and may manifest differently depending on the 
ventilation mode. To address this, we performed a mode-stratified 
analysis, which revealed that while the frequency of hIE varied across 
modes, the model maintained high predictive power (AUC-ROC) 
throughout. This finding supports the robustness of the classifier despite 
physiological and detection-related variability.

Interpreting the classifier’s performance requires consideration of 
several factors. Although the training and testing datasets were curated, 
they still reflect real-world ICU variability, which inevitably introduces 
some noise. Training on such data enhances generalizability of the 
model, as system trained on perfectly cleaned datasets may struggle with 
actual ICU inputs. Given the system operates in real time, flawless 
classification of every double-breath unit is not the ultimate goal. 
Instead, SmartAlert aggregates classification results over time using 
sequence-based decision mechanisms to improve reliability. Our group 
is currently developing this aggregation decision system, and future 
studies will include its performance analysis to further refine its inte
gration into clinical workflows.

4.2. Advantages and potential clinical application

The SmartAlert system offers several distinct advantages over exist
ing approaches. One key advantage is its straightforward technical so
lution, which exports real-time ventilator screen data directly to an 
internet browser, clinical information software, or a mobile application. 
This design builds on clinicians’ natural reliance on pattern recognition 
to diagnose PVAs, and by incorporating a reliable machine learning 
(ML)-based recognition system. SmartAlert has the potential to signifi
cantly improve the detection and management of PVAs in busy ICU 
environments. While its effectiveness in actual clinical settings still 
awaits confirmation through randomized controlled trials (RCTs), the 

system’s innovative design already addresses critical limitations of 
current solutions.

A notable strength of SmartAlert is its universality. Unlike studies 
that depend on proprietary data outputs from ventilator machines [18,
20], SmartAlert utilizes video output. This approach makes the system 
highly adaptable, allowing it to accommodate various screen layouts 
with minimal customization and ensuring compatibility across a wide 
range of ventilators.

We have also validated the quality of the extracted waveform signals 
by comparing them to those obtained via the RS-232 output of the 
ventilator using a manufacturer-provided data logger. This comparison 
showed a high level of agreement in shape, timing, and amplitude, 
which supports the technical validity of our screen-based extraction 
approach and its comparability to traditional signal-based methods.

Furthermore, SmartAlert system leverages a deep learning approach 
to analyze minimally pre-processed pressure and flow waveforms. This 
contrasts sharply with traditional rule-based detection algorithms, 
which rely on computing engineered features and applying fixed 
thresholds [14,16,17,25]. By eliminating the need for handcrafted fea
tures, SmartAlert learns to identify relevant features and their nonlinear 
combinations directly from raw data. This self-learning capability en
hances both the robustness and adaptability of the system compared to 
standard machine learning techniques that depend on predefined fea
tures [26].

The SmartAlert system also stands out for its efficiency and practi
cality in real-time applications. The system uses a single, relatively 
simple deep-learning architecture to predict multiple types of PVAs 
simultaneously. In our study, three types of PVAs were accurately pre
dicted in real time with minimal pre-processing, a significant improve
ment over approaches such as Pan et al. [20], which required 
computationally intensive transformations from 1D to 2D data and 
complex architectures. Similarly, Zhang et al. [18] employed LSTM 
networks but required separate models for each PVA subtype, adding to 
the complexity of their solution. In contrast, SmartAlert not only in
tegrates predictions for multiple PVA subtypes within a single model but 
is also capable of simultaneous operation across multiple ventilators, 
ensuring accurate, real-time predictions in complex ICU environments. 
By addressing these practical challenges, SmartAlert sets a new standard 
for real-time, multi-class PVA detection and management in clinical 
settings.

A key innovation of the SmartAlert system is its novel alarm func
tionality. By incorporating a severity scale that assesses the patient’s 
condition regarding problematic ventilator settings, the system can 
assign tailored alarm levels. This feature not only alerts physicians to 
immediate dangers but also provides detailed information about the 
detected type of PVA, thereby enhancing clinical decision-making.

Finally, SmartAlert addresses the critical issue of alarm fatigue. 
Frequent alarms in ICU settings can desensitize staff and compromise 
patient care. By providing targeted, clinically relevant alerts that focus 
on significant asynchronies, SmartAlert reduces unnecessary notifica
tions and supports optimized ventilator settings. This targeted alerting 
approach builds on the foundation of effective asynchrony management 
strategies demonstrated in previous studies [14,27] and sets a new 
standard for real-time, multi-class PVA detection and management in 
clinical practice.

4.3. Limitations

The development and validation of the SmartAlert system come with 
several important limitations that must be considered when interpreting 
the study’s results. First, the reliance on a controlled dataset from a 
single type of ventilator, may limit the generalizability of our findings to 
other devices or clinical settings. Second, the gold standard for valida
tion was based on consensus among two trained intensivists (or three in 
cases of disagreement), which, despite being robust, introduces poten
tial human error and subjective bias. Additionally, our study focused on 
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specific patient-ventilator asynchronies, such as ineffective triggering, 
double cycling, and high inspiratory effort, which may exclude other, 
less prevalent yet clinically significant asynchronies that occur in real- 
world settings. The clustering process used to detect similar patterns 
might also have overlooked some clinically relevant signals that could 
have escaped detection by human evaluators. Next, variability in 
waveform display zoom between screen captures may also affect the 
effective sampling frequency of the extracted signal, although the sys
tem adapts to each screen individually by detecting axis scales from tick 
marks and labels. Another consideration is that approximately 11.7 % of 
videos were excluded during preprocessing due to unrecognizable 
screen content. These cases typically involved unsupported layouts or 
modes, HDMI capture issues (e.g., cable disconnection or corrupted 
signal), or failures in OCR due to compression artifacts. In deployment, 
where the system operates with continuous screen capture and the un
derlying physiological processes evolve relatively slowly, the impact of 
such exclusions is minimal. Finally, this study did not evaluate the real- 
time application and responsiveness of the SmartAlert system in a live 
ICU environment.

4.4. Future directions

There is an urgent need to investigate the impact of the SmartAlert 
system on clinical, patient-centered outcomes. To address this, we have 
designed a randomized controlled trial (RCT) to assess how integrating 
SmartAlert into a mobile app influences the safety and duration of me
chanical ventilation (registered at Open Science Framework: https://osf. 
io/s25e6/). This study aims to evaluate how real-time alerts generated 
by SmartAlert affect clinical decision-making and patient outcomes in 
ICU settings. By examining the system’s ability to reduce patient- 
ventilator asynchrony and potentially enhance ventilatory safety, the 
trial seeks to provide concrete evidence of its benefits and operational 
effectiveness within the complex ICU environment.

5. Conclusion

In conclusion, we have developed a tool capable of detecting patient- 
ventilator asynchronies in real time with high accuracy, designed to 
alert clinicians to this potentially dangerous condition that standard 
ventilator alarms often fail to identify. By using machine learning to 
detect and notify healthcare professionals of critical asynchronies, the 
SmartAlert system has the potential to significantly reduce the risk of 
VILI and improve outcomes for mechanically ventilated patients.
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